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Préambule

Cette notice décrit mes travaux de recherche effectués au Laboratoire de Physique
Statistique de I’Ecole Normale Supérieure. Ce préambule précise un peu I’historique de
ces recherches.

J’ai préparé ma these de Doctorat sous la direction de Martine Ben Amar et de
Vincent Hakim au LPS, et je I'ai soutenue le 4 Février 1994. Ces premiers travaux ont
porté sur I’étude des phénomenes de croissance limités par la diffusion. J’ai ainsi travaillé
sur les phénomenes non linéaires associés aux instabilités diffusives des interfaces que 'on
rencontre en solidification. Plus particulierement, ces études ont abordé les problemes
suivants :

— Croissance limitée par la diffusion :

Les recherches sur la croissance cristalline s’étaient souvent focalisées sur ’étude de pro-
totypes simples de croissance qui sont modélisés par le probleme dit de Saffman-Taylor,
ou par celui de la croissance dendritique rugueuse d’un cristal en aiguille dans un espace
illimité. Or, d’autres aspects du probleme de solidification ont été mis en évidence par
des observations expérimentales. Ces expériences ont montré que 'interface liquide-solide
ne peut pas toujours étre ramenée a I'un de ces deux cas académiques, mais que sa forme
dépend étroitement du choix des parametres physiques de controle, des échantillons de
matériaux a étudier ainsi que de la géométrie de 'expérience. Le travail de ma these a
donc consisté a étudier quelques problemes liés a ces manifestations expérimentales. J’ai
particulierement abordé les trois problemes suivants.

— Croissance dendritique a tension de surface nulle :

Dans tout probleme de pénétration d'une substance dans une autre par le biais de la
diffusion, il est tres utile de connaitre les solutions exactes a ’approximation de tension
de surface nulle. De ce fait, nous avons analysé le degré de généralité des familles de
solutions stationnaires d’Ivantsov et d’Horvay-Cahn (les seules solutions connues exacte-
ment). Nous avons montré que ces solutions sont uniques dans l’espace ou le champ de
diffusion peut étre ramené a un champ décrit par une seule variable d’espace. Nous avons
aussi discuté du cadre ou de nouvelles familles de solutions, correspondant aux différentes
formes observées expérimentalement, pourraient étre déterminées.

— Croissance cristalline facettée :

C’est le probleme de la croissance des cristaux qui présentent des formes facettées dans
certaines directions privilégiées. Notre étude a consisté a étendre la théorie de la crois-
sance limitée par la diffusion au régime de la croissance des cristaux qui présentent des



formes facettées dans certaines directions privilégiées. En rajoutant un minimum d’hy-
potheses supplémentaires, qui consistent a introduire des lois d’interfaces caractérisant
le facettage, nous avons étudié, analytiquement et numériquement, ce phénomene dans
le cas de la croissance dendritique libre pour les modeles unilatéral et symétrique ainsi
qu’en solidification dirigée. Le traitement numérique comporte quelques subtilités liées a
la présence simultanée de portions rugueuses et facettées dans I'interface du liquide-solide.
En effet, pour le cas “classique” des cristaux completement rugueux, c’est la loi, dite de
Gibbs-Thomsom, sur tout le profil, qui fournit la relation nécessaire entre le champ de
diffusion et la forme de l'interface, or dans le cas des facettes la forme du cristal est, par
définition, déja connue.

— Croissance Laplacienne de pointes

Nous nous sommes intéressé a un modele dynamique décrivant la croissance Laplacienne
de n aiguilles de différentes longueurs. Ce modele théorique permet de connaitre la nature
de la dynamique de croissance des interfaces et de plus, se préte a des études analytiques de
I’amas de branches qui peuvent étre assimilées a des structures physiques en compétition.
En effet, la description détaillée donnée par les équations de mouvement déterministes des
interfaces ne peut étre entreprise que numériquement et ne permet généralement pas une
étude statistique satisfaisante. Nous avons présenté une étude analytique et numérique de
ce modele dans le cas d’une croissance d’aiguilles paralléles.

Juste apres ma these, j’ai changé de thématique pour 1’étude des instabilités associées a
la propagation des fissures. En 1996, je suis rentré comme CR2 au CNRS, affecté au LPS.
J’ai continué ma collaboration avec Y. Pomeau et M. Ben Amar. J’ai aussi collaboré avec
Rodrigo Arias et Fernando Lund par le biais de projets CNRS-Conicyt. En Février 2002,
j’al été mis a disposition pour passer une année au Department of Applied Mathematics
and Theoretical Physics, Cambridge University, afin de collaborer avec L. Mahadevan.

La dynamique de la propagation des fissures s’est imposée comme un sujet important
en physique. L’approche que j’ai suivie dans ce domaine tourne autour de la formation de
motifs (pattern formation) dans des systémes en présence d’une ou de plusieurs fissures.
Voici quelques questions qui sont posées autour de ce phénomene générique. Une fois
qu’une fissure est formée et qu’elle commence a se propager quelle est sa trajectoire 7 quelle
sera sa dynamique? est-ce que les instabilités dynamiques et morphologiques observées
expérimentalement ont la méme origine ? comment sont-elles corrélées ? lorsque plusieurs
fissures sont présentes, comment interagissent-elles et quelle est la morphologie résultante 7
peut-on controler le motif final en controlant seulement les conditions d’application des
contraintes ou la géométrie globale ?

Dans ce cadre, j’ai effectué des travaux essentiellement théoriques dont les points forts
sont énumérés ci-dessous.
— Stabilité d’une fissure en propagation quasi-statique : détermination de I’équation de
mouvement de la fissure et des mécanismes provoquant la déstabilisation de sa trajectoire.
— Interaction entre plusieurs fissures : quelle est la part d’ordre et la part du désordre dans
la prédiction des formes résultantes.
— Fissure dynamique : détermination d’une équation vectorielle de mouvement et des in-



stabilités dynamiques observées expérimentalement.

— Propagation quasi-statique d'un front de fissure : étude des mécanismes de déstabilisation
du front. Détermination d’'une équation de mouvement non linéaire d’un front de fissure
dans un milieu hétérogene et de 'exposant de rugosité du front de fissure résultant.

La propagation des fissures est un phénomene irréversible hors-équilibre qui présente
des instabilités quasi-statiques et dynamiques qui produisent des motifs d'une classe
différente de celles induites par des champs “classiques”. Cette observation m’a conduit
a étudier la physique sous-jacente et a trouver d’autres archétypes de cette morpho-
genese. En effet, le mécanisme de rupture peut se manifester dans d’autres phénomenes,
par exemple dans les problemes d’adhésion ou de friction. Une analogie a été mise en
évidence avec la botanique et la morphogenese des nervures des feuilles et qui fait 'objet
d’un sujet de these que j’encadre.

Dernierement, j'ai commencé a m’intéresser a de nouveaux problemes autour de la
morphogénese induite par la mécanique (détaillés dans le chapitre projets). Une partie
de ces travaux est reliée a une ACI Jeunes chercheurs et a un projet européen ou nous
proposons d’appliquer la mécanique des structures élastiques a des problemes issus de la
biologie. Le principal objectif de ces projets est d’apporter une meilleure compréhension
du comportement mécanique de certaines structures biologiques, et de leur morphogenese.
L’autre direction concerne une collaboration avec la société TCI (T¢lé-Crane-Innovation)
afin de construire un modele de la croissance du crane de l'enfant et d’identifier des
mécanismes physiques qui influencent la croissance de la sphere cranienne. Ce probleme
intéresse les professionnels de santé dont le domaine d’action est la sphere cranienne, en
particulier les orthodontistes pour une meilleure conception des traitements de dyshar-
monies cranio-faciales et les anthropologues pour une meilleure analyse de la croissance
des fossiles.

Nous avons aussi commencé a développer une activité expérimentale axée autour des
instabilités et de la morphogenese dans les systemes mécaniques soumis a des contraintes
induites par la croissance, une pression externe, des phénomenes interfaciaux ou un
écoulement. Plus précisément, les principales directions de cette activité concernent la
compression et le repliement d’objets élastiques, les instabilités d’interfaces comme la
fracture et la friction, les vibrations des plaques en présence de singularités ou de struc-
tures organisées.

Finalement, mes directions de recherche dans le passé et dans le futur se rattachent
a différentes problématiques générales, mais ont cependant un méme fil directeur; celui
de I'étude des instabilités mécaniques et les formes qui en résultent. D’un point de vue
théorique, les méthodes mathématiques associées a ces problemes requierent souvent des
formulations assez élaborées. Ces types de problemes requierent en effet diffférentes tech-
niques allant de la résolution d’équations intégrales singulieres (utilisant des méthodes
associées aux transformées de Hilbert, a la méthode de décomposition de Wiener-Hopf,
aux transformations conformes, ...), aux techniques rencontrées en physique statistique
(intégrale de chemin, équation de Fokker-Planck, fonctions de distributions de probabilité,

).
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Chapitre 1

Meécanique de la rupture fragile

L’intéréet porté a la compréhension du processus de rupture d’objets solides est né des
que notre ancétre Homo habilis a commencé a tailler la pierre. La fabrication d’outils
taillés en silex remonte a plus de 1.75 millions d’années et son perfectionnement a duré
des centaines de milliers d’années. La caractérisation des outils est une méthode de da-
tation utilisée par les archéologues et paléontologues. Néanmoins, ce n’est qu’au début
des années soixante qu’'une approche mécanique de la rupture du silex a été développée
pour caractériser les formes et quantifier I'efficacité de la fabrication des éclats. Ce type
de formes se retrouve aussi dans les éclats coniques de roches produits par I'impact des
météorites et dont ’étude peut indiquer la vitesse de I'impact et son orientation.

Néanmoins, on peut considérer que les fondements historiques de la mécanique de la
rupture en tant que science remontent a 1638, date a laquelle Galilée publie son ceuvre ma-
jeure “Discours concernant deuz sciences nouvelles”. En effet, la premiere de ces sciences
nouvelles (avant la science du mouvement) traite de la résistance des matériaux a la
rupture.

C’est au cours du vingtieme siecle, et surtout a partir de la deuxiéme guerre mondiale,
que la mécanique de la rupture est devenue une des branches les plus développées de la
mécanique des milieux continus. En effet, la multiplication des procédures de détection
des fissures, engendrée par le caractere de plus en plus exigeant des normes de sécurité et
leur perfectionnement constant, ont entrainé la détection de fissures dans un tres grand
nombre de structures industrielles et a différentes échelles. Comme il est matériellement
impossible de réparer toutes ces fissures ou de prévenir de leur apparition, on cherche
maintenant a les “justifier”, c¢’est-a-dire a montrer qu’elles ne présentent pas de danger;
d’ou le développement de la mécanique de la rupture dont I'objet est d’étudier les condi-
tions de propagation des fissures dans les matériaux solides.

L’étude de la dynamique de la propagation des fissures est un sujet a part entiere en
en géophysique. Bien qu’elle est actuellement implicitement admise, la connexion entre
les mécanismes de rupture et les tremblements de terre n’a trouvé son essor que pendant
la deuxieme moitié du vingtieme siecle. D’autre part, depuis une vingtaine d’années, la
rupture est devenue un domaine en plein développement en physique. Ce phénomene
irréversible hors-équilibre présente des instabilités quasi-statiques et dynamiques non



génériques qui sont dues a la singularité spécifique du champ des contraintes au voisi-
nage du front de fissure. Ce comportement produit des motifs différents de ceux induits
par des champs “classiques” tels que le champ de diffusion en croissance cristalline. Ma
recherche dans ce domaine a consisté a étudier la physique sous-jascente de cette morpho-
genese et a identifier les mécanismes d’instabilités morphologiques et dynamiques durant
la rupture des matériaux fragiles.

1.1 Propagation quasi-statique d’une pointe de fis-
sure

La propagation d’une fissure dans une plaque de verre soumise a un champ de température
non uniforme donne lieu a différentes instabilités de formes. Des expériences simples et
parfaitement reproductibles ont permis de définir un diagramme de phase d’instabilités
des fractures en propagation quasi-statique, ou les parametres d’ordre sont reliés simple-
ment aux parametres de controle. En variant ces parametres, on peut aussi bien ne pas
casser la plaque de verre, que créer une fracture rectiligne qui elle-méme peut devenir
instable pour donner lieu & une fracture oscillante. En relation avec ces expériences, nous
avons étudié ces deux cas de propagation quasi-statique. La condition de propagation
rectiligne de la fracture en fonction des parametres expérimentaux a été déterminée et
les lois d’échelles correspondantes ont été déduites. Nous avons développé une analyse de
stabilité linéaire basée sur un critere de propagation de la pointe de la fissure. Nous avons
déduit qu’a partir d’un certain seuil, la fracture rectiligne devient instable et donne lieu
a une fracture oscillante. Les résultats du seuil d’instabilité et de la valeur de la longueur
d’onde sélectionnée ont été calculés et la comparaison avec les résultats expérimentaux a
été concluante.

® <L
(b) I Le <L < Lo
(c) =~ ' I L = Losc

Fic. 1.1 — En variant les parametres de controle, une plaque de verre soumise a un champ
de température non uniforme peut : (a) ne pas se casser, (b) produire une fissure droite,
(¢) produire une fissure oscillante. (O. Ronsin et al., Phys. Rev. Lett. (1995))

L’analyse de stabilité qui a permis de montrer ’existence de solutions oscillantes pour
la forme de la fissure ne se restreint pas au cas thermo-élastique précédent. En effet, nous
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avons montré que cette approche est applicable a toute fracture rectiligne en propagation
quasi-statique et soumise a des contraintes uniaxiales. Par ailleurs, nous avons établi un
critere de stabilité de la propagation rectiligne, et les résultats qui en découlent sont en
accord avec les expériences qui mettent en jeu aussi bien des contraintes thermiques que
mécaniques.

M. Adda-Bedia et Y. Pomeau : Crack instabilities of a heated glass strip, Phys. Rev. E
52 (1995) 4105-4113.

M. Adda-Bedia et M. Ben Amar : Stability of quasi-equilibrium cracks under Mode I
loading, Phys. Rev. Lett. 76 (1996) 1497-1500.

1.2 Plusieurs fissures en interaction

Une continuation de ce travail a constitué a caractériser les différentes morphologies
des fractures induites par le séchage des suspensions colloidales. Dans ces systemes, on
observe que suivant les conditions expérimentales imposées, on peut engendrer des figures
de fractures allant de simples fractures rectilignes, a des fractures en forme de paraboles et
jusqu’a des fractures enchevétrées avec des formes reproductibles. D’autre part, ce systeme
expérimental a été a ’origine d’expériences analogiques qui montrent que la nervation des
feuilles est régie par I'existence d’un champ tensoriel, qui de plus a été identifié au champ
de contraintes induit lors de la croissance des feuilles.

Fi1G. 1.2 — Analogie entre la nervation des feuilles et les figures induites par la propagation
de fissures sous différentes conditions expérimentales. (Y. Couder et al., EPJB (2003))

Nous nous sommes aussi intéressés a un probleme d’un réseau de fractures paralleles.

7



Cette situation est celle que I'on rencontre dans les milieux stratifiés, car la présence d’in-
terfaces entre les couches bloque la croissance des fractures. Lorsque la tension augmente,
elle ne peut qu’entrainer I’apparition de nouvelles fractures, la longueur d’onde du réseau
se trouvant divisée par deux. On peut se demander quelle limite sera atteinte lorsque
la tension tend vers l'infini, le pas du réseau devant tendre alors vers zéro, suivant ce
scénario. Il n’en est rien, comme le montre les observations et les simulations. Lorsque le
pas du réseau atteint la longueur commune des fractures, la fracturation s’arréte et fait
place a la compression de la zone fracturée. Nous avons proposé un modele pour justifier
le fait que la zone entre deux fractures passe de I’état de tension a un état de compression
interdisant ainsi une nouvelle nucléation. Ce modele résolu exactement prouve que lorsque
les couches ont les mémes coefficients élastiques, le pas minimal du réseau de fracture est
donné par 'épaisseur de la couche considérée. Il est important de bien comprendre ce
phénomene a cause des nombreuses applications en géophysique et dans I'industrie. En
effet c’est le mécanisme phare de fracturation des milieux stratifiés.

D’autres projets en cours dans ce domaine concernent 1’étude des raisons pour les-
quelles les pointes des fissures s’évitent pendant leurs propagations et aussi I’étude des
statistiques de distribution de ’apparition des fissures dans un milieu hétérogéne soumis
a des contraintes mécaniques.

M. Adda-Bedia et M. Ben Amar : Fracture spacing in layered materials, Phys. Rev. Lett.
86 (2001) 5703-5706.

L. Pauchard, M. Adda-Bedia, C. Allain et Y. Couder : Morphologies resulting from the
directional propagation of fractures, Phys. Rev. E 67 (2003) 027105.

S. Bohn, J. Platkiewicz, B. Andreotti, M. Adda-Bedia et Y. Couder : Hierarchical crack
pattern as formed by successive domain divisions. II. From disordered to deterministic

behavior, Phys. Rev. E 71 (2005) 046215.

1.3 Propagation quasi-statique d’un front de fissure

La propagation d’un front de fissure dans un matériau fragile est le terrain d’un certain
nombre de phénomenes physiques. La théorie existante de la mécanique de la rupture
fragile a réussi a expliquer un certain nombre d’instabilités, néanmoins la propagation
d’'un front de fissure dans un milieu hétérogene est un probleme théorique non résolu,
bien qu’expérimentalement le comportement auto-affine universel du front de fissure a été
observé et caractérisé. Ce phénomene est d'une importance fondamentale, parce que le
mouillage d’un substrat désordonné est un autre exemple de systéemes avec une structure
similaire. Nous avons approché ce probleme en différentes étapes qui sont détaillées ci-
dessous.



1.3.1 Instabilité d’un front de décollement

Le phénomene de décollement d'une plaque mince en contact avec un film d’adhésif
se rencontre dans un bon nombre d’applications technologiques (bandes adhésives) et
biologiques (pattes de lézards). Dans ce cadre, nous avons étudié l'instabilité oscillante
d’un front de décollement initialement droit produit en décollant une plaque élastique
flexible d’un film mince d’élastomere collé a un substrat rigide. Nous avons développé une
analyse de stabilité linéaire qui a permis de prouver l'existence d’un seuil d’instabilité
qui dépend du rapport des deux échelles de longueur qui surgissent naturellement dans
ce probleme; I’épaisseur du film d’élastomere et une longueur élastique définie par la
rigidité de la plaque et celle du film. Nous avons aussi montré que la longueur d’onde de
I'instabilité est proportionnelle a ’épaisseur du film. Nos résultats sont qualitativement et
quantitativement en accord avec les expériences récentes. Plus généralement, ils montrent
comment les fronts de fissures peuvent étre déstabilisés par la compétition entre des effets
de volume et de surface.

Fi1G. 1.3 — Fronts oscillants induits par le décollement d’une plaque en contact avec un
film adhésif. (A. Ghatak et M.K. Chaudhury, Langmuir (2003))

M. Adda-Bedia et L. Mahadevan : Peeling-induced crack-front instability in a confined
elastic film, Proc. R. Soc. A (2006) a paraitre.

1.3.2 Equation de mouvement d’un front de fissure dans un mi-
lieu hétérogene

Dans le cadre de la dynamique de propagation d’une fissure dans un milieu hétérogene,
une quantité généralement étudiée est l'exposant de rugosité a qui décrit le caractere
auto-affine du front de fissure. L’exposant caractérisant cette rugosité a été mesuré dans
différents matériaux, et il s’est avéré que sa valeur se situe toujours autour de 0.5-0.6.
En dépit de nombreux efforts depuis au moins une décennie, il n’y a malheureusement
aucune théorie satisfaisante qui prévoit la valeur de cet exposant.
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Dans une premiere approche, nous avons développé au second ordre le facteur d’inten-
sité des contraintes d’un front de fissure courbe, autour de sa solution pour un front droit.
La perturbation a été rendue possible grace a l'introduction d’une nouvelle méthode qui
a été utilisée pour I’étude de I'instabilité d’un front de décollement. Nous avons ainsi pu
proposer une équation stochastique du mouvement d'un front de fissure qui se propage
dans un milieu hétérogene et qui contient deux ingrédients principaux; L’irréversibilité
de la propagation du front et les effets non linéaires.

M. Adda-Bedia, E. Katzav et D. Vandembroucq : Second order variation in elastic fields
of a tensile crack with a curved front, Phys. Rev. E 73 (2006) 035106(R).

1.3.3 Rugosité d’un front de fissure dans un milieu hétérogene

En utilisant I’équation stochastique proposée pour le mouvement du front de fissure,
nous avons étudié la dynamique de propagation d’un front de fissure dans un milieu
hétérogene dans le régime quasi-statique. L’approche consiste a utiliser une expansion
auto-consistante (self consistent expansion) introduite par Schwartz et Edwards. Nous
avons découvert une transition de phase dynamique continue entre une phase lisse (&
grandes échelles) et une phase rugueuse, avec un exposant de rugosité a = 1/2. La
phase rugueuse devient possible a cause de la déstabilisation des modes linéaires par les
termes non linéaires. En tenant compte de l'irréversibilité de la propagation de la fissure,
nous avons déduit que 'exposant de rugosité mesuré expérimentalement pourrait devenir
dépendant de la maniere dont le front est amené a se propager. Ainsi, notre résultat peut
étre considéré comme une limite inférieure pour cet exposant, ce qui est en tres bon accord
avec les mesures expérimentales.

Fi1c. 1.4 — Front de fissure en mode I se propageant a travers un matériau hétérogene.

(A. Delaplace et al., Phys. Rev. E (1999))

Un autre probleme auxquels ces calculs pourraient s’appliquer concerne les propriétés
auto-affines des surfaces créées apres le passage d’une fissure dans un milieu hétérogene.
En effet, les études post-mortem des surfaces fissurées dans beaucoup de matériaux fragiles
ont montré I'existence d'un autre exposant universel de rugosité (autour de 0.8). Ce travail
est en cours.
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E. Katzav et M. Adda-Bedia : Roughness of tensile crack fronts in heterogenous materials,
soumis & Phys. Rev. Lett. (2005).

1.4 Propagation dynamique des fissures

Un deuxieme champ d’investigation théorique en mécanique de la rupture concerne la
propagation dynamique des fissures. Pour ce cas, les expériences ont montré qu’une frac-
ture dynamique qui se propage a grande vitesse donne lieu a une variété de phénomenes
dus a différents effets : contraintes appliquées, vitesse de propagation et conditions de
préparation de la fissure. Les expériences sur la propagation rapide des fissures dans les
matériaux fragiles montrent une instabilité dynamique qui se produit au dessus d’'une
vitesse critique de la pointe de la fissure. Cette instabilité induit un phénomene de bran-
chement d’une fracture initialement droite. La surface créée par la fracture est initiale-
ment lisse, mais quand la vitesse atteint une valeur critique indépendante des conditions
expérimentales, cette surface devient rugueuse a cause de I'apparition quasi-périodique
de micro-fissures secondaires. Cette instabilité est accompagnée d’une oscillation de la
vitesse de la fissure et d’une augmentation des émissions acoustiques.

1.4.1 Equations de mouvement

Partant de 'observation que ces différentes instabilités apparaissent indépendamment
des conditions expérimentales et du matériau étudié, on a émis I’hypothese qu’elles pou-
vaient etre décrites par des modeles minimaux. La théorie de la mécanique de la rup-
ture fragile, avec sa description élastique des contraintes et des déformations internes,
complétée par des criteres sur le processus de séparation de la matiere, a réussi a décrire la
progression des fissures dans le régime quasi-statique. Nous avons donc entrepris d’étudier
la dynamique de la rupture fragile dans ce cadre du modele purement élastique. Dans une
premiere approche, on a étudié le comportement du champ des contraintes au voisinage de
la pointe de la fracture en fonction de sa vitesse instantanée. On a introduit la notion de
direction préférentielle de propagation qui est régie par le tenseur des contraintes diagona-
lisé. Le comportement de ce dernier nous a conduit a définir les instabilités morphologiques
de la propagation dynamique de la fracture et a introduire des criteres déterminant les
transitions fracture lisse-fracture rugueuse-fracture branchée.

Concernant 'instabilité dynamique conduisant a la création des micro-fissures, nous
avons entrepris une étude détaillée pour déterminer une équation de “mouvement” dyna-
mique de la pointe d’une fissure. Nous avons ainsi généralisé I’approche classique pour une
propagation de fracture non nécessairement rectiligne. Ceci nous a conduit a déterminer
une équation vectorielle du mouvement de la pointe de la fracture, a I’'opposé des modeles
existants qui utilisent indépendamment deux criteres de propagation de la fracture, 'un
déterminant sa vitesse et le deuxieme sa direction. Notre approche a permis d’unifier ces
deux criteres dans un seul formalisme. D’un point de vue formel, nous avons justifié le
principe dit de symétrie locale que tout mécanicien utilise et nous I’avons étendu a toute
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vitesse. Cette équation s’est avérée pouvoir produire, sous certaines conditions, une insta-
bilité dynamique a une vitesse critique indépendante de la configuration expérimentale.

M. Adda-Bedia, M. Ben Amar et Y. Pomeau : Morphological instabilities of dynamic
fractures in brittle solids, Phys. Rev. E 54 (1996) 5774-5779.

M. Adda-Bedia and M. Ben Amar : Crack dynamics in elastic media, Phil. Mag. B 78
(1998) 97-102.

M. Adda-Bedia, R. Arias, M. Ben Amar and F. Lund : Dynamic instability of brittle
fracture, Phys. Rev. Lett. 82 (1999) 2314-2317.

M. Adda-Bedia, R. Arias, M. Ben Amar et F. Lund : Generalized Griffith criterion for
dynamic fracture and the stability of crack motion at high velocities’, Phys. Rev. E 60
(1999) 2366-2376.

1.4.2 Instabilité de branchement

Néanmoins, ces études ont été consacrées a la caractérisation du mouvement d’une
fracture sans discontinuité dans sa vitesse, sans bifurcation brusque dans sa direction de
propagation ni de branchement en deux ou plusieurs fissures. Ce sujet de la dynamique
de la rupture fragile a été encore mal exploré, bien qu’expérimentalement, on observe ce
type de comportement quand la vitesse de la fracture atteint des vitesses comparables
a celles des ondes élastiques du milieu considéré. Les problemes de radiation engendrée
par une propagation “singuliere” de la fracture sont stiirement responsables de 'instabilité
dite de branchement, et sont aussi importantes dans ’étude des effets sismiques quand
on considere la propagation d'une fissure sous cisaillement. Il s’est avéré donc nécessaire
d’étudier quantitativement le comportement des contraintes au voisinage de la fissure
quand celle-ci change brusquement de direction de propagation ou quand la fracture ini-
tiale bifurque en produisant deux fractures symétriques. La résolution analytique de ce
probleme difficile a constitué une grande partie de mes recherches menées durant ces
dernieres années.

Dans une premiere étape, nous avons réussi a élaborer une méthode analytique pour
déterminer la distribution, spatiale et temporelle, des contraintes au voisinage de la pointe
d’une fracture en mode anti-plan qui, initialement était en mouvement quelconque, et qui
instantanément change sa direction et sa vitesse de propagation. Ce calcul n’était connu
auparavant que pour le cas d’une propagation quasi-statique. Avec cette méthode en main,
nous avons calculé une grandeur importante en mécanique de la rupture fragile : le facteur
d’intensité des contraintes qui, pour cette configuration, dépend de la vitesse instantanée
de la fracture et de 'angle de bifurcation. En outre, en utilisant une approche analogue,
nous avons décrit d’une maniere exacte le mécanisme de branchement des fissures en mode
anti-plan.

Dans une seconde approche et pour le mode plan, nous avons utilisé une approximation
quasi-statique qui néanmoins tient en compte la causalité induite par la propagation des
ondes élastiques. Nous avons réussi a comparer la configuration d’une propagation dune
fracture unique avec celle d'une fracture branchée. En étudiant le bilan énergétique de ces
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F1G. 1.5 — Instabilité dynamique de branchement. V' < V,, surface fissurée lisse. V ~ V_,

apparition de micro-fissures. V' > V., surface fissurée rugueuse. (E. Sharon et J. Finebery,
Nature (1999))

deux configurations, on aboutit au résultat qu'une fracture peut se brancher si sa vitesse
de propagation est supérieure a une vitesse critique indépendante de la géométrie de
I’expérience et des contraintes appliquées. Comme ce modele n’utilise que les parametres
élastiques du matériau, il a permis une comparaison systématique des prédictions du
modele avec les expériences sur différents matériaux.

A ce stade, nous avons montré que I’approche utilisant la théorie continue de la rupture
fragile explique correctement certains aspects de 'instabilité dynamique de branchement
associée a la propagation d’une fracture en mode hors-équilibre. De plus, le compor-
tement de la trajectoire ultérieure des branches a été prédit. Afin de déterminer plus
quantitativement cette trajectoire, nous avons entrepris dans le cadre d’une nouvelle col-
laboration Cnrs-Conicyt une étude du champ des contraintes associé a une géométrie
branchée. L’analyse théorique consiste a évaluer le champ des contraintes asymptotiques
au voisinage de chaque branche et a déterminer leurs effets sur les trajectoires ultérieures
des branches. La trajectoire suivie par chaque branche étant obtenue en appliquant les
équations de mouvement que nous avons établies précédemment

L’intérét de cette étude consiste a valider la théorie continue de la mécanique de la
rupture fragile en montrant que tous les aspects de l'instabilité dynamique de la fissure
en propagation rapide sont reproduits par cette approche. La comparaison quantitative
avec les résultats expérimentaux permettrait d’expliquer les différentes trajectoires des
branches en fonction des différents types de chargements appliqués.

M. Adda-Bedia et R. Arias : Brittle fracture dynamics with arbitrary paths : I. Dynamic
crack kinking under general antiplane loading, J. Mech. Phys. Solids 51 (2003) 1287-1304.
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F1G. 1.6 — Forme “universelle” des micro-fissures apres branchement. (E. Sharon et J.
Fineberg, Nature (1999))

M. Adda-Bedia : Brittle fracture dynamics with arbitrary paths : II. Dynamic crack bran-
ching under general antiplane loading, J. Mech. Phys. Solids 52 (2004) 1407-1420.

M. Adda-Bedia : Path prediction of kinked and branched cracks in plane situations, Phys.
Rev. Lett. 93 (2004) 185502.

M. Adda-Bedia : Brittle fracture dynamics with arbitrary paths : III. The branching in-
stability under general loading, J. Mech. Phys. Solids 53 (2005) 227-248.
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Chapitre 2

Impact et friction

Comme continuation naturelle des travaux sur la rupture, je me suis intéressé aux
problemes de singularités a l'interface entre deux solides en contact. Ce domaine en-
globe des phénomenes tels que la friction, le contact dynamique ou la rupture entre les
failles. Il est aussi le terreau d’instabilités dynamiques et de complexités générées par les
hétérogénéités.

2.1 Ondes de glissement

Nous nous sommes intéressés a un probleme simple, mais néanmoins fondamental,
concernant 'existence de solutions stationnaires d’un pulse de taille finie qui se propage
a vitesse constante entre deux matériaux différents. On montre qu’en utilisant la simple
loi de friction de Coulomb, il existe un continuum de solutions pour toute vitesse de
propagation et pour toute taille du pulse. Cependant, ces solutions ne sont pas physiques
car elles exhibent une singularité du champ des contraintes et des vitesses a 'une des
extrémités du pulse. Pour essayer de régulariser ces solutions, on introduit une loi de
friction modifiée qui découle d’observations expérimentales, et qui consiste a introduire
dans la loi de Coulomb un temps de relaxation caractéristique dans la réponse de la
contrainte de cisaillement a une variation instantanée de la contrainte normale. On montre
que méme en utilisant des temps caractéristiques qui dépendent localement de la vitesse
de glissement, la dégénérescence des solutions n’est pas levée puisque aucune solution
physique n’est sélectionnée. Cette étude analytique montre que des modeles élastiques,
méme compliqués, ne peuvent pas étre pertinents dans le cadre du comportement des
failles et il faudrait stirement rajouter des ingrédients tels que ’hétérogénéité locale des
failles.

M. Adda-Bedia et M. Ben Amar : Self-sustained slip pulses of finite size between dissimilar
materials, J. Mech. Phys. Solids 51 (2003) 1849-1861.
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2.2 Rayonnement sismique de failles hétérogenes

Plusieurs observations fondamentales sur le comportement des failles et des tremble-
ments de terre ne sont pas bien décrites en terme de rupture le long d’une faille homogene.
En effet, il a été observé que la propagation d’une fissure le long d'une faille préexistante
ne génere pas nécessairement d’énergie sismique. Dans certains modeles numériques, il a
été démontré que la transition vers des vitesses de propagation de rupture supérieures aux
ondes de cisaillement est intimement liée a la génération d’énergie sismique et a la dissipa-
tion d’énergie dues aux changements de la vitesse de rupture sur la faille. Ainsi, la rupture
sur les failles lisses tend a étre supersonique et ne produit pas beaucoup de rayonnement,
alors que les failles géométriquement complexes se propagent a des vitesses inférieures aux
ondes de cisaillement et générent du rayonnement. Une approche possible, que je poursuis
avec R. Madariaga, pour carcactériser le bilan énergétique pendant les ruptures sismiques
est de déterminer en détail la partition de I’énergie pendant la propagation d’une fissure
en tenant compte de la complexité géométrique de la faille. Nous utiliserons les résultats
exacts déja obtenus sur la propagation d'une fissure en mode anti-plan initialement droite
qui change instantanément sa direction et sa vitesse de propagation pour 'analyse des
conséquences de la complexité géométrique de la faille sur I’énergie sismique rayonnée.

Notre projet est d’utiliser notre connaissance sur le coin élémentaire pour étudier de
facon statistique le cas d’une faille qui, comme dans la nature, possede une complexité
géométrique. Dans ce cas la rupture va interagir avec la géométrie afin de développer
un champ de contraintes hétérogene qui, a son tour, conduira a une sismicité complexe.
Plusieurs études sur le probleme d’une faille plane montrent que dans ce cas la complexité
qui apparait n’est pas assez forte pour expliquer la distribution des magnitudes sismiques
observées. Nous souhaitons explorer la nature de la sismicité qui apparaitra dans un
modele de faille plus complexe possédant une distribution aléatoire de coins.

M. Adda-Bedia et R. Madariaga : Radiation from a kink on an antiplane fault, soumis a
BSSA (2006).

2.3 Dynamique de I'impact

Quand deux spheres rentrent en contact, elles dissipent une partie de leurs énergies par
divers processus. Cette observation a conduit Newton a définir le concept de restitution
d’énergie, qui a survécu depuis et qui reste la seule représentation théorique de I'impact.
Nous avons étudié la dynamique de propagation des ondes élastiques d’un disque entrant
en contact avec une surface rigide. Cette étude étant restreinte aux temps tres courts apres
I'impact, elle se situe dans un régime qui n’est pas exploré par la théorie quasi-statique due
a Hertz. Dans ce régime, on a prouvé que la surface de contact croissait plus rapidement
que la vitesse de propagation des ondes élastiques. D’autre part, nous avons étudié pour ce
systeme modele le comportement du champ des contraintes durant le passage de ce régime
supersonique vers le régime subsonique. Nous avons prouvé 'existence d'une singularité
faible du champ des contraintes au point transonique qui pourrait étre responsable de la
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détérioration systématique des matériaux lorsqu’ils sont soumis a des chocs, ainsi que des
effets dissipatifs correspondants.

M. Adda-Bedia et S. G. Llewellyn Smith : Supersonic and subsonic stages of dynamic
contact between bodies, Proc. R. Soc. A (2006) a paraitre.
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Chapitre 3

Autres Problemes

3.1 Instabilités d’une arche

On a étudié le probleme typique de I’elastica. Cette étude numérique est consacrée a
une expérience faite par Born et reprise plus tard par Pippard. Elle consiste a soumettre
une arche, aux extrémités fixées, a une force croissante appliquée a son milieu. Cette
expérience simple donne un diagramme de phase tres riche, déterminé expérimentalement
par Pippard, et qui correspondant aux différentes formes prise par ’arche. Nous avons
retrouvé théoriquement toutes les phases décrites par Pippard. Pour cela, I’étude statique
et I’étude de la stabilité dynamique de ce systeme ont été nécessaires pour compléter le
diagramme de phase expérimental.

P. Patricio, M. Adda-Bedia et M. Ben Amar : An elastica problem : instabilities of an
elastic arch, Physica D 124 (1998) 285-295.

3.2 Formes d’équilibre des gouttes superposées

La thermodynamique nous indique que deux phases, comme un liquide et une vapeur a
la méme température, pression et potentiels chimiques, peuvent coexister sur une surface
bidimensionnelle. Ceci est naturel, puisque génériquement 'intersection de deux volumes
est donné par une surface. De méme, quand on considere trois phases, comme une goutte,
sa vapeur et une surface solide, 'intersection se fait sur une ligne. Ceci est aussi natu-
rel, puisque cette ligne est l'intersection de trois phases volumiques. Il est connu depuis
longtemps que la forme d’équilibre d’'une goutte sur un substrat solide, en négligeant la
gravité, est une hémisphere qui coupe le solide sur un cercle, la ligne de contact d’équilibre.
L’étape suivante apparait évidente : I'intersection entre quatre phases, dans ce cas deux
fluides non miscibles, une vapeur et un solide, doivent-elles toujours se rencontrer en un
point 7 On a montré que dans certains cas, ceci n’est pas vrai. En fait, la rencontre de ces
quatre phases se fait aussi sur une ligne. Ceci provient d’une particularité des conditions
d’équilibre de Young-Laplace qui n’a pas été notée auparavant.
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L. Mahadevan, M. Adda-Bedia et Y. Pomeau : Four-phase merging in sessile compound
drops, J. Fluid Mech. 451 (2002) 411-420.
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Chapitre 4

Projets

Les projets qui résultent de la continuation des travaux présentés ci-dessus ont été
mentionnés dans leurs contextes. Cette partie expose des projets concernant de nouvelles
directions de recherche. Parmi ces projets, il y en a qui sont dans leurs stades préliminaires
et d’autres qui ont déja commencé a produire des résultats.

4.1 Morphogénese induite par la mécanique

Ce projet est en partie relié a une ACI Jeunes chercheurs et & un contrat européen.
Dans ce cadre, nous proposons d’appliquer la mécanique des structures élastiques a des
problemes issus de la biologie. En effet, si les équations fondamentales gouvernant les
structures élastiques sont bien établies (équations des tiges, plaques et coques), elles
se trouvent souvent couplées, pour les applications aux systemes vivants, a des champs
autres qu’élastiques ou a des contraintes géométriques, ce qui leur confere une complexité
spécifique. Les applications de la mécanique a la biologie suscitent un fort intérét de la com-
munauté scientifique depuis quelques années. Les recherches effectuées jusqu’ici favorisent
le plus souvent une approche descriptive des phénomenes. Nous proposons d’aborder ces
probleémes en identifiant un nombre minimal d’ingrédients essentiels (notion de systemes
modeles) afin de permettre une démarche prédictive.

Le principal objectif de notre projet est d’apporter une meilleure compréhension du
comportement mécanique de certaines structures biologiques, et de leur morphogenese.
Les structures biologiques minces sont présentes sous des formes variées (feuilles, fleurs,
peau, cheveux et autres fibres, ADN). Leur formes, parfois tres complexes (fronces de fleurs
et feuilles, arborescences végétales ou des poumons, circonvolutions du cerveau) souléeve
la question fondamentale de l'origine de ces géométries. Comment ces structures sont-
elles générées du point de vue mécanique ? Nous aborderons cette question en étudiant
des systémes minces inertes qualitativement similaires : une tige confinée pour '’ADN
d’un virus ou la compression d’'un matériau cellulaire pour les nervures des feuilles, par
exemple. Les formes biologiques sont souvent obtenues par un processus de croissance :
c’est la croissance différentielle des tissus qui induit des contraintes mécaniques et, par
flambage, des formes spécifiques. Les notions de métrique et de variétés mathématiques y
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sont liées.

4.1.1 Filaments élastiques confinés

Collaboration avec A. Boudaoud (LPS), E. Katzav (Postdoc), L. Boué (Thésard).

Les propriétés mécaniques de la molécule d’ADN jouent un role important lors des
phases de transcription des genes en protéines. Nous nous intéressons aux régimes ou
elle est fortement confinée ou fortement contrainte. Dans ces régimes, les contributions
entropiques a 1’énergie libre sont petites devant I'énergie interne; on peut alors étudier
les propriétés mécaniques de 'ADN dans la cadre de I’élasticité des tiges. Par exemple,
les virus bactériophages (virus attaquant des bactéries) ont la grande particularité que
leur matériel génétique est fortement compacté dans I'enveloppe (appelée capside). Par
exemple, le bactériophage T4 possede une molécule d’ADN de longueur 54 pm alors que
la capside a un rayon de 50 nm (de l'ordre de la longueur de persistance de ’ADN), ce qui
correspond a un taux de compression de I'ordre de 103. D’autres mesures ont montré que la
pression effective provenant de ce confinement est énorme, de I'ordre de 50 atmospheres.
Notre approche consistera a étudier les formes d’équilibre d’une tige élastique confinée
dans un disque (2D) ou dans une boule (3D), par minimisation de ’énergie élastique et
par étude statistique des configurations admissibles. En parallele, de nouvelles expériences
macroscopiques (injection controlée d’une tige dans une sphere transparente, et, pour une
version 2D, d’une feuille a travers un anneau) permettront de mesurer simultanément le
confinement et les forces correspondantes.

Dans une premiere étude nous avons proposé une approche statistique pour étudier le
confinement d’'une tige élastique dans une sphere. La méthode développée est basée sur
une approche inroduite par Edwards qui a été appliquée avec succes a la physique des
polymeres et aux matériaux granulaires. Nous avous montré que le confinement induit une
transition de phase entre une configuration désordonnée (isotrope) et une configuration
ordonnée (nématique). Dans chaque phase, nous avons dérivé la pression exercée par la
tige sur le récipient et la force nécessaire pour injecter la tige dans le récipient. Concernant
I’ADN confiné dans les capsides virales, ces résultats établissent 1’existence des configu-
rations ordonnées, une hypothese sur laquelle les études précédents ont été basées. Ils
prouvent également qu’un tel ordre peut résulter seulement de contraintes mécaniques.

