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Introduction 

Electrical and magnetic properties of materials are used in the modern information 

technology. The information processing is performed in solid state circuits where the logical 

states “1” and “0” are associated to the electric potential. The electron spin is not used during 

the processing. However to store a large volume of information we use the magnetic record, 

i.e. electron spin in ferromagnetic metals. The aim of the spin electronics (spintronics) is to 

create new electronic components which would use both the electrical and spin dependent 

phenomena for the information processing. 

Giant magneto-resistance sensor is an example of such spintronic components. It 

consists of two ferromagnetic metal layers separated by a nonmagnetic metal layer [1]. It was 

shown that the electric resistance of the multilayer structure depends on the directions of the 

magnetization in the ferromagnetic layers: if the magnetizations of the layers are parallel, the 

resistance is small. The resistance increases when the magnetizations of the ferromagnetic 

layers become anti-parallel. Today the magneto-resistance sensor is used in the read head in 

hard disks and it allows information recording with the density as high as 19 Gbit/cm2 [2]. 

The magneto-resistance sensor has a simple structure, small size and a high speed. 

Therefore the component can be used as a storage cell in the random access memory. The 

memory based on the magneto-resistance sensors is called the magnetic random access 

memory (MRAM). It is interesting that the sensor can also perform the basic logical 

operations a+b, a×b and the inversion. Therefore a full functional microprocessor can be 

created where the magneto-resistance cells keep and process information [3]. Many other 

possible spintronic components were proposed during the last years [1,4], however the lack of 

suitable materials prevents practical realization of the components. 

The usual semiconductors which are used in the microelectronics (Si,GaAs) are not 

ferromagnetic. On the other hand it is quit difficult to use ferromagnetic metals (Fe,Ni) 

together with conventional semiconductors, because of complicate properties of metal-

semiconductor interfaces. The concentrated magnetic semiconductors (CuCr2S4, Sr2FeMoO6, 
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Sr2CrReO6) are ferromagnetic at high temperature. However the crystal structure of these 

materials does not allow incorporating them in modern microelectronic devices [4]. 

In order to use semiconductors in microelectronics we change their electric properties: 

donor or acceptor impurities should be incorporated to obtain n-type and p-type 

semiconductors. Just as in the case of electric properties, the magnetic properties of 

semiconductors can be changed by doping with magnetic impurities. For a long time much 

attention has being paid to II-VI semiconductors, where the valence of the cation coincide to 

the valence of well studied magnetic ions (Mn, Cr). However antiferromagnetic interactions 

are very important in the semiconductors and obtained values of the Curie temperature are 

very low (a few K in ZnMnTe [5]). 

Another way is to make conventional nonmagnetic semiconductors ferromagnetic. 

Silicon based semiconductors would be very important for practical applications however the 

Si layers doped with Mn are not homogeneous and they contain clusters like Si3Mn5 [4]. This 

work is dedicated to three conventional semiconductors doped with Mn: (Ga,Mn)N, 

(Ga,Mn)As and (Ge,Mn). 

The diluted magnetic semiconductor (Ga,Mn)N was studied experimentally and 

theoretically. According to a theoretical prediction [6], p type Ga1-xMnxN crystals would be 

ferromagnetic above room temperature. This implies however the incorporation of x=0.05 of 

Mn into GaN, substituting Ga in the form of Mn2+ ions. Experimental works following this 

prediction did not give any clearcut conclusion about the magnetic properties of (Ga,Mn)N: 

ferromagnetic properties at room temperature [7,8], as well as paramagnetic properties at very 

low temperature [9,10,11] were reported. In addition contradictory conclusions were drown 

about the valence state of Mn in (Ga,Mn)N. In bulk (Ga,Mn)N, with a very low content of 

Mn, the 2+ valence state was detected by the electron paramagnetic resonance in agreement 

with the strong n type character of the samples [12]. In similar samples the 3+ valence state 

was deduced from magneto-optical measurements upon co-doping with Mg [11], which is a 

usual acceptor in GaN. The Mn content in these samples is very low, a few 1018 cm-3 therefore 

the valence state of Mn can be influenced by a small content of a donor impurity. Various 

types of valence states from 2+ to 4+ were invoked to explain optical spectra of epilayers with 

a larger Mn content [13,14]. Also p type (Ga,Mn)N layers were reported that implies the 2+ 

valence state of Mn in (Ga,Mn)N. Therefore additional investigation is necessary to clarify 
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electronic and magnetic properties of (Ga,Mn)N. The most part of the work is devoted to this 

semiconductor. 

The diluted magnetic semiconductor (Ga,Mn)As is another promising material for 

spintronic applications. A recent progress in semiconductor technology allowed incorporation 

a high concentration of Mn in GaAs epilayers [15]. The Curie temperature of the Ga1-xMnxAs 

(x=0.053) was found to be 110 K. It was also shown that annealing of the samples increases 

the Curie temperature [16] and the highest Curie temperature obtained in (Ga,Mn)As is 173 K 

[17]. In this work (Ga,Mn)As semiconductor is used as a reference system: on the one hand 

this semiconductor is close to the III-V semiconductor (Ga,Mn)N, therefore numerous 

experimental and theoretical results obtained on (Ga,Mn)As samples will be useful in 

investigation of (Ga,Mn)N semiconductor; on the other hand the electronic structures of 

(Ga,Mn)As and (Ge,Mn) semiconductors are similar, therefore the same results obtained on 

(Ga,Mn)As samples will be also used to predict electronic properties of (Ge,Mn). In the third 

chapter the x-ray absorption spectrum of a (Ga,Mn)As sample is shown. This sample was 

grown by molecular beam epitaxy at the University of Nottingham [18]. 

The third diluted magnetic semiconductor studied in the work is (Ge,Mn). First 

experimental results indicated that (Ge,Mn) was a high temperature ferromagnetic 

semiconductor (TC=116K [19], 285K [20]). However later investigations did not confirm the 

ferromagnetic properties of (Ge,Mn) [21,22]. The electronic structure of (Ge,Mn) was 

calculated in this work. According to this calculation the valence state of Mn in (Ge,Mn) is 

2+. This assumption can be checked using the K-edge x-ray absorption spectra of Mn in 

(Ge,Mn). 

 

In the first chapter the structure of (Ga,Mn)N samples is described. The electronic structure of 

the samples was further investigated using x-ray absorption measurements. Therefore the 

experimental equipment used for the measurements is also described in this chapter. Finally 

the obtained K-edge x-ray absorption spectra of Mn in the (Ga,Mn)N samples are presented. 

 

In the second chapter I describe the ab-initio methods that were used to calculate the 

electronic structure of the semiconductors. Such ab-initio calculations are used very often in 

interpretation of complicated experimental data. As we will see later the calculations allow us 

to link together the real band structure and observable properties of crystals. 
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In the third chapter the electronic properties of (Ga,Mn)N, (Ga,Mn)As and (Ge,Mn) are 

investigated using the ab-initio methods described in the chapter II. The results of the 

calculations were further compared to experimental x-ray absorption spectra of (Ga,Mn)N, 

(Ga,Mn)As and (Zn,Mn)Te. An interpretation of the x-ray absorption near edge structure of 

Mn is proposed. This interpretation allows determining the valence state and the distribution 

of the Mn in diluted magnetic semiconductors with a tetrahedral arrangement of ligands. 

 

The magnetic properties of the three semiconductors are outlined in the fourth chapter. 

Different possible exchange mechanisms are considered. The observed magnetic properties of 

the three diluted magnetic semiconductors are analyzed; the analysis is based on the study of 

electronic properties of the semiconductors. 
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Chapitre I. Etude expérimentale de DMS 

Une étude expérimentale des couches de (Ga,Mn)N est présentée dans cette chapitre. Les 

couches de Ga1-xMnxN (x=0,003-0,057) ont été préparées par épitaxie par jets moléculaires 

[1,2,3]. La structure wurtzite de ces échantillons a été confirmée par des mesures de 

diffraction des rayons X. La forte dynamique de ces mesures a montré également que les 

couches de (Ga,Mn)N ne contiennent pas de phases secondaires comme GaMn3N [2]. 

Les propriétés structurales et électroniques de (Ga,Mn)N ont été étudiées par 

spectroscopie d’absorption des rayons X au seuil K du Mn. Les spectres d’absorption ont été 

enregistrés au Synchrotron Européen (ESRF, ligne BM30B) à Grenoble [10]. Cette méthode a 

plusieurs avantages. Premièrement, elle permet d’étudier séparément les différents éléments 

chimiques dans un alliage complexe. Deuxièmement, l’intensité de ces spectres peut souvent 

être directement associée à la densité d’états p au dessus du niveau de Fermi. En outre, les 

spectres d’absorption au seuil K sont moins influencés par la surface des échantillons que les 

spectres au seuil L. Les spectres au seuil K permettent donc d’étudier les propriétés 

intrinsèques du cristal. Enfin, cette méthode est couramment utilisée à Grenoble et des 

résultats préliminaires étaient disponibles dans notre équipe. Une simulation de la partie 

EXAFS des spectres d'absorption au seuil K du Mn a confirmé que les atomes de Mn 

substituent les atomes de Ga dans GaN [10]. Nous présentons une étude de l'état électronique 

et de la distribution du Mn dans (Ga,Mn)N à partir de la partie XANES des spectres 

d'absorption des rayons X au seuil K du Mn. La forme des spectres XANES enregistrés ne 

dépend pas de la concentration du Mn dans Ga1-xMnxN (x=0,003-0,057). L'état électronique 

du Mn et la structure cristalline locale autour du Mn sont donc les mêmes dans tous nos 

échantillons. Cependant, il est assez compliqué de trouver un lien entre le XANES et la 

structure électronique du cristal. Nous utiliserons des calculs ab-initio pour obtenir une 

information quantitative à partir de ces spectres. 
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Chapter I. Experimental investigation of 

DMS 

1.1 (Ga,Mn)N samples 

Electronic and magnetic properties of (Ga,Mn)N semiconductor were studied on (Ga,Mn)N 

layers grown by nitrogen-plasma-assisted molecular beam epitaxy (MBE). This method of 

growth is widely used in the modern microelectronic technology and it allows us to prepare 

very pure crystals of good quality. The technology of (Ga,Mn)N samples was described in 

detail in [1,2,3]. The aim of this chapter is to outline main parameters of obtained (Ga,Mn)N 

samples. 

 

 
 

Fig. 1.1. Structure of (Ga,Mn)N samples. The (Ga,Mn)N films were grown by nitrogen-
plasma assisted molecular beam epitaxy (MBE) on a GaN buffer layer. The buffer layer 
was previously grown by the metal-organic chemical vapor deposition (MOCVD) on a 
sapphire substrate. 

 

 

Sapphire crystals were used as a substrate in the samples. The sapphire crystals have 

hexagonal structure and the surface (0001) was chosen as a growth surface. Thermal stability 
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and transparency of the sapphire substrate allow creating thermally stable elements and 

investigation of (Ga,Mn)N layers using optical spectroscopy methods. There is a considerable 

mismatch between the sapphire and GaN crystal structures [4], therefore a GaN buffer layer 

was grown by metal-organic chemical vapor deposition (MOCVD) on the sapphire substrate 

to relax this mismatch. The thickness of the buffer layer is approximately 3 micron. A thin 

MBE buffer layer (20 nm) was further grown on the MOCVD layer to create first high quality 

mono-layers. Finally, the “active” (Ga,Mn)N layer was grown by molecular beam epitaxy. 

The thickness of the (Ga,Mn)N layer is approximately 200 nm. The structure of (Ga,Mn)N 

samples is shown in fig. 1.1. 

The manganese content in the (Ga,Mn)N layers was measured by secondary emission 

mass spectroscopy (SIMS). The presence of any secondary phase was checked in situ by 

reflection high-energy diffraction (RHEED) and ex situ by x-ray diffraction (XRD) 

measurements. The XRD measurements were performed using the Seifert 3003 PTS-HR 

system. A beam concentrator in front of the two-bounce Ge (220) monochromator and a soller 

slit of 0.15 degrees aperture inserted in front of the detector were used in the measurements 

(E. Bellet-Amalric in [3,5]). The wavelength of x-ray light was 0.154 nm. During the 

measurements the (Ga,Mn)N samples were fixed on a 2 degrees vicinal Si monocrystal in 

order to reduce the background. Achieved large dynamic range (106) allows detecting possible 

inclusions in a very small amount. For example, the secondary phase GaMn3N was detected 

in a Ga1-xMnxN sample with x=0.00007). Therefore the XRD measurements allow detecting 

inclusions of such a small concentration. 

Special attention was paid to different growth regimes. It was shown that the highest 

concentration of Mn in GaN can be incorporated using the nitrogen-rich regime (growth 

regime in excess of nitrogen) [2]. Under optimal conditions, pure wurtzite Ga1-xMnxN layers 

with Mn content x up to 5.7% were obtained; additional inclusions like GaMn3N or Mn4N 

clusters were not detected. 
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1.2 X-ray absorption spectroscopy 

X-ray absorption spectroscopy is a very powerful investigation method of solid state physics 

which is used to study the structural, electronic and magnetic properties of materials. An x-ray 

photon can be absorbed by a core electron of an atom. The excited photoelectron moves to an 

empty state above the Fermi level. The probability of the transition depends on the energy of 

the absorbed photon. The absorption probability as a function of the photon energy (x-ray 

absorption spectrum) can be related to empty electronic states in the solid. Intense electronic 

transitions fulfill the dipole selection rules: the orbital and total moments of initial and final 

states change according to the relations ∆l=±1, ∆j=0,±1. Quadrupole transitions are less 

intensive and in this case the orbital and total moments of initial and final states are related by 

the quadrupole selection rules: ∆l=0,±2 and ∆j=0,±1,±2. If the excited core level has the 

principal number n=1 the corresponding x-ray absorption spectrum is called K-spectrum; if 

n=2 then absorption spectrum is called L-spectrum [6]. 

X-ray absorption spectroscopy methods have a number of important advantages as 

compared to other methods. First of all, there is only one initial state of the excited electron, 

i.e. a localized core state (in optical spectra we have several initial states). That is why the x-

ray absorption spectrum of a solid can be directly related to electronic states above the Fermi 

level. In addition, the dipole selection rules allow a separate investigation of electronic states 

of different symmetries. Another important advantage of x-ray absorption spectroscopy it is 

the element selectivity. Energy positions of absorption edges of different atoms are very 

different. Therefore electronic states of each element in a complex alloy can be studied 

separately. These two advantages allow a very detailed study of structural and electronic 

properties of solids. 

However there is a serious drawback that limits the possibilities of the x-ray 

absorption spectroscopy: it is limited resolution of the x-ray absorption spectra. The resolution 

is determined by natural widths (lifetimes) of initial and final states, and by resolution of the 

monochromator. While the resolution of the monochromator in principle can be chosen 

sufficiently small, the natural width of the core level can not be changed. For example the 

natural width of 1s level in Mn is 1.16 eV. Therefore the band structure of Mn compounds can 

not be studied with a higher precision than 1.16 eV using the K-edge absorption spectra of 
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Mn. Usually the natural width of shallow core levels is smaller. Therefore the soft x-ray 

radiation allows a more precise study of the electronic states. 

X-ray absorption measurements can be performed using three main devices: x-ray 

radiation source, optical system and detector. Synchrotron can be used as a source of x-ray 

radiation. It allows obtaining a very intense x-ray light that is necessary to investigate diluted 

compounds like the diluted magnetic semiconductors. There are two main functions of the 

optical system. The first function is to concentrate as much as possible of x-ray radiation in a 

narrow beam. It is quite difficult to manipulate x-ray light because of lack of materials with 

necessary properties in the x-ray energy region [7]. The second function of the optical system 

is to pick out radiation with a fixed energy and the intensity of the obtained monochromatic 

light should not be too weak. The experimental equipment which is intended to perform these 

two functions is called the beamline. A scheme of a typical beamline at the European 

Synchrotron Radiation Facility (ESRF, Grenoble) is shown in fig. 1.2. 

 
 

Fig. 1.2. Main elements of a typical beamline at the European Synchrotron (ESRF) in 
Grenoble [8]. 

 

 

The synchrotron beam is formed by the horizontal and vertical slits which are placed just on 

the entry of the beamline. The slits pick out a parallel beam which will be further transformed 

by the optical system. The acceptance angle should be sufficiently small because it is quite 

difficult to transform a very diverging beam into a parallel one. At the same time a too small 

acceptance angle will lead to a weak intensity of the beam. Therefore a compromise between 

the energy resolution (which is related to the beam divergence) and the intensity of the beam 

should be found. In the beamline BM30B the acceptance angle is about 2 mrad [9]. 
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The x-ray beam is further transformed by the first mirror. This mirror transforms the 

diverging beam into a parallel beam before it enters in the monochromator. This 

transformation is necessary to obtain the highest possible energy resolution of the beam after 

all transformations. The second important role of the mirror is to suppress higher harmonics in 

the initial beam. It is clear that this mirror dissipates a high amount of heat. Therefore the 

material of the mirror should be stable at high temperature. In order to decrease the heating, a 

small incidence angle is used and the mirror is coated by a heavy metal to increase the 

reflectivity coefficient. In addition the first mirror supplied by a cooling system. Polished Si 

monocrystals coated with rhodium are used as mirrors at the beamline BM30B [9]. 

Two Si monocrystals with the active surface (220) are used in the monochromator at 

the beamline BM30B. The monocrystals of Si are stable at high temperature and at high 

radiation level. The plane (220) allows obtaining a good resolution (~0.45 eV) at energy 6539 

eV (K-egde of Mn). The first Si monocrystal dissipates a high amount of energy. Therefore it 

is provided by a cooling system.  

The obtained monochromatic beam is further focused by two mirrors on a small point 

(250×250 µm² in BM30B beamline) to obtain the highest possible intensity of photons with 

the chosen energy. Such a high intensity is necessary to study diluted materials where the 

“useful” signal may be very weak.  

 

 

 

1.3 X-ray absorption spectra of (Ga,Mn)N 

The K-edge x-ray absorption spectra of Mn in Ga1-xMnxN (x=0.003–0.057) were recorded at 

the European Synchrotron Radiation Facility (ESRF, Grenoble) at the beamline BM30B. The 

measurements were organized by X. Biquard [10] and I had an opportunity to participate in 

these measurements. The x-ray absorption measurements were performed at the K-edge of 

Mn (6539 eV) in fluorescence mode: the 1s hole of Mn created by an x-ray photon is filled by 

a 2p electron of Mn. This transition 2p→1s causes an emission of another photon 

(fluorescence, Kα lines); number of the emitted photons equals to number of excited 1s 

electrons. The energy dependence of the fluorescence from the two Kα lines of Mn was 
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measured during the x-ray absorption experiments. This method is very efficient when the 

“useful” signal of Mn is only a small part of the total absorption. Such a situation is usual in 

diluted systems. 

The achieved energy resolution of the x-ray beam was ~0.45 eV, such a good 

resolution is necessary to study the band structure of semiconductors. As it was mentioned 

above, the final resolution of x-ray absorption spectra is limited by the natural width of the 

excited core level. In our case of Mn the natural width of the 1s level is 1.16 eV, therefore this 

is the fundamental limit for the energy resolution of x-ray absorption spectra. However this 

resolution is sufficient to distinguish main features in the band structure of (Ga,Mn)N. The 

incidence angle of the beam was kept 30°±10° with respect to the sample surface. Bragg 

diffraction peaks from the sample saturate detectors; therefore only signals from the 

unsaturated fluorescence detectors were included in final x-ray absorption spectra. 

There are two different parts in the K-edge absorption spectrum. The first part is the 

Extended X-ray Absorption Fine Structure (EXAFS). This part is situated above Eedge+30 eV 

(Eedge is the absorption edge energy, energy position where the absorption coefficient achieves 

50% of its maximum value). In this energy region the excited photoelectron has a high kinetic 

energy. So the electron wave function is strongly dispersed by nearest neighbor atoms of Mn. 

The dispersion of the wave function caused by the crystal potential is not so strong. That is 

why this part of the x-ray absorption spectrum is very useful to identify the local atomic 

structure around the atom-absorber. The local atomic structure of the atom-absorber depends 

on the position of the atom in crystal; therefore the position of the atom-absorber in the 

crystals can be determined from a simulation of the EXAFS spectrum. The EXAFS spectrum 

can be simulated using the multiple-scattering approach: only crystal structure around the 

atom-absorber is used to simulate the EXAFS part, the particular form of the crystal potential 

is not taken into account. This simulation can be done using the FEFF code [11]; efficiency of 

the code was confirmed by numerous simulations of experimental spectra. A simulation of the 

measured EXAFS spectra of Mn in Ga1-xMnxN (x=0.003–0.057) demonstrated that the Mn 

atoms substitute the Ga atoms in the (Ga,Mn)N samples [10]. 

Another part of the x-ray absorption spectrum (under Eedge+30 eV) is called the X-ray 

Absorption Near-Edge Structure (XANES) and it contains information about the electronic 

structure of the crystal: the shape of the XANES is essentially determined by the density of 

states above the Fermi level. Because the density of states depends on the local atomic 
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structure around the atom-absorber, the shape of the XANES is sensible to the local crystal 

structure. In addition the XANES spectra allow studying the electronic state of the atom-

absorber. As we will see late a more distant crystal structure can be also studied using the 

XANES spectra. However interpretation of the XANES is not as straightforward as it was in 

the case of the EXAFS: a calculation of the band structure of the crystal is necessary to extract 

quantitative information from the XANES spectra. 

The XANES part of K-edge absorption spectra of Mn in Ga1-xMnxN (x=0.003–0.057) 

is shown in fig. 1.3. The shape of the spectra does not depend on the Mn content in 

(Ga,Mn)N. Therefore the Mn atoms have the same valence and local crystal structure in all 

the samples. It is quite difficult to obtain more information from the spectra using such a 

simple reasoning. Ab-initio calculation methods described in the chapter II will be used to 

determine the valence state of Mn in (Ga,Mn)N from the XANES spectra. In addition the 

shape of the XANES spectra points to a homogeneous distribution of Mn in (Ga,Mn)N. These 

questions will be discussed in the chapter III in detail. 

 
Fig. 1.3. Normalized K-edge x-ray absorption spectra of Mn in Ga1-xMnxN (x=0.003–
0.057 ), near-edge structure is shown. The Mn content is indicated in the figure. The x-
ray absorption spectra were recorded by X. Biquard et al. [10]. 
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Summary for chapter I 

The Ga1-xMnxN epilayers were grown by molecular beam epitaxy on a sapphire substrate [2]. 

The wurtzite structure of the layers was confirmed by x-ray diffraction measurements. Special 

growth conditions are necessary to avoid formation of Mn-rich clusters. At optimal growth 

conditions (N-rich mode, Mn/Ga flux ration less than 15%) samples having a Mn content up 

to x=0.057 were obtained. The x-ray diffraction measurements show that the samples do not 

contain precipitations like GaMn3N and Mn4N. 

Structural and electronic properties of the samples were studied using the x-ray 

absorption spectroscopy. This method allows a separate investigation of local atomic structure 

around different atoms in complex compounds. In addition the electronic states of different 

symmetries can be studied separately by appropriate choice of the absorption edge (K-edge 

for empty p states and L-edge for empty d states). However the natural width of excited core 

level limits the accuracy of the investigation: only well separated electronic states can be 

distinguished in x-ray absorption spectrum. 

