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CHAPTER 1

Introduction

Arise, awake, stop not till the goal is reached

- Swami Vivekananda

1.1 Introduction

In the past years, we have seen rapid strides being made in the field of computer graphics.

Over these years, the realism of graphics applications have increased by leaps and bounds.

No doubt the ever increasing speed and affordability of personal computers equipped with

powerful graphics hardware has played an important part as well. There are two fundamental

effects of this. First, it has enabled access to powerful hardware in desktop form to more and

more researchers themselves which were erstwhile available only to well-funded university and

corporate labs. The second is that the industry folks (such as game developers) are able to

transfer these research advances to mass entertainment products thus creating a profitable

market for these products which in turn sustains further innovation.

The key to maintain/accelerate this virtuous circle is via the constant efforts of the re-

search community in presenting new solutions to open problems. By fundamentally trying to

have a better understanding of the mathematical and physical aspects, we have seen several

examples of researchers bringing in bold and complex ideas from basic and applied sciences

and adapting it to the problem at hand.
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6 INTRODUCTION

Further, such scientific advances not only benefit entertainment technology but also life-

saving domains such as surgical planning, training and virtual prototyping. By giving the

surgeons an opportunity to practice on a virtual patient before operating, they can have

a more accurate understanding of the problem and plan on tackling possible complications

which were erstwhile not available. All this means that we need accurate 3D geometric model

which accurately captures the organs and a mechanical model which reacts with realism.

1.2 Motivation

The focus of this thesis is physically-based animation. Since the eighties, there have been

several attempts to simulate solid, liquid and gaseous phenomena. By the nineties, a great

deal of progress was made in the simulation of rigid bodies through pioneering efforts of

researchers like David Baraff . We saw how rigid body models which were designed to respect

physical laws and involving collisions and contacts can often be too complex to be solved

using the “traditional” math tools available at that time. There the graphics community did

not hesitate to look for more sophisticated mathematical tools to get an acceptable solution

[Bar94].

There have been lots of efforts to replicate such successes in deformable objects. There

again, we saw several examples of researchers in the graphics community introducing new

models or those adapted from elsewhere. From the pioneering elastic model by Terzopoulos

et al [TPBF87], to Witkin’s constraints [WW90] and to adaptive multi-resolution models

[DDCB01].

Despite these advances, we believe that the case of multiple collisions and contacts es-

pecially for thin deforming objects is a challenging problem at hand. While there have been

many earlier models proposed by the graphics research community which led to satisfactory

visual results in specific cases - there have been very few models which can boast of a com-

prehensive approach. In the forthcoming chapters we will convincingly make a case on the

need for better solutions for the problems at hand.

1.3 Summary of Contributions

In this thesis, we basically propose a robust model for handling multiple collisions and

contacts which is necessary for realistic graphical simulations. We will first examine the state-

of-the art methods which exist in literature, then point out the shortcomings when it comes

to dealing with the specific problem and then propose our solutions.

1.3.1 Intestine Surgery Simulator

We present a new approach to detect the collisions which occur in highly deformable

objects such as the human intestine. Our algorithm which tracks pairs of closest features over
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(i)

(ii)

(iii)

Fig. 1.1: (i) One of the first elastic model of cloth [TPBF87]. (ii) Adaptive multi-resolution deformable

model [DDCB01]. (iii) Stacking of many non-convex rigid objects [GBF03].

time-steps is rapid since it does not require expensive bounding volume updates. The collision

handling system has been implemented as part of a complete intestinal surgery simulator

system which in addition to collisions also consists of modeling, animating, and rendering

the intestinal system (rendering and system integration was done by our collaborators at

LIFL 1). The results were published in a peer-reviewed international conference [RCFC03]

and subsequently as refereed journal publication [RGF+04].

1.3.2 Robust Mechanical Solver

We present a new way of robustly animating stiff objects such as a mechanical cable

colliding with rigid mechanical parts. Our method consists of a mass-spring system integrated

using an implicit Euler scheme using an iterative method such as the generic conjugate

1GRAPHIX/Alcove, Laboratoire d’Informatique Fondamentale de Lille, 59655 Villeneuve d’Ascq Cédex,
FRANCE, http ://www2.lifl.fr/GRAPHIX/



8 INTRODUCTION

gradient solver or a more direct and specific technique such as a banded LU solver. We

use an efficient octree-based bounding volume hierarchical system to quickly identify the

zone of collision and detect and respond to collisions both at continuous and discrete time

intervals. We present our results using practical examples with 3D mechanical parts and

cable specifications from an industrial partner Solid Dynamics 2 - a developer of commercial

CAD/CAM software.

1.3.3 Continuous-Time Collision Detection

With the help of specific case studies, we illustrate the shortcomings of detecting collisions

only at discrete time-intervals - it becomes acute while dealing with thin objects. We elucidate

the need to detect at continuous time intervals for simulating dynamic thin objects. With this

approach, we are able to not only catch all the collisions missed otherwise, but also able to run

simulations at relatively large time steps. Though continuous collisions were proposed earlier,

our approach is robust since it even handles degenerate cases. We would later combine both

these techniques in addition to exploiting temporal coherence for handling “difficult” collision

case of simultaneous multiple collisions. Some of the preliminary results were demonstrated

in a tutorial at an international conference [ZTK+05]. A state-of-the-art report on collision

detection techniques for deformable objects co-written with other researchers interested in

this domain was published as a refereed journal publication [TKH+05].

1.3.4 Quadratic Programming Collide

The robust detection of collisions solves only one part of a complex problem. In addition,

there are also cases where the need for handling multiple collisions and contacts arise. Here

we present two approaches : first we have developed a novel approach which formulates the

problem of multiple constraints as a quadratic programming (QP) problem - by considering

the collisions as linear constraints and the underlying dynamics as an objective function to

be minimized. These constraints directly modify the velocities of the colliding elements thus

avoid introducing excessive strain into the system. Finally, we are able to obtain a global

solution which is able to satisfy all the collisions. The preliminary results were published in

a French conference paper [RF06].

1.3.5 Guaranteed Collision Response

Secondly, we also propose a “fail-safe” method which ensures that no collisions are missed.

This method largely relies on exploiting temporal coherence by introducing penalty springs

in response to collisions detected both at discrete and continuous time-steps. By increasing

stiffness value in case of persistent interpenetration we are able to “break-free” of the collision

loop which is one of the bane of the iterative methods. Our method also monitors if new

2Solid Dynamics S.A., 42300 Roanne, FRANCE, http ://www.solid-dynamics.fr
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collisions are created while responding to the existing ones, thus making it a truly fail-safe

approach.

1.4 Organization of Thesis

After having introduced the problem at hand, we detail the existing techniques in the

domain of physically-based animation, collision detection and response in chapter 2. In chap-

ter 3, we present new techniques developed for an intestinal surgery simulator and a stiff

mechanical cable system in addition to discussing the shortcomings of the approaches. Then

we present our robust collision detection techniques in chapter 4. We present our solutions

for handling multiple collisions in chapter 5. Finally, we summarize our contributions and

conclude with some perspectives on future work in this research area in chapter 6.
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CHAPTER 2

State of the Art

Jim Blinn in his SIGGRAPH ’98 keynote address has identified the simulation of

spaghetti as one of the ten unsolved problems in computer graphics [Bli98]. The

main research issues here are the modeling, detection of multiple collisions and

the simulation of a realistic response to that. This chapter reviews some of the

prior work in this area.

2.1 Introduction

Not all animation which looks realistic uses a physics-based approach. For example in

[Bar97], Barzel describes a method of “fake” dynamics which was used for the full-length

CG animated movie Toy Story [Las95]. Such applications are intended to animate creatures

such as Slinky Dog (see Fig. 2.1(i)) in a non-physical and dramatic manner. Since then, we

have come a long way in the use of “realistic” looking computer generated characters which

drive popular imagination. For example the physically-based cloth animation systems deve-

loped by [BFA02] was used to animate the virtual robe of a computer generated Yoda (see

Fig. 2.1(ii)) in the feature film Star Wars : The Phantom Menace [Luc99]. Of course, they

still do not provide the perfect results required in a production environment and so artistic

tweaks and re-simulations are often required. But what used to be earlier hand-animated is

increasing being automatized thanks to the increasing availability of affordable workstations

for graphics artists and production engineers powered by sophisticated modeling and anima-

11



12 State of the Art

tion software. As we noted in the previous chapter, such advancements have been possible

due to the pioneering efforts of computer graphics researchers whose work gets translated

into sophisticated tools which aid artists and production engineers.

In this chapter, we briefly trace the developments in the physics-based simulation in

computer graphics concentrating on aspects of physically-based animation (cf. § 2.2), collision

detection (cf. § 2.3) and collision response (cf. § 2.4).

(i)

(ii)
Fig. 2.1: (i) Slinky Dog from the animated feature film Toy Story c©Disney/Pixar 1995. (ii) Yoda

from Star Wars : Episode I c©Lucasfilm Ltd. 1999.

2.2 Physically-based Modeling

Early Works : One of the pioneering works in the use of physical laws for simulating

deformable objects was by Terzopoulos et al. [TPBF87]. This preliminary model was la-

ter extended to take account of visco-elasticity, plasticity and a basic model for fracture in

[TF88a, TF88b]. This was followed by the constraint-based approach for solving dynamics

problems by Witkin and Welch [WW90] and Baraff and Witkin [BW92] for simulating flexible

objects. During this period, several interesting approach were proposed for simulating rigid

body dynamics using analytical methods [Hah88, Bar89], to take account of friction [Bar91]

and formulating a global computation of non-penetration forces [Bar94].
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Deformable Objects : In the later years, more realistic approaches based on finite ele-

ment analysis [Bat95] began to be applied in computer graphics. Advanced methods which

include fast boundary element approaches [JP99], implicit surface formulation [DC95], adap-

tive multi-resolution techniques [DDCB01], [CGC+02] and [GKS02] provided innovative ap-

proaches which were fast-enough to run on standard PCs while giving a realistic solution.

Some with special applications such as surgery simulation used finite element preprocessing

[CDA99]. More generic approaches exploiting pre-computation were proposed using reduced

coordinate models [JF03, BJ05]. Other volumetric approaches such as the 3D Chainmail

by Gibson [Gib97], mesh-less method based on finite spheres by De and Bathe [DB00] and

point-based methods by Pauly et al. [PKA+05] too have been developed.

Cloth Animation : In deformable object simulation, a popular challenge (driven in part

by film and computer games industry) was to realistically simulate cloth for character ani-

mation. Initially particle-based approaches were proposed by Breen et al [BHG91]. Provot

[Pro95] further advanced this by proposing a mass-spring system using an explicit integra-

tion approach. The undesirable “super-elastic” effect occurring due to explicit methods was

fixed by a post-integration deformation constraint (with a user-defined value) step. Volino et

al. [VCMT95] further extended this approach to take account of collision and self-collisions

occurring by checking the colliding particle’s orientation - an attractive force is applied if it

is “wrong” side as opposed to the usual repulsive force if it is on the “right” side. Finally,

it was Baraff and Witkin who pioneered the efficient use of implicit integration [BW98] for

a “stiff” material like cloth. The implicit step though more complex than an explicit one

nevertheless also permitted the use of large time-steps. Note that the early approach of Ter-

zopoulos [TPBF87] too suggested the use of implicit integration approach - but they relied

on a direct solver which is not very efficient for large models. Hence they relied on expli-

cit schemes for such cases. Baraff solved this by proposing an iterative solver such as the

conjugate gradient method. A comparison of various explicit and integration was presented

in a study by Volino and Magnenat-Thalmann [VMT01]. Recently, a more advanced form

of the conjugate gradient algorithm for cloth animation has been presented by Ascher and

Boxerman [AB03]. One problem with the approach of Baraff and Witkin is that the implicit

scheme “smoothes” out folds and wrinkles. To overcome that, further advances were made

in cloth simulation with the treatment of buckling effects by Choi and Ko [CK02]. Another

approach to efficiently simulate cloth while preserving the folds and wrinkles was proposed

by Bridson et al. [BMF03]. It uses a hybrid explicit/implicit integration scheme originally

proposed by Meyer et al. [MDDB00].

Strand and Hair Animation : Pai introduced the mechanics of simulating thin strands

such as surgical sutures, hair, ropes, etc. via a static method of Cosserat’s rods [Pai02]. The

emphasis here is to capture the twisting behavior when one applies a torque along the axis of

the strand. The author questioned the approach of using existing techniques such as FEM,

mass-spring for modeling such objects since they will require very fine meshes in order to

well-represent the curvature. Hence, he proposed to model thin objects by using Cosserat’s
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theory erstwhile used in solid mechanics. The resulting mathematical formulation followed

by the discretization results in an ODE in one independent variable. The results here are 30

Hz with a few hundred points. The present work neither addresses the issue of time-stepping

for dynamic simulations nor collisions. Bertails et al. [BAC+06] recently extended the use of

Cosserat’s rods to dynamic cases and interacting situations through her Super Helices used

to simulate hair strands.

Yet another approach to hair animation is by using continuum dynamics principle [HMT01].

Their work was inspired by smoothed particle hydrodynamics (SPH) which was first intro-

duced to computer graphics by Desbrun and Cani [DC96] for simulating highly deformable

objects. Here they animated hair using a set of articulated rigid bodies to compute the next

position of hair strands. To account for hair-hair interaction they viewed the hair as a set of

fluid particles based on SPH. The computed fluid forces were then applied to the articulated

rigid bodies.

Hair mutual interactions was one of the main focus of [PCP01] where they developed the

first model that computed the interactions inside hair, both with a hair wisp and between

wisps. Chang et al. [CJY02] too later addressed hair-hair collision by using a set of sparse

guide strands with a set of auxiliary triangles. Dense hair is then generated from this sparse

model by using an interpolation scheme. For hair-hair interaction, a triangle strip is generated

by connecting the hair vertices. Collision is detected when the distance between the hair

elements falls below a threshold.

For a detailed treatment of the various techniques for hair simulation, we refer to the

survey paper by Ward et al. [WBK+06]. A detailed state-of-the-art report in the general

domain of physically-based modeling is presented by Nealen et al. [NMK+05].

2.3 Collision Detection

Collision detection is one of most interesting topics in computer graphics in general and in

physically-based animation in particular. As the complexity of graphics applications increase,

we have a large amount of interacting objects in the scene. And it is very important to detect

and respond to them in order to maintain the realism of the simulation. Overall, collision

detection consists of determining when a geometric intersection is going to occur or if it has

already occurred. In this section we describe the basic tenets of collision detection and the

various approach one can take. Specifically, we describe the following popular approaches to

collision detection :

– Bounding Volume Hierarchy

– Spatial Subdivision

– Distance Fields

– Image-Space Techniques
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Of these, we describe bounding volume hierarchy in more detail than others. We then detail

the narrow phase techniques especially the continuous-time methods. For other good intro-

duction to the various techniques in collision detection, we refer the reader to the survey

papers by Lin and Gottschalk [LG98], Jiménez et al. [JTT01] and more recently by Teschner

et al. [TKH+05] which specifically addresses deformable object collision detection.

2.3.1 Broad Phase vs Narrow Phase

Broad phase collision detection is an approach to quickly get rid of most non-colliding

objects (or regions within an object) using a relatively inexpensive test. It might usually

consists of developing data structures (such as trees, distance fields or spatial-partitioning

methods) which will quickly identify possible zones of contact. In the broad phase, collision

test is accelerated by performing collisions between the BVH rather than the actual polygonal

data itself (see Fig. 2.2). Note that such object representations are commonly built in a pre-

processing stage and need not be updated over the time for rigid body animations. But

they need to updated for deformable cases. There are several update strategies proposed

in graphics literature (see §2.3.3.3). We then perform exact tests between the primitives

(triangles, vertices, edges) referred to as the narrow phase of the detection to find the exact

point of collision. This information is then passed to the collision response module.
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Fig. 2.2: Broad phase collision detection illustrated (i) geometrically and (ii) graphically.

2.3.2 Basic Tenets of Primitive Testing

Before we detail the broad phase techniques, we would like to specify the the kind of

geometric objects we cover. In this thesis, we generally deal with polygonal objects. Hence

the primitives of such objects are vertices, edges, faces (or its special cases - triangles). In one

of the earliest work, Boyse [Boy79] discusses his method of interference detection between
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objects represented as a polyhedra. Per this, there are three possibilities when two polyhedra

A and B intersect (see Fig. 2.3). They are :

– Vertex of A intersects with Face of B

– Vertex of B intersects with Face of A

– Edge of A intersects with Edge of B

Note that the primitive testing comes in the narrow-phase of the testing.

Fig. 2.3: Basic tenets of collision detection [Boy79].

2.3.3 Bounding Volume Hierarchies

Bounding-volume hierarchies (BVHs) have proven to be one of the efficient data struc-

tures for collision detection. The characteristics of different hierarchical collision detection

algorithms lie in the type of BV used, the algorithm for construction of the BV trees and the

overlap test for a pair of nodes. The idea behind a BVH is to partition a set of primitives that

constitutes a given object recursively until some leaf criterion is met. Most often, each leaf

contains a single primitive, but the leaf criterion could also be met if a node contains less than

a fixed number of primitives. Here, primitives are the entities which make up the graphical

objects, which can be polygons. As we mentioned earlier, there can be other primitives such

as NURBS patches but in this section, we consider mostly polygonal primitives, i.e. vertices,

faces and edges. A BVH is commonly constructed for each object in a pre-processing step. In

general, BVHs are defined as follows : Each node in the tree is associated with a subset of the

primitives of the object, together with a BV that encloses this subset with a smallest contai-

ning instance of some specified class of shapes. We refer to [ZL03] for a detailed discussion of

BVHs in general.

BVH Types : One of the design choices with BV trees is the type of BV. In the past, a

wealth of BV types has been explored, such as spheres [PG95, Hub96] and more recently by

Bradshaw and O’ Sullivan [BO02], oriented bounding boxes (OBB) [GLM96], discrete orien-

ted polytopes (DOP) [KHM+98], Boxtrees [AdG+02], axis-aligned bounding boxes (AABB)

[vdB97, LAM01], spherical shells [KGL+98], and convex hulls [EL01].

Although a variety of BVs has been proposed (see Fig. 2.4), two types deserve special
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mention : OBBs and k-DOPs. Note, that AABBs are a special case of k-DOPs with k =

6. OBBs have the nice property that, under certain assumptions, their tightness increases

linearly as the number of polygons decreases [GLM96]. k-DOPs, on the other hand, can be

made to approximate the convex hull arbitrarily by increasing k. Further, k-DOPs, especially

with k = 6, can be computed very efficiently. This is important, since deforming objects

require frequent updates of a hierarchy (cf. §2.3.3.3). Also note that the performance of a

BVH query depends on both the depth of the hierarchy and the cost of the query performed

at a given level of the hierarchy.

Sphere AABB DOPOBB

Fig. 2.4: A variety of bounding volumes has been proposed for hierarchy-based collision detection.

2.3.3.1 Hierarchy Construction

As far as collision detection is concerned, the goal is to construct BVHs such that any

subsequent collision query can be answered as fast as possible. Such BVHs are called optimal

or good in the context of collision detection. The BVH is built by recursively splitting a set

of object primitives until a threshold is reached. The splitting is guided by a user-specified

criterion or heuristic that will yield good BVHs with respect to the chosen criterion. There

exist three different strategies to build BVHs, namely top-down, bottom-up [RL85], and in-

sertion [GS87]. However, the top-down strategy is most commonly used for collision detection.

Fig. 2.5 shows two hierarchy levels for the 18-DOP hierarchy of an avatar, that was created

top-down [MKE03].

A very simple splitting heuristic is the following. [GLM96] approximated each polygon by

its center. Then, for a given set B of such points, they computed its principal components

(the eigenvectors of the covariance matrix), chose the largest of them (i.e. the one exhibiting

the largest variance) and then placed a plane orthogonal to that principal axis and through

the barycenter of all points in B. This effectively split B into two subsets. Alternatively, the

splitting plane can be placed through the median of all points. This leads to a balanced tree.

However, it is unclear, whether balanced trees provide improved efficiency of collision queries.

With deformable objects, the main goal is to develop algorithms that can quickly update

or refit the BVHs after a deformation has taken place. At the beginning of a simulation, a

good BVH is constructed for the initially non-deformed object just like for rigid bodies. Then,

during the simulation, often times the structure of the tree is kept, and only the extents of
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the BVs are updated. Due to the fact that AABB (or in general k-DOPs) are generally faster

to update for deformable objects as described in [vdB97], they are preferred to OBBs (cf.

§2.3.3.3 for a discussion on update strategies).

Fig. 2.5: Two levels of an 18-DOP hierarchy [MKE03].

2.3.3.2 Hierarchy Traversal

For testing the collision between two objects or the self collision within a single object, the

BVHs are traversed top-down and pairs of tree nodes are recursively tested for overlap. If the

overlapping nodes are leaves then the enclosed primitives are tested for intersection. If one

node is a leaf while the other one is a internal node, the leaf node is tested against each of the

children of the internal node. If, however, both of the nodes are internal nodes, it is tried to

minimize the probability of intersection as fast as possible. Therefore, [vdB97] tests the node

with the smaller volume against the children of the node with the larger volume (see Fig. 2.6).

For two given objects with the BVHs A and B, most collision detection algorithms implement

the following general algorithm scheme (see Algo. 1). This algorithm quickly “zooms in” on

pairs of nearby polygons.

2.3.3.3 Hierarchy Update

In contrast to hierarchies for rigid objects, hierarchies for deformable objects need to be

updated in each time step. Principally, there are two possibilities : refitting or rebuilding.

Refitting is much faster than rebuilding, but for large deformations, the BVs usually are

less tight and have larger overlap volumes. Nevertheless, van den Bergen [vdB97] found out

that refitting is about ten times faster compared to a complete rebuild of an AABB hierarchy.



2.3. COLLISION DETECTION 19

0


1
 2


3
 4
 5
 6


a


b
 c


d
 e
 f
 g


0
a


1
a
 2
a


2
b
 2
c


5
b
 6
b


6
d
 6
e


Collision


(i)

0


3
 4
 5
 6


a


d
 e
 f
 g


0
a


3
a
 4
a
 5
a
 6
a


6
d
 6
e
 6
f
 6
g


Collision


(ii)
Fig. 2.6: (i) Recursion using binary trees and (ii) 4-ary trees.

Algorithm 1 BVH Traversal

traverse(A,B)
if A and B do not overlap then

return
end if
if A and B are leaves then

return intersection of primitives
enclosed by A and B

else
for all children Ai and B do

traverse(Ai,B)
end for

end if

Further, as long as the topology of the object is conserved, there is no significant performance

loss in the actual collision query compared to rebuilding.

The overall strategy is to update as few nodes as possible. The hierarchies can be updated

either by bottom-up, top-down or hybrid strategy. In the top-down approach, we scan all the

primitives under a node starting from the root and update the boundaries of the current

node. The same is selectively applied for child nodes when needed. This way we only update

few nodes as necessary which is relatively faster for “simple” cases when not many deep nodes

are reached. In the case of bottom-up, the hierarchies are traversed upwards starting from the

leaves merging towards the root. Since we already have the bounding volume of child nodes,

finding the bounding volume of parent node is trivial BV Hparent =
⋃

i BV H i,∀i ∈ BV Hchild.

But the disadvantage is all the nodes need to be traversed. The bottom-up approach is

relatively faster for more “difficult” cases when many deep nodes are reached during collision

tests.

Other approaches have been proposed by Mezger et al. [MKE03] to further accelerate the

hierarchy update by omitting or simplifying the update process for several time steps. For

this purpose the bounding volumes can generally be inflated by a certain distance. Then the

hierarchy update is not needed as long as the enclosed primitives did not move farther than
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that distance.

Hybrid Update : Larsson and Akenine-Möller [LAM01] compared bottom-up and top-down

strategies. They found that if many deep nodes are reached the bottom-up strategy performs

better, while if only some deep nodes are reached the top-down approach is faster. Therefore

they proposed a hybrid method, that updates the top half of the tree bottom-up and only if

non-updated nodes are reached these are updated top-down (see Fig. 2.7). Using this method

they reduce the number of unnecessarily updated nodes with the drawback of higher memory

requirement because they have to store the leaf information about vertices or faces also in

the internal nodes.

Another crucial point is the arity of the BVH. For rigid objects, binary trees are commonly

chosen. In contrast, 4-ary trees or 8-ary trees have shown better performance for deformable

objects [LAM01, MKE03]. This is mainly due to the fact that fewer nodes need to be updated

and the total update costs are lower. Additionally, the recursion depth during overlap tests

is lower and therefore the memory requirements on the stack are lower.