E. Katzav, M. Adda-Bedia et A. Boudaoud : A statistical approach to close packing of
elastic rods and to DNA packaging in viral capsids, soumis a PNAS (2005).

4.1.2 La géométrie des feuilles minces pliées

Collaboration avec A. Boudaoud (LPS), L. Boué (Thésard).

Les feuilles de la plupart des plantes sont enroulées ou pliées quand elles sont encore a
I'intérieur du bourgeon, et 'organisation de leurs veines primaires semble étre fortement
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corrélée avec la géométrie du confinement. Le déploiement des feuilles pendant leur crois-
sance en dehors du bourgeon pose des questions géométriques complexes : comment est-il
rendu possible? Quels sont les géometries possibles des structures pliées pour la feuille
a l'intérieur du bourgeon et du réseau correspondant des veines? Nous développerons
une méthodologie générale pour étudier le pliage et le déploiement des feuilles minces
afin de répondre a ces questions. Du coté expérimental, nous concevrons un procédé
systématique pour plier et déplier les feuilles élastiques minces d’une facon reproductible.
Nous étudierons également le confinement d’une feuille dans un récipient afin de mesurer
la pression en fonction du volume. Les simulations numériques directes de ce type de
problemes sont tres difficiles en raison des différences d’échelles et des conditions de non
interpénétration. Ceci exige de nouveaux outils théoriques mélangeant la mécanique (les
équations de plaques minces) et la géométrie différentielle (I'origami).

4.1.3 Nervures des feuilles

Collaboration avec H. Henry (PMM, Polytechnique), F. Corson (Thésard).

Récemment, la mécanique des couches minces a pu étre appliquée a la morphogenese
en biologie, au niveau cellulaire (parois cellulaires prises comme des coques élastiques
ou élasto-plastiques) ou au niveau des organes (le tissu cellulaire étant alors pris comme
matériau élastique). I'idée étant d’expliquer l'apparition de formes par des instabilités
élastiques. Nous souhaitons étendre cette approche mécanique de la morphogénese aux
nervures des feuilles végétales.

Une famille de structures naturelles qui a été largement étudiée résulte de la crois-
sance de formes induite par des champs scalaires, laplaciens ou diffusifs. Cette classe
englobe, entre autres, la digitation visqueuse de fluides newtoniens, la croissance cris-
talline, la croissance de colonies de bactéries ou la croissance limitée par la diffusion.
Bien que les formes résultantes aient chacune leurs spécificités, elles partagent toutes
une meme caractéristique topologique : une forme arborescente hiérarchisée. Il existe une
autre classe de structures caractérisée par une forme en réseaux reconnectés. Cette famille
encore mal étudiée englobe entre autres les nervures des feuilles, les figures de fractures
induites par séchage (boue, céramiques,...) ou digitations visqueuses dans les fluides com-
plexes. Contrairement aux structures arborescentes, ces formes sont dues a une croissance
induite par des champs tensoriels, dont 1’évolution peut souvent étre réduite a une dy-
namique bi-laplacienne. Récemment, les réseaux de vénation d'une feuille de plante ont
été expliqués par analogie avec les réseaux de fracture d’une boue qui seche : les veines
permettraient de relaxer un champ tensoriel, tout comme les fractures classiques relaxent
le tenseur des contraintes. Cette analogie n’est cependant pas complete, car la crois-
sance des feuilles a I'intérieur du bourgeon engendre des contraintes de compression, alors
qu'une fracture classique est produite par des efforts d’extension. Par cet aspect, la crois-
sance des feuilles ressemble plus a la compression des matériaux cellulaires qu’aux fissures
classiques. La compression de ces matériaux cellulaires engendre d’ailleurs une focalisa-
tion inhomogene des contraintes, phénomene étudié notamment pour ses applications aux
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matériaux nouveaux. Nous nous proposons d’approcher la croissance végétale en incluant
les ingrédients suivants : croissance, existence de contraintes de compression bi-axiales
(alors que les matériaux cellulaires sont généralement étudiés sous contrainte uni-axiale),
géométrie (extension limitée de la feuille et confinement). Ces ingrédients réunis devraient
permettre d’expliquer la complexité des motifs de vénation observés dans les plantes, et
de les classifier sur une base mécanique rigoureuse.

Y. Couder, L. Pauchard, C. Allain, M. Adda-Bedia et S. Douady : The leaf venation as
formed in a tensorial field, Fur. Phys. J. B 28 (2002) 135-138.

4.2 Modélisation de la croissance du crane de ’enfant

Collaboration avec A. Boudaoud (LPS), B. Audoly (LMM, Paris 6), M.-J. Deshayes
(TCI).

Les trajectoires de croissance de la sphere cranienne résultent de la compétition entre
les différents os-moteurs qui forment la base du crane. Ces os sont initialisés des les pre-
miers stades du développement neurologique feetal et se poursuivent au cours de 1’onto-
genese lors de I'expansion du systeme cérébral. Ces moteurs ont une action fondamentale
sur le remodelage des os de la sphere cranienne au cours de la croissance (jusque vers I’age
de 6 ans). Comprendre les mécanismes physiques dynamiques qui sont responsables de
la croissance du crane intéresse tous les professionnels de santé dont le domaine d’action
est la sphere cranienne, en particulier les orthodontistes pour une meilleure conception
des traitements des dysharmonies cranio-faciales et les anthropologues pour une meilleure
analyse de la croissance des fossiles.

D’autre part, la morphogenese et 'interaction entre contraintes et croissance sont des
domaines en plein essor en physique et en mécanique. Etant donné que la croissance du
crane est bien caractérisée et que ses propriétés mécaniques sont relativement simples, ce
projet permettra de tester les idées physiques et les modeles qui en découlent en comparant
les résultats de simulations numériques avec les données morphométriques sur la croissance
du crane. En particulier, le changement de forme des os craniens devra étre reproduit par
les processus physiques implémentés dans le modele. Ainsi un modele de crane virtuel sera
développé et cet outil numérique permettra de simuler plusieurs trajectoires de croissance
du crane. A plus long terme, les résultats de cette étude devraient apporter une aide a
la compréhension de la croissance cranienne, mais surtout un outil numérique totalement
“controlable”, absolument non invasif, d’observation de la croissance cranienne.

Les objectifs premiers de ce projet sont d’identifier les mécanismes physiques interve-
nant dans la croissance du crane humain et de développer un modele numérique fondé sur
ces mécanismes afin de reproduire et prédire la croissance du crane. Les objectifs a long
terme concernent des applications a I’orthodontie — contraintes mécaniques a exercer pour
corriger des dysharmonies cranio-faciales — et a la phylogénie — explication de I’évolution
des morphologies craniennes.

Ce projet est en collaboration avec le Docteur M.-J. Deshayes qui a étudié d’une
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maniere approfondie la croissance cranienne chez ’enfant et a établi un protocole de
mesures morphométriques qui permet de distinguer différentes dynamiques de croissance
et de quantifier les dysharmonies cranio-faciales qui peuvent y étre associées. Nous nous
baserons sur ses connaissances pour déterminer les mécanismes physiques a modéliser.
Une fois le modele physique développé, nous utiliserons sa base de données d’indices
craniens, issue de l'observation (instantanée ou répétée dans le temps) de cas cliniques,
afin d’ajuster et/ou valider le modele.

4.3 Projets expérimentaux
Collaboration avec A. Boudaoud (LPS), Y. Couder (MSC, Paris 7).

Nous désirons développer une activité expérimentale axée autour des instabilités et
de la morphogenese dans les systemes mécaniques soumis a des contraintes induites par
la croissance, une pression externe, des phénomenes interfaciaux ou un écoulement. Plus
précisément, les principales directions de notre projet concernent la compression et le
repliement d’objets élastiques, les instabilités d’interfaces comme la fracture et la friction,
les vibrations des plaques en présence de singularités ou de structures organisées, et les
déformations d’objets flexibles placés dans un écoulement. Ces directions se rattachent
a différentes problématiques générales que nous présentons ci-dessous, mais elles ont un
meéme fil directeur qui est I’étude des instabilités et des formes qui en résultent. Nous avons
déja travaillé sur certaines des expériences reliées a la premiere direction, croissance et
compaction, nous comptons approfondir ces études et en commencer de nouvelles. Dans ce
qui suit, nous présentons les différents themes et expériences que nous voulons développer
dans le futur proche.

4.3.1 Croissance et compaction

La croissance d'un objet élastique génere des contraintes internes — par croissance
différentielle comme un tissu vivant formé de deux couches (e.g. la peau) — ou externes —
par la croissance dans un milieu confiné (feuille dans un bourgeon). Nous nous intéressons a
la morphogenese induite par ces contraintes et aux propriétés géométriques et mécaniques
des structures résultantes. Voici les études expérimentales que nous avons entamées
Compaction d’objets flexibles—Nous comptons étudier les formes d’équilibre d’une tige
ou d’une feuille élastique confinée dans un espace bidimensionnel ou tridimensionnel, ainsi
que leurs propriétés statistiques et mécaniques (mesure des forces appliquées en fonction
du taux de confinement). Les contraintes géométriques étant fortement dépendantes de
la dimensionnalité de 'objet et du container, nous envisageons des expériences adaptées
a chaque cas. Comme il est difficile d’introduire une tige dans un cercle sans artefacts
expérimentaux et encore plus difficile de mesurer la pression exercée sur le cercle, nous
avons congu le dispositif du “rond de serviette”, une feuille tirée a travers un trou circu-
laire et dont une section équivaut au confinement d’une tige dans un cercle. Les premieres
expériences (Antonin Eddi, stage de L3 et Davide Cassani, stage de M2) ont montré que
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les configurations résultent d’une succession de changements de forme élémentaires as-
sociés a des minima de pression. L’étude systématique est en cours. En ce qui concerne la
compaction d'une feuille (2D dans 3D), il est a priori difficile de visualiser les configura-
tions. Couper les “boulettes de papier” permet de contourner cette difficulté et d’accéder
a Iétude statistique des propriétés géométriques : les longueurs, les aires (Etienne Cou-
turier, stage de M2).

F1G. 4.1 — Formes de différents objets flexibles confinés.

Pliages réguliers, flambage d’un secteur angulaire—Les feuilles de nombreux arbres
présentent dans les premieres étapes de leur croissance une structure pliée au sein du
bourgeon. C’est le cas par exemple du charme ot la feuille méme une fois dépliée conserve
une structure ondulée. Afin de mimer la croissance d’une feuille dans un bourgeon,
nous étudions les structures obtenues par la compression de feuilles de Mylar. Cette
modélisation se justifie par ’analogie suivante : lors de la croissance de la feuille la nervure
principale croit plus lentement que les nervures secondaires, il en résulte une différence
de vitesse de croissance entre la direction de la veine principale et la direction perpendi-
culaire. On peut alors modéliser cette différence de vitesse de croissance par I'application
d’une contrainte de compression suivant la nervure principale (Tristan Machado, stage de
L3). Notre but est de déterminer 'influence de la géométrie de la feuille sur la distribution
des nervures secondaires

Fi1c. 4.2 — Flambage induit par la compression d’une feuille de Mylar de géométrie
prédeterminée.
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4.3.2 fracture des objets minces

Lorsque 1'on veut arracher du papier peint, il est impossible de le détacher en entier,
car il se forme des lambeaux. En d’autres termes, les deux pointes des fissures engendrées
semblent toujours s’attirer. De facon générale, le cheminement d’une fissure dans une
plaque mince est un phénomene mal compris. Nous reproduirons ce phénomene dans un
dispositif expérimental simple et controlé (en construction). Nous étudierons la stabilité
de la propagation rectiligne de la fissure et le profil selon I'épaisseur de la feuille. Malgré
sa simplicité apparente, cette expérience devrait contribuer a éclaircir le probleme général
du mouvement des fissures. Elle peut également étre modifiée pour étudier 'interaction
entre plusieurs fissures paralleles.

4.3.3 Friction sur une membrane tendue

Nous comptons simplifier une expérience de Valette et Gollub (PRE, 1993) sur la fric-
tion d’un objet sur une membrane tendue dans la largeur. Nous imposerons le déplacement
d’un indenteur isolé et sphérique sur une membrane tendue de maniere isotrope. Notre
but est d’étudier les ondes de surface générées par le déplacement de I'indenteur. La confi-
guration de cette expérience est assez simple pour pouvoir étudier le role des ondes dans la
dissipation par friction. Elle peut étre étendue a d’autres géométries (plusieurs indenteurs
ou substrat épais).
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Recently, Yuse and Sano [Nature (London) 362, 329 (1993)] have observed that a crack traveling
in a glass strip submitted to a nonuniform thermal diffusion field undergoes numerous instabilities.
We study two cases of quasistatic crack propagation. The crack extension condition in straight
propagation is determined. An asymptotic analysis of the elastic free energy is introduced and
scaling laws are derived. A linear stability analysis of the straight propagation is performed, based
on the assumption that the crack tip propagation deviates from the centered straight one as soon
as it is submitted to a “physical” singular shear stress. It is shown that a straight propagation can
become unstable after which a wavy instability appears. The condition for instability as well as the
selected wavelength is calculated quantitatively. The results are compared with experiments and

the agreement is favorable.

PACS number(s): 62.20.Mk, 46.30.Nz, 81.40.Np

I. INTRODUCTION

The study of crack propagation often follows two ap-
proaches. The first is for dynamical fracture formation,
where the cracked surfaces are created at a velocity of the
order of the Rayleigh wave speed [1]. The second one is
for slow or quasiequilibrium cracks. For the second case,
the work of Griffith in 1921 [2] is often seen as the begin-
ning of equilibrium fracture mechanics as a quantitative
science of material behavior. However, from that time on
the progress was mainly made in the fields of engineer-
ing. Recently, a renewal of interest has been caused by
the work of Yuse and Sano [3]. They have carried out an
experiment making reproducible sequences of crack pat-
terns. This is an important step in the understanding of
crack instabilities because well-controlled experiments in
this field are uncommon.

As shown in Fig. 1, the experiment [3] is performed by
pulling a thin glass strip from a hot region (heater) to
a cold one (water bath) at a slow and constant velocity
V. The control parameters are [3,4] the pulling velocity
V, the strip width 2b, and the temperature variation AT
between the heater and the cold bath. When these pa-

Cold Bath : y /.\ : Heater

. : .
Ve——— | ' :
1 : 1
AN NN e 2D

| 1 X
= 1
bl :
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1 1
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T() bh ! T() +AT

FIG. 1. Schematic representation of the experiment of Yuse
and Sano [3].
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rameters are small enough the strip does not break. By
increasing essentially b or AT, a centered straight crack
appears and extends at a velocity —V in the frame of
the strip. By further increasing these parameters, the
straight crack becomes unstable and the fracture follows
an oscillating path.

The experiment has been simulated numerically with
spring models [5] and by doing a complete numerical
resolution of the corresponding thermoelastic problem
but with discontinuous incrementation of the crack path
[6]. On the other hand, theoretical treatments [7,8]
have been undertaken to explain the bifurcation from the
straight crack propagation to the wavy one. Although
the noncracked-cracked plate transition was not studied
quantitatively in [3], the results [6-8] of this bifurcation
analysis are quite unanimous and agree with the qual-
itative measurements in [3]. In fact, the condition of
existence of stably advancing straight cracks is based on
a criterion of energy minimization [2] that is well under-
stood. On the contrary, the physical origin of the insta-
bility straight-undulating crack remains unclear. Even in
the asymptotic regions, results of Refs. [6-8] do not agree
with each other, although they use the same criterion to
explain this transition. Moreover, a comparison of these
results with experiment [3] cannot be done rigorously be-
cause of the uncertainty in the value of the so-called frac-
ture energy [9]. The quantitative experimental study of
the no crack—straight crack transition could solve this
problem [4].

Much effort has been devoted to the study of the os-
cillatory instability by using the “criterion of local sym-
metry’ [10]. It states that the path taken by a crack
in brittle homogeneous isotropic material is the one for
which the local stress field at the tip is of mode I type.
Let us recall that mode I loading causes an opening of the
fracture while mode II loading causes a shearing off. The
local analysis in the neighborhood of a crack tip shows
that the asymptotic stress tensor field ¥, in the polar
coordinate system (r,¢), takes the universal form [1]

4105 ©1995 The American Physical Society
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Ky Ku i
\/2? iJ \/271_—7‘ ij(¢)a (1)

where f;(¢) and ﬁ;(d)) are universal functions common
to all configurations and loading conditions. The in-
fluence of configuration and loading are included in the
asymptotic description of stress only through the scalar
multipliers K7 and Ki1, which are the elastic stress inten-
sity factors of mode I and mode II loadings, respectively.
The criterion of local symmetry features that, if a shear
loading exists at the crack tip, Ki1 # 0 and the crack will
move by changing the orientation of the tangent to the
path.

Consider a straight crack subjected to mode I loading.
Nominally, K11 = 0, but due to the imperfections in the
system and, consequently, in crack alignment, Kj; will
differ slightly from zero. The existence of such shear load-
ing implies automatically that the crack deviates from a
straight line [10,11]. Moreover, for this finite plate prob-
lem, there exists a “geometrical” shear loading that ap-
pears as soon as the crack deviates from the center of the
strip. The combining of these two loadings leads to the
appearance of the oscillatory instability [12]. The undu-
lating crack may be due to an instability of the straight
crack, which creates a mode II loading, and the geom-
etry of the problem, which amplifies this shear loading
and leads to the oscillatory instability of the crack tip.

These general considerations lead us to investigate the
problem in a different manner than [6-8]. To define the
wavy instability of the crack, we did not analyze it at the
level of the criterion Ki; = 0, but before it. That is when
a slight deviation from the straight crack will create a
“physical” shear loading.

Tij(r,¢) = (¢) +

II. INSTABILITIES OF A CRACK
IN A HEATED STRIP

The experimental configuration we will analyze is illus-
trated in Fig. 1. The coordinate system (z,y) is defined
on an infinitely long strip of thin glass whose boundaries
are located at y = +b. A semi-infinite crack, whose tip
is taken as the origin of the coordinate system, is placed
on the strip. In the following, we will take the half-width
of the strip b as the unit length. Since we focus on quasi-
static fractures, the advancing velocity V' of the crack
comes into the problem only through the temperature
field, assumed to be constant in the cold bath (z < —I)
and independent of the transverse direction y. Here [ de-
notes the crack tip position in the temperature gradient.

Under plane stress conditions, the strain tensor of a
thin plate in the temperature field T;(z) is related to the
stress tensor by [13]

1 ..
Zij = 1—_—; {(1 — V)Eij + vEy0i] — (1 + V)T[((L')(S,J} ,
(2)

where f(z, Y) [ﬁ(m, y)] is the two-dimensional stress
(strain) tensor and v the Poisson ratio. For convenience,
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all the quantities in Eq. (2) are dimensionless: ¥ is scaled
by EarAT, E by apAT, and Ti(z) by AT, where E is
the Young modulus and ag the coefficient of thermal
expansion. Note that E(az,y) [f(w,y) and T;(z)] must
be understood as the average of E(w, Y, Z) [f(z, ¥, z) and

Ti(z, z)] across the thickness of the strip [13]. Inversely,
the strain tensor is given, in terms of the stress tensor,

by
1 (0U; 8UJ~

= {(1 + 1/)22-]- — I/Ekk(h]} + 11[(3:)51_7, (3)

where U is the displacement vector. For this problem,
the temperature field T;(z) is usually approximated by

Ti(z) = (1 - e_P(zH)) 0(z +1), (4)

where 6() is the Heaviside function. The parameter
P =bV/D is the ratio of the geometrical length b to the
thermal diffusion length dy, = D/V, where D is the dif-
fusion constant. The temperature field given by Eq. (4)
satisfies the stationary diffusion equation without a heat
loss term AT;+POT;/dx = 0, but it does not take into ac-
count other effects corresponding mainly to the existence
of other lengths in experiment [3]: the nonzero thickness
e of the plate and the distance h between the cold bath
and the heater. In fact, Eq. (4) assumes that the tem-
perature is constant through the thickness (i.e., eP < 1)
and that there is no heat exchange between the strip and
its surroundings, which becomes important for low veloc-
ities [4].

The problem of a crack of unknown shape in a strip
subjected to a temperature field consists in solving the
equilibrium equations [7]

o)
BZI}J‘

= 0, szii = —VZTI(:Z:), (5)

with the boundary conditions

Byy(z, £1) =Ygy (z, £1) =0, (6)
¥;jn; =0 on the crack, (7)
T =0 for z = +oo, (8)

where 7 is the unit vector normal to the crack edges. Un-
der equilibrium conditions, the crack shape depends es-
sentially on the stress, which is in this case related to the
temperature field. The mathematics of this problem are,
given the boundary conditions on a crack whose shape is
a priori unknown, the solution of the whole problem will
determine the correct shape of the crack [14].

Formally, there might exist more than one solution to
the global problem and one has to select the crack shape
that satisfies certain stability criteria. First, the solution
must be in accordance with the criterion of local sym-
metry [10], which imposes that the crack path s(z,y) is
one for which K1 = 0 at the tip. Also, the chosen crack
path must satisfy another condition related to the energy
criterion introduced by Griffith [2]. This criterion states
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that the crack is at a critical value of incipient growth if
the reduction in the stored elastic energy W, associated
with a small virtual crack advance ds from that state is
equal to the fracture energy I'

oW, : *We
- 6s‘=rw1th - a‘g‘go, (9)
I" being a material constant independent of the crack
shape. The second condition in Eq. (9) means that the
system must be stable in the sense of mechanical equilib-
rium.
The total thermoelastic free energy per unit thickness
We1 of a thin plate is given by [14]

Wa = Eb%a%(AT)*W, (10)

where W is the dimensionless free energy given by

W= %/ ds [z:,'jE,-j = Zii(z,y)Ti(z)
surface

3
1—

—TE(x) |- (11)

Note that in this writing, an integration across the thick-
ness of the strip has already been done. Equation (11)
can be simplified without specifying the crack shape. The
first term of this equation can be calculated by using suc-
cessively the equilibrium equations (5), the divergence
theorem, and the boundary conditions (6-8)

/ dszijEij = / dSM
surface surface 83:.7'

= f dQ2 Esz,n; 20, (12)
Q

where 71’ is the unit vector perpendicular to the contour
Q limiting the strip, including the edges of the crack and
the boundaries of the plate. This term always vanishes,
regardless of the shape of the crack. The third term of
Eq. (11) is infinite in the configuration of an infinite strip,
which is evidently not the case experimentally. Neverthe-
less, since this term depends on the temperature distri-
bution only and not on the crack location, one can omit
it by a convenient choice of the zero free energy. Finally,
W is simply given by

— oo +1
W = —%/_wme,(w)/ dy Sis(2, ). (13)

-1

Now we outline the analysis to be done and connect its
relation to earlier works [6-8]. In the following, we will
discuss first the problem of existence of a stably advanc-
ing straight crack. The transition between a non-cracked
strip and a straight crack is studied. It consists in solving
the problem of a centered straight crack and calculating
the stress intensity factor Ki(P,!). By using Eq. (9) and
the well-known correspondence relation established by Ir-
win [15]

4107

_%ZK%,

3 (14)

one defines the region of existence of stably extending
straight cracks (see Fig. 2). This problem has been solved
numerically [6-8] and the results are in agreement with
the experimental measurements [3,4]. Nevertheless, in
addition to the previous studies, we will introduce a sim-
ple analysis that yields the scaling laws governing the
transition from a receding to a moving crack. That also
leads to the confirmation [8] and to extension of the in-
validity of the hypothesis, which consists in taking, in
certain limits, the approximation of an infinite strip.

In Sec. IV we investigate the straight-oscillating crack
transition. We perform a linear stability analysis of a
straight crack submitted to a small perturbation of its
shape. In the vicinity of the bifurcation, we introduce a
small smooth deviation y(z) to the shape of the centered
straight crack in the form

y(z) = Af(z) + O(A%) ~ Asinwz with |4] < 1, (15)

where A is a constant small amplitude and w the wave
vector of the oscillation. By small deviations from the
centered straight crack, it must be understood that
ly(z)] < 1and |y'(z)] < 1 (JAw| < 1) because the length
“difference” between the two paths must also be small.
From this observation, one can already expect that the
sought after transition will derive from a low wave vec-
tor (high wavelength A = 27 /w) stability analysis. We
develop the stress and deformation fields as

Tij = 0ij + Asij + A%t;; + O(A?),
U; = u; + Av; + Azwi + O(As)

(16)
(17)

Because of the symmetry A — — A, the even perturbation

LI I | l LI I L l T T 17T I L L
15 —
. 4
> .
= 10 —
[35] L .
<
5 L 4
1] - E
AT .
~N
- -
..1
11 1 | J 111 1 l 11 1 ' 11 1 1 I 11 1 1
-0 20 40 60 80 100

P

FIG. 2. Phase diagram in the P-K;! plane. A crack can
move in the region above the lower solid line. The transi-
tion to an oscillating propagation occurs at the upper solid
curve. For comparison, the results obtained in [7] for the tran-
sition straight-oscillating morphology are also shown (dashed
curve).
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orders are of pure mode I type, while the odd ones are
of pure mode II type. Therefore, using the tangential
U:(z,y(z)) and the normal U, (z,y(z)) deformations [10]

1

Ui(z,y(z)) = it

x {Uz(z,y()) +¥'(z) Uy(z,y(z))}, (18)
1
Un(z,y(z)) = NS
x {Uy(z,y(x)) — ¥/ (z) Us(z,y(2))}, (19)

one calculates K{°*(P,l,w) and K{*(P,l,w), the stress
intensity factors of mode I and mode II loadings, respec-
tively. They are given by

x {Un(z,y"(2)) — Un(z,y™(2))}, (20)
x {Ut(w,zﬁ(w)) ~U(z,y~ (x))}, (21)

where the superscripts + and — denote the upward and
downward limits, respectively. At leading order, one finds
that

tot ( P, l, (4))

Ki(P,l) + O(A?), (22)

% tot(Pl w)—_KII(Pl w)+ KI(P l)+O(A2)

(23)

It is shown that at leading order, K}°' is still given
by Ki(P,l), the stress intensity factor of the centered
straight crack. The stress intensity factor Ky(P,!,w) is
the shear effect introduced by the first-order perturba-
tion in loadings. It is given by the resolution of a pure
mode II problem of a centered straight crack

Ku(P,l,w) == hm ‘/ {vw(.’c 0") — vz (x,0” )}
(24)

Our linear stability analysis is based on the follow-
ing physical arguments. If K{f*/A is found to be posi-
tive, this means that the stress 1ntens1ty factor Kt and
the orientation of the crack tip y’(0) have the sa.me sign.
Therefore, according to the criterion of local symmetry,
the crack tip tends to follow a path that decreases |y’ (0)|
and consequently the amplitude of the perturbation will
decrease. On the other hand, when Kff*/A < 0, the slope
|y’ (0)| will increase in order to restore a pure mode I local
stress field at the tip. So, under a small perturbation of
its shape, the straight crack will be stable if K{Pt/A is
found to be positive and unstable elsewhere. The osc111at-
ing crack configuration will then occur when Kff*/A < 0
is satisfied.
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FIG. 3. Example of the variation of Ki1/A, wKi/2, and
Kif*/A = Ku/A+wK;/2 with respect to w/2x for fixed values
of l and P.

According to Eq. (23), Fig. 3 shows that K{*/A is the
sum of two competitive terms: the first one Ky1/A, which
is almost always negative, tends to amplify the instabil-
ity of the straight crack. This destabilizing field effect is

due to the variation of the stress field ¥ with respect to
@. The second term of Eq. (23), wK}/2, is a geometrical
stabilizing effect. This quantity is always positive in the
range of parameters where a straight crack can exist, so
it tends to favor the straight configuration by damping
the perturbation given by Eq. (15). It is foreseeable that
the straight-undulating crack transition will occur when
these two effects cancel each other. In Fig. 4 we plotted

3llll’llllllllllllll

Kir'(P,Lw)/A
-

_1lllllllllllllllllll

-0 2 4 6 8
w/2m

FIG. 4. K{{*/A versus w/2m for fixed P (P = 50) and for
different values of I (from the upper to the lower curve, [ =
0.08, 0.11, 0.121, 0.13, and 0.16). By increasing !, K{{*/A
decreases. When Kjf*/A > 0, the problem of a wavy crack
has no physical solutions. For a certain [, (P), the minimum
of Kif*/A vanishes at w = w. and by increasing ! further, any
small perturbation of the straight crack in a well-defined range
of wavelengths will cause a physical shear loading K{{*/A < 0.
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K!f*/A with respect to w at constant P and for different
values of [. It is shown that there exist critical values of
the parameters for which a small deviation from the cen-
tered straight crack begins to introduce a physical shear
loading at the crack tip. At this point, the straight crack
becomes unstable and an undulating crack path appears.
From Fig. 4, one concludes that the straight-oscillating
crack transition will occur when

OK}et
Ow

Equations (25) are satisfied for | = [,(P) and w =
wy (P), functions that can be computed from (25). The
value of | = [,(P) is the critical position of the crack
tip in the temperature gradient where a straight and an
oscillating crack coexist (see Fig. 5). If | < I, (I > l,),
the straight (oscillating) crack is the most stable config-
uration. The critical wavelength of the oscillation near
the transition region (see Fig. 6) is simply determined by
A(P) = 27 /wy,(P). In order to complete the phase dia-
gram and to quantify the straight-oscillating crack transi-
tion, one has to calculate according to Eq. (22) the stress
intensity factor of the straight crack K I(") at the critical
points [, (P). This is done by using the results of Sec. III
(see Fig. 2).

This stability analysis is not in contradiction with the
criterion of local symmetry. Our process consists in
searching for when a small perturbation of the linear
crack can create a shear loading able to lead to an os-
cillatory instability. Of course, once this instability is
reached, the undulating crack will choose a path satisfy-
ing Kj1 = 0. Clearly, this condition cannot be satisfied
by the simple shape given by (15). The reason is that the
chosen shape must be an exact solution of the problem
to satisfy completely the criterion of local symmetry.

In order to see the effect of the crack oscillation on the
free energy, we have calculated W, the elastic free energy
of a weakly oscillating crack. This energy is expanded for

Kit(P,l,w) =0,

(P,1,w) = 0. (25)
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FIG. 5. 1,(P) when K{{*/A = 0 (solid line) and the criti-
cal position lo(P) for which W, becomes unstable at w = 0
(dashed line).
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FIG. 6. Selected wavelength A versus P at the transition
from a straight to a wavy fracture.

A small under the form

W, = W, + A25W + O(A*%) - (26)
so that one has to solve the second-order perturbation
problem to compute §W; W; is the elastic free energy of
a centered straight crack for the same tip position in the
temperature gradient as the undulating crack. When the
bifurcation to the wavy instability occurs, the deviation
of the energy W is always found to have an unstable
maximum at w = 0. This serves as a consistency test for
our approach (see Fig. 5).

III. THE STRAIGHT CRACK

This configuration has been studied previously [6-8]
by numerical methods. Nevertheless, since we shall need
some results for Sec. IV, we will discuss briefly the solu-
tion method (see [7] for details). The crack is assumed
to be centered because of the constraint K13 = 0. The
equilibrium equations (5) are rewritten as

BO'ij

61']'

= 0, VZO','Z' = —VZTl(:E) (27)

and the boundary conditions (6) and (7) become

Oyy(Z,1) = 0zy(z,1) = 04y(z,0) =0, (28)

Oyy(x,0) =0 for £ <0, uy(z,0)=0 for >0, (29)

where some boundary conditions have been added be-
cause of the symmetry of the problem. By working in
the interval 0 < y < 1 and in the Fourier space of the =
direction, one obtains [7)
Gyy(k,0) = —F(k)iy(k,0) + Di(k), (30)
Gax(k,0) = H(k)Gyy(k,0) + Si(k), (31)

with
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F(k) = kz}%
H(k) = :ﬁjﬁ%
Si(k) = Ty (k) S e )

Once Eq. (30) is solved, the solution is complete. In order
to satisfy the boundary conditions given by Eq. (29), one
uses the Wiener-Hopf method [7,16], which consists of
decomposing F(k) as F~(k)/F*(k), where F~(k) has
neither poles nor zeros for Im(k) < 0 and F7*(k) has
none for Im(k) > 0. Then, one finds

iy (K, 0) = %m /_oo dz gi(z + 1)e™, (33)
where
“+oo
gi1(z) = /. :—7]: Do(k)F*(k)e™t*=, (34)

In our calculations, we chose the large k behavior of
F*(k) to be /2/(d —ik), with § infinitesimal. The
stress intensity factor of this mode I propagation is then
K1 = gi(1).

The dimensionless free energy W, for a straight crack
is given by

~ 1
Wo=Wo(P) = [ dagi(a)

1~ (P too o,
= 5Wo (—2—) +[ dz gi (z),

with WO(P) the free energy of a noncracked strip of width
2b. It is explicitly given by

mor- [ 4

(35)

4 sinh? (k] P2
" k(2k + sinh[2k]) } k2 (k2 + P2?)’
(36)

Note that Wy is independent of I. Equations (35) and
(36) can be obtained by two different, but equivalent,
methods: either by putting directly in Eq. (13) the solu-
tion of the above problem or by using Eq. (14) and calcu-
lating the free energy Wo of a noncracked strip. This can
be done easily since in this simple case, the mixed bound-
ary condition (29) is replaced by uy(z,0) = d,(k,0) = 0.
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By using Egs. (9) and (35), one concludes that the
straight crack can extend when [ > [,(P), where
ls(P) corresponds to Kl(s)(P), the maximum of K(P,!).
Therefore the no crack-straight crack transition (lower
solid curve in Fig. 2) obeys the law

A Bar
Ki7(P)

This law is in agreement with the experimental observa-
tions concerning this transition [6,8].

The stress intensity factor Ki(P,!) decays rapidly to
zero when [ — +oo and varies only in a window of width
of order L., which will be the characteristic length of the
problem. Therefore, when the crack position is behind
this region, the elastic free energy is not very different
from a noncracked strip, while when it is in front of this
region, the strip can be approximately treated as an in-
finitely cracked one. The latter case is equivalent to the
problem of two strips of width . To a first approxima-
tion, one can assume a linear energy variation between
these two limits across the unknown characteristic length
L.. Thus the existence of an extending straight crack is
constrained by the condition

(37

Eb2a2.(AT)?AW ~TL,, (38)
where AW = Wy (P) — Wo(P/2)/2. It can easily be
shown that the asymptotic behavior of AW with respect
to P is simply given by
AW x P?2 for P« 1,
— (39)
AW =1 for P> 1.
Let us recall that from the beginning, we have scaled
lengths by b and consequently k by 1/b. So in these
two limits, the relevant length scale is the width of the
strip and the diffusion length d;} plays a secondary role
compared to b. Therefore, in the asymptotic cases of
Egs. (39), the characteristic length is of the order of the
width of the strip L. o< b. Extending straight cracks may
occur when

B3 (AT)?V? ~ Ct
b(AT)? = Ct

for P« 1,

(40)
for P> 1.
Moreover, these scaling laws remain valid when one
considers n equidistant straight cracks. This can be
seen by considering the energy difference W (b) — (n +
1)Wei(b/(n+1)). The scaling laws of Egs. (40) reproduce
qualitatively the experimental behavior of the transition
to an advancing straight crack. However, the most im-
portant conclusion that can be drawn from this analytical
study is that the problem of a crack in a heated strip can-
not be approximated by a problem of an infinite plate in
both limiting cases b < din, and b > dy,. That could
explain why the analysis of Refs. [7,8] assuming an infi-
nite strip failed to explain the straight-oscillating crack
transition. Let us now study the stability of crack path
under mode I loading.
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IV. THE OSCILLATING CRACK

In this section we lay down the calculations needed to
compute numerically the conditions (25) and Eq. (26).
To introduce perturbations to the symmetric straight
crack, one takes the deviation from this configuration,
as given by Eq. (15). The condition f(0) = 0 is not re-
strictive since the transition occurs between a centered
straight crack and an oscillating one. It is therefore suf-
ficient to compare these two configurations at the same
location in the temperature gradient. In our approach,
we must solve first for the straight crack and then for the
first- and second-order perturbation in the amplitude A.
The perturbation method does not differ too much from
that followed in [10]. The following analysis is to be com-
pared to the linearization performed in [10] for the study
of slightly curved cracks. The components of the vector
normal to the crack edges are (ng,ny) «< (Af'(z),—1).
Expanding the equilibrium equations (5) and the bound-
ary conditions (6) and (7) near A = 0, one has the fol-
lowing two problems to solve.

The first problem is a mode II loading given by the
equilibrium equations

68,']'

=0, Vis; = 41
8:1:]' ’ s 0 ( )

with the boundary conditions

Syy(T,1) = Say(z,1) = syy(2,0) = 0; (42)
Say(z,0) = % [f(2)0ze(x,0)] for z <0,
vz(z,0) =0 for = > 0. (43)

Note that lim,_,o- 04z (z,0) is finite [fI,(£7) = 0in (1)].
This limit is equal to ¥ [7], the stress in the transverse di-
rection and near the tip, which remains once the square-
root singularity has been subtracted out. By the same
reasoning as in Sec. III, one finds that this problem sat-
isfies the equation

84y (k,0) = —P (k)b (k,0), (44)
where
sinh? k — k2
=k 5
P(k) ksinh 2k — 2k (45)

To solve this equation, one uses again the Wiener-Hopf
technique; one splits 3., (k,0) as 3;, (k,0) + 35, (k,0) and
P(k) as P~ (k)/P*(k), where the signs + and — have the
same meanings as in Sec. III. Then, using Eq. (43), one
finds

b, (k,0) = —15;1(;)— /— dz gri(z)e™*®, (46)
where
gII(w) = [z dwl% [f(xl)dzz(.’tl,O)]p-'_(.’l: - :cl)’ (47)

with p*(z) = fjw dk p+(k)e~**=. The stress intensity

co 2w

factor of this mode II loading is then given by
1
2 Ku(Pyl,w)= gu(0)

= - /;oo dz% [022(z,0) sinwz] pt (—z).
(48)

The second problem concerns the second order (in the
amplitude A) of the perturbation analysis. It is a mode I
loading given by the equilibrium equations

ot,;
= = V2t =0 49
am]‘ 0, ( )

with the boundary conditions

tyy(z,1) = tay(z,1) = 0; (50)

tzy(.’l:,O) = 6("‘2’)% (f(x)%vz(wa 0)
1,,, 0% )
_Ef (z)ﬁuy(w,0)>, (51)

1 62
tyy(z,0) = 3822 [F*(%)0ee(x,0)] for x <0,

wy(z,0) =0 for = > 0. (52)

It can be shown that this problem yields, after a Fourier
transform,

£y (k,0) = —F (k) [d,y(k,o) _ V%&_@}

—F(k)H(k) —————t’”_(f]’co) , (53)

which has to be solved by using the boundary conditions
(51) and (52). The functions F(k) and H(k) are given
by Egs. (32) and thus the Wiener-Hopf decomposition of
F(k) is already known.

The elastic energy W, up to the second order in A is
given by

W= -2 [ Z do Tz(w){ /0 dy [Sis(x,9) + (e, ~y)]

—Af(m)0(—a:) [Ei,-(a:,0+) - 2,-,-(:5,0_)]

}. (54)

Once the previous problems are solved analytically, the
various quantities that appear in Egs. (25) and (26) can
be calculated numerically. The derivative of Ky; with
respect to w is given by

A P @ea)

x (% [(Zi(z,y) + Zilz, —y)]
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1 aKn

A aw Db

=— /_ dsca-d; [202z(x,0) coswz] pt (—z). (55)

After some algebraic manipulations on Eq. (54), the cor-
rection W is found to be equal to

0

1 2
SW = £ Puy(—1,0)f%(~1) —/

— 00

dz {9121(17)

te0) s [P0l | 0

where the first term reflects the discontinuity of the
derivative of 0., (x,0) at £ = —I, when the temperature
field is given by Eq. (4). Note that the variation §W is
calculated using the first- and second-order terms of the
perturbation and does not depend on gy; only.

The numerical analysis of the previous problems
is straightforward. @ The Wiener-Hopf decomposition
needed for F(k) and P(k) is done as described in [16].
The other quantities are computed using Fourier trans-
forms, after treating the singular parts separately and an-
alytically. The results of these numerical calculations are
summarized in Figs. 2 and 6. Using Eqgs. (34), (48), and
(55) and according to (22) and (25), one calculates the
position [, (P) where the straight crack becomes unstable
against a small perturbation of its shape, the correspond-
ing stress intensity factor Ki(P,l,), and the wavelength
of the oscillation A(P). Using Eq. (58), the critical value
lo(P) where 0W starts to have a maximum instead of
minimum at w = 0 has also been calculated (see Fig. 5).

The only hypothesis we made to introduce the con-
ditions (22) and (25) is the smoothness of the fracture
shapes. This assumption is not too drastic and is in
agreement with the experimental observations [3]. We
have also assumed, as in [10], the existence of a small ran-
dom stress intensity factor K11 due to the imperfections
in the loading system. Because of the criterion of local
symmetry, the existence of such imperfections leads au-
tomatically to deviations from the original straight crack.
Therefore, the stability analysis of a preexisting straight
crack under a small fluctuation in its shape is necessary
before studying the shape of its extension.
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V. CONCLUSION

In this paper we treated completely the instabilities
of an advancing crack in a strip subjected to thermal
stresses. The first instability concerned the condition of
existence of extending straight cracks. We quantified this
transition (lower solid curve in Fig. 2) and proved the
asymptotic scaling laws analytically. Since this bifurca-
tion is well defined, its experimental study is a good way
to fix the fracture energy value and to determine the rel-
evant length scale in the imposed temperature field.

For the more subtle transition from a straight crack
to a wavy crack (upper solid curve in Fig. 2), we intro-
duced a notion that consists of defining this bifurcation
by the existence of a physical stress intensity factor of
mode II loading for a small instability of the straight
crack. Any quantitative comparison between this treat-
ment, the studies based on the criterion of local sym-
metry [8,6], and the experiment [3] is difficult to do be-
cause even the first bifurcation has not yet been studied
quantitatively. Nevertheless, our results agree rather well
with the numerical simulations of [6]. Moreover, a com-
parison with the experimental data in the region of the
phase diagram where the diffusion length dy}, is the dom-
inant length scale in the temperature field (V ~ 3 mm/s,
AT =~ 70 K, and b = 1.2 cm) gives a value of the frac-
ture energy I' ~ 7.3 J/m2, which is of the same order of
magnitude as the value measured in [9].