The K-edge x-ray absorption spectra of Mn in (Ga,Mn)N epilayers were recorded at 

the European Synchrotron Radiation Facility in Grenoble [10]. The achieved resolution of the 

monochromator was ~0.45 eV. A simulation of the part EXAFS of the spectra confirmed the 

substitutional position of Mn in the (Ga,Mn)N epilayers [10]. The shape of the XANES 

spectra (edge region of the absorption spectra) does not depend on the concentration of Mn. 

This implies the same valence state and local atomic structure around the Mn atoms. However 

additional calculations are necessary to identify the valence state of Mn in the samples. The 

calculations will be presented in the chapter III. As we will see late the distribution of Mn in 

(Ga,Mn)N can be studied using the XANES spectra. 
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Chapitre II. Calcul de la structure de 

bandes 

Des méthodes de calcul ab-initio sont décrites dans ce chapitre. Des calculs de ce type 

permettent de prédire des propriétés électroniques différentes des matériaux, et en principe 

aucune information expérimentale n’est nécessaire pour effectuer ces calculs. La théorie de la 

fonctionnelle de densité permet de simplifier fortement le problème: l’équation 

multiélectronique de Schrödinger peut être transformée à une autre équation pour un électron 

dans un champ effectif. Et cette dernière équation peut être résolue à l’aide des ordinateurs 

modernes. C’est pourquoi les calculs ab-initio sont devenus aujourd’hui très populaire dans le 

monde scientifique. 

Deux méthodes ab-initio ont été utilisées pour calculer la structure de bandes des 

semiconducteurs: LAPW et LMTO. Ces méthodes sont très efficaces (elles sont linaires) et 

assez précises. Des cristaux avec plusieurs centaines d’atomes par une maille élémentaire 

peuvent être calculer assez facilement par ces deux méthodes. Les méthodes LAPW et LMTO 

sont donc décrites en détail dans ce chapitre. 
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Chapter II. Band structure calculations 

The aim of this chapter is to describe the basic principles of ab-initio band structure 

calculations. Such calculations allow us to investigate and to predict different electronic 

properties of solids. Progress in computer technology made it possible to investigate atomic 

systems which contain several hundred atoms. That is why the ab-initio calculations became 

so popular in the scientific community and they are widely used as a complimentary 

component of experimental investigations. 

Ab-initio methods allow us to calculate different properties of a crystal and to do that 

one does not need any experimental parameter of the crystal, therefore the band structure and 

other properties of a crystal can be investigated without synthesizing the crystal. This 

particularity of ab-initio methods allows us to predict the properties of a material and to 

estimate the benefit of the material for future applications. 

The electronic structure of a crystal (eigenfunctions and eigenvalues of energy) can be 

calculated using a multi-particle Hamiltonian in the Schrödinger equation [1]: 
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here Mi is the mass of the nucleus at point Ri, me is the mass of a free electron at point ri. The 

first two terms are kinetic energy operators for electrons and nuclei, respectively. The last 

three terms describe electrons-nuclei, electrons-electrons and nuclei-nuclei Coulomb 

interactions. Today it is not possible to solve the Schrödinger equation containing this 

Hamilton operator for several hundred particles. Therefore no exact solution of the problem 

can be found. However we do not need an exact solution of quantum mechanical problems to 

perform a comparison between theoretical predictions and available experimental data 

because the experimental data always contain an error and an acceptable error of our 
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calculation can be of the same order as the experimental error. Therefore some 

approximations can be accepted to simplify the problem of band structure calculation. 

First of all, the positions of the nuclei will be fixed (Born-Oppenheimer 

approximation). This allows us to reduce the problem to a simpler one: motion of electrons in 

an external field of the nuclei. This problem is still complicated because the Schrödinger 

equation should be solved for several hundred electrons. Therefore further simplifications are 

necessary. 

The next approximation was proposed by Hohenberg, Kohn and Sham in [2,3]. 

According to this approach the ground state of an electronic system can be described by an 

electron density functional of E[ρ]. The exact form of the functional is still unknown, but 

there are good approximations for the functional for different electronic systems [4]. This 

approach allows us to replace the multi-particle Schrödinger equation by a single-particle 

equation where an external effective field describes the interaction between electrons. 

 

 

 

2.1 Electron density functional 

According to the electron density functional theory all properties of the ground state of an 

electron system can be described by the electron density functional. The electron density 

functional can be written in this form [4]: 
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here Vext is an external field which includes the electric field of nuclei, functional G[ρ] 

includes the kinetic and exchange-correlation energy of electrons. The ground state of an 

electron system can be found by minimization the electron density functional and the total 

energy of the ground state is the minimum of the electron density functional. It was proposed 

that the G[ρ] functional can be rewritten in the form: 
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][][][ ρρρ xcVTG += .                                                    (2.3) 

 

The functional T[ρ] is the kinetic energy of non-interacting electrons and the functional Vxc[ρ] 

takes into account exchange interaction between electrons and correlation effects. The 

electron density can be presented as a sum of squared wave functions of electrons: 
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N is the number of electrons. Minimization of the functional (2.2) using the new variables φi 

leads to one-particle Kohn-Sham equations [1,4]: 
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where εi are Lagrange coefficients used for the minimization of the functional (2.2), the 

exchange-correlation is given by the functional derivative [1]: 

 

δρ
ρδ ][xc

xc

V
V = .                                                        (2.6) 

 

Thus to calculate the band structure of a crystal we have to solve a set of Schrödinger 

equations for one-particle wave functions φi. This problem is much simpler than the initial 

one (2.1). However the problem is still difficult. First of all the Hamiltonian in equation (2.5) 

contains the electron wave functions φi (they are present as the electron density) that we want 

to find. Therefore several iterations are necessary to find a self-consistent solution of the 

Schrödinger equations. Secondly, we can find a solution of the equations (2.5) if the form of 

the exchange-correlation potential Vxc is known. Therefore, constructing the exchange-

correlation potential is the main problem of the electron density functional theory. Actually 

the exact form of the potential is not known. However several good approximations for the 

exchange-correlation potential were found during the last decades. 
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The most popular approximation of the exchange-correlation potential is the Local 

Density Approximation (LDA). According to this approximation, the exchange-correlation 

energy can be calculated using the formula [1]: 
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where ε(ρ) is the exchange-correlation function for a homogeneous electron gas (this function 

is numerically known). The exchange-correlation energy due to a particular density ρ(r) could 

be found by dividing the material in infinitesimally small volumes with a constant density. 

Each such volume contributes to the total exchange correlation energy by an amount equal to 

the exchange correlation energy of an identical volume filled with a homogeneous electron 

gas [1]. It is expected that this approximation should be sufficiently good in electron systems 

where the electron density ρ(r) changes slowly. Numerous practical calculations show that the 

local density approximation allows us to obtain good calculation results for different 

materials. The properties of magnetic materials can be calculated using a modification of the 

LDA approximation, which is called Local Spin-Density Approximation (LSDA) [4]: 

 

rrrr dE LSDA

xc ))(),(()( ↓↑
∫= ρρερ .                                       (2.8) 

 

The local density approximation can be improved if we take into account not only the electron 

density in the infinitesimal volume where we calculate the exchange energy, but also the 

electron density in neighbor volumes. This approach allows a better estimation of the 

exchange-correlation energy in systems where the electron density ρ(r) changes rapidly. The 

calculation scheme mentioned above is realized in the Generalized Gradient Approximation 

(GGA). 

Very often the crystal potential (last three terms in Hamiltonian in (2.5)) is represented 

by a superposition of the potentials of the atoms: 
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Ri is the position of i-th atom, the atomic potential Vi
atom is obtained as a result of the self-

consistent calculation. Usually the symmetry of the potential is quite complicated and further 

simplifications are necessary for practical calculations. There are two main approximations 

for the crystal potential: the Muffin-Tin (MT) and Atomic Sphere (AS) approximations. 

According to the MT-approximation, all atoms in a crystal are placed in non-overlapping MT-

spheres. Therefore the crystal space is divided into two different parts: crystal space in the 

MT-spheres and interstitial space out of the spheres. The crystal potential in MT-spheres is 

atomic-like and it changes rapidly with distance from the atomic nucleus. In contrast, in the 

interstitial part the crystal potential practically does not change. According to this, the crystal 

potential can be chosen as a constant Vc in the interstitial part and as a spherically symmetric 

function in the MT-spheres [4]: 
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The MT-approximation considerably simplifies calculation of band structure and it is widely 

used in practice. Within the AS approximation, overlapping atomic spheres are used and the 

total volume of the spheres should be equal to the volume of the crystal. Therefore there is no 

interstitial space in this case and the problem of band structure calculation become again 

simpler. There are however calculation methods (full potential methods) where no particular 

shape of the potential is imposed. In this case the crystal potential is represented by the 

following form [5]: 
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Now after all the simplifications the equation (2.5) can be solved for a large number of 

electrons. The procedure can be divided into two steps: solution of the Schrödinger equation 

(2.5) for a given crystal potential, and construction of the potential. 

As we know, the initial multi-particle Schrödinger equation (2.1) can be reduced to a 

set of simplified one-particle equations with the following form [4]: 
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where V(r) is a periodic crystal potential. There is a general approach which is used in most 

computational methods to solve equation (2.12). According to this approach, the one particle 

wave function Ψ(r) is represented as a linear combination of basis functions φj(r): 
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Then, the wave function (2.13) is substituted into (2.12), the obtained equation is multiplied 

by φi*(r), and integration in the real space is performed [4]: 
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where N is the number of basis wave functions, Hij and Oij are matrix elements: 
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here H is the Hamiltonian in equation (2.12). The eigenvalues of energy E(k) are roots of the 

secular equation 

 

0det =− ijij EOH .                                                  (2.16) 

 

Actually, different computation methods differ by the choice of the basis wave functions. And 

a computation method will be more efficient if the basis functions are closer to the real 

electron wave functions in the investigated material. There are two extreme cases: electrons 

are free in a crystal, or they are strongly localized near atoms. In the first case (which is 
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realized in metals) the wave functions of quasi-free electrons is represented as a linear 

combination of plane waves. This method permits to obtain good computation results for 

valence electrons in metals. However a too large set of plane waves is necessary to describe 

localized valence orbitals in insulators and semiconductors. In the second case (electron wave 

functions are localized) the wave functions are expanded in atomic-like orbitals near each 

atom in the crystal. This method is very efficient for insulators and it was realized for example 

in the Tight-Binding Local Muffin-Tin Orbital method (TB-LMTO [6]). 

There are however some “universal” methods that allows us to calculate the band 

structure of both metals and insulators. These methods have advantages of the two extreme 

approaches: localized electron wave functions near atomic nuclei are expanded in atomic-like 

orbitals, but free-like parts of the same wave functions in the interstitial space are represented 

as sums of plane waves. In this case we do not need a large number of plane waves to 

construct the electronic wave function near the nuclei. The method is realized in the 

Augmented Plane Wave + Local Orbitals (APW+lo) program [7]. In the next three sections, I 

will describe briefly the peculiarities of the basis functions in the APW, in its linear 

modification LAPW, and in the TB-LMTO methods. 

 

 

 

2.2 Augmented Plane Wave Method (APW) 

According to the muffin-tin approximation the crystal space is divided into two parts: inside 

MT-spheres (Sα for the αth atom) and out of the spheres (I – interstitial part). The electron 

wave function is expanded in different basis functions in these two parts. The electron wave 

function changes rapidly near atomic nuclei, therefore it is quite natural to use a solution of 

the Schrödinger equation for a free atom to represent the wave function in the MT-spheres. In 

the interstitial part of crystal electrons are quasi-free, and the electronic wave function can be 

well represented by a set of plane waves. Thus the basis functions have the following form 

[1]: 
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where V is crystal volume, K is a translation vector in the reciprocal space, Yl,m are spherical 

functions, ul
α is radial solution of the Schrödinger equation for a free atom, 

 

αrrr −=′ .                                                         (2.18) 

 

The A coefficients in (2.17) can be determined if we impose the condition of continuity of the 

basis functions on the MT-spheres. 

 

 

 

2.3 Linear Augmented Plane Wave Method (LAPW) 

Now we can use the basis functions defined in (2.17) to obtain the matrix elements in (2.15). 

In this case the matrix elements will depend on the eigenvalues of the Hamiltonian which we 

try to find in (2.16). Therefore, equation (2.16) should be solved iteratively, and this forces us 

calculate the determinant (2.16) 100-200 times at the same k-point. However this energy 

dependence of the determinant can be eliminated if we expand the radial part of the basis 

functions in Taylor series near a fixed energy E0 [1]: 
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where εk
n is the eigenvalues that we want to find, and the derivative of ul

α function is 

calculated at the fixed energy E0. The difference E0–εk
n is not known; therefore we can 

replace it by a coefficient B: 
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Now there are two undetermined coefficients and they can be found if we impose the 

condition of continuity for the u function and its derivative on MT-spheres. 

The smaller difference E0–εk
n, the better the precision of the linearization. Therefore 

the energy E0 should be as close as possible to the eigenvalue εk
n. Different atomic orbitals 

have different energy positions. It would reasonable to take different linearization energies for 

different orbital. Therefore the basis functions of the LAPW method can be represented in the 

following form [1]: 
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The LAPW method was realized in the WIEN2k code [7]. In addition the crystal potential in 

MT-spheres was represented according to formula (2.11), therefore there is no imposed 

restriction to the shape of the potential and this method refers to the full-potential approach. 

 

 

 

2.4 Linear Muffin-Tin Orbital Method (LMTO) 

The LMTO method can be realized using the MT- as well as the AS-approximations. 

However numerous calculations shows that the AS-approximation in general leads to a better 

agreement between experimental data and calculated electronic properties. 

Let us consider a crystal which contains one atom per primitive cell. Now we put the 

atom in an atomic sphere which an atomic sphere which volume equals the volume of the 

primitive cell. The crystal potential in the atomic sphere is supposed to be spherically 

symmetric. At the same time the potential is constant out of the sphere (V0) and we suppose 
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that the difference E–V0 is 0 out of the atomic sphere [8]. In this case we have the Schrödinger 

equation which contains a symmetric potential inside the sphere; electron function should be 

solution of Laplace equation out of the sphere [4]: 

 

02 =Ψ∇ .                                                            (2.22) 

 

The radial solution of the equation (2.22) is Ψ=alr
l+blr

-l-1. Therefore the radial part of basis 

functions in the LMTO method can be represented as [4]: 

 









>




















+
−

+








+
++

≤

=Φ
−−

SrESu
S

r

l

Dl

S

r

l

lD

SrEru

Er
l

l

l

l

l

l

l    ),,(
1212

1

                                                        ),,(

),(
1

,              (2.23) 

 

where ul is the radial solution of the Schrödinger equation in the atomic sphere (S is the radius 

of the atomic sphere), Dl is the radial derivative 
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The basis functions (2.23) contain a divergent part which is proportional to (r/S)l. Therefore 

the divergent part should be subtracted from the functions to construct local basis orbitals Ψl. 

The Bloch sum of the obtained local orbitals should be constructed to take into account 

contribution of neighbor atoms in the chosen atomic sphere. This sum can be used as basis 

functions of the LMTO method [4]: 
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The obtained muffin-tin orbitals are energy dependent and the matrix elements in (2.15) will 

also energy dependent. Therefore a large number of iterations are necessary to solve the 

equation (2.16). Linearization of the MT-orbitals permits to increase the efficiency of the 

method. The LMTO approach was realized in the TB-LMTO (ASA) code [6]. 



CHAPTER II   Band structure calculations 

 27 

The Wien2k code (LAPW method) [7] will be used in the next chapter to calculate the band 

structure of (Ga,Mn)N, (Ga,Mn)As and (Ge,Mn). The same code will be also used to calculate 

the x-ray absorption spectra of Mn in (Ga,Mn)N. An additional calculation of the band 

structure of  Ge1-xMnx (x=0.0156) will be performed using the TB-LMTO (ASA) code [6]: 

this code is very efficient and it allows calculating very large supercells with a great number 

of atoms. Such large supercells are necessary to calculate properties of crystals with low 

concentrations of impurities. 
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Chapitre III. Propriétés électroniques de 

(Ga,Mn)N, (Ga,Mn)As et (Ge,Mn) 

La structure de bandes de (Ga,Mn)N a été calculée dans cette chapitre. En effet les propriétés 

magnétiques des semiconducteurs magnétiques dilués sont liées à leurs propriétés 

électroniques. Les résultats de ce chapitre seront donc utiliser dans la chapitre IV pour 

expliquer un ferromagnétisme à basse température que nous observons dans (Ga,Mn)N. La 

distribution du Mn dans (Ga,Mn)N est un autre facteur important qui influence fortement sur 

les propriétés magnétiques. C’est pourquoi ce problème a été également étudié en détail. En 

outre, la structure électroniques de (Ga,Mn)As et (Ge,Mn) ont été calculée. En effet, les 

propriétés de (Ga,Mn)As sont déjà bien connues et de nombreux résultats expérimentaux et 

théoriques sont disponibles. Dans ce travail nous utilisons (Ga,Mn)As comme une référence 

pour profiter de ces nombreux résultats. Le semiconducteur (Ge,Mn) est un autre matériau qui 

peut trouver de nombreux applications en électronique de spin: d’une part, la technologie de 

croissance du germanium est bien développée et d’autre part, des propriétés ferromagnétiques 

de (Ge,Mn) à température élevée (TC~285K) ont été observées. Dans ce travail la structure de 

bande de (Ge,Mn) a été calculée pour déterminer l’état électronique du Mn dans (Ge,Mn). 

Une information expérimentale sur les propriétés électroniques de ces 

semiconducteurs a été obtenue a partir des spectres d’absorption des rayons X et des mesures 

de transport électrique. Une interprétation de la partie XANES de ces spectres a été proposée. 

Elle permet d’étudier l’état électronique et la distribution du Mn dans (Ga,Mn)N. Pourtant, la 

précision de cette méthode est limitée par la largeur naturelle du niveau 1s du Mn. La 

spectroscopie optique permet une étude beaucoup plus précise de la structure de bande parce 

que la résolution du monochromateur peut être moins que 0,5 eV. Une étude de l’état 

électronique et de la distribution du Mn dans (Ga,Mn)N par spectroscopie optique est décrite 

brièvement dans ce chapitre ce qui permet de mettre en évidence des avantages de ces deux 

spectroscopies. 
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Chapter III. Electronic properties of 

(Ga,Mn)N, (Ga,Mn)As and (Ge,Mn) 

Electronic properties of (Ga,Mn)N, (Ga,Mn)As and (Ge,Mn) semiconductors are studied in 

this chapter. The results of this study will be further used to explain their magnetic properties. 

Actually the magnetic properties are closely related to the electronic structure; therefore a 

detailed investigation of the electronic properties is necessary in order to clarify observable 

magnetic phenomena in the diluted magnetic semiconductors. The specific distribution of 

magnetic impurity in diluted magnetic semiconductor is another important factor that 

significantly changes magnetic interaction between the atoms of the magnetic impurity. That 

is why a considerable attention was paid to the problem of Mn distribution in this chapter. 

The present work is essentially devoted to investigation of (Ga,Mn)N semiconductor. 

In addition, (Ga,Mn)As and (Ge,Mn) diluted magnetic semiconductors were also considered. 

Properties of (Ga,Mn)As are well studied today and the obtained results can be very useful in 

investigation of the other III-V semiconductor – (Ga,Mn)N. In addition the band structures of 

(Ga,Mn)As and (Ge,Mn) are similar, and properties of (Ge,Mn) can be predicted if the same 

properties of (Ga,Mn)As are known. The (Ge,Mn) semiconductor is less studied, but 

interesting magnetic properties of (Ge,Mn) were reported by several groups (see the chapter 

IV). Therefore a detailed study of the electronic properties of (Ge,Mn) is necessary. 

The electronic properties and the distribution of Mn in the semiconductors were 

studied by x-ray absorption spectroscopy. As we will see later, the method allows a detailed 

study of the electronic and structural properties of semiconductors. However the precision of 

the study is limited by the natural width of the core level (1s level in the K-edge 

spectroscopy). At the same time the optical spectroscopy allows a much more detailed 

investigation of the electronic structure (the resolution of optical spectra can be lower than 0.5 

meV). Therefore it is very interesting to compare advantages and drawbacks of the two 

different methods in order to find the best ways to investigate different aspects the electronic 
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structure problem. With that end in view, a paragraph devoted to optical spectra modeling was 

included. 

Two different crystal structures of (Ga,Mn)N are considered in this chapter: zinc-

blende and wurtzite structures. Although the studied in this work (Ga,Mn)N samples have the 

wurtzite structure, a lot of calculation results for the zinc-blende (Ga,Mn)N are available 

today and these results are widely used in the analysis of our experimental data. The validity 

of application of the theoretical results obtained for the zinc-blende (Ga,Mn)N to 

experimental data obtained on wurtzite (Ga,Mn)N samples is discussed. 

Finally some limitations of ab-initio calculations are considered. Actually some band 

structure parameters of semiconductors obtained from the ab-initio calculations are not 

confirmed by our experimental results: for example, according to our ab-initio calculations a 

high density of Mn p states should be present near the Fermi level in (Ga,Mn)As, however 

these states are not observed experimentally. Therefore the ab-initio calculations should not 

be considered as a method which replaces the experimental investigation. However the ab-

initio description facilitates interpretation of experimental data and it provides us with 

additional information which can not be obtained directly from experiment. 
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3.1 Crystal structures of GaN 

 

Fig. 3.1. Unit cells of (a) zinc-blende and (b) wurtzite GaN crystals. Ga and N atoms are 
denoted by dark and light circles respectively. 

 

 

Crystals of zinc-blende GaN can be represented as a Ga and a N cubic face-centered 

sublattices; one of the sublattices is shifted relatively to the other one by a vector 

(1/4,1/4,1/4)a0, where a0 is the lattice parameter of GaN [1]. The unit cell of the zinc-blende 

GaN crystal is a cube (fig. 3.1a). Coordinates (x,y,z) of Ga atoms in the cube are 

 

(0,0,0)       (0,1/2,1/2)       (1/2,0,1/2)       (1/2,1/2,0), 

 

here the coordinates are represented in the basis vectors a, b, and c (fig. 3.1a). Coordinates of 

N atoms are 

 

(1/4,1/4,1/4)       (3/4,1/4,3/4)       (3/4,3/4,1/4)       (1/4,3/4,3/4). 

 

The primitive cell of zinc-blende GaN crystal is based on three vectors p1, p2 and p3: 

 

p1=(a+b)/2       p2=(b+c)/2       p3=(a+c)/2, 
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and the primitive cell contain only one Ga atom in the position (0,0,0) and one N atom in the 

position (1/4,1/4,1/4). Several band and crystal parameters of zinc-blende GaN are listed in 

tab. 3.1. 