Fig. 2.7: Example of a hybrid update combining the bottom-up and top-down strategy [LAM01].

2.3.3.4 Self-Collision Detection Using BVH

In general, collisions and self-collisions are performed the same way using BVHs. If se-

veral objects are tested for collisions, the respective BVHs are checked against each other.

Analogously, self-collisions of an object are detected by testing a BVH against itself.

However, it has to be noted, that BVs of neighboring regions can overlap, even when

there are no self-collisions. To eliminate such cases efficiently, different heuristics have been

presented. Volino and Magnenat-Thalmann [VMT94, VMT95] proposed an exact method to

avoid unnecessary self-intersection tests between certain BVs. In a region, if there exists a

vector v such that v · ni > 0 for all normal values ni, then cannot be any self-collisions

within the region. If such a vector exists and the projection of the region onto a plane in

direction of the vector does not self-intersect, then there can be no self-intersections in the
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entire region. Also, if the contour of the region projected on a 2D plane does not self-intersect,

then there cannot be any self-collisions. Hence regions which does satisfies these condition

are exempt from collision checking. The same philosophy is applied between two adjacent

regions (connected by at least one vertex) to check for non-intersection conditions.

A faster approach was proposed by Provot [Pro97] in which normal cones were introduced.

The idea is based on the fact, that regions with sufficiently low curvature cannot self-intersect,

assuming they are convex. Therefore, a cone is calculated for each region. These cones re-

presents a superset of the normal directions. They are built using the hierarchy and updated

during the hierarchy update. The apex angle α of the cone represents the curvature, indica-

ting possible intersections if α ≥ π. The cones are built bottom starting from the leaf node

whose α = 0. Then moving up the cones of the top node is computed using the normal and

cone angle values of the descendants (n1, n2, α1 and α1 respectively) as follows (see Fig.

2.8) :

β = arccos(n1 · n2) (2.1)

α =
1

2
β + max(α1 + α2) (2.2)

n =
n1 + n2

|n1 + n2|
(2.3)

Of course this assumes that the descendant cones are also adjacent which is the case for

convex situations. Self-collisions within a cone can then be pruned if α < π.

2.3.3.5 Wrapped Hierarchy

Guibas et al. [GNRZ02] proposes a method for the collision detection for deforming neck-

laces - objects that can be modeled as a chain of connected spheres. Naturally, a sphere-based

hierarchical method is used for collision and self-collision detection. The interesting aspect

of this work is the use of a wrapped hierarchy. Traditional bounding volumes such as OBB

and AABB have been successfully applied for large virtual environments with physical simu-

lations. However, they are slow to update when the object not only moves, but also deforms.

This is because they are based on spatial proximity which changes with time. The proposed

method is based on topological proximity, which is preserved even under deformation. Under

the new approach, the upper bound for determining interference between two bounding hie-

rarchies is O(n2−d/2) for d-dimensions. But this collision model is yet to be integrated with a

physical model which can govern the dynamics of the objects. Again, only small deformation

have been considered. This cardinal rule applies for both rigid and deformable objects.

James and Pai [JP04] too exploited wrapped hierarchy with their BD-Tree which effi-

ciently handles hierarchy update for a reduced coordinate animation model which undergoes

limited deformation. The BD-Tree hierarchy is first constructed using any standard tech-

nique. It is then “wrapped” by tightening the radius (in case of a sphere tree) while retaining

the center (see Fig. 2.9). The father node here usually covers only the primitives under its
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Fig. 2.8: Cone (angle α) enclosing two descendant cones in the hierarchical tree (angles α1 and α2)

[Pro97].

hierarchy and not the actual child nodes. This avoids the need to update the father node

when the child needs to be updated. But they also slightly inflate the coarser nodes in order

to wrap the descendant nodes as well. A fast update scheme which takes advantage of the

reduced coordinate formulation is presented for the center and the radius. Though conser-

vative, it performs well for limited deformation. But it is not suitable for larger deformation

since the calculated radius becomes very conservative and hence very large.

2.3.3.6 BVH Summary

In BVH approaches, the efficiency of the basic BV has to be investigated very carefully.

This is due to the fact that deforming objects require frequent updates of the hierarchy.

So far, it has been shown that AABBs should be preferred to other BVs, such as OBBs.

Although OBBs approximate objects tighter than AABBs, AABBs can be updated or refit

very efficiently. Additionally, 4-ary or 8-ary trees have shown a better overall performance

compared to binary trees.

Although deformable modeling environments require frequent updates of BVHs, BVHs are

nevertheless well-suited for animations or interactive applications, since updating or refitting
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Fig. 2.9: The wrapped hierarchy (left) has smaller spheres than the layered hierarchy (right). Note

that the wrapped hierarchy at a certain level need not contain the spheres of its descendants and so

can be significantly smaller. But since they do contain the actual geometry (shown in green), it is

sufficient for collision detection [JP04].

of these hierarchies can be done very efficiently. Furthermore, BVHs can be employed to detect

self-collisions while applying additional heuristics to accelerate this process. Also, BVHs work

with triangles and tetrahedrons as object primitives, which allows for a more sophisticated

collision response compared to a pure vertex-based response.

2.3.4 Spatial Subdivision

Spatial subdivision is a simple and fast broad phase technique to accelerate collision

detection for both rigid and deformable objects. We divide the space into cells and place each

object (or bounding volume) in the cells(s) they intersect. We check collisions by examining

the cells occupied by each bounding volume to verify if the cells are shared by other objects

(see Fig. 2.10). Algorithms based on spatial subdivision are independent of topology changes

of objects. They are not restricted to triangles as basic object primitive, but also work with

other object primitives if an appropriate intersection test is implemented.

There exist various approaches that propose spatial subdivision for collision detection.

These algorithms employ either uniform grids [Tur90, GDO00, ZY00] or binary space parti-

tions (BSP) [Mel00]. In [Tur90], spatial hashing for collision detection is mentioned for the

first time. In [Mir97], a hierarchical spatial hashing approach is presented as part of a robot

motion planning algorithm, which is restricted to rigid bodies. France et al. [FLMC02] used

a grid-based approach for detecting self-collisions of the intestine and collisions with its en-

vironment. All objects were first approximated by bounding spheres, whose positions were

stored, at each time step, in the 3D grid. Each time a sphere was inserted into a non-empty

voxel, new colliding pairs were checked within this voxel. Though this method achieved real-

time performances when the intestine alone was used, it failed when a mesentery surface

was added. The main difficulty in spatial subdivision is the choice of the data structure that

is used to represent the 3D space. This data structure has to be flexible and efficient with

respect to computational time and memory.
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More recently, in [THM+03], spatial hashing is employed for the detection of collisions

and self-collisions for deformable tetrahedral meshes. Tetrahedral meshes are commonly used

in medical simulations, but can also be employed in any physically-based environment for

deformable objects that are based on FEM, mass-spring, or similar mesh-based approaches.

This algorithm implicitly subdivides R3 into small grid cells. Instead of using complex 3D

data structures, such as octrees or BSPs, the approach employs a hash function to map 3D

grid cells to a hash table. This is not only memory efficient, but also provides flexibility, since

this allows for handling potentially infinite regular spatial grids. Information about the global

bounding box of the environment is not required and 3D data structures are avoided.

Fig. 2.10: Spatial subdivision technique showing objects in a scene and their bounding volumes in

an uniform grid.

2.3.5 Distance Fields

Distance fields specify the minimum distance to a surface for all points in the field. The

distance may be signed in order to distinguish between inside and outside. Representing

a closed surface by a distance field is advantageous because there is no restriction on the

topology. Further more, the evaluation of distances and normals needed for collision detection

and response is extremely fast and independent of the complexity of the object. Besides

collision detection, distance fields have a wide range of applications. They have been used for

morphing [BMWM01, COSL98], volumetric modeling [FPRJ00, BPK+02], motion planning

[HKL+99] and recently for the animation of fire [ZWF+03]. Distance fields are sometimes

called distance volumes [BMWM01] or distance functions [BMF03].

For collision detection, distance fields are particularly well-suited in virtual garments

applications. Here a static mannequin can be represented by a distance fields both inside

and outside the body (see Fig. 2.11). Fuhrmann et al. [FSG03] tackled the problem of rapid

distance computation between rigid and deformable objects. Rigid objects are represented by
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Fig. 2.11: Model of a mannequin with a cutting plane (left). 2D Distance fields generated along

this plane viewed from top shown in different colors (right). Image Courtesy : James Withers, EVA-

SION/GRAVIR.

distance fields, which are stored in a uniform grid to maximize query performance. Vertices

of a deformable object, which penetrate an object, are quickly determined by evaluating

the distance field. Additionally, the center of each edge in the deforming mesh is tested in

order to improve the precision of collision detection (see Fig. 2.12). Here, collisions with a

complex non-convex objects and self-collisions were not handled using distance fields. Bridson

et al. [BMF03] too used an adaptive distance function and a fast local update algorithm for

detecting cloth-object collisions.

Collision detection between two deformable objects is carried out by comparing the ver-

tices of one object to the distance field of the other and vice versa. Of course, as the objects

deform updates of distance fields are particularly expensive. Fisher and Lin [FL01] estimated

the penetration depth for deformable volumetric objects simulated using FEM. They used

a fast level set method which internally propagated an initially pre-computed distance field

and then partially updated it after each time step as the object deformed. The update is done

partially in the sense that only those lying in the colliding regions are updated (returned by a

hierarchical sweep and prune method in combination with an AABB-based BVH). This will

avoid the complete update or re-computation of the distance field which are expensive. Ho-

wever, even this fast method is not applicable for detecting self-collisions within thin objects

such as the cloth or hair since the approximation cannot faithfully represent the change in

object shape.
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Fig. 2.12: Collision between a trouser and a mannequin using distance fields [FSG03].

2.3.6 Image-Space Techniques

Recently, several image-space techniques have been proposed for collision detection [MOK95,

BWS99, LCN99, IZLM01, BW02, KOLM02, HTG03, KP03, GRLM03]. These approaches

commonly process projections of objects to accelerate collision queries. Since they do not re-

quire any pre-processing, they are especially appropriate for environments with dynamically

deforming objects. Furthermore, image-space techniques can commonly be implemented using

graphics hardware. However, due to buffer read-back delays and the limited flexibility of pro-

grammable graphics hardware, it is not always guaranteed that implementations on graphics

hardware are faster than software solutions in all cases (see [HTG04]). As a rule of thumb,

graphics hardware should only be used for geometrically complex environments.

An early approach to image-space collision detection of convex objects has been outlined

in [SF91]. In this method, the two depth layers of convex objects are rendered into two depth

buffers. Now, the interval from the smaller depth value to the larger depth value at each pixel

approximately represents the object and is efficiently used for interference checking. A similar

approach has been presented in [BWS99]. Both methods are restricted to convex objects, do

not consider self-collisions, and have not explicitly been applied to deforming objects.

In [MOK95], an image-space technique is presented which detects collisions for arbitrarily-

shaped objects. In contrast to [SF91] and [BWS99], this approach can also process concave

objects. However, the maximum depth complexity is still limited. Additionally, object primi-

tives have to be pre-sorted. Due to the required pre-processing, this method cannot efficiently

work with deforming objects. Self-collisions are not detected.

Lombardo et al. [LCN99] proposed one of the first image-space approach to collision

detection in surgery simulation applications. Here they developed a method to address the

detection of collisions between a rigid surgical tool and a deformable organ model in a sur-

gical simulation environment. It exploited GPU-based computation by using the OpenGL r
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clipping process for collision detection. A surgical tool such as a grasper or cautery tool is

simple enough to be modeled as a orthographic or perspective viewing volume with clipping

planes. Thus, by rendering in feedback mode, they identified the triangles of the organ that

are “visible” to this volume as the colliding ones. This simply provided a static collision test

(see Fig. 2.13 (i)) when the tool is stationary. A dynamic collision detection taking into ac-

count the volume covered by the tool between consecutive time steps too was proposed (see

Fig. 2.13 (ii)). Though, the results of this method (see Fig. 2.13 (iii) and (iv)) are extremely

fast, it is very specific applicable only to simple object shapes such as cylinders.

(i) (ii)

(iii) (iv)
Fig. 2.13: Illustration of a fast, OpenGL clipping-based collision detection method in virtual liver

surgery using a standard PC [LCN99]. (i) Collision detected (the dark patch) at a given time step when

the tool is static. (ii) Dynamic collision detection by sweeping the viewing volume over subsequent

time steps as the tool probes the organ. (iii) Dynamic simulation with input from the collision response

driving a physically-based model. (iv) Final textured image.

A first application of image-space collision detection to dynamic cloth simulation has been

presented in [VSC01]. In this approach, an avatar is rendered from a front and a back view

to generate an approximate representation of its volume. This volume is used to detect the

penetrating cloth particles. In [IZLM01], an image-space method is not only employed for

collision detection, but also for proximity tests. However, this method is restricted to 2D

objects. In [KOLM02] and [KmLM02], closest-point queries are performed using bounding-

volume hierarchies with a multi-pass rendering approach. Baciu and Wong’s work [BW02] is

on the lines of Provot [Pro97] for modeling self-collisions in deformable surfaces. It uses the

pixel buffer of the graphics hardware to accelerate and collision and self-collision detection

tests for deformable meshes represented by triangular surfaces using Provot’s (π, β)−surfaces

to find out regions of high-collision (discussed in §2.3.3.4).
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In [KP03], edge intersections with surfaces were detected in multi-body environments.

This approach is very efficient though it is not robust in case of occluded edges. In [GRLM03],

several image-space methods are combined for object and sub-object pruning in collision de-

tection. The approach can handle objects with changing topology. The setup is comparatively

complex and self-collisions are not considered.

In [HTG03], an image-space technique is used for collision detection of arbitrarily-shaped,

deformable objects. This approach computes a Layered Depth Image (LDI) [SGHS98] of an

object to approximately represent its volume. This approach is similar to [SF91], but not

restricted to convex objects. Still, a closed surface is required in order to have a defined ob-

ject volume. It also does not handle self-collisions. In [HTG04], Heidelberger et al. presented

an improved algorithm which treats self-collisions combining the image-space object repre-

sentation with information on face orientation to overcome this limitation. They provided

a comparison of three different implementations for LDI generation, two based on graphics

hardware and one software-based. Results suggest that the graphics hardware accelerates

image-space collision detection in geometrically complex environments, while CPU-based im-

plementations provide more flexibility and better performance in case of small environments

(see Fig. 2.14).

Fig. 2.14: Left : Collisions (red) and self-collisions (green) of the hand are detected. Middle : Self-

collisions (green) are detected. Right : LDI representation with a resolution of 64x64. Collisions and

self-collisions are detected in 8-11 ms using a standard PC [HTG04].

Image-Space Techniques Summary : In contrast to other collision detection methods,

image-space techniques do not require time-consuming pre-processing. This makes them es-

pecially appropriate for dynamically deforming objects. Topology changes of objects too can

be handled with ease. They can be used to detect collisions and self-collisions. Image-space

techniques usually work with triangulated surfaces. However, they could also be used for

other object primitives as long as these primitives can be rendered.

Since image-space techniques work with discretized representations of objects, they do

not provide exact collision information. The accuracy of the collision detection depends on

the discretization error. Thus, accuracy and performance can be balanced in a certain range

by changing the resolution of the rendering process. While image-space techniques efficiently

detect collisions, they are limited in providing information that can be used for collision

response in physically-based simulation environments. Even in the light of next generation
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bus technologies such as the PCI Express r [PS], the read-back speeds are not fast enough

for getting all the information for an appropriate collision response (unless the response too

is performed in the GPU as in [JP02]). In many approaches, further post-processing of the

provided result is required to compute or to approximate information such as the penetration

depth of colliding objects.

2.3.7 Continuous Collision Detection

In most cases it is sufficient to check for collisions at the discrete instants of simulations

t0, t1, .... However in some cases it is possible that some objects cross each other during

the time interval. This happens when the maximum relative velocity times the time-step is

greater than the size, i.e. vrelMax × ∆t ≥ ObjectSize. In other words, collisions are missed

when the objects are too small (say thin) or move very fast. Meseure and Chaillou [MC00]

lucidly highlight the need for continuous collision (see Fig. 2.15). Continuous techniques in

addition to handling fast moving, thin objects also allows for large time-step simulations.

This is especially handy when seen in the context of implicit integration techniques for cloth

simulation proposed by Baraff and Witkin [BW98]. We first present the continuous approaches

applied to broad phase scenarios in the following section before describing the narrow phase

techniques (cf. § 2.3.7.2).

Fig. 2.15: Positions at time t0 (left) and t0 + ∆t (right). Case of collision missed if detected only at

discrete instants [MC00].

2.3.7.1 Continuous Collision Detection - Broad Phase

BVHs can also be used to accelerate continuous collision detection, i. e. to detect the

exact contact of dynamically simulated objects within two successive time steps. Therefore,

BVs do not only cover object primitives at a certain time step. Instead, they enclose the

volume described by the linear movement of a primitive within two successive time steps

[BFA02, RKC02].

A simple way to augment traditional, static BVH traversals was proposed in [ES99]. Du-

ring the traversals, for each node a new BV is computed that encloses the static BV of the

node at times t0 and t1 (and possibly several ti in-between). Other approaches utilize quater-

nion calculus to formulate the equations of motion [SSW95, Can86]. Finding the first point
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of contact basically corresponds to finding roots of polynomials that describe the distance

between the basic geometric entities, i. e. all face/vertex and all edge/edge pairs.

For solids, these polynomials are easier to process if the motion of objects is a screw mo-

tion. Thus, [KR03, RKC02] approximate the general motion by a sequence of screw motions.

In multi-body systems, the number of collisions at a single time step can increase significantly,

causing simple sign checking methods to fail. Therefore, [GK03] developed a reliable method

that adjusts the step size of the integration by including the event functions in the system

of differential equations, and a robust root detection. In order to quickly eliminate possible

collisions of groups of polygons that are part of deformable objects, [MKE03] constructed a

so-called velocity cones throughout their BVHs. Another technique sorts the vertices radially

and checks the outer ones first [FW99].

We already introduced OBBs proposed by Gottschalk et al. [GLM96] in §2.3.3. Redon et

al. [RKC02] adapted the separating axis theorem used for detecting collisions between OBBs

to the continuous case. Let the first OBB be described by three axes e1, e2 and e3, a center

TA, and its half-sizes along its axes a1, a2 and a3 respectively. Similarly, let the second OBB

be described by its axes f1, f2 and f3, its center TB , and its half-sizes along its axes b1, b2

and b3 respectively. The separating axis theorem states that two static OBBs overlap if and

only if all of fifteen separating axis tests fail. A separating test is simple : an axis a separates

the OBBs if and only if :

|a ·TATA| >
3
∑

i=1

ai|a · ei|+
3
∑

i=1

bi|a · fi| (2.4)

This test is performed for 15 axes at the most (see Fig. 2.16). Here, rather than directly

performing the 15 tests in continuous which is computationally very inefficient, Redon et al.

used interval arithmetic to narrow down if the OBBs intersected during a time step. Since

each member of the inequality (2.4) is a function of time, they used interval arithmetic to

bound them within a specific interval I. When the lower bound of the left member is larger

than the upper bound of the right member, the axis a separates the boxes during the entire

interval I, which means that the boxes will not overlap during the time interval and can be

ignored for narrow phase testing.

2.3.7.2 Continuous Collision Detection - Narrow Phase for Rigid Bodies

Having introduced the need for continuous-time collision detection in § 2.3.2, we now

describe the methods proposed to do continuous primitive tests. Let us first describe the

notational conventions which will use to denote the dynamic state (positions, velocities, etc.)

of the primitives. Let a point with position p (or p(t0) implying p at time t0 ) in three-

dimensional space moving at a velocity v intersect with a triangle represented by the points

a,b, c each moving with velocities va,vb,vc as shown in Fig. 2.17. Using similar notations,

let an edge with end-points a and b moving at velocities va and vb respectively collide with
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Fig. 2.16: Continuous broad phase collision detection using OBBs. The axis e1 separates the two

oriented bounding boxes since, in the axis direction, the projected distance between the centers of the

boxes |e1∆TATB | is larger than the sum of the projected radii of the boxes, (a1|e1 ·e1|+a2|e1 ·e2|)+

(b1|e1 · f1| + b2|e1 · f2|) [Red04].
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Fig. 2.17: Continuous collision detection if vertex intersecting with a triangle.

another edge with end-points c and d moving at velocities vc and vd as shown in Fig. 2.18.

Fifth Order Continuity Tests : In the case of rigid body collisions, Moore and Wilhems

[MW88] proposed one of the first work which addressed the collision detection for moving po-

lyhedra for computer animation. Here the intersection of a point with a triangle was described

by :

p(t) = a(t) + u(ab(t)) + v(ac(t)) (2.5)

where p(t) = p(t0) + tv(t0).

This results in a fifth order polynomial in t. The actual intersection point is then deter-

mined by performing a binary search to first determine the approximate value of t, i.e. the

interval t ∈ [t0, t0 +∆t] is divided into a number of sub-intervals. The polynomial is evaluated

at the two end points. If the sign of the polynomial is different for the two end points of a

particular, then solution t should lie within that interval. Using the value of t, the barycentric
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Fig. 2.18: Continuous collision detection edge colliding with an edge.

coordinates are determined and checked if they lie within the valid interval u ≥ 0, v ≥ 0 and

0 ≤ u + v ≤ 1. As we will quickly see, later methods have reduced the computation from 5th

to a 3rd degree polynomial.

For an edge a and b intersecting with a face at a point p with normal n, the perpendicular

distances are calculated as :

da = (a− p) · n (2.6)

db = (b− p) · n (2.7)

t =
|di|

|di|+ |dj |
(2.8)

and the actual point of intersection is a + t(b− a).

Backtracking : Hahn [Hah88] in his work on rigid body simulation proposed backtracking

in order to rectify the object position after they are found interpenetrating. For point (mo-

ving) - polygon (stationary) case, upon collision at time t0 + ∆t, (the next time step) a ray

is originated from the colliding point in a direction given by the relative velocity of the two

objects. Assuming that the velocity remains constant during the time step, the ray represents

the path that the point took from its position at time t0. The time step is backtracked to

generate the new velocities and positions at time t0 + ∆t (see Fig. 2.19). Similarly, for the

edge-polygon case, the penetration point is calculated by intersecting the polygon swept by

the edge during the time step with the edges of the pierced polygon. The collision point is

calculated by finding the intersection between the penetrating edge and a ray originating from

the penetration point in negative direction of the relative velocity (the bodies having interpe-

netrated already). The assumption here is that the time step ∆t is small enough and/or the

velocity of the polygons of the objects are small enough such that the distance covered during

∆t is much smaller than the dimensions of the polygons. Obviously, this approach has serious

drawbacks when there are multiple collisions. Then, for every collision occurring, we have

to backtrack one time step. Also, this approach is not suitable for interactive applications,

where we would like to advance in time as the simulation progresses (also cf. § 2.4.1).
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Fig. 2.19: Collision detection by backtracking the time step to generate the new positions and veloc-

tities.

Linear Interpolation : Schömer et al. [ES99, LSW99] addressed building a collision pro-

cessing scheme for virtual assembly planning application. The scheme uses several bounding

volume representations (spheres, OBBs, k-DOPs, AABBs) to quickly get rid-off non intersec-

ting regions. Otherwise, the classical case follows. We only describe the elementary tests as

follows :

Vertex-Face : Given a vertex p and a fixed face F with equation n · x = n0, the distance

between them is defined as d = n · p − n0. Given the vertex coordinates at time t0 and

t0 + ∆t, the corresponding distances are dt0 and dt0+∆t. The distance is linearly interpolated

as d(t) = dt0 + t/∆t · (dt0+∆t− dt0). If dt0 > dt0+∆t, (meaning the objects are coming towards

each other), then the time of collision is computed as tc = ∆tdt0/(dt0+∆t−dt0). If dt0 ≤ dt0+∆t,

the vertex is moving parallel or away from the face. If tc < 0 or tc > ∆t, there is no collision

during the time step. Otherwise, the coordinates of vertex and face at time tc are computed

by interpolation.

Edge-Edge : Here the end-points a,b and c,d, the distances di are computed for times

ti, i = 1, 2.

di =
det(b− a,d− c,a− c)

|(b− a)× (d− c)| (2.9)

If tc < t1 or tc > t2, then there is no collision, otherwise we need to determine if the point of

intersection lies on the edges or not.

Using Interval Arithmetic : Several papers from Redon et al. [RKC00, RKC01, RKC02]

address the approach of using a fast continuous collision detection for rigid bodies in a virtual

environment. Here, they use a modified version of the OBB hierarchy (adapted to continuous

case) combined with interval arithmetic [SWF+93] to achieve interactive collision detection.