The selected wavelength plotted in Fig. 6 also shows
agreement with the results of [6] for P > 1. In both
cases, it was found that A = 0.28. For smaller P, the two
wavelengths are different but still of the same order. In
this limit, they have to be compared with the experimen-
tal value A = 0.56 in [3]. However, since there is no infor-
mation on V', one might attribute the plateau observed in
this experiment to the effects of h, the spacing between
the heater and the cold bath, or to three-dimensional
effects [4].
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We propose a linear stability analysis of a straight crack subjected to uniaxial loading. We argue that,
under quasistatic extension conditions, the crack propagation follows a straight path until the creation of
a “physical” shear stress at its tip. This instability leads to a deviation of the fracture from the direction
perpendicular to the applied loading. We compare our tip criterion instability with both experimental
results and previous theoretical models.
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Recently, crack propagation problems have attracted atnhomogeneities. Finally, we will apply our approach to
tention of the physics community. This renewal of in-two simple cases and a comparison with previous results,
terest was essentially caused by experimental realizatiorespecially those of Cotterell and Rice (CR) [8], will be
of both equilibrium [1] and dynamic fracture mechanicsdone.

[2]. From the theoretical side, the study of crack propaga- In a two-dimensional linear isotropic elastic model, the
tion can be subdivided in two classes. First, for the studytrain tensoE(x,y) is related to the stress tensbfx, y)

of dynamical fracture formation, a long-standing problempy 3 relation of the form [9]

exists. According to theory [3], cracks in brittle materi-

als are supposed to accelerate up to the Rayleigh wave _ 1

speed. Inpé)xperiments, however,pthe cracks ){s,elgom ex- Eij = 3{0Ui/ox; + aU;/dx}

ceed half this speed [2]. Moreover, the mechanisms that

govern the dynamics of cracks are not well understood, = (1/2w){2ij — [k = 2/2(k = D] Zubij}. (1)
and a theory of instability does not exist yet. The second

field of crack propagation concerns slow or quasiequilibHere the subscripts are two-dimensional coordinate in-
rium cracks. For this case, the work of Griffith [4] is often dices; repeated indices indicate summatiod. is the
seen as the beginning of equilibrium fracture mechanics adisplacement vector angd = 2(1 — »)/(1 — 2v») [k =

a quantitative science of material behavior. Recent ex2/(1 — »)] for a plane strain (plane stress) problem.is
periments [1] have shown that a crack traveling in a strighe Poisson ratio, and is the Lamé coefficient.

submitted to a nonuniform, but unidirectional, thermal dif- The problem of an equilibrium crack of unknown
fusion field undergoes numerous instabilities. It has beeshape in an elastic medium, which is opened by tractions
established that at well-defined critical values of the con—p(x), at the surface, consists of solving the equilibrium
trol parameters a moving straight crack becomes unstabkguations

after which a wavy crack path appears. In a recent theo-

retical work [5], in relation with that experiment, a linear 93;;/9x; = 0 and V23 =0 (2)
stability analysis of a straight crack based on a crack tip

propagation criterion was introduced. The criterion statesvith the boundary conditions on the crack faces

that the crack tip will extend out of the centered straight (Si + pidn; =0 3)
direction as soon as it is submitted to a “physical” shear i P ’

stress. In this paper, we will show that the treatment inwhere 2 is the unit vector normal to the crack edges.
troduced in [5], which accounts for the appearance of wavyrhis load configuration can be either the present one
crack patterns, is not specific to this thermoelastic problenor that necessary to superimpose on the stress field
Moreover, we generalize this criterion to the study of thefor an uncracked body to remove the stresses from the
stability of a straight crack subject to any uniaxial loadingboundary of the crack. At this stage, we do not need to
in two dimensions. Although the notion of stability is sys- specify the conditions on the boundaries of the medium.
tematically used for hydrodynamic systems [6], it has notUnder equilibrium conditions, the crack shape depends
been performed yet for the study of fracture problems. essentially on the applied stresses. The mathematical

As an introduction, the quasiequilibrium crack problemformulation of this problem is as follows: Given the
will be posed in its general form. Then, admitting the boundary conditions (3) for a crack whose shapeais
Griffith theory [4] and the so-called principle of local priori unknown, the solution of the whole problem will
symmetry [7,8], we will perform a linear stability analysis determine the correct shape of the crack [9]. Formally,
of equilibrium cracks subjected to unidirectional loading.there might exist more than one solution to the global
This defines a stability criterion for the straight crack problem, and one has to select the crack shape which also
in the presence of intrinsic perturbations due to materiaatisfies two stability criteria.

0031-900796/76(9)/1497(4)$06.00 © 1996 The American Physical Society 1497



VOLUME 76, NUMBER 9 PHYSICAL REVIEW LETTERS 26 EBRUARY 1996

First, the solution must satisfy a condition related to thebe slightly perturbed [7,8]. Such a deviation, due to an
energy criterion introduced by Griffith [4]. Defining the instability of the straight crack, will create a shear loading
energy release rate as the reduction in the total potential which may cause the crack tip to follow a path which is
energy, which is the sum of the stored elastic energyamplified compared to the initial perturbation. Therefore,
We1 and the potential energy ¢ of the external forces, we investigated the problem in a different manner than
associated with a small virtual crack advante Griffith  in [8]: we do not analyze it at the levé{;; = 0, but we
states that the crack is at @itical value of incipient examine when a tiny perturbation of the path is amplified.
growthif G is equal to the fracture energdy To perform the linear stability analysis let us introduce
P 9G a small smooth perturbation, with a given wavy shape:
=—-——(We — ¢)=T,with — =0. (4)

9s 9s y(x) = Af(x) + 0(4%), (7)

I'isa _materlal constant independent of the crack Shap\(/evhereA is a constant small amplitude. The crack is
and of its dynamics.

On the other hand, thectiterion of local symmetry arranged so that the unperturbed shape is located at

L y = 0. By small deviations from a straight crack, it must
[7,8] states that the path(x) taken by a crack in brittle be understood thaty(x)| < 1 and|y'(x)| < 1, because

homogeneou_s isotropic_m_aterial is the one for which thefhe length difference between the two paths must also
local stress field at the tip is of mode I type. Let us recallbe small. In addition to the straight crack perturbation

that the mode | loading causes an opening of the fracture iven by Eq. (7), we introduce a supplementary condition:
while the mode Il loading causes a shearing off. The loca yEg. (1), PP Y :

analysis in the neighborhood of a crack tip shows that thér(o) —oat the crack_ tp (supposed to bexat_=_ 0). This
= condition is not restrictive, since the instability occurs for

asymptotic stress tensor field, in the polar coordinate 5 siraight crack. It is therefore sufficient to compare these
system (,0), takes the universal form [3] two configurations at the same location of the crack tip.
Ki Kii .p The perturbation method we use does not differ too
2(r,0) = \/2—fij(0) + Nl (@), (3  much from the one followed in Ref. [8] for the study
mr r of slightly curved cracks. We develop the stress and

where £:(6) and f1!(6) are universal functions common displacement fields in:

to all configurations and loading conditions. The influ-

ence of configuration and loading are included in the S = oy + Asi; + 0(A%),
asymptotic description of stress only through the scalar U = u + Av: + O(A2
multipliers K7 and Ky, which are the elastic stress inten- P vi (4%,
Z%Ifact%se %friigtreiorrqogfel(lcaarrds nr]norgit:l I?eaaﬂﬂ%z’ tr:;peifénd solve first for the straight crack and then for the first
a shyéar loading exists at the grack Hgﬂ % 0 and thé order perturbation in the amplitudé. Because of the

crack will move by changing abruptly the orientation of symmetryA — —A, one notes that the even perturbation
the path y ging pty orders are of pure mode | type, while the odd ones are

Now consider a straight crack subjected to mode Imc pure mode Il type. Expanding Egs. (2) and (3) around

; . . A = 0, one has to solve the equilibrium equations (2) for
!oadlng and take a coordlnat_e system Sf thatthexis 5(x, y), with the following conditions on the crack faces:
is parallel to the crack. Nominally;;j(x) = p(x)8;,8jy
and K = 0, so the criterion of local symmetry is d
automatically satisfied. Therefore the extension condition $»(:0) =0, sy(x,0) = ax [f(&)ow(x,0]. (10)
of the straight crack and its stability are given by Egs. (4)
only. Moreover, in this case there is a correspondence Using the tangential U,(x,y(x)) and normal
relation between the energy release rate and the Stregs (x,y(x)) displacements to the crack faces, one
intensity factor [10], sinceG = Ki. In the quasistatic can calculatek!® and K%', the stress intensity factors of

(8)

K1 = K., with 3K1/ax =0. (6) . 2 B
K}Ot =« XII_(T(-)[ __)C {Un[X,er(X)] - Un[x’y (x)]},
Note that only positiveK; are permitted. 1K} < 0, the (11)

crack reseals and the analysis above using vanishing trac-
tion conditions on the crack faces will not be applicable. tot . 27 + B _

The question at rest is: if the conditions (6) are satisfied, ki = a len(?f \ —x Wlx, y" 0] = Uil y~ (O},
does the crack always grow in the direction for any (12)
mode | loading? In fact, due to the imperfections in the
system, the stress intensity factor of mode Il loading willwhere the superscripté+, —) design the upward and
differ slightly from zero. So, the crack alignment will downward limits anda = u(x — 1)/2k is a material
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constant. To leading order i, we obtain tip, which remains once the square-root singularity has
been subtracted out. But, in our approach, we represented
K = Ky + 0(A%), (13) from the beginning the inhomogeneities of the material

by a perturbation of the straight crack given by a fully
K9/y'(0) = K7 /y'(0) + %KI + 0(A?), (14) wavy path. We analyzed when the shear effect leads to
an amplification of the intrinsic deviations of the crack
which shows thatk{* is still given by Kj, the stress alignment. In fact, our stability analysis performs the
intensity factor of the straight crack. The stress intensityapproach followed in the study of a large variety of
factor K1; is the shear effect introduced by the first orderphysical systems [6].
perturbation of the loading. It is given by the resolution Equation (14) shows thak(t'/y’(0) is the sum of two
of a pure mode Il problem for a straight crack terms: The first oneky;/y’(0), is due to the variation

of the stress fieldY with @. The second term of

Ki = aA lim /2_77{vx(x’0+) — u.(x,07)}.  (15) Eq. (1_4),_1(1/2, is a geo_metri_cal stabilizing effect. This
x—0~ | —x quantity is always positive in the range of parameters
for which a straight crack can exist, so it tends to favor

At this stage, two remarks have to be made. First, thehe straight configuration by damping the perturbation
crack will not propagate if the Griffith energy criterion given by Eq. (7). It is foreseeable that the instability
is not satisfied. The stress intensity facf* must still  of the straight crack occurs when the perturbation of the
satisfy Egs. (6). Second, the linear stability analysis willstress field shows a destabilizing effect. That is, when
not contradict the criterion of local symmetry. On the g}, /y/(0) < 0, which tends to amplify the instability of
contrary, it is based on an observation which followsthe straight crack. The transition will then occur when
from this principle. When a crack is submitted to a sheathe two effects cancel exactly. This condition gives the
loading, its extension will deviate from the pre-existing critical values of the control parameters for which a smalll
path by an angle whose sign is opposite to the one of thgeviation from the straight crack begins to introduce a
stress intensity factor of the mode Il loading. From thisphysical shear loading at the crack tip. At this threshold,
observation, the stability condition for the straight crackif it exists, the straight crack becomes unstable and a
stated hereafter follows immediately. curved crack path appears.

Our linear stability analysis is then based on the The condition for instability for the experiment de-
following physical arguments. Ifif'/y'(0) is found  scribed in [1] as well as the selected wavelength have been
positive, this means that the stress intensity fackdf,,  deduced quantitatively in [5]; the agreement with experi-
and the orientation of the crack tip/(0), are of the ments was shown to be favorable. On the other hand, re-
same sign. Therefore, according to the criterion of locatent attempts [11] to apply the CR criterion to the same
symmetry, the crack tip tends to follow a path for which experiment has given stability thresholds significantly dif-
| y'(0)] decreases and, consequently, the amplitude of thesrent from the experimental results. However, in order to
perturbation will decrease. On the other hand, wherexamine the generality of our linear stability analysis, we
K11 /y'(0) <0, the slope|y’(0)| will increase in order il consider below two classical crack configurations in a
to restore a pure mode | local stress field at the tipywo-bidimensional body of infinite extent which is opened
So, under a small perturbation of its shape, the straighy a normal mechanical traction at the surface. This
crack will be stable ifkii'/y'(0) is positive and unstable configuration is chosen for its simplicity; it can be treated
elsewhere. The crack path will thus deviate from aysing Muskhelishvili's [12] method for straight cuts.
straight propagation onckii'/y’(0) < 0 is satisfied. In Let us take as a first example a semi-infinite crack with
fact, our scheme consists of searching for condition%(x) = TO(x + I), whered() is the Heaviside function
where a small perturbation of the linear crack can creatgnd the crack tip is located at = 0. The body is
a shear loading which amplifies the intrinsic instabilities.a|so assumed to be loaded at infinity by a str&§s
Of course, once this threshold is reached, the extendingara||e| to the crack. In this case [12§; = 27+/21/7
crack will choose a curved path which satisfie§' = 0. and o, = [R — 6(x + I)]T on the crack surface. As

Although our perturbation methOd iS Close to the one Ofa S|mp|e Smooth dev|at|on Of the Crack Shape that may
CR [8], the two stability analyses are completely different.exhibit the stability properties we seek, we assume that the

This difference is not due to the approximation of anperturbationf(x) can bef(x) = sinwx. Then Eq. (14)
infinite medium assumed in [8]. More precisely, da}' gives

of Eq. (14) corresponds to the;; of Eq. (42) in [8].
However, CR considered a straight crack which bifurcates Kif' _ K 1 - R 4 fl coslwt d (16)
under the effect ok;;. They assumed that independently  y/(0) 2 V2w 0 Jt '

of the value ofky; the pre-existing crack can be treated

as a straight one, an assumption that we think arguabléndependently of the perturbation wavelength, the quan-
They found that the stability condition is related to thetity in brackets is always positive ongeis negative. So
sign of the stress in the transverse direction near than this case, the quasistatic propagation of the straight
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crack is stable folR = 0. One notes that CR analysis to the criterion of local symmetry for a crack that is
would give a stability threshol@& = 1. moving at velocities of the order of the Rayleigh wave
The second problem is related to an experiment [13kpeed. Attempts to find a criterion for the deviation of the
on centrally cracked PMMA sheets loaded by a stfEBss dynamical straight crack tip are all related to branching
normal to the crack and a streR¥ parallel to it. For this instabilities [14,15]. This consists of a local analysis of
case, one ha&; = T\/ma ando,, = (R — 1)T, where the stresses near the crack tip. At this stage, criteria
2a is the crack length. Using again Muskhelishvili's [12] related to maximum stresses [14,15] in the presence (or
method one finds that Eq. (14) satisfies absence) of dissipation or that of the maximum velocity
allowed by the equation of motion [3] (which is an
Kit' _ K 1 — E(R ~ U fliat) |1+ it extension of the Griffith theory [4]) cannot be excluded.
y'(a) 2 T -1 fila) V1 —1t ) But since experiments often show other instabilities [2]
before attaining the velocities predicted by these theories,
(17) other phenomena have to be taken into account, such

Here the middle of the crack is chosen to berat 0. 25 _thg roughness of t'he crack surfaces, or the acoustic
emission of the crack tip.

The problem is now to determine the perturbation of the

. . We are very grateful to D. Bonn and Y. Pomeau for
straight crack path. In fact, the allowed perturbation fol- ) . "
| L - " helpful discussions and critical comments.
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Dynamic Instability of Brittle Fracture
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Using Eshelby’s energy-momentum tensor, it is shown that the elastic configurational force acting on
a moving crack tip does not necessarily point in the direction of crack propagation. A generalization of
Griffith’s approach that takes into account this fact is proposed to describe dynamic crack propagation in
two dimensions. The model leads to a critical velocity below which motion proceeds in a pure opening
mode, while above it, it does not. The possible relevance of this instability to recent experimental
observations is discussed. [S0031-9007(99)08705-0]

PACS numbers: 62.20.Mk, 46.05.+b, 46.50.+a, 81.40.Np

When an elastic medium that contains a crack is subjeclhis is the point of view of the theory of defects and
to an external load, the energy stored in the elastic field isnaterial forces on singularities introduced by Eshelby in
focused into the region around the crack tip. When the ap1951 [11].
plied load exceeds a threshold value, the crack propagates,An energy argument, being scalar, is insufficient to
thereby creating new surface. According to the presentompletely describe a crack trajectory that is allowed
theory of fracture mechanics in two dimensions [1], theto deviate from a straight line. In order to complete
crack tip should smoothly accelerate until it reaches theéhe description of the crack motion, additional criteria,
Rayleigh wave speeWg, the speed at which elastic waves such as the principle of local symmetry [13,14], have
travel along a flat surface. Experiments in isotropic me-been introduced. In this paper, we wish to explore the
dia, however, seldom show crack speeds exceeding hatbnsequences of taking into account all components of
this value, with a trajectory that is far from smooth: athe configurational force acting at the tip of a moving
dynamic instability occurs above a well-defined critical crack. In this framework, we develop a model of force
velocity where microcracks appear, the fractured surfacealance instead of energy balance, that under minimal
becomes increasingly rough, and acoustic emissions bassumptions leads to a critical crack velocity. Below this
come markedly stronger [2,3]. Although there have beerritical velocity, the crack propagates in a direction that
a number of attempts [4—7] at a theoretical understandingeeps a pure opening mode at its tip, and above it this
of these facts, it seems fair to say that no coherent explaeases to hold, leading to a dynamic instability at the
nation has been achieved yet. The purpose of this paper @ack tip.
to propose a model for elastodynamic crack propagation We consider an effectively two-dimensional elastic
that leads to a dynamic instability. medium, with a crack tip in motion, close to which the

A basic tenet of current macroscopic fracture theoryelastic fields become singular. The equations of dynamic
[1,8] is that crack advance is governed by the fact thatlasticity in the absence of body force can be written as
the change in energy per unit crack advance (also calleHuler-Lagrange equations

the energy release ratg) must be equal to a material 9 oL
parameter]", the specific fracture energy: ox \am ) =0 ()
v
G=1T. (1)  with Lagrangian
The latter parameter includes the energy associated with I = 1 piliit; — 1 e U 3)
the creation of new crack surface, as well as with the en- p PRIt g CUMELIERL

ergy associated with whatever nonlinear processes takiherep is the material density;;;; the elastic constants,
place on a microscopic scale very near the crack tip. In(X,) the displacement fieldX, =, X; the space
thermodynamical terms; is the generalized force con- coordinates, a comma means partial differentiation [15],
jugate to the extension of the crack, and there are twand an overdot means partial differentiation with respect
ways to compute it: the first [9,10] is through a global dis-to time. For a homogeneous and stationary medium, they
sipation analysis that takes into account the fact that thénply the conservation laws

fracture of a material sample is thermodynamically irre- 0T,

versible, while the local mechanical behavior of the bulk X, 0, (4)
material may be fully elastic. The second one [11,12] diwjth 7,, the elastodynamic energy-momentum tensor
rectly involves the computation of the generalized or conq{12]:

figurational force, of anon-Newtoniantype, which acts T =I5 4 iu' (5)

at the tip of a crack which is considered as a defect. my wrety B

i,v
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with Ty, the energy densityl; the energy density flux, with a(V) = /1 — V2/c3, b(V) = /1 — V?/cZ%; ¢4 and
—Tjo the field momentum density, and7;; the field ¢, the dilatational and shear sound velocities respectively,
momentum density flux. Note that the field momentumand D(V) = 4ab — (1 + b?)?, with D(Vg) = 0. Ex-
—T;p, also called quasimomentum or pseudomomentunpressions (9) and (10) are standard expressions in dy-
[12], is dimensionally a linear momentum but it is not namic fracture. Expression (11) does not appear to have
the physical one. Indeed, the physical linear momentumeceived much attention.
is defined bypu;, and the quantitypu; + T,y is the In Eqg. (9), we recover the anticipated result (8). In-
canonical momentum. Thus, the field momentum isdeed,F; is the configurational force in the direction of
the difference between the linear momentum and thenotion that does work, anfl, is perpendicular to it and
canonical momentum [12]. does no work. The possible relevance of such forces to
Consider now a crack tip that is enclosed by a cutve the understanding of crack dynamics was pointed out in
that starts on one lip of the crack, ends on the other, anRef. [17]. As evidenced in Eq. (11), the elastic configu-
moves with it. The energy floyf (z) and the flow of field rational force on the crack tip ceases to be in the direction
momentumF; through the curveC into the crack tip are of motion when in addition to mode-I loading, we have a
[16]: component of mode-II loadingk; # 0).
From Egs. (9) and (10), we see that the energy release
F(t) = —gmof dC[To;N; — ViTooN;],  (6) rate G is equivalent in the Eshelbian approach to the
¢ configurational force per unit length of the crack front.
@) Thus, Eg. (1) can be reinterpreted as a balance between
the elastic configurational forcE, and a resistance force
with N the unit normal at a given point of the curée to crack advance, that is (all per unit length of the crack

Fi(1) can be identified as a configurational force acting orf™oNt)- Usually, in addition to Eq. (1), it is assumed that
the crack tip. These flows of energy and field momentunfr@cks proceed in a purely local opening mode at the tip.
are independent of the shape of the cufyeas long as it | NS IS theprinciple of local symmetrj13,14]:

Iies close to the crack tip [16]. The configurational force K11 = 0 < smooth crack propagation (15)

F is related to the energy flow ratg through

Fl'(t) = lim f dC[Tiij - VjTi()N,'],
c—-0 Jc¢ ’

We wish to write down an equation of motion for two
F (1) = Fi()Vi(1). (8)  dimensional dynamic crack propagation without assuming

This means that the work done by the configurationah priori a principle of local symmetry. In order to do so,
force F for an infinitesimal advance of the crack tip, two equations are needed. So far, we have determined
F - dR, is equal to the energy entering into the crack tipthe two components of the elastic configurational forces

region during that timeJF dr, with V = dR)/d. acting on the crack tip [Egs. (l_O) and_(ll)]. !n order to

We define a local frame; such thaté, is in the Write o_Iown an equation of motion for it, we will assume

direction of crack motion anck, is perpendicular to that it involves thelcrac_k velocity only, ie., thap the c.rack
it. We suppose a smooth motion of the crack frontlip does not have inertia [1]. The elastlg conﬂguraﬂonal
with relatively small curvature and smooth velocltyr). forces must be balanced by some configurational forces

Substitution of the universal expressions for stress angCting at the crack tip region level. These forces are of
displacement velocity near the moving crack tip [1] into@ dissipative nature and should represent the resistance

Egs. (3)—(7) gives of the material to crack advance. Their origin should be
| the adjustment and breaking of bonds at an atomic level.
—F@)=G@t) = Fi(t), (9) According to our presentation, Griffith’s resistance force
|4 for mode | loading is

1 > -
Fi(t) = ﬂ[AI(V)KI2 + An(V)KE],  (10) F,=—Té;. (16)
1 As a generalization of this resistance force in the presence
Fa(t) = “ou B(V)K1K1, (11)  of mode Il loading, we propose the following form

. . for Fy:
K; andK; are the stress intensity factqusl;(V), A (V), d

andB(V) are universal functions df = V - ¢;: Fg = —T'(cospge; + singqe,), (17)

AV = a(l = b%) (12) With ¢4 an angle to be modeled. Thus, we state that
D(V) for K11 # 0 the resistance force is not necessarily in the

b(1 — b?) direction of motion, bqt that its magnitu_de will remain

A(V) = ———, (13) asI'. The asymmetry introduced at the tip by a mode Il
D(V) loading, we think justifies the fact that the resistance force

B(V) — 4ab(1 — b*) (a — b) (14) will not point in the direction of motion. Furthermore,
D(V)? ’ we think the resistance force should be weakened in
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the direction of motion by the shearing produced by thek;; = 0 at V = V.. If a(V) < 1, there would always
mode Il loading, as it is reflected in Eq. (17). exist three solutions to our equation (21), sincg/) =

We model the angle,; as a function ofKy; (that acts 1. We shall not consider this case since it does not appear
as the forcing mechanism here) and the velocity of thdo be related to experimental results in glass and plexiglass
crack tip, V [16]. In order to be nondimensionedy, [2,3]. Notice also that the critical velocity, always
should depend og, a parameter proportional #;;/K, satisfiesV,. < Vg, sinceC(V) — ©asV — Vp.

g = (b/a)(Ku/Kr). Having found different solutions fosmooth crack
propagation forV > V., one needs to define a selection
mechanism to decide which one will correspond to the
path taken by the moving crack tip. Consider first a

tang, = —2a(V)qy(q,V), (18)  configuration ofsmoothcrack propagation a¥ (r) > V.,
with «(V) an unknown material parameter, andWith K1 # 0 andKy; = 0. From Egs. (9) and (20), the
(g, V) =1+ B(V)g® + ... a function that represents rate of energy flow needed for the propagation of this
higher order corrections in. crack is ' = VI'. Consider a second configuration of
The energy balance arguments at the crack tip implpmoothcrack propagation with the same instantaneous
local force balance in the direction of motion. Then,Velocity V(z), but with K1 # 0 and Ki1 = *g(V)K;.
it is natural to assume that this balance also hold§Trom Egs. (9) and (20), the rate of energy flow needed
perpendicularly to the direction of motion. Having a for the propagation of this crack i§” = VI cosg,.
form for the elastic configurational force and for the Clearly, " = F'. This is so because the material
resistance force, we write our eql;jation of motion byresponse to external loading provides a smaller restoring

assuming vectorial balance of forcds,+ F, = 0, thus  force for the second configuration than for the first
in the following way one. Thus, for a given velocity’ above the critical

F (19) velocity V., the crack needs more energy to advance in
Fy’ a configuration withKy; = 0 than in a configuration with
I'cos¢, = F; . (20) Ku # 0. Therefore, forV > V. the selected solutions
Substitution of Egs. (10), (11), and (18) into Eq. (19)2€Kn = *g(V)Kj, instead of the solutiok; = 0, and
leads to consequently the principle of local symmetry no longer
q holds forV > V..
2a(V)qylq, V) = 2€(V) T —a 5 = 0, (21) The following scenario based on our model tries to
54 explain some features of the experimental results in
with C(V) = 2a(1 + b*)(a — b)/D(V). This equation fast fracture of glass and plexiglass plates under tension
can be solved forg for a given V, independently [23]. These experiments have shown an instability
of the specific loading conditions and geometry. Theappearing when the crack tip velocity surpasses a certain
function (¢, V) for ¢ < 1 is approximatelys(¢,V) =  critical velocity. This instability is associated with the
1+ B(V)g*, and we assumg(V) = 0, i.e., the angle roughening of the crack surfaces and the appearance of
of the force of resistance grows witki;;. We will also  mijcrocracks on them. As our scenario, we propose to
assume that the material parametefV) is a slowly jdentify the critical velocityV, of our model with this
varying function of V. compared with the variation of experimental critical velocity. For PMMA, the critical
C(V). Under these assumptions @i, V) ande(V), the  velocity has been found a¥. ~ 0.36Vx [2,3]. Using
solutions of Eq. (21) can be determined: f®(V) = 1, cq = /3¢, and from the conditiom(V,) = C(V,), one
there is a critical velocityV,, given by the condition finds «(V,) = 1.073, which is a reasonable value for the

Also, it should be an odd function @fin order to respect
mode Il symmetry. Therefore, one can always write

tang, =

C(V.) = a(V,), such that model. Indeed, a simple estimate based on an analogy
V<V, K;y=0, (22)  with the branching process at low velocities [14] suggests
a =~ 1[16].
V>V &= Kn =0, xg(V)Ki. (23) For velocities below/,., the only possible solution that

Therefore, according to the velocity of the crack tip, was obtained correspondska; = 0. From Eq. (20), we

there exists either one solutidgfy; = 0, or three solutions recover the well-known equation of motion [1]:

K11 = 0 and Ky = £g(V)K; for Eqg. (21). Notice that |

the approximation ofiy(q,V) to order ¢> allows the —A(V)K} =T, (24)

calculation of g(V) from Eq. (21). Indeed,g(V) = 2p

h(V.)JV — V. for V greater but close t&.. Thus, the which allows one to determine the crack tip velocity.

velocity V acts as a bifurcation parameteriat= V. for  The resultK;; = 0 means that the crack will propagate

finding the solutions of Eq. (21) as a function @f or  following a smooth path, with a pure opening mode

Ki1/K;. at its tip. This is the statement of the principle of
The new solutions withK;; # 0 correspond to a local symmetry (15). Our approach can be viewed as a

continuously growingK;; as V grows overV,., from  derivation of this principle and as an extension of it to
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velocitiesV < V.. Considering the experimental results dent of the specific loading configuration and the geome-

of [2,3], this solution corresponds to the mirror region,try of the experiment. Throughout the analysis, it has not

where the crack propagation follows a straight line. been specified that the fracture energy should be veloc-
As the velocity of the crack surpass&s, according ity independent, or that the configuration of pure opening

to our selection mechanism the propagation satisfyingnode of the crack tip has to be a straight line. Such a

K11 = 0 at the crack tip should become unstable. Theconfiguration could be a curved path, but an instability

crack now propagates in one of the two new directionsvould still occur.

satisfyingK; # 0, specificallyk;; = =g(V)K;. Notice M. A.-B. wishes to thank Professor J.R. Rice for

that the allowed values oKj;/K; grow continuously helpful discussions and critical comments. R.A. and

with V from 0 at V = V., and that these new solutions F.L. gratefully acknowledge the support of a Catedra
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associated with the presence of bumps on the surfacemire de Physique Statistique is associated with CNRS

together with microcracks. The solutigh; = *g(V)K;  (UMR 8550) and Universities Paris VI and Paris VII.

means that the trajectory of the crack tip will deviate from

a straight line, which in experiments [2,3] corresponds to

the solutionkK;; = 0. The appearance of microcracks at

this stage can be explained as follows: on the crack faces

the stress componenis,;, and o, vanish identically.

However, in the presence of a shear mode at the crack

tip (K11 # 0), the asymptotic elastic stress fiald,; near [1] L.B. Freund, Dynamic Fracture Mechanic¢Cambridge

the moving crack tip is singular on the crack faces [1]: University Press, Cambridge, 1990).
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We use Eshelby’s energy momentum tensor of dynamic elasticity to compute the forces acting on a moving
crack front in a three-dimensional elastic sdiRhilos. Mag42, 1401(1951)]. The crack front is allowed to be
any curve in three dimensions, but its curvature is assumed small enough so that near the front the dynamics
is locally governed by two-dimensional physics. In this case the component of the elastic force on the crack
front that is tangent to the front vanishes. However, both the other components, parallel and perpendicular to
the direction of motion, do not vanish. We propose that the dynamics of cracks that are allowed to deviate from
straight line motion is governed by a vector equation that reflects a balance of elastic forces with dissipative
forces at the crack tip, and a phenomenological model for those dissipative forces is advanced. Under certain
assumptions for the parameters that characterize the model for the dissipative forces, we find a second order
dynamic instability for the crack trajectory. This is signaled by the existence of a critical velgcgtych that
for velocitiesV<V. the motion is governed blg,, =0, while forV>V. it is governed byK;, #0. This result
provides a qualitative explanation for some experimental results associated with dynamic fracture instabilities
in thin brittle plates. When deviations from straight line motion are suppressed, the usual equation of straight
line crack motion based on a Griffiths-like criterion is recovef{&1.063-651%99)12408-5

PACS numbeps): 46.05:+b, 62.20.Mk, 46.50ta, 81.40.Np

I. INTRODUCTION that the crack instabilities are due to three-dimensional ef-
fects[10,11], or to the effect of large deformations near the
Experiments carried out over the past ten years with thircrack tip, requiring a nonlinear analygis2]. Another point
plates of glass and plexiglass have uncovered a wealth &f view has emphasized that complete dynamical models of
phenomena associated with dynamic fractike5]. When  deformation and decohesion at crack 8,14 are neces-
the crack velocityV exceeds a critical speed., a dynamic ~ Sary in order to understand the expe.rimental qbservations. It
instability occurs: The velocity of the crack starts to oscil- has also been argu¢dl5] that conventional continuum theo-

late, the crack surface becomes rough, microcracks brandifS are inherently inadequate to describe crack dynamics,

out of the main crack, acoustic emission from the crack in-2nd lattice models have accordingly been proposed and

creases, velocity oscillations are amplified, and a patterﬁ()lved(See also Re(.16]). Finally, a number of studies have

more or less correlated with the velocity oscillations appear%’een undertaken using large scale molecular dynamics simu-

) ations[17-19. In spite of this considerable effort, it does
on the fracture surface. One recent experini&jthas fo- : X .
: i not seem unfair to say that there are well established experi-
cused on the role played by microcracks, while anoffiér

: mental observations that, to date, have defied theoretical un-
has shown that even a modest amount of acoustic ener

ind anifi h in th locity of . gHlerstanding.
may Induce a significant change in the velocity ofarunning — c,rent theory of brittle fracture mechanics is essentially

crack. Those measurements that have been performed bothiyaseq on the determination of a characteristic quantity called
glass and plexiglass indicate that, after proper normalizationy,e energy release ra@ [8], or rate of decrease of elasto-
those effects are the same in both materials. A remarkablgynamic energy per unit crack advance. Within purely elastic
fact given their very different microstructure. assumptions, the crack must grow in such a way as
Standard theoretical tools to understand crack dynamicglways equal to a newly defined quantify the dynamic
are based on dynamic elasticity in two dimensif8k This  fracture energy of the materig8,20]. The parameteF in-
theoretical framework predicts that a crack in tension willcludes the energy associated with the creation of a new crack
accelerate smoothly, asymptotically approaching the Raysurface, as well as the energy associated with whatever non-
leigh wave velocity. For quite some time, however, therelinear processes take place on a microscopic scale very near
have been experimental results at variance with conclusiorge crack tip. However, this is only one condition, and it is
based on this analysj8]. The experiments mentioned in the not enough to completely determine the crack tip motion that
previous paragraph are sufficiently accurate to place quantis allowed to deviate from a straight line. Effectively, the
tative bounds on deviations from the smooth, straight trajecgeneralized Griffith criterion[8,20] is a scalar equation,
tory that a simple minded two-dimensional analysis yields. while crack motion has three degrees of freedom. Therefore,
Over the last several years, there have been a number of order to complete the description of crack motion, addi-
attempts to explain the complexity of the dynamics of thetional criteria, such as the principle of local symmetry
crack tip. Studies based on a continuum approach to thg21,22, have been introduced.
crack problem have been made, and it has been suggestedin thermodynamics terms is the generalized force con-
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jugate to the extension of a crack. There are two ways td.agrangian description, with variables associated to a refer-
compute this quantity. The first of thef23,24] is a global ence, or undistorted, configuration. The volume and bound-
dissipation analysis which recognizes the fact that the fracary of this reference configuration are denoted\bgnd S

ture of a material sample is thermodynamically, irreversiblerespectively, and their points are described in terms of a
while the local mechanical behavior of the bulk material mayCartesian basig; (i=1,2,3) asX=X;E;. The dynamics of

be fully elastic. The second oifi25,26 directly involves the  the solid is given by the evolution of those points as a func-

computation of the generalized, or configurational, force of &jon of time. Their position is given by the current, or dis-
non-Newtoniartype which acts at the tip of the crack, which torted, configuration

is considered as a defect. This is the point of view of the

theory of defects, or material inhomogeneities, and material x=x(X,t)=X+u(X,1), (1)
forces on singularities introduced by Eshelby in 193%].

Configurational forces in conjunction with an inequality \yith (X t) the displacement field. The local balance of the
based on the second law of thermodynamics have been 'fhear momentum reads

cently used to propose a framework for crack propagation

[27,28. 4 oo IPij INF (%

In this paper, we propose an approach based on the full 21 (PoX)i(X, D) == (X, ) =p (O Fi(X, 1), (2)
consideration of all components of the configurational force y

at t.he crgck _front. It is fo_und that this force doe; not neces . vi(X,t)=u; =du; /gt the particle velocity,p; the
sarily point in the direction of crack propagation, and we . : - . I
propose a generalization of Griffith’s approd@d] in order ~NOMInal stress tensop,(X) the mass density per unit vol-
to take this fact into account. Within this framework, we ume, andf(X,t) the body force per unit mass. They are all
develop a model of forces balance, instead of energy bakdefined with respect to the reference configuration. The
ance. Under minimal assumptions, we show that there existdominal stress tensq;; is given by

a critical crack velocity, below which the crack propagates in
a direction that keeps a pure opening mode at the tip. Above
the critical velocity, this mode of crack propagation is no
longer favored, and there appears a dynamic instability. A
number of experimental results can thereby be qualitativelyith W the strain energy per unit initial volume, ang
understood. A preliminary announcement of these resultsdu;/dX;. The equation of motiofEq. (2)], together with

- J -
pij(X,t) = WW(UM X, t), (3

1]

was presented in Ref29]. boundary conditions on the surfage
This paper is organized as follows. In Secs. Il and Ill, we
introduce the main theoretical ingredients of our analysis. Ti=pijn;,

We review the derivation of the Eshelby energy-momentum . .
tensor[26,30, and we present the balance of energy an here 7; is the_ tra(_:tlon ex_ertec_zl by external loads on the
field momentum for a moving crack front. This motivates theSurface that points in the d!rect|an, can also be obtained
introduction of the energy flow rate into the crack front and@S the extremum of the action

the material forces acting on it. The analysis of these two t ) ) A .
Sectlt_)ns. is vaI|d. in thr_ee d|men3|0n_s,, and for quite generaIA:f dtf dX[L(U; ¢ U; X0+ po(X) (X DU (X, 1)]
constitutive relations, including nonlinear stress-strain rela- ti v

tions. In Sec. IV, we derive the explicit form of the material 4

forces in a linear isotropic elastodynamic solid. The com- +f dtf dSTi()Z,t)ui()z’t)’ (4)
monly used equation of motid8] corresponds to a balance ti S

of energy at the crack front. We point out that it also corre- ..

sponds to the balance of configurational forces in one direcwith respect to variations af(X,t). This procedure leads to
tion, the direction of motion. In Sec. V, we show that within the following Euler-Lagrange equations, representing linear
a Griffith-like approach, it is possible to define a generalizednomentum balance:

dissipative force at the crack front. Assuming that elastic and

dissipative forces acting at the crack front exactly balance, ﬁ
we derive a vector equation of motion. In Sec. VI we show at
that within our model a second order dynamic instability is

possible: above a critical velocitgmaller than the Rayleigh This equation is equivalent with Eq2) if the Lagrangian
velocity), crack growth with a pure opening mode at the tipdensity L is defined as

becomes unstable with respect to two new possible solutions.

aL
(}’ui,t

PN (el I 5
(9—Xj au =pofi- 5

Section VIl is devoted to the interpretation of some of the L(uj ¢, Ui 5, X, D=T(U; ¢, %) = W(ui j,X;,t),  (6)
experimental results of Refgl—5] within the framework of L
this model. Concluding remarks are offered in Sec. VIIl.  whereT=3p,(X)v? is the kinetic energy density.
Multiplying Eq. (2) by v; and rearranging, the following
Il. BALANCES OF ENERGY, LINEAR equation of energy balance results:
AND FIELD MOMENTA
. . . d 17 aL
In this section we review some concepts of energy and E(TJFW)JF(;_XJ.(_p”vi):pofivi_ﬁ : (7)

momentum balance in an elastic sdl&b,30. We will use a expl
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where the subscript expl designs the explicit material deriva-
tive of the Lagrangian density. Likewise, multiplying )

by du;/9X, one can obtain the following equation of field
momentum balance:

Jd &ui n Jd rs aui
It Povia—xk &—)(j kij pij(?_xk
Poliaxy  aX N . .
exp FIG. 1. Schematic representation of a crack surface. A local

where the field momentum density is defined asorthonormal bas_i:éi (i_=1, 2, and 3 is associated v_vith the crack
— povidU; /9%, [26]. Note that this quantity is dimensionally front. The front itself is a curve whose parametet.isArguments
a density of linear momentum, i.e., mass density times Vei_nvolving energy and momentum balance involve a cylindrical vol-

locity, but it is not the “physical” momentunpgv; . Indeed, ~ UMe around the crack front. This cylinder is bounded by a surface
y I- 1

the field momentum per unit volume of the reference con-‘?B(t) of cross sectior, whose rim s given by a curve.

figuration, also known as quasimomentum or pseudomomen- _ ) )

tum, is the difference between the linear momentpign, N W_h|ch B(t) will surround a grack tip. Inte-gratlng Eq9)

and the canonical momentupyu + pov;du; /X, [26,30. within the volume) but excluding the domai, and under
Equations(7) and (8) in the absence of body forces;( the assumption that/dX ,[eq=0 in VB, leads to the

=0), and in an homogeneous and stationary mediunfollowing equation of energy-momentum balance:

(9L X |exp=0, ILI3t|exp=0) represent energy and field

momentum cpnservation. In the absence of body forcc—_zs, the& dx T#OZJ ds Tm+J dS[T,i—ViT ol

energy and field momentum balance can be written in the V—B(t) S ()

form (12
dT,, oL

— 9) Since Ty is the energy density, we can interpret the=0
X, X, exp,’ component of this equation as an equation of field energy
balance: the change in elastic energy within the volume

with u,v=0,1,2, and 3 anKy=t. Note that, although we — 3 per unit time is equal to the work performed at the
use four-dimensional notation for convenience, Greek indisyrfaceS minus the quantity

ces do not label the four components of vectors. The com-
ponents of the Eshelby energy-momentum tenBpy are W:_f dS[Toi—ViTool, (13
[26] aB(1)

Too=T+W, Toi=—pjivj, which can thus be identified as the rate of energy flow into

U U, the moving_ domain3 through its boundary 5. Sir_nilarly,
Tio=PoVj a_XJ Tij=—L&;— pkjﬁ, (10) smce—TiO is the density qf field momen_tum, taking the

i i =] component of Eq(12) yields an equation of momentum
balance: the change in field momentum withia B is given
by the elastic force performed at the surfageminus the
Igluantity

with Tyg the energy densityT,; the energy density flux,

—Tijo the field momentum density, andT;; the field mo-

mentum density flux. These formulas can be encapsulated

the following compact form: P = dS[T;—V/Tjo], (14)

aL aB(t)

TMV:_’C5MV+ Wuw. (11
v which can thus be identified as the rate of flow of field mo-

Note that throughout this section it has been assumed th&tentum into the moving domaifi through its boundary 3.

the solid is elastic, in the sense that stresses can be obtained

as gradients of a potential energy functMHEg. (3)]. Noth- [11. ENERGY AND FIELD MOMENTUM BALANCE

ing has been assumed, however, about the functional depen- FOR A MOVING CRACK

dence ofW upon strain. In particular, the solid need not be . .
linearly elastic. We now apply the previous formalism to a three-

Consider now the motion of a given domalt) of the dimensional solid within which there is a moving crack. The

reference frame, bounded by a surfadgt), within an ho-  crack front is a lineR(L,t), with L a Lagrangian coordinate
mogeneous elastic body of volume itself bounded by an that labels points along the crack front, where elastic fields
external surfaceS. The domain3 is in motion with a veloc- are singular. The crack front velocity is\7(L,t)

ity V, measured in the reference, or undistorted, frame. We=JR(L,t)/dt. We take as the domaif a thin cylinder sur-
look for the energy and field momentum flow into this do- rounding the crack front and the surfazB(t) the surface of
main. It is allowed for this domain to contain an inhomoge-this cylinder; it starts on one crack lip, encircles the crack
neity, or a singularity of the elastic fields, or to intersect thefront, and ends on the other crack (gee Fig. 1L We assume
external surface. This last possibility will be used in Sec. Ill,that during crack propagation both the crack surface and the
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crack front remain smooth with continuously turning tan-
gents. Otherwise, the local frame at the crack front is ill
defined.

