O. De and L. , 189 I-1) Marquage des peptides ligands de « ? v ? 3 » à l'iode 125, 189 I-2) Marquage des peptides ligands de «? v ? 3 » au technétium 99m

M. J. Abrams, M. Juweid, C. I. Schwartz, D. A. Hauser, M. M. Gaul et al., Technetium-99m-human polyclonal IgG radiolabeled via the hydrazino nicotinamide derivative for imaging focal sites of infection in rats, J. Nucl. Med, vol.31, issue.12, pp.2022-2027, 1990.

R. Alberto, R. Schibli, U. Egli, A. Knapp, F. F. et al., Potential of organometallic [M(CO) 3 ] + (M = Re, Tc) fragment for the labelling of proteins and small molecules, Radiochim. Acta, vol.79, pp.99-103, 1997.

R. Alberto, R. Schibli, A. Egli, P. A. Schubiger, U. Abram et al., in Aqueous Solution and Its Reaction with a Bifunctional Ligand, Journal of the American Chemical Society, vol.120, issue.31, pp.7987-7988, 1998.
DOI : 10.1021/ja980745t

R. Alberto, [Tc(CO) 3 ] + chemistry: a promising new concept for SPET?, European Journal of Nuclear Medicine and Molecular Imaging, vol.30, issue.9
DOI : 10.1007/s00259-003-1292-0

C. J. Anderson, ?, Cancer Biotherapy & Radiopharmaceuticals, vol.16, issue.6, pp.451-455, 2001.
DOI : 10.1089/10849780152752056

M. Apparu and J. C. Madelmont, Molécules marquées à l'iode radioactif, Ln : Comet M

G. S. Bailey, Labeling of Peptides and Proteins by Radioiodination, Methods Mol. Biol
DOI : 10.1385/0-89603-268-X:441

A. D. Watson and A. J. Lusis, Atherosclerosis : basic mechanisms. Oxidation, inflammation, and genetics, Circulation, vol.91, pp.2488-2496, 1995.

S. Kopiwoda, M. J. Abrams, M. Darkes, R. C. Robbins, H. T. Maecker et al., In vivo detection and imaging of phosphatidyl serine expression during programmed cell death

D. Blok, H. I. Feitsma, Y. M. Kooy, and M. M. Welling, New chelation strategy allows for quick and clean 99mTc-labeling of synthetic peptides, Nuclear Medicine and Biology, vol.31, issue.6, pp.815-820, 2004.
DOI : 10.1016/j.nucmedbio.2004.02.009

A. E. Bolton, [2] Comparative methods for the radiolabeling of peptides, Methods Enzymol, vol.124, pp.18-29, 1986.
DOI : 10.1016/0076-6879(86)24004-5

D. Boturyn, J. L. Coll, E. Garanger, M. C. Favrot, and P. Dumy, Template Assembled Cyclopeptides as Multimeric System for Integrin Targeting and Endocytosis, Journal of the American Chemical Society, vol.126, issue.18
DOI : 10.1021/ja049926n

M. Bourdoiseau, Iodine radiochemistry and radiopharmaceutical product labelling

P. Bouziotis, M. Fani, S. C. Archimandritis, G. Loundos, M. Paravatou et al., Samarium-153 and technetium- 99m-labeled monoclonal antibodies in angiogenesis for tumor visualization and inhibition

A. Broisat, Médecine nucléaire et maladie coronarienne : Evaluation de traceurs de la perfusion myocardique et de la plaque d'athérome vulnérable, Doctorat Génie Biologique et Médical. 12 Avril, 2005.

P. C. Brooks, R. F. Clarck, and D. A. Cheresh, Requirement of vascular integrin alpha v beta 3 for angiogenesis, Science, vol.264, issue.5158, pp.569-571, 1994.
DOI : 10.1126/science.7512751

B. A. Khaw, Noninvasive localization of human atherosclerotic lesions with indium 111- labeled monoclonal Z2D3 antibody specific for proliferating smooth muscle cells, J Nucl Cardiol, vol.5, issue.6, pp.551-557, 1998.