The relative motion between objects is represented by using a screwing matrix (consisting

of translation along one axis and one rotation around the same axis). This motion when

expressed in time results in a polynomial equation, whose solution is obtained through interval

arithmetic. After doing rejection tests using a modified hierarchical subdivision, the algorithm

concentrates on primitives.
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Vertex-Face : A collision is detected between a vertex p(t) and a triangle abc(t) when :

ap(t) · (ab(t)× ac(t)) = 0 (2.10)

Again, a solution t ∈ [t0, t0 + ∆t] is kept only when p(tc) is inside the triangle abc(tc).

Edge-Edge : The condition for collision between edges ab(t) and cd(t) is :

ac(t) · (ab(t)× cd(t)) = 0 (2.11)

A solution t ∈ [t0, t0 + ∆t] is kept only when the corresponding contact points belong to the

edges.

Parametric Curves and Surfaces : Von Herzen et al. [HBZ90] proposed an algorithm to

detect collisions between pairs of time-dependent parametric surfaces. The surfaces described

in this paper are bounded in terms of the rate of change described by their Lipschitz values.

The paper discourages the use of determining the time of the collision (say, using binary sub-

division given that a collision occurred in the interval (t1, t2)). The approach here is to get

an upper bound on the velocity of the moving surfaces, so that we can estimate its position

at the time of collision. Given two parametric surfaces f(uf , vf , t) and g(ug, vg, t), would like

the earliest time tmin such that :

||f(uf , vf , tmin)− g(ug, vg, tmin)|| < γ (2.12)

The Lipschitz condition states that :

||f(u2)− f(u1)|| ≤ L||u2 − u1|| (2.13)

for some L in some region R of f . The Lipschitz value L is a generalization of the derivative

of the surface. Given two parametric surfaces and their Lipschitz values, they were able to

determine the earliest collision time. Of course the limitation is that this approach works

only with parametric surfaces with bounded derivatives. Later Snyder et al. [Sny92] used

interval arithmetic to detect collisions between time-dependent parametric surfaces. This

work accounts for both the collisions generated due to new contacts in addition to those

generated when bodies already in contact undergo rolling or sliding motion.

2.3.8 Continuous Collision Detection - Narrow Phase for Deformable Bodies

In [Pro97], Provot proposed a mass-spring model for cloth animation with a continuous

collision detection scheme used for collision and self-collision. In addition to Moore and Wil-

hem’s basic condition in (2.5), we have another condition that at the time of collision the tri-

angle normal n(t) = ab(t)×ac(t) should be perpendicular to the vector ap(t) (see Fig. 2.20).

This gives :

(ab(tc)× ac(tc)) · ap(tc) = 0 (2.14)
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This yields a third (in contrast to the fifth degree equations in [MW88]) degree equation in

t. A solution tc should satisfy tc ∈ [t0, t0 + ∆t]. The value is plugged back in (2.5) to find the

valid barycentric coordinates of the triangle.

a(tc)
n̂

c(tc)

p(tc)

b(tc)

Fig. 2.20: Condition at the time of collision between a vertex and a triangle.

An edge-edge case is considered as follows : During the time interval [t0, t0 + ∆t], there

will be a collision for u, v ∈ [0, 1], when uab(t) = vcd(t). Similar to the vertex-triangle

case, Provot introduced another condition that the normal at the time of collision n(t) =

ab(t)× cd(t) should be perpendicular to the vector ac(t) giving :

(ab(tc)× cd(tc)) · ac(tc) = 0 (2.15)

This again yields a third degree equation in t and is solved as before. For handling multiple

collisions, whenever collision is detected, they again check to see if handling of this collision

has created any further collision scenario. This is continued until no new collision is detected.

Naturally, the simulations take a few hours to compute collisions for a few thousand polygon

cloth model in a SGI Indigo 2. The self-collision detection is accelerated by pruning low-

curvature regions as described in §2.3.3.4.

Bridson et al. [BFA02] proposed a generalized approach for handling collisions, contacts

and friction for cloth animation. We will revisit the overall collision framework in detail in

§ 2.4.3, but let us first detail the narrow-phase detection technique. Here, in addition to

doing dynamic collisions on the lines of Provot [Pro97], they also perform static proximity

tests. The idea behind this is to treat different types of collisions in a different manner as

we will see in §2.4.3. For a vertex p and triangle a,b, c with normal n̂ tests, they first check

if |pc · n̂| < h, where pc = c − p and h is the thickness. If yes, they find the intersecting

barycentric coordinates w1, w2, w3 where w3 = 1− w1 − w2, by solving :

[

ac · ac ac · bc

ac · bc bc · bc

][

w1

w2

]

=

[

ac · pc

bc · pc

]

(2.16)

The actual intersection point is then determined as w1a + w2b + w3c.

Similarly the edges ab and cd are checked for parallel case by evaluating |ab× cd|. For

non-parallel cases the barycentric values u, v are found as :

[

ab · ab −ab · cd
−ab · cd cd · cd

][

u

v

]

=

[

ab · ac
−cd · ac

]

(2.17)
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The intersecting point is then computed a + uab and c + vcd. Note that none of the the

methods presented in this section handles the detection of degenerate edges (when they be-

come co-planar or collinear at the time of collision). In chapter 4, we present new techniques

to handle such cases in addition to comprehensively summarizing previous work with expe-

rimental validation.

2.4 Collision Response

So far we have seen only one part of the problem, that of detecting collisions. It makes

no difference to the simulation behavior if we only detect and do not act upon to prevent the

interpenetration from happening. There are several possible approaches here. We discuss the

relative merits of various approaches for both rigid and deformable objects.

2.4.1 Rigid Body Collision Response - Local Correction

We first describe the impulse based method to deal with rigid body collisions. As we

previously mentioned in §2.3.7, Hahn proposed [Hah88] backtracking in order to rectify the

object position after they are found interpenetrating. For two colliding rigid objects with

masses m1 and m2, with linear velocities v1 and v2 and angular velocities ω1 and ω2 (see

Fig. 2.21), let it collide with an impulse P1 and P2. Hahn applied the conservation of linear

m1

m2

ω1

ω2

v1

v2r1

r2

n

Fig. 2.21: Impulse collision response between two rigid bodies [Hah88].

and angular momentum as :

m1(v
′

1 − v1) = −P1

m2(v
′

2 − v2) = P2

(2.18)

and
I1 · (ω

′

1 − ω1) = r1 × (−P1)

I2 · (ω
′

2 − ω2) = r2 × (P2)
(2.19)
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Hahn further used the generalized Newton’s rule to compute the new velocities v
′

1, v
′

2, ω
′

1

and ω
′

2 as :

(v
′

1 + ω
′

1 × r1) · n− (v
′

2 + ω
′

2 × r2) · n = −ǫ((v1 + ω1 × r1) · n− (v2 + ω2 × r2) · n) (2.20)

where r1 and r2 are the vectors from the center of gravity of each body to the colliding

point, n is the normal at that point and ǫ is the coefficient of restitution. ǫ depends of the

elasticity of the material and has a value of 0 for a perfectly inelastic collision to a value of

1 for a perfectly elastic collision. Assuming a frictionless interaction, he expressed (2.20) in

the orthogonal directions to n :

[(v
′

1 + ω
′

1 × r1)− (v
′

2 + ω
′

2 × r2)]t = 0

[(v
′

1 + ω
′

1 × r1)− (v
′

2 + ω
′

2 × r2)]r = 0
(2.21)

where t and r are the orthogonal components of the velocity vector perpendicular to n. (2.18),

(2.19) and (2.21) gives us 15 independent equations in 15 unknowns (P, v1, v2, ω1 and ω2).

The problem with this approach is in case of multiple collision, this will result in the algorithm

getting stuck in time advancing very slowly or never advancing at all. As shown in Fig. 2.19,

Hahn used backtracking to apply the above response one by one.

2.4.2 Global Collision Resolution in Rigid Bodies

If there are m collisions in a system, one can handle them one by a local correction

method discussed above. But what happens if the correction of one colliding pair creates a

new collision. Obviously this can be confirmed only by performing another collision detection

pass. Alternatively, we can handle these collisions by treating them simultaneously. In most

cases this consists of formulating it as an optimization problem.

Baraff [Bar89] proposed an analytical method for calculating non-penetration forces bet-

ween polygonal rigid objects by obtaining an NP -hard quadratic programming solved using

a heuristic approach. Baraff [Bar90] further extended this to curved objects. In [Bar94] he

proposed a better approach for the rigid body contact problem by computing a global solution

to compute the non-penetration forces. In this approach, Baraff considered the problem of

non-penetrating constraints as a Linear Complementarity Problem (LCP) by defining either

the force fi ≥ 0 when the acceleration ai = 0 and viceversa. Here the force for the first

contact f1 was computed by setting the rest of the forces {f2, f3, ..., fm} = 0. Similarly f1

and f2 was computed by setting {f3, f4, ..., fm} = 0, and so on. Hence he solved a quadratic

programming problem (QP) each time thus making this approach as some sort of sequential

quadratic programming [GMS02].

Mirtich [Mir00] tried to alleviate the problem of multiple collisions by proposing a time-

warp algorithm which “holds” back colliding objects while moving forward non-colliding

states - this approach works better but is still problematic in the case of large number of
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collisions. Another approach is the treatment of rigid body stacking by plausible simulation

methods using optimization methods in Milenkovic and Schmidl [MS01]. Here the collision

processing is handled as follows : from time t0 to t0 + ∆t, they computed the final position

to see if there is a collision. If yes, they re-computed the position such that there is no

interpenetration. This work follows the principle of physically-plausible motion which means

that it may “appear” to be a realistic motion but is not true. For each pair of bodies, a

set of critical vertices are identified and the above constraint minimization is applied for

those vertices. However, if a non-critical vertex happens to collide, this vertex is added to

the critical vertex list and the simulation goes on. Also, if the constraint cannot be solved, it

is declared as “infeasible”, and the positions and orientations are rolled back to the previous

positions. In this method, it is possible to miss out some collisions, when a remote vertex

(non-critical) moves quickly and collides. The algorithm will not be able to prevent such a

scenario, though it can correct itself in subsequent time steps. Again, we reiterate that the

prediction method will adjust the positions in a non-physical way.

We usually differentiate between a collision and a contact by checking the relative velocity

of the colliding objects - if its magnitude is within a particular threshold - it is considered

as a resting contact else it is a collision [BW01]. The problem occurs when we consider a

resting contact as a series of elastic collisions : this may result in vibrations if the threshold

parameters are not set right. Gundelman et al. [GBF03] proposed a better approach with a

time integration scheme which eliminated the need for determining ad hoc threshold velocities

as in [Mir96]. This coupled with a shock propagation scheme provided visually pleasing results

for collision cases with thousands of polygonal objects.

2.4.3 Deformable Body Collision Response

Penalty vs Impulse Corrections : Collision Response in the case of deformable objects

such as cloth, we can either correct by displacement [GC94] and velocity corrections [Pro97]

or by penalty forces by inserting a stiff spring [BW98].

If we try to extend Baraff’s non-penetrating force approach [Bar94] described in §2.4.2
to deformable bodies, we would need an explicit computation of the M−1 - in this case the

inverse of the stiffness matrix K−1. This is a very difficult thing to compute sometimes even

impossible due to ill-conditioned or near-singular matrices. In contrast, in deformable body

simulations, we do not necessarily have an explicit representation of the K matrix. For solving

an equation such as Kx = b, we only need to create methods which computes a the matrix-

vector product K to some vector y using an iterative method such as the conjugate gradient.

Most of the methods we describe below has only an implicit matrix representation which is

memory efficient and more inexpensive to compute than inverting K at every time step (cf.

§5.2.2 for a detailed discussion on this).

Once the collisions are detected as described in § 2.3.8, Provot [Pro97] used only impulse-

based collision response by instantaneous correcting the displacements and velocities correc-
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tions. This method while being precise nevertheless adds undesirable extra energy into the

system and may also provoke new collisions thus warranting additional treatment. In such

cases, penalty methods might offer a good solution to efficiently introduce a response. The

structure of the stiffness matrix is not altered assuming that we include the collision spring

forces in the matrix - though we see a degradation in the conditioning of the matrix. This be-

comes especially obvious when the mechanical equations are formulated as an explicit form.

But implicit formulation first proposed in graphics by Baraff and Witkin [BW98] handles

such “stiff” equations with ease.

Volino and Magnenat-Thalmann [VMT00] proposed a global solution to the problem of

multiple collisions which occurs in the case of self-collisions in deformable objects (such as

a folding ribbon). They computed forces needed to correct the accelerations, velocities and

positions of the present, next and next-to-next time steps. By directly manipulating the

positions, this method may introduce large amounts of strain and energy into the system.

Bridson et al. [BFA02] realized this issue and hence handled collision response via a

combination of velocity and spring-based repulsive impulses. Their approach intelligently

combined both the impulse and penalty methods thus taking care of the different scenarios

while overall not adding a significant amount strain into the system. This explained the

rationale of detecting collisions both at discrete and continuous time instants (cf. §2.3.8).
However, as will show their algorithm while being complex might fail to converge in one of

the steps. They do not guarantee that all the collisions will be treated.

Let us describe this method in detail. In order to dramatically reduce the number of colli-

sions, they used repulsive forces for those collisions lying in the “proximity region” (detected

using (2.16) for vertex-triangles and (2.17) for edge-edge). Among the pairs which are in close

proximity, they differentiate between pairs which are to be handled (moving towards each

other) and those that were already handled (probably moving apart due to repulsion or im-

pulse). An inelastic collision (zero restitution coefficient) was applied if the relative velocity

in the normal direction, vN < 0 (means that they are approaching each other). Hence an

inelastic impulse of magnitude Ic = mvN

2 was applied in the normal direction.

To account of the thickness h of the cloth, the cloth pieces should be well separated.

Here they used a repulsive spring force to separate the colliding cloth pieces. Problems with

stiffness were avoided by limiting the maximum repulsion that can be applied. This allows

the cloth segments to stay close enough together to feel repulsion forces in subsequent time

steps.

Ir = −min

(

∆tkd,m

(

0.1d

∆t
− vN

))

(2.22)

Here d = h − (p − w1a− w2b − w3c) · n̂ is the overlap (using the notations of (2.16)). The

repulsion force is not applied if the normal component of the relative velocity satisfies the

following condition vN ≥ 0.1d
∆t . This ensures that the repulsive forces does not exceed the

overlap region in one time step.

The impulses calculated above were then applied in the opposite direction to each of the
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colliding primitives proportionate to their barycentric coordinates. For a vertex p colliding

with the triangle abc (using notations in (2.16)), they normalized the impulse using the

barycentric coordinates w1, w2, w3 as follows :

Ĩ =
I

1 + w2
1 + w2

2 + w2
3

(2.23)

where I is Ic for velocity impulse or Ir for spring-based impulse. The adjusted value Ĩ is then

redistributed among a vertex-triangle pair as follows. For a colliding vertex, the pre-impulse

velocity v is altered to :

vnew = v − Ĩ

m
n̂ (2.24)

For the triangle the pre-impulse velocities va, vb and vc are altered as :

vnew
a = va + w1

Ĩ

m
n̂

vnew
b = vb + w2

Ĩ

m
n̂

vnew
c = vc + w3

Ĩ

m
n̂

(2.25)

where we assume that all the particles have the same mass m.

For an edge-edge pair, the impulses are redistributed as follows. Referring to the notation

in Fig. 2.18, the calculated impulse (Ic or Ir) is first normalized with the colliding barycentric

coordinates u, v as :

Ĩ =
2I

u2 + (1− u)2 + v2 + (1− v)2
(2.26)

The recalculated impulse is then redistributed among the four end-points to find the new

velocities as :

vnew
a = va + (1− u)

Ĩ

m
n̂

vnew
b = vb + u

Ĩ

m
n̂

vnew
c = vc − (1− v)

Ĩ

m
n̂

vnew
d = vd − v

Ĩ

m
n̂

(2.27)

where we assume that all the particles have the same mass m.

The collision impulses were applied sequentially or all at once. While taking implicit

measures (such as (2.22)) to limit additional strain due to collision response, they also have

explicit control algorithm to limit both the strain and the strain rate. A parallel Jacobi step

is used for the former whereas a sequential Gauss-Siedel step is performed for the latter. The

authors also consider applying the impulses parallel in some cases of multiple collisions when

the sequential application fails to converge. While being the state-of-the-art giving beautiful
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visuals (see Fig. 2.22), this approach is also complicated since it requires several complex

steps (Jacobi and Gauss-Seidel updates for strain/strain rate control) and iterations. Note

that in all the above methods, the solution is iterated over a few times before which collisions

are expected to be resolved. But they nevertheless do not guarantee that all the collisions

will be resolved.

Fig. 2.22: Treatment of collisions and contact in cloth animation [BFA02].

Huh et al. [SHB01] proposed to solve the problem of multiple collisions in cloth by dividing

the collisions into several impact zones (IZ) instead of addressing one by one. The collisions

within each IZ is treated simultaneously by a linear equation to find the new velocity impulses

which also conserves momentum. Then the collisions between the IZ are then treated. This

way they strive not to provoke new collisions while treating the existing ones. However,

there is no guarantee that collision resolutions within an IZ don’t create new collisions - in

such cases the algorithm needs to be looped over. The examples they use too are relatively

unconstrained in terms of collisions with simulations at very low time step values (5 ms at

the most).

In contrast to methods which attempt to “guarantee” that no collisions are missed, Baraff

et al. [BWK03] propose an approach which untangles cloth if external constraints actually

result in an entanglement - i.e., there are in fact intersecting simulation states. This way the

simulator is not obliged to assume that past states are “collision free” (and continue to apply

an erroneous collision response). This often happens in a CG film production environment

when motion capture data driving the character animation may force such situations (see

Fig. 2.23). To this effect, a global intersection analysis (GIA) proposed by the authors which

resolves these tangles occurring due to pinching bringing back to the normal state in addition

to resolving any artifacts. The GIA finds the set of intersecting contours and notes this

information. It is subsequently used to decide whether to apply attractive forces (for tangled

pairs) or apply the regular repulsive forces. We reiterate that this approach was conceived

with a production environment in mind. Real-time applications may not have such a luxury

of time.
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Fig. 2.23: Pinching in production environments handled using global intersection analysis [BWK03].

2.5 Chapter Summary

In this chapter, we described the various techniques for physically-based animation, col-

lision detection and response. This chapter has shown the difficulty of processing collision

detection and response for deformable objects in particular when they are thin. None of the

approach we described provides the robust solution we are looking for in this case. In the

forthcoming chapters, we describe the problem in detail and propose new ideas to tackle

them.

Since the emphasis of this thesis work is on robust handling of collisions, we would like

to use a suitable existing approach for mechanical modeling. Given the available choices

described earlier, a mass-spring system with a bending model and a robust integration such

as implicit can be used to a simulate a variety of objects (linear, cloth, volumetric). For

collisions, we described a variety of broad phase techniques which will quickly identify the

zones of collisions. In addition, we saw the importance of continuous collision detection. In

the coming chapters, we describe how we adapted them for the problem at hand. After the

detection, it is important that we treat them correctly. The collisions can either be attended

one by one or a global approach is possible. Each has its own merits and demerits. Proper

attention has to paid so that we don’t create unnecessary strain or provoke more collisions.

If it is the latter, the collisions have to rechecked. In our proposed approaches, we take up

these problems and present a set of new solutions.



CHAPTER 3

Problem at Hand

In this chapter, we illustrate the problem with the existing approaches to collision

handling with the help of two case studies : first, that of a highly deformable,

self-colliding object such as the human intestine. Second, that of a stiff cable in

contact with a rigid object. In each case, we highlight the shortcomings of the

current approaches with indications on how to solve them.

3.1 Thin Objects

The simulation of thin deformable objects pose a particularly difficult problem. Most

of the approaches described in §2.3.3 were developed for volumetric models and are not

applicable here. From the point of view of collision detection, traditional approaches such as

bounding volume hierarchies (cf. §2.2) are very ineffective. This is evident since these objects

tend to collide with themselves at multiple points (see Fig. 3.1). Hence the update required at

each time step tends to be expensive thus negating the idea of broad phase collision detection.

Thus there is a need to come up with a new collision detection approach. In addition, once the

collisions are detected, responding to them also is problematic. The collision problem becomes

even more complex for those objects which are extremely rigid (such as a mechanical cable).

Here, traditional collision responses such as displacement correction will cause instabilities

due to the high stiffness. Hence, this too requires a more sophisticated treatment. In this

chapter, we describe an initial approach for collision response which was simple and effective.

43
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Nevertheless there are problems with this approach. We shall highlight them and propose

means of solving them in the next chapters.

Broadly, this chapter is organized as follows. We illustrate the need for new approaches

through two case studies.

– Modeling, animating and collision handling in a surgery simulator : case of an intestine

and a thin mesentery tissue

– Mechanics and collision handling in a rigid cable

Note that the problems concerning the thin objects presented here will occur in both lineic

(such as intestine or cable) and surfacic objects (such as mesentery or cloth). Though our

case studies comprise of only lineic objects, one can very well extrapolate it to thin surfaces

as well.

The remainder of this chapter is organized as follows. For the intestine, we describe the

mechanical and collision model we developed and also justify the need for this specific new

approach. We present the results of our method and highlight its shortcomings for more

complicated cases. Then for the second case of a rigid cable, we show how a specialized

mathematical solver and collision routines can be used to accelerate the computation time

for simulation. Finally, while dealing with collision response, we will show that traditional

approaches such as penalty or impulses for the cable with very high stiffness are not very

helpful.

Fig. 3.1: Multiple self-collisions in deformable thin objects.
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3.2 Case Study #1 : Intestine

This research work described here was performed in collaboration with our research par-

ters LIFL 1 and IRCAD2 in the context of an INRIA ARC SCI 3 research project during the

beginning part of my thesis published in [RCFC03, RGF+04]. It is aimed towards the develop-

ment of a VR-based trainer for colon cancer removal. Such a trainer will enable the surgeons

to interactively view and manipulate the concerned virtual organs as during a real surgery.

First, we present a method for animating the small intestine and the mesentery (the tissue

that connects it to the main vessels) in real-time, thus enabling user-interaction through vir-

tual surgical tools during the simulation. We then present a stochastic approach that exploits

temporal coherence for fast collision detection in highly deformable, self-colliding objects. A

simple and efficient response to collisions is also introduced in order to reduce the overall

animation complexity.

3.2.1 Introduction

Minimally invasive surgical (MIS) procedures are gaining popularity over open procedures

among surgeons and patients. This is mainly due to lesser post-operative pain, fewer infec-

tions and an overall faster recovery. The tremendous success of laparoscopic cholecystectomy

(gall bladder removal) has prompted surgical practitioners and educators to apply such tech-

niques to other gastrointestinal procedures. In this research project, we focus on laparoscopic

colectomy (colon cancer removal). Studies show that many patients undergoing this procedure

benefit from the advantages of MIS procedures listed above while sharing the same risks of

the corresponding open procedure [Fin00]. Yet, as with most laparoscopic procedures, it is

difficult to master with a very flat learning curve [SB95].

As part of the current training procedure, surgeons practice on pigs to get a feel of the

organ’s behavior. However, this technique is prohibitively expensive and also raises numerous

ethical issues. We believe that a VR-based simulator platform can significantly help non-

specialist surgeons and medical residents to acquire the necessary surgical skills in a cost-

effective way. This may well result in popularizing the use of the laparoscopic technique for

this procedure thus benefiting more patients. Thus, our aim is to simulate the behavior of the

intestine in real time when the surgeon is practicing in the virtual environment. Note that

the current scope of this research work does not include the simulation of the cancer removal

itself. The simulator focuses on two important pedagogical problems : (1) Camera positioning

by allowing the trainee to visualize the relevant organs in 3D, (2) Manual dexterity by letting

them interactively manipulate these organs. For many surgeons who are trained primarily in

open techniques, this may help to overcome the perceptual and motor challenges associated

1GRAPHIX/Alcove, Laboratoire d’Informatique Fondamentale de Lille, 59655 Villeneuve d’Ascq Cédex,
FRANCE, http ://www2.lifl.fr/GRAPHIX/

2Institut de Recherche contre les Cancers de l’Appareil Digestif, 67091 Strasbourg Cédex, FRANCE,
http ://www.ircad.org/

3Action de Recherche Coopérative - Simulateur de Chirurgie Intestinale
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with MIS procedures.

We will first review the background of the problem and highlight the challenges they pose.