The instantaneous rate of energy floWL,t) entering
into the region of the crack front per unit of its length
[8,23,24 is given by the specialization of Eq13) to the
case of a thin cylindrical surface just mentioned,

CII

daw
FLH= ar - lim J dC[ToiN;—ViTooN;], (15 FIG. 2. Two different contours of integratio’ and C" sur-
c—07C rounding the crack tip. A closed surface is defined by them, plus
two linesT", andI' _ along the upper and lower lips of the crack
whereC is a curve that encircles the crack front along thesyrface that lie betwee@’ andC”.

surface of the cylinde#5(t), within a plane locally perpen-

dicular to the crack fron(see Fig. 1, and N; is the unit  with A the cross sectional area Bft). This last relation for
normal to this curve. The instantaneous rate of flow of fieldthe material forces: i(L,t) suggests that they may be bal-
momentum into the region of the crack front can be identi-agnced by mhomogenemes of the elastic field very near the
fied as a configurational forde;(L,t) acting on it[26,30,  crack front.

whose value is found, from E(ﬂ14) to be Equations(15) and (16) must be path independent in or-
der to have fundamental significance, and we now show that
this is the case. Consider two distinct crack-tip encircling
curvesC’ andC”, and the closed contour formed B and

C” plus two straight segmenis, andI'_ along the crack
We emphasize thaf(L,t) andF;(L,t) are definecper unit ~ faces(Fig. 2). The integrand ,;=T,;—ViT,, that appears
length of the crack frontthe total rate of energy flow and N EGs.(15) and(16) for 7 andF; renders a null result when

total forces are given byW=[ dLF(L,t) and P, integrated over the closed cun@' +I',+C"+I'_, pro-
= [LdLF;(L,t), respectively. vided the displacement field, has the near-field asymptotic

behavior[Eqg. (19)]. This behavior is satisfied by linear elas-
todynamic fields close to the crack frofgee Sec. )l This
Gesult is established by applying the divergence theorem to
the integral and by incorporating the energy and field mo-
mentum balances, Eqé&7) and (8), with f;=0 andal/dX,
=0. The integration ofF over I'. is equal to zero. The
d ) integration ofF; overI", is the negative of the integration
gt dX(—Tjo) = dXE(—T o) overI'_ and leads to a cancellation because, due to the near
B(t) B5(t) field behavior[Eq. (19)] £, =L_, with £.. the Lagrangian
evaluated on the segmerifs., respectively. From this one
+ Ls(t)dS(_TJO)Vi : (170  deduces that, as long as ba@h andC” are close to the tip,

dP
FJ(L,t)E—J=|imf dC[T;iNi—V;TjoN;].  (16)
dL c—0JC

Some insight into the nature of the fore:emay be ob-
tained by considering the field momentum balance for the
volumewithin B(t), assuming that elasticity, not necessarily
linear and not necessarily homogeneous but obeying the as
sumptions of Sec. Il, holds. Simple integration gives

Use of the local field momentum balanf@q. (9)], and of F= —f dSlgi= —f dSloi,
Eq. (14) for the field momentum flow into the domais(t), ¢ ¢
leads to
d A _)&E FJ:J;:’dSIji:JCHdSIJi. (21)
B B Iexpl This proves the independence of the result on the shape of

. the curveC, as long as it is near the crack frdi].
For the act.ual calculatlop of thege forces and energy flow, we The force E can be related to the energy flow rafe
take the displacement field withii(t) to be of the form [23,26,30. Using the explicit expressions fdr,, from Eq.
(10) and the near field behaviar,=du?/dt=—V;du?l 9X;
[see Eq.(19)], a direct substitution into Eq$15) and (16)
shows that

U =ul(X—R(L,t),t)+u/ (X,1), (19

with gu?/9X;>au/19X;, anddu?/dgt=—V;au?/9X; . To the

extent that the dominantecorltributioii’ leads to a diver- F(L,H)=Vi(L,t)F;(L,1). (22)
gence ofT;, weaker thafX—R(L,t)| %, the left hand side

of Eq. (18) will be zero, and accordingly, per unit length of  This important result gives a physical interpretation to the
the crack front the following holds: force F on the crack front; the work done by the force for an

Ir infinitesimal advance of the crack frorf,-dR, is equalto
F.(L,t)=— lim dA (20)  the energy entering the crack front per unit length during that
JA = A (9X ? .
A—0 expl t|me, fdt




2370 M. ADDA-BEDIA, R. ARIAS, M. BEN AMAR, AND F. LUND PRE 60

IV. ENERGY FLOW AND MATERIAL FORCES 4
FOR A GROWING CRACK

We now specialize to the case of elastodynamic crack
growth within a linearly elastic material. In this case the 2
strain  energy density is W=p;;u;;/2, with p;
=CijpqdUp/ Xy, WhereCjj,q is the elastic constants tensor. 1
We shall assume that derivatives along a direction locally
parallel to the crack front are smaller than derivatives alonge 00 02 04 06 038
direction locally perpendicular to it, so that the singular 3 ViVa
structure of the elastic fields near the crack front is locally o
two dimensiona[32]. — AnV

Consider a crack front moving under loading in modes |, 2 ]
Il (plane strain conditionsand IlI. Define a local frame, _’/

such thatél is the local unit vector normal to the crack front ! ]
along its direction of motioné3 is the local unit vector tan-

gent to the crack front and,=e;/\e; (see Fig. 1 In the %0 0z 04 06 08 %0 0z 04 06 08
vicinity of each point of the crack front, the universal part of ViV, ViV,
the stress and displacement velocity elastic fields are wel
known to be[8] FIG. 3. Universal functiong\;(V) (i=1, Il, and lll) and B(V),
L) given by Egs.(29-(32), plotted as a function o¥//Vg for C4
K,(L,t =3C
H(r,0,t)= Pl.(6,V), 23 s
p.,()EIW.J(> (23 2
(1-b)
ALV , 30
VK(L,t) 1M="5w) (30
vi(r, 0,)= 2 —==V{(8,V), (24)
I uN2mr 1
A|||(V)—5, (31)

with (r,6) polar coordinates in the plane,e,) based on

the crack front at the positioh. V=V, (L,t) is the local

instantaneous velocity of the crack front, normal to itself. B(V

Ki(I,t) (I=I, I, and Ill) are the stress intensity factors cor-

responding to the three possible modes of local loading.

Pl;(6,V) andV;(6,V) are universal angular functions inde- with a(V)=y1-V%Cqg, b(V)=y1-V7C;, and D(V)

pendent of the specific loading conditions and geometry. =4ab—(1+b?)?% C4 andCs are the longitudinal and shear
As already mentioned, the evaluation of the rate of energgound velocities, respectively. Note that the Rayleigh veloc-

flow F and the force&; is path independent, as long as theity of surface wavesyg, is a solution ofD(Vg)=0. The

path is close to the crack front. Thus, in E¢s5) and(16) functionsA;(V) andB(V) are also universal in the sense that

we chose the curv€ as a circle of small radius around the they do not depend on the details of the applied loading or

moving crack tip, such that the asymptotic valy28) and the configuration of the body being analyzed. They do de-

(24) hold. Using these values together with the definitionpend on the locainstantaneousspeed normal to the crack

(10) yields front and on the properties of the material. For low veloci-

ties,V—0, they have the behaviors

_ 4ab(1-b*)(a—b)
- D(V)2

, (32

1

y AL O=G(LD=Fy(L,1), (25 A —((1-C¥C%)"t, B—(1-CZCHL A -1,
(33

1 . . . : .

Fo(L)==—[AV)K2+A, (V)KZ + Ay (VK2 ], while for high velocities they diverge:

2u -1 -2
(26) A~ (Vg=V)™% B~(Vg—V) (34)
1 whenV—Vg, and
F,o(L,t)=——B(V)K|K};, 2
2(L,t) 21 (VKK (27) AIIIN(CS_V)71 (35)
Fi(L,t)=0, (289 whenV—C;. These functions are plotted in Fig. 3.

Equation(26) for F;(L,t) reproduces the result of Eq.
where u is the elastic shear modulus. is the dynamic en-  (22): v. |E=VF1:7- This result gives a physical interpreta-
ergy release rater unit length of the crack frofi8], and  tion to the material force in the direction of motion of the

) crack front: it is the component of the force that does work
a(1-b?) (29) [23,26,3Q, with the energy needed for that work being sup-
D(V)

A(V)= . : : . ;
(V) plied by the elastic energy flow into the crack tip. This rela-
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5

tion is well known. Expression®7) and(28) for the forces

F, and F5 however, do not appear to have received much
attention in the literature. They are the components of the
elastic force perpendicular to the direction of motion, and
they do no work. However, they can certainly influence the

C(v)

dynamics of the crack front. Equatid@8) shows that there
are no tangential forces to the crack edge, iFg=0, a

result to be expected in a system that has local two dimen-

sional behavior.

Equation. (27) shows thatF, depends on the product
KK, only. This suggests that if an instability mechanism for
crack dynamics exists, it will be primarily two dimensional.
This is not surprising in view of our assumption of local two

dimensionality near the crack tip, and is consistent with the
available numerical and experimental evidence. It is impor-

tant to recall that” andF have been evaluated forsmooth
crack front ﬁ(L,t) that propagates at amooth velocity
V(L,t)=dR(L,t)/at, and also that the curvature of the crack

front cannot be very large.
SinceF,#0 if K|, #0, the direction of the material force

N

04
v,

R

A

0.6

(=]

0.0 0.2 0.8

FIG. 4. Universal functiorC(V), given by Eq.(39), plotted as a
function of V/Vg for C4=/3C.

acting on the crack front is not necessarily parallel to the

direction of crack propagation. The orientation of this force,

¢(L,t), with respect to the normal to the crack froéL is
given by

tang(L,t)= ; =—2C(V) g . (36

! 1+p2+ qu
where
Q—a K,
. A Ky
VA 9
2y(q_
Cv)= 2a(1+b%)(a—h) (39)

D(V)

The functionC(V) is also universal in the sense that it de-
pends on the locahstantaneouspeed normal to the crack
front and on the properties of the material ofdee Fig. 4.

Its asymptotic behavior is given by

C—1 when V-0, C~(Vg—V)~! when V—Vg.
(40)

On the other hand, tag is an odd function ofy. It vanishes
wheng— =, and it has extrema at= = \/(1+ p?)b/a.

This relation is called an equation of motion for the crack
front. The energy release ra€e is a property of the local
mechanical fields. The dynamic fracture eneidgyon the
other hand, represents the resistance of the material to crack
advance; it is assumed to be a property of the material deter-
mined by the energy needed to create new crack surface,
including whatever nonlinear microscopic processes take
place very near the crack tip. Its value can be determined
only through laboratory measurements, or, eventually, by
way of microscopic models.

On the other hand, Eq$25) and (26) show that the en-
ergy release rat& is equivalent, in Eshelby’s approach, to a
force per unit length of the crack front. Equati@l) can be
reinterpreted as a balance between the compdreinf the
material force along the direction of motion, and a resistance
force to crack advance per unit length of the crack front:
F,=T". As stated in Sec. I, one equation of motion is not
enough to determine the trajectory of a crack that is allowed
to deviate from straight line motion. A popular additional
requirement to determine a crack trajectory in two dimen-
sions is the principle of local symmetf21,22:

K,=0 <« (smooth crack propagation (42

that is, that propagation without branching occurs in such a
way as to keep a purely opening mode at the crack tip. This
principle has been essentially developed for quasistatic re-

In the study of crack growth processes in materials whictgimes[22] (see also Ref{33] for a discussiop although it

fail in a purely brittle manner, the most commonly used
crack growth criterion is the generalization of Griffith’s criti-
cal energy release rate criterif,20]. According to the gen-
eralized Griffith criterion, the crack must grow in such a way
that G is always equal to a newly defined quantity: the dy-
namic fracture energy of the materi&l, The growth crite-
rion is [8]

G=T. (41

has also been used in the dynamic cigs4.

The fact that the usual energy criterion used to determine
crack evolution can be interpreted as one component of a
balance of forces suggests a different approach: Why not use
a balance of forces criterion for all three components? This
would give the requisite number of equations needed to de-
termine the evolution of a crack front. In Sec. V, we shall
develop this idea, in which the principle of local symmetry is
not assumed to hold priori.
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as the force originating from surface tension, that would bal-
ance the material forces in this simple model.

The implication of this simple model for mode | loading
is (see Fig. B that the contribution to the resistance force of
the upward and downward surfaces near the tip are symmet-
ric, and thus

- ) - - -
Mode I Mixed mode (I+11) Fo=—7vy df(coshe;+sinfe,)=—Te;, (46
FIG. 5. A simple model of the “shape” of newly created sur- _
face in the vicinity of the crack tip and the associated forces ofwhere 6 is the angle between the normal to the surface and

surface tension. Pure tension gives a symmetric opening. Mixe¢he directionél_ In Eqg. (46), we have used the equalit)s

mode loading breaks this symmetry. =Rd6d. The magnitude of the dissipative forEg is adjusted
to the value already mentioned in Ed41), with T’
V. A MODEL FOR AN EQUATION OF MOTION =2vysinfg, and, for symmetry reasons, it points along the
OF THE CRACK FRONT direction of motion.
So far, we have determined the material foriggs. (26), In the presence of mode Il loading, reflection symmetry

(27), and (28)] acting on the crack front. In order to write with respect to the directipn of mqtion is broken. We write
down an equation of motion, we will assume that these mathen the resistance force in the mixed mode case as

terial forces are exactly balanced by dissipative forces of b0+ b

microscopic origin acting within the crack front region. Fy=— yf d6(cosde, + sin be,)

These new forces represent the resistance of the material to — 0ot ¢qg

crack advance. Our task is now to advance a model for these - ) -

forces that will allow mathematical analysis to be performed. =—TI'(cos¢qe; +singqe;), (47

Here we introduce a simple two-dimensional model ofWith an anale vet to be modeled. This andle takes into
what happens within the crack front region in order to obtain ¢4 gie y : 9

some insight into the physics of the forces acting at the CraCr'%lccount the asymmetric contributions to the resistance force

front. Our purpose is to obtain qualitative understanding, anéi)f the upward and downward surfaces near the tip. The di-

not necessarily to provide an accurate picture of the micro[gctlon of resistance forces is not necessarily parallel to the

physics near the crack tip. Suppose that the crack tip, even %reetion of motion. The general idea of this simple model is

very small scales, can be described by a continuous cirve thgtnag?e(;iliarlv%trlf:r:sCazge:a:\eda\{vm;(tjijus'tl'rgtiz eE S%tﬁzgig 2 ?Igzg?
of high curvature(see Fig. 5. In reality, this surface is not 9 P yP

well defined. We assume. nevertheless. there exists an ehe_nce of a perpendicular resistance force is reminiscent of the
ergy U assoéiated with thé creation oﬂrvédsurface at the dpproaches used to generalize cohesive zone mOd‘?'s in the
crack front. That is presence of she4d 3], or to model fracture energy of inter-

face crackg35].
From now on, leaving aside the specifics of the simple
U= J’f ds, (43)  model just presented, we will assume that these resistance
= balancing forces do exist, and that they have the form sug-

with dS an element of crack surface anda surface tension 9€sted by Eq(47):
that will be assumed constant for simplicity. This means that
U is proportional to the amount of new surface created, a

reasoning that is closely analogous to the original approac ' N
of Griffith [20], who associated the energy released durinq%‘:sg]’ewri;?;gi t?oa;tcteheis r;g%h(t:gztnds;lr;?s'(tlfll?lg |retcr:;)n

crack growth to the energy required to create a unit of new

surface area. If the surface of the crack is chanaed by di relative amount of local shear with respect to local tensile
' 9 y SIoading, and of crack velocity, which are parameters of the

placing each element by an amouiX, the change in the = forcing. For an isotropic body, it is clear thég should be an

Fg=—T'(coS4e,+Sinpye,). (48)

surface energy) of Eq. (43) is odd function ofK, in order to respect the symmetry of mode
~ Il. Therefore, without loss of generality, the tangent of the
SU=— yf dSn:X, (44) angle of the crack tip force will be written as
tangg=—2a(V)qy(q,V), (49)

wheren is the unit vector normal to the surface that points ) , .
into the material, andR is the radius of curvature at each where ¢(q,V) is an undetermined even function gf and

point of the original surfacéit is negative if the curvature is  #(0:V) =1. Whenk,, is small compared &, we can ex-
measured with respect to a point outside the majerfais ~ Pand the functiony for small g;

allows us to identify P(QV)=1+BV)G2+ - - -. (50)

,fd: yf dS— (45) We will assumeB(V)=0 for reasons to be e_prained in S_ec.
s VI. Furthermore, tamgpy has been written in a suggestive
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form, introducing a velocity dependent faci@(V) that is a tan¢ - tang,
local measure, at the crack front, of the competition between V<V,
shear and opening, and it should be related to the microme-
chanics at the crack tip. The precise nature of this relation, V¥,
however, is outside the scope of the present work.
A simple estimate of the order of magnitude of the param- -4
eter (V) can be obtained in the quasistatic limit, by com-
parison with a crack having a kink. In this case evaluating
Eq. (36) for V=0 shows that the orientation of the material
force with respect to the normal to the crack front becomes
¢~ —2q for g<1. On the other hand, in the presence of ) ) )
mode Il loading, the principle of local symmet42) implies FIG_._6. Graph_lc sol_utlon of Ec(.54) for dlffg_rent values ofV.
that a crack that is at a critical value of incipient growth will 1€ critical velocityV is determined by conditiob5).

branch locally in a directiog that satisfies a pure opening . . . o

mode at the crack tip. When<1, this direction is also given to Za.(V) fand .ZC(Vf)’ rlespectlv_ezIﬁ/.CSch:(V)_ IS an Ihn

by ¢g~ —2q [33]. We take this fact as an indication that, for creasing function of velocity/ wit (0)=1 (Fig. 4), t €
B ' ' condition that slopes be equalgt 0 leads to the conclusion

small velocities we shall also havg,~ —2q, so that that, fora=1 andB(V)=0 there exists a critical velocity,
a(0)~1. (51  for which

On this basis we shall take(V) to be a positive function of C(Ve)=a(Vo), (55)

V and of order one at low velocities. Lo o .

Finally, Egs.(26), (27), and(48) allow us to write down a below Whlch’ Le., foV <V, K; =0 is the only'solut|o_n to
. . . . Eq. (54) while for V>V, there are three solution&;, =0

set of two dynamic equations of motion on the following andK,, = = g(V)K, (Fig. 7)

basis: since the usual Griffith criterigiq. (41)] can be in- n==9 + (7190,

terpreted as a balance of one compqnent of the forces acting V<V e a(V)>C(V)eK, =0, (56)

at the crack tip, we extend this requirement to holdboth

force components: elastodynamic force must be exactly bal-  v>v_ o a(V)<C(V)=K, =0, K,==g(V)K,.

anced by dissipative force at the crack front. That is, (57)
q The functiong(V) can be computed only if the function
tangg=tan¢=—2C(V)——————, (52 y(q,V) is known. Even in the vicinity oV, one needs to

1+p2+ qu know the coefficienB(V), in order to computg(V). How-

ever, it can be determined that for velocitgust aboveV,,

the function g(V) behaves as\W(/V.—1)¥2 This results
A(V)KZ. (53  from solving Eq.(54), with both sides written to order®. As

seen in Fig. 7, the velocity acts as a bifurcation parameter

. e . at V=V, for the solutions of Eq(54) as a function ofg, or
Our assumption, Imp|I.CIt in Eq49), that materlall param- K, /K,. As V grows overV,, the new solutions with,,
eters depend on velocity but not on higher order time deriva-

. . o o . #0 are increasing functions of, away fromK; =0 atV
tives of crack tip position, implies that the crack tip has no " his i ? d ord "
inertia. =V,. This is a signature of a second order transition. If

a(V)<1, there would always exist three solutions to our
equationsinceC(V)=1], and the above transition would be
absent. Notice also that the critical velociy always satis-

In this section we consider the cakg, =0, i.e.,p=0. fiesV <Vg, sinceC(V)—x» asV—Vg.

1 a
r cos¢d=F1=ﬂ 1+p?+ qu

V1. SOLUTIONS TO THE EQUATION OF MOTION

The casg+0 will be discussed qualitatively in Sec. VII. Given different solutions to the equation of motion for
If we introduce Eq(49) into Eq.(52), we obtain V>V, the question arises of what is the selection mecha-
nism that will decide which possibility will be chosen by a
q
—2a(V)qy(q,V)=—2C(V) (54)
‘2
1+ bq K,=gV)K,

Equation(54) is a local equality between the angles of the
material forces and the resistance forces with the direction of
crack propagation. It can be solved fgrindependently of
the specific loading conditions and geometry: 0 is always

a solution to Eq(54) (see Fig. 6. We will also assume that
a(V) is a slowly varying function oV compared with the
variation of C(V). This allows the number of solutions of
Eqg. (54) to be determined by the magnitude of the slope of FIG. 7. Schematic phase diagram of the solutikngV) of Eq.
the right and left hand sides gt=0. These slopes are equal (54), showing the second order transition.
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traveling crack. Consider a first configuration sfooth
crack propagation at an instantaneous velo¥ityV., with
stress intensity factork;#0 andK, =0. From Eqgs.(25),
(52), and(53), the rate of energy flow needed for the propa-
gation of this crack is

F=VI. (58
Consider a second configurationsshoothcrack propagation
with the same instantaneous velocitybut with stress inten-
sity factors satisfyind<, # 0 andK,, = = g(V)K, . From Egs.
(25) and (53), the rate of energy flow needed for the propa-
gation of this crack is

F' =VI cosgy. (59

Clearly, 7' <F: the material response to external loading

provides less energy per unit time for the second configura-

tion than for the first one. Above the critical velocity, the

crack needs more energy to advance in a configuration at the

stateK,, =0 with a velocityV than in the one at the state
K, #0 with the same velocity. Therefore, abov&/.., the
crack propagation selects one of the solutioks,
=*+g(V)K,, instead of the solutiof;, =0. Consequently,
when the crack tip velocity is beloW., the crack propaga-
tion satisfies the principle of local symmeti¥Eq. (42)].
However, forV>V,, this principle no longer holds, and the
crack propagation with a pure opening mode at the tip be
comes unstable with respect to solutions satisfylRg
==+g(V)K, (see Fig. 7.

To summarize, we have shown that, subject to condition
explained in detail above, there is a critical velocity at which
the dynamics of a crack undergoes a transition from bein
determined byK;, =0 to being determined bi(;, #0. The
trajectory itself, however, remains smooth with smoothly
turning tangents. Note that nowhere in the last two section
have we made any assumption concerning a possible dep
dence of the fracture energy of the matefialipon velocity.

VIl. SCENARIO RELATED TO EXPERIMENTAL
RESULTS

e -
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A VKET, (60)
2u

which determines the crack tip velocity. The reskilf=0
means that the crack will propagate following a smooth path,
with a pure opening mode at the tip. This is the statement of
the principle of local symmetrjEg. (42)]. Our approach can

be regarded as a derivation and an extension of this principle
to nonzero velocitie¥ <V,.

This solution corresponds then to the experimentally ob-
served mirror region, where the crack propagation follows a
straight path. For a crack under uniaxial loading, this corre-
sponds to the direction that satisfi€g =0 during the crack
propagation. Since this path appears to be stable, we expect
that small perturbations away from this straight line propa-
gation will be damped awa}36].

B. High velocities, V>V,

As the velocity of the crack surpassés, the propagation
satisfying K;;=0 at the crack tip becomes unstable. The
crack now propagates in one of the two new directions sat-
isfying K;;==xg(V)K,. It is important to notice that the
allowed values oK, /K, grow continuously withV from 0
atV=V., and that these new solutions correspondrtmoth
crack propagation.

Experiments show that at velocities higher than a critical
value the surface left behind after rupture becomes rough,
and microcracks appear. As we have noted, an experiment
carried out in pure tension leads to a straight path in the case
1 =0. The solutiorK,, = = g(V)K,# 0 means then that the

%iajectory of the crack tip will deviate from a straight line.

mooth crack propagation witk,, #0 explains the observed
ppearance of microcracks, because on the crack faces the
stress componenis,, and p;, vanish identically. However,
in the presence of a shear mode at the crack tip, it is seen
m Eg. (23) that the near field asymptotic strgsg at the
moving crack tip is singular on the crack fadé&s:

(¢}

pua(r, =)~ F Ky, /4. (62)

This means that there is a high tensile stress near the tip that,
if given the chance, will tend to open microcracks on one of

In this section we use our model to attempt an explanatiopne crack faces in a direction that is initially perpendicular to

of some features of the experimental results in fast fracturge direction of motion of the main crack. Small perturba-
under mode | loading of thin plates of glass and plexiglasgjons may thus initiate microcracks that will start perpendicu-
[1-5]. These experiments show a dynamic instability at aayly to the main crack, and later on will deviate into a di-
critical velocity that is about a third of the Rayleigh velocity yection closer to the direction of motion of the main crack, in
of f[he material. This instability is associated with the rough-grder to avoid the unloaded region which is left behind the
ening of the crack surfaces, the appearance of microcrackgrack tip. Also, the formation of these microcracks may tend
crack tip velocity oscillations, and strong acoustic emissionsyy sjow down the main crack due to the expenditure of en-
We wish Fo explore the consequences of idgntifying th.e_ criti-ergy on surface creatidd]. As this happens the ratk,, /K,

cal velocity V. of our model with the experimental critical il decrease, leading to a trajectory change back toward the
velocity. UsingCq~ /3Cs, and from Eqs(39) and(55), this initial crack trajectory. This may be the reason for the ap-
value can be obtained witla(V;)~1.073, which is a reason- pearance of bumps on the crack surfate=e Fig. 8 This
able value according to the estimates of Sec. V. description of the microbranching process does not require

any discontinuity in the velocity of the main crack.

A. Low velocities, V<V,

In this case, the only possible solutionKs,=0. From C. Presence of a mode 1

Eq.(53), and assuming,;; =0, one recovers the well known
equation of motior{ 8]

Equations(49) and(52) suggest that the presence of non-
vanishing mode Il loading may be taken into account within
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VIIl. CONCLUSION

VeV We have developed an approach to crack dynamics based
V inereases on the balance of energy and field momentum for a moving
/ crack in three dimensiorn£6,30. We have derived the en-
ergy flow rate into the crack front and the configurational
forces acting on it. The components of the material force at
\ the crack front have been computed in the framework of the
linear isotropic elastodynamic model. It has been found that
the orientation of this force is not necessarily in the direction
of crack propagation. Within a Griffith-like approach, we
have defined a generalized dissipative force at the crack
) ) ) front. Assuming that this dissipative force exactly balances
FIG. 8. Scenario for the trajectory of a crack submitted 10o material force at the crack front, we derived a vector
uniaxial loading. At low velocities there is straight line propagation equation of motion for the crack front. Under minimal as-
(mirror zong. Above the critical velocity the trajectory deviates sumptions, we have shown that there exists a critical velocity
from a straight lineK,, # 0 allows for microcracks to sprout behind below which a crack propagates in a direction that keeps a
the advancing crack tip. Their energy expenditure slows down th?)ure opening mode at the tip. At the critical velocity there is
main crack, possibly b.elowithe critical vglocity. This would reorienta second order dynamic instability, and above the critical
the crack back to straight line propagation. velocity the crack growth with a pure opening mode at the
) i tip becomes unstable with respect to two new possible solu-
the K, =0 arguments simply by replacing the parameter tjons. Various experimental manifestations have been de-
by a modified “effective” valuea., scribed qualitatively under the light of this model.
Our approach is universal in the sense that the instabilit
aei(V) = (1+p?)a(V), (62 mechaning:w we have presented is local at the crack tip, andyit

. : . . is independent of the specific loading configuration and the
that will now determine the value of the critical velocity. eomegry of the experiﬁwent. it will ﬁold fo? any isotropic

Thus the presence of an out of plane mode has a stabilizingjastic material. Throughout the analysis, it has not been
effect, in the sense that the value of the critical veloMly  gpecified that the configuration of the pure opening mode of
for the instability to appear is increased. In other words, thgne crack tip has to be a straight path. Such a configuration
instability will appear first at points on the crack front where couid be a curved path, but the instability we have discussed
Ky vanishes. This provides a rationale to understand thgyould still occur. The instability mechanism originates in a
experimental facf4] that microcracks first appear near the balance between forces of elastic origin and material dissi-
edges of the plate. Indeed, we do expect the crack front tpative forces of microscopic origin which have been mod-
deviate from a straight line perpendicular to both faces of theeled. A detailed microscopic justification of this modeling
plate. Consequently, in general, we shall hKyg+ 0 except  suggests itself as an interesting avenue for future research.
near the faces of the plate where the conditiqp =0 will

be enforced by the free surface conditippn;=0. There- ACKNOWLEDGMENTS
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We perform an elastostatic analysis of a periodic array of cracks under constant loading. We give
an analytical solution and show that there is a limitation to the fracture spacing, due to a transition
from an opening to a compressive loading. For this configuration, the threshold of the fracture spacing
depends on neither the applied strain nor the elastic parameters of the material. This result shows that,
in the general case of layered materials, the physical mechanism that is responsible for the limitation
in the density of fractures is related mainly to the geometry of the problem. This is in agreement with

observations and with recent numerical results.

DOI: 10.1103/PhysRevLett.86.5703

Parallel open mode brittle fractures, or joints, in layers
are common structures in Nature (see Fig. 1). They are
currently observed in the Earth’s crust such as in sedimen-
tary rocks [1]. They are also present in laminated engi-
neering materials [2]. In most cases, it is observed that
the ratio s of the crack spacing to the layer thickness can-
not decrease below a certain threshold value [3], although
the physical intuition suggests that the spacing should de-
crease with increasing applied loading. Indeed, since the
joints are stopped by the neighboring layers, fracturing new
joints would be the only way to dissipate the stored energy.
Therefore, as the tension increases, it seems that there is
no limitation to the density of cracks.

A recent finite element analysis has shown that there is
a limitation to the density of fractures [4]. This thresh-
old was explained by the change from an opening to a
compressive mode at the middle of the spacing (at half the
wavelength). So a new fracture cannot occur. This analysis
is in agreement with other simulations and experiments on
the permeability of joints in the geophysics literature [5].
However, these numerical treatments do not allow one to
set the control parameters which fix the spacing bound. In
the following, we propose an exact treatment of this crack
problem in a model situation, where the different layers
have the same elastic properties, which is also the case
considered in the numerical simulations of [4]. We show
the existence of the instability from tension to compres-
sion as the spacing decreases. Moreover, in our model the
spacing threshold is of order 1, and does not depend on
either the applied loading or the elastic parameters of the
material layers. It turns out that this elastic instability is
a generic feature which is related mainly to the geometry
of the problem. This result suggests that for layered mate-
rials with different elastic properties, the physical mecha-
nism that is responsible for the limitation to the density
of fractures is purely geometrical. However, the spacing
threshold in the general case will depend on the elastic
mismatch parameters between the layers.

0031-9007/01/86(25)/5703(4)$15.00

PACS numbers: 46.50.+a, 62.20.Mk, 91.35.-x, 91.60.Ba

In our approach, we consider a material sample with an
infinite array of parallel fractures equally separated by a
distance A. We choose half the wavelength as the length
unit. The crack spacing s is then given by 1/a, where 2a is
the length of the cracks in dimensionless units (see Fig. 2).
Fixing the ends of the fractures is a way to mimic the effect
of the neighboring layers, since the observed cracks do
not cross the neighboring interfaces. We assume that the
sample is loaded in the y direction by an average strain
€. which represents the tension supported by the layer.
We perform a classical elastostatic analysis and show that
the fracture spacing threshold does not depend on either
the applied strain or the elastic parameters of the material,
which are the Young modulus £ and the Poisson ratio ».

Under plane stress conditions, the two-dimensional
strain tensor € is related to the stress tensor & by

2
1 — »2

gij = [(1 — V)E,‘j + VEkk(Sij]. (D)
The plane strain configuration is recovered by a suitable
change of the Poisson ratio. For convenience, all the
quantities in Eq. (1) are dimensionless: & is scaled by

Material 1

Material 2

Material 1

FIG. 1. Schematic representation of a layered system with a
periodic array of cracks generated in the less compliant material.
The dotted region represents the unit cell that will be studied.

© 2001 The American Physical Society 5703



VOLUME 86, NUMBER 25

PHYSICAL REVIEW LETTERS

18 JunE 2001

Uy =0, 04 =0

y=+1

FIG. 2. Schematic representation of the elastostatic problem.

Eex/(1 — v?) and € is scaled by 2e-/(1 — »?). The
body is loaded by means of a uniform remote tension of
magnitude o, = 1. Since the cracks’ faces are traction-
free, it is convenient to superimpose this solution with the
one where the cracks are subject to compressive stresses
of the same magnitude. Moreover, due to the periodicity
of the configuration, it is enough to solve the problem for
the stress field in the region 0 = y = 1.

The equilibrium equations in the absence of body force
are given by

2y,
i _

axiaxj

(1 —v)Au; + (1 + v) 2)

bl

where i is the displacement field. The boundary conditions
for this problem are simply given by

oyw(lx] <a,0)= —1. (6)
The conditions on the displacement and stress fields in
Eq. (3) are imposed by the periodicity of the configuration,
while Egs. (4) and (5) are imposed by the symmetry of
the opening mode loading. Finally, Eq. (6) comes from
the fact that the total solution of the present problem has
to satisfy traction-free boundary conditions on the cracks’
faces. At this stage, the problem depends only on the
Poisson ratio v and on the dimensionless crack length a.

The strip geometry and the boundary conditions suggest
the use of Fourier sine and cosine transforms [6]. Because
of the symmetry of the problem one can write the displace-
ment field in the form

2 0

u(x,y) = 1/;]0 f(k,y)sinkx dk ,
2 o)

uy(x,y) = 1/;/0 g(k,y) coskx dk .

Also, we define the Fourier transform of oy, (x,y) by

oyy(x,y) = \/%fox s(k,y)coskx dk . 9)

The equations satisfied by the functions f(k, y) and g(k, y)
are readily derived from Eq. (2)

)

®)

a'xy(x, 1) = uy(x’ 1) = Oa (3) (1 _ V)f” _ 2k2f _ (1 + V)kgl — O, (10)
Tiy(x,0) = 0, “) 28" — (1 — kg + (1 + wkf' =0, (1)
uy (x| > a,0) =0, (5)  where the derivatives are with respect to y. After some
| algebraic manipulations, one finds that

fk,y) 1+V{|: 1 —v k } [1—1/ } }
= ky — thk + ——- hky + | —— — kycothk hky, 12
2(k,0) 2 YT, sinh2k | O T T, T fycothe sy (12)

gk,y) 1+vw ”: 2 i| |: 2 k } . }
= + ky cothk hky — | ky + thk + ——- hky. 13
¢(k,0) 2 LT YO ooy Ry T o sinhZk | Y (13)

Written under this form, one can verify that the functions f(k,y) and g(k, y) satisfy the bulk equations (10) and (11) and

the boundary conditions (3) and (4). We also obtain, using
s(k,y) _

Eq. (1),

2k.0) _ZSinhzk[ky coshk(2 — y) + k(2 — y)coshky + sinhk(2 — y) + sinhky]. (14)
Note that s(k,y), and thus o,(x,y), does not depend on |
the Poisson ratio. So it is completely independent of the k
material properties. In the following, the two main func- F(k) = m[k + ¢ " sinhk], (17
tions that will be manipulated are s(k,0) and s(k, 1). They
are easily calculated from Eq. (14): k
Y a- (9 Gk) = — - [kcoshk + sinhk]. (18)
s(k.0) = —[k + F(k)]g(k.0). (15) ; | |
Note that oy, (x, 1) is the key quantity of this problem,
sk, 1) = —G(K)g(k,0), (16) since the sign of [1 + oy, (x, 1)] indicates if the middle of

where

5704

the spacing between two fractures is under tension or com-
pression. If it is under tension, one can expect nucleation
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of a new fracture, which will be responsible for defining
a new wavelength (half the previous one). However, if it
is under compression, the breaking process stops and the
elastic energy must be dissipated according to a different
scenario. It is generally believed that this elastic energy
is used for the opening of the preexisting cracks and in-
duces a full compression of the horizontal layer in the y
direction [5].

In order to solve the problem completely, the determi-
nation of the function g(k,0) is needed. This is done by
using the boundary conditions (5) and (6), which can be
expressed as

2 [ee]
1/—[ g(k,0) coskx dk = 0, x| > a, (19)
T Jo
d(1) “

d X
— dt +
dxfo x2 — 2 0

This equation can be simplified by using Abel inversion
transforms [6]. One obtains a Freedholm integral equation
for ®(z), given by

q)(t)=t—t[aH(t,u)CD(u)du, 0<t<a,
0
(23)
where
H(t,u) = f F(k)Jo(kt)Jo(ku) dk . (24)
0

Despite many attempts, we did not succeed in finding an
analytical solution for Eq. (23). However, the numerical
resolution of this integral equation is straighforward.
Once the integral equation is solved for each value of
a, one can determine the displacement and stress fields at
any location. As an example, one can calculate the stress

1.0

0.8 _

0.6 | ]

04| .

0.2 .

0.0 1 1 1
0.0 0.5 1.0 15 2.0

a

FIG. 3. The dimensionless stress intensity factor K; as a func-
tion of the crack length a.

dt @(t)f dk F(k)Jo(kt) coskx = 1,
0

,/%[x[k + F(k)]g(k.0)coskx dk = 1, |x] < a.
0
(20)

This is a set of dual integral linear equations whose analyt-
ical solutions are not available. A compilation of known
solutions of such equations can be found in [7]. The con-
dition (19) is automatically satisfied if the function g(k, 0)
is given by

g(k,0) = \/?foa O(1)Jo(kt) dt , 21)

where Jj is the Bessel function, and ®(¢) is a yet un-
known function. Replacing g(k,0) as given by Eq. (21)

| in Eq. (20) leads to an integral equation for ®:

x| < a. (22)

intensity factor, which is a quantity of interest in the field of
fracture mechanics. In this case, the dimensionless stress
intensity factor K; is given by [6]

Ki(a) = \/?q)(a). (25)

Figure 3 shows the variation of the stress intensity factor
as a function of the crack length a.

The quantity of interest in the present problem is
0yy(0,1), the stress at the middle spacing between two
successive cracks. It is simply given by

oy (0,1) = — fo o) fo dk G(k)Jo(kt).  (26)

The sign of 1 + ¢,(0,1) determines whether there is a
tensile or a compressive loading. It is clear that fora = 0,

1.0 T T T

0.8 r i

0.6 | .

04} .

1+ny(0, 1)

02 i

0.0

0.2 : : :
0.0 0.5 1.0 15 2.0

a

FIG. 4. The magnitude of the total stress at the point x = 0
and y = 1 as a function of the crack length a.
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oyy,(0,1) = 0 [see Eq. (26)], and for a > 1, the sample is
completely broken, so one must have 1 + ¢,,(0,1) — 0.
This behavior is in agreement with Fig. 4, which represents
the total stress at the middle of the spacing as a function
of the crack length a. Figure 4 also shows that at a = 1,
or equivalently s = 1, the stress changes effectively from
an opening to a compresssive mode, as has been found
numerically for a particular case [4]. The transition point
does not depend on any material parameter. This threshold
does not even depend on the Poisson ratio in our model.
This is an intrinisic instability which is due only to the
geometry of the loading.

This simple model which can be solved exactly shows
a well-known feature of fracture in layered materials. Our
numerical value for the spacing applies for identical layers.
The physical origin of the instability lies in the exchange
of the elastic energy from fracturing to opening of the
existing cracks. Note that introducing layers of different
elastic constants will not modify the generic feature of the
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instability. Evidently, the spacing threshold will depend on
the ratios of the elastic constants but the instability should
always occur, since its origin lies in the geometry of the
cracks’ patterns.
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Abstract. The veins of plant leaves exhibit a large variety of morphologies. They are often thought to result
from their growth in a concentration scalar field. It is shown here that the topology of these patterns rather
corresponds to what is expected from growth in a tensorial stress field. This is demonstrated by analogic
experiments performed on crack formation in gel films where many characteristic venation patterns, of both
dicotyledons and monocotyledons, were reproduced. This suggests, for the origin of the veins formation, a
set of hypotheses which is new but supported by known physiological data.