X. Chen, S. Liu, Y. Hou, M. Tohme, R. Park et al., MicroPET imaging of breast cancer ?-integrin expression with Cu-labeled dimeric RGD peptides, Molecular Imaging & Biology, vol.6, issue.5, pp.350-359, 2004.
DOI : 10.1016/j.mibio.2004.06.004

J. R. Laug, W. E. Conti, and P. S. , MicroPET imagingof brain tumor angiogenesis with 18 F? labelled PEGylated peptide, Eur. J. Nucl. Med. Mol. Imaging, vol.31, pp.1081-1089, 2004.

X. Chen, R. Park, A. H. Shahinian, J. R. Bading, and P. S. Conti, Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation, Nuclear Medicine and Biology, vol.31, issue.1, pp.11-19, 2004.
DOI : 10.1016/j.nucmedbio.2003.07.003

X. Chen, M. Tohme, R. Park, Y. Hou, J. R. Bading et al., Micro-PET imaging of alphavbeta3-integrin expression with 18F-labeled dimeric RGD peptide, Mol. Imaging

P. S. Conti, Integrin alpha v beta 3?targeted imaging of lung cancer, Neoplasia, vol.7, issue.3, pp.271-279, 2005.

D. A. Cheresh, Integrins: Structure, Function, and Biological Properties, Adv. mol. cell biol, vol.6, pp.225-252, 1993.
DOI : 10.1016/S1569-2558(08)60204-0

M. C. Chia, The Role of Adhesion Molecules in Atherosclerosis, Critical Reviews in Clinical Laboratory Sciences, vol.31, issue.369, pp.573-602, 1998.
DOI : 10.1093/rheumatology/32.8.651

H. H. Coenen, J. Mertens, and B. Mazière, Radioionidation reactions for pharmaceuticals, compendium for effective synthesis startegies. COST. Netherlands, 2006.

M. I. Cybulsky and G. M. , Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis, Science, vol.251, issue.4995, pp.788-789, 1991.
DOI : 10.1126/science.1990440

J. C. Ramos, P. W. Connelly, and D. S. Milstone, A major Role for VCAM-1, but not ICAM-1, in early artherosclerosis, J. clin. Invest, vol.107, issue.10, pp.1225-1262, 2001.

P. F. Davison, A versatile procedure for the radioionization of proteins and labeling reagents, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.926, issue.2, pp.195-202, 1987.
DOI : 10.1016/0304-4165(87)90237-6

S. L. Goodman and H. Kessler, N-Methylated Cyclic RGD peptides as highly Active and selective ? v? 3 Integrin Antagonists, J. Med. Chem, vol.42, pp.3033-3040, 1999.

P. Julyan, A. Watson, and J. Zweit, Functional comparaison of annexin V analogues labeled indirectly and directly with iodine-124, Nucl. Med. Biol, vol.32, pp.403-413, 2005.

D. Jonge, F. Pauwels, and E. , Technetium, the missing element, European Journal of Nuclear Medicine, vol.22, issue.3, 1996.
DOI : 10.1007/BF00837634

S. L. Goodman, S. Matzku, A. Jonczyk, K. R. Lamborn, and D. G. , Neovascular targeting with cyclic RGD peptide (cRGDf-ACHA) to enhance delivery of radioimmunotherapy, Cancer Biother. Radiopharm, vol.15, pp.71-79, 2000.

M. Dewannjee, The chemistry of 99m Tc labelled radiopharmaceuticals, Semin. Nucl

L. W. Dobrucki and A. J. Sinusas, Cardiovascular molecular imaging, Seminars in Nuclear Medicine, vol.35, issue.1, pp.73-81, 2005.
DOI : 10.1053/j.semnuclmed.2004.09.006

D. Moulinet-d-'hardemare, A. Pasqualini, R. Ridhe, F. Vidal, and M. , Chimie du technétium 99m Tc, Ln : Comet M. and Vidal M. Radiopharmaceutiques -Chimie des radiotraceurs et applications biologiques, pp.153-180, 1998.

D. Tourwe, L. Jeannin, K. Iterbeke, and P. A. Schubiger, Organometallic 99mTc-aquaion labels peptide to an unprecedented high specific activity, J Nucl Med, vol.40, issue.11, pp.1913-1917, 1999.