During this surgical procedure, the patient is lying on his back. As a result, the small intestine

(henceforth simply referred to as intestine) is positioned just above the colon region, hiding

the colon beneath (see Fig. 3.2). The intestinal region of a human body is characterized by

a very complex anatomy. The intestine is a tubular structure, about 4 m long, constrained

within a small space of the abdominal cavity, resulting in the creation of numerous folds.

This is further complicated by a tissue known as the mesentery that connects the intestine

to the blood vessels [ABR02] (see Fig. 3.3). An important surgical task of this procedure is

Fig. 3.2: Position of the intestine during the surgery.

jejunum

stomach

ileum

mesentery

cecum

duodenum

ascending colon

Fig. 3.3: Anatomy of the intestinal region.

to displace the tissues and organs by pulling and folding them from the site of the operation

[fVS98]. As the surgeon manipulates these organs, they deform and collide with each other.

Thus the broad challenges here are the real-time animation and visualization of these organs at

an acceptable frame rate (a minimum of 25 frames a second). Our overall approach to solving

this problem consists of a layered model : a skeletal axis deformed using physically-based

animation, rendered with a generalized cylinder-based skinning. Thus in order to animate
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these organs in real-time, we propose to :

– efficiently model the intestine and the mesentery taking into account its geometry.

– detect the collisions and self-collisions occurring in the intestinal region during animation.

– provide a fast and stable collision response.

The skeletal model used for animation should be covered with a triangulated mesh which

can be realistically shaded or textured. However, a näıve skinning approach will create tessel-

lation problems in high-curvature regions. We use a hardware-accelerated skinning based on

generalized cylinders proposed by Grisoni et al. [GM03]. All these contributions have been

implemented within a surgical simulator platform [MDH+03] that can be easily evaluated by

the surgeons.

3.2.2 Real-time Animation of Deformable Models

In the previous chapter, we covered several models developed for deformable object si-

mulation (cf. § 2.2) and the treatment of collisions between deformable objects (cf. § 2.3 and

§ 2.4 ). The problem we have to solve here is different. As will be shown in the next section,

no volumetric deformable model will be needed since the intestine and the mesentery can be

represented as a 1D and a 2D structure respectively. Moreover, the main issue is to detect and

process the collisions and self-collisions of the intestinal system in real-time. Accordingly, a

simple spline model animated by mass-spring dynamics was used by France et al. [FAM+02]

for simulating the intestine.

For collision detection, we covered several “traditional” approaches such as the BVH in

§2.3. However, they are not suitable for intestine-mesentery interaction where, even a small

local deformation can potentially cause a large movement of the folds. This creates a large

scale global deformation, which prevents the BVH from being efficiently updated. France et

al. [FLMC02] used a grid-based approach (cf. §2.3.4) for pre-detecting the self-collisions of

the intestine and the collisions with its environment. All objects were first approximated by

bounding spheres, whose positions were stored, at each time step, in the 3D grid. Each time

a sphere was inserted into a non-empty voxel, new collisions were checked within this voxel.

Though this method achieved real-time performances when the intestine alone was used, it

did not handle the simulation of the mesentery.

An alternate multi-resolution method, based on layered shells, was recently presented by

Guy and Debunne [DG04]. It is well-suited for collision detection between deformable objects

since the shells themselves are deformable structures extracted from a multi-resolution repre-

sentation of these objects. Though suitable for volumetric deformable bodies, this method

is not appropriate for intestine and mesentery modeling, since the time-varying folds cannot

easily be approximated at a coarse scale. They also exploited temporal coherence following

Lin and Canny’s [LC92] idea of detecting collisions between convex polyhedra by tracking

pairs of closest vertices. These pairs were efficiently updated at each time-step by propaga-

ting closest distance tests from a vertex to its neighbors. Guy and Debunne adapted this
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technique for detecting collisions between his volumetric layered shells very efficiently. Since

these shells were neither convex nor rigid, a stochastic approach was used at each time step

to generate new pairs of points anywhere on the two approaching objects. These pairs were

made to converge to the local minima of the distance, disappearing when they reached an

already detected minimum. Our work is inspired by this idea of stochastic collision detection

exploiting temporal coherence. It has been adapted here to the specific processing of multiple

collisions and contacts between the intestine and the mesentery folds.

3.2.3 Modeling and Animating the System

Our overall aim is not to develop an accurate, patient-specific trainer but rather a generic

simulator which can help the surgeons to practice the gestures used to manipulate the organs.

The first problem we have to solve is to create a virtual model of the intestine and the

mesentery which will serve as the basis for the animation and rendering stages. In this section,

we describe the actual anatomy in brief, provide the basis of our approach and present the

details of our model. We further present the mechanical model needed for animating the

intestinal system.

3.2.3.1 Anatomical Model

In order to extract the anatomy of the intestine and the mesentery, we sought the help of

our medical collaborator IRCAD 4 in Strasbourg (a digestive cancer research institute). With

the current imagery techniques, they found it impossible to extract the complex anatomy of

organs such as the mesentery. Hence we decided to come up with something simpler than the

actual geometry, but which can still capture the overall behavior.

The mesentery is a folded membrane-like surface, approximately 15 cm wide, which links

the intestine to the main vessels of 10 cm length (see Fig. 3.3). Since the mesentery is a non-

developable surface (which cannot be unfolded onto a plane), setting up its initial geometry

free of self-intersections is quite difficult. We solved the problem by modeling a possible rest

position for the intestine as a folded sine curve lying on the inner surface of a cylinder of radius

15 cm. With the axis of the cylinder representing the main vessel, the folds are placed on the

cylinder such that their total length is 4 m (see Fig. 3.4). Then the mesentery can be defined

as the surface generated by the set of non-intersecting line segments linking the cylinder

axis to the curve. Though this initial geometry is too symmetric to be realistic, this model

gives adequate local geometric properties to the mesentery membrane (see Fig. 3.5). When

animated under the effect of gravity, this collision-free initial positions will automatically move

to their correct positions. The geometry of the intestine is defined by creating a piecewise

tubular surface of radius 2 cm along its skeleton curve. The thickness of the mesentery surface,

parameterized based on patient-specific data, was set to 1 cm.

4Institut de Recherche contre les Cancers de l’Appareil Digestif, 67091 Strasbourg Cédex, FRANCE,
http ://www.ircad.org/
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3.2.3.2 Mechanical Considerations for Animation

For animation, our motivation to use a mass-spring approach was derived from the follo-

wing arguments :

– The mass-spring method is more efficient and suitable over FEM for deforming bodies with

large displacements and local elastic deformations.

– In addition, an organ such as the intestine can have an infinite number of rest states, whereas

FEM is based on the notion of displacements with respect to a unique rest state thus making

it unsuitable for our case.

– Mass-spring can provide stable simulation of deformable objects at moderate time-steps.

– We can adjust the behavior of the system intuitively by adjusting the damping, stiffness, etc.

– Collision detection here is a much more complex task requiring more CPU-time over animation.

So, a very complex mechanical model might slow down the simulation.

– Finally, the perceived quality of most interactive 3D applications does not depend so much on

exact simulation but rather on real-time response to collisions [US97].

Accordingly, we designed a model consisting of mass points connected by damped springs.

Since the mesentery has a much larger length (4 m near the intestine) than width (15 cm

near the vessel), we sampled our model by four sets of 100 masses each (see Fig. 3.5). The last

set of masses requires no computation since they are attached to the main vessels, requiring

only 300 masses to be integrated at each time step. In addition, no specific model is needed

for the intestine since it can be simulated by adjusting the mass and stiffness values along

the first bordering curve of the mesentery surface.

10 cm

15 cm

Mesentery

Intestine

Vessel

Fig. 3.4: Initialization of the geometry of the intestine and mesentery. The intestine is drawn on the

inner surface of a small cylinder. Figure greatly simplified for clarity.

3.2.4 Real-Time Collision Processing

A major computational bottleneck in many animation/simulation systems is the handling

of collisions between the objects under the influence of external forces (gravity, user-input,
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− Vessel

− Mesentery

− Intestine

Fig. 3.5: Mechanical model of the organs (shown unfolded).

etc.). In our case of real-time simulation, we need to perform this as quickly as possible.

Failure to detect the collisions will result in interpenetration between the intestine’s folds or

the mesentery’s folds - an unrealistic behavior. In this section, we describe our approach, which

efficiently detects the colliding regions and a response algorithm which prevents/corrects the

interpenetrations.

3.2.4.1 Collision Detection

Our method for real-time collision detection exploits temporal coherence. Though there

are different interpretations of using temporal coherence, our approach is inspired from

[LC92, DG04], to track pairs of closest points between colliding bodies are tracked over

time. The main differences here are : (1) the interacting objects have a tubular (intestine)

or a membrane-like structure (mesentery), and (2) most collisions will be self-collisions bet-

ween different folds of the same body. We first explain the collision detection method for the

intestine alone, and then explain the mesentery case.

Collision detection between cylinders can be processed by computing the closest distance

between their axes [Ebe00], and comparing them to the sum of their radii. For the intestine,

computing the distance between two segments is done by considering the distance between

their principal axes (a segment here refers to a simple line segment and it’s end-points are

parameterized by (s, t) ∈ [0, 1]). We then store the (s, t) value corresponding to the closest

point within the segments and the actual minimum distance dmin. Recall that the rendering

model uses an adaptive spline interpolation [GM03] of these skeletal segments with fixed

initial length giving it a smooth appearance.

Adapting the notion of “closest element pairs” to this skeleton curve means that we

track the local minima of the distance between non-neighboring segments along the curve

(see Fig. 3.6). Of course, only the local minima satisfying a given distance threshold are
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considered relevant. We refer to these pairs of segments as active pairs. Each active pair is

locally updated at each time step in order to track the local minima when the intestine folds

move. This is done by checking whether it is the current segment pair or a pair formed using

one of their neighbors now corresponds to the smallest distance. This update requires nine

distance tests (see Fig. 3.7), and the pair of segments associated with the closest distance

becomes the new active pair. When two initially distant active pairs converge to the same

local minimum, one of them is suppressed. A pair is also suppressed if the associated distance

is greater than a given threshold. The above process tracks the existing regions of interest

Multiple

local minima

Fig. 3.6: Tracking the local minima of distance between non-neighboring segments.

dmin

S1

S2

Fig. 3.7: Distance computation between two intestine segments.

but does not detect new ones. Since the animation of the intestine may create new collisions,

a method for creating new active pairs of segments is needed. Our method is inspired from the

stochastic approach of [DG04]. At each time step, in addition to the update of the currently

active pairs, n additional random pairs of segments, uniformly distributed between the end-

points, but under the distance threshold are generated. The update of these extra active pairs

is similar to the update of the existing local minima. The complexity of the detection process

thus linearly varies with the user-defined parameter n. At each time step, collision detection

consists of selecting among the currently active pairs, the pairs of segments which are closer

than the sum of their radii. Collision response will then be applied between these segments.

For the mesentery, the total number of segments to be considered during each time-step
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is too large for real-time computation. We use the following approximations to reduce the

complexity of the problem. Firstly, since the mesentery is very thin and soft compared to the

intestine, its self-collisions will almost have no effect on the overall behavior of the system.

Hence, we ignore the testing of these and only consider the non-trivial cases of intestine-

intestine and intestine-mesentery interactions.

Secondly, we use a two-step convergence algorithm to reduce the number of distance

computations required for the mesentery. Accordingly, given a segment pair (S1, S2), we first

find if there exists another segment S
′

1 that is the closest to S2 (S
′

1 is S1 if all other neighbors

are further from S2). Then, we find a segment S
′

2 that is the closest to S
′

1. This update

requires thirteen distance computations at most (i.e. between an intestine segment and a

non-neighboring mesentery segment). When a collision is detected, we apply a response force

not only to the deepest penetrating segment-pair but also to the entire collision area (both

for intestine and mesentery). A recursive algorithm searches the neighbors to find all the

colliding pairs in the area.

3.2.4.2 Collision Response

We initiate the response whenever the distance between the two segments is less than the

sum of their radii. The earlier approaches such as the penalty method [BW98] and the reaction

constraint method [PB88] implemented collision response by altering the force matrix in the

mass-spring method. This force has to be of large magnitude in order to be effective in large

time-step scenarios. However, this may cause segment displacements several times larger than

their thickness thus creating new collisions and instabilities. Instead, our new method alters

the displacements and velocities such that it instantaneously cancels the interpenetration

while keeping a resting contact between the two colliding bodies with no bouncing effects.

Let the end-point velocities of segment S1 be v1 and v
′

1 and that of segment S2 be v2

and v
′

2 respectively. Let x1, x
′

1, x2 and x
′

2 be the corresponding end-point positions. Let vc1

and vc2 be the velocities of the closest approaching points within each segment and xc1 and

xc2 be the positions of the closest points (see Fig. 3.8). Let s = 1− s and t = 1− t. We have :

(x
c2,vc2)

radius r2radius r1

u

(x
c1,vc1)

Fig. 3.8: Collision response by displacement-velocity correction.
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vc1 = sv1 + sv
′

1

vc2 = tv2 + tv
′

2

(3.1)

Let two impulses per time-step, f and f ′(= −f) (one for each segment), be applied along the

direction of collision u to cause a velocity change such that the relative velocities along u is

zero. These impulses should set the new velocities vnewc1 and vnewc2 such that :

(vnewc1 − vnewc2)·u = 05 (3.2)

This cancels the penetration velocity and avoids any bouncing. The impulse f acting on

the point of collision can be split between the end-points according to their barycentric

coordinates. Then we have :

vnew1 = v1 +
sf

m1
u

v
′

new1 = v
′

1 +
sf

m
′

1

u

vnew2 = v2 +
tf

m2
u

v
′

new2 = v
′

2 +
tf

m
′

2

u

(3.3)

where m1, m
′

1, m2 and m
′

2 are the masses of the end-points. Again, expressing the new

velocity of the colliding point vnewc1 in terms of vnew1 and v
′

new1 :

vnewc1 = svnew1 + svnew1
′

= vc1 + (
s2

m1
+

s2

m
′

1

)fu
(3.4)

Similarly for segment S2 :

vnewc2 = vc2 − (
t
2

m2
+

t2

m
′

2

)fu (3.5)

Substituting (3.4) and (3.5) into (3.2), we have :

f =
(vc2 − vc1)·u

s2

m1
+ s2

m
′

1

+ t
2

m2
+ t2

m
′

2

(3.6)

Using this value of f , we compute the new velocities of the end-points from (3.3). We use a

similar formulation for correcting the positions of the colliding segments. The only difference

is in the condition for avoiding interpenetration, which considers the segment radii r1 and

r2 :

(xnewc1 − xnewc2)·u = r1 + r2 (3.7)

5where · denotes a vector dot product.
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The integrated impulse value g that changes the positions in accordance with the above

condition is then :

g =
(xc1 − xc2)·u + r1 + r2

s2

m1
+ s2

m
′

1

+ t
2

m2
+ t2

m
′

2

(3.8)

g is used to modify the end-point positions as in (3.3).

We note that updating the position and the velocity of any of the edge may still create or

cancel collisions among other segments. A possible solution is to repeat the collision check for

all the pairs in our list in order to identify such pairs. But this may result in an endless loop.

So in our implementation, we prefer using a fixed number of iterations even if we miss some

collisions during the current time-step. Handling multiple collisions in general is a difficult

problem even for rigid bodies with no straightforward solution as we noted in the previous

chapter (also cf. § 3.2.6).

3.2.5 Results

Snapshots from the real-time animation of the simulator are shown in Fig. 3.9. In all cases,

the organs were subject to forces due to gravity, user-input and collisions. Fig. 3.9(i) shows

the case of an isolated intestine and mesentery manipulated by a virtual probe (the tiny

sphere). Note that our displacement-velocity method for collision response produces fairly

stable simulations (see Fig. 3.9(ii)) with some undesired vibrations. Figures 3.9(iii) and (iv)

show the simulations inside a simulated abdominal cavity. All the snapshots were captured

from our simulator in real-time on a standard PC with Bi-Athlon r 1.2 GHz, 512 MB RAM

and nVIDIA r GeForce r 3 graphics card.

Quantitative Validation : The mechanical and collision detection model were implemented

and tested independently prior to the integration. The results were fast enough to run at 30 Hz

on a standard PC and the overall behavior was good. However, due to the stochastic nature

of our algorithm, we do not have any theoretical proof that all the collisions are detected.

However, in Fig. 3.10, we present one of the several evaluations which we performed on the

collision processing algorithm.

Here, as the object is deformed, we plotted the colliding regions as detected by our method

and a näıve O(n2) method. Results show that our method is able to identify all the active

colliding regions by evaluating a far fewer number of points (69 active points as opposed to

237 O(n2) points in Fig. 3.10 ). Though not the same as finding the exact collisions, this

is good enough for our case, since we can quickly narrow down to these points using tem-

poral coherence. Nevertheless, we miss collisions in some cases between intestine-mesentery

due to an entirely different reason (Fig. 3.9(iv)). The interpenetrations occurred because we

performed only segment-segment collision detection. Note that this technique worked well

for intestine-intestine collisions and we do not see any collisions missed here. But the me-

sentery was modeled as a triangulated mesh and when there are cases of segment-triangle or

point-triangle collisions, the above approach in its present form was not effective. In addi-
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(i) (ii)

(iii) (iv)

Fig. 3.9: Snapshots from our intestinal surgery simulator. (i) Intestine and mesentery on a plane

pulled by a probe. (ii) Stable rest position. (iii) Inside the virtual abdominal cavity. (iv) Case when

collision detection fails (see encircled region).

tion, the mesentery being a thin object would have required that the collisions be treated in a

time-continuous manner using methods that will be described in chapter 4. The self-collisions

within the mesentery too were not accounted for.

Qualitative Validation : The prototype simulator was demonstrated to the surgeons at IR-

CAD. The surgical educators practiced on our simulator and explained to us the good points

as well as the drawbacks of the current model. The overall intestine behavior and contact

modeling was observed to be very good. Some of the instabilities observed in certain cases of

the intestine’s motion actually turned out to simulate a patient who is spasmodic (suffering

from intestinal convulsions). Although this happens quite frequently in a real patient, this

problem can be fixed by increasing the damping of the system. They also suggested that the

mesentery should be less elastic. With our mass-spring model, the characteristics demanded

by the surgeons can be obtained simply by tuning the simulation parameters. Though these

parameters can be varied intuitively, it is difficult to incorporate those parameters obtained

from biometric studies. Finally, a small error was detected in the geometric design - the

mesentery should have a zero width at the two extremities, where the intestine is directly

attached to the main vessels.

3.2.6 Lessons from the intestine case study

Need for continuous collision : First, we note that for realistic simulation it is important
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Fig. 3.10: Quantitative evaluation of the collision detection method. Points in green (light circles)

detected by the O(n2) method and blue (dark points) by our approach.

to perform robust collision detection tests handling all the the primitive cases, i.e. vertex-

triangle, edge-triangle and edge-edge. In addition, for thin objects we need to perform collision

tests in a continuous manner - this will very well take care of the interpenetrations (such of

intestine colliding with the thin mesentery) which occurred in this present model. To take

care of this shortcoming, Chapter 4 will comprehensively describe the approaches for robust

detection of collision between primitives both at discrete and continuous time instants.

Handling multiple collisions : Second, note that in this approach we had avoided the

treatment of self-collisions within the mesentery. We were justified in this case since it is thin

and light compared to the intestine, the collisions will not have much impact on to the overall

simulation. Moreover, being located behind the intestine, most of the mesentery is hidden.

Hence the visual impact too is less apparent. But there might be cases where we will have to

treat the self-collisions in other thin tissues. For that we need a solution that can take care

of the simultaneous multiple collisions. Chapter 5 will present new solutions to this problem

which hopefully fulfill our needs.

3.3 Case Study #2 : Rigid Cable

We now present the case of a very stiff cable colliding with a rigid object such as a pulley.

This problem was raised to us by a maker of commercial CAD/CAM software Solid Dynamics
6 which was interested in the simulation to demonstrate their software. We worked on this

6Solid Dynamics S.A., 42300 Roanne, FRANCE, http ://www.solid-dynamics.fr
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problem between May 2005 to October 2005. Here the aim is to show :

– The possibility of developing specialized solvers for better efficiency

– The need for robust collision detection

– The shortcomings of the standard collision response methods

As in the intestine case, we first present the approach we took followed by experimental

results and analysis.

3.3.1 Dynamics and Numerical Solver

Typical dynamics problems formulated as an ordinary differential equation (ODE) can be

solved either by explicit integration techniques such as the forward Euler, Runge-Kutta, etc.

or by implicit techniques like the backward Euler. The latter is especially useful for solving

“stiff” set of equations and provides a stable solution even while simulating at large time-steps

[BW98]. In our system we chose a mass-spring system with a set of masses m1, m2, ... , mn

connected by linear springs with stiffness constant k1,2, k2,3, ... , kn−1,n (see Fig. 3.11).

Typically we write the implicit Euler equation to solve for ∆v as [BW98] :

(

M−∆t2
∂f

∂x
−∆t

∂f

∂v

)

∆v = ∆t

(

f + ∆t
∂f

∂v
v

)

(3.9)

The above equation can be written in short form as :

K∆v = b (3.10)

We integrate the new velocities v + ∆v to get the new positions x + ∆t(v + ∆v).

mnmn−1mjmi
m1 m2

k1,2 ki,j kn−1,n

Fig. 3.11: Cable represented by a mass-spring system.

Though the above can be a large matrix system, the matrix can often be sparse. In ad-

dition it is also positive semi definite (PSD) and symmetric. Hence, Baraff used an iterative

conjugate gradient approach for solving this for cloth. However, we found that such an itera-

tive approach though very stable takes the worst case approach in the case of a 1 dimensional

cable. For a mass-spring system with n particles, the CG solver usually iterates for n steps

to find an acceptable solution (i.e. the residue value is less than the preset tolerance value).

Hence it is worthwhile to examine other solvers.

We found that a banded LU solver represents well the structure of the cable. There

are fast inversion algorithm which does the matrix inversion of a banded LU matrix. One

disadvantage with this approach is that we would require an explicit representation of the

stiffness matrix. This is in contrast with iterative approaches where we only need to provide

the CG solver with a method to compute the product of the matrix K with a vector x. But
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fortunately the stiffness matrix for a cable tends to be sparse with non-zero elements in and

around the diagonal. In fact, we found out that the matrix tended to be a block tridiagonal

matrix. Further, since we know the size of the diagonal band in advance, we can use this

information to create memory efficient matrices in our data structure (also cf. §5.2.4 for a

discussion on exploiting sparse matrices).

3.3.1.1 Expressing K matrix in block tridiagonal system

For a cable, the structure of the K matrix looks as follows :



















M1 + k1,2 −k1,2

−k1,2 M2 + k1,2 + k2,3 −k2,3

−k2,3 M3 + k2,3 + k3,4

. . . −kn−1,n

−kn−1,n Mn + kn−1,n



















(3.11)

where each Mi is 3x3 mass matrix of the ith particle :







mi 0 0

0 mi 0

0 0 mi






(3.12)

and ki,j is the stiffness matrix representing the spring between particles i and j with stiffness

value ki,j, computed force fi,j, present length li,j and gradient direction (ui,j)1×3 written as :

(ki,j)3×3 = (kij −
‖ fi,j ‖

li,j
)((ui,j)3×1 × (uT

i,j)1×3 +
‖ fi,j ‖

li,j
I3×3) (3.13)

Note that the addition of two 3x3 matrices is also a 3x3 matrix. Hence the stiffness matrix

of (3.11) is a block tridiagonal matrix which can be solved by LU forward-backward substitu-

tion as follows. Assuming that the matrix can be factorized into L and U using techniques

described in [PTVF92] :

L ·U = K (3.14)

such that (3.10) can be rewritten in LU form :

K · x = (L ·U) · x = L · (U · x) = b (3.15)

The solution can be found by first solving for a vector : y such that

L · y = b (3.16)

and then solving for x :

U · x = y (3.17)
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We now present a block tridiagonal algorithm to find the solution x. Let the L and U be

written as :

L =













I

L2 I
. . .

Ln I













(3.18)

U =













U1 B1

U2 B2

. . .

Un













(3.19)

The solution is found out by forward and backward substitution :

y1 = b1 (3.20)

yi = bi − Liyi−1, i = 2, ..., n (3.21)

Unxn = yn (3.22)

Uixi = yi − bixi+1, i = n− 1, ..., 1 (3.23)

We used the C++ library TBCI 7 which provides tools for LU inversion and other linear algebra

operations.