 

Tab. 3.1. Parameters of zinc-blende GaN crystals. 
 

parameter value reference 
band gap (eV) 3.299 [2] 
lattice parameter at T=300K (Å)  4.50 [2] 
crystal volume per atom (Å3) 11.39 calculation 
number of nearest neighbors for a Ga atom 
distance to the atoms (Å) 

4 N atoms 
1.95 

calculation 

number of second neighbors for a Ga atom 
distance to the atoms (Å) 

12 Ga atoms 
3.18 

calculation 

 

 

Tab. 3.2. Parameters of wurtzite GaN crystals. 
 

parameter value reference 
band gap (eV) 3.507 [2] 
lattice parameters at T=300K (Å) 
a0 (Å) 
с0 (Å) 
u 

 
3.189 
5.185 
0.375 

[2] 

crystal volume per atom (Å3) 11.42 calculation 
number of nearest neighbors for a Ga atom 
distance to the atoms (Å) 

1 N       3 N 
1.944    1.952 

calculation 

number of second neighbors for a Ga atom 
distance to the atoms (Å) 

6 Ga     6 Ga 
3.180   3.189 

calculation 

 

 

The primitive cell of wurtzite GaN crystals are shown in fig. 3.1b. This cell contains four 

atoms: two Ga atoms are placed in the positions (a,b,c) 

 

(0,0,0)       (1/3,2/3,1/2), 

 

while two N atoms are placed in the positions 

 

(0,0,u)       (1/3,2/3,1/2+u), 
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here the coordinates are calculated in the basis of a, b and c vectors (fig. 3.1b). Parameters a0 

and c0 of wurtzite GaN crystals are listed in the tab. 3.2. The u parameter is not the same in 

different wurtzite crystals, however it is always close to 0.375. The distances between a Ga 

atom and its nearest neighbor N atoms are not the same in wurtzite GaN. However the 

difference is very small (0.4%) and such a distortion does not significantly alter the 

tetrahedral symmetry around Ga atoms in wurtzite GaN. 

 

 

 

3.2 (Ga,Mn)N crystals: experiment vs theory 

Usually GaN crystallizes in the wurtzite structure (also called hexagonal GaN or α-GaN) [3]. 

The crystal quality of the samples is usually superior to that of the zinc-blende GaN samples. 

That is why all experimental results described in this work were obtained on wurtzite GaN 

crystals. 

On the other hand zinc-blende GaN crystals (also called cubic GaN or β-GaN) are of 

great interest to theoretical investigation. First of all this is connected with a higher symmetry 

of the zinc-blende structure as compared with the wurtzite one. The number of symmetry 

operations which transform the unit cell of a crystal into itself is larger for cubic GaN. This 

implies also a higher symmetry of the Brillouin zone for zinc-blende GaN, as compared to the 

symmetry of the Brillouin zone for wurtzite GaN. To describe the electronic structure of a 

crystal we have to calculate the eigenvalues of the Hamiltonian and the eigenfunctions for a 

set of k-points in the first Brillouin zone. To do this we have to diagonalize the Hamiltonian 

for every k-point in the Brillouin zone. Actually this part of the calculation is the most time 

consuming one. But we can avoid a long calculation using the symmetry of a crystal: we can 

calculate eigenvalues only in a part of the first Brillouin zone (irreducible part of the Brillouin 

zone) and after it we can obtain eigenvalues of Hamiltonian in other part of the first Brillouin 

zone using available symmetry operations. This procedure allows us to reduce the time 

necessary to calculate the band structure of a crystal. The efficiency of the procedure depends 

on the number of symmetry operations which can be applied to the crystal. The zinc-blende 
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GaN crystals have higher symmetry as compared to wurtzite crystals, i.e. the zinc-blende 

structure is simpler from the point of view of calculation. 

There is another factor which makes the zinc-blende structure more attractive for 

calculation. Each crystal structure has several parameters which can change from one material 

to other. The zinc-blende structure has only one structural parameter to be determined – the 

lattice parameter. In the case of the wurtzite structure we have at least three such parameters 

(a0, c0, u, see tab. 3.2). To find the real ground electronic state of our crystal we have to 

optimize these parameters in our model. This optimization could take much time (especially 

then we consider a large supercell) and the “cost” of the optimization increases very rapidly 

with the number of crystal structural parameters to be optimized. The two factors described 

here explain why the greatest part of theoretical investigations was devoted to the zinc-blende 

structure. 

Thus there is a contradiction between experiment and theory: experimental works are 

mostly concentrated of the wurtzite structure, while theoretical works are often focused on the 

zinc-blende structure. But it seems that this contradiction is not very important when we want 

to describe some properties of the Mn impurity in (Ga,Mn)N which are determined by the 

local crystal structure. Indeed, the local atomic structures around Mn atoms in both zinc-

blende and wurtzite (Ga,Mn)N are very similar: in both cases the Mn atoms have four nearest-

neighbor N atoms. If we put a Mn atom in the center of a regular tetrahedron these four N 

atoms would be in the corners of the tetrahedron. In other words Mn atoms have tetrahedral 

arrangement of ligands (four atoms of N) in both zinc-blende and wurtzite (Ga,Mn)N. The 

Mn-N distance has the same value (1.95 Å, see tab. 3.1) for all nearest-neighbor N atoms in 

zinc-blende (Ga,Mn)N. At the same time this distance is slightly different for one nearest-

neighbor N atom and three other nearest-neighbor N atoms (1.944 Å and 1.952 Å 

respectively, see tab. 3.1) in wurtzite (Ga,Mn)N. Such a distortion however does not 

significantly alter the tetrahedral symmetry of the Mn atoms in wurtzite (Ga,Mn)N. The 

second neighbors of Mn in both zinc-blende and wurtzite (Ga,Mn)N are 12 Ga atoms. Just as 

in the case of N atoms, we have identical Mn-Ga distances (3.18 Å, see tab. 3.1) for all 12 Ga 

atoms in zinc-blende (Ga,Mn)N and the distances are slightly different for 6 Ga atoms as 

compared with the other 6 second neighbor Ga atoms (3.180 Å and 3.189 Å respectively, see 

tab. 3.2). 
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Thus we can conclude that the local atomic structures around Mn atoms are very 

similar in the zinc-blende and wurtzite (Ga,Mn)N. This allows us to assume that the electronic 

properties of (Ga,Mn)N determined by the local atomic structure are also similar in the zinc-

blende and wurtzite (Ga,Mn)N. As we will see late, x-ray absorption spectra at the K-edge of 

Mn and optical absorption spectra in infrared can be attributed to this type of electronic 

properties. For this reason I describe the electronic structures of the both zinc-blende and 

wurtzite (Ga,Mn)N in this chapter. The band structure of zinc-blende (Ga,Mn)N is well 

known today from different theoretical reports and we can use these numerous results to 

understand the general trends and common features for the both crystal structures. 

Complementary calculations for wurtzite (Ga,Mn)N were performed to compare our 

experimental results obtained on wurtzite samples to the most direct predictions derived from 

the band structure calculations. These calculations allow us to obtain new information about 

electronic state and distribution of Mn in (Ga,Mn)N. 

 

 

 

3.3 Band structure of (Ga,Mn)N 

Before describing some results of band structure calculations, it is worth to give some details 

about the method which was used to calculate electronic properties of crystals with defects. 

Initially the band calculation methods described in chapter II were intended for ideal crystals, 

where a unit cell can be found. In a real crystal with defects (for example Mn in GaN) the 

distribution of the defects in the lattice is random and in this case no unit cell can be found. 

However the real crystal with a disordered distribution of defects can be replaced by another 

crystal with an ordered distribution and the same average concentration of defects. In this case 

a unit cell can be found for the crystal and the band structure problem for the crystal can be 

resolved by LMTO or LAPW methods. 

When we replace one problem by another one, we suppose that the electronic 

properties of crystals with ordered and disordered defects are essentially the same. This is true 

if the assumed ordered distribution of defects well corresponds to the disordered distribution 

in a real crystal. For example a disordered homogenous distribution should be modeled by an 
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ordered homogeneous distribution. If the defects form clusters in a real crystal, these clusters 

should be included in the unit cell of ordered crystal. As we will see later a specific type of 

defect distribution in a real crystal can be deduced from experimental investigations. 

A supercell approach was used in this work to calculate the band structure and 

electronic properties of crystals with impurities. According to this approach a supercell has to 

be found for the crystal with impurities. The supercell is an elementary cell of the crystal, but 

usually it is larger than the primitive cell of the crystal without impurities. The size of the 

supercell should be sufficiently large to obtain the desirable concentration of impurities in the 

supercell. By translating this supercell in the space we obtain a crystal with the same 

concentration of impurity. For example if we want  to  calculate  the  band  structure  of  a  

Ga1-xMnxN (x=0.0625) crystal, we can put a Mn atom in a supercell which contains also 15 

Ga and 16 N atoms: 

 

GaMn

Mn

NN

N
x

+
= ,                                                       (3.1) 

 

where N is the number of atoms (Mn or Ga) in the supercell. If we want to calculate the 

properties of a Ga1-xMnxN (x=0.03125) crystal the size of the supercell should be 2 times as 

large. Thus, the smaller the concentration of impurities, the larger the supercell which is 

necessary to construct the crystal. The computing time increases very quickly with the size of 

supercell, and this time increases more quickly than N
2, where N – is the total number of 

atoms in the supercell. Therefore it is easier to calculate the properties of crystals with a high 

concentration of impurities while usually real crystals have a very low concentration of 

impurities. This fact induces us to look for a compromise between our experimental and 

theoretical possibilities. 

For this reason the smallest possible supercell of a crystal, with one impurity atom, is 

usually chosen to calculate the properties of the crystal. However there are problems where 

two, three or more atoms of impurity should be considered. This is necessary when we study 

the magnetic properties of materials or if we consider problems of impurity precipitation. For 

example, it is possible to estimate the exchange integral between magnetically active atoms in 

a material. To do this we may put two atoms in a supercell. Then two calculations should be 

performed where the spins of the two atoms have the same, and opposite, directions. The 
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difference in the total energy between these two states is the exchange energy, which can be 

related to the exchange integral. Obviously the supercell with two impurity atoms is two times 

bigger than the supercell containing only one impurity atom for the same concentration of 

impurity. 

 

 

 

Fig. 3.2. Supercells of zinc-blende Ga1-xMnxN (x=0.03125, 0.0625, 0.125, 0.25) used in 
the band structure calculations. For clarity Mn atoms only are shown in these supercells. 

 

Tab. 3.3. Values of primitive translation vectors for zinc-blende Ga1-xMnxN (x=0.03125, 
0.0625, 0.125, 0.25) supercell shown in fig. 3.2. The values are given in units of a0. 
 

concentration of 
Mn atoms, x 

a (a0) b (a0) c (a0) 

0.03125 2 2 2 
0.0625 2 2 2 
0.125 2  2  2  
0.25 1 1 1 
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The band structure of zinc-blende Ga1-xMnxN (x=0.03125, 0.0625, 0.125, 0.25) was 

calculated in [4] using four different supercells shown in fig. 3.2. The primitive translation 

vectors a, b, and c for the lattices are listed in tab. 3.3. The lattice parameter a0 was chosen to 

be 4.5 Å (the experimental value of the lattice parameter for zinc-blende GaN, see tab. 3.1). 

 

 

 

Fig. 3.3. Supercells of wurtzite Ga1-xMnxN (x=0.0625, 0.125) used in the band structure 
calculations. For clarity Mn atoms only are shown in these supercells. 
 
 
 
 
Tab. 3.4. Primitive translation vectors for wurtzite Ga1-xMnxN (x=0, 0.0625, 0.125) 
supercells shown in fig. 3.1 and fig. 3.3. 
 

concentration of 
Mn atoms, x 

a, b c u 

0 a0=3.23Å c0=5.28Å u0=0.375 
0.0625 2a0 2c0 u0 
0.125 2a0 c0 u0 
 

 

Two  different  supercells  were  used  in  band  structure  calculations  for  wurtzite  

Ga1-xMnxN (x=0.0625,0.125). The supercells are shown in fig. 3.3; the values of primitive 

vectors for the supercells are given in tab. 3.4. These supercells were chosen so as to make the 

nearest-neighbor Mn-Mn distances as isotropic as possible: in the first case (6.25%) the 

distance between two nearest Mn atoms along the c axis of the wurtzite structure is longer 
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than along the a axis (the ratio is ~1.6) while it is shorter in the second case (12.5%, the ratio 

is ~0.8). As it was mentioned above the wurtzite crystal structure has three lattice parameters 

– a0, c0 and u. These three parameters were optimized on the primitive cell of wurtzite GaN 

(fig. 3.1b). The optimization allows us to find a true fundamental state of the crystal. To 

perform this optimization the ratio c0/a0 has been changed. The total energy of the GaN 

supercell was calculated for different values of the ratio c0/a0. The dependence of the 

calculated total energy E on the ratio c0/a0 is shown in fig. 3.4. And the minimum of the 

function E(c0/a0) corresponds to the optimal value of c0/a0. Two energy functions E(u) and 

E(V) were also calculated to find optimized values for the three structure parameters (a0, c0 

and u, see fig. 3.4). The optimized values are listed in tab. 3.4. 

 

Fig. 3.4. Calculated total energy of the GaN primitive cell as a function of (a) ratio c0/a0, 
(b) parameter u, (c) volume of the cell. The calculated values (symbols) were 
interpolated by a cubic polynomial (solid line). 

 

 

Actually there is no agreement about the necessity of the optimization today. On the one hand, 

the optimization allows calculating the electronic properties of an uncompressed crystal, i.e. 

we find the real ground electronic state within the limits of a particular model. On the other 

hand, it is not evident that the real ground state of a model corresponds better to the ground 

state of the real crystal. For example, in our case the performed optimization leads to lattice 

parameters which are slightly larger than the experimental ones: a0=3.23Å (experimental 

value for GaN is 3.189Å) and c0=5.28Å (experimental value for GaN is 5.185Å). Such an 

optimization changes not only the volume of the crystal, but also the anisotropy of the crystal: 

in the optimized GaN we have one nearest neighbor N atom which is more distant from a Ga 
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atom than 3 other N atoms (d1N=1.980Å and d3N=1.978Å), d1N>d3N. In the real wurtzite GaN 

crystal the anisotropy is opposite: d1N=1.944Å and d3N=1.952Å, d1N<d3N. Therefore we 

should use the experimental lattice parameters to investigate problems related to the crystal 

anisotropy, such as the linear dichroism. Problems related to the anisotropy were not 

considered in this work and the optimized GaN crystal structure will be used. 

 

 

 

Fig. 3.5. First Brillouin zones for cubic primitive, tetragonal primitive and hexagonal 
primitive lattices. High symmetry points for every Brillouin zone are shown [7]. 

 

 

Incorporation of Mn in GaN distorts the lattice of GaN in the vicinity of the Mn atoms. In 

particular, experimental EXAFS studies have shown that the Mn-N distance between an Mn 

atom and its nearest neighbor N atoms is 2.7% longer than the Ga-N distance in bulk GaN, 

with no measurable variations of the other distances [5]. The Mn atoms in (Ga,Mn)N “push 

away” the nearest-neighbor N atoms. This experimental result agrees with the conclusions of 

a band structure calculation [6]: an optimal value of Mn-N distance was found in this 

calculation, where the Mn-N distance have being changed and the total energy of the 
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(Ga,Mn)N crystal have being calculated. This optimal value of the Mn-N distance 

corresponds to the minimum of the total energy as a function of the Mn-N distance. It was 

found that the Mn-N distance should be 3% longer than the Ga-N distance in bulk GaN, in 

agreement with the result of EXAFS experiments [5]. The second conclusion of the 

calculation is that the relaxation has no effect on the band structure of (Ga,Mn)N. For this 

reason the relaxation is not taken into account in our band structure calculations for 

(Ga,Mn)N. 

Dispersion curves E(k) for different crystal lattices will be presented in this chapter. 

Therefore it is worth to remind the notation for high symmetry points in the first Brillouin 

zones of the primitive cubic, primitive tetragonal and hexagonal lattices (fig. 3.5, [7]). This 

notation will be used to indicate the paths in k-space along which the eigenvalues of energy 

are calculated. 

 

 

3.3.1 Zinc-blende (Ga,Mn)N 

 

Fig. 3.6. Band structure of zinc-blende Ga1-xMnxN (x=0.0625) in the ferromagnetic state 
calculated in [4]: (a) bands of electrons with spin up, (b) bands of electrons with spin 
down. The 3d-bands of Mn are shown by fat lines. The Fermi level is denoted by a 
horizontal line at 0 eV. 
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The band structure of zinc-blende Ga1-xMnxN (x=0.0625) was calculated using the LMTO 

method [8] by E. Kulatov et al. [4]. The local spin density approximation was used for the 

exchange-correlation potential. Other parameters of this calculation can be found in the 

original article. The band structure and some results of the calculation are of great importance 

because they will be used in following analysis of experimental results. 

The band structure of zinc-blende Ga1-xMnxN (x=0.0625) in the ferromagnetic state is 

shown in fig. 3.6. There are two different band structures for different types of electrons. The 

first band structure (fig. 3.6a) corresponds to the electrons which spin magnetic moment 

points to the direction of magnetization. The electrons of this type will be called as “electrons 

with spin up”. The second band structure (fig. 3.6b) corresponds to the electrons which spin 

magnetic moment is opposite to the direction of magnetization. The electrons of this type will 

be further called as “electrons with spin down”. The valence band of (Ga,Mn)N is below -2 

eV. The Fermi level has 0 eV position, therefore all the bands under 0 eV are filled by 

electrons. The states of the conduction band are above 0.5 eV and they are empty. The 3d-

bands of Mn with spin up are very narrow and they are situated in the gap. These bands are 

not hybridized with the valence band and the 3d-orbitals are localized near Mn atoms. The 

effective mass of these electrons should be large because the bands are narrow. Therefore the 

electrons are hardly moved by external electric fields and they remain localized near the Mn 

atoms. The calculated gap width is approximately 2.3 eV, while the experimental value of the 

gap is higher and equals 3.3 eV (tab. 3.1). Such an underestimation of the band gap is typical 

of ab-initio calculations based on density functional theory [6]. This underestimation can be 

corrected describing the exchange-correlation effects by the self-energy operator within the 

GW approximation [9]. 

Total and partial densities of states of Ga1-xMnxN (x=0.25, 0.0125, 0.0625, 0.03125) 

are presented in fig. 3.7. The states of electrons with spin up and spin down are shown in 

upper and lower parts of every figure. Now let us consider the 3d-states of Mn situated in the 

gap of (Ga,Mn)N. The 3d-states of Mn are split by exchange interaction between 3d-electrons 

of Mn: the 3d-states of Mn with spin up have a lower energy than the 3d-states with spin 

down. This relative position of 3d-states insures the maximum of the total spin moment when 

the population of the 3d-states increases, in agreement with the Hund’s rule for free atoms. 

The size of the exchange splitting remains essentially the same (~2 eV) for all concentrations 

of Mn (fig. 3.7). Therefore the splitting does not depend on the distance between Mn atoms. 
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This means that the splitting is essentially due to internal exchange interactions between 3d-

electrons of the same Mn atom. Hence the exchange splitting of 3d-states of Mn should be 

present not only in ferromagnetic (Ga,Mn)N, but in paramagnetic and antiferromagnetic 

(Ga,Mn)N crystals also. As we will see late the exchange splitting can be obtained from the x-

ray absorption spectra of Mn in (Ga,Mn)N and the experimental value of the splitting (~1.8 

eV) agrees well with the calculated one (~2 eV). 

 
Fig. 3.7. Total and partial densities of states (DOS) in zinc-blende Ga1-xMnxN (x=0.25, 
0.0125, 0.0625, 0.03125) [4]. Electronic states with spin up (upper part) and spin down 
(lower part of each figure) are shown. The total DOS is denoted by a solid line, 3d-
states of Mn by a filled area, 2p-states of N by a dash line. The vertical solid line at 
0 eV denotes the Fermi level. 

 

 

The crystal field caused by the four nearest-neighbor N atoms (fig. 3.1) additionally 

splits the 3d-states of Mn into a doubly degenerate e and a triply degenerate t2 bands. The t2 

band consist of d-orbitals which have the xy, yz, xz symmetries, while the e band is composed 

by 3d-orbitals which have the x2
-y

2, 2z
2
-x

2
-y

2 symmetries (fig. 3.8). Geometrically the d(xy, 
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yz, xz)-orbitals are closer to the nearest-neighbor N atoms than d(x2
-y

2, 2z
2- x2

-y
2)-orbitals of 

Mn. The strong interaction of the 3d(t2) states of Mn with the 2p states of N splits the t2 band 

into bonding (below -2 eV) and anti-bonding (above -1 eV) parts and push up the anti-

bonding part of the d(t2) band above the d(e) band [10]. As a result the 3d(e, spin up) band is 

filled by electrons, while the 3d(t2, spin up) is partially empty. The experimental value of the 

splitting between the t2 (spin up) and e (spin up) bands (that is the crystal field splitting) can 

be obtained from the optical absorption measurement (see the section “Optical absorption 

spectra modeling”). 

 

Fig. 3.8. Band structure of zinc-blende Ga1-xMnxN (x=0.0625) in ferromagnetic state, 
spin up [4]: (a) 3d(xy, yz, xz)-electrons of Mn, (b) 3d(x2-y2, 2z

2-x2
-y

2)-electrons of Mn. 
The 3d-bands of Mn a shown by fat lines. The Fermi level is denoted by a horizontal 
line at 0 eV. 

 

 

It is worth to mention here that the x, y and z axes have the same directions as the three 

orthogonal edges of the cubic supercell (fig. 3.2b). If we change direction of the axes, the 

orientation of Mn d(xy, yz, xz, x
2
-y

2, 2z
2- x

2
-y

2) orbitals relative the four N atoms will also 

change. And the distribution of 3d-orbitals between e and t2 bands will differ from the 

distribution described above. Therefore the distribution of the d(xy, yz, xz, x2
-y

2, 2z
2- x2

-y
2) 

orbitals between the e and t2 bands depends on the direction of the x, y and z axes. The z axis 

is usually chosen to be parallel to the c axis in the wurtzite (Ga,Mn)N. However we will rotate 

the axes to obtain the same orientation of the axes relatively to the four N atoms as in the 
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zinc-blende (Ga,Mn)N. This rotation allows obtaining the described above distribution of the 

d(xy, yz, xz, x2
-y

2, 2z
2- x2

-y
2) orbitals between the e and t2 bands in the wurtzite (Ga,Mn)N (see 

also the discussion in the section “Wurtzite (Ga,Mn)N”). 

Electrical, optical, magnetic and other properties of materials essentially depend on the 

position of the Fermi level: the electrons which energy is close to the Fermi energy determine 

the transport properties of a crystal; the optical and magnetic properties of semiconductors 

doped with a transition metal depend on the valence state of the transition metal in the 

semiconductor. The Fermi level falls in the t2(spin up) band of Mn in (Ga,Mn)N. It divides the 

t2 band on two parts – filled and empty, with a ratio close to 2:1 (fig. 3.7). Therefore 

according to this calculation the Mn atoms have 3d
4 electronic configuration in (Ga,Mn)N. 

The calculated total magnetic moment of (Ga,Mn)N crystal per a Mn atom is 4µB and 

this value does not depend on the concentration of Mn in (Ga,Mn)N (tab. 3.5). The main part 

of this moment is localized near the Mn atoms. A small contribution to the total magnetic 

moment arises from the nearest-neighbor N atoms (tab. 3.5). Besides that, these magnetic 

moments have the same direction as the Mn magnetic moment. 

