Skip to Main content Skip to Navigation
Theses

Adaptation de Maillage anisotrope 3D et application à l'aéro-thermique des
bâtiments

Abstract : The subject of this thesis is related to air cooling problem in complex 3d geometries. Such a problem requires a strong numerical coupling between the Navier-Stokes equations for incompressible fluids and an advection diffusion-equation for the temperature. The coupling is achieved by adding a Boussinesq term on the right hand side of the Navier-Stokes equations.
We applied anisotropic mesh adaptation techniques based on edges lengths with respect to a given discrete metric (supplied at the mesh vertices) and we choose local mesh adaptation to build the adapted mesh. We decided to implement an anisotropic version of the Delaunay point insertion (i.e. the so-called Delaunay kernel).
Document type :
Theses
Complete list of metadatas

Cited literature [13 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00120327
Contributor : Cécile Dobrzynski <>
Submitted on : Thursday, December 14, 2006 - 11:50:24 AM
Last modification on : Wednesday, December 9, 2020 - 3:11:26 PM
Long-term archiving on: : Thursday, September 20, 2012 - 4:00:34 PM

Identifiers

  • HAL Id : tel-00120327, version 1

Citation

Cécile Dobrzynski. Adaptation de Maillage anisotrope 3D et application à l'aéro-thermique des
bâtiments. Mathématiques [math]. Université Pierre et Marie Curie - Paris VI, 2005. Français. ⟨tel-00120327⟩

Share

Metrics

Record views

633

Files downloads

318