PACS. 87.18.La Morphogenesis — 62.20.Mk Fatigue, brittleness, fracture, and cracks — 05.45.Df Fractals

The spontaneous formation of patterns in nature corre-
sponds to various types of breaking of symmetry of ini-
tially homogeneous systems. Very different processes can
be reduced to a similar mathematical structure and lead
to the formation of similar patterns. A large and widely
studied family of patterns results from growth in various
Laplacian or diffusive scalar fields [1] in such phenomena
as e.g. viscous fingering, crystal growth, diffusion limited
aggregation or landform erosion. Although the patterns
produced have in each case some specificities, they all
share the same characteristic topology: they are hierar-
chised tree-like branched patterns. Vein formation in plants
is also assumed by the existing models [2-4] to be part of
the same family of diffusive processes, (except for a sim-
ulation [5] based on a Turing type diffusion-reaction pro-
cess). In these theories, a hormone is generated, diffuses
through the tissues, inducing a local differentiation into
veins which progressively canalise the flow [6]. The simu-
lation of these models leads to complex branched patterns.
An essential characteristics of these patterns is that the
extremities of the branches are free: they never reconnect
to form closed loops [7].

However, in reality, the leaf venations [8-10], in spite
of the variety of their patterns, always present such re-
connections as observed in the three examples shown in
Figure 1. They are thus different from tree-like branched
patterns and can be seen as variants of a different mor-
phology, the net-like structures which are dominated by
the systematic reconnections to form a reticulum. It can

# e-mail: couder@physique.ens.fr

b Associé au CNRS et aux Universités Paris VI et Paris VII
¢ Unité mixte de Recherche Paris VI, Paris XI et CNRS,
batiment 502

be noted that in mature leaves this morphology leads to
a redundancy in the flow paths which is physiologically
beneficial. There exists a physical archetype of patterns
with a net-like structure: the 2D cracks patterns. Beauti-
ful structures of this type can, for instance, be observed
in the glazes of ceramics. In cracks, the origin of the for-
mation of a reticulum is directly related to the tensorial
nature of the stress field and can be easily explained. In a
homogeneously 2D stretched medium (Fig. 2), the stress
field is a tensor of rank 2. A first crack, propagating along
the z-direction, relaxes the stress components o, and o4,.
But the stress parallel to the crack direction, 0., is only
weakly affected. Later, if a second crack grows in the vicin-
ity of the first one, it will propagate so as to relax o,, and
will thus collide at a right angle with the first fracture.

The first aim of the present letter is to show that
the main morphologies of the leaf venation can be ob-
tained [11] in crack growth experiments. We use variants
of experiments (Allain et al. [12,13]) performed with con-
centrated colloidal suspensions of latex particles of diam-
eter 0.1 pm in water (with volume fraction 0.50 and 0.25).
These suspensions are deposited on a glass plate or on a
silicon wafer and left to desiccate by evaporation, a pro-
cess which is limited by diffusion of water into air [14]. The
suspension first becomes a gel which then tends to shrink
as it dries. It is prevented from doing so by the adhesive
forces on the substrate. This growing mismatch results in
stresses which are at the origin of the crack formation. For
the sake of comparison with botanical patterns we explore
the morphologies of these cracks with various boundaries
and growth conditions.

The arrays of smaller veins of dicotyledons (Fig. la)
form at a late stage when the leaf growth has become
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Fig. 1. Three examples of venation patterns. (a) The polygonal net-like structure of the small veins of a leaf of Polygonum
Polystachium. (b) The secondary veins of Polygonum Polystachium are all connected to each other by loops located near the leaf
margin. This is the ‘brochidodromous’ organisation [10]. (c) A detail of the venation of Lily of the valley, Convallaria Maialis,

a monocotyledon.

\ @3]
Oxx
(1)

— oyy=0

LT

‘ Oxx

Fig. 2. Sketch of the growth of fractures in an initially homo-
geneously stretched medium. The reverse situation, of a com-
pressed cellular medium, leads to the crushing of strips of ma-
terial. The situation then corresponds to this sketch with all
the stresses having the opposite directions.

homogeneous and isotropic [8,9,15]. They should thus be
compared to crack patterns grown in homogeneous and
isotropic conditions. Such patterns are obtained (Fig. 3a)
in the drying of large and thin layers (of thickness e ~
10 — 100 pm) far from the boundaries. Dynamically, the
order of formation of the successive cracks is responsible
for a hierarchy of structures, the first cracks to form be-
ing the longer. As new cracks keep forming, their length
is limited because they grow in a domain limited by the
older ones. They collide with them at right angle, forming
an increasingly complex polygonal pattern with a typical
spacing between cracks approximately equal to 4e. Both
this hierarchical dynamics and the resulting topology of
the patterns are the same for cracks and veins (see Fig. 3a
and Fig. 1a). The only difference between the two patterns
lies in the number of successive orders. During its growth
a leaf expands by several order of magnitudes (e.g. from
0.1 mm to 100 mm) so that a much larger range of veins of
successive order is generated than for a gel which shrinks
only by approximately 10%. In the case of thin gel lay-
ers (< 10 pm), at the end of the pattern formation, when
little elastic energy is left, the last cracks stop growing.
Thus they fail to cross the polygons formed by their older

neighbours and remain open ended (Fig. 3a). This is ob-
served in leaves where the last veinlets remain open ended
in the smallest areoles [8,9].

We can now focus on the organisation of the main veins
(Fig. 1b). They are the first to form: the central (primary)
vein when the leaf is still a peg-like shaped primordium,
the secondary veins when the blade starts growing. In the
most common organisation of dicotyledons, the main vein
is axial and the secondary ones are pinnately organised.
The main two archetypes are related to the morphology
of the secondary veins. In the ‘brochidodromous’ organi-
sation they form loops near the border (Fig. 1b) while in
the ‘craspedodromous’ organisation they go straight to it.

These structures form in a tightly confined medium
where the role of the boundaries is essential. We thus
investigate the behaviour of cracks in confined media
where they interact with boundaries. Our samples are
now long and narrowing bands of suspension deposited
on the glass plate. During drying, the meniscus bordering
the deposited fluid is strongly pinned onto the substrate.
The first fracture, longitudinal and centred, releases the
transverse stress. Due to the remaining stress, transverse
secondary cracks then form which can exhibit two be-
haviours. When the contact angle of the solution with the
substrate is low (~ 25°) the cracks which grow towards
the border, rotate away from it. The resulting pattern is
then formed of a series of loops due to the collision of each
secondary crack with its neighbour. Comparison of Fig-
ure 3b with Figure 1b shows that we have thus obtained
the brochidodromous organisation. The contact angle of
our latex suspension can be modified by adding salt to
the solution. Values up to ~ 45° are thus obtained. In
this case, the layer is thick near the meniscus and the frac-
tures move straight to it, simulating the craspedodromous
organisation.

These behaviours can be modelled by a simple 2D elas-
tostatic model where the stresses in the strip, averaged
throughout the thickness, are induced by the inhomogene-
ity of the concentration field. The differences between the
small and large contact angles can be embedded in the
boundary conditions. For small contact angles, the vol-
ume effect of the pinning is strong and induces a zero
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Fig. 3. (a) A pattern of cracks formed in a thin layer of gel, about 20 pm thick in which the drying is spatially homogeneous.
The typical spacing of the cracks is 80 pum. (b) The cracks resulting from the drying of a wedge shaped strip of gel deposited
on a silicon wafer. (c¢) A pattern of cracks obtained in a gel layer having a constant thickness gradient. The drying of the gel
proceeds from the thin region (at the bottom) to the thick one. When a crack stops growing it connects perpendicularly, first
to one of its neighbour (top of the photograph), then to the other (bottom).

displacement in the direction perpendicular to the border.
One can easily show that in this case the stress component
normal to the border increases in its vicinity. The criterion
due to Cotterell and Rice [16] states that the crack prop-
agation becomes unstable when the stress parallel to the
crack exceeds the opening stress. This argument explains
that the crack, when approaching the border, rotates in
order to keep releasing the main stress. In contrast, when
the contact angle is large, the volume effect of the pinning
is weak so that the boundaries of the strip can be consid-
ered as traction free. Thus the stress component parallel
to the crack decreases when approaching the border. This
explains the stable propagation of the crack in this region.

A third experiment is meant to simulate the most usual
type of venation of monocotyledons where the main veins
are parallel to each other (Fig. 1c). In order to obtain an
anisotropic growth we performed directional drying of the
gel layer. This is obtained with a large layer having a thick-
ness gradient. The initial cracks form in the thinner region
and propagate in the gradient direction [12], forming an
array of parallel and equidistant fractures. After the prop-
agation of these cracks, there remains a mismatch between
the shrunken gel and the substrate, resulting in a longi-
tudinal stress. A series of secondary fractures, perpendic-
ular to the initial ones, will form and the final pattern
will be similar to monocotyledons veins. Another detail
of this type of venation can be reproduced. In e.g. bread
wheat [17], or lily of the valley (Fig. 1c) the number of
longitudinal veins reduces as the leaf becomes narrower
near its tip. A stopped vein is connected with both its
two neighbours. This situation can be simulated by giv-
ing a narrowing width to the sample. The cracks, as they
grow, are forced to be nearer to each other than needed to
release the stress. When a crack stops growing it connects
perpendicularly with one of its neighbours, then with the
other (Fig. 3c). The pattern is identical to that of leaves
(Fig. 1c).

The fact that a large variety of venation patterns can
be obtained with cracks suggests that the vein formation
occurs in a tensorial field. In order to seek the possible
origin of this field we must now recall some facts about
plant physiology. A cross section of a leaf is characterised

by two epidermial layers separated by an inner tissue, the
mesophyll. The veins are located in the mesophyll region.
In their mature state they are complex bundles associating
xylem and phloem which transport sieve and sap respec-
tively. But what must be examined here is the period of
formation. At the initial stage, the precursor of a future
vein appears in the central region of the mesophyll when
some cells differentiate into a specific tissue: the procam-
bium. This procambium [8,9] is only weakly differentiated
from the surrounding mesophyll and is characterised by
strands of elongated cells with specific cell divisions. At
this point it does not have transport properties. It is only
later that procambium will differentiate into xylem and
phloem and acquire them. Since the procambium forms
the draft of the vascular system, the problem is that of its
genesis.

From the previous study, a natural idea is that the
mechanical stresses play a role in the differentiation of
procambium. The mechanical stresses in botanical tissues
have been shown to be very large and they have already
been considered by botanists as being important in other
morphogenetic problems such as phyllotaxis [18]. Several
works [19,20] on growing organs, stems or hypocotyls,
have shown that the parallel growth of the epidermis and
of the inner tissues, generates growing stresses of opposite
signs in these tissues. The stress is tensile in the epider-
mis and compressive in the inner tissues. The situation
is similar in leaves where the mesophyll is submitted to
a compressive stress which increases as the leaf grows in
size.

We present the hypothesis that the differentiation into
procambium is the response of mesophyll cells submitted
to a compressive stress exceeding a threshold value. It is
thus somewhat similar to the breakdown of physical cellu-
lar solids under compression [21] which is known to form
localised squeezed bands of collapsed cells. The difference
is that here we rather assume that when the compressive
stress becomes large, the cells of band shaped regions react
by having specific cell divisions where the newly formed
partition is perpendicular to the main stress. This process
has already been observed in a different context. Experi-
ments [22,23] performed on botanical tissues have clearly

9JoN pidey



Rapid Note

138 The European Physical Journal B

shown that oriented cell divisions can be forced by an ex-
ternally applied compressive stress. In these situations, as
in our hypothesis, the new wall forms perpendicularly to
the direction of main compression, a shear free direction.

Within this model the analogy of the morphology of
the veins with the fractures is reduced to a basic origin:
both grow in tensorial stress fields. We can add three re-
marks. (i) Since the increase of the stresses is due to the
leaf expansion, the model links directly the formation of
veins to the growth. As a result the homogeneity of the
venation is guaranteed. (ii) At the leaf edge the two epi-
dermis meet; the stress, which comes from the mismatch
between the mesophyll and the two epidermis, vanishes so
that the border is analogous to the menisci of our experi-
ments. (iii) While the cracks meet exactly at right angle,
other angles are possible for veins because, once formed,
they keep a role in the mechanical properties of the tissue,
while cracks correspond to a complete disruption of this
material. These angles are investigated elsewhere [24].

A large number of works have discussed the roles
of biochemical [2,3] and mechanical [18] processes in
the morphogenesis of plants. While the former has been
demonstrated by many experiments [25], the direct evi-
dence for the latter is scarcer. This is the context which
gives its meaning to our results, since they suggest that
the mechanical stresses in growing tissues determine the
geometry of procambial strands. The reality is certainly
complex with an interplay of mechanics and biochemistry
since the hormones which have strong morphological ef-
fects, auxins or expansins [25], are known to modify the
mechanical properties of the cells. More work is needed to
characterize this interplay which is certainly essential in
the regulation of a coherent tissue growth.
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Abstract

The problem of a steady-state slip pulse of finite size between dissimilar materials is studied. It
is shown that for a Coulomb friction law, there is a continuous set of possible solutions for any
slip propagation velocity and any slip length. These solutions are, however, nonphysical because
they show a singular behaviour of the slip velocity at one extremity of the pulse, which implies a
crack-like behaviour. In order to regularize these solutions, we introduce a modified friction law
due to Prakash and Clifton (Experimental Techniques in the Dynamics of Deformable Solids,
Vol. AMD-165, pp. 33—-48; J. Tribol. 120 (1998) 97), which consists in introducing in the
Coulomb friction law a relaxation time for the response of the shear stress to a sudden variation
of the normal stress. Then, we show that even for a slip velocity-dependent characteristic time,
the degeneracy of the solutions is not suppressed and a physical pulse is not selected. This
result shows the absence of steady state self-healing pulses within the modified friction law and
is consistent with recent finite-difference calculations (J. Geophys. Res. 107 (2002) 10).
© 2003 Elsevier Ltd. All rights reserved.

Keywords: A. Dynamics; B. Friction; Elastic material; C. Well-posedness

1. Introduction

Ruptures in fault zones separating dissimilar materials may provide a naturally uni-
fied explanation to some fundamental observations on earthquake and fault behaviour
(Andrews and Ben-Zion, 1997; Ben-Zion and Andrews, 1998; Ben-Zion and Huang,
2002; Cochard and Rice, 2000). Effectively, there is a number of problems that are
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not completely explained in terms of ruptures in a homogeneous solid and that might
be related to ruptures along bi-material interfaces. The interest of bi-material studies
in seismology is reinforced by the fact that many earthquakes seem to have rise times
much shorter than would be expected from classical crack models (Heaton, 1990). Fur-
thermore, processes induced by heterogeneous fault zones allow earthquake ruptures to
propagate at shear stresses which are low compared to friction threshold. This provides
a possible explanation to the apparent lack of observed heat flow from some major
faults (Lachenbruch and Sass, 1992). See the introduction of Andrews and Ben-Zion
(Ben-Zion and Andrews, 1998) and of Cochard and Rice (2000) for a thorough dis-
cussion of other involved issues.

Weertman (1980) has shown that a coupling between slip and normal stress exists
in a frictional interface between dissimilar materials. He concluded that a self-healing
pulse can propagate along the frictional interface between dissimilar elastic solids,
even when the remote shear stress is less than the frictional stress of the interface.
A family of steady-state pulses at a bi-material interface under Coulomb friction law
has been computed by Adams (1995, 1998, 2001). However, he has also shown that
these solutions are often linearly unstable (Adams, 1995). Ranjith and Rice (2001) have
shown a connection between the existence of the generalized Rayleigh wave speed and
the ill-posed nature of the problem. When the material pair is such that the generalized
Rayleigh wave speed is defined, the problem is ill-posed for any value of the friction
coefficient, whereas when it is not defined the problem remains ill-posed for values of
the friction coefficient larger than a critical value.

In a numerical study, Andrews and Ben-Zion (Andrews and Ben-Zion, 1997;
Ben-Zion and Andrews, 1998) examined wrinkle like propagation using Coulomb fric-
tion law, and encountered numerical problems. Cochard and Rice (2000) found that
the Adams instability was responsible for those numerical problems: the cases stud-
ied by Andrews and Ben-Zion fall precisely in the range in which the generalized
Rayleigh wave speed is defined, and are thus certainly ill-posed. In order to regularize
the problem, the Coulomb friction law has been replaced by an experimentally based
friction law due to Prakash and Clifton (Prakash and Clifton, 1993; Prakash, 1998).
This law smooths into a continuous transition with time or slip the otherwise instanta-
neous variation of shear strength that would follow from an instantaneous variation in
normal stress if the Coulomb law was used. Ranjith and Rice (2001) have shown that
this law can provide a regularization for the linear stability analysis. However, when
solving the full time-dependent problem, the different numerical results (Andrews and
Ben-Zion, 1997; Ben-Zion and Andrews, 1998; Ben-Zion and Huang, 2002; Cochard
and Rice, 2000) do not all lead to a rupture generated by the propagation of steady
state self-sustained slip pulses of finite size.

Once regularized, the physical problem is no longer exactly the same as it was
originally when the Coulomb law was used. The main purpose of this paper is to
provide a complete analytical study of this problem. In the next section, we present
the formulation of the steady state slip pulse problem. In Section 3, we show that for
a Coulomb friction law, there is a continuous set of solutions for any slip propagation
velocity and any slip length. As expected, these solutions turn out to be nonphysical.
In Section 6, we use the so-called Prakash—Clifton friction law in order to regularize
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these solutions. Then, we show that this law does not suppress the degeneracy of the
solutions and does not select a physical pulse.

2. The steady-state slip pulse problem

We consider the dynamic problem of 2D in-plane slip (plane strain deformation,
Mode II rupture) along a frictional interface on the plane ¥ = 0 separating two linear
isotropic elastic half-spaces (Fig. 1).

The loading, particle motion, and rupture propagation are in the X-direction and all
variables are functions of X, Y and ¢ only. Shear and dilatational wave velocities are
Csn = \/2Un/pn and cq, = /(A + 214,)/pn, Where p, is mass density, 4, and p, are
Lamé coefficients, and subscripts n = 1,2 denote the top (¥ > 0) and bottom (¥ < 0)
materials, respectively. Shear and normal stresses on the fault are (X, #)=0,(X, Y =0,1)
and o(X,t) = 0,,(X,Y = 0,t). Applied shear stress and normal stress at the remote
boundaries are 7>° and —¢°°, such that 1 < f¢°°, where f is the Coulomb dynamic
coefficient of friction. Slip and slip velocity across the fault are d(X,7) = u, (X, Y =
07,8) —u (X, Y =07,¢) and V(X,t) = 05/0t.

Let us consider an in-plane rupture that propagates with a constant subsonic velocity
¢ along a material interface. Rupture propagation occurs in this problem only in one
direction, that of slip in the more compliant material. Since the problem is steady state,
the solution depends only on x =X — ¢t and Y. The shear and normal stress on the
fault in the solution of Weertman are (Weertman, 1980)

o) = =% + v (), (1)
- oo V / d /

= - L [T @)
€ ) oX —x =

where the integral is taken in the sense of Cauchy principal value, and
1

=21+ b} = 2aiby) oDy — (1 + b3 = 2axby) u D1), (3)

o1

#22[(1—5%)611/421924-(1 — b3)ar D] (4)

with

ay=1/1-¢c%/a3, (5)
by=1/1—c*c2, (6)

D, =4a,b, — (1 +b2)? (7)

and 4 is a known function of the propagation velocity and of the materials parameters
(Weertman, 1980), whose explicit behaviour does not influence the subsequent analysis.
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Material 2: pa, Az, pt2

-—

T

Fig. 1. The model problem for 2D in-plane steady-state rupture along the interface between different elastic
solids.

The coefficient i decreases with increasing ¢ and its zero defines a generalized
Rayleigh speed, cgr, for the materials pair. When the two materials are the same, cgr
reduces to the regular Rayleigh velocity. As the velocity contrast increases, the zero
intersects of i increases and for large enough contrast j is positive for all subsonic
values of ¢ and cgr is not defined. A steady-state Weertman pulse propagating at
¢ = cgr, when such a speed exists, produces no changes of shear stress on the fault.
When the two materials are identical, u* =0, and there is no coupling between slip and
changes of normal stress on the fault. However, when the two materials differ, u* > 0
and nonuniform slip produces a dynamic reduction of normal stress that is proportional
to the local slip velocity.

Egs. (1) and (2) result from applying the conditions of continuity of normal dis-
placements and shear and normal stresses along the interface ¥ = 0. These boundary
conditions allow to write the stresses at the interface as functions of the slip velocity
only. In order to solve the slip pulse problem, one has to prescribe the slip conditions
and/or the friction law along the interface. We impose that the pulse has a finite size
2L. Thus outside this region, the slip velocity ¥ (x) identically vanishes,

Vix)=0, |x|>L. (8)

Along the pulse, a friction law which relates the shear stress to the normal loading
at the interface should be prescribed. For this, we use a simplified version of the
Prakash—Clifton friction law (Prakash and Clifton, 1993; Prakash, 1998), which consists
on introducing in the Coulomb friction law a slip velocity dependent relaxation time
to(V') for the response of the shear stress to a sudden variation of the normal stress

d d
— 0o(V) g 1) = Lo(V) g 1) = 1) + fo(x), x| <L, )
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where Ly = cty is a characteristic length scale. A thorough discussion of the Prakash—
Clifton law can be found in (Cochard and Rice, 2000; Ranjith and Rice, 2001). Note
that if renewal of the asperity contact population is the underlying mechanism leading
to loss of frictional “memory” of prior strength, then one expects that # (/) should
vary inversely with 7 at high slip rates, basically as L*/|V|, where L* is a characteristic
sliding distance to renew the contact population. In order to match the behaviour at
high slip rates without introducing singular behaviour at low slip rates, the Prakash—
Clifton law used in the previous studies (Ben-Zion and Huang, 2002; Cochard and
Rice, 2000; Ranjith and Rice, 2001) replaces the characteristic time scale # (V) by a
slip velocity dependent function L*/(V* + |V (x)|), where L* and V* are characteristic
length and velocity scales.

The slip velocity can now be determined from Eqgs. (1), (2), (8) and (9). Let us
take L as the length scale, and define a nondimensioned slip velocity S(x) by

(fo>*® —1%°)c
wf
Note that for similar materials the scaling (10) is not adequate, since p* vanishes in

this case. Using Eqs. (1) and (2), conditions (8) and (9) become

S(x)=0, |x|>1, (11)

1 / /
S(x)_l—l-K(l—r](S):x)/ S,(x) d%, x| < 1, (12)

X =X

V(x)= S(x). (10)

where 7(S) and K are the pertinent parameters of the present problem. They are defined
by

n(s) = Lfo, (13)
u(c)

= . 14

k() Sur(e) (14)

The function n(S) can be seen as the inverse of the pulse size in units of the charac-
teristic length scale Ly. The influence of the elastic parameters of the two materials are
embedded in the parameter K(c¢), whose behaviour is shown in Fig. 2. When the gener-
alized Rayleigh speed is not defined, K(c) is always positive. On the other hand, when
the generalized Rayleigh speed exists, K(c) is positive for a wide range of propagation
velocities 0 < ¢ < cgr, and it takes finite negative values for propagation velocities
CGR < € < Cq.

The main equations of this section are well known. They have been used for stability
studies of homogeneous slips along the interface between different materials (Adams,
1995, 1998, 2001; Ranjith and Rice, 2001). In contrast, our goal consists in finding
the properties of inhomogeneous slips along the interface, by introducing a slip length
which is different from the fault size. Of course, the final goal would be to relate
the properties of the self-sustained slip pulses to the self-healing pulses deduced by
Heaton from geological observations (Heaton, 1990). Indeed, recent numerical studies
(Andrews and Ben-Zion, 1997; Ben-Zion and Andrews, 1998; Ben-Zion and Huang,
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Fig. 2. The behaviour of K(c¢), defined by Eq. (14), as a function of the subsonic propagation speed
¢, for ratios of cg/cs; equal to 1.1, 1.2, and 1.4. The other materials coefficients are taken such that
W =, cq1 = V3c, Ccip = V3cg. The inset is a close-up of the curves in the region 0.9¢5; < ¢ < ¢

2002; Cochard and Rice, 2000) have been controversial about the conditions of exis-
tence of steady-state self-sustained slip pulses of finite size. It was found in (Ben-Zion
and Huang, 2002) that the self-sharpening and divergent behaviour found earlier by
Cochard and Rice (2000) with Coulomb friction law exists also with regularized friction
for large enough propagation distance, or equivalently for long times. The parameters
of the regularized friction law had to be fine tuned to produce apparent stability for a
given propagation distance. However, eventually, the pulse always dies or diverges.

When the material pair is such that the generalized Rayleigh wave speed is defined,
Adams (1998) has shown that in the framework of the classical Coulomb friction
law, there exists a continuous family of steady-state pulses at a bi-material interface
propagating at ¢ = cgr. However, Ranjith and Rice (2001) have shown that these
solutions are linearly unstable for any value of the friction coefficient. In the following,
we look for possible steady-state solutions by focussing on the cases when K(c¢) # 0.
We study the singular integro-differential Eqs. (11) and (12), using a pure Coulomb
friction law (1 =0), and the Prakash—Clifton law (1 # 0) for two model cases: 7(S)=
no, 1(S)=no+mn1S, where 1o and #5; are constants. We also point out that the use of a
more general form of n(S) give similar results to the latter cases. Note, however, that
the possible solutions of Egs. (11) and (12) always coexist with the trivial solution
S(x)=0 for all x, since we prescribed t>° < f¢>°. Then, the absence of solutions for
these equations implies an absence of slipping along the whole interface.

3. The Coulomb friction law (n = 0)

For this case, Eq. (12) is reduced to

St &y’
X' —x =z

1
S(x):1+K/ . k<1 (15)
—1
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Using usual techniques of singular integral equations (Muskhelishvili, 1953), the solu-
tion of Eq. (15) is straightforward. Define a complex function F(z); z=x + iy; such

that
1
F(z)= / S) dx (16)

L X —z 2in’

whose behaviour for |z| — oo is readily given by

1 1
F(z) ~ —E/_]S(x)dx. (17)

The function F(z) is holomorphic everywhere except on the interval [ — 1,1] of the
real axis, where it satisfies

F(x +i0) — F(x — i0) = S(x), (18)

F(x +10) + F(x — i0) = /O1 j(fli i—:. (19)
Then combining these two conditions with Eq. (15) yields

e F(x 4+10) — e* F(x —i0) = cos a, (20)
where the parameter « is related to K by

tano =K, —7n/2<a<mn/2. (21)

The holomorphic function that satisfies the jump condition (20) and the asymptotic
behaviour (17) is readily given by (Muskhelishvili, 1953)

i z— 1\
F(Z):Ztanoc [1_<z+1> 1 (22)

and the solution S(x) follows directly from Eq. (18)

s 1-x\" 1 23
(x)cosoc<1+x) , k<L (23)
Therefore, a Coulomb friction law leads to a continuous set of solutions, where neither
the length of the pulse nor its propagation velocity are selected. For each value of
the parameter o, corresponding to a given value of K, there exists a “mathematical”
solution S(x) satisfying the Coulomb friction law. However, these solutions are clearly
nonphysical ones, since S(x) diverges near x=—1 (resp. x=1) for a > 0 (resp. o < 0).
Moreover, as seen in Fig. 3, due to the singularity of the slip velocity, the normal stress
changes its sign, which induces an opening loading, and thus a crack-like behaviour, in
a certain region of the pulse. This clearly violates the boundary condition of continuity
of the normal displacement embedded in the solution of Weertman (1980). Therefore,
a pure Coulomb friction law is inconsistent with a condition of slip without opening.

Moreover, when the material pair is such that the generalized Rayleigh wave speed
is defined, one has o = 0. For this special case, Eq. (23) shows that S(x) =1 for



1856 M. Adda-Bedia, M. Ben Amar/! J. Mech. Phys. Solids 51 (2003) 1849—1861

T(X)

W | i T
S T S(x) 0
o(x) D : o) ¢

Fig. 3. The behaviour of the slip velocity S(x), the normal and shear stress o(x) and t(x) at the interface.
The values are taken such that o = /4, 1°° =0¢°°/3 and f =0.5.

|x| < 1 and it is discontinuous at x = 1. The corresponding solutions do not contain
infinities of the normal stress or slip rate. Such discontinuities are acceptable since
they propagate at the relevant wave speed. Therefore, there exists a continuous family
of steady-state pulses at a bi-material interface propagating at ¢ = cgr (Adams, 1998;
Rice, 1997). However, Ranjith and Rice (2001) have shown that these solutions are
linearly unstable for any value of the friction coefficient.

In the following section, we will use the Prakash—Clifton friction law as a possible
regularizing procedure of the simple Coulomb friction law. However, we will see that
even when using a slip velocity-dependent characteristic time, the degeneracy of the
solutions, found for 1 = 0, is not suppressed and a physical pulse cannot be selected.

4. The Prakash—Clifton friction law (y ¥ 0)

The presence in Eq. (12) of the differential operator, d/0x, introduces an additional
degree of freedom in the problem, since one has to fix a constant of integration; this
operator does not appear in the case of the Coulomb friction law (# = 0). These two
ingredients together are a signature of a possible eigenvalue problem, where in the case
of the existence of solutions, the parameter K should be determined as a function of #.

For n # 0, we assume that the propagation speed does not coincide with cgg,
and thus K(c) # 0. Moreover, we do not explore solutions which allow loss of contact
along the interface, since we are interested in studying the Weertman pulse (Weertman,
1980) for which the normal displacement is continuous. Since Eq. (11) imposes that
the slip velocity vanishes outside the rupture region, one expects continuous matching
of S(x) at the rupture edges. Indeed, the slip rate S(x), which by definition is always
positive, should not diverge at x=-=+1, since it leads to an opening loading a(x), which
violates the boundary condition of continuity of the normal displacement. Moreover, if
S(£1) # 0, the integral part of Eq. (11) induces a singular logarithmic behaviour in
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the vicinity of the rupture edges. Therefore, necessary conditions for physical solutions
are given by

S(£1)=0. (24)

These conditions will be used to fix the integration constant of Eq. (30), and the pa-
rameter K as functions of 1. Therefore, if physical solutions exist, the pulse size would
be selected as a function of its propagation speed and of the physical parameters. This
is in contrast with the case #=0, where K was undetermined and the continuity condi-
tions of the slip velocity could not be satisfied simultancously at the two rupture edges.
This problem is similar to the so-called Saffman—Taylor problem (McLean and Saffman,
1981), where a fluid penetrates into a thin cell that contains a more viscous liquid.
The introduction of a nonzero x in the present problem is similar to the introduction
of capillary effects in the Saffman-Taylor problem, which suppresses the degeneracy
of the solutions found at vanishing capillary number (McLean and Saffman, 1981).

Let us first fix the asymptotic behaviour of S(x) in the vicinity of the endpoints
x = +1. Conditions (24) impose to S(x) to behave as

Sx)~(1+x),  x— -1, (25)

Sx)~(1—x)P, x—1, (26)

where f§y and f; are real positive constants. Without loss of generality, we can prescribe
that 0 < iy <1 and 0 < f5; < 1. Let us also note the following results:

1 — /J’l 2B 2= =
/ a-xn x) — = (1 —x)f cotnﬁl—i(x)

x'—x b p1—1
+0((1 — x)*), (27)
for x — 1, and
- —/LC/)/% dx' = 2k (1 4 x)% cot mfo + 20700 +0)
1 X —x Bo Po—1
+0((1 +x)%), (28)

for x — —1. Using Eq. (30), one can determine the values of the constants f; and
Bi1. For this, one has to fix the form of #(S). In the following, we will study some
particular cases.

4.1. Case n(S)=no

For this simple case, Eq. (11) is transformed into

1 / /
S(x):l+K(c)< o d)/ SW) dx’ x| < 1. (29)

dx X' —x =z

It is easy to verify that whatever are the values of f§y and f;, Eq. (29) cannot be fullfiled
in the vicinity of the endpoints x = 4-1. This is due to the presence of the differential
operator which gives the highest-order singular contribution that is not balanced by any
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other term in Eq. (29). Therefore, one concludes that a constant #(S) in the Prakash—
Clifton law does not allow physical solutions with the appropriate asymptotic behaviour

imposed by conditions (24). In the following, we modify slightly the Prakash—Clifton
law by introducing a weak nonlinearity in 7(S).

4.2. Case n(S)=no+mS

Then, Eq. (11) is transformed into

1 / /
S(x)=1+4+K(c) (1 — (o +mS(x)) (;ix) / S;(x ) de, x| <1, (30)

X =x

Using identities (27) and (28), one finds that Eq. (30) may admit solutions that satisfy
conditions (24) if and only if

Bo=Ppi =1, (31)

which leads to a square root behaviour of the slip velocity at the rupture edges. Since
the function S(x) is defined in the interval [—1, 1], one can decompose the slip velocity
in terms of Chebyshev polynomials by writing

S)=V1-x>>"a,Uy(x), (32)
n=0

where U,(x) are the Chebyshev polynomials of the second kind. Let us recall the
following Hilbert transform property of this class of polynomials

/1 V1 =x?Ux') d'
—1 T

x' —x

= =Tu1(x), (33)

where 7, are Chebyshev polynomials of the first kind. Using decomposition (32) and
identity (33), Eq. (30) becomes

V1—x2 ZamUm(x)
m=0

1 —Km ZanT,;H(x)
n=0

=1-KY () + KoY | anT (). (34)
n=0 n=0

Isolating the square-root behaviour from the integer power behaviour in Eq. (34) leads
to the following identities:

K Y a, Ty, (x) = Km Y (n+ Da,Uy(x) =1, (35)
n=0 n=0
K> anTui(x) = Kno > (n+ DayUp(x) = 1. (36)

n=0 n=0
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Eq. (35) admits the unique solution K#;ap =1, and a, =0 for all » > 0. However, this
solution is not satisfied by Eq. (36). Therefore, a weak nonlinearity in the friction law
as given above is not sufficient for regularizing the slip pulse solution at the endpoints
x £ 1. Since the form n(S) =1 + 1S can be seen as an expansion of any nonlinear
behaviour one can wonder if the absence of physical solutions persists when one takes
into account a more general friction law.

4.3. Case of a general n(S)

It is rather unlikely that the nonlinear integrodifferential equation (11) has a solution
with enough regular endpoints. As an example, let us write

n(S) =no + mSE)F(S(x)), (37)

where 7y and #; are arbitrary constants, and F is any function of S(x) that satisfies
F(S(+1)) = F(0) = 1. The asymptotic analysis in the vicinity of x = +1 is similar to
the case where F(S(x)) =1 and Egs. (35) and (36) are transformed into

KmF(S(x))Y_anTya(x) =1, (38)
n=0
K> anTui(x) —Kno > a Ty, (x) = 1. (39)
n=0 n=0

Introducing the function defined for |x| < I:

()= a,Ty1(x). (40)

n=0

Eq. (39) is then a linear differential equation of first order for Q(x) which has an
explicit solution

0(v) = 11— exp(e/mo)] (4n)

Therefore, the coefficients in the series expansion following Eq. (40) can be determined,
and so the function S(x). On the other hand, Eq. (38) gives

F(S(x)) = —% exp(—x/m0). (42)

At x==+1, Eq. (42) gives F(S(£1)) = —(no/n1)exp(F1/no), which is in contradiction
with the condition F(S(£1)) = F(0) = 1. Therefore, we conclude that even within a
general nonlinear friction law, solutions of finite size steady-state slip pulses are not
allowed.

Finally, whatever the nonlinearities included in the friction law (we also checked a
law of the form 7n(S)=1/S), excluding some peculiar and probably unphysical cases,
it seems hopeless to find a regular solution to the steady-state slip pulse.
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5. Discussion

We have studied the problem of the existence of solutions for steady-state slip pulse
of finite size between dissimilar materials. We have shown that for a Coulomb fric-
tion law, there is a continuous set of solutions that are however nonphysical because
they show a singular behaviour of the slip velocity. We have shown that even within
the Prakash—Clifton friction law, the degeneracy of the solutions is not suppressed
and a physical pulse is not selected. This analytical result is consistent with recent
finite-difference calculations (Ben-Zion and Huang, 2002). Of course, when the mate-
rial pair is such that the generalized Rayleigh wave speed is defined, there exists a
family of steady-state pulses at a bi-material interface propagating at ¢ = cgr (Adams,
1998; Rice, 1997). However, these solutions are nonphysical within a Coulomb friction
law because they are linearly unstable (Ranjith and Rice, 2001).

When the two materials on each side of a planar fault are identical, unstable slip is
impossible if the interface is governed by the classical Coulomb friction law; it requires
more elaborate friction laws for which, under constant normal stress, the friction stress
at some point decreases as the slip displacement or slip velocity increases (Perrin et al.,
1995). A simple argument of the crack-like behaviour can be found in the steady-state
slip pulse solution between similar materials. Using a pure Coulomb friction law, one
can easily show that these solutions are given by

V(x) oc (43)

1
Wi
and the use of the Prakash—Clifton law will not regularize the problem. The presence of
the square root singularity reflects such a crack-like behaviour, which means that once
the slip pulse exceeds a critical length, it will propagate through the whole fault plane.
Thus, such models cannot produce complexity since they introduce one characteristic
length scale only; the nucleation size.

Our main conclusion is that the dissimilarity between the materials on each side
of the planar fault is not sufficient to produce steady state self-sustained slip pulses
of finite size, because it does not introduce an additional length scale against which
the pulse size can be scaled. Two recent approaches have been proposed in order to
explain the existence of self-healing slip pulses, by adding a new length scale in their
models. The first approach assumes that rupture occurs within an interface between a
compliant fault zone layer and a stiffer surrounding solid (Ben-Zion and Huang, 2002).
The additional length scale in this approach being the thickness of the layer. The second
approach does not impose a priori the continuity of the normal displacement in the
rupture region (Gerde and Marder, 2001). This allows the rupture to occur by opening
in certain regions and slipping in others.
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Abstract

We present a new method for determining the elasto-dynamic stress fields associated with the
propagation of anti-plane kinked or branched cracks. Our approach allows the exact calculation
of the corresponding dynamic stress intensity factors. The latter are very important quantities in
dynamic brittle fracture mechanics, since they determine the crack path and eventual branching
instabilities. As a first illustration, we consider a semi-infinite anti-plane straight crack, initially
propagating at a given time-dependent velocity, that changes instantaneously both its direction
and its speed of propagation. We will give the explicit dependence of the stress intensity factor
just after kinking as a function of the stress intensity factor just before kinking, the kinking
angle and the instantaneous velocity of the crack tip.
© 2003 Elsevier Science Ltd. All rights reserved.

Keywords: A. Crack branching and bifurcation; Dynamic fracture; Stress intensity factors; B. Crack mechanics;
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1. Introduction

In many experimental situations, cracks propagate by following curved or kinked
paths (Broberg, 1999; Freund, 1990; Lawn, 1993). Another well-known phenomenon
in brittle crack propagation is the possible emergence from a single crack tip of two
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or more branches. Experiments in PMMA and glass plates (Ravi-Chandar and Knauss,
1984; Sharon and Fineberg, 1996, 1999) have shown that this phenomenon occurs for
fast single propagating cracks after they surpass a critical velocity that is a fraction
of the Rayleigh wave speed of these materials. Above this critical speed, a dynamical
instability sets in marked by the appearance of micro-branches, roughness of the crack
surfaces, sound emission, and eventual macro-branches at higher speeds.

The knowledge of the instantaneous stress fields in the vicinity of the crack tip is
necessary for the theoretical prediction of a crack path. Therefore, the determination of
the elasto-dynamic fields associated with the propagation of kinked or branched cracks
is an unavoidable step in the study of brittle fracture dynamics. Unfortunately, a general
solution to the dynamical kinking or branching problem is not available yet. Up to now,
efforts have been dedicated to the study of elasto-static solutions of kinked or branched
cracks (Sih, 1965; Amestoy and Leblond 1992; Leblond, 1989). Also, in addition to
the well established solutions of straight crack propagation (Freund, 1990; Kostrov,
1966; Kostrov, 1975; Eshelby, 1969), the only known elasto-dynamic solutions related
with the kinking or branching problem deal with a semi-infinite crack that starts to
propagate from rest by kinking or branching under the action of a stress pulse loading
(Dempsey et al., 1982; Burgers, 1982, 1983).

The aim of this paper is to present a new method to calculate the dynamic stress in-
tensity factors associated with the propagation of anti-plane kinked or branched cracks.
As a first application, we consider the dynamic kinking of an initially semi-infinite
straightly propagating crack. We will give the explicit dependence of the stress inten-
sity factor just after kinking as a function of the stress intensity factor prior to kinking,
the kinking angle and the instantaneous velocity of the crack tip. This method can be
generalized to the case of an initially propagating anti-plane crack that branches into
two or more cracks. The case of two cracks that branch symmetrically from a single
crack will be the subject of the next application of our method.

The paper is organized as follows. In the next section, we introduce our approach
to the dynamical kinked crack problem under mode III loading, and we derive the
corresponding model problem. In Section 3, we detail the self-similar solution that
it admits. The present work can be considered as an extension of the self-similar
analysis of dynamic crack growth initiated by Broberg (Broberg, 1999) and Achen-
bach (Dempsey et al., 1982) among others. A detailed discussion of the analysis of
self-similar mixed boundary value problems in elasto-dynamics can also be found
in the work of Willis (1973). In the present case, the self-similar solution of the
dynamic crack kinking problem is given by an integral representation, which is a
convolution between a known kernel and a harmonic function, which is determined
by the real part of a holomorphic function. In Section 4, the harmonic function is
mapped into an upper complex half-plane, with boundary conditions on the real axis,
and an intermediate exact solution is given. In Section 5, the numerical resolution
of the integral equation is presented. The results for the stress intensity factor just
after kinking are given for arbitrary angles and velocities. Finally, we discuss our re-
sults, especially the difference between our solution and the elasto-static solution, and
the consequences of this discrepancy for the selection of crack paths in quasi-static
situations.
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2. The dynamical kinked crack under mode III loading

Consider an elastic body which contains a half-plane kinked crack but which is
otherwise unbounded (see Fig. 1). Introduce a cylindrical coordinate system (r,60,z) so
that the z-axis lies along the crack edge. The upward (resp. downward) semi-infinite
crack surface occupies the half-plane 0 = n (resp. 0 = —=n). Suppose that the material
is subjected to a loading which produces a state of anti-plane shear deformation in the
body. Thus the only nonzero component of displacement is the z-component u.(7, 0,t) =
w(r, 0,t), which is independent of z.