 

Tab. 3.5. Calculated magnetic moments in zinc-blende Ga1-xMnxN [4]: total magnetic 
moment per one Mn atom (Mntot/1Mn), magnetic moment of Mn (MMn), magnetic 
moment of nearest-neighbor N atom (MN). 

 

concentration of Mn atoms, x magnetic 
moment 0.03125 0.0625 0.125 0.25 
Mtot/1Mn (µB) 4.0 4.0 4.0 4.0 
MMn (µB) 3.32 3.34 3.39 3.38 
MN (µB) 0.044 0.039 0.038 0.043 

 

 

Now let us consider the 3d bands of Mn and their dependence on the concentration of Mn in 

(Ga,Mn)N. As it was mentioned above the exchange splitting between d bands with spin up 

and spin down does not depend on the concentration of Mn and is essentially due to internal 

exchange interactions of 3d electrons. At the same time the width of Mn 3d bands is 

determined by interactions between 3d orbitals of nearest-neighbor Mn atoms. When the Mn 

atoms are well separated, the interaction between the 3d orbitals of neighbor atoms is weak 

and the 3d bands of Mn in (Ga,Mn)N are narrow (fig. 3.7d). At high concentration of Mn the 

overlap of the 3d electrons of neighbor Mn atoms increases and the 3d bands of Mn become 
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wider (fig. 3.7a). This increase of the band width arises from the stronger electrostatic 

interaction between the 3d electrons of different atoms when the distance between the Mn 

atoms decreases. The same type of broadening of atomic orbitals is observed when we form a 

solid from atoms: the narrow atomic orbitals are transformed to the energy bands. 

 

Fig. 3.9. Density of (a) 3d states and (b) 4p states of Mn in zinc-blende Ga1-xMnxN 
(x=0.0625) [4]. Electron states with spin up (upper part) and spin down (lower part of 
each figure) are shown. The vertical solid line at 0 eV denotes the Fermi level. 

 

 

Four nearest-neighbor N atoms form a tetrahedron around a Mn atom in (Ga,Mn)N. The 

tetrahedral crystal field splits the 3d bands of Mn into e and t2 bands. In the same tetrahedral 

field, the 4p orbitals of Mn acquire the t2 symmetry. Therefore the matrix element is not zero 

 

043
2

≠pHd crystt ,                                                    (3.2) 

 

and 4p-3d hybridization of Mn orbitals is possible. The densities of 3d and 4p states of Mn are 

shown in fig. 3.9. A high intensity of p states is observed in the t2 bands with spins up and 

down. This is a result of the p-d hybridization mentioned above. A small amount of p states 

also appears in the e bands at high concentration of Mn (fig. 3.10). Although a direct 

hybridization of p and de states is not permitted, these p states could arise from the overlap of 

3d orbitals of neighbor Mn atoms. The contribution of the overlap to the density of p states is 
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essential if the distances between neighbor Mn atoms are small. Just as in the case of 3d 

states, the width of the p states of Mn in the gap increases together with Mn concentration in 

(Ga,Mn)N. 

 

Fig. 3.10. Density of 4p states of Mn in zinc-blende Ga1-xMnxN (x=0.25, 0.125, 0.0625, 
0.0315) [4]. Electron states with spin up (upper part) and spin down (lower part of each 
figure) are shown. The vertical solid line at 0 eV denotes the Fermi level. 

 

 

One can estimate the relative contributions of the p-d hybridization and of the overlap 

of 3d orbitals to the density of Mn p states in the gap of (Ga,Mn)N. For this purpose, the total 

number of p states with spin up (Np
up) and spin down (Np

down) were calculated for different 

concentrations of Mn in (Ga,Mn)N, i.e. an integration of Mn p states with spins up and down 

was performed for (Ga,Mn)N crystals with different distances between the Mn atoms. The 

functions Np
up(x) and Np

down(x) are shown in fig. 3.11. As we see, the number of p states in the 
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gap decrease when the overlap of the 3d orbitals of Mn decrease. At a certain concentration of 

Mn the overlap becomes too small to influence the number of p states. In other words the 

derivatives of the functions Np
up(x) and Np

down(x) should be close to 0 when the concentration 

x of Mn is close to 0: 

 

0)0( →→x
dx

dN p .                                                   (3.3) 

 

Let us find the functions Np
up(x) and Np

down(x) which correspond to the calculated values 

shown in fig. 3.11 by symbols, and which satisfy the requirement (3.3). These functions are 

shown by solid lines in fig. 3.11. The p states of Mn which total number is Np
up(0) and 

Np
down(0) are not related to the overlap of Mn d orbitals. These states arise from the p-d 

hybridization of Mn states induced by the tetrahedral crystal field. Contribution to the p states 

from the overlap of Mn d orbitals is smaller, but it becomes considerable at high 

concentration of Mn. 

 

Fig. 3.11. Total number of Mn 4p states with (a) spin up and (b) spin down in zinc-
blende Ga1-xMnxN as function of Mn concentration. The calculated values are shown by 
symbols [4]; interpolated values by a polynomial third power are shown by solid lines. 

 



CHAPTER III   Electronic properties of (Ga,Mn)N, (Ga,Mn)As and (Ge,Mn) 

 49 

3.3.2 Wurtzite (Ga,Mn)N 

 

Fig. 3.12. Band structure of wurtzite Ga1-xMnxN (x=0.0625) in ferromagnetic state [11]: 
(a) bands of electrons with spin up, (b) bands of electrons with spin down. The 3d-bands 
of Mn are shown by fat lines. The Fermi level is denoted by a horizontal line at 0 eV. 

 

The band structure (energy dispersion curves) of Ga1-xMnxN (x=0.0625) was calculated by the 

LMTO method [11]. The local spin density approximation was used to take into account 

exchange interaction and correlation between electrons. The band structure is similar to the 

band structure of zinc-blende (Ga,Mn)N (compare fig. 3.12 and fig. 3.6). Calculated value of 

the gap at Γ point is approximately 2.4 eV which is a bit higher than the calculated gap width 

in zinc-blende (Ga,Mn)N (2.3 eV) and considerably less than the experimental value of the 

gap width in wurtzite (Ga,Mn)N (3.5 eV, see tab. 3.2). As it was mentioned above, such an 

underestimation of the gap is typical of density functional calculations. 

The 3d bands (spin up) of Mn are situated in the gap of GaN. They are split by the 

exchange interaction and crystal field. The exchange interaction splits the 3d bands according 

to the direction of electron spin: electrons which spin magnetic moment points to the same 

direction as the magnetization of (Ga,Mn)N crystal have smaller total energy than electrons 

which have an opposite spin moment. Energy splitting between the 3d bands with spin up and 
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spin down is approximately 2 eV, the same splitting was found in the zinc-blende (Ga,Mn)N. 

As it was mentioned above in the case of zinc-blende (Ga,Mn)N, this splitting does not 

depend on the Mn concentration and it arises from the exchange interaction between the 3d 

electrons of the same Mn atoms. Thus this splitting does not depend on macroscopic magnetic 

properties of (Ga,Mn)N, i.e. it is present in ferromagnetic and paramagnetic (Ga,Mn)N 

crystals. 

In addition the 3d states of Mn are split by the tetrahedral crystal field induced by the 

four nearest neighbor N atoms. Although the distances between the four N atoms and the Mn 

atom are not the same in wurtzite (Ga,Mn)N, the distortion of the tetrahedron formed by the 

four N atoms is small. This distortion does not alter the tetrahedral symmetry of the crystal 

field. The tetrahedral crystal field splits the 3d states of Mn into a doubly degenerate e and a 

triply degenerate t2 bands. The distribution of 3d orbitals between these two bands are the 

same as in zinc-blende (Ga,Mn)N: the e band consist of x2-y2, 2z
2-x2

-y
2 orbitals, while the t2 

band is formed by xy, yz and xz orbitals (fig. 3.13, the 3d bands of Mn are shown by fat lines).  

 

 

Fig. 3.13. Band structure of wurtzite Ga1-xMnxN (x=0.0625) in ferromagnetic state, spin 
up [11]: (a) 3d(xy, yz, xz)-electrons of Mn, (b) 3d(x2-y2, 2z

2-x2
-y

2)-electrons of Mn. The 
3d-bands of Mn a shown by fat lines. The Fermi level is denoted by a horizontal line at 
0 eV. 
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It is worth to mention here that the axes x, y and z have the same orientation relative to the 

four N atoms as in zinc-blende (Ga,Mn)N. This allows us to affirm that the distribution of 3d 

orbitals between e and t2 bands in wurtzite (Ga,Mn)N is essentially the same in wurtzite and 

in zinc-blende (Ga,Mn)N. If we change orientation of the axes (for example, we put the z axis 

to be parallel to the c-axis of the crystal), then the content of the 3d bands will change. But it 

does not mean that the 3d states at the Fermi level have other nature in wurtzite (Ga,Mn)N, as 

it was erroneously mentioned in [12]. 

Total and partial densities of states in wurtzite (Ga,Mn)N shown in fig. 3.14 were 

calculated by the LAPW method implemented in the Wien2k package [13] using the 

generalized gradient approximation [14]. The Wien2k package also allows calculating the x-

ray absorption spectra. Therefore we apply this method now to obtain the band structure 

parameters which will be further used in interpretation of our x-ray absorption spectra of Mn 

in (Ga,Mn)N. 

Two wurtzite supercells (fig. 3.3a,b) with a Ga atom substituted by a Mn atom were 

used to simulate an uniformly doped Ga1-xMnxN with 6.25% and 12.5% of Mn. The ratio of 

muffin tin radii R(Mn)/R(N) = R(Ga)/R(N) was determined from the position of the minimum 

of the electron density between Mn and N atoms in zinc-blende (Ga,Mn)N [4]. The wave 

function in the muffin tin spheres was expanded using the spherical harmonics Yl
m and lmax 

was chosen to be 10. The same wave function was represented as series of plane waves [15] 

 

rKkik

K
e

V

rrrr

r
)(1 +=φ                                                             (3.4) 

 

out of the muffin tin spheres, and the Rmin·Kmax were chosen to be 7 (here Rmin is the least 

muffin tin radius, V is the volume of the supercell). Actually, the values of Rmin·Kmax and lmax 

should be determined for each material: these parameters should be large enough, so that the 

total energy should be stable when the parameters are increased. Comparison with results of 

other calculations performed by different methods shows that the chosen values of the 

parameters allow us to obtain good results. Convergence to self-consistency was achieved on 

a 9×9×4 and a 7×7×8 k-points mesh for 6.25% and 12.5% concentrations of Mn respectively. 

The total energy and the total charge in the Mn sphere were stable within 10-5 Ry and 10-5 e 

respectively for the last few iterations. 
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Fig. 3.14. Total and partial densities of states (DOS) in wurtzite Ga1-xMnxN (x=0.125, 
0.0625). Electronic states with spin up (upper part) and spin down (lower part of each 
figure) are shown. The total DOS is denoted by a solid line, 3d-states of Mn by a filled 
area, 2p-states of N by a dash line. The vertical solid line at 0 eV denotes the Fermi 
level. 

 

 

Just as in the zinc-blende (Ga,Mn)N, in wurtzite (Ga,Mn)N the t2(xy, yz, xz) orbitals of 

Mn interact stronger with the nearest-neighbor N atoms, and as a result the anti-bonding t2(xy, 

yz, xz) states are situated above the e(x2-y2, 2z
2-x2

-y
2) states [10]. Thus the e band (spin up) is 

filled by two electrons, while the t2 band (spin up) is partially empty. The Fermi level falls in 

the t2(spin up) band and it divides the band into filled and empty parts with the ratio 

approximately 2:1 (the calculated ratio is 1.90:1). Thus according to this simple reasoning the 

electronic configuration of Mn in (Ga,Mn)N should be 3d
4. This is confirmed by a direct 

calculation of the number of 3d electrons in the muffin tin sphere of Mn: the calculated 

population of 3d electrons is 4.29, this population is close to 4. Of course, the calculated value 

of electrons depends on the radius of muffin tin sphere of Mn. But as we will see later a 

reasonable choice of muffin tin radii (touching and not overlapping muffin tin spheres, the 

radii ratio should be quite natural and correspond to the minimum of charge density) allows us 

to obtain a good estimation for the valence state of transition elements. 
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Tab. 3.6. Calculated magnetic moments in wurtzite Ga1-xMnxN (x=0.125, 0.0625): total 
magnetic moment per one Mn atom (Mntot/1Mn), magnetic moment of Mn (MMn), 
magnetic moment of nearest-neighbor N atom (MN). 
 

concentration of Mn, x 
magnetic moment 

0.0625 0.125 
Mtot/1Mn(µB) 4.0 4.0 
MMn(µB) 3.21 3.22 

MN(µB) 
3N      1N 

-0.02    0.06 
3N      1N 

-0.01    0.05 
 

 

The calculated total magnetic moment per 1 Mn atom does not depend on the 

concentration of Mn in Ga1-xMnxN (x=0.0625, 0.125) and it equals to 4µB. Contributions from 

different atoms to the total magnetic moment are listed in tab. 3.6. The greatest part of total 

magnetic moment is localized in the muffin tin sphere of Mn. This confirms the conclusion 

about localization of 3d orbitals near Mn atoms. Magnetic moments of nearest-neighbor N 

atoms are not very large and they do not contribute essentially in the total magnetic moment. 

 

Fig. 3.15. Density of (a) 3d states and (b) 4p states of Mn in wurtzite Ga1-xMnxN 
(x=0.0625). Electron states with spin up (upper part) and spin down (lower part of each 
figure) are shown. The vertical solid line at 0 eV denotes the Fermi level. 
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In wurtzite (Ga,Mn)N, Mn atoms have the same tetrahedral local environment just as 

in zinc-blende (Ga,Mn)N and 4p orbitals of Mn acquire the t2 symmetry. Therefore the 4p-3d 

(t2) hybridization is permitted and a high intensity of p states appears in t2 bands with spins up 

and down. As it was shown above in the case of zinc-blende (Ga,Mn)N, this high density of p 

states in the gap is essentially due to the 4p-3d hybridization. Another contribution to the 

density arises from the overlap of 3d orbitals of nearest Mn atoms, but this contribution 

becomes essential only at high concentration of Mn (in order of 25%). The width of Mn 3d 

bands in the gap depends on the distance between nearest-neighbor Mn atoms: when the 

distance is more than 2a0 (a0 – is the lattice parameter of GaN), the 3d bands are very narrow. 

The bands become very wide when the distance is less than a0. 

 

Before turning to modeling of experimental spectra of (Ga,Mn)N, let us outline the 

main results obtained from the band structure calculations which are common for wurtzite and 

zinc-blende (Ga,Mn)N. 

 

 

1. The 3d states of Mn are situated in the band gap of (Ga,Mn)N; the 3d orbitals of Mn 

atoms are localized near the Mn atoms. 

2. The 3d states of Mn are split by the exchange interaction and crystal field. The 

exchange splitting (∆Eexc~2 eV) does not depend on the concentration of Mn in 

(Ga,Mn)N and it is due to the exchange interaction between the 3d electrons inside a 

Mn atom. This splitting therefore is present in the band structure of (Ga,Mn)N 

independently of macroscopic magnetic structure of the crystal. The crystal field caused 

by the four nearest-neighbor N atoms splits the 3d states of Mn into a doubly degenerate 

e band and a triply degenerate t2 band. The t2 band is placed above the e band. 

3. The Fermi level falls into the t2 band (spin up), the e band (spin up) is completely filled 

by 2 electrons, while the t2 band (spin up) is partially filled by 2 electrons. Thus the 

electronic configuration of Mn is 3d
4 in (Ga,Mn)N. 

4. The 4p-3d hybridization of Mn orbitals results in a high density of empty p states in the 

t2 bands with spins up and down in the gap of (Ga,Mn)N. A small contribution to the 

density arises from nearest-neighbor Mn atoms. 
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3.4 X-ray absorption spectra modeling 

Experimental x-ray absorption spectra of Mn in wurtzite Ga1-xMnxN are shown in fig. 1.3 (the 

Mn content is indicated in the figure). The spectra were measured at the K-edge of Mn (~6539 

eV) and x-ray absorption near-edge structure is shown only. An investigation of the extended 

x-ray absorption near-edge structure confirmed that Mn atoms substitute Ga atoms in the 

studied samples of wurtzite Ga1-xMnxN [5]. Therefore the results of band structure 

calculations described in this chapter can be used in an interpretation of experimental 

absorption spectra. 

The x-ray absorption near-edge structure (fig. 1.3) corresponds to transitions of 1s 

electrons of Mn to empty states above the Fermi level. Although there are other possible 

transitions in this energy range (for example transitions of 2s electrons) these transitions give 

only a very smooth contribution to the absorption spectrum while absorption caused by 

transitions of 1s electrons changes very much near the absorption K-edge. That is why the 

structure of the K-edge absorption spectra is determined by transitions of 1s electrons. Taking 

into account these transitions we can calculate the absorption coefficient µ(E) using the dipole 

approximation: 

 

)()( 14

2

41 sFpps EEnE +−⋅∇∝ ωψψµ he ,                             (3.5) 

 

here ψ1s is the wave function of a 1s electron, ψ4p is the wave function of a 4p empty state, n4p 

is the density of 4p states above the Fermi level, e is the light polarization. The x-ray 

absorption spectra of Mn in wurtzite Ga1-xMnxN (x=0.0625, 0.125) calculated using the 

formula (3.5) and the Wien2k code [13] are shown in fig. 3.16. 

The calculated spectra include transitions of 1s electrons to empty p states of Mn. As it 

was found above there are two bands of empty p states in the gap: t2 (spin up) and t2 (spin 

down). The two bands give rise to two intense absorption lines in the calculated spectra: line 

A2 (at 0 eV) corresponds to transitions to the band t2 (spin up) and line A3 (at 2 eV) is related 

to transition to the band t2 (spin down). The absorption lines are split by an energy interval ~2 

eV and actually this is the exchange splitting of 3d states described above. Two absorption 

lines separated by an interval ~2 eV are also present in the experimental x-ray absorption 
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spectra (fig. 1.3, a double line at 6540 eV). It is quite natural to attribute the double line in the 

experimental spectra to the transitions 1s-d(t2, spin up) and 1s-d(t2, spin down) described 

above. 

 

Fig. 3.16. Calculated x-ray absorption near-edge structure of Mn in wurtzite Ga1-xMnxN 
(x=0.0625, 0.125). 
 
 

To compare the theoretical and experimental results, the calculated spectra have to be 

broadened. The broadening of experimental spectra is related to finite widths of the 1s and 

final levels, as well as to the finite resolution of the monochromator. These factors can be 

taken into account by a convolution of the calculated spectra with Lorentz or Gauss functions. 

If the broadening of experimental spectrum is essentially related to finite widths of 1s and 

final states, the calculated spectrum has to be convoluted with the Lorentz function: 

 

22)2(
2

)(
ΓE

Γ
EL

+
=

π
,                                                   (3.6) 

 

where Γ is the full width at half maximum. The parameter Γ should be calculated according to 

the formula: 
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where h is the Plank’s constant, τh and τe are the lifetime of the 1s hole, which is left after 

excitation of 1s electron, and lifetime of exited electron correspondingly. Usually the lifetime 

of core hole is smaller for a deep level and greater for a shallow level. However this is not a 

rule without exceptions. For example the natural width (ћ/τh) of Mn 1s level is 1.16 eV, while 

the natural width of Mn 2s level is 2.62 eV [16]. This means that the lifetime of the 1s hole is 

greater than the lifetime of the 2s hole. 

While the lifetime of the core hole is independent on the photon energy, the lifetime of 

the excited electron changes very rapidly with the energy of the electron. If the photon energy 

is close to the absorption edge, the kinetic energy of the excited electron is small and such an  

electron has a long lifetime. Therefore the width of pre-edge features in x-ray absorption near 

edge structure is determined by the core hole lifetime and by resolution of the 

monochromator. The lifetime of the excited electron decreases very quickly when the photon 

energy increase [17]. This increases the broadening of x-ray absorption spectrum at higher 

energy because the second term in formula (3.7) becomes considerable as compared to the 

first one. For example, according to the energy dependence of the electron free path in solids 

[18], the lifetime of the excited electron (Ee=30 eV) is 1.7·10-16 sec, this lifetime corresponds 

to Γe=ћ/τe=3.9 eV. 

If the broadening of experimental spectrum is essentially related to finite resolution of 

the monochromator, the calculated spectrum should be convoluted with the Gauss function: 
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where Γ is the full width at half maximum. 

In the present case the natural width of the Mn 1s level is 1.16 eV, while the resolution 

of the monochromator is only 0.45 eV. Therefore the main contribution to the broadening 

arises from the natural width of 1s level and the calculated x-ray absorption spectra should be 

convoluted with the Lorentz function. Actually these two factors (natural width of core level 

and finite resolution of monochromator) should be taken into account to reproduce the 
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experimental broadening precisely. For this purpose the calculated spectra should be 

convoluted with the Voigt function, this function is a result of convolution the Lorentz 

function with the Gauss function. We will apply the Voigt function later in the study of 

distribution of Mn in (Ga,Mn)N where a careful description of the x-ray pre-edge features is 

necessary. 

The calculated x-ray absorption spectrum of Mn in wurtzite Ga1-xMnxN (x=0.0625) 

was convoluted with the Lorentz function (fig. 3.17): 

 

∫ −=Γ εεεµµ dLEE )()()( ,                                               (3.9) 

 

where µΓ is the absorption coefficient after the broadening. 

The broadening parameter Γ was adjusted to fit well the pre-edge features of the 

experimental spectrum. The obtained value of Γ is 1.44 eV. Actually the value of broadening 

changes with the photoelectron energy and it should be greater at higher energy. 

 

Fig. 3.17. Calculated x-ray absorption spectrum at the K-edge of Mn in wurtzite Ga1-

xMnxN (x=0.0625): before (gray line) and after (solid black line) broadening. The arrow 
marks the intensity assigned to unity in the comparison to normalized experimental 
spectra. 
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In order to compare the theoretical and experimental spectra with different concentrations of 

Mn the spectra should be normalized. The init intensity position for the spectrum is shown by 

an arrow in fig. 3.17. Finally a comparison of theoretical and experimental results can be 

performed. The calculated and experimental x-ray absorption spectra at the K-edge of Mn in 

wurtzite Ga1-xMnxN for x=0.0625 and 0.057 are shown in fig. 3.18. The two spectra have the 

same structure: the absorption lines A2 and A3 are separated by ~2 eV and the main 

absorption peak (B in fig. 3.18) is present in the both spectra. 

 

Fig. 3.18. K-edge x-ray absorption spectrum of Mn in wurtzite Ga1-xMnxN calculated 
for x=0.0625 (solid line), compared with the experimental spectrum for x=0.057 
(symbols). The inset shows the pre-edge structure. 

 

However there are several differences between the experimental and theoretical spectra. The 

main differences are: 

 

i. the calculation predicts absorption at 6543 eV (S line in fig. 3.18) which is not 

observed experimentally; 
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ii. an oscillatory structure above 6550 eV seems to be shifted down in energy in the 

calculated spectrum. 