3.3.2 Fast Cable-Object Collision Detection

In the case of a cable (geometrically represented by a set of points connected with line

segments) colliding a rigid object, we can take advantage of localized collision areas (unlike

the intestine case) which can be quickly identified via using bounding volume hierarchical

structure. Note that in this simulation we do not take into account of the self-collisions

within the cable. Hence, we used a octree based BVH (discussed earlier in §2.3.3) for fast

collision detection. The octree is subdivided using a pre-determined depth level depthMax

(see Fig. 3.12).

We use a top-down traversal technique to nail down the final leaf node (until we reach

depthMax) starting from the root. For discrete collision detection, we do a point-box test

to check if the point p = (px, py, pz) belonging to the cable lies inside the box bounded by

(xmin, xmax, ymin, ymax, zmin, zmax) or not. This can be done by doing a simple 6-plane tests to

see if the point lies within the plane bounds in each direction, i.e. check if xmin ≤ px ≤ xmax

and similarly in y and z directions. If yes, we further descend to the child nodes of the box

until we reach the leaf node.

Since we are also interested in continuous collisions, we have to do a ray-box test (in the

7Available from http ://plasimo.phys.tue.nl/TBCI/
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(i) (ii)

(iii) (iv)

Fig. 3.12: (i) A rigid pulley with no octree subdivisions. (ii) Pulley with 1-level octree subdivision.

(iii) Pulley with 2-level octree subdivision. (iv) Pulley with 3-level octree subdivision. 3D model of

the pulley courtesy of Solid Dynamics S.A.

place of point-box test described above) to determine if a cable point crossed the box during

the time-step. For ray-box tests, we perform three ray-plane tests described in [Gla89] to

check if a ray defined by o + td lies within the plane bounds, where the origin is o is the

position of the point x at time t0 and the direction is d = x(t0 + ∆t)− x(t0) (see Fig. 3.13).

Note that for a generic case, we have to test the collision between a moving segment and a

box as well. For that we have to consider the plane swept by the segment in a time step and

test for its intersection with the fixed box.

Once we do the broad phase collision detection, we get to the narrow phase of the test

where we examine the primitives concerned with the selected ray-box pairs. Accordingly, each

ray is tested with all the triangles inside the box (see Fig. 3.14). We used the ray-triangle

tests proposed by Moeller and Trumbore [MT97] for efficient computation. Here we get a

cubic equation in time t which once solved is tested for a valid interval tc ∈ [t0, t0 + ∆t].

If yes, we then test if the point lies within the triangle at the time of collision. We refer to

chapter 4 where we comprehensively treat the various possible collision cases.

3.3.3 Collision Response

We discussed several techniques in §2.4 for performing collision response. Here, we used

an impulse based method for collision response. Once collision is detected the velocity of the

colliding particle vi is altered by deflecting it away towards the normal n̂ of the intersec-
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x(t0)

x(t0 + ∆t)

(xmin, ymin, zmin)

(xmax, ymax, zmax)

Fig. 3.13: Collision test between a ray and a box.

(xmin, ymin, zmin)

(xmax, ymax, zmax)

x(tc)

x(t0)

x(t0 + ∆t)

Fig. 3.14: Collision test between a ray and the triangles inside a box.

ting triangle. The magnitude of the impulse is the relative velocity projected in the normal

direction. The new velocity is calculated as :

vrel = vi · n̂ (3.24)

vi+ = vreln̂ (3.25)

3.3.4 Results

Results of Implicit + Conjugate : Table 3.1 shows the parameters of the dynamic simula-

tion of the cable sliding over the fixed pulley. Fig. 3.15 shows the snap shots of the simulation

as the cable with an initial velocity on one end falls under the influence of gravity and gra-

dually slides. The simulations ran at 40 Hz in a Intel r Pentium r 4 3.0 GHz PC with 1GB
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Tab. 3.1: Parameters used in the simulation shown in Fig. 3.15.

Parameter Value

Number of pulley triangles 13722
Number of cable particles 100
Mass 0.7 kg
Stiffness 1.38 × 106Nm−1

Gravity −10ms−2

Initial velocity −2.0ms−1

of RAM and GeForce r 3 graphics card.

3.3.5 Problems

We now describe the problems with this collision response approach. Here, knowing well

the high rigidity of the cable we did not attempt to do displacement correction as we did for

intestine in § 3.2.4.2 since it would have led to instabilities. We only corrected the velocity

using impulses. But still we encountered problems due the high stiffness. Fig. 3.16 illustrates

this situation very well when we attempt to correct the interpenetration which occurred when

the ith particle interpenetrates the surface. While we attempt to correct, we also introduce

additional strain rate and even interpenetration of the neighboring particles i−1 and i+1. This

is because of large deformation forces generated by the instantaneous velocity correction and

a high stiffness spring. Note the difference between strain and strain rate. Strain represents

the change in the spring length due to deformation with respect to the initial rest length.

Whereas strain rate represents the change in the deformation due to the new velocities with

respect to the initial spring rest length.

Bridson et al. [BFA02] too noted this problem and suggested an explicit strain and strain-

rate control mechanism. Accordingly, they used a Jacobi-based solution which simultaneously

updated the velocities to limit the strain to a fixed limit relative to the initial spring rest

length. For strain-rate, they used a Gauss-Seidel based solution which sequentially readjusted

the particle velocities to limit the strain rate. This, while adding extra steps to the calculation

also carries the risk of non-convergence. Though they attempt to iterate over a few times,

they do not guarantee that such a mechanism actually converges. This again made us think of

a global solution, which in addition to handling collision constrains can also handle additional

constraints such as strain and strain-rate control.

3.3.6 Lessons from the rigid cable case

We note that the implicit Euler method with a banded LU formulation provides a stable

solution to the difficult problem of rigid cables. The use of continuous collision detection

accelerated by a fast octree-based BVH tests provides a rapid and accurate collision detection.
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(i) (ii)

(iii) (iv)

(v) (vi)

(vii) (viii)

Fig. 3.15: A cable falling over a pulley with an initial velocity and and sliding over. (i) Initial non-

colliding state. (ii) Cable falling over the pulley. (iii) Showing the bounding volume for broad phase

collision detection. (iv) Showing the bounding volume nodes in collision with the cable. (v) View from

top showing the BVH nodes in collision. (vi) Cable sliding over the pulley. (vii) & (viii) Cable sliding

off the pulley and freely falling.



64 CHAPTER 3. PROBLEM AT HAND

n̂

pispri
ng r
eac
tion

collision response

i

spring reaction

i−
1

+ strain rate
i +

1

+ stra
in rat

e

Fig. 3.16: Problems with collision response in case of a rigid cable (shown in red) colliding with a

fixed object (shown in green).

While a local impulse method gave satisfactory results, it also introduces additional strain

rate and possibly even new collisions. Even though explicit strain control techniques can be

applied they also mean additional calculation. In addition there is no guarantee that such

steps can converge. Thus, we are setting the stage for a global approach which could treat the

collisions all at once while neither provoking new collisions and nor adding additional energy

into the system. Such a method will be investigated in Chapter 5.

3.4 Chapter Summary

In this chapter, we illustrated two specific problems involving thin lineic or surfacic objects

and came up with possible solutions. This study shows that there is probably no single best

solution that works well for all the cases. In the case of the intestine, our geometric model

while being simple was also fast enough for real-time simulation. This is a much better option

than trying to extract the geometry via medical image segmentation - a very hard task given

the complex geometry. Our mechanical model based on the mass spring model was fast enough

to run on normal PCs.

For collision detection, the stochastic model gave efficient performance while not compro-

mising on accuracy thus giving a satisfactory result when compared with the slower BVH

updates. We also saw the need for robust continuous collision detection. For collision res-

ponse, we saw how an impulse-based displacement and velocity impulse applied locally can

give a fast and stable response. However for simulations which require collision handling for

thin tissues, this will not give a satisfactory result and a more robust solution is needed.

In the case of the rigid cable, our approach was based on implicit Euler, octree-based broad

phase test and continuous collision detection for narrow phase collision tests gave a fast and

robust solution. Further, we illustrated how a different numerical solver can be applied for a

more efficient calculation. Finally, for collision response, we saw how a local approach which
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while being efficient also introduces additional strain rate into the system. Thus there is a

case for a more robust collision handling scheme.

In the forthcoming chapters, we will propose solutions to the issues raised here.
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CHAPTER 4

Robust Collision Detection for Thin Objects

4.1 Introduction

In the previous chapter we saw cases of two difficult collision scenarios. First that of an

intestine colliding with a thin tissue and that of a stiff cable sliding over a rigid object. In

both cases, we applied new approaches for modeling, animating and handling the collisions.

However we also saw the short comings of the same. In particular, we saw how the robust

detection of collision is important to maintain the realism of the simulation. In this chapter,

we present and summarize robust methods based on detecting both at discrete and continuous

instances. With the help of simple examples, we illustrate the methods which we will use in

the next chapter as the basis for treating more complex, real-word examples.

In this chapter, we shall cover the following cases of collisions between primitives :

– Point-Triangle : Discrete collision between a vertex and a triangle (§4.2.1).
– Moving Point - Fixed Triangle : Continuous collision between a moving point and a

fixed triangle (§4.2.2).
– Moving Point - Moving Triangle : Continuous collision between a moving point and a

moving triangle (§4.2.3).
– Edge-Edge : Discrete collision between two edges (§4.2.5).
– Moving Edge - Fixed Edge : Continuous collision between a moving edge and a fixed

edge (§4.2.6).
– Moving Edge - Moving Edge : Continuous collision between two moving edges (§4.2.7).

67
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– Coplanar Edges : Continuous collision between two moving edges which are co-planar

at the time of collision (§4.2.9).
– Collinear Edges : Continuous collision between two moving edges which are collinear

at the time of collision (§4.2.10).

For real-world examples, we will use a combination of these utilities. For example for the

cable over a fixed pulley example, we will use a combination of a moving point-triangle (the

time sweep of a cable point at two successive time steps) to detect the fast-moving dynamic

collisions and also the point-triangle to detect the proximity collisions as the cable slowly

slides over the pulley.

4.2 Different Cases of Collision Detection

4.2.1 Point-Triangle

For a vertex p and triangle a,b, c with normal n̂ = ab×ac

‖ab×ac‖ , let us elaborate on the method

proposed in [BFA02] which we introduced in §2.3.8. Accordingly, we first check if |pc · n̂| < h,

where pc = c−p and h is the thickness. If yes, we find the intersecting barycentric coordinates

w1, w2, w3 by first projecting p on to the plane containing the triangle. The equation of the

point p lying on the plane defined by a point x and normal n̂ is then :

n̂ · (x− p) = 0 (4.1)

Further, if the point x has to lie inside the triangle it should satisfy :

x = w1a + w2b + w3c (4.2)

where w3 = 1− w1 − w2. Thus they can be rearranged as :

w1ac + w2bc = pc (4.3)

Or,
[

ac · ac ac · bc

ac · bc bc · bc

][

w1

w2

]

=

[

ac · pc

bc · pc

]

(4.4)

The actual intersection point pi is then determined as w1a+w2b+w3c. The signed distance

dmin can then be computed as (p− pi) · n̂ (see Fig. 4.1).

Experimental Validation : We now present the results of the discrete collision detection

between a point and a triangle (see Fig. 4.2). A point with position p = (0.1,−0.0076,−0.1)

collides with a triangle with coordinates a = (−0.2,−0.05,−0.2), b = (0.2, 0.0, 0.2) and

c = (0.2, 0.0,−0.2) with n̂ = (0, 1, 0) and thickness h = 0.01. Using the above algorithm, the

barycentric coordinates of the point of collision is found as w1 = .25, w2 = .25 and w3 = .5.

Then the point of collision w1a + w2b + w3c is pi = (0.1,−0.01246,−0.1). The minimum
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distance dmin is verified as 0.0048 which is less than the thickness 0.01 thus registering a

proximity collision.

�✁�✁�✂✁✂✁✂

a

p
n̂

p −
pi

hb
c

dmin

pi

Fig. 4.1: Computing the signed distance between a colliding point and a triangle.

Fig. 4.2: Experiment for computing the signed distance between a colliding point and a triangle.

4.2.2 Moving Point - Fixed Triangle

We introduced the need for continuous collision detection in §2.3.7. For detecting the

continuous collision between a moving point and a fixed triangle, we use the memory efficient

method proposed by Möller and Trumbore [MT97]. The aim is to determine if there is a

crossing between the vertex and the triangle during the time step. Here point p(t0) at time

t0 displaces to p(t0 +∆t). This can be described as a ray r(t) with origin o and a normalized

direction d :

r(t) = o + td. (4.5)

Where the origin o is the position at time t, p(t) and the direction d is the vector between

the positions at time t0 + ∆t and t0, i.e. d = p(t0 + ∆t) − p(t0). They then transform the

origin of the ray yielding a vector containing the distance t to the intersection coordinates

(u, v) within the triangle. If we describe the triangle with three vertices a, b and c, then the

point i(u, v) on a triangle is given by :

i(u, v) = (1− u− v)a + ub + vc (4.6)

where (u, v) are the barycentric coordinates which must satisfy u ≥ 0, v ≥ 0 and u + v ≤ 1.

Now computing the intersection between the ray r(t) and the point on the triangle i(u, v)

gives :

[

−d b− c c− a
]







t

u

v






= o− a (4.7)
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We can now solve for the barycentric coordinates (u, v) and the distance t from the ray origin

to the intersection by finding a solution to this linear system of equation. Geometrically, this

can be conceived as the translation of the triangle to the origin and transforming t to a unit

triangle y and z with the ray direction projected in the x direction. Fig. 4.3 illustrates this

transformation where M = [−d,b− a, c− a].
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Fig. 4.3: Efficient ray-triangle intersection by translation and changing the base of the ray origin

[MT97].

The solution to (4.7) is :







t

u

v






=

1

| − d, e1, e2|







|e3, e1, e2|
| − d, e3, e2|
| − d, e1, e3|






(4.8)

where e1 = b− a, e2 = c− a and e3 = o− a. Since determinant of three vectors |x,y, z| =
−(x× z) · y = −(z× y) · x, (4.8) can be rewritten as :







t

u

v






=

1

(d× e2) · e1







(e3 × e1) · e2

(d× e2) · e3

(e3 × e1) · d






(4.9)

This notation will help in reusing the factors e3× e1 and d× e2 which will speed-up compu-

tation and decrease memory usage.

Experimental Validation : We now present the results of the continuous collision detection

between a ray and a triangle. A point with position p(t0) = (0.1,−0.0076 − 0.1) and p(t0 +

∆t) = (0.1,−0.022,−0.1) collides with a triangle during the time step with ∆t = 40ms. The

triangle coordinates are a = (−0.2,−0.05,−0.2), b = (0.2, 0.0, 0.2) and c = (0.2, 0.0,−0.2).

Using the above algorithm, the time of collision is found as tc = .136ms ∈ [0,∆t] (∆t = 40ms)

and the barycentric coordinates as u = .25 and v = .5. Then the point of collision on the

triangle a + uab + vac was verified as (0.1,−0.0125,−0.1). This can again be confirmed to

be the same by computing the position of the point at time tc, i.e. p(t0) + tcv(t0) given

v(t0) = (0.0,−0.36, 0.0).
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4.2.3 Moving Point - Moving Triangle

For a point p moving at a velocity v intersecting with a triangle represented by the

points a,b, c each moving with velocities va,vb,vc as shown in Fig. 4.4, the basic condition

of intersection is :

p(t) = a(t) + u(ab(t)) + v(ac(t)) (4.10)

where p(t) = p(t0) + tv(t0). We used the simplification by [Pro97] who introduced another

condition that at the time of collision the triangle normal n(t) = ab(t) × ac(t) should be

perpendicular to the vector ap(t) (or the four points are co-planar) giving :

(ab(tc)× ac(tc)) · ap(tc) = 0 (4.11)

This yields a third degree equation in t. A solution tc should satisfy t ∈ [t0, t0 + ∆t]. The

value is plugged back in (4.10) to find the valid barycentric coordinates (u, v) ∈ [0, 1].

a

b c

vc

vb

v

va

p(tc)

p(t0)

p(t0 + ∆t)

n

Fig. 4.4: Continuous collision detection of a vertex intersecting with a triangle.

Experimental Validation : We now present the results of the continuous collision detection

between moving point and a moving triangle. A point with position p = (0.03, 0.248, 0.15)

moving at a velocity v = (0.0, 0.418, 0.0) collides with a triangle during the time step with

∆t = 40ms. The triangle coordinates are a = (0.0, 0.238, 0.1), b = (0.0, 0.238, 0.2) and

c = (0.1, 0.238, 0.1) moving at velocities va = (0.0, 0.82, 0.0), vb = (0.0, 0.67, 0.0) and vc =

(0.0, 0.77, 0.0). Using the above algorithm, the time of collision is found as tc = 28.8ms, and

the barycentric coordinates u = .2 and v = .5. Then the point of collision a(tc) + uab(tc) +

vac(tc) was found to be (0.03, 0.26, 0.15). This can again be confirmed to be the same by

computing the position of the point at time tc, i.e. p + tcv.

4.2.4 A Note on Normal Computation

Note that in some cases, we might have to recompute the value of the normal at time tc.

This is illustrated in Fig. 4.5 where the triangle intersects with the point at time tc. If we need

to apply a collision response, it is important to apply it in the correct normal direction. Here,

we cannot use the normal at time t0 (see Fig. 4.5(i)). The correct value of the normal should

be n(tc) = ab(tc) × ac(tc) (see Fig. 4.5(ii)). Also §5.3.3.3 where we apply the re-computed

normal for correct collision response.
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Fig. 4.5: Normal computation during continuous collision detection between a vertex and a triangle.

4.2.5 Edge - Edge

The edges ab and cd are checked for parallel case by checking if |ab× cd| 6= 0 (we deal

with parallel edges in §4.2.9 and §4.2.10). For such non-parallel cases the barycentric values

u, v are found as :
[

ab · ab −ab · cd
−ab · cd cd · cd

][

u

v

]

=

[

ab · ac
−cd · ac

]

(4.12)

The closest point on the edge ab is p1 = a + uab and that on the edge cd is p2 = c + vcd.

The minimum distance between them is then computed as dmin = |p1 − p2| (see Fig. 4.6). A

collision is registered if the distance is less than the sum of the radii, i.e. dmin < r1 + r2.

a

b

c

dmin

r1

u

d

p1

p2

v

r2

Fig. 4.6: Discrete collision detection between two edges.

Experimental Validation : We now present the results of the discrete collision detection

between two edges (see Fig. 4.7). An edge with end-point coordinates a = (0, 1, 0) and

b = (1, 1, 0) is in the proximity with another edge c = (0.5, 1.06,−0.3) and d = (0.5, 1.06, 0.5)

Using the above algorithm, the barycentric coordinates were determined as, u = .5 and

v = .375. Then the closest point on the first edge a + uab was found as (0.5, 1, 0) and that

on the second edge c + vcd was found as (0.5, 1.06, 0). The distance minimum dmin between

them was thus verified to be 0.06.
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Fig. 4.7: Experiment for discrete edge edge collision detection.

4.2.6 Moving Edge - Fixed Edge

For testing the continuous collision between an edge cd with end-point velocities vc and

vd with a fixed edge ab, we take account of the swept plane between positions at t0 and

the provisory positions c(t0 + ∆t) and d(t0 + ∆t) (see Fig. 4.8). We solve for the quadratic

equation at a time of collision :

(ab× cd(t)) · ac(t) = 0 (4.13)

A valid time tc should satisfy tc ∈ [t0, t0 + ∆t]. The colliding barycentric coordinates u, v are

then found by plugging the tc value to the condition at the point of collision :

a + uab = c(tc) + vcd(tc) (4.14)

The actual intersection point pintersect is then found as a + uab.
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Fig. 4.8: Continuous collision detection between a moving edge and a fixed edge.

Experimental Validation : We now present the results of the continuous collision detection

between a moving edge and a fixed edge. A fixed edge with end-point coordinates a = (0, 1, 0)

and b = (1, 1, 0) collides with a moving edge c = (0.5, 1.06,−0.3) and d = (0.5, 1.06, 0.5) with
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end-point velocities vc = (0.0,−2.4, 0.0) and vd = (0.0,−2.4, 0.0). Using the above algorithm,

the time of collision was determined as tc = 25ms ∈ [0,∆t] (where ∆t = 40ms ) and the

barycentric coordinates, u = .5 and v = .375. Then the intersection point pintersect on the

first edge a + uab is (0.5, 1, 0). This is confirmed to be of the same value by computing the

collision point on the second edge at the time of collision c + v(cd + tcvcd).

4.2.7 Moving Edge - Moving Edge

For testing the collision between an edge cd with end-point velocities vc and vd with

another edge ab with end-point velocities va and vb, we take account of the swept plane

between positions at t0 and the provisory positions a(t0 + ∆t), b(t0 + ∆t), c(t0 + ∆t) and

d(t0 + ∆t) (see Fig. 4.8). We solve for the cubic equation at a time of collision :

(ab(t)× cd(t)) · ac(t) = 0 (4.15)

We used the method proposed in [Sch90]. A valid time tc should satisfy tc ∈ [0,∆t]. The

colliding barycentric coordinates u, v are then found by plugging the tc value to the condition

a the point of collision :

a(tc) + uab(tc) = c(tc) + vcd(tc) (4.16)

The actual intersection point pintersect is found as a(tc) + uab(tc).
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Fig. 4.9: Continuous collision detection between two moving edges.

Experimental Validation : We now present the results of the continuous collision detection

of two moving edges. An edge with coordinates a = (0.0, 1.144, 0.0) and b = (0.0, 1.144, 0.0)

with end-point velocities va = (0.0, 0.4, 0.0) and vd = (0.0, 0.4, 0.0) collides with another edge

c = (0.5, 1.204,−0.3) and d = (0.5, 1.204, 0.5) with end-point velocities vc = (0.0,−1.6, 0.0)

and vd = (0.0,−1.6, 0.0). Using the algorithm, the time of collision was determined as tc =

30ms ∈ [0,∆t] (where ∆t = 40ms ) and the barycentric coordinates are u = .5 and v = .375.

Then the collision point on the first edge a+u(ab+ tcvab) is (0.5, 1.56, 0.0). This is confirmed

to be of the same value by computing the collision point on the second edge c+v(cd+ tcvcd).
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4.2.8 Degenerate Edge Collisions

In the above case of moving edge - moving edge, we assume that we are able to formulate

the problem as a cubic equation in t. But some times, we won’t get a correct solution using

the method described in §4.2.7. We first detail how to identify the degenerate cases in order

to treat them in a special way. Expanding the cubic equation (4.15) we get :

((ab + tvab)× (cd + tvcd)) · (ac + tvac) = 0 (4.17)

Or it can be factorized as :

C0 + C1t + C2t
2 + C3t

3 = 0 (4.18)

If the cubic part of (4.18) is zero (or in practice −ǫ < C3 < ǫ), we treat the problem as

a quadratic equation and find a solution. Further if even the quadratic equation becomes

degenerate (or −ǫ < C3, C2 < ǫ), we treat it as a linear equation in t. Of course if all but the

constant coefficient is zero (or −ǫ < C3, C2, C1 < ǫ and |C0| > ǫ), then there is no solution

and hence no collision. But what if all the coefficients are zero or have a very small value, i.e.

−ǫ < C3, C2, C1, C0 < ǫ. This is when the equation becomes degenerate. Fig. 4.10 illustrates

the process of identifying the degenerate case. The equation becomes degenerate if either the

velocity component of the cross-product or velocity component of the dot product in (4.17)

is zero. This means that the two edges are co-planar or collinear at the time of collision. It

is important to handle such cases since they will be undetected otherwise. We first describe

the coplanar case in §4.2.9 and the collinear case in §4.2.10.

4.2.9 Coplanar Edges

First, we start by projecting the edges on to a 2D plane and try to find a common plane

normal. If the latter exists we proceed with the steps described below. If there is no common

plane normal np, it means that the edges are collinear at the time of collision and need to

treated differently. Fig. 4.11 shows the schema to take care of such a situation and Fig. 4.15

illustrates the overall method of handling the co-planar case. Note that in this section, we

deal with degenerate case occurring in the continuous time instant. But the same principle

can equally be applied to discrete time instants as well.