D. R. Elmaleh, J. Narula, J. W. Babich, A. Petrov, A. J. Fischman et al., Rapid noninvasive detection of experimental atheroslerotic lesions with novel 99mTc-labeled diadenosine tetraphosphates, Proc. Natl. Acad. Sci, pp.691-695, 1998.

F. A. Eskens, H. Dumez, R. Hoekstra, A. Perschl, C. Brindley et al., Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of Cilengitide (EMD 121974), a novel inhibitor of the integrins ??v??3 and ??v??5 in patients with advanced solid tumours, European Journal of Cancer, vol.39, issue.7, pp.917-926, 2003.
DOI : 10.1016/S0959-8049(03)00057-1

N. Ferrara, Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: Therapeutic implications, Seminars in Oncology, vol.29, issue.6Q, pp.10-14, 2002.
DOI : 10.1053/sonc.2002.37264

G. Ferro-flores, C. Arteaga-de-murphy, J. Rodriguez-cortes, M. Pedraza-lopez, and M. T. Ramirez-iglesias, Preparation and evaluation of 99mTc-EDDA/HYNIC-[Lys3]-bombesin for imaging gastrin-releasing peptide receptor-positive tumours, Nuclear Medicine Communications, vol.27, issue.4, pp.371-376, 2006.
DOI : 10.1097/01.mnm.0000202863.52046.7f

J. Folkman, Tumor angiogenesis: therapeutic implications, N. Engl. J. Med, vol.285, pp.1182-1186, 1971.

J. Folkman, E. Merler, C. Abernathy, and G. Williams, ISOLATION OF A TUMOR FACTOR RESPONSIBLE FOR ANGIOGENESIS, Journal of Experimental Medicine, vol.133, issue.2, pp.275-288, 1971.
DOI : 10.1084/jem.133.2.275

J. Folkman, Role of angiogenesis in tumor growth and metastasis, Seminars in Oncology, vol.29, issue.6Q, pp.15-18, 2002.
DOI : 10.1053/sonc.2002.37263

G. Ranieri, R. Miceli, and D. Cheresh, Vascular integrin alpha(v)beta3: a new prognostic indicator in breast cancer, Clin. Cancer Res, vol.4, issue.11, pp.2625-2634, 1998.

A. Giannis and F. Rübsam, Integrin Antagonists and Other Low Molecular Weight Compounds as Inhibitors of Angiogenesis: New Drugs in Cancer Therapy, Angewandte Chemie International Edition in English, vol.36, issue.6
DOI : 10.1002/anie.199705881

P. G. Camici and V. W. Pike, Preparation of no-carrier added [I124]A14 iodoinsulin as a radiotracer for positron emission tomography, J. Labelled Cpd. Radiopharm, vol.44, pp.465-480, 2001.

C. K. Glass and J. L. Witztum, Atherosclerosis, Cell, vol.104, issue.4, pp.503-516, 2001.
DOI : 10.1016/S0092-8674(01)00238-0

D. Guerreau and J. C. Saccavini, Macromolécules d'intérêt biologique marquées à l'iode

. Ln, M. Comet, and M. Vidal, Radiopharmaceutiques -Chimie des radiotraceurs et applications biologiques, pp.350-364, 1998.

W. Guo and F. G. Giancotti, Integrin signalling during tumour progression, Nature Reviews Molecular Cell Biology, vol.14, issue.10
DOI : 10.1101/GAD.903001

R. Haubner, G. Finsinger, and H. Kessler, Stereoisomeric Peptide Libraries and Peptidomimetics for Designing Selective Inhibitors of the??v??3 Integrin for a New Cancer Therapy, Angewandte Chemie International Edition in English, vol.36, issue.1314, pp.1374-1389, 1997.
DOI : 10.1002/anie.199713741

H. Kessler, G. Stocklin, and M. Schwaiger, Radiolabeled ? v ? 3 integrin antagonists : a new class of tracers for tumor targeting, J. Nucl. Med, vol.40, pp.1061-1071, 1999.

S. L. Godmann, H. Kessler, and M. Schwaiger, Glycosylated RGD-containing peptides: tracers for tumor targeting and angiogenesis imaging with improved biokinetics, J. Nucl. Med, vol.45, issue.2, pp.326-336, 2001.