 

Let us consider these discrepancies in detail. The absorption at 6543 eV (S line in fig. 3.18) in 

the calculated x-ray absorption spectrum corresponds to transitions of 1s electrons of Mn into 

4p states of the conduction band; it is clear from a comparison of fig. 3.15 and fig. 3.16. The 

experimental absorption coefficient equals to 0 at this energy (6543 eV) and therefore there 

are no really empty 4p states to the right of the double absorption line A2-A3. Thus the 

experimental results show that the 3d states (spin down) of Mn are deep in the gap, while 

according to the calculation 3d states (spin down) are near the top of the conduction band. 

This discrepancy may result from the underestimation of the width of the gap in the present 

calculation. The calculated gap is only 1.9 eV in the Γ point (the LAPW method implemented 

in the Wien2k package), while the experimental gap width is almost two times greater (3.5 

eV). An additional contribution to the underestimation of energy interval between the Mn 3d 

states (spin down) and the conduction band could arise from formation of the 1s core hole. 

This core hole is left behind exited 1s electron and the hole attractive potential can change the 

position of 3d states as compared to the conduction band: the influence of the potential can be 

different on localized 3d states and delocalized states of the conduction band and the energy 

shift to a low energy can be more significant for 3d states of Mn as compared to the shift for p 

states of the conduction band. As a result the energy interval between the 3d states and 

conduction band increases. 

The fundamental electronic state of (Ga,Mn)N was calculated in this work and multi-

electronic effects were not taken into account. However influence of the core hole partially 

can be taken into account if one introduces a rigid shift of about 2.6 eV between the 3d states 

of Mn and the conduction band. This translation shifts the absorption structure at 6543 eV (S 

field in fig. 3.18) to the position at 6545 eV where absorption is observed experimentally. In 

addition the calculated absorption coefficient has a minimum at 6543 eV in agreement with 

the experimental x-ray absorption spectra. Finally, this translation shifts the most intense peak 

of oscillatory structure (B in fig. 3.18) to the position where such a peak is observed at 6555 

eV. 

There is a very high density of 3d-states in the gap of (Ga,Mn)N (fig. 3.15). Therefore 

quadrupole transitions can contribute to the x-ray absorption in the gap. The intensity of the 
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quadrupole transitions can not be calculated using the same Wien2k package (this code does 

not support the calculation of the quadrupole transitions today), therefore a multiple-scattering 

approach was used to evaluate the quadrupole contribution to the K-edge absorption spectrum 

of Mn in (Ga,Mn)N (FDMNES package [19]). The FDMNES code allows calculating the x-

ray spectra. However the p-d hybridization of the Mn orbitals which is very important in our 

case can be treated more accurately using the LAPW method. In addition, the position of the 

Fermi level in the FDMNES method is an adjustable parameter. The position of the Fermi 

level changes significantly the pre-edge structure of the x-ray absorption spectrum. Arbitrary 

choice of the position of the Fermi level may lead to an erroneous interpretation of the pre-

edge features. However the Fermi level position is naturally obtained in the band structure 

methods (like the LAPW method): the total number of electrons in a crystal is fixed, so the 

position of the Fermi level can be calculated precisely after the band structure calculation. 

The matrix elements of the dipole and quadrupole transitions in (3.5) were calculated 

using the FDMNES package, while the ratio of Mn-3d and Mn-4p densities of states was 

calculated using the Wien2k package. The obtained ratio of intensities of the quadrupole and 

dipole transitions is: 

 

1.0≈
dipole

quadrupole

I

I
                                                    (3.10) 

 

Thus the x-ray pre-edge structure is mainly of dipole origin and the quadrupole transitions 

lead only to a small correction of the pre-edge structure. 

It is interesting to compare the x-ray absorption spectrum of Mn3+ in (Ga,Mn)N with 

the spectrum of Mn2+ in other diluted magnetic semiconductors where the valence state of Mn 

is 2+. It is well known that Mn atoms have valence 2+ in (Zn,Mn)Te. This semiconductor 

crystallizes in the zinc-blende crystal structure and therefore substitutional Mn atoms have 

tetrahedral atomic environment like in wurtzite (Ga,Mn)N. Also the band structure of 

(Zn,Mn)Te is very similar to the band structure of (Ga,Mn)N: the 3d states of Mn are split by 

the exchange interaction (fig. 3.19), there is a 4p-3d hybridization of Mn states [20]. However 

there is an important difference in the position of 3d states: in the case of (Zn,Mn)Te the 

states are in the valence band and they are filled by electrons (electronic configuration 3d
5). 

According to the proposed interpretation of the Mn pre-edge absorption structure the line A2 
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arises from transitions to the t2 band (spin up) of Mn. However this band is filled in 

(Zn,Mn)Te and transitions into this band are not possible. Thus the line A2 should disappear 

in x-ray absorption spectra of (Zn,Mn)Te. Indeed, the line A2 is not present in the x-ray 

absorption near-edge structure of Mn in (Zn,Mn)Te (fig. 3.20). Therefore it is possible to 

“see” experimentally whether the 3d states (spin up) of Mn are filled or not. This permits us to 

determine the valence state of Mn in diluted magnetic semiconductors. 

 

 

Fig. 3.19. Total density of states and density of Mn 3d states in Zn1-xMnxTe (x=0.25) 
[20]. The Fermi level is denoted by a vertical solid line at 0 eV. 
 
 

Not only structure but the absorption edge position also depends on valence state of Mn. The 

absorption edge in x-ray absorption spectra is defined as the energy where the absorption 

coefficient accounts for 50% of its value at high energy, where the absorption coefficient 

saturates (see E1 and E2 in fig. 3.20). Of course this definition does not allow us to calculate 

precisely the absorption edge position because the absorption coefficient does not saturate and 

a fine structure remains at high energy. However this definition allows us to calculate 

approximately the edge position and the precision of this approach is sufficient to distinguish 

different electronic states of transition metals in semiconductors. 
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Fig. 3.20. X-ray absorption near-edge structure of Mn in (upward): Ga1-xMnxN 
(x=0.057, n type), Zn1-xMnxTe:N (x=0.038, p type). The x-ray absorption spectra were 
recorded by X. Biquard et al. [5]. The edge positions of Mn in Mn2O3 and MnO2 from 
[5] are also shown. 

 

 

It was observed for many compounds that the absorption edge shifts down to low 

energy when the valence of a transition metal decreases (see for example [5] where x-ray 

absorption spectra of Mn oxides are shown). Such a shift is observed in x-ray absorption 

spectrum of Mn in (Zn,Mn)Te: the absorption edge of Mn in (Zn,Mn)Te is shifted down as 

compared to the edge of Mn in (Ga,Mn)N (fig. 3.20). This implies a higher valence state of 

Mn in (Ga,Mn)N while the valence state of Mn in (Zn,Mn)Te is known to be 2+. A 

comparison absorption edge positions in different materials (edge positions of Mn in Mn2O3 

and in MnO2 are shown in fig. 3.20) confirms the 3+ valence state of Mn in (Ga,Mn)N [5]. 

In that way the calculated band structure agrees well with experimental data obtained 

on wurtzite (Ga,Mn)N epilayers. The calculation allow us to obtain a link between the band 

structure parameters and x-ray absorption near-edge structure of (Ga,Mn)N crystal. In 

particular, according to the interpretation of x-ray absorption near-edge structure of Mn, the 

first pre-edge line (A2 in fig. 3.18) is due to transitions of 1s electrons to the t2 band (spin up) 

of Mn, while the second pre-edge line (A3 in fig. 3.18) is due to transitions to the t2 band (spin 
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down). The presence of the line A2 in x-ray absorption spectrum means that the 3d states (spin 

up) are not completely filled. The calculated population of 3d electrons near a Mn atom in 

(Ga,Mn)N is 4.29 e. This value points to the 3d
4 electronic configuration and 3+ valence state 

of Mn in (Ga,Mn)N. The exchange splitting of the 3d states of Mn can be determined from the 

x-ray absorption spectra: it is 1.8 eV, it equals to the energy splitting between the absorption 

line A2 and A3. 

 

 

 

3.5 Optical absorption spectra modeling 

The valence state of Mn in (Ga,Mn)N can be also determined from optical absorption spectra 

of the semiconductor. An optical method has a number of important advantages as compared 

to x-ray absorption measurements and the method is very useful in studies of electronic 

properties of materials. Relatively low cost and high speed are two among the advantages. 

Another important advantage is a very high resolution that can be achieved in optical 

measurements which can be of the order of 0.5 meV [21]. This value has to be compared to 

the resolution obtained in x-ray absorption spectra (~1.5 eV for K-edge of Mn). Thus optical 

absorption allows a much more precise investigation of the electronic structure. However 

there is also an important shortcoming of optical methods: optical spectra are generally quite 

difficult to interpret. The hole which is left behind an excited electron is very close (in energy 

and in space) to the final state of the electron and the influence of the hole on the final state is 

not taken into account in modern ab-initio methods. At the same time this is not a critical 

problem in the case of x-ray absorption spectra since the core hole is very deep and often its 

influence can be taken partially into account (for example the FDMNES code [19] permits to 

treat the core hole). 

So each method has its advantages and shortcomings and as usual the best is to use 

different methods which are more appropriate to solve a particular problem. Here I describe 

briefly an “optical” approach to solve the problem of the valence state and distribution of Mn 

in (Ga,Mn)N. As it will be shown later, optical absorption measurements also allow to study 

distribution of Mn in (Ga,Mn)N. 
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Optical absorption spectra of ions in different electronic configurations are quite 

different: absorption spectrum of Mn3+ ions contains a set of characteristic lines which are 

absent in the spectrum of Mn2+ ions. One of these characteristic lines of Mn3+ ions was 

theoretically found in [4]. The presence of this line in optical absorption spectra of (Ga,Mn)N 

was confirmed experimentally by several research groups [21,22,23]. According to the 

interpretation of the spectra proposed in [4], the absorption line is due to electronic transitions 

from the e band (spin up) to the t2 band (spin up) of Mn. These transitions are only possible if 

the t2 band (spin up) is not filled by electrons. Therefore the absorption line is indeed a 

characteristic line of Mn3+ ions (in the case of Mn2+ the t2 band is filled). Let us consider the 

optical spectra modeling in detail. 

Optical absorption of a solid can be described using the imaginary part of permittivity: 

 

)()()( 21 ωεωεωε i+= .                                                (3.11) 

 

Actually the permittivity is not a scalar quantity but a symmetric tensor of second order εij(ω) 

and as every symmetric tensor of second order it can be diagonalized by an appropriate choice 

of the coordinate system [24]: 
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The diagonal components of permittivity are equal each to other in cubic crystals 

 

εεεε === zzyyxx .                                                   (3.13) 

 

Therefore optical absorption in cubic crystals can be described by one quantity – the 

imaginary part of the diagonal matrix element (ε2). The imaginary part of permittivity as a 

function of photon energy calculated for zinc-blende Ga1-xMnxN (x=0.0625, homogeneous 

distribution of Mn) [25] is shown in fig. 3.21. 
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Fig. 3.21. Calculated imaginary part of the permittivity as a function of photon energy 
for zinc-blende Ga1-xMnxN (x=0.0625, homogeneous distribution of Mn) [25]. The 
intense absorption line at 1.3 eV is caused by internal electronic transitions of Mn from 
e band to t2 band. 

 

 

A very intense absorption line should be observed at 1.3 eV according to the 

calculation. An analysis performed in [4] shows that 95% of absorption at this energy are 

related to electronic transitions from the e band (spin up) to t2 band (spin up). As we know the 

density of 4p states in e band (spin up) is close to 0. At the same time 4p orbitals of Mn are 

hybridized with 3d (t2, spin up) orbitals in tetrahedral crystal field. Because of this 

hybridization electronic transitions from e band (spin up) to t2 band (spin up) are permitted by 

the dipole selection rule: 

 

1±=∆l .                                                                    (3.14) 

 

Therefore the absorption line at 1.3 eV could be very intense and it should be observed in 

experimental optical absorption spectra. 

The crystal field has the tetrahedral symmetry in wurtzite (Ga,Mn)N and the 4p-3d 

hybridization of Mn orbitals results in a high intensity of p states in t2 bands. Therefore the 
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intense absorption line at 1.3 eV should be observed in both zinc-blende and wurtzite 

(Ga,Mn)N. 

Experimental investigations confirmed the presence of the intensive absorption line in 

optical spectra of wurtzite (Ga,Mn)N [21,22,23]. The optical absorption measurements show 

that this line is actually at 1.4 eV. Also it was shown that the absorption line is characteristic 

of Mn3+ ions. To prove it, Si atoms were incorporated in (Ga,Mn)N layers [23]. It is well 

known that Si has four valence electrons and it is an effective donor in (Ga,Si)N. Therefore 

incorporation of Si atoms in (Ga,Mn)N results in a raise of Fermi level and a change of Mn 

valence state from 3+ to 2+. If Mn has 2+ valence state in (Ga,Mn)N the t2 band (spin up) is 

filled and electronic transitions to this band are impossible. In this case the absorption line is 

not observed in experimental spectra of (Ga,Mn,Si)N [23]. Thus presence of the absorption 

line in experimental optical absorption spectra of (Ga,Mn)N points to a high concentration of 

Mn3+ in investigated (Ga,Mn)N samples. 

The crystal splitting between the e and t2 bands (spin up) obtained from the ab-initio 

calculation can be checked using the optical absorption spectra: the position of the absorption 

line in the experimental optical absorption spectra (1.4 eV) equals to the crystal splitting 

between the e and t2 bands (spin up). According to the ab-initio calculation [25], the splitting 

is 1.3 eV, close to the experimental value 1.4 eV. 

X-ray absorption near-edge structure at the K-edge of Mn in (Ga,Mn)N was presented 

in the chapter I. It was shown that the double structure in the spectra points to 3+ valence state 

of Mn atoms. Optical absorption measurements performed on the same samples confirm this 

conclusion [21]: the intensive absorption line is observed in optical absorption spectra 

implying a high concentration of Mn3+ ions. 

 

 

 

3.6 Transport properties (Ga,Mn)N 

Important information about donor and acceptor impurities in a crystal can be obtained 

from transport measurements. Hall voltage measurements allow determining the 

concentration of carriers in a crystal. The mobility of the carriers can be calculated using the 
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carrier concentration and the conductivity of the crystal. Additional information can be 

deduced from Hall measurements at different temperatures. Such measurements permit to 

distinguish metals from semiconductors. For semiconductors the impurity activation energy 

can be determined from the temperature dependence of the carrier concentration n(T). 

Epitaxial layers of wurtzite GaN have n type conductivity. In pure GaN crystals the 

valence band should be filled and the conduction band separated by the gap from valence 

band should be empty. Therefore no conductivity is expected in this case and the GaN crystals 

should be insulating. The observed conductivity of n type can be related to donor defects 

which form shallow levels near the top of the conduction band. Atoms of Si [26], O [27] and 

N vacancies [26] are considered as possible donors in GaN. At room temperature these 

defects are ionized and the liberated electrons pass to the conduction band. The electrons 

become free and they can contribute to electrical conductivity. 

At the same time Mg is an usual acceptor in (Ga,Mg)N.  Incorporation  of  Mg  in  

Ga1-xMgxN, with the concentration x=0.0005 only, results in a change of conductivity type 

and the (Ga,Mg)N layers have p type conductivity [28]. A completely different behavior is 

observed when Ga atoms are replaced by Mn atoms in (Ga,Mn)N: wurtzite (Ga,Mn)N layers 

have n type conductivity just as wurtzite GaN layers. Our transport measurement show that 

the electron concentration in such (Ga,Mn)N layer is ~1018 cm-3 and it does not correlate to 

the Mn concentration. The Mn concentration range in these samples was very wide: from 

x=0.003 to 0.057. Therefore it is quite difficult to explain such an independence of electrical 

properties of the (Ga,Mn)N layers if Mn is an acceptor or a donor in (Ga,Mn)N. It is 

interesting to note that co-doping of the (Ga,Mn)N samples by Mg changes significantly their 

properties: the samples became insulating [27]. Thus the performed transport measurements 

of (Ga,Mn)N layers confirm results of x-ray and optical investigations: Mn impurity is neither 

acceptor (Mn2+) nor donor (Mn4+) in (Ga,Mn)N; therefore the Mn has the neutral electronic 

configuration Mn3+ in (Ga,Mn)N. 

Experimental investigations show that the electronic state of Mn changes under donor 

co-doping: Mn ions capture the extra electrons and become Mn2+ [23]. As it was shown 

previously (fig. 3.14) the 3d states of Mn3+ are localized near Mn ions and do not contribute to 

electrical conductivity. An experimental demonstration of this statement can be found in [22] 

where the 3+ valence state of Mn was found in Ga1-x-yMnxMgyN samples and the samples 

were insulating. So if the Mn2+ ions also do not participate in electrical conductivity then it is 
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quite difficult to explain the residual n type conductivity observed in (Ga,Mn)N samples 

[22,29]. Thus it is quite natural to suppose that “excited” Mn2+ ions participate in the n type 

conductivity. Actually the specific mechanism of the conductivity is still unknown. 

 

 

 

3.7 Distribution of Mn atoms in (Ga,Mn)N 

Magnetic properties of (III,Mn)V diluted magnetic semiconductors strongly depend on the 

valence state of the magnetic impurity because the strength of magnetic interactions between 

magnetic ions depends on the concentration of holes (or electrons). Such a dependence is 

observed in (Ga,Mn)As crystals: p type (Ga,Mn)As layers are ferromagnetic while electrically 

compensated (Ga,Mn)As layers exhibit antiferromagnetic properties [30]. 

Another important factor influences magnetic properties of DMSs – it is the specific 

distribution of magnetic impurities in the crystal lattice. Semiconductors can be ferromagnetic 

or antiferromagnetic depending on the distances between neighbor Mn atoms. For example, it 

was shown that neighboring interstitial and substitutional Mn atoms may be 

antiferromagnetically coupled in (Ga,Mn)As [31] while (Ga,Mn)As epitaxial layers with a 

homogeneous distribution of Mn are ferromagnetic.  

In (Ga,Mn)N epitaxial layers, Mn atoms substitute Ga atoms. The substitutional 

position of Mn in (Ga,Mn)N was confirmed be extended x-ray absorption fine structure 

measurements at K-edge of Mn [5]: high energy oscillations in x-ray absorption spectra of Mn 

caused by photoelectron wave reflections from neighbor atoms. Simulation of the spectra 

permits to determine the number of neighbor atoms and the distances to them. Thus a crystal 

can be locally reconstructed around the Mn atoms using the x-ray absorption measurements. 

However different adjustable parameters are used in such a simulation: numbers of first and 

second neighbors, distances to them and etc. Therefore it is difficult to state from the 

simulation that Mn atoms do not form closest substitutional pairs in (Ga,Mn)N. To “see” a 

neighbor Mn atom one needs to distinguish the contribution to EXAFS oscillations of a Mn 

atom from the contribution of other 11 neighbor Ga atoms. 
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It is interesting to note that the information about Mn-Mn closest pairs formation in 

(Ga,Mn)N can be obtained from near-edge part of x-ray absorption spectra. The EXAFS 

oscillations are not sensitive to the occurrence of one Mn atom among other 11 neighbor Ga 

atoms because of the significant contribution of the Ga atoms to the EXAFS oscillations. The 

density of 3d states in the gap of GaN is determined by Mn atoms only, neighbor Ga atoms do 

not contribute to the density. Therefore the pre-edge double line in x-ray absorption spectra of 

Mn described in previous sections should be sensitive to the occurrence of a neighbor Mn 

atom. 

As it was mentioned above, the width of 3d bands in the gap depends on the 

concentration of Mn in (Ga,Mn)N, i.e. it depends on the distance between nearest neighbor 

Mn atoms. When the distance is very large (a few lattice parameters), the 3d bands are 

narrow. The width of 3d bands increases together with the concentration of Mn. If Mn atoms 

form closest substitutional pairs (or chains) in (Ga,Mn)N the 3d bands should be very wide. 

The bands of p states in the gap also become wider together with the 3d bands. 

These effects were confirmed by a band structure calculation performed for zinc-

blende (Ga,Mn)N in [25]. An orthorhombic supercell 2√2a0·√2a0·2a0 was used in the 

calculation; here a0 is the lattice parameter of GaN. Two Ga atoms were replaced by Mn 

atoms in the supercell, hence this supercell corresponds to a Ga1-xMnxN crystal with a Mn 

concentration x=0.0625, the ferromagnetic alignment of spins of the atoms was assumed. The 

distance between the two nearest neighbor Mn atoms in the supercell is a0/√2. This is the 

smallest possible distance between two substitutional Mn atoms in zinc-blende (and in 

wurtzite) (Ga,Mn)N. 

The density of Mn 4p states in zinc-blende Ga1-xMnxN (x=0.0625) with a 

homogeneous distribution of Mn is shown in fig. 3.22a (the same density was shown in fig. 

3.10c). In this case the overlap of 3d orbitals of neighbor Mn atoms is small. The 3d bands are 

very narrow and they are in the band gap. The 4p orbitals of Mn are hybridized with the 3d 

orbitals and there is a high density of empty p states in the t2 bands with spins up and down. 

Electronic transitions to the narrow 3d bands are present in x-ray absorption spectra as the 

double pre-edge line (fig. 3.22c). 

The picture described above changes significantly when Mn atoms form close pairs in 

(Ga,Mn)N (fig. 3.22b). Overlap between 3d orbitals of nearest neighbor Mn atoms is more 

important in this case and the t2 bands of Mn becomes wider. Electronic transitions to the 
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bands are possible but they should result in a single wide absorption line in x-ray absorption 

spectra (fig. 3.22d). Therefore one should observe one broad pre-edge line in x-ray absorption 

spectra of Mn if all Mn atoms form close pairs (or chains). This permits us to determine the 

distribution of Mn in (Ga,Mn)N using x-ray absorption spectra. 

 

Fig. 3.22. Density of 4p states of Mn in zinc-blende Ga1-xMnxN (x=0.0625): (a) 
homogeneous distribution of Mn [4]; (b) Mn atoms forming close pairs (the distance 
between two Mn is a0/√2) [25]; (c) sum of densities (spins up and down) of p states 
shown in the fig. a convoluted with the Lorentz function (parameter Γ=1.44 eV); (d) 
sum of densities (spins up and down) of p states shown in the fig. b convoluted with the 
Lorentz function (parameter Γ=1.44 eV). 
 
 

Let us estimate the precision of the method when some Mn atoms are distributed 

homogeneously in (Ga,Mn)N but other Mn atoms form close pairs. In this case the pre-edge 

absorption structure in fig. 3.22c is superimposed to the pre-edge structure in fig. 3.22d. To 

perform this estimation it is very important to obtain a good fit of the pre-edge absorption 

double lines in experimental x-ray absorption spectra, therefore the core lifetime and the finite 

resolution of the monochromator will be taken into account (the pre-edge structure was fitted 
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using the Lorentz function only in the previous figures). Thus the calculated x-ray absorption 

spectrum is broadened now by the Voigt function [32]: 

 

∫ −= εεε dΓELΓGΓΓEV LGLG ),(),(),,( ,                                   (3.15) 

 

here ΓL and ΓG are natural the width of 1s level and resolution of the monochromator 

correspondingly (see formulas 3.6 and 3.8). 