The scenario of crack kinking is developed as follows. A semi-infinite straight crack
that propagates at a speed v(z) for # < —t (with t — 0") suddenly stops at t=—1. At
t — 07, the crack kinks locally with a kinking angle equal to Axm, with —1 < 1 < 1.
For ¢ > 0%, the new branch propagates straightly at a velocity v'(¢), following this new
direction. The magnitudes of the crack speeds v and v’ are restricted by 0 < v < ¢ and
0 < v/ < c, where ¢ denotes the elastic shear wave speed. It is well known (Freund,
1990; Kostrov, 1966, 1975; Eshelby, 1969) that the mode III dynamic stress intensity
factor, K(¢), of the straight crack prior to kinking is related to the rest stress intensity
factor, Ko(¢), of the same configuration by

K(1) = k(v)Ko(2), (1)

where k(v) is a universal function of the instantaneous crack tip speed given by

k(v)=+/1—v/c. (2)

Fig. 1. Schematic representation of an anti-plane kinked crack problem. A half-plane crack that propagates
at a speed v for + < — 1 suddenly stops at #=—1, at »=0. For ¢ > 0, the new branch propagates straightly at
a velocity v/, following the direction Azw. The orthonormal basis (&, &y,é-) corresponding to the cylindrical
coordinate system (r, 0,z) is shown. The cylindrical waves originated at the crack’s arrest (r =c¢(¢ + 7)) and
at the start of kink propagation (r = ct) divide the material into three regions. In the region labelled I, the
stress field comes only from the dynamical straight crack propagation, since the effects of the crack’s arrest
and the crack’s kinking are not experienced there. The region II is influenced by the crack arrest only, thus
the stress field there is a static one (Freund, 1990; Eshelby, 1969). It is only the region III that is influenced
by the crack’s kinking. Thus, one has to solve the kinked crack problem only in this latter region.
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We are interested in the dynamic stress intensity factor just after kinking, K’', as
a function of the kinking angle, the crack tip speeds (prior and after kinking), the
material parameters and of the applied load. According to our description of crack
kinking, K’ should be defined as

fo o . . . )
K'(Avv,c,...)= Tlin([)l+ tlir(lgl+ (,.,},,‘,‘}LONZ“(F — V't)oy,(r, AT, ). 3)
We emphasize the importance of the order in which the limits in Eq. (3) should be
taken. The decomposition of the crack kinking process as described above imposes that
the limit # — 0" must be taken before the limit T — 0.

In the limit # — 0", the length of the kinked part of the crack is vanishingly small,
so that the breaking process after kinking occurs in the region determined by the
square root singular stress intensity factor field of the semi-infinite crack. Therefore,
the applied loads on the kink involve only the stress intensity scale, and the physical
system does not involve either a characteristic time scale or a characteristic length
scale. This imposes that the stress intensity factor just after kinking should be written
as

K/ :H33(/1, U/C, U//C)Ko, (4)

where Hj; is an unknown dimensionless function of the kinking angle An and of the
crack tip speeds v and v'. As in the quasi-static case (Leblond, 1989), the function Hx;
is universal in the sense that it does not depend either on the loading configuration or
on the geometry of the body. Effectively, in the limits + — 0" and T — 0T that we
consider, the dynamic kinking problem does not involve incoming radiation effects, so
it is always equivalent to a crack propagating in an unbounded body. On the other
hand, due to the absence in linear elasticity theory of intrinsic times or length scales,
this problem becomes of general validity since it is not necessary for the crack or the
kink to be straight. Effectively, we can generalize the quasi-static analysis (Leblond,
1989) so that Eq. (4) is also valid for dynamic curved cracks; Hz; does not depend
on the local curvature of the crack prior or after kinking.

For the mode III case, when the initial crack stops, a static stress distribution is
restored behind a wave front that propagates from the crack tip at the shear wave
speed (Eshelby, 1969), (see Fig. 1). Thus for ¢ > 0, the propagation of the kinked
crack occurs within a stationary stress field. Our kinking problem is then equivalent
to solving the problem of a kink that emerges from a pre-existing stationary straight
crack, and that started to propagate at time r= 0", in the direction Ax, with a velocity
v/, under the action of a time-independent loading. Moreover, in order to compute the
stress intensity factor just after kinking given by Eq. (4), it is enough to solve this
problem by considering the static stress distribution ¢j_(7,0), which in the vicinity of
the stationary initial crack tip has a square root singular stress intensity factor field
given by (Williams, 1952)

. K 0
ap,(7,0) 5 c0s 5, (5)
where Kj is the rest stress intensity factor of the crack tip prior to kinking, which is
related to the dynamic stress intensity factor, K, just before kinking through Eq. (1).
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A straightforward consequence of these previous arguments is that the universal func-
tion H33 must be independent of the velocity prior to kinking

Hs3(4,v/e,v'c) = Hy3(2, 0 [c). (6)
Also, it is clear that H3; should satisfy the following property
lim Hy3(2, v'/e) = k(v"), (7)

for all values of v/ (Kostrov, 1966; Eshelby, 1969).
2.1. The model problem of dynamic crack kinking

The process of crack advance in the situation depicted in Fig. 1 can be viewed as
the process of negating the traction distribution on the newly broken surface produced
by the stress field distribution of the stationary crack given by Eq. (5). For # <0, it is
assumed that the crack is at rest and that the material is loaded according to Eq. (5).
As the crack advances for ¢ > 0, the component of displacement w(r, 0,¢) satisfies the
wave equation in two-space dimensions and time,

2 32
me= () LB 1Py )
r or \_ or r2 002 2 0

with the boundary conditions on the displacement field w(r,0,t), for r < ct, given by

O'()Z(V, +7, I) =0, (9)

oo (r <V't,Am+6,t)=0, (10)

wet,0,0) = Ko [ a9, (11)
uw V2n 2

Here (and elsewhere), ¢ is a vanishingly small positive constant, y is the shear modulus,
and

uw ow
r00° (12)
Condition (11) is a consequence of the continuity of the displacement field w(r, 6,¢) at
the wave front r = ct, that follows from Eq. (5). Notice that continuity of oy, across
the wave front follows from continuity of the displacement w(r,0,¢) there, and from
Eq. (12). Moreover, there is a jump condition across the wave front » = ¢t given by
(Dempsey et al., 1982)

00z

plowl
[01=)—er + [at ]ra =0, (13)
where [f]. = f(r+¢)— f(r —¢), with ¢ — 0, and
o= . (14)
or

Of interest is to establish the kind of singularity of the stress gy, to be expected in
the vicinity of the edge points B and D in Fig. 1, once the kink develops. Indeed,
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the Williams expansion (Williams, 1952) imposes that the singularity of this stress
component in the vicinity of these edge points should be given by

6o, (r,0,t) ~r? asr—0, (15)
where
A
m, for in < 0 < T,
=y (16)
—) for —m <0< An.
1+ 4

Finally, the asymptotic behavior of the stress field near the propagating crack tip is
given by (Freund, 1990)

/

K
\/2n(r —v't)

with K’ the stress intensity factor after kinking and H the heaviside function.

+O0Wr—vH|Hr —v't)y asr—1v't, (17)

oo (r,An £ e,t) =

3. Resolution of the dynamic crack kinking problem
3.1. Self-similar analysis

As a solution of the elasto-dynamic problem established in Eqs. (8)—(11), scaling
analysis and the linearity of the wave equation imposes the following self-similar form
for the displacement field:

K,
w(r,@,t):l,/zi [2sin0+W(r,0,t)], (18)
U n 2

where W is a dimensionless function of its arguments. Equivalently, the stress field
takes the following form:

G0, 0,1) = J% [cosg 1 S(r e,r)] , (19)
with
S(r.0,1) = %V(r, 0.1). (20)

Except for the stress intensity factor scale introduced by the boundary condition (11),
there is neither a characteristic length nor a characteristic time against which the inde-
pendent variables », 6 and ¢ can be scaled. Therefore, W and S can only depend on
dimensionless combinations of », § and ¢. These dimensional arguments determine the
displacement function W and the stress function S to be written as

W(r,0,t)y=WwW(y0), S(0,t)=S(0), (21)

where

|

% s =L (22)
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0
S=0
T
E D
S=0 1
S=—u)s/7ﬂ D
P2 A ¢ =
) B
An
0 a5 S=—cos‘7
S=0
x4 B
S=0

Fig. 2. The (s, 0)-plane, with s > 0 and —n < 6 < 7, that maps the region 11l of (r, 0, ¢)-space, corresponding
tor<ct, —n<0<m and t >0 (see Fig. 1).

Using Egs. (8) and (18), and taking into account the explicit dependence of y on r
and ¢, one finds that W satisfies the following partial differential equation:
W w1
—-— W 0. 23
(=D + 557 + 3 (23)
Let us make a new change of variable y(s), by using the well-known Chaplygin’s
transformation (Dempsey et al., 1982; Broberg, 1999; Freund, 1990)

y(s) =coshs, s=0. (24)

In Fig. 2, the transformation from the coordinates system (r,0,t) to the (s, 0)-plane is
shown. Thus, in the space of coordinates (s, ), Eq. (23) becomes

orw ow w1

—— —coths W =0. 25

o2 Oy T T (25)
The boundary conditions (9)—(11) can be easily re-expressed as boundary conditions
on the displacement and stress functions W and S. In the new coordinates system, they
take the form

W(s=0,0)=0, (26)

S(s,0 =+m) =0, (27)

S(s > b,0 =/n+¢e)=—cos /%n, (28)
where

b= cosh™! (¢/v). (29)

The Williams expansion imposes that the asymptotic behavior of y,(r,0,¢) in the
vicinity of the edge points B and D should be weaker than the square root singularity;
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the singularity of the stress field there is given by Eqgs. (15) and (16). Therefore, in
the vicinity of B and D the function S(s,0) must satisfy

S(s,0)= —cosg +0 (exp — (p + ;) s> as s — +00, (30)

with p given by Eq. (16). On the other hand, the asymptotic behavior near the crack
tip, given by Eq. (17), imposes the following asymptotic behavior in the (s, #)-plane:

K’ v/cothb

/17[
S(s,An+¢e)=— +
(s,Am = ¢) = —cos — [K \/lf

+0(/b— )] H(b—s) ass—b.
(31)

Finally, once the displacement field w(r,0,¢) is written in the form of Egs. (18) and
(21), the jump condition (13) across the cylindrical wave front s = 0, corresponding
to r = ct, is automatically satisfied.

3.2. Integral representation of the self-similar solution

Using the linearity of Eq. (25), it can be shown that the displacement function
W (s, 0) admits solutions of the form

W(s,0) = sinhs P_{ , . (coshs)6,(0), (32)

where v is a complex constant, and P_ 1 i is the associated Legendre function of the
first kind (Gradshteyn and Ryzhik, 1994). On the other hand, the function ©, satisfies
the simple second order differential equation given by

d?e,
do?
whose solution is a superposition of the functions sinh v and cosh vf. Notice that
in Eq. (32), we did not take into account the solutions that contain the associated
Legendre function of the second kind Q_1 4in(COS s) (Gradshteyn and Ryzhik, 1994).

This is due to the fact that only outgoing waves from » =0, corresponding to s — o0,
are present in our problem. These waves are represented by the P_ 1 Ptiv contribution.

-0, =0, (33)

The absence of incoming radiation towards » = 0, automatically cancels the Q:% 2tiv
contribution. Using the integral representation of the associated Legendre functions
given by (Gradshteyn and Ryzhik, 1994)

2 sinhs? s cosh(o + 5 )s
Pb(coshs) = \[ ds’, 34
x(coshs) nI'(3 —p)Jo (coshs— cosh s')/”l/2 (34)

one can rewrite (f = —1, a = —1/2 + iv), without loss of generality, the complete
solution of Eq. (25) in the form

W(s,0)= % /0 Veoshs — coshs’ f(s',0)ds’, (35)
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where f(s,0) is an unknown function that satisfies the harmonic equation

Y 2

et 602} f(s,0)=0, (36)

and the additional boundary condition.

il f(s,Q)] —0. (37)
_aS s=0
It is straightforward to confirm a posteriori that the latter integral representation of
W(s,0), combined with conditions (36) and (37), is an exact solution of Eq. (25).
Also, notice that once the displacement function W (s, 0) is written in the form (35),
the boundary condition (26) at the cylindrical wave front s=0 is automatically satisfied.
The problem as it is posed now is tractable, at least numerically, because it allows the
use of complex analysis and conformal mapping techniques.

3.3. Boundary conditions and asymptotic behavior

The solution of the dynamic kinking problem within the representation of Eqgs. (35)—
(37) of W(s,0) is reduced to the determination of f(s, ). Harmonicity of f(s, ) means
that it can be written as the real part of a complex function F(y = s + i0), which is
holomorphic inside the contour DCBAED (see Fig. 2):

1
f(s,0)=Re[F(N] = S[F(y) + F)L,  v=s+i0. (38)

Using Egs. (20) and (38) and the Cauchy identities for holomorphic functions, the
function S(s, ) can be written in the form

N : ! A : /
S(s,0) = % Voshs — 1 Im[F(i0)] — 51%)] d%. (39)
; =

Condition (30) implies that the stress function S(s, ) does not diverge as s — +oo.
This imposes that

Im[F(i0)] = 0. (40)
Using again the Cauchy relations for holomorphic functions, one finds that Eq. (40) is
sufficient for satisfying the boundary condition (37). Therefore, Eq. (39) is reduced to

* sinhs’ Im[F(s" +10)] ds’
o +/coshs —coshs’ m

Using Eq. (41), Expansions (30) in the vicinity of the wedge points B and D are
completely recovered if the function F' satisfies

S(s,0)=—

(41)

Im[F(7)] = V2 exp [—%] cosg FO(exp—(p+1)s) as s — oo (42)
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The asymptotic behavior of the stress function S(s, ) near the crack tip embodied in
Eq. (31) imposes a specific behavior of F(y) in the neighborhood of the corresponding
point y¢ = b + iAxn. This can be obtained by an Abel inversion of Eq. (41), or by
noting the equality (Gradshteyn and Ryzhik, 1994)
/ s sinh (s'/2) sinh s’ ds’
o V/coshs — coshs’(coshs’ — coshb + i¢)

T /2sinh (b/2)
V2 V/coshh — coshs Fie |

Identifying the behavior of Eq. (43) when s — b with that of Eq. (31), one concludes
that F(y) behaves as

(43)

1a .
F) = =40 —7c)) a5y =y =b+tiim (44)

where a is a real constant related to the stress intensity factor just after kinking, K’,
by

. v/cosh b g’

sinhb K, (45)

Thus, the function F has a simple pole at y = yc. Also, the higher order terms in
expansion (44) of F(y) are prescribed by the higher order terms in expansion (31) of
the stress field S in the vicinity of the crack tip. In particular, logarithmic singularities
of the form log(b — s) and terms of the form (b — s)*, with —1/2 < u < 1/2, are
forbidden.

We now turn to the condition imposed on F(y) by the boundary conditions (27) and
(28) satisfied by S. The boundary conditions (27) on S implies that F(y) must satisfy

Im[F(s + in)] = 0. (46)

The boundary condition Eq. (28) of S means that Im[F] satisfies the following integral
equation for s > b:

¥ sinhs’ Im[F(s" + i(An £ ¢))] ds’
[ (& iGm o) & -
b v/coshs — cosh s’ T

with

AT b sinh s’ Im [F(s' + ilm)] ds’
g(s) =cos — — —.

2 0 v/cosh s — cosh s’ v
We write this integral equation differently by noticing that Eq. (47) is in the form
of an Abel integral equation (Freund, 1990). Thus, one can invert Eq. (47) to obtain

(48)

. 1 d [° sinhs'g(s") /
Im[F Iin +¢))] = - ds’. 49
m[F(s + i(Am £ ¢))] sinh s ds /b cosh s — cosh s’ ’ )
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Then using Eq. (48) for g(s’), one finally gets
Vcoshs — cosh b Im [F(s + i(An £ €))]

AT b \/coshb — cosh s’ ds’
= — — inh s’ Im [F(s’ + iAn)] —.
cos — /0 voshs —cosh s Sinhs m [F(s" 4 14m)] . (50)

The next step in solving our problem is to transform the strip geometry of Fig. 2
into a half-plane geometry by use of a conformal transformation of coordinates that is
detailed in the following. The boundary conditions will be applied on the real axis of
the new coordinate system.

4. Solution of the dynamic crack kinking problem

4.1. Conformal mapping

Let us map the interior of the contour DCBAED in the y-plane into the upper
half-plane of a new coordinates system (¢, 7). The conformal mapping associated with
this transformation is given by (Dempsey et al., 1982)

1+ &0+ /(= &)1 c%]

WO =1+ e

+(1=2)n

lléDu (&)1 -0 1)

{—¢p

where { = ¢ 4 in. Fig. 3 shows the {-plane and the locations, on the ¢-axis, of the
points corresponding to the vertices of the polygon DCBAFED, in the y-plane. The
conditions satisfied by &g, and &p are given by (Dempsey et al., 1982)

(1_’_2)7“—5%;_(1_ ")7“_5%):0

2 R 52
9 ép (52)
—1 1 —1 1
(1 4+ 2)cosh — | 4+ (1 —A)cosh —| =b. (53)
95 ép
1
Im®()=0 Im®()=0
b A \ B c D /E lF\
—1 —<p e éo +1 4

Fig. 3. The (-plane corresponding to the conformal mapping y({).
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On the other hand, when y — y¢, or equivalently { — 0, one has

WO =ge+ 20+ B0+ oh, (54)
with

_£2
WWma+ngfﬂl 1], (55)

<s

/1 _ 22
1y = 37(0) =2(1 4 7) VL= [;2 ;2] (56)
D B

4.2. Solution in the (-space

We look for the analytic function F(y) on the new half-space, and we call it @({) =
F(y(0)), with { = & + in. The function @({) is now holomorphic for Im[{] > 0, and
the conditions it satisfies on the real axis of the {-plane are readily given from those
of F(y) in the y-plane. Egs. (40) and (46) imply that

Im[@(&)]=0 for &> ¢&p or &< — Ep. (57)
Moreover, the function @({) should also satisfy

}im Im[®({)] = 0. (58)

|{]—o0

This condition follows from the fact that || — oo corresponds to a point lying on the
imaginary axis of the y-plane (s = 0), where Im[F'] = 0. The behavior (42) of F(y),
in the vicinity of the points D and B, leads to the two following limiting behaviors of

P(0):

D) ~ fp 4 ap({ — Ep)VPI=D as ¢ &p, (59)

B(L) ~ By — op(— — Ep) DI ag { — —¢p, (60)
where 3 and fip are real unknown constants, and oz and op are real constants given
by

_ 21/2(51) + éB)(lﬂ)/z
(1= E) DR Egép + /(1 — E)(1 — &))i+a2’

(61)

op

(&5 +Ep)1 1"

TR = )R+ Eplp + - G- GNP

(62)
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On the other hand, using Eq. (54), the behavior (44) of F(y) when y — y¢ imposes
the following behavior of @({) in the {-plane:
io
e
where o and f§ are real constants given by

. 2a 2v/cosh b K’

()~ Z (1+ O+ 0L°) as {—0, (63)

- 2 64
V2 V2 sinh b Ko ’ ( )
o 201 1 }
R — 65
4 372 3 [fD ¢p (63)

In the region —& < & < &p, the function @ satisfies an integral equation given by the
transformation of Eq. (50) in the {-plane.

4.3. A practical representation of the solution ®({)

It is possible to write a representation of @({), which satisfies the boundary condi-
tions (57) and (58), and has the appropriate limiting behaviors of Egs. (59), (60) and
(63). Let us write a priori @({) as (Muskhelishvili, 1953)

P(0) = a[D1(0) + P2(O)]; (66)

with o the constant of Eq. (64) that is proportional to the stress intensity factor K’,
and where @,({) and ®,({) are two holomorphic functions for > 0 given by

DO=F+ %+ [’g‘; + ”g] ). (67)
ép
Dy(0) = [ %Wém dz, (68)
where
Q) = (= Ep)IPU=A(L 4 &) 1DATA, (69)
Qp(t) = (&p — ) VPUA(Ep 4 )IDAHEH, (70)

Here, a; and b; are real constants, and 1/(¢) is a real continuous function in the interval
[ — &g, ¢p]. Written in the forms (67) and (68), the functions @({) and ®,({), and
consequently @({), satisfy automatically condition (57). Moreover, when |{| — oo,
condition (58) is satisfied since all the constants ay,ay, b1, b, are real, as well as Y(¢).
The real constants a; and b; are determined by condition (63) satisfied by @({), and
consequently by @;({), in the vicinity of { = 0. After simple algebraic manipulations
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one finds that

ayg = —tan[An/2], (71)
sec[Am/2]
bo = 6(1”)/2 (—71)2° (72)
B 9))
a) = Ba0> (73)
1—-2 142
b=+ ——— ——| bo. 74
=17 2¢p 285 |70 (74)

The power law behavior of @({) for { close to —{p and &p, as given by Egs. (59) and
(60), is readily satisfied by ®;({). On the other hand, the function @,({) is the most
general representation of an analytic function in the upper half-plane that satisfies the
required behavior at { ~ —¢p and at { ~ &p, and whose imaginary part is zero on the
segments of the real axis ¢ > &p and & < — £p. Indeed, for —&p < & < &p, one has
(Muskhelishvili, 1953)

Im[®,(¢ +ie)] = %[‘152(5 +ie) — Po(& — ie)] = nQR(EW(E), (75)

a simple relation that guarantees the right behavior of @({) in the vicinity of the points
B and D, and which also fixes, through Egs. (59) and (60), the values of y/(—¢g) and
Y(&p).

Notice that the behavior of @({) for { ~ 0, as given by Eq. (63), is related to
the behavior of (&) for & ~ 0. Furthermore, let us recall that expansion (63) of
®({) is prescribed by expansion (31) of the stress field S in the vicinity of the crack
tip, where logarithmic singularities of the form log(h — s) and terms of the form
(b — s)*, with —1/2 < u < 1/2, are forbidden. Since the singular parts of &(() are
already embedded in the function @({), the function @,({) must not exhibit poles or
singular behavior at { ~ 0. This result imposes that the function /(&) must be of class
C! for all —&z < & < ¢p (ie. continuous and with first derivative also continuous).
This condition will be used in our numerical study in order to identify the proper
stress intensity factor of the kinking problem.

Therefore, the problem of determining the solution @({) is now reduced to the
determination of the real function (¢) and of the real constant o. They are fixed
by the integral equation (50) satisfied by @ (or Y(¢)) in the region —&p < & < &p,
combined with the complementary condition of the function (¢) being of class C'.
Once the constant o is determined by this procedure, the stress intensity factor just
after kinking is determined through the relation

K'(AL0) sinh b sinh b
* 2 = Hy(AL v o) = a= o 76
K, n(4v/e) Vcosh b 2v/cosh b 2 (76)

A complete analytical solution cannot be derived in the general case. For the straight
crack case (1=0), one can easily verify that the exact solution as found by Eshelby and
Kostrov (Kostrov, 1966; Eshelby, 1969), is given in our approach by y(¢) =0 and a
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stress intensity factor K’ = Ky/1 — v/c. For the general case, this problem will be
solved numerically in the next section.

5. The stress intensity factor of the kinked crack

In our representation, the numerical problem consists in finding the function Y (¢)
and the real constant o using Eq. (50) and the condition of y(¢) being of class C'.
Except for o, the number of unknowns is equal to the number of available equations.
Due to the presence of a singular behavior in the vicinity of the crack tip, and for
numerical purpose, we modify in the following Eq. (50) into a more suitable integral
equation.

Using Eq. (43), one can subtract the square root singular behavior in the integral
equation (50), when s ~ b. This leads to

v/coshs — cosh b[Im[F(s + i(An + ¢))] — G(s)] = cos /%R —V2acosh(b/2)

» Veoshb — coshs’ o
J— . h ! I F / .;L _ / ast
/0 coshs —coshy’ % (Im[F(s" 4 i/m)] — G(s)] T’ (77)
where
G(s) = 2a sinh(s/2) cosh(b/2)' -

coshs — cosh b

The integral appearing in the integral equation (77) can be written in a different form
in order to avoid a numerical singularity when s ~ s’ ~ b. The integral is first written
using a complex variable representation as

b /coshb — cosh s !
I(s) = / coshb = coshs’ b lm [F(s' + iim)] — Gy &
o coshs —coshs’ v

hb — cosh(y — i/
—Im / Veoshb — cosh(y — i ™) ginh(y — AmF () — iG(y — iamy .
r coshs — cosh(y —iAn) T

(79)

where I' is a curve in y-space, with y=s'+iAr and 0 < s’ < b. This integration over I’
is now written in {-space, where the curve I' starts on the ¢ axis at the point F, enters
into the upper half-plane and finishes at the point C that corresponds to the crack tip.
Useful in this transformation of variables is the expression for 7'({) = dy/d{:

dy 728

V(=== : 80
T = & T U gend - yey i (50)

Since the integrand of (79) is an analytic function for Im[{] > 0, the contour of inte-
gration I in {-space can be deformed. Closing the integral with a segment on the ¢ axis
from F to infinity and then with quarter of a circle at infinity and finishing with the
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Fig. 4. Plot of the function y(¢) for 2 =02, v/c = 0.1, and for different values of a.

vertical axis £ =0, one finds that the first two segments do not contribute, and the
integral becomes

B ° idn \/coshb — cosh(y(in) — iln) . . g
)= Im/o n coshs — cosh(y(in) — iAn) sinh(y(in) = i4myy (in)

x[F(y(in)) —iG(y(in) — iAm)]. (81)

Using this new representation of the integral, the numerical resolution of Eq. (50)
can be done without difficulty. For each value of o, one finds a function y(z) that
satisfies the integral equation (77), and one varies o until the condition of no singular
behavior of ¥(t) (or Y(t) of class C') at =0 is satisfied. The corresponding value of
o being the one we are looking for. In Fig. 4, we show examples of functions y(z) for
fixed values of A and v’ and for different values of . It is seen that y(¢) presents a
singularity at + =0 that is incompatible with the physical expansion (17) of the stress
field in the vicinity of the crack tip. This singularity is absent for a unique value of a,
the desired one, where the function y(¢) satisfies the condition of being of class C'.
In Fig. 5, we plot the stress intensity factor K’ as function of the kinking angle and
for different velocities.

6. Discussion

In this paper, we presented a general method for determining the elasto-dynamic
stress fields associated with the propagation of anti-plane kinked or branched cracks.
As a first illustration, we considered a semi-infinite anti-plane straight crack, initially
propagating at a given time-dependent velocity, that changes instantaneously both its
direction and its speed of propagation. This work can be considered as a continuation
and a generalization of the works on equilibrium of star shaped cracks, cases that
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Fig. 5. Plot of the stress intensity factor function Hi3 as a function of the kinking angle and for different
values of the crack tip velocity. Also shown in this figure, Sih’s solution associated with the elasto-static
kinking problem (Sih, 1965).

have been extensively studied (Sih, 1965; Amestoy and Leblond, 1992). It is also a
generalization of the solutions found by Eshelby and Kostrov for the mode III straight
dynamic crack (Eshelby, 1969; Kostrov, 1966, 1975; Freund, 1990). It also extends
the class of self-similar solutions that were found for crack problems (Dempsey et al.,
1982; Broberg, 1999; Willis, 1973).

Our approach allowed the exact calculation of the dynamic stress intensity factor
for the dynamical kinked crack problem. The most important result of this study is
displayed in Fig. 5. It is shown that our solution for vanishingly small velocity is
different from the elasto-static solution, as given by Sih (1965), where the static stress
intensity factor just after kinking, K/, is related to the one just before kinking, K, by

. (1=2\"
Ks—<l+i K. (82)

This discrepancy was to be expected, since in this case the length of the kink is not time
dependent and the propagating wave character of the solution is lost. Indeed, in Sih’s
solution, any small kink will modify the stress field all throughout the material, while
in our representation of the kinking mechanism, the stress field is modified only within
a cylindrical region limited by the cylindrical wave ct. Outside this region, the stress
field remains unchanged with respect to the kinking process. Therefore, the propagation
of bifurcated cracks should be seen as an intrinsically time dependent process, even if
it occurs at vanishingly small speeds.

Although the equivalent in-plane dynamical kinked crack solutions remain to be
found, the observed discrepancy between the elasto-static solution and the elasto-
dynamic one with vanishingly small velocity, is expected to persist in that case also.
Therefore, criteria of the path selection, such as the principle of local symmetry or the
maximum energy release rate criterion, that have been developed for quasi-static crack
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propagation, using elasto-static solutions (Amestoy and Leblond, 1992; Leblond, 1989)
be reviewed at least for quantitative facts.

In order to study the dynamic branching instability, the next step of this work will
be the determination of the stress fields associated with the anti-plane symmetrical
branching problem.
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Abstract

The dynamic propagation of a bifurcated crack under antiplane loading is considered. The
dependence of the stress intensity factor just after branching is given as a function of the stress
intensity factor just before branching, the branching angle and the instantaneous velocity of the
crack tip. The jump in the dynamic energy release rate due to the branching process is also
computed. Similar to the single crack case, a growth criterion for a branched crack is applied.
It is based on the equality between the energy flux into each propagating tip and the surface
energy which is added as a result of this propagation. It is shown that the minimum speed of
the initial single crack which allows branching is equal to 0.39¢c, where ¢ is the shear wave
speed. At the branching threshold, the corresponding bifurcated cracks start their propagation at
a vanishing speed with a branching angle of approximately 40°.
© 2003 Elsevier Ltd. All rights reserved.

Keywords: A. Crack branching and bifurcation; Dynamic fracture; Stress intensity factors; B. Crack mecha-
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1. Introduction

In a previous paper (Adda-Bedia and Arias, 2003), a method for determining the elas-
todynamic stress fields associated with the propagation of antiplane kinked or branched
cracks was developed. As a first illustration, the case of a semi-infinite antiplane straight
crack, initially propagating at a given time-dependent velocity, that changes instanta-
neously both its direction and its speed of propagation was considered. The aim of the
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present paper is to apply this method to the case of an initially propagating antiplane
crack that branches into two cracks that merge symmetrically. The explicit dependence
of the stress intensity factor just after branching is given as a function of the stress in-
tensity factor just before branching, the branching angle and the instantaneous velocity
of the crack tip.

A growth criterion for a branched crack must be based on the equality between
the energy flux into the two propagating tips and the surface energy which is added
as a result of this propagation. Eshelby proposed this approach (Eshelby, 1970; Rice
et al., 1994) posing the question how large must be the single crack speed so that
there will be enough energy available to form two slow cracks instead of the single
fast one. Using the exact solution, the jump in the dynamic energy release rate due to
the branching process is computed. It is shown that the minimum speed of the initial
single crack which allows branching is equal to 0.39¢, where ¢ is the shear wave speed.
The corresponding bifurcated cracks start their propagation at a vanishing speed with
a branching angle of 39.6°.

The paper is organized as follows. The next section summarizes the approach to the
branched crack dynamics under mode III loading. The corresponding model problem
is presented, and the self-similar solution that it admits is derived. The analysis of this
section is similar to the dynamical kinked crack problem, and a detailed discussion can
be found in Adda-Bedia and Arias (2003). In Section 3, the dynamic crack branching
problem is completely solved. The self-similar solution of the corresponding problem
is given by an integral representation, which is a convolution between a known kernel
and a harmonic function, which is determined by a different method than that used
for the kinked crack case (Adda-Bedia and Arias, 2003). It is shown that the problem
can be reduced to the determination of a real function that satisfies a simple integral
equation. Once the integral equation is solved, the stress intensity factor just after
branching is computed a posteriori using an additional condition. In the last section,
the stress intensity factor just after branching and the jump in the dynamic energy
release rate due to the branching process are given for arbitrary angles and velocities.
Finally, following Eshelby’s approach (Eshelby, 1970; Rice et al., 1994), the growth
criterion for a branched crack is applied, and the minimum speed of the initial single
crack which can allow branching is computed.

2. The dynamical branched crack under mode III loading

Consider an elastic body which contains a branched crack but which is otherwise
unbounded (see Fig. 1). Introduce a cylindrical coordinate system (r,0,z) so that the
z-axis lies along the crack edge. Suppose that the material is subjected to a loading
which produces a state of antiplane shear deformation in the body. Thus the only
nonzero component of displacement is the z-component u.(r, 0,t) = w(r, 0,t), which is
independent of z.

The scenario of crack branching is decomposed as follows. A semi-infinite straight
crack that propagates at a speed v(¢) for 1 < — 7, with = — 0%, suddenly stops at
t = —1. At t — 0%, the crack branches locally with a branching angle equal to An,
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r=c(t+7)

Fig. 1. A half-plane crack that propagates at a speed v for # < — t suddenly stops at t = —1. For ¢ > 0, the
new branches propagate straightly from the position » = 0 at a velocity v/, following the directions +/m.
The orthonormal basis (€, &y, &) corresponding to the cylindrical coordinate system (7, 0,z) is shown. The
cylindrical waves originated at the crack’s arrest (r = ¢(¢ + 7)) and at the start of branches propagation
(r = ct) divide the material into three regions. In the region labelled I, the stress field comes only from the
dynamical straight crack propagation, since the effects of the crack’s arrest and the crack’s branching are not
experienced there. The region II is influenced by the crack arrest only, thus the stress field there is a static
one (Eshelby, 1969; Freund, 1990). It is only the region III that is influenced by the crack’s branching.
Thus, one has to solve the branched crack problem only in this latter region.

with 0 < 2 < 1. For ¢ > 0, the new branches propagate straightly at a velocity v'(¢),
following the new directions +An. The magnitude of the crack speed v and v’ are
restricted by 0 < v <c¢ and 0 <1’ < ¢, where ¢ denotes the shear wave speed. The
mode III dynamic stress intensity factor, K(z), of the straight crack prior to branching is
related to the rest stress intensity factor, Ky(¢), of the same configuration by (Eshelby,
1969; Kostrov, 1966; Freund, 1990)

K(2) = k(v)Ko(2), (1)

where k(v) is a universal function of the instantaneous crack tip speed given by

k(v)=+/1—v/c. (2)

According to the latter description of crack branching, the dynamic stress intensity
factor, K’, just after branching should be defined by
K'QO,v,0,¢,--)= lirgl li%( lir)n . \21(r — v't)og.(r, AT, t). (3)
1—0F =0t (r—0v't)—0*
When the initial crack stops, a static stress distribution is restored behind a wave front
that propagates from the crack tip at the shear wave speed (Eshelby, 1969; Freund,
1990), (see Fig. 1). Moreover, in the limit ¢ — 0T, the lengths of the branched
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parts of the crack are vanishingly small, so that the breaking process after branching
occurs in the region determined by the square root singular stress intensity factor field
of the semi-infinite straight crack. Therefore, the branching problem consists in two
symmetric branches reminiscent from a preexisting stationary straight crack, that start
to propagate at time ¢ =0V, in the directions &/, with a velocity v/, under the action
of a time-independent loading, &} (r,0), given by (Adda-Bedia and Arias, 2003)
. Ko 0

ap,(7,0) G c0s 5, 4)
where K, is the rest stress intensity factor of the crack tip prior to branching. A
straightforward consequence of these dimensional arguments is that the stress intensity
factor just after branching must be written as (Adda-Bedia and Arias, 2003)

K' = k(v")Hs3(4, 0 Jc) Ko, (5)

where Hi; is an unknown dimensionless function of the branching angle Am and of
the crack tip speed v’ only. The function Hjz is universal in the sense that it depends
on neither the loading configuration nor on the geometry of the body. Effectively, in
the limits # — 0" and © — 0" that we consider, the dynamic branching problem does
not involve radiation effects. So it is always equivalent to a crack propagating in an
unbounded body. On the other hand, due to the absence of intrinsic time or length
scales in linear elasticity theory, this problem becomes of general purpose, because it
is not necessary for the crack and for the branches to be straight. H3; does not depend
on the local curvature of the crack prior to or after branching (Adda-Bedia and Arias,
2003).

2.1. The model problem of dynamic crack branching

The process of crack advance in the situation depicted in Fig. 1 can be viewed as
follows. For ¢ < 0, it is assumed that the crack is at rest and that the material is loaded
according to Eq. (4). As the crack advances for ¢ > 0, the component of displacement
w(r, 0,t) satisfies the wave equation

1o (w1 1w ©
ror or r2002 2 o
with boundary conditions on the displacement field w(r,0,t), for r < ct, given by
oo:(r,m,1) =0, (7)
w(r,0,1) =0, (8)
oo-(r <V't,Am £ e,t)=0, )
2K, t 0
wiet,0,6) = =2 [ < sin - (10)
uw V2n 2

Here (and elsewhere), ¢ is a vanishingly small positive constant, u is the shear modulus,
and

W ow
r 007

G0z
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Condition (8) follows from the symmetry property of w(r, 0,¢) with respect to reflection
in the plane #=0. Condition (9) is a consequence of the continuity of the displacement
field w(r, 0,t) at the wave front » = ct. Moreover, the dynamic jump condition across
the wave front » = ¢t is given by (Dempsey et al., 1982)

u [ ow
rzlr=c — | a7 :07 11
[J ]r—ct+ c |:at:|r_ct ( )
where
ow
Oy = HU—.
or

The Williams expansion (Williams, 1952) imposes that the singularity of g¢.(r,0,¢) in
the vicinity of the edge points B and D should be given by

oo.(r,0,t) ~r? as r—0, (12)

where
A
. forin < 0 < m,
1 -4

p= { (13)
—14+— for0 <6< im
2

The asymptotic behavior of the stress field near the propagating crack tip is given by
(Freund, 1990)

/

K
\/2n(r — v't)

as r—v't, (14)

+OWr —vO)| Hr —v't)

o (r, At £ &,t) =
where H is the heaviside function.
2.2. Self-similar analysis
Except the stress intensity factor scale introduced by the boundary condition (10),
there is neither a characteristic length nor a characteristic time against which the in-

dependent variables » and ¢ can be scaled. Therefore, the displacement field takes the
following self-similar form (Adda-Bedia and Arias, 2003):

w(r 0,0 = 20 [T {ZSine—kW(s,H)}, (15)
uw\2n 2
where
s = cosh™! (C—t), s=0 (16)
r

and W is a dimensionless function of its arguments (Miles, 1960; Dempsey et al.,
1982; Broberg, 1999). Equivalently, the stress field takes the following form:

oo (r,0,1) = \/I% {cos g + S(s, 0)} (17)
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0
S=0
™
E D
W=0
S:—cos%r
)\71'__F_ _______ ¢ D
Vs B
S = —cos
cos
W=0
ol4 B
W=0 s

Fig. 2. The (s, 0)-plane, with s > 0 and 0 < 0 < 7, that maps the region III of (r, 0,7)-space, corresponding
tor<ct,0<0<m, and ¢ >0 (see Fig. 1).

with
ow
S(s,0)= E(S’U)' (18)

In Fig. 2, the transformation from the coordinates system (7,0,¢) to the (s, 0)-plane is
shown. Taking into account the explicit dependence of s on r and ¢, one finds that W
satisfies the partial differential equation

orw ow *w 1

— —coths — + — + - W =0. 19

o2 M T T (19)
The singularity of the stress field in the vicinity the edge points B and D, as given by
Eq. (12), imposes the behavior to the function S(s,0)

S(s,0)= —cosg +0 (exp - (p + ;) s) as s — +0o0, (20)

On the other hand, the asymptotic behavior near the crack tip (14) imposes the fol-
lowing asymptotic behavior in the (s, 0)-plane:

An K’ +/cothb
S(s, At &) = —cos — + lKo ﬁ +0 (\/b —s)] H(b —5s)

2
as s — b, (21)

where
b = cosh™!(c/v"). (22)

The boundary conditions (7)—(10) are easily transformed into conditions on W and S.
They are given by

S(s,m) =0, (23)

W(s,0)=0, (24)
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p
S(s > b, in + &) = —cos 7“ (25)

w(0,0) = 0. (26)

Once the displacement field w(r, 0,¢) is written under the form (15), the jump condition
(11) across the cylindrical wave front s = 0, corresponding to » = ct, is automatically
satisfied.

3. Solution of the dynamic crack branching problem

In Adda-Bedia and Arias (2003), it has been shown that Eq. (19) admits solutions
of the form

W(s,0)= % / Vcoshs — coshs’ (s, 0)ds’, (27)
0

where @(s,0) is an unknown function that satisfies the harmonic equation

8’2 az
and the additional boundary condition
{" (s, o)] o (29)
s 0

Note that once the displacement function W(s,0) is written in the form (27), the
boundary condition (26) at the cylindrical wave front s =0 is automatically satisfied.
Eq. (28) implies that the function @(s,0) is readily given by the real part of a complex
function F(y=s+10), which is holomorphic inside the contour DCBAED (see Fig. 2):

1 —_— .
@(s,0) =Re[F()] = S[F() + FL, - v =s+10. (30)
Using Eq. (30) and Cauchy relations for holomorphic functions, the function S(s, 0)
can thus be written in the form

N : ! ! : /
S(5.0) = “veoshs — TIm[FGoy] — [ Smos ImlF(s +i0)] ds” 31)
i o +coshs—coshs’ =

Condition (20) imposes that the stress function S(s,0) is not diverging at s — +o0.
This imposes that

Im[F(i0)] = 0. (32)
Moreover, Eq. (32) is a sufficient condition for satisfying the boundary condition (29).
Therefore, Eq. (31) is reduced to

¥ sinh ' Im[F(s" + i0)] ds’
o +/coshs —coshs’ =@

Using Eq. (33), expansion (20) in the vicinity of the wedge points B and D are
recovered if the function F satisfies the following behavior:

S(s,0) = — (33)

Im[F(y)] — \/iexp {—%} cosg as y — oo. (34)
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The asymptotic behavior near the crack tip embodied in Eq. (21) imposes a specific
behavior of F(y) in the neighborhood of the corresponding point y¢ = b + iAn. It can
be shown that F(y) behaves as (Adda-Bedia and Arias, 2003)

ia .
F(V)=ﬁ+0(("/—“/c)°) as  y—yc =b+iim, (35)
—Yc
where a is a real constant that satisfies
hb K’
q— veoshb KT (36)
sinhb K,

Thus, the function F has a simple pole at y =y¢. The boundary conditions (23), (24)
on S imply that F(y) must satisfy

Im[F(s +im)] =0, (37)

Re[F(s)] = 0. (38)

Finally, the transformation of the boundary condition (25) on S onto a condition sat-
isfied by F' leads to (Adda-Bedia and Arias, 2003)

vcoshs — coshbIm [F(s + i(An £ ¢))]

A b /
AT y/cosh b — cosh s’ ds
=CoSs — — inhs" Im [F(s" + iAn)] — .
cos > /0 coshs —cosh s’ sinhs’ Im [F(s" + iAn)] p s>b. (39)

The holomorphic function F(y) is uniquely determined by conditions (32), (34), (35),
(37)—(39). On the other hand, using Eq. (36), the stress intensity factor just after
branching, K’, is determined once the real constant a is fixed.