R. H. Haubner, H. J. Wester, W. A. Weber, and M. Schwaiger, Radiotracer-based strategies to image angiogenesis, Q. J. Nucl. Med, vol.47, issue.3, pp.189-199, 2003.

R. Haubner and H. J. Wester, Radiolabeled Tracers for Imaging of Tumor Angiogenesis and Evaluation of Anti-Angiogenic Therapies, Current Pharmaceutical Design, vol.10, issue.13, pp.1419-1455, 2004.
DOI : 10.2174/1381612043384745

M. Goebel, R. Hein, H. J. Wester, H. Kessler, and M. Schwaiger, Non-invasive Visualization of the activated ? v? 3 integrin in cancer patients by positron emission tomography and [18F] galacto-RGD, Plos Medicine, vol.2, issue.70, pp.244-250, 2005.

W. Kraus, H. J. Pietzsch, S. Seifert, P. Brust, and B. Johannsen, Synthesis, biological and autoradiographic evaluation of a novel Tc-99m radioligand derived from WAY 100635 with high affinity for the 5-HT(1A) receptor and the alpha1-adrenergic receptor

Y. Huo and K. Ley, Adhesion molecules and atherogenesis, Acta Physiologica Scandinavica, vol.101, issue.1, pp.35-43, 2001.
DOI : 10.1002/(SICI)1521-4141(199902)29:02<700::AID-IMMU700>3.0.CO;2-1

R. K. Jain, Tumor angiogenesis and accessibility: Role of vascular endothelial growth factor, Seminars in Oncology, vol.29, issue.6Q, pp.3-9, 2002.
DOI : 10.1053/sonc.2002.37265

R. K. Jain, Molecular regulation of vessel maturation, Nature Medicine, vol.9, issue.6, pp.685-693, 2003.
DOI : 10.1038/nm0603-685

M. Rajopadhye, H. Boonstra, F. H. Corstens, and O. C. Boerman, Tumor targeting with radiolabeled alpha(v)beta(3) integrin binding peptides in a nude mouse model, Cancer Res

M. Radjopadhye, F. H. Corstens, and O. C. Boerman, Comparaison of a monomeric and dimeric radiolabeled-peptide for tumor targeting, Cancer Biother. Radiopharm, vol.17, pp.641-646, 2002.

J. M. Clements, T. J. Dudgeon, and D. I. Stuart, Crystal structure of an integrin-binding fragment of vascular cell adhesion molecule-1 and 1,8 resolution, Nature, vol.373, issue.6514, pp.539-544, 1995.

S. Jurisson and J. D. Lydon, Potential Technetium Small Molecule Radiopharmaceuticals, Chemical Reviews, vol.99, issue.9
DOI : 10.1021/cr980435t

M. Kantlehner, D. Finsinger, and J. Meyer, Selective RGD-Mediated Adhesion of Osteoblasts at Surfaces of Implants, Angewandte Chemie International Edition, vol.38, issue.4, pp.560-562, 1999.
DOI : 10.1002/(SICI)1521-3773(19990215)38:4<560::AID-ANIE560>3.0.CO;2-F

Z. Kang, T. M. Scott, C. Wesolowski, L. Feng, J. Wang et al., Ex vivo evaluation of a novel polyiodinated compound for early detection of atherosclerotis

S. L. Karonen, Developments in techniques for radioiodination of peptide hormones and other proteins, Scandinavian Journal of Clinical and Laboratory Investigation, vol.54, issue.sup201, pp.135-138, 1990.
DOI : 10.1007/BF02779244

L. Hofstra and J. Narula, Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis, N. Engl. J. Med, vol.350, issue.14, pp.1472-1473, 2004.