The resolution of the monochromator was estimated from a fit of pre-edge structure of 

Mn in Ga1-xMnxN (x=0.003). The Mn concentration in the sample is very low and the width of 

3d bands was chosen to be 0.01 eV. The natural width of 1s core hole (ΓL) was fixed to 1.16 

eV [17], it is expected that this value does not depend on the host semiconductor. The lifetime 

of exited photoelectron with small energy is expected to be very long and therefore the 

broadening caused by the photoelectron is very small. That is why this broadening was 

neglected in the fit. Then there is only one broadening parameter to be found – the resolution 

of the monochromator (ΓG). A good fit of the pre-edge structure was obtained using ΓG=0.50 

eV (fig. 3.23a). Energy positions and intensities of the two absorption line (A2 and A3) were 

adjusted. 

The obtained broadening parameter ΓG=0.50 eV was further used to fit experimental 

pre-edge structure of Mn in Ga1-xMnxN (x=0.057). Now interaction between neighbor Mn 

atoms should be taken into account, so the calculated pre-edge structure for Ga1-xMnxN 

(x=0.0625, fig. 3.16) was used to fit the experimental spectrum. The obtained fit is shown in 

fig. 3.23b. Energy positions and intensities of the two absorption line (A2 and A3) were 

adjusted. It is worth to remember that the pre-edge structure was calculated using a supercell 

with a homogeneous distribution of Mn. The good fit of experimental pre-edge structure 

indicates a homogeneous distribution of Mn in Ga1-xMnxN (x=0.057) sample. 

Let us consider a mixed distribution of Mn: 50% of Mn atoms are distributed 

homogeneously and other 50% of Mn atoms form close pairs. Superposition of the two x-ray 

absorption spectra shown in fig. 3.22d and 3.23b results in the spectrum presented in fig. 

3.24a. The spectrum differs from the x-ray absorption spectrum of homogeneously distributed 

Mn atoms (fig. 3.23b). And this mixed distribution of Mn in (Ga,Mn)N can be distinguished 

from the homogeneous distribution. However the low resolution of x-ray absorption spectra 

(cased by the natural width of 1s level – 1.16 eV) limits the precision of the method. For 
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example x-ray absorption spectrum of (Ga,Mn)N with 70% homogeneously distributed Mn 

atoms will be  

 
Fig. 3.23. (a) Experimental x-ray absorption structure of Mn in Ga1-xMnxN (x=0.003, 
symbols) and a fit of the spectrum (solid line), the resolution of monochromator is 
found to be 0.50 eV from this fit, the natural width of 1s core hole is assumed to be 1.16 
eV; (b) experimental x-ray absorption structure of Mn in Ga1-xMnxN (x=0.057) and a fit 
of the spectrum using calculated widths of the 3d bands of Mn in Ga1-xMnxN 
(x=0.0625). The same values of the monochromator resolution (0.50 eV) and of the 
natural width of 1s level (1.16 eV) were used. 

 
Fig. 3.24. Superposition of the fit in fig. 3.23b (homogeneous distribution of Mn) and 
calculated x-ray absorption spectrum of Mn in Ga1-xMnxN (x=0.0625) where pairs of 
Mn are formed (fig. 3.22d): (a) 50% and (b) 70% of Mn atoms are distributed 
homogeneously. The superposition is denoted by a solid line. Experimental pre-edge 
absorption structure of Mn in Ga1-xMnxN (x=0.057) is shown by symbols. 
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hardly distinguished from the spectrum of (Ga,Mn)N with 100% homogeneously distributed 

Mn atoms (fig. 3.24b). 

Information about the distribution of Mn in (Ga,Mn)N can be also obtained from 

optical absorption spectra. The optical method has an advantage over the x-ray absorption 

method because of a higher resolution of optical spectra. The absorption line at 1.3 eV (fig. 

3.21) corresponds to electronic transitions from e (spin up) to t2 bands (spin up) in (Ga,Mn)N. 

In (Ga,Mn)N with a homogeneous distribution of Mn, the e and t2 bands are situated in the 

band gap. The e and t2 bands are very narrow in Ga1-xMnxN with a low concentration of Mn 

(x<0.001). However in Ga1-xMnxN (x=0.0625) with a homogeneous distribution of Mn the e 

and t2 bands are wider and the calculated width of the absorption line at 1.3 eV is 0.25 eV 

[25], this width is determined by the overlap of the 3d orbitals of nearest neighbor Mn atoms. 

In experimental optical absorption spectra measured on a Ga1-xMnxN (x=0.06) sample at low 

temperature (fig 3.3 in [33], T=5K, the sample is similar to other (Ga,Mn)N samples studied 

by the x-ray absorption spectroscopy in precedent chapters) the width of the absorption line is 

also  0.25 eV,  this  value  coincide  with  the  calculated  width  of  the  absorption  line  in  

Ga1-xMnxN (x=0.0625) with homogeneous distribution of Mn. Therefore the experimental 

measurements confirm a homogeneous distribution of Mn in (Ga,Mn)N epilayers. 

The band structure of (Ga,Mn)N crystals where Mn atoms form close pairs differs 

from the band structure of (Ga,Mn)N with a homogeneous distribution of Mn. The main 

differences are: (i) the density of states decreases in the center and increases in the sides of the 

t2 band (spin up) [34]; (ii) the e band (spin up) is shifted to the valence band and it become 

wider [25]. The first change of band structure leads to occurrence of an intensive absorption 

line at 0.5 eV (fig. 3.25) which arises from internal transitions in the t2 band (spin up) [34]. 

This absorption line was not observed experimentally. The second change leads to a 

broadening and a shift of the absorption line from 1.3 eV to 1.5 eV. The broadening is caused 

by hybridization the e band (spin up) with the valence band. The calculated width of the 

absorption line at 1.5 eV is about 0.4 eV. This broadening is not observed in experimental 

optical spectra: as it was mentioned above the experimentally observed line width is only 0.25 

eV. 

Thus one can conclude that the distribution of Mn in (Ga,Mn)N samples is essentially 

homogeneous. This result is confirmed by x-ray absorption as well as optical absorption 

measurements. 
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Fig. 3.25. Imaginary part of permittivity as a function of photon energy calculated for 
zinc-blende Ga1-xMnxN (x=0.0625, Mn atoms form close pairs) [25]. The intensive 
absorption line at 1.5 eV is caused by internal electronic transitions of Mn from e band 
to t2 band. 

 

 

 

3.8 Electronic properties of (Ga,Mn)As 

The (Ga,Mn)As semiconductor is intensively studied during last years and a lot of 

experimental results obtained on (Ga,Mn)As samples are available now. These results will be 

useful for the study of (Ga,Mn)N. Also the band structures of (Ga,Mn)As and (Ge,Mn) 

semiconductors are similar. Therefore these results allow us to predict electronic properties of 

(Ge,Mn). In addition some limitations of the ab-initio calculations will be shown: an ab-initio 

calculation of (Ga,Mn)As properties predicts an absorption line in x-ray absorption spectra 

which is not observed experimentally. That is why I present here my results of ab-initio 

calculations performed for (Ga,Mn)As semiconductor. 

 

The diluted magnetic semiconductor (Ga,Mn)As crystallizes in the zinc-blende structure 

shown in fig. 3.1 where N atoms have to be replaced by As atoms. Every Ga atom has four 

nearest neighbor As atoms which form a regular tetrahedron around the Ga atom. The second 
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neighbors of every Ga atom are twelve other Ga atoms which are placed at the same distance 

from the central Ga atom (tab. 3.7). 

 

Tab. 3.7. Crystal structure and band parameters of zinc-blende GaAs. 
 

parameter value reference 
band gap at T=300K (eV) 1.420 – 1.435 [2] 
lattice parameters at T=300K (Å)  5.65 [2] 
crystal volume per 1 atom (Å3) 22.58 calculation 
number of nearest neighbors for a Ga atom 
distance to the atoms (Å) 

4 atoms of As 
2.45 

calculation 

number of second neighbors for a Ga atom 
distance to the atoms (Å) 

12 atoms of Ga 
4.00 

calculation 

 

 

The gap of GaAs (EG=1.4 eV) is smaller than the gap of GaN (EG=4.3 – 4.5 eV). This 

difference between the gap widths leads to a complete merging of Mn 3d bands (spin up) with 

the valence band. The Fermi level is pinned in the top of the valence band and the 3d bands 

(spin up) of Mn are filled by 5 electrons. Such a change of electronic state of Mn (Mn atoms 

have 3d
4 electronic configuration in GaN) leads to a change in electrical, optical and magnetic 

properties of (Ga,Mn)As. Let us consider the electronic structure of (Ga,Mn)As in detail. 

 

 
 
 

Fig. 3.26. Supercells of zinc-blende Ga1-xMnxAs with Mn concentration (a) x=0.125 and 
(b) x=0.25 were used in the band structure calculation. Only Mn atoms are shown in the 
supercells. 
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Tab. 3.8. Lengths of primitive translation vectors for the tetragonal and cubic supercells 
of (Ga,Mn)As (fig. 3.26), a0 – lattice parameter of GaAs. 
 

concentration 
of Mn atoms, x 

a b c 

0.125 √2a0 √2a0 a0 
0.25 a0 a0 a0 

 
 

The tetragonal supercell of (Ga,Mn)As were used in band structure calculation of Ga1-xMnxAs 

(fig. 3.26a). Primitive translation vectors for the supercell are listed in tab. 3.8. This cell 

maintains  1 Mn  atom,  7 Ga  and  8 As  atoms.  Therefore  the  concentration  of  Mn  in  

Ga1-xMnxAs crystal based on the supercell is 0.125. 

A smaller supercell was used to optimize the lattice parameter and the distances Mn-

As between Mn atoms and nearest neighbor As atoms (fig. 3.26b). The supercell maintains 1 

Mn atom, 3 Ga and 4 As atoms, so the concentration of Mn is 0.25. The total energy as a 

function of supercell volume was calculated to optimize the lattice parameter a0 (fig. 3.27). A 

minimum of the E(V) function corresponds to the optimal value of lattice parameter. The E(V) 

function calculated by LAPW method [13] using the generalized gradient approximation [14] 

is shown in fig. 3.27. In addition several grids in reciprocal k-space were used to estimate 

necessary number of k-points to obtain a parabolic like dependence of the E(V) function. 

 
Fig. 3.27. Total energy of Ga1-xMnxAs (x=0.25) supercell as a function of the cell 
volume calculated on 8:8:8 (squares) and 12:12:12 (circles) meshes in reciprocal k-
space. Solid line denotes a fit of the E(V) function by a polynomial of third degree. 
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The E(V) function calculated on the 8:8:8 mesh is shown by squares in fig. 3.27. This mesh 

was constructed in the following way. The first Brillouin zone of a cubic primitive lattice is a 

cube. Each from the three orthogonal cube edges (along the kx, ky and kz axes) are divided by 

8 k-points with an equal distance between two neighbor points. All combinations of these k-

coordinates (kx, ky, kz) constitute the mesh 8:8:8. It is clear from fig. 3.27 that the mesh is not 

sufficiently fine to reproduce the parabolic like dependence of E(V) function. A better result 

for E(V) function an be obtained on a 12:12:12 mesh. The Brillouin zone of Ga1-xMnxAs 

(x=0.125) crystal is two times smaller than the Brillouin zone of Ga1-xMnxAs (x=0.25), 

therefore less k-points are necessary to perform a good calculation. 

The calculated value of lattice parameter which corresponds to the minimum of total 

energy is a0=5.744Å. This value is 1.7% greater than the experimental lattice parameter of 

GaAs (see tab. 3.7). Actually, the optimal value of lattice parameter obtained using the 

generalized gradient approximation is usually greater than experimental value of the 

parameter [29]. However such an increase of lattice parameter usually does not lead to a 

significant change in the band structure. 

The Mn atoms incorporated in (Ga,Mn)As locally distort the crystal lattice. An 

EXAFS simulation of the K-edge absorption spectra of Mn shows, that Mn-As distance 

between a Mn atom and its nearest neighbor As atoms in (Ga,Mn)As is 2.2% greater than Ga-

As distance in GaAs [35]: Mn atoms push away neighbor As atoms. At the same time the 

distance from Mn to second neighbors (Ga atoms) remains essentially the same. To take into 

account this distortion an optimization of As positions around a Mn atom was performed. The 

Mn-As was changed and the force F(dMn-As) acting to the As atoms was calculated. The 

optimal distance dMn-As should be a root of the equation: 

 

0)( =−AsMndF .                                                        (3.16) 

 

This optimization shows that the dMn-As distance is 0.4% greater than the experimental value 

of dGa-As distance in GaAs (the optimized dMn-As distance was calculated using the optimized 

value of the lattice parameter a0=5.744Å). However according to EXAFS measurement the 

dMn-As distance in (Ga,Mn)As is 2.5% greater than the dGa-As distance in bulk GaAs (a0=5.65Å 

of bulk GaAs). According to the Vegard’s law the lattice parameter of Ga1-xMnxAs (x=0.125) 

should  be  a0=5.68Å  [30].  Therefore  we  used  an  underestimated  lattice  parameter  of  
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Ga1-xMnxAs (x=0.125) to obtain the theoretical value of the dMn-As distance and this may 

explain the huge difference between the theoretical and experimental dMn-As distances. Thus 

we conclude that the experimental lattice parameter of a crystal should be used to obtain real 

values for local distortions by impurity atoms. 

The band structure of Ga1-xMnxAs (x=0.125) was calculated by the LAPW method 

[13] using the generalized gradient approximation [14] and the tetragonal supercell (fig. 

3.26a). The wave function in the muffin tin spheres was expanded using the spherical 

harmonics Yl
m and lmax was chosen to be 10. The same wave function was represented as 

series of plane waves out of the muffin tin spheres, and the Rmin·Kmax were chosen to be 7 

(here Rmin – is the least muffin tin radius). Convergence to self-consistency was achieved on a 

8×8×12 k-points mesh. The total energy was stable to within 10-5 Ry last a few iterations. 

Dispersion curves of energy with spin up and down are shown in fig. 3.28a and 3.28b 

correspondingly. The 3d states of Mn are shown by fat lines. 

 
 

Fig. 3.28. The band structure of zinc-blende Ga1-xMnxAs (x=0.125) in ferromagnetic 
state. Electronic states (a) spin up and (b) spin down are shown. The 3d states of Mn are 
denoted by fat line. The Fermi level is shown by a horizontal line at 0 eV. 
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The gap is very narrow in GaAs and the wide 3d bands of Mn cover the gap field in this 

calculation. The effective mass of Mn 3d electrons should be smaller in (Ga,Mn)As than in 

(Ga,Mn)N because the 3d bands are wider in (Ga,Mn)As. In addition the width of the 3d 

bands points to a delocalization of 3d electrons with spin up in (Ga,Mn)As. 

The exchange interaction of 3d electrons splits the 3d states of Mn with different 

direction of spin: the electrons whose spin points to the direction of magnetization (spin up) 

have smaller energy. In addition the 3d states are split by the crystal field caused by the four 

nearest neighbor As atoms. Just as in (Ga,Mn)N, the Mn atoms in (Ga,Mn)As are surrounded 

by four As atoms which form a tetrahedron around a Mn atom. The crystal field splits the 3d 

states into e and t2 bands. Total and partial densities of states in ferromagnetic Ga1-xMnxAs 

(x=0.125) are shown in fig. 3.29. The 3d states (spin up) are situated in the valence band; they 

are filled and hybridized with the valence states. The Fermi level falls in the valence band 

leaving a hole in the top of the valence band. 

 
Fig. 3.29. (a) Total  and  partial  densities  of  Mn states  in  ferromagnetic  zinc-blende  
Ga1-xMnxAs (x=0.125). Electron states with spin up (upper part) and spin down (lower 
part of each figure) are shown. Total density of states is denoted by a solid line, 3d 
states of Mn shown by a filled area, 4p states of As shown by a dash line; (b) density of 
4p states of Mn in Ga1-xMnxAs (x=0.125). The Fermi level is denoted by a vertical solid 
line at 0 eV. 
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The calculated number of 3d electrons in the muffin tin sphere of Mn is 4.9. The 

radius of the sphere was chosen according to the minimum of charge density between Mn and 

nearest neighbor As atoms [4]. This population of 3d states points to a d5 configuration (2+ 

valence state) of Mn in (Ga,Mn)As. Early experimental works revealed the acceptor character 

of the Mn impurity in (Ga,Mn)As: samples with a high concentration of Mn have metallic 

conductivity of p type [30]. This agrees well with the calculated configuration d5 of Mn in 

(Ga,Mn)As. 

 
Fig. 3.30. Density of Mn 3d states in ferromagnetic zinc-blende Ga1-xMnxAs (x=0.125). 
Electron states with spin up (upper part) and spin down (lower part of each figure) are 
shown. The 3d states of t2 and e symmetries are denoted by a solid and a dash lines 
correspondingly. 

 

 

The energy distribution of e and t2 bands is shown in fig. 3.30. The e band is formed 

by 2z
2-x2-y2 and x2-y2 orbitals which weakly interact with nearest neighbor As atoms. The t2 

band is formed by xy, yz and xz orbitals. Quite to the contrary, these orbitals interact with the 

four neighbor As atoms and this interaction splits the t2 band into a bonding part (under -1 eV) 

and an anti-bonding part (above -1 eV). This splitting of t2 band into bonding and anti-

bonding parts was also observed in (Ga,Mn)N (fig. 3.14), however in the case of (Ga,Mn)As 
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no gap is present between the bonding and anti-bonding parts. Therefore the density of states 

at the Fermi level is formed mainly by 2p states of N and anti-bonding t2 states of Mn. 

Calculated magnetic moments of atoms in (Ga,Mn)As are listed in tab. 3.9. The total 

magnetic moment of (Ga,Mn)As crystal (4µB/Mn) is essentially concentrated near Mn atoms, 

the magnetic moment of Mn (3.6µB) does not depend on the concentration of Mn. Magnetic 

moments of nearest neighbor As atoms are anti-parallel to the total and to Mn magnetic 

moments. As a result the total magnetic moment of (Ga,Mn)As crystal per one Mn atom is 

4µB in spite of 3d
5 electronic configuration of Mn atoms. 

 

Tab. 3.9. Calculated magnetic moments of different atoms in zinc-blende Ga1-xMnxAs: 
total magnetic moment per one Mn atom (Mtot/1Mn), magnetic moment of Mn atom 
(MMn) and magnetic moment of nearest neighbor As atoms (MAs). Sign “-“ means anti-
parallel direction of magnetic moment relative to the total moment. 
 

concentration of Mn atoms, x 
magnetic moment 

0.125 0.25 
Mtot/1Mn (µB) 4.0 4.0 
MMn (µB) 3.60 3.60 
MAs (µB) -0.05 -0.05 

 

 

The 4p orbitals of Mn are hybridized with 3d orbitals of the same Mn atom. Just as in 

(Ga,Mn)N this hybridization is caused by tetrahedral arrangement of ligands (As atoms) 

around Mn atoms. The 4p orbitals acquire t2 symmetry in the crystal field and hybridize the 

3d states in t2 bands (spins up and down). Thus there are two bands of high density of empty p 

states: t2 (spin up) and t2 (spin down) (fig. 3.29b). 

It is interesting to compare the results of the band structure calculation with an 

experimental x-ray absorption spectrum of Mn in (Ga,Mn)As. A sample of Ga1-xMnxAs 

(x=0.08) was grown by low-temperature molecular-beam epitaxy in Nottingham (UK) [36]. 

X-ray absorption measurement at the K-edge of Mn in (Ga,Mn)As sample was performed by 

X. Biquard et al. [5]. The K-edge absorption spectrum of Mn is shown in fig. 3.31. According 

to the dipole selection rule only transitions of 1s electrons to empty p states are possible. 

According to our calculation the probability of transition of 1s electrons to Mn p (spin up) and 

Mn p (spin down) are similar. Therefore two absorption peaks (to the bands t2 with spins up 

and down) should be observed in the K-edge absorption spectrum according to the band 
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structure calculation (fig. 3.29b). Experimental measurements show the presence of only the 

second peak while the first one is not observed (fig. 3.31). 

We can suggest two reasons of this disagreement between the experiment and our 

calculation. (i) The t2 band (spin up) of Mn is not completely filled according to our 

calculation in spite of the 3d
5 electronic state of Mn in (Ga,Mn)As; therefore the 3d-4p 

hybridization of Mn states is still possible in the t2 band (spin up). This error of the band 

calculations can be corrected when one replace the LDA exchange-correlation potential by the 

LDA+U one. It was shown that the density of 3d states at Fermi level decreases when the 

LDA+U potential is used [37]. (ii) A direct hybridization of the 4p states of Mn to the valence 

band is possible. This hybridization may lead to the high density of Mn 4p states near the 

Fermi level obtained in the calculation. But the 4p orbitals of Mn in the valence band should 

be delocalized and the transition probability between the localized 1s orbital of Mn and the 

delocalized 4p orbitals of Mn should be small. Therefore electronic transitions to these states 

are not observed.  

These two reasons explain the discrepancy between our experimental and theoretical 

results: in the first case the correlation effects are not treated properly in our calculation; in 

the second case the localization of the 4p orbitals of Mn in the valence band is overestimated. 

It was not a problem in the case of (Ga,Mn)N because the two 3d bands (spins up and down) 

were situated in the gap and they were spatially localized. In the case of (Ga,Mn)As the 3d 

band (spin up) is in the valence band and the p states of Mn near the valence band are not 

described correctly by the ab-initio method. 

It is interesting to note that the absorption edge of Mn is shifted downward in 

spectrum of (Ga,Mn)As as compared to the edge of Mn in the spectrum of (Ga,Mn)N (fig. 

3.31). As it was mentioned above such a shift is typical of lower valence state of atom-

absorber. Thus this shift agrees well with obtained valence states: Mn3+ in (Ga,Mn)N and 

Mn2+ in (Ga,Mn)As. 

Therefore the x-ray absorption spectra permit to determine the valence state of Mn in 

different diluted magnetic semiconductors with tetrahedral arrangement of ligands. However a 

high resolution is necessary to distinguish pre-edge absorption lines associated to 1s-t2 (spin 

up) and 1s-t2 (spin down) electronic transitions. This resolution is limited by the natural width 

of 1s level (1.16 eV). 
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Fig. 3.31. Experimental K-edge x-ray absorption near-edge structure of Mn in (upward): 
Ga1-xMnxN (x=0.057) and Ga1-xMnxAs (x=0.08). The (Ga,Mn)As sample was grown in 
Nottingham [36], the x-ray absorption measurements were performed by X. Biquard et 
al. [5]. 

 

 

 

 

3.9 Electronic properties of (Ge,Mn) 

The diluted magnetic semiconductor (Ge,Mn) has the diamond crystal structure. The crystal 

structure is shown in fig. 3.1a where both Ga and N atoms have to be replaced by Ge atoms. 

The Ge crystal has the cubic face-centered lattice and the basis of the crystal is formed by two 

Ge atoms in positions [1] 

 

(0,0,0) a0      (1/4,1/4,1/4) a0, 

 

where a0 – is the lattice parameter of Ge crystal. Every Ge atom in a Ge crystal is surrounded 

by four Ge atoms placed at the vertices of a regular tetrahedron. The second neighbors of a Ge 
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atom are twelve other Ge atoms, which are placed at the same distances from the central Ge 

atom. The distances to the first and second nearest neighbors are listed in tab. 3.10. 

