Géométrie des bords : compactifications différentiables et remplissages holomorphes

Abstract : In the first part of the manuscript we study some compactifications. Given a nonpositively curved symmetric space we search for its differentiable compactifications, that is its embedding into a manifold with boundary where the action of the isometry group extends differentiably up to the boundary. The main results are : the classification of such compactifications of the real hyperbolic space, and the nonexistence of such compactifications for higher rank spaces.
In the second part we are concerned with holomorphic fillings. Given a compact R manifold M and a subgroup F of automorphisms, we ask which compact complex manifolds with boundary X have boundary isomorphic to M and admit a prolongation of the action of F. Under assumption on the convexity and dimension of M and on the size of F, we prove a unicity result (up to blow-up).
Document type :
Theses
Mathematics. Ecole normale supérieure de lyon - ENS LYON, 2006. French


https://tel.archives-ouvertes.fr/tel-00120345
Contributor : Benoît Kloeckner <>
Submitted on : Thursday, December 14, 2006 - 2:47:44 PM
Last modification on : Thursday, December 14, 2006 - 6:01:14 PM

Identifiers

  • HAL Id : tel-00120345, version 1

Collections

Citation

Benoit Kloeckner. Géométrie des bords : compactifications différentiables et remplissages holomorphes. Mathematics. Ecole normale supérieure de lyon - ENS LYON, 2006. French. <tel-00120345>

Export

Share

Metrics

Consultation de
la notice

87

Téléchargement du document

86