4.2.9.1 Finding the Plane Normal

Having presented the overview of handling the degenerate edge cases, we now present the

co-planar case. We start by evaluating ab × cd as a possible plane normal. If it is null, we

consider other planes such as ab×ac or ab×ad. Fig. 4.12 illustrates the process of finding a

suitable plane normal. Once we find a suitable plane with normal np, we project (cf. §4.2.9.2)

the 3D positions a, b, c, d and velocities va, vb, vc and vd on to the selected plane. We then

evaluate the collision time in this 2D space with the following cases :



76 CHAPTER 4. ROBUST COLLISION DETECTION FOR THIN OBJECTS

formulate_cubic_equation

solve_cubic_equation

return_solution

solve_quadratic_equation

solve_linear_equation

solve_degenerate_case return_no_solution

no yes

no yes

no yes

yes no

C0 + C1t + C2t
2 + C3t

3 = 0

−ǫ < C3 < ǫ

−ǫ < C2 < ǫ

−ǫ < C1 < ǫ

−ǫ < C0 < ǫ

Fig. 4.10: Identifying degenerate cases for edge-edge collision.
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Fig. 4.11: High level flow chart for treating degenerate edge edge collisions.
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find_plane_normal

n1 = ab× cd

np ← n1

||n1|| 6= 0

n2 = ab× ac
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n3 = ab× ad

Yes

Yes
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np ← n3

return_plane_normal

||n3|| 6= 0

do_collinear

No

No

No

Fig. 4.12: Finding plane normal for co-planar edges.

– Collision between edge ab and end-point c (Fig. 4.13 (i))

– Collision between edge ab and end-point d (Fig. 4.13 (ii))

– Collision between edge cd and end-point a (Fig. 4.13 (iii))

– Collision between edge cd and end-point b (Fig. 4.13 (iv))

For each case, we solve for the quadratic equation to first find a valid time of collision between

the two edges projected in 2D using (4.25). For example for case (i) we test if the edge abproj

moving at a velocity vabproj and a point cproj moving at a velocity vcproj (all values in 2D

space) :

(abproj + tvabproj)× (cproj + tvcproj) = 0 (4.19)

We similarly test the remaining cases as well. Since there could be multiple collisions which

satisfy tc ∈ [t0, t0 +∆t] within a time-step, we will have to evaluate all four cases and find the

first occurrence of collision, i.e. find the collision time with the least value. The valid time tc

is chosen by taking the minimum from up to four possible values, i.e. tc = min{t1, t2, t3, t4}.

The barycentric value on the edge for case (i) is then determined as :

u =
abproj · acproj

abproj · abproj

v = 0

(4.20)

The formula for computing the barycentric coordinates for all the cases is presented in Table

4.1.
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Tab. 4.1: Computation of barycentric coordinates for 2D edges.

Case Barycentric values

(i) ab and c u =
abproj·acproj

abproj·abproj
, v = 0

(ii) ab and d u =
abproj·adproj

abproj·abproj
, v = 1

(iii) cd and a u = 0, v =
cdproj·caproj

cdproj·cdproj

(iv) cd and b u = 1, v =
cdproj·daproj

cdproj·cdproj

np

b(tc)

a(tc)

vx

vy
d(tc)

c(tc)

u

np

b(tc)

d(tc)
c(tc)

a(tc)

vx

vy

u

np

d(tc)

vx

vy

a(tc)

v

c(tc)

b(tc)

np

d(tc)
c(tc)

vx

vy

v

b(tc)

a(tc)

(i)

(iii) (iv)

(ii)

Fig. 4.13: Four possible cases when two edges collides in a plane.

4.2.9.2 Projecting Onto a Plane

Once a suitable plane vector np is found, we compute the projection of the positions and

velocities on to this plane using the two orthogonal vectors vx and vy lying on this plane.

First, vx is computed by finding an arbitrary orthogonal vector to the plane normal np, i.e.

vx = np × (1, 0, 0) (4.21)

Or if np × (1, 0, 0) = 0,

vx = np × (0, 1, 0) (4.22)

Or if np × (0, 1, 0) = 0,

vx = np × (0, 0, 1) (4.23)
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Then vy is computed as :

vy = np × vx (4.24)

Once vx and vy are found, a vector vec3d in 3D space is transformed in the 2D plane

represented by plane vectors vx and vy by :

vec2d = (vec3d · vx,vec3d · vy) (4.25)

We refer (4.25) as the method project vector to plane. We apply the above transformation

to the positions and velocities as follows. We first set the projection of a as :

aproj = (0, 0) (4.26)

Then the rest of the positions are projected using (4.25) relative to a as :

bproj =project vector to plane(b− a)

cproj =project vector to plane(c− a)

dproj =project vector to plane(d− a)

(4.27)

(4.26) and (4.27) represent the function project positions to plane in Fig. 4.15. The ve-

locities are similarly projected in a straight forward manner :

vaproj = project vector to plane(va)

vbproj = project vector to plane(vb)

vcproj = project vector to plane(vc)

vdproj = project vector to plane(vd)

(4.28)

(4.28) represents the project velocities to plane in Fig. 4.15.

4.2.9.3 Projecting Back to 3D-space

Once the collision is detected, we compute the gradient of intersection from the slope

of the edge which is not intersecting at an end point. For e.g. for case (i) referring to the

collision between ab and c, the slope of the line ab is computed by the difference in x and y

directions. In this case, slopex = bx − ax and slopey = by − ay (see Fig.4.14). The normal of

the line (−slopey, slopex) is then back projected to find the normal of intersection in 3D as :

nintersect = (−slopey ∗ vx, slopex ∗ vy, 0) (4.29)

(4.29) represents the method project plane to 3dvector in Fig. 4.15.
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vy

vx

c

b

a
d

bx − ax

b y
−

a
y

Fig. 4.14: Computing the line gradient for co-planar edges.

do_coplanar

np ← find_plane_normal

aproj,bproj, cproj,dproj ← project_positions_to_plane(a,b, c,d)

vaproj,vbproj,vcproj,vdproj ← project_velocities_to_plane(va,vb,vc,vd)

t1 ← find_collision_time_2d(abproj, cproj,vabproj,vcproj)

t2 ← find_collision_time_2d(abproj,dproj,vabproj,vdproj)

t3 ← find_collision_time_2d(cdproj,aproj,vcdproj,vaproj)

t4 ← find_collision_time_2d(cdproj,bproj,vcdproj,vbproj)

tc ← min(t1, t2, t3, t4)

u, v ← find_barycentric_values

slopex, slopey ← compute_slope

nintersect ← project_plane_to_3dvector(slopex, slopey)

returntc, u, v,nintersect

Fig. 4.15: Flowchart illustrating the handling of coplanar edges.

4.2.9.4 Co-planar Results

We now present the results of the continuous collision detection of two moving parallel

edges (see Fig. 4.16). An edge with coordinates a = (0.5, 1, 0) and b = (1.5, 1, 0) with end-

point velocities va = (0, 0, 0) and vd = (0, 0, 0) collides with another edge c = (0, 1, 0.014) and

d = (1, 1,−0.036) with end-point velocities vc = (0, 0, 0.044) and vd = (0, 0, 0.044). Using

the algorithm, we determined a suitable plane normal np = ab × cd = (0, 1, 0) with plane

vectors vx = (1, 0, 0) and vy = (0, 0,−1). After projecting the positions and velocities onto

this plane, the time of collision was determined as tc = 25ms ∈ [0,∆t] (where ∆t = 40ms )

and the barycentric coordinates are u = 0 and v = .5. Then the collision point on the first

edge a+u(ab+tcvab) is (0.5, 1, 0). This is confirmed to be of the same value by computing the

collision point on the second edge c+v(cd+ tcvcd). The normal of intersection nintersectwhich

is needed for correct collision response was found as (−0.05, 0,−0.99).
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(i) (ii)
Fig. 4.16: Continuous collision detection between two moving coplanar edges.

4.2.10 Collinear Edges

The co-planar algorithm will fail if the edges are aligned at the time of collision. The

find plane normal routine (see Fig. 4.12) will return a null vector in all three cases. In such

cases, we treat the collisions in one-dimension as a collinear case with the following four

possibilities :

– a collides with c (Fig. 4.17 (i))

– a collides with d (Fig. 4.17 (ii))

– b collides with d (Fig. 4.17 (iii))

– b collides with c (Fig. 4.17 (iv))

4.2.10.1 Compute Line

We start by finding a common line direction nline by evaluating one of the possible candi-

date vectors ab

‖ab‖ ,
ac

‖ac‖ or ad

‖ad‖ . This step represents the find line vector in Fig. 4.18. We

then project the positions and velocities onto to this line by first setting :

aline = 0 (4.30)

The remaining positions are found by projecting them in the direction of the line with respect

to a :
bline = nline · (b− a)

cline = nline · (c− a)

dline = nline · (d− a)

(4.31)
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Tab. 4.2: Computation of barycentric coordinates for 1D edges.

Case Parameters

(i) aline and cline u = 0, v = 0, t1 = cline−aline

valine−vcline

(ii) aline and dline u = 0, v = 1, t2 = dline−aline

valine−vdline

(iii) bline and dline u = 1, v = 1, t3 = dline−bline

vbline−vdline

(iv) bline and cline u = 1, v = 0, t4 = cline−bline

vbline−vcline

(4.30) and (4.31) represent the method project positions to line in Fig. 4.18. The velo-

cities are similarly projected as :

valine = nline · va

vbline = nline · vb

vcline = nline · vc

vdline = nline · vd

(4.32)

and (4.32) represents the method project velocities to line in Fig. 4.18. Once we have

projected the positions and velocities, we check for the following cases of testing (see Fig.

4.17) and determine the time of collision and the barycentric coordinates for each of them

as shown in Table 4.2. As we did for the coplanar case, we will have to evaluate all four

cases and find the first occurrence of collision, i.e. find the collision time with the smallest

value. The valid time tc is chosen by taking the minimum from up to four possible values,

i.e. tc = min{t1, t2, t3, t4}. Note that in each case the orientation of the line direction nline

is reversed to respect the relative velocity of the colliding segments. For e.g. for case (i),

nline = −nline, if va < vc. We similarly alter the orientation for other cases as well. Fig. 4.18

illustrates the overall method of handling the collinear case.

cline

aline

dline

blinealine
bline

clinedline

aline
bline

dline cline

aline
bline

dlinecline

(i) (ii)

(iii) (iv)

Fig. 4.17: Four possible cases when two edges collides in a line.
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do_collinear

nline ← find_line_vector

aline, bline, cline, dline ← project_positions_to_line(a,b, c,d)

valine, vbline, vcline, vdline ← project_velocities_to_line(va,vb,vc,vd)

t1 ← find_collision_time_1d(aline, cline, valine, vcline)

t2 ← find_collision_time_1d(aline, dline, valine, vdline)

t3 ← find_collision_time_1d(bline, dline, vbline, vdline)

t4 ← find_collision_time_1d(bline, cline, vbline, vcline)

tc ← min(t1, t2, t3, t4)

u, v ← find_barycentric_values

returntc, u, v,nline

Fig. 4.18: Flowchart illustrating the handling of collinear edges.

Experimental Validation : We now present the results of the continuous collision detection

of two moving collinear edges (see Fig. 4.19). An edge with coordinates a = (0.5, 1, 0) and

b = (1.5, 1, 0) with end-point velocities va = (0, 0, 0) and vd = (0, 0, 0) collides with another

edge c = (1.5184, 1, 0) and d = (2.5184, 1, 0) with end-point velocities vc = (−.48, 0, 0)

and vd = (−.48, 0, 0). Here, the co-planar algorithm will fail since there exists no valid

plane normal. Hence using the above algorithm, we determined a suitable line direction

nline = (1, 0, 0). After projecting the positions and velocities onto this line with b line = 1,

cline = 1.0184, vbline = 0 and vcline = −.48, the time of collision was determined as tc =

38ms ∈ [0,∆t] (where ∆t = 40ms ) and the barycentric coordinates are u = 1 and v = 0

(case of bline colliding with cline). The point of contact was of course verified as (1.5, 1, 0).

(i) (ii)
Fig. 4.19: Continuous collision detection between two moving edges collinear at the time of collision.
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4.3 Conclusion

In this chapter, we have comprehensively treated the collision detection occurring between

primitives. Here, we have summarized the existing approaches for the sake of completeness. In

addition, we have proposed new methods for handling complicated cases such as co-planar and

collinear edges. We have demonstrated the validity of these algorithms through quantitative

experiments. Our methods are robust and will come handy in the next chapter for treating

complex, real-world examples.



CHAPTER 5

Robust Response to Multiple Collisions

In this chapter, we present two new methods which treat the multiple simulta-

neous collisions occurring in deformable objects. The first is a constrained based

approach using quadratic programming techniques which expresses collisions as li-

near constraints within a global framework. The second is a spring based approach

which exploits temporal coherence to guarantee that no collision is left untreated.

We analyze these two methods and compare their advantages and weaknesses.

5.1 Introduction

The robust handling of collisions and contacts is important in physics-based animation

and simulation scenarios. In chapters 2 and 3, we highlighted the shortcomings of the existing

approaches to deal with multiple collisions. In chapter 4 we presented robust methods for

collision detection. In this chapter, we first present a new approach which handles dynamics

and collision treatment simultaneously. We consider the collisions as linear constraints and the

dynamics equation as an objective function to be minimized. We thus get a unified equation

modeled as a quadratic programming (QP) problem and solve it using an active set method.

We iterate the QP until the solution satisfies all the constraints with the appropriate sign of

the Lagrange’s multipliers. Thus we get a solution to the dynamics equation which responds

to all the collisions. Other constraints such as assigning a constant velocity to a particle,

limiting strain/strain rate, etc. too can be easily modeled as linear constraints. We call this

85
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first approach Quadratic Programming Collide or QP-Collide. In this chapter, we describe

in detail how such an approach can be integrated within an existing dynamics simulation

environment. In addition, we also include implementation issues of this approach and discuss

practical tricks to overcome the same.

Secondly, we present a robust and easy to implement approach which guarantees that no

collision will be missed. Our novel spring-based response solves the issues of multiple collisions

and strain control by naturally exploiting temporal coherence. A colliding primitive pair

coming into contact in the “proximity” region is kept apart by springs inserted by the discrete-

time detection routine. By retaining and updating the springs between the primitives over

time steps we are able to constantly monitor for new interpenetrations. Any new instantaneous

traversals are detected and gradually pushed apart over multiple passes thanks to continuous-

time detection. Our approach thus guarantees a “collision-free” final state while minimizing

the creation of “secondary collisions” and without inserting additional strain into the system.

We call this second approach Guaranteed Collision Response.

We present both these methods one after the other before discussing the relative merits

and disadvantages of each of them and how they compare with the methods already existing

in literature.

5.2 Quadratic Programming Collide

5.2.1 Our Approach

Typical dynamics problems formulated as an ordinary differential equation (ODE) can be

solved either by explicit integration techniques such as forward Euler, Runge-Kutta, etc. or

implicit techniques like the backward Euler. The latter is especially useful for solving “stiff” set

of equations and provides a stable solution even while simulating at large time-steps [BW98].

We make no assumption on the type of integration method for our QP-based approach works

with both the methods though we have used the implicit Euler for the advantages mentioned

above. Typically we write the implicit Euler equation to solve for ∆v as [BW98] :

(

M−∆t2
∂f

∂x
−∆t

∂f

∂v

)

∆v = ∆t

(

f + ∆t
∂f

∂v
v

)

(5.1)

We integrate the new velocities v + ∆v to get the new positions x + ∆t(v + ∆v).

As we noted in chapter 2, the usual way is to perform collision detection at this step

and apply the correction instantaneously to the positions and velocities (impulses) or apply

stiff spring forces in the next time step (penalty forces). Referring to conclusions we drew

in chapter 3 through our case studies, the problems of treating the collisions one by one are

principally twofold :

– Treating one set of collisions may provoke new “secondary” collisions

– Correcting a colliding pair in isolation may introduce additional strain into the system
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Here, we propose a new method by handling dynamics and collision treatment simultaneously.

We consider the collisions as linear constraints and the above dynamics equation as an objec-

tive function to be minimized. We thus get a unified global solution to the problem in hand.

Let us describe the method in detail. First, we write the implicit equation (5.1) in a concise

form :

K∆v = b (5.2)

We then write this equation as a quadratic function with linear constraints. Minimize :

q(∆v) ≡ 1

2
∆vTK∆v− bT ∆v (5.3)

subject to the constraints :

J∆v ≤ c (5.4)

where J and c are the constraint matrix and values respectively (cf. §5.2.3 on how to compute

these constraints). If (5.4) is an equality, this is a classical quadratic programming (QP)

problem which can be solved in a finite number of steps. In practice, we consider the above

inequality as an equality by means of an active set method described in [Fle87]. Accordingly,

those constraints belonging to the active setA are considered as equalities while the remaining

are temporarily ignored. Thus, (5.4) is reduced to :

Ja∆v = ca, a ∈ A (5.5)

From (5.3) and (5.5), we write the Lagrangian function representing the Karush-Kuhn-Tucker

(KKT) optimality condition as :

L(∆v, λ) =
1

2
∆vT K∆v− bT ∆v − λT (Ja∆v− ca) (5.6)

∇∆vL = 0 ⇒ K∆v− b− JT
a λ = 0

∇λL = 0 ⇒ Ja∆v − c = 0
(5.7)

which can be rearranged as :

[

K −JT
a

−Ja 0

](

∆v

λ

)

=

(

b

−ca

)

(5.8)

For notational convenience the left hand side of (5.8) is referred to as the A matrix, i.e.

A =

[

K −JT
a

−Ja 0

]

(5.9)



88 CHAPTER 5. ROBUST RESPONSE TO MULTIPLE COLLISIONS

The solution obtained (∆v, λ) is verified such that :

λa ≥ 0, a ∈ A (5.10)

Jk∆vk ≤ ck, k /∈ A (5.11)

At the end of each iteration, if (5.10) is not satisfied, the corresponding constraint Ji is

removed from the active set A and is put into A′. Viceversa if a non-active constraint in

(5.11) is violated, then the same is transferred from A′ to be part of A. The iteration stops

when we find a solution with satisfied both these conditions. We describe the algorithm in

detail in §5.2.6.

5.2.2 A Note on Earlier Approach

Before we detail on how these constraints can be computed, we would like to draw the

attention towards an earlier attempt at using quadratic programming for calculating contact

forces. As we described in §2.4.2, Baraff proposed [Bar94] an algorithm for calculating the

contact forces between colliding solid objects. We had already briefly discussed as to why this

method is very difficult to apply for deformable objects. In order to understand the problem

better, let us describe his method in brief and try to expand it to deformable case.

The problem is as follows. Let ai be the relative acceleration between two bodies. If ai > 0,

the bodies are breaking the contact pi. Conversely if ai < 0 the bodies are accelerating

towards each other to interpenetrate. An acceleration ai = 0 means that the bodies are in

resting contact. Thus to prevent interpenetration, we require ai > 0 for each contact point.

With multiple contact points let the vector a represent the set of accelerations.

Similarly, a positive force fi between the two bodies indicate a repulsive force and vice

versa. Since frictionless contact forces are conservative we require that fiai = 0 for each

contact point i. Thus the condition requires that at least one of fi and ai be zero for each

contact. Let the vector f represent the set of forces.

The vectors a and f are related and can be written as :

a = Af + b (5.12)

such that

ai ≥ 0, fi ≥ 0 (5.13)

and

fiai = 0 (5.14)

Baraff then presented the above as a quadratic programming problem by minimizing

min fT (Af + b) (5.15)
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subject to

Af + b ≥ 0 (5.16)

and

f ≥ 0 (5.17)

Baraff subsequently went about finding a solution by computing the forces one by one as

follows. First, all the contact points except the first are ignored, i.e. fi = 0 for all i. Only

f1 is computed using (5.13) and (5.14) by disregarding the remaining conditions. Then f2 is

computed by ignoring the rest while maintaining the condition for i = 1 and so on. Let us

take a case where we need to find the force for an arbitrary nth contact. This means that

we already know f1, f2, ..., fn−1. Let there be two sets C and NC where C = 1, 2, ..., k and

NC = k + 1, k + 2, ..., n − 1.

In order to better appreciate the problem with this approach applied to deformable ob-

jects, we now expand on the structure of the A matrix which was not elaborated in [Bar94].

The force for the nth contact fn needed to bring the acceleration an = 0 is computed by

solving.












M JT
C JT

NC jTn

JC 0 0 0

JNC 0 0 0

jn 0 0 0

























γ

λC

λNC

1













=













fext

0

≥ 0

≥ 0













(5.18)

such that

λNC = 0 (5.19)

and

λC ≥ 0 (5.20)

where M is the inertia matrix of the rigid body system, fext is the sum total of all the external

forces, λC and λNC are the lagrangian multiplier values of the sets C and NC respectively.

The equality part of the above can be rewritten as :

Mγ + JT
CλC + jTn = fext (5.21)

and

JCγ = 0 (5.22)

Thus we need to first solve for λC :

(

JCM−1JT
C

)

λC = JCM−1fext − JCM−1jTn (5.23)

The accelerations γ are then calculated by :

γ = M−1
(

fext − JT
CλC − jTn

)

(5.24)
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Note that this approach is already computationally heavy since it takes multiple QP-passes

to calculate the force of each contact point one by one. Further the equivalent of the M−1

matrix for deformable objects will be
(

M− (∆t)2 ∂f

∂x
− (∆t) ∂f

∂v

)−1
as in (5.1). Thus for each

pass, in order to solve (5.23) directly, we should find the inverse of JCM−1JT
C which is very

difficult to compute. We cannot precalculate this since the matrix changes every time step

as the object deforms. The other option is to formulate the problem as an iterative solution.

With this approach, we may not need an explicit matrix representation (cf. §3.3.1). But this

approximation will further reduce the accuracy of the solution leading to increased numerical

precision errors. Thus this method is not applicable for the problem at hand.

5.2.3 On Modeling the Constraints

We now describe how the QP-collide method introduced in §5.2 can be used to model

various constraints starting with the collisions. Though the focus of this research is the

treatment of collisions, this approach enables us to take account of several other issues we

often encounter in dynamics simulation such as fixing a point, controlling the strain, etc.

5.2.3.1 Collision Constraints

We refer to the collision detection techniques described in chapters 3 and 4. Recall that

by solving (5.8) for ∆v, we approach the problem of collision response solely through velocity

impulse corrections on the lines of [BFA02]. We do not modify positions explicitly thus avoid

creating new collisions and also prevent introducing additional mechanical strain into the

system. We now describe how to deal with the collision primitives (vertex-triangle and edge-

edge) once they are detected (described in detail in chapter 4).

5.2.3.2 Vertex-Triangle Collision Constraint

This constraint can be applied to both discrete and continuous situations described in

§4.2.1, §4.2.2 and §4.2.3. Let a vertex xi with thickness ri moving at velocity vi collide with

a triangle (xj0,xj1,xx2) with thickness rj moving at (vj0,vj1,vj2) and normal n̂ (see Fig.

5.1). The above are the instantaneous values at time t. Our objective is to find the new ∆v at

vj1

xj1

n̂

vi

xi

xj0

vj0

vj2

xj2

ri

rj

Fig. 5.1: Modeling the vertex-triangle collision constraint.
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time t + ∆t. Assuming the barycentric coordinates are (w0, w1, w2) such that velocity at the

colliding point is vj = w0vj0 +w1vj1 +w2vj2. Let g be the gap ‖ xi−xj ‖ such that distance

which the vertex and triangle needs to be separated into a non-interfering state is g−(ri+rj).

Now the equation constraining the new relative velocity change ∆vij = ∆vj − ∆vi can be

written as :

(vij + ∆vij) · n̂ ∆t ≤ g − (ri + rj) (5.25)

It can be rearranged as :

(w0∆vj0 + w1∆vj1 + w2∆vj2 −∆vi).n̂ ≤ c (5.26)

where c = (g−(ri+rj))/∆t+(w0vj0+w1vj1+w2vj2−vi)·n̂. Each such constraint corresponds

to one row of the J matrix of (5.4). The structure of the kth row Jk will then look as follows :

(

· · · j0 j1 j2 · · · i · · ·
· · · 0 w0n̂ w1n̂ w2n̂ · · · 0 · · · n̂ 0 · · ·

)

(5.27)

We present an example result produced by implementing the vertex-triangle collision constraint

in Fig. 5.2 where a falling point is prevented from interpenetrating a triangle.

5.2.3.3 Edge-Edge Collision Constraint

Now, let an edge with end-points (xi0,xi1), thickness ri and velocities (vi0,vi1) collide

with another edge with end-points (xj0,xj1), thickness rj and velocities (vj0,vj1) (again, all

values at time t) (see Fig. 5.3). The barycentric coordinates at the collision point is [a, b] such

that the velocities at the colliding point equals vi = (1−a)vi0+avi1 and vj = (1−b)vj0+bvi1.