 

Tab. 3.10. Crystal and band parameters of a Ge crystal. 
 

parameter value reference 
band gap at T=300K (eV) 0.65 [38] 
lattice parameter at T=300K (Å) 5.66 [38] 
crystal volume per 1 atom (Å3) 22.61 calculation 
number of nearest neighbors for a Ge atom 
distance to the atoms (Å) 

4 Ge atoms 
2.45 

calculation 

number of second neighbors for a Ge atom 
distance to the atoms (Å) 

12 Ge atoms 
4.00 

calculation 

 

 

The crystal volume per one atom is two times greater in Ge than the crystal volume in GaN. 

Another important difference between Ge and GaN is the relatively narrow band gap in Ge. In 

this case (just as in GaAs) the 3d states of Mn (spin up) fall down in the valence band. This 

position of 3d bands determines the electronic properties of (Ge,Mn). Let us consider the band 

structure of (Ge,Mn) in detail. 

A cubic supercell (fig. 3.32) was used to calculate the band structure of Ge1-xMnx 

(x=0.125). The lattice parameter a0 of Ge1-xMnx (x=0.125) was optimized using the same 

cubic supercell. With that end in view, the total energy of the cubic supercell was calculated 

for different lattice parameters. The minimum of the total energy E(V) corresponds to the 

optimal volume V of the supercell. The E(V) function calculated on different k-meshes using 

the LAPW method [13] is shown in fig. 3.33. The first Brillouin zone of a primitive cubic 

lattice is a cube. The first calculation was performed using the 2:2:2 k-mesh and eigenvalues 

of energy were calculated in vertices of the cube. It is clear from fig. 3.33 that the mesh is not 

sufficiently fine to obtain a parabolic like function E(V). A better result for the E(V) function 

can be obtained using the 4:4:4 k-mesh. The best parabolic dependence for E(V) was achieved 

on 8:8:8 k-mesh. Thus the band structure of Ge1-xMnx (x=0.125) should be calculated on 8:8:8 

or a finer k-mesh. 
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Fig. 3.32. Cubic supercell used for band structure calculation of Ge1-xMnx (x=0.125) 
crystal.  

 

 

 
Fig. 3.33. Total energy of cubic supercell Ge1-xMnx (x=0.125) calculated on different k-
meshes. Fit of the calculated E(V) function by a polynomial of third order is shown by a 
solid line. 

 

 

The optimized value of the lattice parameter obtained from the minimum of E(V) function is 

5.768Å. The experimental value of the lattice parameter for a Ge crystal is 5.66Å (tab. 3.10). 

Also, experimental investigations show a linear increase of the lattice parameter when the 

concentration of Mn increases [38]. An extrapolation of this linear dependence to the 
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concentration x=0.125 gives the value a0=5.71Å of the lattice parameter for Ge1-xMnx 

(x=0.125). Therefore the value a0=5.768Å obtained theoretically is compatible with the 

experimental data. It should be mentioned here that the calculated value was obtained using 

the generalized gradient approximation [14], usually this approach for the exchange-

correlation potential leads to a larger lattice spacing, as it was in the case of GaN.  

Atoms of Mn incorporated in a Ge crystal locally distort the crystal lattice. Therefore 

(Ge,Mn) crystal has not the diamond crystal lattice. To take into account this distortion, the 

positions of four Ge atoms (nearest neighbors of Mn atoms) in the cubic supercell (fig. 3.32) 

were optimized. The same optimization method was used as in the case of (Ga,Mn)As: the 

force F(dMn-Ge) acting to nearest neighbor Ge atoms was calculated as a function of the 

distance dMn-Ge between Mn and nearest neighbor Ge atoms. The optimal value of the distance 

should satisfy equation 

 

0)( =−GeMndF .                                                       (3.17) 

 

The optimal value of the dMn-Ge distance is only 0.1% greater than the undistorted dGe-Ge 

distance in Ge crystal. Previous calculations show that such a small distortion does not 

influence the band structure [6]. 

The band structure of Ge1-xMnx (x=0.125) was calculated using the cubic supercell 

(fig. 3.32) by the LAPW method [13] and the generalized gradient approximation [14]. 

Optimized lattice parameter and Ge positions were used. The crystal (Ge,Mn) obtained by 

translation of the supercell is ferromagnetic because only one Ge atom was replaced by a Mn 

atom in the supercell and Mn atoms in neighbor supercells have the same direction of 

magnetic moment. The muffin-tin radii were chosen equal for all atoms. The wave function in 

the muffin-tin spheres was expanded using the spherical harmonics Yl
m, and lmax was chosen 

to be 10. The same wave function was represented as series of plane waves out of the muffin-

tin spheres, and the Rmin·Kmax were chosen to be 7 (here Rmin – is the least muffin tin radius). 

Convergence to self-consistency was achieved on a 10×10×10 k-mesh. The total energy was 

stable to within 2·10-5 Ry last a few iterations. The calculated band structure is shown in fig. 

3.34. 
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Fig. 3.34. Calculated band structure of ferromagnetic Ge1-xMnx (x=0.125). Electronic 
states with (a) spin up and (b) spin down are shown. The 3d states of Mn are marked by 
circles. The Fermi level is denoted by a solid horizontal line. 

 

A small band gap (about 0.4 eV) is observed only in the band structure of electrons with spin 

down. The 3d states of Mn (spin up) are essentially situated in the valence band under the 

Fermi level. These states are delocalized and filled. The 3d bands in (Ge,Mn) are wider than 

in (Ga,Mn)N which points to a smaller effective mass and higher mobility of these electrons 

in (Ge,Mn). The band structure of (Ge,Mn) is quite similar to the band structure of 

(Ga,Mn)As. This similarity becomes clearer if one compare the partial densities of states in 

Ge1-xMnx (x=0.125) and Ga1-xMnxAs (x=0.125) (fig. 3.35). 

The calculated population of 3d electrons in the muffin-tin sphere of Mn in (Ge,Mn) is 

5.01e. This value has to be compared to the population of 3d bands in (Ga,Mn)As which is 

4.90e. It should be noted that the muffin-tin radii of Mn spheres in (Ge,Mn) and (Ga,Mn)As 

and lattice parameters of these semiconductors are almost the same (the muffin-tin sphere in 

Ge is only 1.8% greater). Therefore the calculated population of 3d electrons in (Ge,Mn) is 

compatible to 3d
5 electronic configuration of Mn atoms. 
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Fig. 3.35. Total and partial densities of Mn in ferromagnetic (a,b) Ga1-xMnxAs (x=0.125) 
and (c,d) Ge1-xMnx (x=0.125). Electron states with spin up (upper part) and spin down 
(lower part of each figure) are shown. Total density is denoted by a solid line, 3d states 
of Mn are shown by a filled area, 4p states of (a) As and (c) Ge are shown by a dash 
line. Density of 4p states of Mn in (b) Ga1-xMnxAs (x=0.125) and (d) Ge1-xMnx 
(x=0.125). The Fermi level is denoted by a vertical solid line at 0 eV. 

 

 

Tab. 3.11. Calculated magnetic moments of different atoms in zinc-blende Ge1-xMnx: 
total magnetic moment per one Mn atom (Mtot/1Mn), magnetic moment of Mn atom 
(MMn) and magnetic moment of nearest neighbor Ge atom (MGe). Sign “-“ means anti-
parallel direction of magnetic moment relative to the total moment. 
 

concentration of Mn atoms, x 
magnetic moment 

0.125 
Mtot/1Mn (µB) 3.0 
MMn (µB) 3.22 
MGe (µB) -0.08 
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The calculated total magnetic moment of the cubic supercell (fig. 3.32) per one Mn 

atom is 3µB (tab. 3.11). Magnetic spin moments of nearest neighbor Ge atoms are opposite to 

the Mn magnetic moment. 

Let us consider the structure of the 3d states of Mn in (Ge,Mn). The 3d states are split 

by exchange interaction into two bands: states of electrons with spin up and spin down. The 

band of electrons with spin up is situated in the valence band and filled by electrons while the 

band of electrons with spin down is in the gap above the Fermi level. In addition the two 

bands are split into a doubly degenerate e and a triply degenerate t2 bands by crystal field 

caused by the tetrahedral arrangement of nearest neighbor Ge atoms (fig. 3.36). The e band is 

formed by 2z
2-x2-y2 and x2-y2 orbitals while the t2 band in formed by xy, yz and xz orbitals. 

These three orbitals interact stronger to 2p orbitals of Ge and this interaction splits the t2 band 

into bonding (under -0.5eV) and anti-bonding (above -0.5eV) parts (fig. 3.36). Actually the 

latter splitting is not so sharp as it was in the case of (Ga,Mn)N. But the density of 3d states at 

the Fermi level clearly has t2 character. 

 
Fig. 3.36. Density of 3d states in Ge1-xMnx (x=0.125). Electron states with spin up 
(upper part) and spin down (lower part of each figure) are shown. Solid line shows t2 
states, a dash line shows e states. The Fermi level is denoted by a vertical line at 0 eV. 
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The position of the Fermi level depends however on the concentration of Mn in 

(Ge,Mn): a decrease of Mn concentration leads to a shift of the Fermi level downward in 

energy. Thus the Fermi level in Ge1-xMnx (x=0.0156) falls in the minimum of density of states 

(fig. 3.37). This position of the Fermi level agrees well with experimental data which show 

semiconducting temperature dependence of resistivity of Ge1-xMnx (x=0.006-0.035) samples 

in spite of 2+ valence state of Mn (double acceptor) in (Ge,Mn) [39]. Samples of (Ga,Mn)As 

with the same concentration of Mn per cm3 exhibit metallic conductivity [30]. 

 
Fig. 3.37. Total and partial densities of Mn states in ferromagnetic Ge1-xMnx (x=0.0156). 
The calculation was performed by the LMTO method [8] within the local spin density 
approximation [40]. Experimental value of lattice parameter was used. Electron states 
with spin up (upper part) and spin down (lower part of each figure) are shown. Total 
density is denoted by a solid line, 3d states of Mn shown by a filled area. The Fermi 
level is denoted by a vertical solid line at 0 eV. 

 

 

The 4p orbitals of Mn acquire the t2 symmetry in the tetrahedral crystal field of four nearest 

neighbor Ge atoms. Therefore the 4p orbitals hybridize with the 3d orbitals of Mn in t2 bands 

with spins up and down according to the formula (3.2). A high density of empty p states is 

also observed in e band (spin up). This density arises from the overlap of 3d orbitals of 
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neighbor Mn atoms. In the case of zinc-blende Ga1-xMnxN it was shown that this density is 

comparable to the density of p states in t2 bands when the concentration of Mn is very high 

(x~0.2). 

A high density of empty p states of Mn was calculated in the energy interval between 

0 eV and 2 eV (spin up, fig. 3.35d) in (Ge,Mn). This density could be related to the p-d 

hybridization of Mn orbitals. However the density of 3d states is very low in this energy field. 

In addition it was shown in the case of (Ga,Mn)As that the density of 3d states at the Fermi 

level become negligible if the exchange-correlation interaction between 3d electrons is 

increased. Another possible contribution to the density of p states between 0 eV and 2 eV 

(spin up) may arise from hybridization of Mn p states to p states of Ge in the valence band. In 

this case the p orbitals of Mn should be delocalized because of delocalization of Ge p orbitals 

close to the valence band. Therefore the matrix element 

 

psM 4e1 ∇=                                                           (3.18) 

 

is small (overlapping of localized 1s and delocalized 4p orbitals is small). Thus transitions to 

Mn p states (spin up) should not be observed in XANES spectra of (Ge,Mn). As we know 

these transitions are not observed in XANES spectra of (Ga,Mn)As (fig. 3.31). 

However this conclusion should be checked experimentally. According to the band 

structure calculations of (Ge,Mn) the valence state of Mn in (Ge,Mn) is 2+. Only one pre-

edge peak (A3) should be present in the XANES spectra of (Ge,Mn). In general according to 

the band calculation, the K-edge of Mn should be similar to the K-edge of Mn in (Ga,Mn)As 

(fig. 3.31). 

 



CHAPTER III   Electronic properties of (Ga,Mn)N, (Ga,Mn)As and (Ge,Mn) 

 93 

Summary for chapter III 

(Ga,Mn)N 

The band structure of the diluted magnetic semiconductor (Ga,Mn)N was calculated. 

According to the calculation the 3d states of Mn are situated in the gap of GaN. The 3d states 

of Mn are split by exchange interaction between 3d electrons of the same atom: the 3d states 

(spin up) are placed under the 3d states (spin down). In addition, the two 3d bands are split by 

the crystal field caused by the four nearest neighbor N atoms. As a result the 3d states of Mn 

(spin up) are split into a doubly degenerated e and a triply degenerated t2 bands which are 

localized in the gap. The Fermi level falls in the t2 band (spin up); a third part of the band is 

empty. The calculated electronic configuration of Mn in (Ga,Mn)N is 3d
4 (valence state of 

Mn is 3+). 

An interpretation of the K-edge x-ray absorption near-edge structure of Mn in 

(Ga,Mn)N was proposed. This interpretation allows to link the experimental x-ray absorption 

spectra to electronic properties of real (Ga,Mn)N crystals. In particular, it was experimentally 

shown that the valence state of Mn in (Ga,Mn)N is 3+. Furthermore, the interpretation allows 

us to study the distribution of Mn in crystal lattice of diluted magnetic semiconductors: it was 

shown that the majority of Mn atoms are distributed homogeneously in (Ga,Mn)N epilayers. 

Optical absorption experiments allow to obtain an important information about the 

electronic structure of (Ga,Mn)N. An intense absorption line at 1.4 eV is present in optical 

absorption spectra of Mn in (Ga,Mn)N [21,22,23]. This absorption line is characteristic of 

Mn3+ ions, it is not observed in the spectra of Mn2+ ions [23]. Therefore the optical absorption 

measurements confirm 3+ valence state of Mn in (Ga,Mn)N. According to ab-initio 

calculations, formation of close Mn-Mn pairs in (Ga,Mn)N would change the optical 

absorption spectra: the absorption line would shift to 1.55 eV, another intensive absorption 

line would appear at 0.5 eV [25,34]. 

Our electric transport measurements show that Mn is neither acceptor nor donor but 

present as a neutral impurity center in (Ga,Mn)N crystals. 
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(Ga,Mn)As 

The band structure of (Ga,Mn)As was calculated by the LAPW method. According to the 

calculation the 3d states of Mn (spin up) are mainly situated in the valence band under the 

Fermi level. These states are filled by electrons and they are strongly hybridized with the 

valence band. The Fermi level falls into the valence band and the top of the valence band is 

empty. 

The total magnetic moment of (Ga,Mn)As crystal (4µB per one Mn atom) is localized 

near Mn atoms. Calculated magnetic moments of nearest neighbor As atoms are oppositely 

directed to the Mn moment. 

Calculated number of 3d electrons in the muffin-tin sphere of Mn is 4.90. This value 

corresponds to the 3d
5 electronic configuration (2+ valence state) of Mn in (Ga,Mn)As. 

Experimental measurements show that epitaxial films of (Ga,Mn)As have metallic 

conductivity of p type [30]. Thus Mn is acceptor in (Ga,Mn)As. 

Only one pre-edge line (A3) is observed in the K-edge x-ray absorption spectra of Mn 

in (Ga,Mn)As. According to the proposed interpretation of the K-edge x-ray absorption 

spectra of Mn, the 3d states of Mn (spin up) are filled (valence state of Mn is 2+). Thus the x-

ray absorption spectra allow determining the valence state of Mn in diluted magnetic 

semiconductors. 

 

 

(Ge,Mn) 

The band structure of (Ge,Mn) was calculated. This calculation shows that the 3d states of Mn 

(spin up) are placed in the valence band, they are filled and delocalized. The 3d states of Mn 

(spin down) are empty and localized near Mn atoms. Calculated number of 3d electrons in the 

muffin-tin sphere of Mn is 5.01, this value points to 2+ valence state of Mn in (Ge,Mn). 

The total magnetic moment of (Ge,Mn) crystal (3µB per one Mn atom) is mainly 

concentrated near the Mn atoms. Magnetic moments of nearest neighbor Ge atoms of Mn are 

oppositely directed to the Mn moments. 

According to the band structure calculation, only one line A3 should be observed in the 

K-edge x-ray absorption spectrum of Mn in (Ge,Mn). However experimental measurements 

are necessary to confirm this suggestion. 
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Chapitre IV. Propriétés magnétiques de 

DMS 

Les propriétés magnétiques des semiconducteurs (Ga,Mn)N, (Ga,Mn)As et (Ge,Mn) sont 

décrites dans cette chapitre. Cette description est basée sur des résultats obtenus dans notre et 

dans d’autres laboratoires. Le but de cette description c’est de relier les propriétés 

électroniques qui ont été étudiées dans la chapitre III aux propriétés magnétiques. Ce lien 

nous faciliterait notre recherche de nouveaux semiconducteurs magnétiques à température 

élevée. 
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Chapter IV. Magnetic properties of DMS 

Magnetic properties of the diluted magnetic semiconductors (Ga,Mn)N, (Ga,Mn)As and 

(Ge,Mn) are described in this chapter. The description is based on experimental results 

published by different research groups. The aim of this revue is to link the study of the 

electronic structure presented in the chapter III to observed magnetic properties of the same 

semiconductors. Such a link between the electronic and magnetic properties would facilitate 

our search of new high temperature magnetic materials. 

 

 

4.1 Ferromagnetism in DMS 

The magnetization of a ferromagnetic material is not zero even if there is no external 

magnetic field. Such a behavior of the materials can be explained if we accept two 

assumptions. The first assumption states that there are uncompensated magnetic moments in 

the ferromagnetic materials. In diluted magnetic semiconductors, such magnetic moments are 

provided by ions of a transition metal (for example by Mn in GaAs or GaN). The ions have 

unfilled 3d shells, and because of strong intra-atomic electronic correlations the 3d electrons 

are not distributed homogeneously between two possible spin orientations (spins up and 

down) but form an uncompensated magnetic spin moment. The second assumption states that 

there is a strong interaction between these magnetic moments which leads to ferromagnetic 

alignment of the magnetic moments. In paramagnetic materials (several compounds of 

transition metals, see for example [1]) the localized magnetic moments are present but there is 

no interaction. That is why the permanent magnetization is not observed in paramagnetic 

materials. 

There are two different types of interaction between magnetic moments: the dipole 

magnetic interaction and exchange interaction [2]. The dipole interaction between magnetic 
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moments is similar to the dipole interaction between electrical dipoles: one magnetic moment 

creates a magnetic field at the position of the second magnetic moment, and the field acts on 

the second moment. However the dipole interaction is not sufficiently strong to align 

magnetic moments at room temperature. On the contrary the exchange interaction is strong 

and it can lead to the ferromagnetic order in materials. Several mechanisms of the exchange 

interaction between electrons are known today.  

Direct exchange between electrons leads to a spin order in the 3d shells of transition 

metals and in the hydrogen molecule. Let us consider a Mn2+ ion in (Ga,Mn)As. The total 

energy of the five 3d electrons includes the positive repulsion energy. The repulsion energy 

decreases when distances between the electrons increase. The parallel alignment of electron 

spins insures the greatest distances because two electrons with the same spin can not have the 

same coordinate. Therefore Mn2+ ions have the lowest energy when the five d electrons have 

parallel spin moments. In hydrogen molecule, 1s electrons of H atoms are not localized and 

they interact not only with each other, but with hydrogen nuclei. That is why the lowest 

energy of hydrogen molecule corresponds to a maximum of electronic density between the 

two hydrogen nuclei and anti-parallel spin orientation. Thus the total energy of the electron 

system depends on the orientation of electron spins. This dependence corresponds to 

exchange interaction in Mn2+ ion and hydrogen molecule. 

The direct exchange interaction leads to a magnetic order in transition metals (such as 

Mn, Fe, Ni), where atoms are very close to each other and the direct interaction of 3d orbitals 

is possible. In contrast to the metals, the distances between magnetic impurities in diluted 

magnetic semiconductors are much bigger. Therefore, the ferromagnetic properties of DMS at 

high temperature can not be explained by the direct exchange interaction of impurity atoms. 

A long range exchange mechanism was suggested by Vonsovskii [3] and Zener [4] to explain 

ferromagnetism in materials co-doped with transition metals. It was proposed that 

ferromagnetic order in such dilute systems can result from exchange interaction between 

impurities via free charge carriers. The Curie temperature of diluted magnetic metals was 

calculated by Abrikosov and Gor’kov [5]. 

Later the same method (but free holes were considered as charge carriers) was 

independently developed to describe the magnetic properties of diluted magnetic 

semiconductors [6]. Two exchange mechanisms were taken into consideration: the exchange 

via free holes and the superexchange via intermediate nonmagnetic atoms. According to the 
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description while the first long range mechanism insures ferromagnetic order, the second one 

aligns spin moments of impurity atoms antiferromagnetically. Including these two 

mechanisms in the model allows to explain ferromagnetism in p type (Ga,Mn)As and 

antiferromagnetic properties of electrically compensated (Ga,Mn)As samples. Quantitative 

estimation of the Curie temperature for (Ga,Mn)As and (Zn,Mn)Te:N were performed in [6]. 

The obtained values of TC agree well with experimental values. For example, the calculated 

TC of Ga1-xMnxAs (x=0.053) is 120K that is very close to experimental values 110K [7] and 

120K [8]. The Curie temperature was calculated for other diluted magnetic semiconductor 

using the same model. The TC values for several semiconductors are listed in tab. 4.1. 

However all the calculated values of TC were obtained using the mean-field approximation, 

assuming a high concentration of free holes (3.5×1020 cm-3) and the 2+ valence state of Mn in 

the semiconductors.  

 

Tab. 4.1. Curie temperatures of different diluted magnetic semiconductors calculated in 
[6]. 
 

semiconductor Curie temperature (К) 
Ga1-xMnxN (x=0.05) 410 
Ga1-xMnxAs (x=0.053) 120 
Ge1-xMnx (x=0.05) 75 

 

 

According to the calculation, TC=300K would be achieved in Ga1-xMnxAs for x=0.1. This 

conclusion seems to be confirmed by experiment: if we extrapolate the experimental 

dependence TC(xeff) to xeff=0.1 (xeff – concentration of substitutional Mn atoms which 

participate in ferromagnetic ordering, for details see [8]) we obtain TC near room temperature. 

Furthermore according to the calculation, Ga1-xMnxN is another semiconductor which would 

be ferromagnetic at room temperature when the concentration of Mn (x) is only 0.05. 

Therefore the (Ga,Mn)N semiconductor would be promising in practical applications. 

The Curie temperature of a diluted magnetic semiconductor can be calculated using 

the first-principles (ab-initio) calculation methods described in chapter II. Usually the 

computational scheme consists of two steps. First of all, the Heisenberg exchange parameter 

Jij which describes interaction between magnetic impurities is calculated by different methods 

[9,10,11]: 
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This parameter is further used for Curie temperature calculation. Usually the Curie 

temperature is calculated using the mean-field approximation [1,9,11]. However there are 

other calculation methods which take into account disordered distribution of magnetic 

impurities in crystal lattice and the quantum nature of spin moments [12,13]. 