R. J. Kok, A. J. Schraa, E. J. Bos, H. E. Moorlag, S. A. Asgeirsdottir et al., Preparation and functional evaluation of RGD modified proteins as ? v? 3

F. D. Kolodgie, A. Petrov, R. Virmani, N. Narula, J. W. Verjans et al., Targeting of Apoptotic Macrophages and Experimental Atheroma With Radiolabeled Annexin V: A Technique With Potential for Noninvasive Imaging of Vulnerable Plaque, Circulation, vol.108, issue.25, pp.3134-3139, 2003.
DOI : 10.1161/01.CIR.0000105761.00573.50

D. Tourwe and P. A. Schubiger, A 99mTc(I)-postlabeled high affinity bombesin analogue as a potential tumor imaging agent, Bioconjug Chem, vol.13, issue.3, pp.599-604, 2002.

R. J. Lederman, R. R. Raylman, S. J. Fisher, P. V. Kison, H. San et al., Detection of atherosclerosis using a novel positron-sensitive probe and 18-fluorodeoxyglucose (FDG), Nuclear Medicine Communications, vol.22, issue.7, pp.747-753, 2001.
DOI : 10.1097/00006231-200107000-00004

L. Gal and J. , Nouveaux radiopharmaceutiques du 99m Tc : de la conception à l'évaluation biologique. Doctorat chimie et radiochimie, 2004.

K. Ley and Y. Huo, VCAM-1 is critical in atherosclerosis, Journal of Clinical Investigation, vol.107, issue.10, pp.1209-1210, 2001.
DOI : 10.1172/JCI13005

S. Liu, D. Edwards, M. Ziegler, A. R. Harris, S. J. Hemingway et al., Tc-Labeling of a Hydrazinonicotinamide-Conjugated Vitronectin Receptor Antagonist Useful for Imaging Tumors, Bioconjugate Chemistry, vol.12, issue.4, pp.624-629, 2001.
DOI : 10.1021/bc010012p

M. Madjid, A. Zarrabi, S. Litovsky, J. T. Willerson, and W. Casscells, Finding Vulnerable Atherosclerotic Plaques: Is It Worth the Effort?, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.24, issue.10, pp.1775-1782, 2004.
DOI : 10.1161/01.ATV.0000142373.72662.20

A. Malek, S. Alper, and S. Izumo, Hemodynamic Shear Stress and Its Role in Atherosclerosis, JAMA, vol.282, issue.21
DOI : 10.1001/jama.282.21.2035

P. J. Mcconahey and F. J. Dixon, Radioiodination of proteins by the use of the

P. Mcquade and L. C. Knight, Radiopharmaceuticals for targeting the angiogenesis marker alpha(v)beta(3), Q. J. Nucl. Med, vol.47, issue.3, pp.209-220, 2003.

J. J. Marchalonis, An enzymic method for the trace iodination of immunoglobulins and other proteins, Biochemical Journal, vol.113, issue.2, pp.299-305, 1969.
DOI : 10.1042/bj1130299

V. Mattot and B. Andenbunder, De nouveaux outils pour bloquer l'angiogenèse tumorale

M. Milano and O. Guérin, Les traitements ciblés actuels dans le cancer colorectal avancé

A. Mitra, J. Mulholland, A. Nan, E. Mcneill, H. Ghandehari et al., Targeting tumor angiogenic vasculature using polymer???RGD conjugates, Journal of Controlled Release, vol.102, issue.1, pp.191-201, 2005.
DOI : 10.1016/j.jconrel.2004.09.023

A. M. Montgomery, R. A. Reisfeld, and D. A. Cheresh, Integrin alpha v beta 3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen., Proceedings of the National Academy of Sciences, vol.91, issue.19
DOI : 10.1073/pnas.91.19.8856

P. K. Shah and J. Willerson, From vulnerable plaque to vulnerable patient. A call for new definitions and risk assessment strategies: part I, Circulation, vol.108, pp.1664-1672, 2003.

J. Narula and W. Strauss, Imaging of unstable atherosclerosic lesions, Eur. J. Nucl. Mol

J. Narula, A. Petrov, K. Pak, C. Ditlow, F. Chen et al., Noninvasive Detection of Atherosclerotic Lesions by 99mTc-Based Immunoscintigraphic Targeting of Proliferating Smooth Muscle Cells, Chest, vol.111, issue.6, pp.1684-1690, 1997.
DOI : 10.1378/chest.111.6.1684

L. B. Nielsen, Transfer of low density lipoprotein into the arterial wall and risk of atherosclerosis, Atherosclerosis, vol.123, issue.1-2, pp.1-15, 1996.
DOI : 10.1016/0021-9150(96)05802-9

D. P. Nowotnick and A. M. Verbruggen, Practical and physicochemical aspects of the preparation of 99m Tc-labelled radiopharmaceuticals

J. Mccarty, M. Ferguson, K. Hudkins, C. D. Benjamin, R. Lobb et al., Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. Implication for the mode of progression of advanced coronary atheroslerosis, J. Clin. Invest, vol.92, pp.945-951, 1993.