In the following, the dynamic crack branching problem will be solved using a dif-
ferent method than the one for the dynamic kinked crack problem (Adda-Bedia and
Arias, 2003). For the present case, it is possible to get a suitable representation of the
function F(y) without mapping it into a complex half-plane (Adda-Bedia and Arias,
2003). An intermediate solution of F(y), which satisfies the conditions (32), (35), (37),
(38), is given by

F(y) =2acosh(b/2) [Fi(7) + F2()], (40)
where Fj(y) and F»(y) are holomorphic functions inside the contour DCBAED, given by
) sinh((y — idm)/2 sinh((y + iAn)/2
Fi) i (¢ — 1im)2) (G+imy2) ] )
cosh(y — iAn) — cosh(b) = cosh(y + iAn) — cosh(d)

e sinh((y — iAn)/2) sinh((y + iA7)/2)
)= l/b [cosh(y —iAn) — cosh(¢)  cosh(y + iim) — cosh(t)} JOLY
(42)

with f(¢) a real continuous function defined for ¢ > b. Written in the forms (41),
(42), the functions F(y) and F»(y), and consequently F(y), satisfy automatically the
conditions (32), (37), (38). Also, condition (35) is automatically satisfied by F(y),
through F(y). Finally, notice that F,(y), as given by Eq. (42), is the most general
representation of a holomorphic function that satisfy the conditions (32), (37), (38).
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Therefore, the complete determination of the function F(y) is now reduced to finding
the real function f and the real constant a. They are fixed by the integral equation
(39) satisfied by F (or f'), combined with the additional condition (34), which can be
rewritten as

2v/2 acos(/n/2)cosh(b/2) {1 + / h f(t)dt] =1 (43)
b

Using Egs. (36) and (43), the stress intensity factor just after branching, K’, is then
given by
Kl k /
2 k) Hiz (A0 o) = W) _ .
Ko 2cos(An/2)[1 + [, f(2)dr]
The function f must satisfy the integral equation (39), which can be simplified to (see
Appendix A)

f(s)=A(s,b) + /boO A(s,u) f(u)du, s> b, (45)

1 cosh(s/2) Im sinh(u — 2iAr)
1 cosh(u/2) cosh(s) — cosh(u — 2iin) |

Note that Eqs. (45) and (46) do not involve the real constant a. Therefore, the latter
integral equation can be solved independently of the value of the constant a. Once the
function f is determined, the stress intensity factor just after branching is computed a
posteriori, by using Eq. (44).

A complete analytical solution of the integral equation (45) cannot be derived in
the general case. However, for the special case A =1/2, it is straightforward to show
that A(s,u) = 0. Therefore, the solution of Eq. (45) is readily given by f(s) =0, and
Eq. (44) yields

(44)

A(s,u) (46)

Hy3(1/2,0'fe) = (47)

1
7
For the general case, the numerical resolution of integral equation (45) can be done
without difficulty. In Fig. 3, examples of solutions are shown for some values of 4
and v'. In Fig. 4, the function Hi3(4,v'/c) is plotted as a function of the branching
angle and for some values of the speed of the crack branches. Note that in Fig. 4,
the interval 1/2 < 4 < 1 has not been considered, because it is not pertinent for the
subsequent discussion.

4. Results and discussion

Using a method developed in Adda-Bedia and Arias (2003), the elastodynamic stress
fields associated with the propagation of antiplane branched cracks have been deter-
mined. Within this approach, the dynamic stress intensity factor just after branching,
as given by Eq. (5), is computed as a function of the stress intensity factor just before
branching, the branching angle and the instantaneous velocity of the crack tip. The cor-
responding results are summarized in Fig. 4. First, it is shown that H33(0, v'/c)=1//2,



1416 M. Adda-Bedial J. Mech. Phys. Solids 52 (2004) 14071420

0.10

0.05F A=0.6

0.00
< 005
-0.10

-0.15

-0.20

Fig. 3. Plot of the function f(s), solution of Eq. (45), for some values of the branching angle and for
v'/e=02.
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Fig. 4. Plot of the function H33 as a function of the branching angle and for some values of the crack
tip speed just after branching. Note that K’/Ko = /1 — v//c H33(/, v’ /c), where K’ is the dynamic stress
intensity factor just after branching, and Kj is the rest stress intensity factor just before branching. Note that
for A — 0, H33 coincides exactly with the corresponding elastostatic result given by Eq. (48).

independently of v'. For a given branches velocity, H3; increases with /, attains a
maximum at a given branching angle that depends on v/, and decreases again with 4,
by satisfying Hs3(1/2,v'/c) = 1/v/2 and H33(1,v'/c) = 0. However, the principal result
of Fig. 4 concerns the dynamic stress intensity factor just after branching for a van-
ishingly small velocity. The latter quantity coincides exactly with the stress intensity
factor just after branching computed by using an elastostatic approach (Smith, 1968),

1 1=\
Hy(ALv = 0)= — | —— . 48
33(4,0° — 0) 7 ( 7 ) (48)
This result differs from the previous one dealing with the kinked crack configuration
(Adda-Bedia and Arias, 2003), where the dynamic stress intensity factor just after
kinking for a vanishingly small velocity was found to be slightly different from the
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corresponding elastostatic solution. This difference may be due to numerical errors in-
duced by the method used in Adda-Bedia and Arias (2003) for computing the dynamic
stress intensity factor just after kinking. Indeed, the present approach, as given in Sec-
tion 3 and in Appendix A, is more elaborated than in Adda-Bedia and Arias (2003).
The representation of the function F(y), as given by Egs. (40)—(42) allowed analyti-
cal computations without mapping the function F(y) into a complex half-plane. As a
consequence, the resolution of the numerical problem, as given by Egs. (45) and (46),
has been straightforward. Applying the same approach for the kinked crack case would
be necessary for validating the behavior of the dynamic stress intensity factor just af-
ter kinking, as a function of the kinking angle and of the velocity just after kinking.
Unfortunately, an equivalent representation of the corresponding function F(y) for the
kinked crack case is not available yet.

4.1. Dynamic branching instability

Eshelby (1970) posed the question how large must be the single crack speed so that
there will be enough energy available to form two slow cracks instead of the single
fast one. The simplest branched configuration that Eshelby analyzed is the limiting case
where the branches subtend a vanishingly small angle and both prolong the original
crack plane. In this case, Eshelby reported v=0.6¢ and v" — 0 as the minimum speeds
which could allow branching or surface roughening (Eshelby, 1970). However, since
no solution was available for two branches with an arbitrary angle between them and
propagating at arbitrary velocities, this result has been considered as a rough estimate.

The dynamic energy release rate is a quantity associated to a single moving crack
tip. It is defined as the rate of mechanical energy flow out of the body and into the
crack tip per unit crack advance. For the single moving crack before branching, it is
given by (Freund, 1990)

K2 1
9K, (49)

G=—rono =
2u/1 —1v2/ct 2p

where K is the rest stress intensity factor, and

N e
90 =\ T (50)

The function g(v) does not depend on the details of the applied loading or the con-
figuration of the body being analyzed. It depends on the local instantaneous speed of
the crack tip and on the properties of the material only. Due to the symmetry of the
branching configuration, the energy release rate just after branching G’ of each crack
tip is given by

/ K/Z 1 / 2 / 2
G = = —g(v')H33(4, V' [c)K]. (51)

2/1\/171;’2/02 2u

In Fig. 5, the energy release rate just after branching G’ is plotted as a function
of the branching angle and for some values of the velocity just after branching. It is
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Fig. 5. Plot of the energy release rate just after branching G’, scaled by Kg/(2u), as a function of the
branching angle and for some values of the crack tip speed just after branching.

shown that for a constant branching angle, G’ is a decreasing function of v’. Therefore,
the energy release rate just after branching is maximized when the branches start to
propagate quasi-statically (v — 0). Moreover, G’ always displays a maximum at a
given branching angle that depends on the branches velocity v'.

According to the Generalized Griffith’s criterion (Griffith, 1920), a crack must grow
in such a way that its energy release rate is equal to the dynamic fracture energy of the
material, I", which is assumed to be a property of the material and whose value may
depend on the instantaneous crack tip speed. This growth criterion should be applied
for each crack tip before and after branching. At the onset of branching, the conditions

G=I(v) and G =TI(@"), (52)

should be satisfied. Therefore, the growth criterion introduces an intrinsic relationship
between the energy release rates just before and just after branching, which reads
o= )
rwy -

Eq. (53) is a necessary condition for the existence of a branching configuration. Other-
wise, the single crack tip propagation should be maintained. Moreover, condition (53)
shows that if a branching instability occurs, it is universal in the sense that it does
not depend either on the loading configuration or on the geometry of the body. The
branching thresholds depend on the properties of the material only. In the case of a
constant fracture energy, Eq. (53) reduces to

9(v) = g YHH(4 '), (54)
Eq. (50) shows that g(v) is a decreasing function of the velocity, which satisfies
g(0) =1, and g(c) = 0. Moreover, Fig. 5 shows that the right-hand side of Eq. (54)

displays a maximum, whose value is smaller than unity. Therefore, branched solutions
exist only if the velocity v exceeds a critical velocity v.. This threshold is given by the

(53)
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least velocity v for which Eq. (54) admits a solution. This solution corresponds to a
branched configuration with a speed v, — 0, and a branching angle of 39.6° (1.=0.22),
given by the maximum of H33(4,0). Using Eq. (54), one finds that the corresponding
critical speed of the single crack tip speed before branching is given by v, = 0.39c.

The thresholds of the branching instability given by (v, — 0, 1,=0.22,v,=0.39¢) have
to be compared to the ones reported by Eshelby (1970), (v, — 0,4, — 0,v.=0.6¢). The
assumptions of zero branching angle and vanishing branches velocity were necessary,
as no solution was available for two branches with an arbitrary angle between them
and propagating at an arbitrary speed. The present exact computations confirm that
the resultant zero velocity after branching is the least velocity for which a branched
configuration exists. Consequently, the critical branching angle, which is computed
directly from the elastostatic solution, is given by the maximum of H33(4,0). Therefore,
the resultant critical velocity of the initial single crack is smaller than the one computed
from the zero branching angle assumption.

Finally, the critical speed for branching, v.=0.39¢, agrees with the one deduced from
numerical simulations using a phase field model of brittle fracture under antiplane load-
ing (Lobkovsky and Karma, 2003). However, since dynamic fracture experiments are
often performed under inplane situations, a theoretical study of this case is still lacking.
Although the resolution of a branched configuration of a dynamical crack under inplane
loading seems difficult to perform, the analogy with the mode III loading suggests that
a quasistatic approach would be sufficient, or at least a good approximation, for the
determination of the branching instability thresholds.
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Appendix A

In the following, we focus on the transformation of the integral equation (39) into
Eq. (45). Using the representations (41), (42), it is shown that

Im[F(s + i47)] = 2a cosh(b/2) [l(s,b) n / S Is.050) dz} , (A1)
b
_ sinh(s/2) sinh((s + 2iAn)/2)
lis,f)=Re cosh(s) — cosh(¢)  cosh(s + 2iin) — cosh(t)} ' (A2)

Eq. (A.2) can be easily transformed into

sinh(s/2) sinh(s/2) { cosh((¢ — 2iin)/2)

10 o) — cosh(n) * cosh@/2) " [ cosh(s) — cosh(r — 2m)

} . (A3)
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Using Egs. (A.1) and (A.3), the integration over s’ in Eq. (39) can be computed
analytically. After some algebraic manipulation and using Eq. (43), an integral equation
satisfied by the real function f is deduced. It is given by

°° \/cosh(t) — cosh(b) ) B oo
/,, cosh(z) —cosh(s) 7 (sinh(/2)dr =H(s.b) + /b H(s,0)f(1)d1, (A4)

sinh(¢z — 2iAn) \/cosh(t — 2iAm) — cosh(b)
2cosh(#/2)  cosh(s) — cosh(¢ — 2iin)

H(s,t)=Re : (A.5)

where the integral in the left-hand side of Eq. (A.4) must be taken in the sense of
Cauchy principal value. One can write Eq. (A.4) differently by noticing that it is in
the form of a Hilbert singular integral equation. Thus, one can invert it to obtain
(Muskhelishvili, 1953)

f(s)=A(s,b) + /boo A(s,u) f(u)du, s> b, (A.6)

_ > H(t,u)sinh(¢) d
Al ==2 COSh(S/Z)/b \/cosh(t) — cosh(b)(cosh(z) — cosh(s)) ©*

Using Eq. (A.5), one can compute analytically the integration over the variable ¢ in
Eq. (A.7). The result leads to Eq. (46).

(A7)
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Abstract

The dynamic propagation of a bifurcated crack under arbitrary loading is studied. Under plane
loading configurations, it is shown that the model problem of the determination of the dynamic
stress intensity factors after branching is similar to the anti-plane crack branching problem.
By analogy with the exact results of the mode III case, the energy release rate immediately
after branching under plane situations is expected to be maximized when the branches start to
propagate quasi-statically. Therefore, the branching of a single propagating crack under mode I
loading should be energetically possible when its speed exceeds a threshold value. The critical
velocity for branching of the initial single crack depends only weakly on the criterion applied
for selecting the paths followed by the branches. However, the principle of local symmetry
imposes a branching angle which is larger than the one given by the maximum energy release
rate criterion. Finally, it is shown that an increasing fracture energy with the velocity results in
a decrease in the critical velocity at which branching is energetically possible.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The bifurcation of the crack tip into two or more branches is a well-known phe-
nomenon in brittle crack propagation (Ravi-Chandar and Knauss, 1984; Fineberg
et al., 1992; Gross et al.,, 1993; Sharon et al., 1995; Sharon and Fineberg, 1996,
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1999; Boudet et al., 1996; Boudet and Ciliberto, 2000). Recent experiments on PMMA
and glass samples (Sharon et al., 1995; Sharon and Fineberg, 1996, 1999) have es-
tablished that the branching phenomenon results from the dynamic instability of a
single propagating crack. The instability occurs when the crack speed exceeds a crit-
ical velocity v., which depends neither on the applied stress nor on the geometry
of the plate. Above v, a single crack is no longer stable. Instead, a repetitive pro-
cess of micro-branching occurs, which changes the crack dynamics. Simultaneously,
the acoustic emission from the crack tip region increases (Gross et al., 1993; Boudet
et al., 1996; Boudet and Ciliberto, 2000), the crack velocity develops strong oscilla-
tions. In addition a pattern which is correlated with the velocity oscillations, is created
on the fracture surface (Fineberg et al., 1992). Crack branching has also been observed
in simulations of dynamic crack propagation using molecular dynamics (Abraham et
al., 1994), finite element calculations of constitutive equations on a lattice (Xu and
Needleman, 1994), numerical simulations using a phase field model of brittle fracture
(Lobkovsky and Karma, 2004; Henry and Levine, 2004), and by modeling the elastic
medium as a two-dimensional lattice of coupled springs (Marder and Gross, 1995).

Yoffe (1951) observed that for crack speeds less than a critical velocity vy, the
transverse tensile stress in the vicinity of a crack tip reaches its maximum along the
direction of crack growth. For crack speeds larger than vy, this component of the
stress develops a maximum along two other symmetric directions. Yoffe suggested that
this modification of the local singular stress field could account for the observation
that rapidly growing cracks in brittle materials bifurcate into branched cracks. Since
then, the origin of the branching instability has been discussed elsewhere (Freund,
1990; Adda-Bedia et al., 1996). However, all the theoretical attempts to explain the
branching predict critical speeds larger than the experimental ones. A possible cause
for the failure of theory is that it was focused on the stress distributions around the
tip of a single straight crack, prior to branching. These analyses indicate that the stress
field around the crack tip is deformed at high velocities; however, this does not provide
us with a crack growth or a branching criterion.

As in the single crack case, a growth criterion for a branched crack must be based
on the equality between the energy flux into the two propagating tips and the surface
energy which is added as a result of this propagation (Griffith, 1920). Eshelby proposed
this approach (Eshelby, 1970; Rice et al., 1994), posing the question of how large the
single crack speed must be so that there will be enough energy available to form two
slow cracks instead of a single fast one. Since after branching twice as much surface
area is created, the branches would not advance unless their velocity is lower than that
of the single crack. The simplest branched configuration that Eshelby analyzed is the
idealized limiting case where the branches subtend a vanishingly small angle and both
prolong the original crack plane. In this case, the energy release rate of two branches
propagating at velocity v, equals twice that of a single crack moving at velocity v, and
it is maximal when the branches velocity is v" — 0. For the mode III case, Eshelby
reported v = 0.6¢5, where ¢s is the shear wave speed, as the minimum speed which
allows branching or surface roughening (Eshelby, 1970). This result remained a rough
estimate, as no full dynamic solution was available for two branches with an arbitrary
angle between them.
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Recently, a method for determining the elastodynamic stress fields associated with the
propagation of anti-plane kinked or branched cracks has been developed (Adda-Bedia
and Arias, 2003; Adda-Bedia, 2004). Particularly, the dynamic propagation of a bi-
furcated crack under anti-plane loading was considered (Adda-Bedia, 2004). It was
shown that the corresponding model problem admits a self-similar solution, which is
a convolution integral of a known kernel and a harmonic function that satisfies a sim-
ple integral equation. The dependence of the stress intensity factor immediately after
branching was determined as a function of the stress intensity factor immediately be-
fore branching, the branching angle and the instantaneous velocity of the crack tip.
The jump in the dynamic energy release rate due to the branching process was also
computed. When applying the Eshelby’s growth criterion for a branched crack, it has
been shown that the minimum speed of the initial single crack which allows branching
is equal to 0.39¢;. At the branching threshold, the corresponding bifurcated cracks start
their propagation at a vanishing speed with a branching angle of approximately 40°
(Adda-Bedia, 2004).

The present work is an attempt to generalize the approach of (Adda-Bedia and
Arias, 2003; Adda-Bedia, 2004) to the dynamic propagation of a bifurcated crack
under arbitrary loading. Especially, under plane loading configurations, the dynamic
stress intensity factors immediately after branching are studied. It is shown that the
formulation of the corresponding model problem is identical to the anti-plane case.
The difficulty for solving the branching problem under plane loading configurations
completely lies in the existence of two characteristic wave speeds and in the vectorial
nature of the displacement field. However, this analogy allows for the reasonable hy-
pothesis that under plane loading configurations, the jump in the energy release rate
due to branching is maximized when the branches start to propagate quasi-statically.
Using Eshelby’s approach, the branching of a single propagating crack under mode I
loading is found to be energetically possible when its speed exceeds a threshold value.
The critical branching parameters depend of the criterion applied for the selection of
the paths followed by the bifurcated cracks. For instance, the maximum energy release
rate criterion (Erdogan and Sih, 1963) or the principle of local symmetry (Gol’dstein
and Salganik, 1974). It is found that the critical velocity for branching of the initial
single crack is weakly sensitive to the applied criterion. However, the principle of local
symmetry gives a larger branching angle, which is more consistent with experimental
observations. Finally, it is shown that an increasing fracture energy with the velocity
results in a decrease in the critical velocity at which branching is energetically possible.

This paper is organized as follows. In Section 2, the results concerning the general
elastostatic problem of a crack of finite length with two side-branches of infinitely small
lengths are presented. Although the material of this section can be found elsewhere
(Smith, 1968; Amestoy and Leblond, 1992), the results are recalled here for complete-
ness, since they are used in the subsequent analysis of the dynamic crack branching
problem. In Section 3, the model problem for the determination of the dynamic stress
intensity factors after branching is presented. It is shown that the formulation of such
a problem for both the plane and the anti-plane loading configurations are equiva-
lent. The similarity between these two problems allows us to propose that even under
plane loading configuration, the maximum of the energy release rate immediately after
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branching is attained when the branches propagate quasi-statically. In Section 4, these
results are combined with Eshelby’s approach for determining a crack branching cri-
terion, and computing the critical branching quantities. In the last Section, the results
are compared with experimental data, and their relevance with respect to other models
of dynamic crack branching is discussed.

2. The static branching problem

Let us start by giving the general solution of the elastostatic problem depicted in
Fig. 1. An infinite sheet is stretched in the presence of a crack contour consisting of a
main crack of length L and two symmetric side branches of equal lengths / emerging
from a common origin. The angle between the two side-branches is denoted by 27/,
with 0 < 4 < 1. In particular, the case of a main crack with two side-branches of
infinitely small lengths is studied. The complex stress function method is used and
the stress intensity factors are derived. In the following, the resolution of the mode
IIT loading is given in details, while the mixed mode I-II loading is briefly presented.
Detailed analysis of a similar problem can be found in (Amestoy and Leblond, 1992).

2.1. Mapping function

The mapping of the exterior of the star shape crack in the z-plane, z =x + iy, onto
the exterior of the unit circle in the {-plane, { = & + in, is considered. The conformal
mapping of the contour depicted in Fig. 1 is given by the function (Smith, 1968)

=) =A== ey —e) T, (1)

where 4 and o are real positive constants. As can be seen from Fig. 1, The points
{r=eP (k=1,2,3), corresponding to the tips B; of the star shape crack in the z-plane,

y n
B, @
eiot
A i
N 2 e
Bs L A 2nA B,
A2 ¢

/ QF

By
z —plane { -plane

Fig. 1. Conformal mapping of a star shape crack in the z-plane onto the exterior of the unit circle in the
(-plane. The x-axis is taken to be parallel to the main crack, and the argument of z is defined in the interval
[ — = 7).
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are the maxima of w({). Their values are given by
Pi=mn, fo=-p1=p= 2Arcsin(ﬂsin %) . (2)

Then, the lengths of the cracks L and / can be expressed under the form

N
L =44 (cos E) , 3)

. 2
=44 771 — 7)1=7 (sin %) . (4)

Egs. (2)—(4) yield a unique solution of the conformal mapping parameters 4, o and f§
as functions of /, L, and 4. In the vicinity of the tips B, the mapping function z=w({)
satisfies the following behavior

2z = 00— 00 = 53 WG~ ), 5)
0O = WG~ &) = VIE)E — 20) ©)

In particular, at the point B, one has
" A ’ 2 ﬂ 2 i(An—2p)
w'({H)=44 T cos 5 (1 +cos” e . (7)
In the following, we will focus on the limiting case of a main crack of length L with

two symmetric side branches of lengths /, with //L = ¢<1. Consequently, to leading
order in &, Egs. (2)—(4), (7) give

L
A= T (®)
o0 =221 = )R, )
B — 2/1(11‘»/1)/2(1 _ )\)(17}.)/2\/;:, (10)
/ A ’ im

2.2. The mode III loading
For anti-plane strain deformation, the displacement u3(x, y) normal to the xy plane

satisfies Laplace’s equation
Auz =0. (12)

A traction free boundary conditions are taken on crack surfaces, and the infinite elastic
body is supposed to be loaded by an external shear stress ¢55. These conditions are
written

ii-Vus =0 on the crack surfaces, (13)

023 + 1013 = (75; at infinity. (14)
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The displacement and stress fields can be expressed by means of a complex function
®(z), which is holomorphic outside the crack contour. In the z-plane, one has

us =$ [6(z) + 33 ] (15)
o13 — oy = ¥'(2), (16)

where p is the Lamé shear coefficient and the bar indicates the complex conjugate.
Note that @(z) is a complex function which is holomorphic inside the crack contour.
The problem can be easily solved in the {-plane. The boundary conditions (13), (14)
read

()~ d)=0 as [{| =17, (17)

Q'({)=—io554 as  |{| = oo. (18)
The solution is readily obtained if @({) is given by (Smith, 1968)

D(() = —io5A[L — '] (19)
The stress intensity factor K} at the tip B, is defined by

K = lim \/2n(z — 22) (023 + i3 )¢ (20)

Using the behavior of @({) when { — {(;, and relating it to the square root singularity
of the stress field leads to:
nei/ln
K, =id' (O ——. 21
=0 e 1)
One can easily verify that this quantity is real. For the limiting case where the two
side-branches are of infinitely small lengths, it can be shown that

K3 = F33(A)Kos, (22)

where Ko3 = 055+/7L/2 is the stress intensity factor of the main crack of length L in
the absence of the side-branches. The function F33 is given by

1 [1-2]"
Fs() =5 [ ; ] . (23)
The function F33(4) as given by Eq. (23) is universal in the sense that it is inde-
pendent of the applied loading. The discontinuity introduced by the vertices 4; is not
intuitive, since the stress intensity factor dependence of A is not given by a simple
angular contribution. As shown in Fig. 2, the function F33(4) displays a maximum at
a branching angle corresponding to 4 = 0.22.

2.3. The mixed mode I-II loading

In the following, the branching problem in plane situation is presented briefly. Effec-
tively, the approach is analogous to the kinked crack problem which has been studied
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Fig. 2. Plot of the function F33(/) as defined by Eq. (23).

previously (Amestoy and Leblond, 1992). More details of the analysis can be found
in (Amestoy and Leblond, 1992) and references therein.

According to Muskhelishvili (1953), the stresses at a point z=x+1iy = w({) can be
expressed, in the {-plane, by the complex stress functions @({) and ¥Y({). For the case
where traction free boundary conditions are taken on the crack surfaces and where the
loading is given by external stresses of}, 055 and o5, the complex stress functions
satisfy the following conditions

o(§)

D)+ () +W¥()=Cte for || =17, (24)
o’'({)

&()=TA4 for |{| — oo, (25)

P()=TI'4 for || = oo, (26)

where I' = (o + ¢55)/4 and I'" = (55 — a{7)/2 + i65S.
We focus on the asymptotic case where the two side-branches are of infinitely small
lengths. Let us perform a second conformal mapping given by

{=expiaZ, (27)

which maps the region |{| > 1 onto the domain JZ < 0 (see Fig. 3).
Following the same steps as in (Amestoy and Leblond, 1992), one finds that the
problem reduces to resolving the integral equation

e
i d
UZ) =Ko + (1 — e ") [ () (tli(’z))z =
Q2 U(t) dt
) [0 2O, & (28)
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Y

Fig. 3. The Z-plane corresponding to the conformal mapping { = expioZ.

where

UZ)= \/8L7<I>/(Z), (29)

is a holomorphic function in the domain JZ < 0. The function ¢(¢) in Eq. (28) is
given by
H* —1)

0= (t+Vi+ie)t —Vi+ie)

(30)

The term Ky in Eq. (28) is the complex stress intensity factor of the main crack of
length L in the absence of the side-branches. It is given by

. o i ooy |TL
K():K()l —1K02=(O'22 —10']2) 7 (31)

On the other hand, it can be shown (Amestoy and Leblond, 1992) that the complex
stress intensity factor K’ at the crack tip B, is given by

K' =K| —iK} = F;3(W)e U7, (32)

which depends of the branching angle and linearly of the stress intensity factors Ky,
and Ko,. This result is also universal in the sense that it is independent of the applied
loading. Once the integral Eq. (28) is solved, the stress intensity factors K| and K} are
uniquely determined. For this purpose, a useful decomposition of U(Z) is given by

U(Z)=KnUi(Z) — Ky U (Z). (33)

Eq. (28) is now decomposed into two independent equations

=R _Zw)/ Ulzg))z 4Ci:r
U@ d
M)/ 9(1) lzg))z e (34)
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Eq. (34) can be easily computed numerically using an iterative method similar to the
one used in determining the corresponding functions for the kinked crack problem.
The computation of the functions U;(Z) and U,(Z) can be performed on any curve
belonging to the lower half Z-plane, and that includes the points A, A, and As. The
details of this method can be found in (Amestoy and Leblond, 1992).

Finally, the main results of this section can be summarized as follow. The stress
intensity factors immediately after branching at the crack tip B, of the infinitely small
side-branch are related to the stress intensity factors of the main crack of length L in
the absence of the side-branches by the vectorial equation

K| Fi(4) Fi(d) 0 Koi
Ky | = Fa(h)  Fxn(d) 0 Ko |- (35)
K3/ 0 0 F33(4) Koz

The elements of the matrix ' in Eq. (35) are given by

Fi(2) = Fs()% [e 7™ Ui(V7)] (36)
Fia(2) = Fiy)3 {e—i”*Uz(\/I)} : (37)
Fai(2) = —F33(2)3 [e*i“’-ul(ﬂ)} , (38)
Fra(2) = F()%R [ Uy(V2)] (39)

and F33(4) is given by Eq. (23). The remaining elements in Eq. (35) are computed
once Eq. (34) are solved numerically. The corresponding results are summarized in
Figs. 2 and 4.

3. The dynamic branching problem

The process of dynamic crack branching can be decomposed as follows. A semi-
infinite straight crack that propagates at a speed v(¢) for ¢ < 0 suddenly stops at t=—r,
with T — 0". At ¢ — 0", the crack branches locally with a branching angle equal to
An (see Fig. 5). For ¢t > 0, the new branches propagate straightly at a velocity v'(z),
following the new directions +Ax. It is well established (Kostrov, 1975; Freund, 1990)
that the dynamic stress intensity factors, K;(¢), of the straight crack prior to branching
are related to the rest stress intensity factors, Ko/ (¢), of the same configuration by

Ki(t) = ki(v)Ko (1), (40)

where k;(v), I =1,2,3, are known universal functions of the instantaneous crack tip
speed v(z). Their explicit forms can be found in (Freund, 1990).
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Fig. 4. Plot of the elements of the matrix F,(/) as defined by Egs. (36)-(39).
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Fig. 5. Schematic representation of the dynamic branching problem.

Since there is no time scale, and consequently no length scale, against which the
independent variables can be scaled, the dynamic stress intensity factors immediately
after branching, K, for  — 0", at each crack tip can always be written in the form of
a universal function of the velocities and branching angle multiplying the rest stress
intensity factors before branching, Ky, for t — 0~

K= kit YHim(2 0,0 )Kom. (41)
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As in the quasi-static case (Leblond, 1989), the matrix H is universal in the sense that
it depends neither on loading configuration nor on the geometry of the body. Indeed
in the limits # — 0" and © — O that are considered, the dynamic branching problem
does not involve radiation effects, so it is always equivalent to a crack propagating
in an unbounded body. Moreover, H should approach the elastostatic solution for a
vanishingly small velocity of the side-branches

im Hip (2, 0,0") = Fin(2). (42)
v'—0

The present dynamic branching problem consists in determining the behavior of the
matrix H as a function of the branching angle and of the instantaneous velocities
immediately before and immediately after branching. In the following, the results of
the anti-plane case are recalled (Adda-Bedia and Arias, 2003; Adda-Bedia, 2004), and
the model problem for the determination of the plane dynamic stress intensity factors
immediately after branching is presented.

3.1. The mode III loading

Under anti-plane loading conditions, it is known that when the initial crack stops,
a static stress distribution is restored behind a wave front that propagates from the
crack tip at the shear wave speed (Eshelby, 1969; Freund, 1990). Thus for ¢ > 0, the
propagation of the branches occurs within a stationary stress field induced by the arrest
of the original single crack. Moreover, in the limit # — 0%, the lengths of the branched
parts of the crack are vanishingly small, so that the breaking process after branching
occurs in the region determined by the square root singular stress intensity factor field
of the semi-infinite straight crack. Therefore, the dynamic branching problem consists
of two symmetric branches reminiscent from a preexisting stationary straight crack, that
start to propagate at time ¢ =0, in the directions +A7n, by negating a time-independent
traction distribution on the newly broken surfaces given by (Williams, 1952)

s , K A
o$)(r < v't,£im) = \/2% cos 7“ (43)

where Koz is the rest stress intensity factor of the crack tip prior to branching. A direct
consequence of Eq. (43) is that the matrix element H33; must be independent of the
velocity prior to branching.

H33(/1, v, U/) = H33(/1, U//Cs). (44)

Using these arguments, a method for determining the elastodynamic stress fields asso-
ciated with the propagation of branched cracks was developed in (Adda-Bedia, 2004).
Particularly, it was shown that the corresponding model problem admits a self-similar
solution, which is a convolution integral between a known kernel and a harmonic func-
tion that satisfies a simple integral equation. Once the integral equation is solved, the
stress intensity factor immediately after branching is computed a posteriori using an
additional condition. The function H3; can then be computed exactly as a function of
the branching angle A and of the instantaneous velocity v'.
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3.2. The mixed mode I-1I loading

Under plane loading situations, when the initial crack stops, the static stress distri-
bution is restored in the crack plane only (Freund, 1990); ahead of the crack tip, this
happens behind a wave front that propagates at the shear wave speed, ¢s, and behind
the crack tip, behind a wave front that propagates at the Rayleigh wave speed, cg.
These two properties are sufficient to determine the dynamics of a single crack moving
straightly (Freund, 1990). However, for a dynamic crack of arbitrary path, one has to
specify the whole angular distribution of the stress field in the vicinity of the crack tip
induced by the crack arrest, which is given by (Kostrov, 1975; Madariaga, 1977)

Kot +1) 1) 0 Kop(t+1) .0 0 45
Ff(,)JrFf(b,), (45)
where ¢ is a characteristic wave speed of the material, Ky and Ky, are the rest stress
intensity factors of the crack tip prior to branching, and
r
c(t+1)
Here, the time delay 7 is present because of our decomposition of the branching process.
Therefore, contrary to the anti-plane case, the present branching problem should be
expressed as follows. Two symmetric branches reminiscent from a preexisting stationary
straight crack, start to propagate at time t=0", in the directions +Ax, with a velocity ¢/,
by negating a traction distribution on the newly created surfaces, 65;1) (r <v't,£lm,1),
given by Eq. (45). Due to the presence of both dilatational and shear elastic waves,
there is no sharp limit between the dynamic and the static distributions of the stress
fields in the neighborhood of the crack tip. Indeed, the stress distributions at any point
off the crack plane relax continuously and reach the static distributions for y — 0 only
(Kostrov, 1975; Madariaga, 1977)

hm 130000)=2100), (47)

(d)(r 0,t)=

= (46)

where zﬁj) are the well-known angular variations of the static square root singular
stress intensity factor field (Williams, 1952).

Thus in general, the propagation of the branches does not occur within stationary
stress fields. Moreover, the functions f fjl) depend explicitly on the crack tip velocity
prior to the crack arrest (Madariaga, 1977). Therefore, contrary to the mode III case,
the elements of the matrix H;, corresponding to the inplane configuration can depend
explicitly on the velocity before branching. However, the determination of the stress
fields immediately after branching makes the problem simpler. Since the single straight
crack stops at ¢t = —t, with T — 0", and the branches start to propagate at ¢ — 0T,
one always has

r V't
< —0
ct+1t) clt+1)
We emphasize on the importance of the order in which the limits must be taken. The
decomposition of the crack branching process as described above imposes that the limit
t — 0" must be taken before the limit T — 0T. Therefore, the stress intensity factor

% (48)
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field immediately after branching is determined by solving a branching problem where
the traction distribution that has to be negated during the propagation of the branches
is given by the static square root singular stress intensity factor field of the initial
straight crack

Koz
\2nr

Therefore, the dependence of the velocity of the single crack tip before branching is
suppressed from the stress distribution that has to be negated during the propagation of
the branches. Consequently, the matrix elements Hj, related to plane loading situations
should be also independent of the velocity prior to branching.

Hiyp(A0,0") = Hypy(A,0'/fC). (50)

Ko

o (r < vt Eim 1) = 2 (i) + (i), (49)

2nr

It is important to notice that the stress intensity factors immediately after branching
involve the history of crack propagation before branching only through the rest stress
intensity factors. More precisely, they do not have any explicit dependence of the ve-
locity of the single crack tip. This important result is mainly due to the absence of
intrinsic time or length scales in linear elasticity theory. Similarly to what happens in
the anti-plane case, the property (49) implies that the resulting elastic fields should
exhibit self-similar properties. However, the in-plane configuration is characterized by
two displacement potentials that satisfy wave equations with two different wave speeds
(Broberg, 1999; Freund, 1990). Thus, self-similar solutions of the displacement poten-
tials are necessarily given in terms of two different self-similar “coordinates”; (cst/r, )
and (cqt/r,0), where cq (cs) is the dilatational (shear) wave speed. The coupling be-
tween the dilatational and shear elastic waves makes the complete resolution of the
resulting problem unapproachable. However, the similarity between the mode III and
the in-plane problems suggests that the main features of the mode III results should
be preserved.

4. Dynamic branching instability

A growth criterion for a branched crack must be based on the equality between the
energy flux into each propagating tip and the surface energy which is added as a result
of this propagation (Griffith, 1920). The dynamic energy release rate is defined as the
rate of mechanical energy flow out of the body and into the crack tip per unit crack
advance. It is well established that the energy release rate G for a single straight crack
is given by (Kostrov, 1975; Freund, 1990)

3 3
1 1
G=> AWK = gKy (51)
2‘“ =1 : 2’“ =1 .

where p is the Lamé shear coefficient, and
91(v) = A(v)k} (v). (52)

The functions 4;(v) and ¢g;(v) do not depend on the details of the applied loading
or on the configuration of the body being analyzed. They only depend on the local
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Fig. 6. Plot of the universal functions g(v/cr), g2(v/cr) and g3(v/cs) for (cq/cs)* = 3. Here, cq (resp. cs)
denotes the dilatational (resp. shear) wave speed of the material.

instantaneous speed of the crack tip and on the properties of the material only. For
completeness, the functions g;(v) are reproduced in Fig. 6.

The dynamic energy release rate is a quantity associated to a single moving crack tip.
Thus, after branching one has to determine it for each crack tip. Due to the symmetry
of the branching configuration, the energy release rate immediately after branching G’
for each crack tip is given by

3
1
¢'=- S 40K (53)
K =1

When the initial single crack is propagating under a mode III loading, Eq. (53) reduces
to
1
Gg = ﬂ g3(U/)H323()”’ UI/CS)K§3: (54)
where Kp; is the rest stress intensity factor immediately before branching. In
(Adda-Bedia, 2004), it has been shown that for a constant branching angle, G} is a
decreasing function of v'. Therefore, the energy release rate immediately after branch-
ing is maximized when the branches start to propagate quasi-statically (v — 0), that
is when G} = G’ (;') . Equivalently, if the loading configuration before branching is of
mode I type, the energy release rate immediately after branching G| at each crack tip
is given by
1
G = 2 (91 (W HT (20 [es) + g2(0 V3, (4,0 [es)] Ky, (55)
where Ky is the rest stress intensity factor immediately before branching. At the present
stage, the exact computation of the energy release rate immediately after branching un-
der in-plane configurations is not possible. Nevertheless, the exact resolution of the
mode III problem does give indications about the general behavior of Gf. Indeed, in
many physical aspects of crack propagation, the results corresponding to mode III and
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Fig. 7. Plot of the maximum energy release rate immediately after branching as a function of the branching
angle, for the cases of a mode III loading (left) and a mode I loading (right).

to in-plane configurations are qualitatively similar (Broberg, 1999; Freund, 1990). As
for the anti-plane case, the in-plane elastic fields immediately after branching exhibit
self-similar properties, and the corresponding stress intensity factors do not depend
explicitly of the velocity of the single crack tip before branching. These similar prop-
erties allow to predict the general behavior of the energy release rate immediately after
branching.

The results of (Adda-Bedia, 2004) show that H33(/A,v'/cs) depends only weakly on
v'. Indeed, the ratio Hz3(A,v'/c)/F33(A) is very close to unity (up to +5%) for all
values of 4 and v'/cs. The similarity between the anti-plane and the in-plane branch-
ing problem suggests that this behavior should be maintained for all the matrix el-
ements H;,(A,v'/c). Therefore, one expects that the energy release rate immediately
after branching for in-plane configurations is also maximized when the branches start
to propagate quasi-statically (v — 0), that is when G| = G’ (IS). Let us emphasize
that this property results from arguments deduced from the analogy with the anti-plane
results. Even if this property does not hold exactly for in-plane configurations, the anal-
ogy with the anti-plane case suggests that it is a good approximation. Nevertheless, a
complete resolution of the in-plane dynamic branching problem would be necessary to
check this hypothesis. Fig. 7 displays the plots of G’(;) and G’(ls) as functions of the
branching angle. It is shown that their behavior are qualitatively equivalent. They are
both equal to 1/2 for “zero” branching angle and they both display a maximum at a
given branching angle.

According to the generalized Griffith criterion (Griffith, 1920), the crack must grow
in such a way that the energy release rate is always equal to the dynamic fracture energy
of the material, I'(v), which is assumed to be a property of the material and whose
value may depend on the instantaneous crack tip speed (Boudet et al., 1996; Sharon
and Fineberg, 1999). This growth criterion, G = I'(v), should be applied for the crack
tips before and after branching. This insures that each crack tip is always propagating
according to the Griffith criterion. Therefore, the growth criterion introduces an intrinsic
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relation between the energy release rates immediately before and immediately after
branching, which reads

,_ T
ST

Eq. (56) is a necessary condition for the existence of a branching configuration. Oth-
erwise, the single crack tip propagation should be maintained. This equation, however,
is not a sufficient condition for determining the branching threshold parameters, which
must be deduced from some other criteria. For instance, the maximum energy release
rate criterion (Erdogan and Sih, 1963) or the principle of local symmetry (Gol’dstein
and Salganik, 1974). These two criteria have been applied essentially to problems
related to the selection of single quasi-static crack paths, and give almost similar nu-
merical predictions. However, it has been shown that the principle of local symmetry
is more coherent and it is now widely admitted as the second additional equation of
motion (Leblond, 1989; Adda-Bedia et al., 1999). In the following, these two crite-
ria will be used to predict the branching instability and will be compared with the
experimental results.

(56)

4.1. The maximum energy release rate (MERR) criterion

Eshelby (1970) posed the question of how large must be the single crack velocity v,
so that by decelerating, there is enough energy available to form two cracks propagating
at a velocity v'. This approach can be interpreted as being equivalent to the maximum
energy release rate criterion. Since the energy release rate after branching is always
largest when v/ — 0, the maximum energy release rate after branching depends of the
branching angle only.