The equation constraining the relative velocity is similar to (5.25). It can be further elaborated

as :

((1 − b)∆vj0 + b∆vj1 − (1− a)∆vi0 − a∆vi1) · n̂ ≤ c (5.28)

where n̂ is the normalized direction of the gap (xi − xj)/ ‖ xi − xj ‖ and c = (g − (ri +

rj))/∆t+vij · n̂. Similar to the vertex-triangle case, the structure of the kth row Jk will then

look as follows :

(

· · · j0 j1 · · · i0 i1 · · ·
0 (1− b)n̂ bn̂ · · · 0 · · · −(1− a)n̂ −an̂ 0 · · ·

)

(5.29)

We present an example result produced by implementing the edge-edge collision constraint

in Fig. 5.4.

5.2.3.4 Fixed Constraints

Fixed constraints are those which can be used to assign a constant velocity value. Once the

constraint directions and values are set, it is considered as part of the active set throughout
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(a)

(b)
Fig. 5.2: Results from the simulation of a vertex-triangle collision constraint.

xi0

xi1

vi0

vi1

vj0

vj1
ri

xj1

xj0

rj

Fig. 5.3: Modeling the edge-edge collision constraint.
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(a)

(b)
Fig. 5.4: Results from the simulation of an edge-edge collision constraint.

the iteration and is thus treated as an equality all along. Fig. 5.5 illustrates the dynamics of

a connected particle system with its two end points fixed using our constraint method.

5.2.3.5 Strain Constraints

Some times we would like to control the strain values during the simulation typically

to avoid excessive elongation or compression of spring (cf. §3.3.5). Our approach provides a

straightforward means to implement this. We define the strain of a mechanical element (say,

a spring) as the change in its current length l relative to its rest length l0, i.e. (l − l0)/l0.

Let lmax be the maximum strain allowed (say 10% over l0). For a spring connected by two

end-points (i, j) (see Fig. 5.6), this can be written as :

‖ xi + ∆t(vi + ∆vi) − xj −∆t(vj + ∆vj) ‖< lmax (5.30)
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(i) (ii) (iii)
Fig. 5.5: A particle system with the two ends fixed using constraints.

By ignoring the (∆t)2 terms, we get :

√

2∆t(∆vi −∆vj) · n̂l + l2 < lmax (5.31)

where l =‖ xi +∆tvi−xj−∆tvj ‖ and n̂ is the normalized direction of the spring elongation

(xi + ∆tvi − xj −∆tvj)/l. Using a first order approximation :

√
1 + ǫ = 1 +

1

2
ǫ + O(ǫ2) (5.32)

we can linearize (5.31) as :

(∆vi −∆vj) · n̂ ≤ l(lmax − l)/∆t (5.33)

A similar equation can be written so that the spring does not compress below a certain

length lmin. Note that unlike the explicit strain control methods proposed in [BFA02], our

approach can incorporate this as another set of linear constraints. While their approach is

prone to suffer from unending loops with sequential methods such as Gauss-Seidel approach,

our approach ensures that the solution satisfies the user-defined strain control constraints. We

present an example result produced by implementing the strain control constraint in Fig. 5.7.

Here, we notice that the simulations without strain control (see Fig. 5.7(i)) suffers from a

large deformation (upto 250% of the the initial length) without any strain control measures.

In contrast, we applied the above constraint (with lmax set at 10% of the initial length) to our

QP solver, and we observed that the solution perfectly respected this constraint. Fig. 5.7(ii)

illustrates that the suspended cable does not elongate more than 10% under the exact same

physical conditions.

l

xjxi

lmax

Fig. 5.6: Modeling the strain constraint.
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(i) A cable suspended from the top elongating without strain control.

(ii) A cable suspended from the top elongating with strain control.

Fig. 5.7: Results from the simulation of strain control constraint.
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5.2.4 On Using the Conjugate Gradient Algorithm

5.2.4.1 Without Inverting K

We generally assume that the K matrix of (5.3) is symmetric and positive-definite. Hence

the composite matrix A of (5.9) is also symmetric and can be solved with a standard Conju-

gate Gradient (CG) algorithm [PFTV92]. Note that sometimes due to numerical errors, the

symmetric form of (5.8) can be ill-conditioned due to negative eigenvalues. In such cases we

found that the non-symmetric version gave an acceptable solution. Of course since it is no

longer symmetric we will have to use a Bi-Conjugate Gradient algorithm which takes twice

the calculations than a standard CG algorithm. Accordingly, the modified form is :

[

K −JT
a

Ja 0

](

∆v

λ

)

=

(

b

ca

)

(5.34)

We would also prefer A is positive semi-definite (PSD) so that we get the global solution

to the equation. However there are cases where the matrix is not full rank due to linearly

dependant constraints. We shall deal with such cases in detail in §5.2.7.1. Otherwise, both

the K and J matrices tend to be sparse and can be solved by iterative methods such as the

conjugate gradient algorithm in linear time complexity. Hence it would make sense to create

methods which perform the product of the matrix vector y = A · x, where x consists of

the vector triplet ∆v and the Lagrangian multiplier λ. This avoids the need for having an

explicit representation of the A matrix. Assuming that there are n equations and m active

constraints, the multiplication operators required for computing the left hand side of (5.8)

are :

yi = K ·∆v− JT
a · λ, i ∈ [1, · · · , n] (5.35)

yi = −Ja ·∆v, i ∈ [n + 1, · · · , n + m] (5.36)

For n particles and m constraints, the conjugate gradient should generally converge within

3n + m iterations.

5.2.4.2 Inverting K

In certain cases, it is possible to quickly invert K matrix using techniques such as LU

decomposition (cf. §3.3.1 for more discussion on this). When K−1 exists, from (5.8) we find

the solution λ and ∆v as follows :

JK−1JT λ = c− JK−1b (5.37)

∆v = K−1(b + JT λ) (5.38)

(5.37) reduces the maximum CG iterations to m.
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5.2.5 Condition for Convergence

After having presented the details of the solver, we will now elaborate on how to terminate

the QP iteration. Recall that the solver provides the set of velocity corrections ∆v and the

Lagrangian values λa of the active constraint set. We exit the iteration if the solution satisfies

both the conditions (5.10) and (5.11). Otherwise we have to perform the constraint swapping

procedure and continue with the iteration as follows. For each active constraint, if the solution

does not satisfy (5.10), i.e., λq < 0, q ∈ A, the constraint is moved to the non-active set A′

and thus is not considered during the next iteration. Likewise for each non-active constraint,

if the solution does not satisfy (5.11), i.e., Jp∆vp > cp, p ∈ A′, the constraint is moved to the

active set A. But sometimes due to numerical errors we may not get the required solution

even after several iterations. Hence, we set an upper limit maxIter to the number of QP

iterations that can be performed. Note that the case we use an iterative solver such as the

conjugate gradient, the solution obtained also depends on an user-set tolerance value. The

value of the residue at the end of each CG step should be less than this tolerance value. Thus

we need to judiciously take into account of these nuances while dealing with convergence

issues. We detail some of the techniques we developed to alleviate this problem in §5.2.7.

5.2.6 Overall Algorithm

Our algorithm is flexible to work with any suitable integration technique and collision

detection method, this making it easier to fit in with an existing dynamics simulation archi-

tecture. The overall algorithm is described in Algorithm 2 :

5.2.7 Practical Difficulties

Throughout this method, we have tried to eliminate as many magic parameters as possible.

All the parameters of our system such as stiffness, thickness, etc. are user-given physical

parameters. But certain situations during simulations cause numerical errors while computing

the solution to the conjugate gradient algorithm. We propose the following techniques to

tackle against commonly occurring numerical problems.

5.2.7.1 Linearly Dependant Constraints

There can be some cases where there are linearly dependant rows in the J matrix. A

simple illustration of this situation is as follows. Let us imagine the case of an edge colliding

with a fixed plane where each end-points of the edge collides with two adjacent triangles of

the plane and the edge itself collides with the edge of the plane shared by the two triangles

(see Fig. 5.8). Note that we have three collision constraints in this case - two vertex-triangle

constraint and one edge-edge constraint. If the direction of the normal n̂ is (nx, ny, nz) and

the barycentric coordinates of the colliding edge is [a1, a2] where a2 = 1 − a1, then the
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Algorithm 2 Quadratic Programming Collide

1: Solve (5.1) for ∆v
2: Find constraints (detect collisions) and populate the constraint matrix J and values c
3: for all constraint Ji ∈ J[1 · · ·m] do
4: if Ji∆vi > ci then
5: Add ith constraint to A
6: else
7: Add ith constraint to A′

8: end if
9: end for

10: maxIter← 3n + m
11: k ← 0
12: endloop← true

13: Compute the new ∆v(k) and the Lagrange multipliers λ(k) by solving (5.8)

14: for all λ
(k)
q , q ∈ A do

15: if λ
(k)
q < 0 then

16: Move q from A to A′ (active to non-active)
17: endloop ← false

18: end if
19: end for
20: for all ∆v

(k)
p , p ∈ A′ do

21: if Jp∆v
(k)
p > cp then

22: Move p from A′ to A (non-active to active)
23: endloop ← false

24: end if
25: end for
26: if endloop is false and k < maxIter then
27: k ← k + 1
28: Goto step (2)
29: else
30: ∆v∗ = ∆v(k)

31: Quit loop
32: end if
33: Compute final velocity v(t + ∆t)← v(t) + ∆v∗

34: Compute final position x(t + ∆t)← x(t) + ∆t · v(t + ∆t)

corresponding rows of J will be :







· · · 0 nx ny nz 0 0 0 0 · · ·
· · · 0 0 0 0 nx ny nz 0 · · ·
· · · 0 a1nx a1ny a1nz a2nx a2ny a2nz 0 · · ·






(5.39)

This is a common occurrence in mechanical simulations and yet it results in a singular A

matrix. The applied mathematics community typically use sequential quadratic program-

ming approaches to deal with such problems [GMS02]. Unfortunately, such methods are very
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expensive to compute in real-time applications using standard workstations. Instead we in-

troduce a small perturbation in J in order to reduce the conditioning number of the matrix.

Accordingly, we fill up the bottom right part of A of (5.6) with a “perturbation” matrix

L = (l1, · · · , lm) with each li’s value around 10−3. Thus the new A will look like :

A =

[

K −JT
a

−Ja L

]

(5.40)

The corresponding matrix-vector multiplication routine in (5.36) is appropriately modified

as :

yi = −J ·∆v − L · λ, i ∈ [n + 1, · · · , n + m] (5.41)

This not only reduces the numerical errors but is also extremely easy to compute. The cost

of such calculation is m multiplications.

n̂ n̂

vertex-triangle edge-edge vertex-triangle

Fig. 5.8: A commonly occurring collision scenario which results in linearly dependant constraints.

5.2.7.2 Suppressing Toggling Constraints

Other numerical errors results while trying to simulate very stiff objects. This sometimes

causes the constraint to toggle between the active set A and the non-active set A ′ resulting

in an endless QP iteration loop. Hence such cases should be put in a watch list and in case of

repeated toggling, the constraint should be permanently removed from A and A ′. While this

may not be theoretically justified, it nonetheless gives satisfactory results in our experiments

simulating a mechanical cable with large stiffness values (> 105 N/m).

5.2.8 Results and Summary

Performance : We have presented an elegant and novel solution for simultaneously trea-

ting multiple collisions and contacts. We now present the results of our algorithm. Fig. 5.9(i)

shows the case of a free falling cable sliding over a pulley. Fig. 5.9(ii) shows the simulation of

a rigid cable fixed at its end-point falling over a rigid cylinder. We note that the algorithm

handles both the collisions and fixed constraints well for the case of a mechanical cable.

Fig. 5.10 shows the simulation of cable fixed at two ends falling simultaneously over two

fixed cylinders. We present the simulation parameters in Table 5.1. The simulation ran at

30-35 Hz on a 3GHz Pentium r 4 PC with 1 GB RAM and GeForce r 3 graphics card. Fig.

5.11 plots the time and the number of iterations required for the simulation presented in Fig.
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(i) (ii)

Fig. 5.9: Snapshots of simulation using QP-Collide. A stiff cable (i) falling off a pulley and (ii)

suspended (fixed at the end points) over a cylinder.

Tab. 5.1: QP-Collide results : Parameters used in the simulation shown in Fig. 5.10.

Parameter Value

Number of cylinder triangles 600
Number of cable particles 80
Mass 1.0 kg
Stiffness 104Nm−1

Gravity −10ms−2

5.10. Fig. 5.11 (i) shows the simulation time (in ms) for the QP-solver. Note that this time

excludes the time required for collision detection. Fig. 5.11 (ii) shows the total number of

conjugate gradient (CG) iterations necessary for the algorithm to converge (cf. §5.2.5). Here

note that there might be multiple QP iterations with each requiring a certain number of CG

iterations. Hence we added up the CG iterations for each QP iteration and presented the total.

The pattern of these two graphs are similar showing that the time needed is proportional to

the number of CG iterations solved. Fig. 5.11 (iii) shows the total number of variables and

constraints solved during each time step. Note that we have at the minimum 80 particles and

6 fixed constraints (three for fixing each end which are active all the time). Fig. 5.11 (iv)

shows only the number of constraints solved during each time step. We performed a similar

experiment using the same parameters as Table 5.1 except reducing the stiffness value of the

cable to 103Nm−1. We present the plots arising out of the simulation in Fig. 5.12. We note

that the number of collision constraints for each case is similar (compare 5.11 (iv) and 5.12

(iv)). But the average time required for the simulation (see Fig. 5.12 (i)) is considerably lower

than the corresponding high stiffness case (see Fig. 5.11 (i)).

Drawbacks :There are some drawbacks of this method compared with a more classical

approach like penalty springs. The addition of the constraint matrices J and JT somewhat

degrades the conditioning of the matrix. Hence the solution given by the QP is susceptible to
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Fig. 5.10: Snapshots of the simulation of a stiff cable with 80 mass particles fixed at two ends falling

over two cylinders creating multiple collisions and contacts which are handled using the QP-collide

collision response method.



102 CHAPTER 5. ROBUST RESPONSE TO MULTIPLE COLLISIONS

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

steps

ti
m

e
 (

m
s
)

Time taken per time step

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

steps

#
C

G
 i
te

ra
ti
o

n
s

Total number of CG iterations

(i) (ii)

0 50 100 150 200 250 300
86

88

90

92

94

96

98

100

102

steps

#
 c

o
n

s
tr

a
in

ts

Total number of variables + constraints

0 50 100 150 200 250 300
6

8

10

12

14

16

18

20

22

steps

#
 c

o
n

s
tr

a
in

ts

Number of constraints

(iii) (iv)

Fig. 5.11: Plot of timings and iterations taken from the simulation shown in Fig. 5.10. (i) Time taken

to compute the solution per time step. (ii) Total number of conjugate gradient iterations performed

by the QP solver. (iii) Total number of variables + constraints. (iv) Number of constraints.

numerical errors. Though we have proposed some tricks to take care of them, they may not

work for all the scenarios. Hence more theoretical work is needed to analyze such problems.

In addition, our algorithm may not handle the case of multiple collisions such as a cloth

colliding with itself due to the following reasons. Here, we need to perform multiple collision

detection passes in order to find new collisions which by itself is not a problem with our

robust methods presented in chapter 4. But the problem is that we need go through multiple

QP passes to respond to these new collisions which is computationally expensive. In effect

this might be the equivalent of a sequential quadratic programming on the lines of Baraff

described in §5.2.2. Nonetheless, we hope that this method be further explored to solve the

problem in hand.
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Fig. 5.12: Plot of timings and iterations taken for the simulation shown in Fig. 5.10. (i) Time taken

to compute the solution per time step. (ii) Total number of conjugate gradient iterations performed

by the QP solver. (iii) Total number of variables + constraints. (iv) Number of constraints.

5.3 Guaranteed Collision Response Method

5.3.1 Motivation

In this section, we present a second method for treating multiple collisions and contacts.

In contrast to the quadratic programming approach where we responded to collisions with

velocity impulses, here we use a spring based approach. One immediate advantage is that

the conditioning of the matrix is not deteriorated as we saw earlier with the QP case. With

springs, we just add more entries into the K matrix and it largely remains positive semi

definite. However, we may be introducing “stiff” springs into the system - hence this requires

the use of implicit solvers such as the backward Euler.

5.3.2 Overview

In this approach too, we prefer to use the implicit form of the dynamics equation (5.1). As

again, we detect collisions between primitives (vertex-triangle, edge-edge, etc.) both at the

discrete state x(t0) and the sweep interval x(t0) and x(t0 + ∆t) using techniques described
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in chapter 4. However, we significantly differ in the way we compute and apply the response.

In particular, we :

– add a discrete collision spring for those contacts in the “proximity” area

– add a continuous collision spring for those collisions which occur during the time step

– exploit temporal coherence which continues to apply spring forces due the above two

– detect new “secondary” collisions within a loop and make sure all of them are treated

5.3.3 Types of Springs

We first present how these springs can be incorporated for the primitive cases of vertex-

triangle and edge-edge collisions and then present the overall algorithm in the context of a

deformable body dynamics simulation. We maintain a separate list of collision springs for

each type of collision, (described in chapter 4). This being a hybrid method, we deal with

both discrete and continuous collisions. In particular we have to account for the following

cases :

– Vertex-Triangle Spring is used to treat the collision between a moving vertex and a

moving triangle (which also handles self-collisions)

– Vertex Spring is used to treat the collision between a moving point (belonging to a

deformable object) colliding and a fixed triangle (belonging to a rigid object)

– Edge-Edge Spring is used for collisions between two moving edges.

– Edge Spring is used to treat the collision between a moving edge and a fixed edge

Note that a Vertex Spring exerts a response force only on the vertex as opposed to a Vertex-

Triangle Spring which exerts force both on the vertex and the triangle. Similar, an Edge Spring

exerts a response force only on the end-points of the moving edge whereas an Edge-Edge

Spring acts on both the edges. We will first describe the vertex-triangle in detail followed by

the rest. The underlying philosophy is largely similar for the rest as well, we shall nevertheless

describe the differences in treatments in specific instances. Table 5.2 summarizes the set of

parameter values stored in each type of spring.

5.3.3.1 Vertex-Triangle Springs

Vertex Triangle Springs exert forces to push apart a colliding vertex-triangle pair. For

dynamic collisions, the detection routine (cf. §4.2.1, §4.2.2 and §4.2.3) gives the exact point

of collision x(tc) (see Fig. 5.13). A penalty spring is inserted between x(t0) and the closest

point on the triangle surface in the direction of the normal x(tc) with rest length :

l0 = |(x(t0)− x(tc)) · n̂| (5.42)

Notice that we detect the collisions between the point and the triangle with half thickness r
2 .

This is different from the classic continuous case where we consider the primitives as strictly

geometric objects with no thickness. For instance, in §5.2.3.2 where we described the vertex-
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triangle collision constraint, we did not take into account of the thickness during the detection

stage. We did that only while computing the constraint for response in (5.25).

Let us explain the rationale behind this choice. In the case of QP, we relied on velocity

impulses for response which corrected the interpenetrations instantaneously. Hence we could

afford the luxury of not taking into account of the thickness. But here with an exclusively

spring-based solution, the response will be gradual since the response forces needs to be

translated into corresponding velocities only after an integration step. Hence we take this

additional precaution so that there are no “violent” crossings during the time steps which

even when detected cannot be immediately corrected by the spring force. This will also ensure

that the initial continuous spring will be placed in the relatively safer “proximity” zone where

there are no interpenetrations.

For proximity collisions, the approach is similar. The detection routine (cf. §4.2.1) gives

the point in the triangle abc closest to the position x(t0) i.e. w1a(t0)+w2b(t0)+w3c(t0). The

rest length of the spring is thus computed by projecting the gap between these two points in

the direction of the triangle normal n̂ using (5.42).
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Fig. 5.13: A vertex-triangle spring with rest length l0 is inserted between the position x(t0) and the

nearest point to the actual surface xc.

For both the cases, the force is then computed as :

f =







k(l − l0)n̂, for l < l0

0, for l ≥ l0.
(5.43)

Thus the spring applies a net repulsive force when compressed and a zero force when the

length is greater than or equal to the initial rest length. This will ensure that we do not apply

any attractive forces. Once computed, the force is split through the appropriate barycentric

coordinates. For e.g., a vertex-triangle pair intersecting at the triangle barycentric coordinates

(w1, w2, w3), it is f for the vertex and −w1f , −w2f and −w3f respectively for each triangle

vertices. The spring force is normally applied if the object continues to be compressed in the

forthcoming passes.

The computed force needed are then added to the derivative matrix of (5.1) to find the

provisory new state v
′

(t + ∆t) and x
′

(t + ∆t) supposedly devoid of any interpenetrations. It
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is provisory because of two reasons. Firstly, the force applied may not be sufficient to prevent

persistent “crossings”. In such cases, we propose to double the stiffness (and hence the force)

during the next iteration. Note that we start with a spring stiffness equal to the stiffness of the

material. And after each iteration, we progressively double it in case of persistent collision.

Secondly, since we are dealing with multiple collisions scenario, this vertex or triangle may

still be in contact with other primitives which needs to be resolved as well. The final state is

determined only after we have ensured there are no more collisions after we exit the loop (cf.

§ 5.3.4 for a detailed description of the algorithm).

Also note that once the forces due to continuous springs are applied and the traversing

point is “pushed” into the “proximity” zone (the shaded region in Fig. 5.14), we consider it

as a discrete spring and continue to apply forces with the original spring stiffness, i.e. we do

not double the stiffness for discrete springs since they lie in the “proximity” zone. We remove

the spring at the end of the step using a house-keeping routine only if its present length l

exceeds the thickness r. This routine also alters the rest length l0 to the present length l, if

l0 < l < r. However, during an iteration the spring stiffness is doubled if the pair continues

to interpenetrate.
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l0
r

x(t0)

Fig. 5.14: A collision spring with rest length l0 lying in the ‘proximity’ zone.

5.3.3.2 A Note on Forces

Let us expand on the characteristic of the collision force. In contrast to penalty approaches,

our springs do not introduce repulsive forces at the outset. As long as the present spring

length is more than or equal the initial rest length, per (5.43) this spring contributes zero

force to f on the right hand side of (5.1). Only when the spring is further compressed do we

apply a net repulsive force. This automatically avoids the addition of extra energy into our

system. Note however that there may be net force applied while calculating the gradients
∂f

∂x
and ∂f

∂v
in (5.1). In contrast, Bridson et al. [BFA02] use an initial repulsive spring to

deter away initial collisions while putting a “cap” on the spring deformation ensuring that

the movement does not exceed a pre-determined percent of the initial length. In addition,

they also perform explicit strain, strain-rate control methods using an iterative Jacobi and

Gauss-Seidel techniques. Our algorithm largely avoids these laborious complications.

5.3.3.3 A Note on Normal

For proximity collisions, the normal can be computed using the usual procedure by taking

the values at time t, i.e n̂ = ab(t)×ac(t)
‖ab(t)×ac(t)‖ . However for dynamic cases, it may so happen that
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the triangle changes its orientation during the time step. Hence for such cases, the normal

has to be recalculated based on the positions at time tc as described in §4.2.4.

5.3.3.4 Vertex Springs

Vertex Springs are used to exert forces upon a vertex colliding with a fixed triangle.

We now describe how this spring is activated once a collision is detected for either dynamic

(continuous) or static (proximity) case. For dynamic collisions when a moving point traverses

a fixed triangle between two time steps, the detection routine (cf. §4.2.2) gives the exact

collision point x(tc), tc ∈ [t0, t0 + ∆t] (see Fig. 5.15). A penalty spring is inserted between

x(t0) and the closest point on the triangle surface xc in the direction of the normal n̂ with

rest length l0 computed using (5.42).

For proximity collisions, the approach is similar. The detection routine gives the point

in the triangle abc closest to the position x(t0) i.e. w1a(t0) + w2b(t0) + w3c(t0). The rest

length of the spring is thus computed by projecting the gap between these two points in the

direction of the normal n̂. A force f computing using (5.43) is then applied to the colliding

vertex. The update and house keeping routines are similar to the vertex-triangle case. Note

that here since the triangle is fixed we do not have to compute the normal at time tc.

n̂

r
l0

x(t)

x(tc)

x(t + ∆t)

Fig. 5.15: A vertex spring with rest length l0 is inserted between the position x(t0) and the nearest

point to the actual surface xc(t). The shaded area represents the ‘proximity’ collision zone denoting

the thickness of the surface r.