M. Shiomi, Y. Magata, H. Iida, and H. Saji, 18 F-FDG accumulation in atherosclerotic plaques : immunohistochemical and PET imaging study, J. Nuc. Med, vol.45, issue.7, pp.1245-1250, 2004.

K. Ohtsuki, M. Hayase, K. Akashi, S. Kopiwoda, and H. W. Strauss, Detection of Monocyte Chemoattractant Protein-1 Receptor Expression in Experimental Atherosclerotic Lesions: An Autoradiographic Study, Circulation, vol.104, issue.2, pp.203-208, 2001.
DOI : 10.1161/01.CIR.104.2.203

H. Saji, 99m)Tc-HYNIC-derivatized ternary ligand complexes for (99m)Tc-labeled polypeptides with low in vivo protein binding, Nucl Med Biol, vol.28, issue.3, pp.215-224, 2001.

L. Osborn, C. Hession, R. Tizard, C. Vassallo, S. Luhowskyl et al., Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes, Cell, vol.59, issue.6, pp.1203-1211, 1989.
DOI : 10.1016/0092-8674(89)90775-7

M. Palmer, Basics mechanisms of radiolabelling. Ln : Texbook of radiopharmacy

R. Alberto, U. Abram, P. A. Schubiger, and B. Johannsen, Chemical and biological characterization of technetium(I) and Rhenium(I) tricarbonyle complexes with dithioether ligands serving as linkers for coupling the Tc(CO)(3) and Re(CO)(3) moieties to biologically active molecules, Bioconjug. Chem, vol.11, issue.3, pp.414-424, 2000.

G. Qin, Y. Zhang, W. Cao, R. An, Z. Gao et al., Molecular imaging of atherosclerotic plaques with technetium-99m-labelled antisense oligonucleotides, European Journal of Nuclear Medicine and Molecular Imaging, vol.323, issue.Suppl 4, pp.6-14, 2005.
DOI : 10.1007/s00259-004-1700-0

E. Regoeczi, In Vivo Behavior of Catabolized labels derived from iodo proteins. Ln : Iodine Labeled plasma proteins, Part B, vol.II, pp.43-71, 1987.

G. E. Rice, J. M. Munro, and M. P. Bevilacqua, Inducible cell adhesion molecule 110

W. Risau, Differentiation of endothelium, FASEB J, vol.9, pp.926-933, 1995.

A. M. Robles, H. S. Balter, P. Olivier, M. M. Welling, and E. K. Pauwels, Improved radioiodination of biomolecules using exhaustive Chloramine-T oxidation, Nuclear Medicine and Biology, vol.28, issue.8
DOI : 10.1016/S0969-8051(01)00261-X

R. Ross, Atherosclerosis-an inflammatory disease, N. Engl. J. Med, vol.340, issue.2, pp.115-126, 1999.

R. Ross, Cell Biology of Atherosclerosis, Annual Review of Physiology, vol.57, issue.1, pp.791-804, 1995.
DOI : 10.1146/annurev.ph.57.030195.004043

E. Ruoslahti and M. D. Pierschbacher, Arg-Gly-Asp: A versatile cell recognition signal, Cell, vol.44, issue.4, pp.517-518, 1986.
DOI : 10.1016/0092-8674(86)90259-X

M. Rusckowski, T. Qu, S. Gupta, A. Ley, and D. J. Hnatowich, A comparison in monkeys of (99m) Tc labeled to a peptide by 4 methods, J. Nucl. Med, vol.42, issue.12, pp.1870-1877, 2001.