Let us start by the case of constant fracture energy and focus on the in-plane crack
propagation. Using Eq. (56), one deduces that the critical velocity before branching
must be a solution of

g1(v) = F{(2) + F5,(2). (57)

Fig. 6 shows that g (v) is a decreasing function of the velocity that satisfies g;(0)=1,
and g;(cr )=0. On the other hand, the right-hand side of Eq. (57) displays a maximum,
whose value is less than unity (see Fig. 7). Therefore, this equation is not always
satisfied, and branched solutions exist when the velocity v exceeds a critical velocity
v. only. This threshold value is given by the least velocity v for which Eq. (57) admits
a solution. It corresponds to a branched solution with a non-vanishing branching angle,
2.=0.07, given by the maximum of FZ (4)+F3 (1), and a corresponding critical speed,
ve = 0.5¢g, given by Eq. (57).

4.2. The principle of local symmetry (PLS)
While the MERR criterion states that the crack should follow a direction of maximum

energy release rate, the principle of local symmetry states that the path taken by a crack
in a brittle homogeneous isotropic material is the one for which the local stress field
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Table 1
Branching thresholds v and /¢ for different branching criteria and loading modes. For the inplane case, the
thresholds are given using a Poisson ratio such that (cq/cs)® =3

MERR, mode III MERR, mode I PLS, mode I
Ve 0.392 ¢ 0.503 cr 0.518 cr
Je 0.22 0.07 0.13

at the tip is of mode I type (Gol’dstein and Salganik, 1974). It is not obvious that the
crack propagation still satisfies this criterion in the dynamic case. However, there is
an argument in favor of this scenario (Adda-Bedia et al., 1999). The dynamic energy
release rate can be seen as the component, Fj, of the configurational force along the
direction of crack motion. The Griffith energy criterion can thus be reinterpreted as
a material force balance between F| and a resistance force to crack advance per unit
length of the crack front: F; = I'. However, this equation of motion is not sufficient to
determine the trajectory of a crack if it is allowed to deviate from straight propagation.
If one assumes that configurational forces balance holds at the crack tip, one should
also impose that the component of the material force perpendicular to the direction
of crack propagation must vanish (Adda-Bedia et al., 1999). Since this quantity is
proportional to K, it results that the crack propagation occurs in such a way as to
keep a purely opening mode at its tip.

In the case of PLS, at any stage of crack propagation two equations of motion must
be fulfilled: the Griffith energy criterion and the pure opening condition at the crack
tip. When a main crack subjected to a mode I loading branches into two symmetric
cracks, these conditions are satisfied by the single crack tip prior to branching as long
as the crack tip follows a straight path. On the other hand, immediately after branching,
these two conditions must be written as

g1(v) = F1(4), (58)
F21(2)=0. (59)

Now, the branching angle, /., is selected in a different way from the MERR criterion,
while the arguments for determining the critical velocity, v., are the same. Thus, the
result of application of these equations gives also a selected branching angle and a
critical speed for branching. From Table 1, it is seen that the critical branching velocity
ve = 0.52¢cr does not differ too much from the one deduced by using MERR criterion,
while the critical branching angle is twice larger, A. = 0.13. Note that this value is
approximately equal to the branching angle A, = 0.15 calculated by using an analysis
of a branched crack based on the body force method combined with a perturbation
procedure (Isida and Noguchi, 1992).

4.3. Effect of velocity dependent fracture energy

Eq. (56) obviously shows that a velocity dependent fracture energy affects the results
of the latter calculations. As the two branching criteria are based to some level on
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Fig. 8. Plot of the critical branching velocity for the case of velocity dependent fracture energy and for
(ca/es} = 3. The solid line corresponds to the values deduced from PLS and the dashed line to those
deduced from the MERR criterion. The experimental values reported are estimates taken from (Sharon and
Fineberg, 1999) for Glass and PMMA, (Dally, 1979) for Homalite 100 and (Congleton, 1973; Anthony et
al., 1970) for “Pitho” tool steel.

energy balance, their results should be modified by the behavior of I'(v). When taking
into account this new degree of freedom, Eq. (57), related to MERR criterion, becomes

o n
% 01(v) = F3.(2) + F3,(2) (60)
and in the case of PLS, Eq. (58) becomes
O o 0y =F2() (61)
F(U) g1 11 5

while Eq. (59) is not modified. In general, I'(v) is an increasing function of the velocity
(Boudet et al., 1996; Sharon and Fineberg, 1999). Therefore, the left-hand side of Eqgs.
(60), (61) decreases faster than in the constant fracture energy case, and the energy
balance can thus be achieved at lower velocity, while the critical branching angles
remain the same. Although I'(v) can be a nonlinearly dependent function of the crack
tip speed, it is only the amount of I'(v.)/I'(0) which is of importance in determining
the critical crack tip velocity v.. In Fig. 8, this quantity is plotted for different values
of I'(v.)/I'(0), when either MERR criterion or PLS is applied.

5. Discussion

Under tensile mode loading, it is shown that the formulation of the problem for de-
termining the dynamic stress intensity factors immediately after branching is identical
to the anti-plane case. This analogy allows us to formulate the hypothesis that under
plane loading configurations, the jump in the energy release rate due to branching is
also maximized when the branches start to propagate quasi-statically. Therefore, the
branching of a single propagating crack under mode I loading is found to be energeti-
cally possible when its speed exceeds a threshold value. The critical velocity v, is only
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weakly dependent on the Poisson ratio of the material, and is only slightly modified
by changing the crack propagation criterion from the maximum energy release rate cri-
terion to the principle of local symmetry (see Table 1 and Fig. 8). Still, the branching
angle in the case of PLS is twice as large as the one that results from the application
of MERR criterion; 23.4° instead of 12.6°. Finally, for a velocity dependent fracture
energy, the critical velocity for branching v. decreases with increasing I'(v.)/I'(0). The
present work establishes the necessary conditions at which branching is energetically
possible. It does not address the stability of the single straight propagating crack with
respect to a branched configuration. In either experiments or numerical simulations, the
selection mechanism might be due to the presence of noise which allows the system
to visit all possible configurations.

Fig. 8 displays a comparison with estimates of critical speeds for branching taken
from existing experimental data. It is shown that the predicted decrease of v, with
increasing I'(v.)/I'(0) is found in experiments as well. The present energy balance
approach allows to obtain this result, which cannot be done in calculations based on
analysis of the stress field around a single crack tip. Fig. 8 shows that except for the
case of PMMA, for which there is a good agreement between the measured (Sharon
and Fineberg, 1999) and the calculated critical velocity, the experimental data show a
weaker dependence of v, on I'(v.)/I'(0). However, the critical velocities for branching
and the velocity dependence of the fracture energy for both Homalite and Steel should
be taken as very rough estimates (Congleton, 1973; Anthony et al., 1970; Dally, 1979).
More precise experiments on different materials are needed in order to establish the
behavior of the critical speed for branching with the fracture energy dependence of
the velocity. On the other hand, the critical velocity for branching is larger by 24%
than the measured value for glass, a material which is commonly assumed to have a
nearly constant fracture energy (Sharon and Fineberg, 1999). However, the calculated
critical speed for branching, v, = 0.52cg, agrees with the one deduced from numerical
simulations using a phase field model of brittle fracture under in-plane loading (Henry
and Levine, 2004). In order to fit the experimental critical velocity of 0.42¢g, a variation
of fracture energy with velocity of approximately 15% is needed (see Fig. 8), which is
slightly larger than the error bars of the experimental results reported in (Sharon and
Fineberg, 1999).

Let us emphasize that the present work is based on exact results of the anti-plane
branching problem (Adda-Bedia, 2004). Moreover, it is proven that similarly to the
anti-plane case, the in-plane elastic fields exhibit self-similar properties immediately
after branching, and the corresponding stress intensity factors do not explicitly depend
on the velocity of the single crack tip before branching. These similar properties allow
for the assumption that the main results of the mode III case should hold for in-plane
configurations. Therefore, one expects that the energy release rate immediately after
branching for in-plane configurations is also maximized when the branches start to
propagate quasi-statically. Even if this property might not hold exactly for in-plane
configurations, the analogy with the anti-plane case suggests that it must be a good
approximation. One may wonder if the zero velocity immediately after branching is
physically relevant, since it seems in contradiction with both experimental observa-
tions and numerical simulations. A possible explanation of this discrepancy is that the
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branches start their propagation at vanishingly small speeds, but accelerate rapidly to
velocities of the same order of the principal crack speed. This scenario is consistent
with the results of single crack propagation in the framework of linear elastic fracture
mechanics. Nevertheless, real materials are not ideally brittle and in numerical simula-
tions one always introduces intrinsic small length scales (or time scales), which may
explain the observed smooth variation of the crack speeds before and after branching.
The velocity jump predicted using linear elastic fracture mechanics may be seen as an
asymptotic result which is exactly valid for ideally brittle materials.

Fig. 7 shows that under mode I loading conditions, the angular variation of the
energy release rate immediately after branching has a shallow maximum in the region
0 < 4 <0.2. The flatness of G’ at low branching angles explains the weak variation of
v. with the type of criterion applied, but is an indication in favor of the PLS versus the
MERR criterion. Effectively, If the MERR criterion were the relevant one, there would
not be a clear selection of the branching angle and one would expect branching for a
wide range of angles. This contradicts experimental observations (Sharon et al., 1995),
which show a clear selection of the branching angle. On the other hand, F»;(1) is steep
around its zero value and thus, the PLS gives a well-defined selected branching angle
which is equal to 23.4°, independently of the Poisson ratio of the material. Sharon et
al. (1995) reported that the micro-branches which appear immediately after the onset
of the branching instability are not straight. Instead, the “branching angle” increases as
one approaches the branching point. Measuring the tangent to the profile of the branch
at a distance of 5 um from the branching point, the authors reported branching angles
of 30° for glass and PMMA. These angles are of the same order of magnitude as the
predictions of the present model based on PLS, but nearly three times larger than the
predictions when using MERR. Therefore, these observations suggest that the relevant
criterion for branching must be the PLS one.

Finally, previous attempts to predict the critical velocity for branching in the frame-
work of linear elasticity were focused on the properties of the stress fields around
the tip of a single fast crack (Yoffe, 1951; Freund, 1990; Adda-Bedia et al., 1996).
These works indicated that above a critical velocity, a component of the singular stress
field, which was regarded as the relevant one for path selection, attains a maximum
off the original direction of propagation. It was suggested that in these conditions,
the single straight crack solution becomes unstable. Still, none of these models dealt
with the resultant state of the system, that of two branches. One must verify that the
new branched state is energetically possible. The present work, which is based on
Eshelby’s approach, targets these points by applying growth criteria to the branched
state. More recent works challenge the dynamic branching problem, using numerical
simulations and calculations on the molecular scale (Abraham et al., 1994; Marder
and Gross, 1995). One might argue that since the first stages of the branching pro-
cess occur within the process zone, branching criteria based on continuum models are
meaningless. It may be that the branching criterion must be based on processes at
the molecular scale. Indeed, the present model does not target the question of when a
tip of a crack will bifurcate, it determines the conditions which are necessary for the
propagation of two branches. Calculations at molecular scales may show that even at
lower velocities, the tip is unstable and the material tends to be opened off the original
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direction. However, these flows may not be able to grow to the continuum scale. In-
stead, they might affect the fracture energy of the single crack and its fracture surface
topology. As experimental data show (Sharon et al., 1995; Sharon and Fineberg, 1996),
the change in the dynamics of the crack occurs simultaneously with the appearance
of micro-branches of 10—-100 pm length. This is certainly a continuum scale. Thus,
deviations from straight crack which occur before the appearance of “continuum scale
branches” do not drastically change the crack dynamics and can be included within the
process zone.
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Using the asymptotic expansion of the stress field ahead a curved extension of a straight crack, some
general results on the paths selected by kinked and branched cracks are derived. When dealing with the
dynamic branching instability of a single propagation crack, the experimentally observed shape of the
branches is recovered without introducing any adjustable parameter. It is shown that the length scale
introduced by the curved extension of the branches is given by the geometrical length scale of the
experiment. The theoretical results agree quantitatively with the experimental findings.
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The field of fracture mechanics is concerned with the
quantitative description of the mechanical state of a de-
formable body containing a crack or cracks. The contin-
uum theory of fracture mechanics studies the nucleation
of cracks, the conditions for which they propagate and
their dynamics [1,2]. In the framework of continuum
theory of brittle fracture, the relationship between inter-
nal stress and deformation and the pertinent balance laws
of physics dealing with mechanical quantities do not
include the possibility of material separation. Indeed,
the “equation of motion” of the crack tip is based on
additional statements for crack growth. The most popular
criterion for crack propagation in a two dimensional
elastic body consists of two parts; the Griffith hypothesis
and the principle of local symmetry.

The Griffith energy criterion [1,2] states the intensity
of the loading necessary to promote propagation through
G =T, where G is the energy release rate, which is
defined as the rate of mechanical energy flow into the
crack tip per unit crack advance, and I' is the fracture
energy of the material. The principle of local symmetry
states that the crack advances such that the in-plane shear
stress in the vicinity of the crack tip vanishes. This rule
was first proposed for quasistatic cracks [3], and general-
ized to rapidly moving cracks [4]. Moreover, it was shown
that the two criteria rise from the same physical origin
[4]. The energy release rate is the component, F, of the
driving force along the direction of crack motion. The
Griffith energy criterion can thus be reinterpreted as a
material force balance between F; and a resistance force
to crack advance per unit length of the crack front; F| =
I'. However, this equation of motion is not sufficient to
determine the trajectory of a crack. If one assumes that
material force balance holds at the crack tip, one should
impose that the component of the material force perpen-
dicular to the direction of crack propagation vanishes.
This condition is identically satisfied if the loading in
the vicinity of the crack tip is purely tensile.

The Griffith criterion and the principle of local sym-
metry predict adequately the path and the stability of
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slowly propagating cracks [5]. Controlled experiments
on quasistatic cracks confirm the theoretical results [6].
In the case of fast crack propagation, the experiments on
PMMA (poly-methyl-methacrylate) and glass samples
[7-9] have identified a dynamic instability of a propagat-
ing crack which is related to a transition from a single
crack to a branched crack configuration. Some aspects of
this dynamic instability were described within the theory
of brittle fracture mechanics [10]. However, the subse-
quent shape of the branches has not been explained yet.
The main purpose of the present study deals with this
aspect of the branching instability. Following the analy-
sis of [11,12], the asymptotic expansion of the static stress
field ahead of a curved extension of a crack tip is pre-
sented. Using these exact results, some features of the
paths selected by kinked and branched cracks are derived.
As a main result, the experimentally observed shape of
the branches is recovered without introducing any addi-
tional parameter. Moreover, in the case of the experi-
ments in [7-9], the length scale introduced by the
curved extension of the branches is found to be the width
of the sample. The present study shows that both the
branching instability threshold, the branching angle and
the subsequent paths of the branches are predicted within
the continuum theory of brittle fracture mechanics.
Stress field ahead of a curved extension of a crack—
Consider an elastic body containing a straight crack with
a kinked curved extension of length s and a kink angle
A (see Fig. 1). Let xOy denote the coordinate system

FIG. 1. Schematic representation of a straight crack with a
kinked (or symmetrically branched) curved extension.

© 2004 The American Physical Society 185502-1
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with the Ox axis directed along the initial straight crack,
and let XOY denote the coordinate system with the OX
axis directed along the tangent to the extension at the
point O. These two coordinate systems are related by

X = xcosAm + ysinAm, (D)

Y = ycosAm — xsinAmr. 2)

Using minimal assumptions, it was shown in [11] that the
asymptotic shape of the crack extension is necessarily
given by

Y = aX?? + 0(X?), 3)

where a is a curvature parameter whose dimension is
(Iength)~!/2. Moreover, the expansion of the static stress
intensity factors K;(s) (I = 1, 2) at the crack tip in powers
of s obeys the general form

K;(S) = mzzl‘zFlm(A)Km + m:ZIZ[Gm(A)Télm

+ aH,,, (MK, /s + O(s). 4)

In this expansion, K; and T are the static stress intensity
factors and the nonsingular stress in the universal expan-
sion of the stress field at the original crack tip O without
the kinked extension, which is given by

K
oyne) =Y \/2—1?25?(0) +T8,8;, + 0N, (5

=12

where (r, ) are the polar coordinates with r = 0 located

at the point O, and EE? are known functions describing
the angular variations of the stress field components [2].
The functions Fy,,, G;, and H,,, are universal in the sense
that they depend neither on the geometry of the body nor
on the applied loading. They depend on the kink angle
only and their computation was performed in [12].

The asymptotic expansions as given by (3) and (4) must
necessarily be considered if the extension of the crack is
obtained by actual propagation of the crack and not
simply by arbitrary machining of the body [11].
Because of the linearity of the problem, the expressions
(3) and (4) can be predicted from dimensional arguments.
Since the K;’s scale as stress X /length and T scales as
stress, the first order expansion of the stress intensity
factors in (4) must involve an additional parameter whose
dimension is 1/+/length. This parameter is provided by
the asymptotic expansion (3) of the kinked extension.

It is straightforward to extend these results to quasi-
static branched cracks. The crack tip of each branch
extension must obey similar asymptotic expansions,
with different universal functions F,,,, G;, and H,,,. The
functions F7,, for a symmetrically branched configuration
have been computed in [10], while the computation of G,
and H,,, can be carried out using the same approach as for
the kinked crack problem [12].

185502-2

The detailed expansion of the stress intensity factors
being available, it remains to combine it with a propaga-
tion criterion for crack path prediction. The Griffith en-
ergy criterion [1,2] and the principle of local symmetry
[3] impose that the advance of the crack tip is controlled
by the following equations

1

Gils) = ﬂK?(S) =T (6)

Ki(s) =0, )

where w is the Lamé shear coefficient of the material.
Note that Eq. (7) imposes the symmetry of the stress field
in the vicinity of the crack tip which in turn restricts the
crack direction of propagation. Therefore, the crack path
is mainly selected by the principle of local symmetry,
while Eq. (6) controls the intensity of the loading neces-
sary to the crack propagation. In the following, the stabil-
ity of a tensile crack and the path selection of branched
cracks will be discussed in the light of these general
results.

Response of a tensile crack to a shear perturbation.—
Cotterell and Rice [13] analyzed the stability of an ini-
tially straight crack under tensile loading in the presence
of a small shear perturbation. They found that the non-
singular stress 7 governs the stability mechanism. The so
called T-criterion states that when T > 0, the straight
crack propagation is unstable and the crack path grows
exponentially. While when T <0, the straight crack
propagation is stable and the crack path behaves as
y(x) ~ x.

Equation (7) states that each coefficient in the expan-
sion (4) of K}(s) in terms of s must vanish. Therefore, in
the presence of a small shear loading (|K,| < K;) the
extension of the initial straight crack must satisfy

2K,

=~ — == 8
7TK1 ()

8 T
~_\27\—, 9
a=3V2mhp (€))

where the expansions of the functions F,,, G;, and H,, in
terms of A << 1 have been used [12]. Equation (8) fixes
the kink angle that develops due to the presence of the
shear loading, while Eq. (9) determines the subsequent
curvature of the crack path. Moreover, Egs. (8) and (9)
show that the signs of A and (a/A) are governed by the
signs of K, and T, respectively (K; > 0). Therefore, when
T > 0 the perturbation induced by the shear loading is
amplified and the departure from straight crack propaga-
tion increases. On the contrary, when 7' << O the instability
of the crack path induced by the kinking process is
decreased and tends to stabilize the straight crack ad-
vance (see Fig. 2). These results are consistent with the
T criterion [13]. However, the subsequent paths followed

185502-2
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FIG. 2. Subsequent paths of an initially straight crack sub-
jected to a small shear perturbation such that A = 0.05.

by the cracks in either the stable or unstable case
clearly differ from those predicted in [13]. This discrep-
ancy results from the fact that the perturbation method
developed in [13] is inadequate for cracks that are not
smooth [12].

The condition 7 < 0 insures the stability of a straight
crack propagation but it is not a necessary condition.
Effectively, the straight crack might be stable even
when T > 0, because of the presence of other stabilizing
effects. A popular case study that confirms the limitations
of the T criterion concerns the stability of a straight crack
in a heated strip [6]. The analysis of a smooth wavy
perturbation around a straight crack has shown that the
crack path stability is governed by the competition be-
tween a stabilizing effect; the finite width of the strip, and
a destabilizing effect; the heterogeneous thermal field [5].
The threshold of instability was found to be larger than
the one predicted from the 7 criterion.

Shape of branched cracks.—Experiments in glass and
PMMA [8,9] have established that the bifurcation of a
crack tip into two branches results from the dynamic
instability of a single propagating crack. When the crack
speed exceeds a critical velocity v, a single moving crack
is no longer stable and a repetitive process of micro-
branching occurs, which changes the crack dynamics.
Although the lengths of the microbranches are broadly
distributed, their functional form is well defined [9]. Once
formed, the branch follows a trajectory of the form y(x) =
0.2x%7. Furthermore, this scaling behavior does not hold
at distances below 5 pwm from the branching point, where
branching angles of approximately 30° have been re-
ported [9].

The problem for determining the in-plane dynamic
stress intensity factors immediately after branching was
formulated in [10]. It was shown that the in-plane elastic
fields immediately after branching exhibit self-similar
properties, and the corresponding stress intensity factors
do not explicitly depend of the velocity of the single crack
tip before branching. These properties are similar to the
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antiplane crack branching problem, which was solved
exactly in [14]. This analogy allowed for the conclusion
that under plane loading configurations, the jump in the
energy release rate due to branching is maximized when
the branches start to propagate quasistatically. Conse-
quently, the branching of a single propagating crack under
tensile loading is found to be energetically possible when
its speed exceeds a threshold value [10]. Moreover, for a
velocity dependent fracture energy, the critical velocity
for branching, v, decreases with increasing I'(v,)/I'(0).
The theoretical results for the critical velocity and the
branching angle agree fairly with both experimental [8,9]
and numerical results [15].

Since the branches start their propagation at vanish-
ingly small speed [10], a quasistatic approximation is
suitable for the determination of the subsequent paths
followed by the branches. At a first approach, the influ-
ence of the crack tip velocity may be discarded. Consider
a straight crack subjected to a tensile loading (K, = 0),
that bifurcates into two symmetric branches. The two new
branches propagate by satisfying the principle of local
symmetry. Therefore at each crack tip, each coefficient in
the expansion (4) of K}(s) in terms of s must vanish,
which gives

Fy(A) =0, (10)
G,(\) T

- - — 11

Hy () K, (b

Equation (10) imposes A = 0.13, corresponding to a
branching angle of 24° [10], which is close to the experi-
mental one estimated in [8,9]. Equation (10) determines
the departure from a straight propagation of the branches.
The functions G, and H,,, are not available. However, we
will assume that for A = 0.13, the quantity G,(A)/H,;())
is positive and of order unity. Ultimately, the computation
of these functions will be a crucial step to confirm the
following results.
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FIG. 3. Subsequent path of a crack after branching.

The dashed curve corresponds to the function y(x) =
0.074(x/|al)*3. The inset shows the same plots in Loga-
rithmic scales.

185502-3



VOLUME 93, NUMBER 18

PHYSICAL REVIEW

week ending

LETTERS 29 OCTOBER 2004

Figure 3 shows the path followed by the branch as
given by Egs. (10) and (11), with the assumption that
a < 0. The shape of the branch is very close to a power
law form given by y(x) = 0.074(x/|a|)*?, which would
correspond to a branched configuration with a branching
angle of 90°. In order to compare with the experimental
results, it is convenient to replace the power law behavior
obtained in [9] by a more “realistic’ function given by
y(x) = ax??, with a = 0.15-0.25 mm'/3. Therefore, the
experimental and theoretical shape of the branch coincide
if one takes |a| = (0.074/a)*/? =~ 0.16-0.35 mm ™1/,

Furthermore, the curvature parameter a can be deter-
mined from the loading conditions and the geometry of
the experiment. Effectively, it can be easily shown that
the boundary conditions and the strip geometry of the
experiments in [7-9] impose

r_ x=-2 1
K, \/2(K—1)\/W’

where k = (c;/c,)* = 3 is a material constant and W is
the width of the strip. Here, c¢; (c,) is the dilatational
(shear) wave speed of the material. Equations (11) and
(12), show that the curvature parameter a scales as
1/\/W. The widths of plates used in experiments [8,9]
were between 50 and 200 mm, so that (T/K;) =
0.04-0.07 mm~'/2. If one takes G,(A)/H,;(A) =4, the
estimate of parameter a from the loading conditions is
very close to the one evaluated directly from the com-
parison between the theoretical and the experimental
shape of the branch. This result confirms that the length
scale which governs the curvature of the branches is the
geometrical length scale of the experiment. The introduc-
tion of a length scale which is related to some nonlinear
process in the vicinity of the crack tip is not needed for
describing the shape of the branches.

Conclusion.—In this Letter, some general results of the
paths selected by kinked and branched cracks were de-
rived. In the case of the response of a tensile crack to a
small shear perturbation, it is shown that the T criterion
is directly recovered from the asymptotic expansion of
the stress field ahead a curved extension of a straight
crack. However, the subsequent path followed by the
kinked crack in either the stable or unstable case differs
from those predicted in [13]. Concerning the dynamic
branching instability, the shape of the microbranches was

(12)
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recovered and the length scale introduced by the curved
extension of the branches was determined. The quantita-
tive comparison with the experimental data of [8,9] was
performed successfully. Although most of the present
analysis was confined within a quasistatic approximation,
the results should persist for dynamic cracks. A discussion
on the relevance of the zero velocity immediately after
branching can be found in [10]. The present results are in
favor of the continuum theory of fracture mechanics
combined with both the Griffith criterion and the prin-
ciple of local symmetry. This framework provides the
minimal ingredients for the prediction of the branching
instability threshold, the branching angle and the subse-
quent path of the branches.

I thank V. Hakim, H. Henry and A. Karma for fruitful
discussions.
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Second-order variation in elastic fields of a tensile planar crack with a curved front
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We derive the second-order variation in the local static stress intensity factor of a tensile crack with a curved
front. We then discuss the relevance of this result to the stability analysis of such fronts, and propose an
equation of motion of planar crack fronts in heterogeneous media that contains two main ingredients—
irreversibility of the propagation of the crack front and nonlinear effects.
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The propagation of a crack front in a brittle material is the
playground of a number of physical phenomena, which range
from dynamic instabilities of fast moving cracks [1] to qua-
sistatic instabilities of crack paths [2,3], or of crack fronts
[4-8]. Although the actual theory of brittle fracture mechan-
ics succeeded to explain a number of instabilities, the experi-
mentally observed self-affine roughness of a crack front
propagating through a heterogeneous medium remains the
subject of theoretical debate [5-7]. This phenomenon is of
fundamental importance, because it may be regarded as an
archetype of self-affine patterns induced by advancing fronts.
Wetting of a disordered substrate being another example of
systems with a similar structure [9,10].

In the framework of linear elastic fracture mechanics, an
important step was performed by Rice [11] following a work
of Meade and Keer [12]. He gave a general formula for the
first-order variation in elastic fields of a planar curved crack
front and subsequent analysis was mainly based on this work
[5,6,13-16]. However, aspects related to crack-front rough-
ness and stability could not be derived within this first-order
perturbation solution. A possible explanation, which has been
suggested in the context of the wetting problem [10], is that
higher order variations might be necessary for the study of
the stability and roughening properties of these fronts.

This paper aims at the determination of the second-order
variation in elastic fields of a tensile crack front. The present
approach is different from [11] and can be generalized to
higher orders. It uses a methodology introduced in [8] for the
study of the peeling-induced crack-front instability in a con-
fined elastic film. Since the present study is performed in the
framework of linear elastic fracture mechanics, our perturba-
tion analysis is expected to hold as long as the radius of the
curvature of the crack front remains larger than the size of
the process zone where the plastic effects become dominant.

This solution is intended to be used for understanding the
roughening of interfaces whose front dynamics does not be-
long to the Kardar-Parisi-Zhang (KPZ) [17] universality
class. For this purpose, we propose a generalized equation of
motion of the planar crack fronts in heterogeneous media
that includes both the irreversibility of crack-front propaga-
tion and the nonlinear effects.

The problem of a half-plane crack located in the plane

1539-3755/2006/73(3)/035106(4)/$23.00
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PACS number(s): 62.20.Mk, 64.60.Ht, 81.40.Np

y=0 with a curved front (see Fig. 1) can be solved by using
the linear equations of elasticity. It has been shown [12] that
these equations are satisfied for a tensile loading that is sym-
metric to the crack plane if displacement components
(uy,uy,u;) are written as

Euy=-2(1-1")® + (1 +v)y dD/dy, (1)
Eu,=(1+v)d(F+yd)/ox, (2)
Eu.=(1+v)yd(F+y®d)liz, (3)

where F(x,y,z) and ®(x,y,z) are harmonic functions related
by JdF/dy=(1-2v)®. E is the Young modulus and v is the
Poisson ratio. Consequently, the stress components that enter
the crack-surface boundary conditions are given by

ayy=—JdP/dy + yPD/y?, 4)

oyxzy(?zq)/&y Jx, (5)

FIG. 1. Schematic of the problem of a half-plane crack on
y=0 in an infinite body. The average penetration of the crack front
in the x direction is L. The straight reference front in the z direction
and the perturbation 4(z) around it are also shown.

©2006 The American Physical Society
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oy, = yPDPldy iz, (6)

which satisfy the shear traction free boundary conditions on
the crack plane. Thus, the problem of loading on the crack
faces is one of finding a function @ satisfying

AD(x,y,z) =0, (7)

having vanishing derivatives at infinity, and generating stress
o and opening gap Au on y=0 given by

== 0D/3y|,cgs  Au=—[4(1 = )/E]D|,gr,  (8)

respectively. Defining h(z) as the position of the crack front,
we may write the boundary conditions as

D(x,0,2)=0, x>h(z), 9)

9 0.5 =px2) < h(2), (10)
dy

—(xy 2) (xy =0, (F+y)— e, (11)
where p(x,z) is the normal pressure that loads the crack
faces. The problem cannot be solved explicitly without
specifying p(x,z), but it is known from classical fracture
mechanics analysis that solutions to it exhibit characteristic
square-root stress singularities [16]. The harmonic function
@ generating such a singularity necessarily has the form
given by

2K() 4G

d(x,0%,7) ~ -
\'277 3\r277

( X’%/Z (12)

where X=x-h(z) —0~. The function K(z) is given by

K(2) = K21 +h"*(2)]", (13)

where K,(z) is the local stress intensity factor, which is de-
fined with respect to a coordinates system lying in the plane
perpendicular to the crack front at the location x=h(z) and
extending into the y direction [16]. The second term in Eq.
(12) corresponds to the next order in the expansion of the
stress field in the vicinity of the crack front, which is propor-
tional to /h(z)—x. The parameter A(z) has the dimension of
the stress intensity factor over length.

As a first step, we will consider that K does not depend on
z through the position of the crack front with respect to the x
direction, i.e. K(z,h(z))=K(z). This condition (to be relaxed
later) is of course restrictive, but it will help to construct the
full perturbation analysis. This simplification consists explic-
itly in assuming that a straight crack front will have the same
stress intensity factor—wherever it is on the x axis. The real
stress intensity factor will be found by relaxing this con-
straint in a similar way as done in [11].

The piecewise boundary conditions (9), (10), (12) moti-
vate a change into a coordinate system on the crack front,

e., from (x,y,z) to (X=x-h(z),y,z) [8]. We may then

write Eq. (7) as

RAPID COMMUNICATIONS
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1 PO ob P &ZCID PO
(A +h"" )~ -h"— =21 ——> +->5=0,
0X 0X az &X ady dz

(14)

where the prime denotes the derivative with respect to z.
Now, we construct an expansion in powers of A, which ac-
counts for the perturbation of the crack front. Without the
loss of generality, we write the expansion in the following

way:
n* &
e8] 8. £28) o
K(z) = Ko(2) + K, (2) + K»(2), (16)

where the subscripts indicate the order of the perturbation
expansion. The advantage of this way of writing the pertur-
bation expansion is that it simplifies the equations for the
zeroth-, first-, and second-order problem. A direct substitu-
tion of the expansion (15) into the equilibrium equation (14)

yields
Po P P
Xt ot 0 (17)

with i=0,1,2. To complete the formulation of the problem,
we need to specify the boundary conditions of each order of
the expansion. These are given by

¢;=0, y=0, X>0, (18)
P ab, 9
90k, L9 o x<0, (19)
dy dy  dy
<?¢, d;

(Xy 2), —(Xy 2)—0, (X*+y)— ». (20

The expansion of Eq. (12) to the second order in & yields

KO(Z) /_X 4AO(Z) X)3/2

$o(X,07,2) ~ o 3\r27r( 21
vy Ko@h(z) 2K1(z) A
$1(X,0%,2) Conx - V2m =X SV’ET( X)*,
(22)
v K@I@) K (@h()
$(X.0%2) 4V’Z‘r(— X2  y-2mX
_20K,(2) :r %(z)h(z)] X )

for X—07. It is assumed that the perturbation terms induced
by Ag(z) as given in Eq. (21) are negligible compared to
those induced by Kj(z). Indeed, dimensional analysis shows
that Ay(z) ~ Ky(z)/L, where L is the geometrical length scale
induced by the tractions p(x,z) or by the average length of
the crack plane in the x direction (see Fig. 1). This length
scale is large compared to the characteristic scale of the per-
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turbation /(z). Therefore, we will neglect the corresponding
contributions in the following. However, the contribution
proportional to (=X)*? of the first order as shown in Eq. (22)
should be taken into account, because it depends on K;(z)
and, thus, contributes to the stress intensity factor term of the
second-order problem.

The zeroth-order problem cannot be solved without speci-
fying the loading p(x;z). However, this is not needed for
solving the first- and second-order problems, which will de-
pend on the stress intensity factor Ky(z) only. However, if
one takes into account, in the perturbation analysis, the con-
tributions of the parameter A((z), the resolution of the zeroth-
order problem becomes necessary [8]. Let us decompose
¢{(X,y,z) into Fourier modes in the z axis,

©

1 ~ .
¢i(X5y7Z) = ;T d’i(x’y,l’)elpzdp’ (24)

and use polar coordinates (r, 6) in the (X,y) plane. The so-
lutions for $1 and $2 are readily given by

-~

- H
&, (r,0.p) =— ,@e-‘ﬂlf sin(6/2), (25)
e’2 T
P Ly(p) .
(r,0,p) = ——==——(1 + |p|r)e " sin(36/2)
H
_H) it ). (26)

\N2ar

These forms satisfy the bulk equations (17) and the boundary
conditions (18)—(20). The conditions (22) and (23) are then
satisfied if the functions H,(p), H,(p), and L,(p) are given
by

H(p) = f Ky(2)h(z)e P*dz, (27)
Hy(p) = f z?l(p'm(p—p')‘%, (28)
Lo(p) = f i - p) (29)

Identifying the stress intensity factors at each order as given
by Eqgs. (22) and (23) one finds

~ 1 ~
Kl(P)=—5|P|H1(P), (30)

> 1 - ’ 'N\NLT N rdp,
Kz@)=—EJ (6p"*+p*—4lp| |p'DH,(p")h(p - p )
o T
(31)

Before performing the inverse Fourier transform of these
quantities, let us generalize these results to the case where
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the stress intensity factor depends on the location of the
crack front in the x direction.

Until now, we have supposed that the stress intensity fac-
tor does not depend on the mean location of the crack front.
This is not true in general for quasistatic cracks, which
should be at equilibrium, and for which the condition
dK/dL<0 must be satisfied. The decomposition of the per-
turbation follows from Rice’s approach [11,16]. First, we lo-
cate the straight crack front on which the perturbation is
performed at the position [L+h(z)]. The stress intensity fac-
tor at the leading order is then given by Ky[z,L+h(z)] and
the location of any point of the curved front is taken with
reference to this position. It is clear that the perturbation
expansion of the stress intensity factor will include contribu-
tions of the form hh"K,, hdK,/dL, and h*d’K,/dL*. How-
ever, one should neglect them because the terms induced by
A(z), which introduce contributions of the same order, were
already neglected. Therefore, the perturbation expansion
with respect to (k/L) will be at the leading order. Let us
focus on the stress intensity factor K [z,L+h(z)] as given by
Eq. (13), and write

Ki(2) = Kpp(2) + K1 (2) + Kpp(2) + 0<h3’ %) , (32)

where the L dependence has been omitted. Therefore, using
Egs. (13), (30), and (31) and performing inverse Fourier
transforms, we find that K;y(z)=K,(z), and

C @) —h(z) dz’
Kn(Z)=PVf_OOK0(Z)ﬁi, (33)
K,z(z)=—éKo(z)h'2(z) +PVJ f Ky(z")
o 1@ = h@DNh(E") = h(z)]dz" dz" (34)

(2 =24 =2')? 22’

Finally, when K,(z) is independent of z, the expansion to the
second order in 4 and to the leading order in (h/L) of the
mode [ stress intensity factor is simplified into

K 1
K@) Ly
K, 8
o hr ! o h/ " d!/ d/
+PVf ) 1+ij N de 4
(35)
Ki(p) [ lf
=L o mstp) - ~lplip) + < | [2pl p"
K, =27 (p) = Slplh(p) + 2 i plIp’|
’ INTE !\ T rdp’
+p'(p = p")Jhp"hip = p")5—. (36)

Let us emphasize again that for the study of the crack-
front stability, this perturbation expansion is incomplete, be-
cause the (h/L) contributions have been omitted. This state-
ment is true even for a linear stability analysis. An example
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of the importance of such contributions is given by the linear
stability analysis of the peeling-induced crack front in a con-
fined elastic film [8], where the (h/L) terms do rule the sta-
bility of the crack front. From a conceptual point of view,
these terms are important to keep contact with the experi-
ments [4], because a quasistatic moving crack front will al-
ways stop (dK/dL<0), unless the applied force is increased.
Indeed, the experimental realizations for the study of crack-
front roughness use the large length scale L in order to make
the interface moving, by applying an increasing opening in a
cantilever beam configuration. We believe that such effects
are also present in the wetting experiments, where the con-
tact line is displaced by pulling off the substrate. In such
conditions, the roughening of the interface results from a
competition between the microscopic pinning effects and the
destabilizing effects of the macroscopic driving.

We now propose an equation for the motion of a planar
crack in a heterogeneous material. The present approach is
very similar to the one introduced by Gao and Rice [13-15].
We write the equation of motion for the moving crack front
as a stochastic partial differential equation by using two main
ingredients—the irreversibility of the crack-front propaga-
tion and the nonlinear effects. We refer to /(z) as the fluctu-
ating part of the interface, so that by definition, the real lo-
cation of the interface is given by L+h(z), and L is its
average. First, we expect a contribution of the form [K,(h)
—K_.(z,h)], where the perturbative calculations to second or-
der for K,(h) are given above, and K (z,4) is some random
toughness describing the heterogeneity of the material. Then,
the irreversibility of the fracture process implies that the
crack-front motion is possible only at locations of /(z) where
the stress intensity factor is larger than the local toughness
K/ (h)>K.z,h). This results in a term like O[K,(h)
—K,(z,h)] where ©(-) is the Heaviside function. Finally,
since the crack propagation is locally normal to the interface
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[16], one should include a KPZ-like term of the form
V1+h"%(z). So a possible form, where the velocity is taken to
be proportional to the difference (K;—K,) is given by

'f?—': x T+ h 2K () - K (2. h)O(K - K. (37)

This is a highly nonlinear stochastic partial differential equa-
tion, even if just second-order terms are taken. Clearly, the
presence of the Heaviside function complicates the treat-
ment. In this equation, properties of the noise term need to be
specified, and should be generically described by short-range
correlations.

To summarize, we derived the second-order variation in
the stress intensity factor of a tensile crack with a curved
front propagating in a brittle material. We pointed out that for
linear stability analysis one has to take into account the con-
tributions coming from the large scales, and so the complete
resolution of a given problem must be fully performed for
that purpose. Finally, we proposed an equation of motion of
the planar crack fronts in heterogeneous media that contains
both the irreversibility of the propagation of the crack front
and the nonlinear effects. We suggest that the proposed equa-
tion can be useful in studying the roughening of propagating
crack fronts. In particular, we expect that the nonlocal char-
acter of the nonlinear term (in contrast to the local KPZ
nonlinearity) is likely to change the universality class of the
original equation obtained at first order. Finally, the pertur-
bation method introduced in this study can be generalized
without major difficulties to higher orders.
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Résumé :

Ce manuscrit décrit mes activités de recherche effectuées au Laboratoire de Physique
Statistique de I’Ecole Normale Supérieure. Le principal sujet de recherche que j’ai étudié
concerne dynamique de la propagation des fissures. L’approche suivie tourne autour de
la formation de motifs dans des systemes en présence d'une ou de plusieurs fissures. Une
fois qu’une fissure est formée et qu’elle commence a se propager quelle trajectoire va-
t-elle suivre ? quelle sera sa dynamique? les instabilités dynamiques et morphologiques
observées expérimentalement sont-elles corrélées 7 lorsque plusieurs fissures sont présentes,
comment interagissent-elles et quelle est la morphologie résultante? peut-on controler
le motif final en controlant seulement les conditions d’application des contraintes ou la
géométrie globale ?

Récemment, j’ai commencé a aborder de nouveaux problemes tournant autour de la
morphogénese induite par la mécanique. Le principal objectif de ces études est d’apporter
une meilleure compréhension du comportement mécanique de certaines structures biolo-
giques et physiques, et de leur morphogenese.

Abstract :

This manuscript describes my research activities at Laboratoire de Physique Statis-
tique de I'Ecole Normale Supérieure. The central subject deals with the dynamics of
crack propagation as a pattern formation mechanism in systems in presence of one or
many cracks. When a crack is formed and starts propagating, which path will it follow ?
what will be its dynamics? are the observed dynamical and morphological instabilities
correlated ? what is the resulting pattern in the case of multiple crack propagation? Can
we control the final pattern by only controlling the applied loading and geometry of ex-
periment ?

Recently, I started working on new problems dealing with pattern formation induced
by mechanical constraints. The principal goal of these studies is to bring insights on the
mechanical behaviour of some biological and physical structures, and their morphogenesis.
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