5.3.3.5 Edge-Edge Springs

We now present the technique for incorporating an edge-edge spring which applies forces

on both the colliding edges. For dynamic collisions we first detect (cf. §4.2.7) the collision

between edges ab and cd and find the valid time tc ∈ [t0, t0 + ∆t] and the barycentric

coordinates (u, v) ∈ [0, 1] . We insert a spring between the points at time t0 with a rest length

(see Fig. 5.16) :

l0 = |(a(t0) + uab(t0)− c(t0)− vcd(t0)) · n̂| (5.44)

As we did for the vertex-triangle springs, here again we detect the collisions taking into

account of the thickness. Accordingly, we detect collisions between edges ab(t0)− rin̂pre and
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cd(t0) + rjn̂pre. Note that here we need to compute a normal even to determine if there is a

collision. The pre-collision normal n̂pre can be computed taking the cross product at time t0,

n̂pre = ab(t0)×cd(t0)
‖ab(t0)×cd(t0)‖ .

The force (f computed using (5.43)) is split through the appropriate barycentric coordi-

nates i.e. −(1 − u)f , −uf for the first edge ab and (1 − v)f , vf for the second edge cd. We

present the results of the edge-edge spring tested in isolation in Fig. 5.17. Here, we see the

edge at the top topple over a fixed edge at the bottom.

l0
x(tc)

n̂

ri

rj

a(t0)

c(t0)
d(t0)

b(t0)

Fig. 5.16: An edge-edge collision spring with rest length l0 is inserted between the nearest barycentric

points at time t0.

Fig. 5.17: Snapshots of the simulation edge-edge collisions using the collision springs method.

5.3.3.6 Edge Springs

We now present the technique for incorporating an Edge Spring which is used to respond to

a moving edge cd colliding with a fixed edge ab. The underlying philosophy is largely similar

to the vertex cases. But nonetheless, there are important differences when it comes to the

details. The detection routine (cf. §4.2.6), provides the exact time of collision tc ∈ [t0, t0 +∆t]

and the barycentric coordinate (u, v) ∈ [0, 1]. We then insert a spring between the points at

time t0 in the direction of the normal n̂ with a rest length l0 computed using (5.44). For
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static collisions, the detection routine (cf. §4.2.5) registers a collision if the distance between

them is less than the thickness r = ri + rj . We then insert a spring between the points at

time t0 in the direction of the normal n̂ as above. The force (f computed using (5.43)) is split

through the appropriate barycentric coordinates i.e. (1 − v)f , vf at each end points of the

moving edge c and d respectively.

5.3.4 Overall Algorithm

Tab. 5.2: Values stored for different types of spring

Spring Type Value Description

Vertex-Triangle Spring

iv index of the colliding vertex
ia, ib, ic indices of the colliding triangle

l0 restlength
w1, w2, w3 barycentric coordinates of colliding point in triangle

n normal
k user-defined spring stiffness
r thickness of the contact
t type of collision (PROXIMITY or CONTINUOUS)

Vertex Spring

iv index of the colliding vertex
l0 spring restlength
n normal of the fixed triangle
xc other end-point where spring is fixed
k user-defined spring stiffness
r thickness of the contact
t type of collision ( PROXIMITY or CONTINUOUS)

Edge-Edge Spring

ia, ib indices of the first colliding edge
ic, id indices of the second colliding edge
l0 restlength

u, v barycentric coordinates of colliding points in edges
n normal
xc other end of the spring fixing
k user-defined spring stiffness
r thickness of the contact
t type of collision (PROXIMITY or CONTINUOUS)

Edge Spring

ic, id indices of the colliding edge
l0 restlength
v barycentric coordinate of the colliding point in edge
n normal
xc other end-point where spring is fixed
k user-defined spring stiffness
r thickness of the contact
t type of collision (PROXIMITY or CONTINUOUS)

The full algorithm is summarized in Algorithm 3. We now explain it in detail each step
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of the algorithm.

detectProximityCollisions : We perform this method at the beginning of the time

step. This routine returns if there is a proximity collision for each of the case described in

§5.3.3. It returns the indices of the colliding primitive(s), the barycentric values, the rest

length and the type of collision. This will enable us to subsequently compute the current

spring length and use them to apply forces and update when required.

addToCollisionSprings : This method takes up the collision information and adds a

spring for each contact. We store the indices of the colliding primitives, the user-set spring

stiffness, the rest length (computed using (5.42) and (5.44)), the thickness of the contact (i.e.

the sum of the radii r = ri + rj) and the barycentric coordinates (needed for calculating the

present length) and the type of collision (proximity or continuous). Table 5.2 summarizes the

set of values stored for each type of spring.

detectContinuousCollisions : This method detects the continuous collisions occurring

between primitives which is performed inside the iteration. This will ensure that any new

collision created as a resulting of treating existing ones are detected and handled. This is

much needed in the multiple collisions scenario.

verifyAndUpdateToSprings : This method again is executed inside the loop. The purpose

of this method is to update the state of existing springs (say if it becomes a proximity from

dynamic), and change the values of the barycentric coordinates and the normals accordingly.

Here, we first check if a spring to be added already exist. If yes, we go ahead and update the

above values. If it happens to be a continuous spring, this means that the point has traversed

despite the presence of a spring. In such cases, we simply double the stiffness value of the

spring. This ensures that the a repulsive force twice the value is applied during the next

iteration. If the new spring is not present among the existing list of springs, we simply add

it to the list.

For edge-edge collisions, this method is slightly altered as follows in order to give a provi-

sion of multiple springs between the edges as they slide over. Here in addition to checking if

a new edge-edge spring exists already, we also check if it lies very close to the existing one. If

yes, it considered as the same spring and the values are updated as the vertex-triangle case.

On the other hand, if the new spring lies farther than a certain user-set distance (say more

than 10% of the spring length), it is considered as a new spring and is added to the listed.

Of course if the spring did not exist in the first place, it is added to the list as above.

doSpringHouseKeeping : As shown in the algorithm (see Algo 3) and the flowchart (see

Fig. 5.18), we perform this method after we exit the collision loop just at the end of the time

step where we update the final states x(t0 +∆t) and v(t0 +∆t). Here we evaluate the present

rest length l of every collision spring and compare it with the stored thickness value r. If

l > r, the collision no longer exists and is hence removed. Otherwise, if l0 < l < r, it means

that the point has moved further away from collision but still remains in the proximity zone.

Hence we update the rest length l0 with this new length l and springs continue to keep the

points from interpenetrating. The above can be expressed as a flowchart in Fig. 5.18.
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Algorithm 3 Guaranteed Collision Response Method

1: p← detectProximityCollisions(x(t0))
2: S ←addToCollisionSprings(p)
3: repeat
4: Advance x(t0),v(t0) to provisory state x

′

(t0 + ∆t),v
′

(t0 + ∆t)
5: Contacts C ← detectContinuousCollisions(x,v

′

,∆t)
6: /* begin : verifyAndUpdateToSpring*/
7: for each contact c ∈ C, each spring s ∈ S do
8: if contact c ≡ s then
9: Double stiffness k(s)← k(s)× 2

10: else
11: S ← addToCollisionSprings(c)
12: end if
13: end for
14: /* end : verifyAndUpdateToSpring*/
15: until C ← ∅
16: begin : /*doSpringHouseCleaning*/
17: for each collision spring s ∈ S do
18: Find present rest length l(s) from x

′

(t0 + ∆t)
19: if (l(s) ≥ r) then
20: Remove spring s from the set S
21: else if (l0(s) ≥ l) then
22: Update restlength l0(s)← l
23: end if
24: end for
25: /* end : doSpringHouseCleaning */
26: x(t0 + ∆t)← x

′

(t0 + ∆t)
27: v(t0 + ∆t)← v

′

(t0 + ∆t)

5.3.5 Guaranteed Method Results

We now present the results of the guaranteed collision response algorithm applied to

collisions occurring in cloth simulation. Fig. 5.19 shows the case of a initially horizontal cloth

(Fig. 5.19(i)) with fixed selected points in the middle highlighted by dark spheres. We then

let gravity and internal forces leading to numerous collisions and contacts between the folds

(Fig. 5.19 (ii), (iii) and (iv)). Table 5.3 shows the simulation of the parameters used in the

simulation. The simulation ran at 8-30 Hz depending on the collision complexity of the scene

on a 3GHz Pentium r 4 PC with 1 GB RAM and GeForce r 3 graphics card. Our collision

response method is able to handle these cases very well as well.Our collision response method

is able to handle these cases very well.

Fig. 5.20 shows the case of a initially vertical cloth falling over a flat plane leading to

numerous collisions and contacts between the folds. Table 5.4 shows the simulation of the

parameters used in the simulation. The simulation ran at 8 Hz on a 3GHz Pentium r 4 PC

with 1 GB RAM and GeForce r 3 graphics card.. Our collision response method is able to
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p = detectProximityCollisions(x)

S = addToCollisionSprings(p)

 Advance x, v to provisory state x’, v’ 

For each collision spring s of S

End for

Is c empty?

Yes

doSpringHouseCleaning(S)

x=x’; v=v’;

No

c = detectContinuousCollisions(x, v’)

S = verifyAndUpdateToSprings(c)

Fig. 5.18: Flowchart illustrating the algorithm.

Tab. 5.3: Guaranteed method results : Parameters used in the simulation shown in Fig. 5.19.

Parameter Value

Number of cloth particles 400
Thickness 0.01 m
Mass 1.0 kg
Stiffness 100Nm−1

Gravity −10ms−2
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(i) (ii)

(iii) (iv)
Fig. 5.19: Snapshots of the simulation of a 20x20 deformable cloth fixed in the middle, freely falling

and folding over itself creating multiple auto-collisions and contacts which are handled using the

guaranteed collision response method.

handle these cases very well as well. Fig. 5.21 shows the plot of the time, iterations and the

number of collisions handled for the simulation shown in Fig. 5.20. Fig. 5.21 (i) shows the

animation time (implicit Euler integration with the collision springs introduced) required per

time step. Fig. 5.21 (ii) separately shows the time taken only for collision detection. Fig. 5.21

(iii) shows the maximum number of collisions handled per time step and Fig. 5.21 (iv) shows

the total number of iterations required to resolve all the collisions.

Tab. 5.4: Guaranteed method results : Parameters used in the simulation shown in Fig. 5.20.

Parameter Value

Number of cloth particles 100
Thickness 0.01
Mass 1.0 kg
Stiffness 100Nm−1

Gravity −10ms−2
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Fig. 5.20: Snapshots of the simulation of a 10x10 deformable cloth falling over a rigid plane creating

multiple collisions and contacts which are handled using the guaranteed collision response method.
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Fig. 5.21: Plot of timings and iterations taken for the simulation shown in Fig. 5.20. (i) Animation

time taken to compute the solution per time step. (ii) Collision time taken to compute the solution

per time step. (iii) Maximum number of collisions handled within the loop. (iv) Total number of loop

iterations required for the algorithm to converge.

5.3.6 Guaranteed Method : Performance Analysis

Having presented the results of our second approach to deal with multiple collisions, we

now analyze the performance of this method. We call this method a “guaranteed” collision

response method since it ensures that every collision is detected and treated. By continuing

to augment the spring stiffness value over multiple collisions, we gradually disentangle the

collisions. Thus we neither introduce extra energy into the system nor use Gauss-Seidel style

strain rate control system like in [BFA02]. In our experiments we found that the this method

does not suffer from numerical errors of constraint-based approaches such as our QP-Collide

(cf. §5.2.7). We will also show in the next section §5.4 that the guaranteed method is faster

than the QP-based approach by some magnitudes.

However there are certain shortcomings of this method. This method fails on cases when

the algorithm is unable to resolve all the collisions. This will result in the spring stiffness

doubled at every iteration eventually to a very high numerical value resulting in a bad solution.

Note that we were able to simulate the cable case very well with this method (cf. §5.4). The
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problem becomes particularly acute due to the nature of the simulations we were attempting

such as large piece of deformable cloth colliding with itself. Our straight forward approach

of increasing the spring stiffness becomes problematic when there are multiple collisions

involving the same primitive.

5.4 Comparative Analysis and Summary

Comparison of performance : After having presented our two new approaches to treating

multiple collisions and contacts, we now analyze the computational performance of each of

them. For that we first present a simple experiment simulating a cable fixed at the two ends

falling under the influence of gravity and coming in contact with a fixed plane below. We

used the parameters shown in Table 5.5 for the simulation. Fig. 5.22 shows the simulation of

a rigid cable, fixed at two ends colliding with a flat plane. While the simulation appeared

Tab. 5.5: Comparison of the two collision response methods : Parameters used in the simulation.

Parameter Value

Number of cable particles 40
Mass 1.0 kg
Stiffness 103Nm−1

Gravity −10ms−2

Fig. 5.22: Simulation to compare the performances of the QP-Collide method and the guaranteed

method.
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similar visually for both the methods, there are differences in performance. Fig. 5.23, 5.24

and 5.25 show the plots of the animation time, number of collisions and the total number

variables and constraints handled using each method for the simulation shown above. The

number of constraints handled were more or less similar (see Fig. 5.24 and 5.25), the time

required (excluding the time needed for collision detection) for the spring-based approach is

lower than that of the QP (see Fig. 5.23). Also note that the timings for QP-collide method

has several “spikes” much more than that of the guaranteed method. We attribute them to

the numerical errors as a result of the degradation of the matrix conditioning. The guaranteed

method is largely devoid of such spikes resulting in a constant simulation time per time step.
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Fig. 5.23: Plot of the animation time (excluding collision detection) taken to compute the solution

per time step for the simulation shown in Fig. 5.22.

Summary : In this chapter, we first presented a new approach of solving the problem

of multiple collisions. The quadratic programming algorithm uses velocity impulses within a

global framework which can handle many types of constraints including collisions. With an

iterative solver such as the conjugate gradient, we can get an efficient O(n) solution. A global

approach naturally does not introduce additional strain into the system. However, we saw

cases where the conditioning of the matrices were deteriorated. While we proposed several

fixes to these known problems, it is clear that the numerical errors in general are more than a

spring based matrix. Also note that with this method, if we have to really ensure that all the

collisions are treated, we have got to perform multiple collision detection and response passes.

This is computationally very expensive and will then become the equivalent of performing a



118 CHAPTER 5. ROBUST RESPONSE TO MULTIPLE COLLISIONS

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

steps

#
 c

o
n

s
tr

a
in

ts

Number of constraints

QP

Guaranteeed

Fig. 5.24: Plot of the number of collision constraints handled per time step for the simulation shown

in Fig. 5.22.
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Fig. 5.25: Plot of the total number of variables + constraints handled per time step for the simulation

shown in Fig. 5.22.
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sequential quadratic programming.

This brings to our second contribution based on springs exploiting temporal coherence.

Here we saw how discrete and continuous collisions are handled slightly differently. By che-

cking for new collisions inside a loop, we are able to ensure that none of them are missed.

Unlike the QP approach, the addition of new springs does not make the matrix ill-conditioned.

It is also computationally advantageous since the addition of new springs can be taken care

using efficient sparse matrix calculations.
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CHAPTER 6

Conclusions

All good things come to an end.

So far, we presented the results of research work we did to order solve the difficult

problem of multiple collisions and contacts. In this chapter, we recap the list of

our contributions and give a certain number of perspectives for future work before

concluding with remarks on the general state of physically based modeling.

6.1 Thesis Summary

In this thesis work, we have attempted to solve some of the open problems towards the

robust simulation of deformable objects. We began in chapter 1 by introducing the domain

of the problem we seek to address within the field of computer graphics. They can be broadly

classified as physically-based modeling in general and animation, collision detection and res-

ponse in particular. Then in chapter 2, we comprehensively listed and described the relevant

earlier research work presented by the computer graphics community. By highlighting the

relevant techniques and their drawbacks, we set the stage to take on the problem.

We then proceeded to chapter 3 in order to explain the problem we seek solve with

the help of two real-world examples. First, we proposed a new approach for modeling and

animating the intestine and the mesentery. The challenge here was to model and animate

121



122 CONCLUSION

it in and the more difficult problem of having to deal with the multiple collisions and self-

collisions occurring during simulation. The problem became compounded due to real-time

requirements. We saw how a simple geometric model can solve the problem of modeling a

complicated organ such as the intestine. We then proposed a novel approach for efficient

collision and self-collision detection based on stochastic feature pair tracking. In addition,

our displacement-velocity collision response technique was fast enough to make the entire

simulation run in real-time on normal PCs. Second, we proposed an efficient approach with

mechanics based on implicit mass-spring system integration coupled with fast octree-based

collision detection for modeling extremely stiff objects such as a mechanical cable. Here in

addition to using generic approaches such as the conjugate gradient method, we saw how

a specialized solver such as the banded LU can be used for efficiently treating the specific

problem. While the above two approaches fairly took care of the problems at hand, they

had their drawbacks. In the case of intestine we saw interpenetrations involving thin tissues

partly due to the lack of continuous collision detection. In the case of the stiff cable example,

we saw how a simple localized collision response can lead to increase in strain rate and hence

instabilities in the simulation. We thus drew two conclusions from our initial research foray.

First, it illustrated that there is not a single best solution that works well in all cases. Second,

there is a case for a more robust collision handling scheme.

This brings to chapter 4, where we comprehensively presented the methods needed for

the robust detection of colliding geometric primitives. In addition to describing some of the

existing efficient methods, we also presented new approaches which also handled degenerate

cases. This is the first time to our knowledge that such cases were handled.

In chapter 5, we addressed one of the core problems of this thesis work, that of dealing

with multiple collisions and contacts. Here, we attempted to respond to the collisions once

they are detected using the techniques presented in chapters 3 and 4. We proposed two

new algorithms to solve the problem at hand. The first one is a constraint-based method

which treated collisions as linear constraints. Using quadratic programming techniques, we

computed a global solution which gave a set of velocity impulses solving both the dynamic

equations and the collision constraints. This method while simple to implement was also

versatile being able to handle other constraints such as strain control, fixing a point, etc.

Thanks to this method, we were able to simulate very stiff objects such as a mechanical

cable colliding at multiple points. We observed that this method has linear computational

complexity proportional to the number of constraints handled. Of course, since we used an

iterative solver that number also depends on the error tolerance limit which the user set. We

also presented the drawbacks of this approach. The addition of constraints somewhat degrades

the conditioning of the global stiffness matrix resulting in numerical errors accumulating over

iteration. There were also cases when the algorithm failed to converge since the constraints

kept toggling between the active and passive sets. Nevertheless, we hoped that this approach

could be a new start to solve the problem in dynamics simulation of deformable bodies.

This method which overall worked well for the cable nevertheless is not suitable for treating
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collisions and self-collisions occurring in objects such as cloth. The problem is not that of

collision detection itself, but the need to do multiple passes in order to account for the creation

of secondary collisions while we treat the existing ones. Using QP for such cases effectively

means we have to do multiple passes which will computationally heavy. Hence believed that

a new spring based technique will be more suitable for this kind of problem.

Our second method effectively handled more complex problems involving multiple col-

lisions and contacts. By using a spring-based method it avoided the numerical problems

suffered by adding constraints. By repeatedly checking for new collisions, we ensure that no

collision will be missed. For this purpose, we exploit temporal coherence by updating the

collision springs existing from the previous steps or loops. We were able to simulate more

complex simulations such as cloth folding over itself while also colliding with another object.

Finally, comparing both these methods for the same simulation showed us that the spring-

based approach took relatively lesser time while showing similar visual results. Fig. 6.1 pre-

sents a sample of the results we produced as a result of this thesis work.

(i) (ii)

(iii) (iv)

Fig. 6.1: A sample of results from this thesis work. (i) Simulation of intestine and mesentery inside

a virtual abdominal cavity. (ii) A cable falling over a pulley with an initial velocity and and sliding

over. (iii) Simulation of a stiff cable with 80 mass particles fixed at two ends falling over two cylinders.

(iv) Simulation of a 10x10 deformable cloth falling over a rigid plane and self-colliding.
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6.2 Future Work

We realize that one of the key issues for scientific advancement is through constant in-

novation. Here, we present the possible extensions to our work given the rapid technological

progress we are witnessing.

Addressing numerical errors in QP : We showed in this thesis that for solving the problem

of multiple collisions and contacts, a global solution approach is well-suited. However, we fall

into the familiar trap of numerical errors and the degradation of matrix conditioning. We feel

that more research can be pursued to analyze this problem in order to find a cost-effective

solution. The solution most likely will involve some sort of pre-treatment in a sequential

quadratic programming setup [dGO97]. This will require a factorization step such as QR

decomposition with O(n3) complexity. While this may appear computationally expensive by

today’s standards, with the fast growth of processor speeds and the advent of multi-core

architecture available from commercial microprocessor vendors such as Intel r [Int06] and

AMD r [AMD06].

Exploiting GPU Power : The amount of raw computational power available in modern

graphics processors (GPUs) far exceed that of a CPU. For example an nVIDIA r GeForce r

6800 can deliver a peak performance of 45 GFLOPS 1 as opposed to an Intel r 3 GHz Pentium
r 4 at 12 GFLOPS. Moreover, Fig. 6.2 shows that the rate of the increase in computational

power of a GPUs far exceeds that of CPUs which generally follow the Moore’s law [Moo65]

which states that the number of components (like transistors) inside a processor doubles

every 18 months. In general CPUs are designed to deal with general purpose applications

which have less parallelism and more complex control requirements compared to a GPU

which targets a rendering pipeline. Hence GPUs exploit data parallelism much better than a

CPU [Owe05]. There have been recent attempts by graphics card vendors such as nVIDIA to

present a system which can handle the computationally heavy parts in GPU. This is done by

empowering the user through the availability of programmable GPUs with vertex and pixel

shaders and use of a high-level shading language such as the Cg. Indeed, recently there have

been attempts to harness power of GPU to do calculations needed for physical simulations

[Har06].

6.3 Final Thoughts

As we approach the end of this thesis, we would like to present some personal reflections

on research in physically-based modeling. It is evident that we have come a long way in

proposing bold and innovative approaches to solve the existing problems and open up new

vistas. The realism of the simulation is getting increasingly sophisticated by the day thanks to

the improvement in computational power and new algorithms. As more computational power

1109 floating point operations per second.
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Fig. 6.2: Recent trends comparing the computational performance of GPUs and CPUs [BFH+04]

reaches the end-user, this trend is likely to accelerate resulting in the widespread adaption of

new technologies. And yet, we as researchers should not sit back and relax assuming that a

job is well done. If at all, the journey has got more interesting.
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Vers une Animation Robuste d’ Objets Complexes en Interaction

Mots clés : synthèse d’ image, animation par modèle physique, traitement de collision et
contact.

Résumé

La traitement robuste des collisions et des contacts est important dans les scénarios d’ani-
mation et de simulation par modèle physique. Un problème important est comment traiter
les collisions et les auto-collisions simultanées se produisant entre les objets dans la scène.
Nous présentons de nouvelles méthodes pour la simulation robuste des objets déformables
complexes. Notre technique se base sur la détection continue et la détection discrète des
collisions. Nous proposons deux approches pour traiter les collisions une fois qu’elles sont
détectées. D’abord, nous modélisons les collisions comme des contraintes linéaires adjointes
aux équations de la dynamique, ce qui aboutit à un problème de programmation quadratique
(QP). À cet effet, nous avons développé un algorithme qui traite les équations dynamiques
et les contraintes linéaires d’une manière globale. En second lieu, nous avons développé une
méthode utilisant des pénalités qui traite les collisions multiples en exploitant la cohérence
temporelle. Le but est de garantir un état final sans collisions tout en réduisant au mini-
mum la création “des collisions secondaires”. Nous présentons nos résultats et analysons les
avantages et la pertinence de notre méthode vis-à-vis des méthodes existantes. Les applica-
tions incluent les simulations mécaniques et chirurgicales, ainsi que les jeux vidéo et les effets
spéciaux pour le cinéma.

Towards Robust Animation of Complex Objects in Interaction

Keywords : image synthesis, physically-based animation, collision and contact treatment.

Abstract

The robust handling of collisions and contacts is important in physics-based animation and
simulation scenarios. A major problem is how to handle the simultaneous collisions and auto-
collisions occurring between objects in the scene. We present new methods for the robust
simulation of complex deformable objects. Our basic technique consists of detecting collisions
both in continuous and discrete time steps. We propose two approaches for handling the
collisions once they are detected. First, we conceptualize the collisions as linear constraints
and the dynamics equations as an objective function to be minimized thus formulating it as
a quadratic programming (QP) problem. To this effect, we have developed a novel integra-
ted QP solver taking into account of both the underlying dynamics and the simultaneous
multiple collisions. Second, we have have developed a spring-based method which handles
multiple collisions by exploiting temporal coherence. Our approach is expected to guarantee
a collision-free final state while minimizing the creation of “secondary collisions”. We present
our results and comprehensively analyze the advantages and relevance of our method vis-a-
vis the existing methods. Applications include mechanical and surgery simulations, computer
games and motion picture special effects.
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