J. R. Bender, Detection of injury-induced vascular remodeling by targeting activated alphavbeta3 integrin in vivo, Circulation, vol.110, issue.1, pp.84-90, 2004.

L. Sancey, Evaluation d'un radioligand de l'intégrine avb3, le Raft RGD, pal l'imagerie moléculaire de l'angiogénèse tumorale

M. P. Schober, O. Levkau, and B. , Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo, Circulation, vol.109, issue.21, pp.2554-2559, 2004.

L. A. Sherman, S. Harwig, and O. Hayne, Macromolecular complexes formed as the result of chloramine-T radioiodination of proteins, The International Journal of Applied Radiation and Isotopes, vol.25, issue.2, pp.81-85, 1974.
DOI : 10.1016/0020-708X(74)90103-3

R. Schibli, K. V. Katti, C. Higginbotham, W. A. Volkert, and R. Alberto, In vitro and in vivo evaluation of bidentate, water-soluble phosphine ligands as anchor groups for the organometallic fac-[99mTc(CO)3]+-core, Nuclear Medicine and Biology, vol.26, issue.6, pp.711-716, 1999.
DOI : 10.1016/S0969-8051(99)00028-1

R. Schibli and P. A. Schubiger, Current use and future potential of organometallic radiopharmaceuticals, European Journal of Nuclear Medicine and Molecular Imaging, vol.29, issue.11, pp.1529-1542, 2002.
DOI : 10.1007/s00259-002-0900-8

P. A. Schubiger, 2 Steps toward high specific activity labeling of biomolecules for therapeutic application: preparation of precursor, 188) Re(H(2)O)

P. A. Schubiger, Synthesis and in vitro characterization of organometallic rhenium and technetium glucose complexes against Glut 1 and hexokinase, Bioconjug. Chem, vol.16, issue.1, pp.105-112, 2005.

J. Pena and . Hla-b2702, 77-83/83-77) peptides binds to betatubulin on human NK cells and blocks their cytotoxic capacity, J. Immunol, vol.165, issue.12, pp.6776-6782, 2000.

L. Tarli, E. Balza, F. Viti, L. Borsi, P. Castellani et al., A high-affinity human antibody that targets tumoral blood vessels, Blood, vol.94, issue.1, pp.192-198, 1999.

S. Tsimikas and P. X. Shaw, Non-invasive imaging of vulnerable plaques by molecular targeting of oxidized LDL with tagged oxidation-specific antibodies, Journal of Cellular Biochemistry, vol.21, issue.S39
DOI : 10.1002/jcb.10420

S. Tsimikas, Noninvasive imaging of oxidized Low-Density Lipoprotein in atherosclerotic plaques with tagged oxidation-specific antibodies, The American Journal of Cardiology, vol.90, issue.10, pp.22-27, 2002.
DOI : 10.1016/S0002-9149(02)02958-2

T. Ünak, Z. Akgün, A. Yildiril, Y. Duman, and G. Erenel, Self-radioiodation of iodogen

S. Vallabhajosula and V. Fuster, Atherosclerosis : imaging techniques and the evolving role of nuclear medicine, J. Nucl. Med, vol.38, issue.11, pp.1788-1796, 1997.

A. Srinivasan, M. A. Schmidt, E. P. Krenning, and M. De-jong, Evaluation of a radiolabelled cyclic DTPA-RGD Analogue for tumor imaging and radionuclide therapy, Int. J. Cancer, vol.8, pp.186-198, 2000.

K. Verbeke, D. Kieffer, J. L. Vanderheyden, C. Reutelingsperger, N. Steinmetz et al., Optimization of the preparation of 99mTc-labeled Hynic-derivatized Annexin V for human use, Nuclear Medicine and Biology, vol.30, issue.7, pp.771-778, 2003.
DOI : 10.1016/S0969-8051(03)00056-8

U. Abram, J. P. Mach, A. Pluckthun, and P. Schubiger, Stable one-step technetium-99m labeling of His-tagged recombinant proteins with a novel Tc(I)-carbonyl complex

R. E. Weiner and M. L. Thakur, Radiolabeled peptides in diagnosis and therapy, Seminars in Nuclear Medicine, vol.31, issue.4, pp.296-311, 2001.
DOI : 10.1053/snuc.2001.27045

R. E. Weiner and M. L. Thakur, Radiolabeled peptides in the diagnosis and therapy of oncological diseases, Applied Radiation and Isotopes, vol.57, issue.5, pp.749-763, 2002.
DOI : 10.1016/S0969-8043(02)00192-6

R. E. Weiner and M. L. Thakur, Radiolabeled Peptides in Oncology, BioDrugs, vol.45, issue.12, pp.145-163, 2005.
DOI : 10.2165/00063030-200519030-00002

DOI : 10.1097/00007890-199511270-00017

Y. M. Zhang, N. Liu, Z. H. Zhu, M. Rusckowski, and D. J. Hnatowich, Influence of different chelators (HYNIC, MAG3 and DTPA) on tumor cell accumulation and mouse biodistribution of technetium-99m labeled to antisense DNA, European Journal of Nuclear Medicine, vol.27, issue.11, pp.1700-1707, 2000.
DOI : 10.1007/s002590000343

J. Zhang, X. Wang, C. Li, and J. Zhang, Synthesis and biodistribution of a new 99mTc nitrido complex for cerebral imaging, Nuclear Medicine and Biology, vol.29, issue.6, pp.665-669, 2002.
DOI : 10.1016/S0969-8051(02)00311-6

F. Zobi, B. Spingler, and R. Alberto, Guanine and Plasmid DNA binding of Mono- and Trinuclear fac-[Re(CO)3]+ Complexes with Amino Acid Ligands, ChemBioChem, vol.32, issue.8, 2005.
DOI : 10.1002/cbic.200400453

Z. Zhu, Y. Wang, Y. Zhang, G. Liu, N. Liu et al., A novel and simplified route to the synthesis of N3S chelators for 99mTc labeling, Nuclear Medicine and Biology, vol.28, issue.6
DOI : 10.1016/S0969-8051(01)00237-2

I. Le-lapin-hypercholestérolémique-watanabe-(-whhl-)-et-le-lapin-«-contrôle and .. , Analyse sur 30 minutes, p.181

I. Watanabe, ». , «. Contrôleorgane, and .. , Analyse 3 heures post-injection. Les résultats sont exprimés en %DI, p.185

. De-la-radioactivité, On peut suivre le premier passage du radiotraceur dans l'organisme depuis son injection dans la veine de l'oreille (image 1), son passage cardiaque (image 6), aortique (image 9) jusqu'à sa diffusion dans l'organisme (image 15) Les images correspondant au passage aortique sont sommées afin de localiser cette structure avec précision (B). L'aorte n'est pas visible aux temps longs (en C

I. Tableau and N. , Optimisation de la réaction de radioiodation de ATH1 par la méthode au NBS : mesure de la PRC en présence de quantités croissantes, p.156

I. Tableau, Optimisation de la réaction de marquage à l'iode de ATH1 par la méthode à la lactoperoxydase : influence de la concentration du couple enzyme/peroxyde d'hydrogène sur la pureté radiochimique, p.156

V. Tableau, Etude du coefficient de partage de ATH1-[ 125 I] en milieu octanol/eau

V. Tableau, Mesure du coefficient de partage octanol

X. Tableau, Comparaison des biodistributions du peptide iodé monomérique ATH2- [ 123 I] et du peptide iodé dimérique ATH1

C. Mesure-en and %. , Analyse statistique par un test à l'écart réduit pour de petits échantillons au risque ? ? 5%, p.185

X. Tableau, Biodistributions de ATH2-[ 123 I], ATH3-[ 99m Tc], et ATH4-[ 99m Tc] chez le lapin « New Zealand White ». Les organes sont prélevés 180 minutes postinjection . L'activité est mesurée au compteur gamma. Les résultats sont exprimés en %DI/g d'organe, pp.2-123

X. Tableau, Influence de la concentration de N-bromosuccinimide sur la pureté radiochimique du marquage à l'iode des peptides ligands de «? v ? 3 ». Mesure par CCM sur plaque de silice C18 RP654

X. Tableau, Influence de la concentration du couple lactoperoxydase/peroxyde d'hydrogène sur la pureté radiochimique du marquage à l