The ab-initio methods have one important advantage as compared to other calculation 

methods: only the crystal structure of investigated material has to be known to calculate the 

magnetic properties of the material. Although other experimental parameters of the 

semiconductor are often used in ab-initio calculations (such as the lattice parameter or the 

lattice deformation around impurity atoms), in principle these parameters can be found from 

the ab-initio calculation. Therefore, ab-initio calculations allow us to estimate the magnetic 

properties of a magnetic semiconductor and we do not need real crystals of the semiconductor 

to perform such estimation. Experience shows that several years are required to develop a new 

semiconductor technology; therefore this advantage of ab-initio methods is not negligible. 

The ab-initio methods (like all other methods) have also drawbacks: practically it is 

quite difficult to take into account strong correlation of 3d electrons in magnetic impurity 

atoms, change of crystal structure around impurity atoms, other defects which could change 

electronic structure and etc. In addition ab-initio calculations performed by different methods 

give quite different values of the Curie temperature for the same material (for example, the 

Curie temperature of Ga1-xMnxN (x=0.06) is ~350K, the mean field approximation is used in 

[11], and ~30K, a Monte-Carlo simulation was performed in [14]). However the ab-initio 

methods are constantly improved and it seems they will be very useful in predicting the 

magnetic properties of different materials. 
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4.2 Magnetic properties of (Ga,Mn)N, (Ga,Mn)As and 

(Ge,Mn) 

4.2.1 (Ga,Mn)N 

The active investigation of Ga1-xMnxN started in 2000, and it was stimulated by a prediction 

of room temperature ferromagnetism in the semiconductor at a relatively low concentration of 

Mn (x~0.05) [6]. This prediction is based on the assumption that the Mn impurity acts as an 

acceptor in (Ga,Mn)N (the valence of Mn was supposed to be 2+), and that ferromagnetic 

interactions are mediated by free holes. According to this prediction the Curie temperature 

should be 410K in zinc-blende Ga1-xMnxN (x=0.05) and it should be slightly lower (~390K) in 

wurtzite Ga1-xMnxN (x=0.05).  

Early experimental works following this prediction did not give any clearcut 

conclusion about the magnetic properties of (Ga,Mn)N: paramagnetic [15] and ferromagnetic 

properties at low temperature (TC~10K [16], TC~8K [17]), as well as room temperature 

ferromagnetism [18,19] in (Ga,Mn)N were reported by several groups. The highest Curie 

temperature (TC~940K) was deduced from magnetization measurements of (Ga,Mn)N layers 

[20]. Such a variety of contradictory results can be explained by different types of distribution 

of the Mn impurity and additional impurities in different (Ga,Mn)N samples. As it will be 

discussed later, the Curie temperature can change upon co-doping with a donor or an 

acceptor. Therefore, the presence of unexpected impurities in (Ga,Mn)N samples which are 

found to be ferromagnetic at room temperature can not be excluded. 

It was found in chapter III that Mn atoms have the 3+ valence state in (Ga,Mn)N. 

Therefore, substituting Ga atoms by Mn atoms does not lead to a high concentration of free 

holes. Furthermore, (Ga,Mn)N remains n type because of additional co-doping by a donor (it 

may be oxygen, silicon or N vacancies). Thus the main exchange mechanism (via free holes), 

supposed in [6], is absent in (Ga,Mn)N. In this case one could not expect ferromagnetic 

properties in (Ga,Mn)N at high temperature: this semiconductor may be ferromagnetic at low 

temperature, or it is not ferromagnetic at all (paramagnetic). This conclusion is supported by 

experimental measurements performed on wurtzite (Ga,Mn)N samples. Previously the crystal 

structure of these samples was studied by x-ray diffraction and possible inclusions or clusters 

were not detected [20,21]. The electronic structure of the samples was studied using x-ray 
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absorption and optical absorption measurements (see chapter III, [22,23]). Further, the 

magnetization  of  the  same  samples  was  measured.  According  to  the  measurements  a  

Ga1-xMnxN (x=0.017) sample is paramagnetic at 2K [15]. Another sample but with a higher 

concentration of Mn (x=0.063) exhibit ferromagnetism till TC=8K [17]. 

The measured magnetization of paramagnetic wurtzite (Ga,Mn)N samples as a 

function of magnetic field M(B) depends on the direction of the magnetic field with respect to 

the c axis (R.M.Galera in [24]). Such an anisotropy is typical of Mn3+ ions, while an isotropic 

character of the M(B) dependence is expected for Mn2+ ions [25]. Therefore the magnetization 

measurements imply a high concentration of Mn3+ ions in (Ga,Mn)N. 

Thus the Ga1-xMnxN (x=0.06) semiconductor is not ferromagnetic at high temperature. 

However this conclusion is valid for a pure (Ga,Mn)N semiconductor. Additional co-doping 

of the semiconductor with an acceptor or a donor could increase the concentration of free 

charge carriers and therefore the Curie temperature. In the first case (co-doping with an 

acceptor) free holes can mediate exchange interactions between impurity atoms. However 

there is no efficient acceptor today to create a very high concentration of holes especially if 

the double co-doping should be performed (with Mn and Mg). Another possibility to increase 

the Curie temperature it is co-doping with a donor. In this case exchange interactions between 

Mn impurities appear via the double exchange mechanism proposed by Zener for the 

manganese compounds with perovskite structure [26]. This exchange mechanism leads to 

ferromagnetic order in compounds where equivalent Mn atoms have different valence states. 

In (Ga,Mn)N this situation could be achieved by co-doping with a donor: one part of Mn ions 

capture additional electrons and become Mn2+ while other part of Mn ions rest in 3+ valence 

state. According to the Zener’s double-exchange mechanism the additional electrons can 

move from Mn2+ to Mn3+ ions and these electron jumps decrease the total energy of the 

crystal. It is assumed that the oscillations are only possible when the spins of the Mn ions are 

parallel. If spin moments of neighbor Mn atoms are antiparallel, then such oscillations of 

electrons are forbidden because the spin moment should not change direction. Therefore the 

(Ga,Mn)N crystals should be ferromagnetic if a mixture of Mn3+ and Mn2+ ions are present in 

the crystals [27]. An estimation of the Curie temperature for (Ga,Mn)N was performed which 

takes into account the double-exchange mechanism. According to the calculation, very high 

Curie temperatures (TC=1000K for Ga0.95Mn0.05N) upon co-doping (Ga,Mn)N by a donor (the 
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concentration of the donor impurity should be two times smaller than the concentration of 

Mn) would be achieved [27]. 

 

 

 

4.2.2 (Ga,Mn)As 

This diluted magnetic semiconductor has been intensively studied during the 90-s of the last 

century, and a great progress was achieved thanks to the development the low temperature 

molecular beam epitaxy [7]. This technology allows us to incorporate a high concentration of 

Mn impurities (x~0.05) in Ga1-xMnxAs crystals and at the same time to avoid segregation of 

the Mn impurity in the surface and cluster formation. Today it well established that this 

semiconductor is ferromagnetic and the highest Curie temperature was achieved to be 173K 

[8]. 

Band structure calculations performed for (Ga,Mn)As show that the 3d states (spin up) 

of Mn are filled and located in the band gap (2+ valence state of Mn). Transport 

measurements performed on Ga1-xMnxAs (x=0.053) samples confirm the acceptor character of 

the Mn impurity: the samples exhibit metallic p-type conductivity [7]. Therefore the observed 

ferromagnetic interactions between Mn atoms in (Ga,Mn)As can be mediated by free holes 

[7]. This statement is confirmed by the fact that electrically compensated (Ga,Mn)As samples 

are antiferromagnetic [7]. In addition, magnetization measurements of (Ga,Mn)As layers 

reveal a link between the hole concentration and magnetic properties of (Ga,Mn)As. The 

magnetization contains two components: ferromagnetic and paramagnetic [7]. The 

paramagnetic component is weaker in samples with a high concentration of holes. 

The Curie temperature of Ga1-xMnxAs (x=0.053) was calculated in [6] using the model 

of carrier induced ferromagnetic interactions. The calculated value TC=120K for Ga1-xMnxAs 

(x=0.053) agrees well with experimental data: TC=110K for Ga1-xMnxAs (x=0.053) [7] and 

TC=120K for Ga1-xMnxAs (x=0.056) [8]. 

The Curie temperature of Ga1-xMnxAs samples can be changed by annealing. It was 

shown that a significant fraction of Mn impurity occupies interstitial positions and these MnI 

ions (donor in an interstitial position) compensate substitutional MnS atoms (acceptor in a 

substitutional position) [28]. In addition, Mn atoms in such (MnS-MnI) pairs are coupled 
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antiferromagnetically according to magnetization measurements [28] and ab-initio 

calculations [29], and these atoms do not participate in the ferromagnetic ordering. Annealing 

of Ga1-xMnxAs samples allows us to reduce the concentration of interstitial Mn impurities and 

this annealing increases considerably the Curie temperature [8,28]. 

Ab-initio calculations were also used to investigate magnetic properties of (Ga,Mn)As. 

Early calculations predicted overestimated TC values of Ga1-xMnxAs: 260K [11], 290K [30] 

for x=0.05. The overestimation was explained for example by a small content of antisites in 

real samples (As atoms in positions of Ga atoms). Such anti-sites should decrease the 

concentration of holes and by consequence the Curie temperature [9]. According to more 

recent calculations the main cause of the overestimation is neglecting the disorder in 

calculations. Good results (close to experimental values) were obtained in different works 

which take into account the disorder [12,14,30,31] (the local spin density approximation was 

used). In addition, it was suggested that the influence of the spin-orbit coupling is not very 

strong: the Curie temperature of Ga1-xMnxAs (x=0.08) decreases by 10% after including the 

spin-orbit coupling in a calculation [30]. 

Although the experimentally achieved values of the Curie temperature of (Ga,Mn)As 

are lower than 300K, this semiconductor could be made ferromagnetic at room temperature in 

the future. Extrapolation of experimental function TC(x) gives TC=300 when x~0.1 for a 

perfect Ga1-xMnxAs crystal [8]. The lattice parameter of GaAs is sufficiently large to 

incorporate a high concentration of Mn impurity. Therefore incorporation of 10% Mn 

impurity is not an insurmountable problem. However a higher concentration of Mn is 

necessary to achieve TC=300 in a real crystal. 

 

 

 

4.2.3 (Ge,Mn) 

Observation of high temperature ferromagnetism in (Ge,Mn) crystals has stimulated an active 

research [32,33].  In particular,  a  Curie  temperature  as  high  as  285K  was  reported  for  a  

Ge1-xMnx (x=0.06) epitaxial layer. However, more recent investigations of (Ge,Mn) epilayers 

show that the ferromagnetism observed at 285K arises from Mn5Ge3 clusters [34,35]. This 

seems to be reasonable because the Curie temperature of Mn5Ge3 is 296K (very close to the 
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observed value, 285K) and there are (Ge,Mn) samples which do not show considerable 

magnetization in the temperature region from 110K to 285K in the magnetic field H=0.1T 

[35]. The (Ge,Mn) samples where the Mn5Ge3 clusters are present [34] are superparamagnetic 

at T<285K and the blocking temperature of the clusters is about 210K. 

The (Ge,Mn) layers that are free from the Mn5Ge3 clusters also exhibit an interesting 

magnetic behavior. The magnetization of these samples starts to increase from TC=110K and 

it further increases with temperature lowering [32,35]. However the measured magnetization 

is field induced [35]: it strongly depends on the applied value of the magnetic field, and no 

ferromagnetic hysteresis was observed till T=20K. It was shown also that the (Ge,Mn) 

samples are superparamagnetic in this temperature region 20<T<110K and this 

superparamagnetism can be related to the presence of Mn-rich clusters [34]. The blocking 

temperature of the Mn-rich clusters determined from field-cooled measurements is Tb~12K 

[34]. However a hysteresis behavior of the magnetization was observed at 5K in [32,35] and it 

was supposed that Tb~12K is a ferromagnetic transition temperature. The nature of Mn-rich 

cluster is still unknown, but it was shown that the Tb transition temperature can be determined 

from Hall effect measurements [35]. Therefore it was suggested that exchange interactions 

inside the Mn-rich clusters are mediated by electrons [35]. 

A very different magnetization behavior was reported in [33]: in 150K<T<285K 

interval (Ge,Mn) samples exhibit ferromagnetism while at lower temperature (T<150K) the 

samples are antiferromagnetic. Such a behavior however was not confirmed in other reports. 

Ge1-xMnx samples show a semiconducting and not metallic behavior of the resistivity 

in spite of high concentration of Mn atoms (x=0.035 [32], x=0.088 [35]). The Ga1-xMnxAs 

crystals doped with such a high concentration of Mn impurities are metallic (note that Mn is a 

double acceptor in Ge). The low concentration of holes in (Ge,Mn) can be explained by 

formation of clusters where Mn atoms are not acceptors. Another possible explanation is a 

low density of states at the Fermi level (fig. 3.37). 

In general, recent investigations conclude that the distribution of Mn in the studied 

GeMn samples is inhomogeneous and the samples are not ferromagnetic at room temperature 

[34,35]. However a new germanium rich phase was reported recently [36]. The composition 

of the clusters is close to Ge2Mn, and the GeMn samples containing the Ge2Mn clusters 

exhibit room temperature ferromagnetism. Therefore the inhomogeneous GeMn alloy may 

have important practical applications. 
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While the experimental distribution of Mn in Ge can be hardly changed, theoretically 

(Ge,Mn) samples with a homogeneous distribution of Mn can be considered. The band 

structures of (Ge,Mn) and (Ga,Mn)As crystals are similar: 3d states of Mn (spin up) are 

situated deep in the valence band, they are delocalized and free holes are created in the top of 

the valence band. In this case ferromagnetic exchange interactions in (Ge,Mn) can be 

mediated by itinerant holes. The Curie temperature of Ge1-xMnx (x=0.025, p=3.5·1020 

holes/cm3) was calculated in [37]: TC~80K. 
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Summary for chapter IV 

(Ga,Mn)N 

Experimental investigation of wurtzite Ga1-xMnxN (x=0.063) shows that this diluted magnetic 

semiconductor exhibit ferromagnetic properties at low temperature (TC~8K [17]). Absence of 

high temperature ferromagnetism in this semiconductor can be explained by lack of any 

exchange mechanism which could lead to ferromagnetic ordering at high temperature. 

However ferromagnetic ordering mechanisms could appear upon co-doping (Ga,Mn)N with 

an acceptor or a donor impurity. In the first case ferromagnetic interactions in (Ga,Mn)N can 

be mediated by free holes. Co-doping with a donor could lead to ferromagnetic exchange 

interactions between Mn atoms via the double-exchange mechanism [27]. The two co-doping 

would increase the Curie temperature of (Ga,Mn)N. 

 

(Ga,Mn)As 

The diluted magnetic semiconductor (Ga,Mn)As was found to be ferromagnetic at 173K. This 

ferromagnetism is mediated by free holes and the Curie temperature increases together with 

concentration of Mn ions [8]. Real GaMnAs crystals contain substitutional and interstitial Mn 

atoms and the interstitial Mn atoms suppress considerably the Curie temperature. It was 

shown that the interstitial Mn atoms can be eliminated by annealing [28].  

The observed ferromagnetism was described using the mean-field model [6] and 

obtained value of the Curie temperature agrees well with experimental data. Another models 

were proposed in [27] and in [38] which also explain well the experimentally observed 

dependence of the Curie temperature on concentration of Mn in (Ga,Mn)As. Ab-initio 

calculations give values of TC which are very close to the experimental values [12,13,30,31], 

these calculations show a very strong dependence of the calculated TC on distribution of Mn 

in (Ga,Mn)As: disordered distribution of Mn significantly decrease the Curie temperature. 

Experimental and theoretical studies suggest that TC=300K would be achieved at reasonable 

concentrations of Mn in Ga1-xMnxAs (xeff~0.1 [8] and x=0.125 [37]). 
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(Ge,Mn) 

Ferromagnetic properties of GeMn samples with TC=285K reported in [33] can be related to 

presence of Mn5Ge3 precipitates in the samples. Samples of GeMn without the Mn5Ge3 

precipitates were grown as well [35]. They do not exhibit ferromagnetism till to T=20K [35] 

and it was found that the samples are superparamagnetic in the temperature region 

20K<T<150K [34]. At lower temperature (T<15K) GeMn samples show ferromagnetic 

[32,35] or frozen state [34]. These results also demonstrate inhomogeneous distribution of Mn 

in GeMn. A new germanium-rich phase was recently found in GeMn [36]. The GeMn 

samples exhibit ferromagnetism at room temperature, therefore the new phase may have 

important practical applications. 

An estimation of the Curie temperature for Ge1-xMnx (x=0.025, hole concentration 

p=3.5·1020 cm-3) with homogeneous distribution of Mn predicts TC~80K [37]. However 

additional studies are necessary to clarify magnetic properties of (Ge,Mn) diluted magnetic 

semiconductor. 
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Conclusion 

Scientific research is traditionally divided onto two basic parts: experimental and theoretical 

ones. Experimental research is intended to provide us with the real information about the 

phenomena of the nature. Theoretical research allows us to reveal the main laws of the nature; 

the laws can be further used to predict unknown phenomena and to construct novel devices. 

According to this division of the scientific research, scientific groups are also divided onto 

experimental and theoretical ones. The experimental groups use simple models to explain 

their experimental results and to extract from the results some useful parameters. In contrast, 

the theoretical groups use quit sophisticated models, such as ab-initio calculations, to predict 

properties of materials; however experimental investigations are generally not used in the 

predictions. In this work we try to take advantages of the both experimental and ab-initio 

investigations to optimize our research and, at the same time, to obtain reliable information 

about properties of diluted magnetic semiconductors. 

 

The main objectives of the work are: 

• to evaluate the predictive character of ab-initio methods regarding a spectroscopic 

study, by making a comparison between the experimental x-ray absorption spectra and 

the spectra calculated using ab-initio methods; 

• to characterize the main features of experimental x-ray absorption spectra; 

• to improve our understanding of DMSs, and in particular of (Ga,Mn)N, and the 

possibility of carrier induced ferromagnetism in wide band gap semiconductors. 

 

X-ray absorption spectroscopy was chosen for the experimental investigation of diluted 

magnetic semiconductors. This method has several important advantages as compared to 

other ones. Firstly, it allows a separate investigation of elements in complex alloys. The 

electronic state of Mn and the local atomic structure around the Mn atoms were studied in this 

work using the x-ray absorption spectra at the K-edge of Mn. Secondly, interpretation of the 
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K-edge absorption spectra is more straightforward as compared to L-edge and optical 

absorption spectra where the core-hole effects are very important. Thirdly, the K-edge spectra 

allow a more direct study of bulk properties of materials: surface properties of investigated 

samples (lattice deformations near the substrate surface, concentration of electrons on a 

surface) do not influence the K-edge spectra, while they drastically change the L-edge spectra. 

Finally, this method is accessible in the European Synchrotron Radiation Facility (ESRF) in 

Grenoble and preliminary results were available in our group. 

The linear ab-initio methods LAPW and LMTO were used to calculate the band 

structure and x-ray absorption spectra of (Ga,Mn)N, (Ga,Mn)As and (Ge,Mn). The 

calculation methods are well developed now and they are very efficient: a relatively small 

computational cost of the methods allows calculating large supercells which are necessary to 

describe crystals with a low concentration of impurity. At the same time, the precision of the 

methods is close to the one of non-linear ab-initio methods, such as the APW method. 

 

The experimental and calculated K-edge x-ray absorption spectra of Mn in (Ga,Mn)N were 

compared. Let us outline the main results of this comparison: 

• the tetrahedral environment of Mn in zinc-blende and wurtzite semiconductors leads to 

the strong 4p-3d hybridization of Mn orbitals; this hybridization gives rise to intense 

pre-edge lines in the K-edge x-ray absorption spectra of Mn; the absorption lines are 

mainly of dipolar origin; 

• as a result, two intense pre-edge absorption lines are present in the K-edge x-ray 

absorption spectrum of Mn in (Ga,Mn)N: the low energy line corresponds to electron 

transitions to the narrow t2 band (spin up) and the high energy line reflects transitions 

to the t2 band (spin down); the energy splitting between the two t2 bands is due to 

internal exchange interaction of 3d electrons in Mn atoms, this splitting therefore is 

present independently on the macroscopic magnetic structure of the (Ga,Mn)N 

samples; 

• the e band (spin down) is empty, however it is not hybridized with the 4p orbitals of 

Mn and therefore its influence on the x-ray absorption spectrum is weak. As a result, 

the 10Dq parameter, often used in optical spectroscopy, can not be obtained from the 

K-edge x-ray absorption spectra of Mn; 
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• according to the band structure calculation the width of the t2 bands depends on the 

distances between nearest neighbor Mn atoms: if Mn atoms are distributed 

homogeneously in Ga1-xMnxN (x=0.0625), then the t2 bands are narrow and the two 

pre-edge absorption line are well distinguished (the resolution of the monochromator 

should be better than 0.5 eV); in contrast, if Mn atoms form close pairs, then the two 

line merge in one wide line; 

• the absorption lines at higher energy (S and B lines) reflect 4p-states of Mn in the 

conduction band; a good agreement between the experimental and calculated x-ray 

absorption spectra of Mn can be obtained if we introduce a rigid shift of 2.6 eV 

between the t2 bands and the 4p states of Mn in the conduction band; this shift may 

contain two contributions: (i) the usual underestimation of the gap in the band 

structure calculation, and (ii) the attractive potential of the core hole shifts the 3d 

bands and the 4p states of Mn in the conduction band downward in energy, and the 

shift is more important for the localized 3d bands than for the delocalized 4p orbitals; 

therefore the splitting between the 3d bands and the 4p states increases. 

 

From the results of the comparison we conclude that: 

• the electronic state of Mn in (Ga,Mn)N is Mn3+ (electronic configuration 3d
4): one 

absorption line is expected in the case of Mn2+ (electronic configuration 3d
5) because 

the t2 band (spin up) is filled and where are only transitions to the t2 band (spin down); 

but two absorption lines are observed in the x-ray absorption spectra of Mn in 

(Ga,Mn)N, this means that the t2 band (spin up) is not completely filled; 

• as a result, the Mn is not an acceptor in (Ga,Mn)N; this conclusion is confirmed by our 

transport measurements: our (Ga,Mn)N samples reveal n-type conductivity, we do not 

observe any correlation between the electron density and the Mn concentration; 

• the t2 bands of Mn in our (Ga,Mn)N samples are narrow, this points to a homogeneous 

distribution of Mn in the samples; the overlap of 3d orbitals of nearest neighbor Mn 

atoms is small and the interaction between nearest neighbor Mn atoms is weak; 

• according to our band structure calculation, the number of 3d electrons in the MT-

sphere of Mn in (Ge,Mn) is close to 5 (Mn2+); therefore a single absorption line should 

be observed in the K-edge x-ray absorption spectra of Mn in (Ge,Mn); this conclusion 

however should be checked experimentally. 
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We compared also our experimental and calculated K-edge x-ray absorption spectra of Mn in 

(Ga,Mn)As. The main conclusions of this comparison: 

• a single pre-edge absorption line is observed in the K-edge x-ray absorption spectrum 

of Mn in (Ga,Mn)As in agreement with the 2+ valence state of Mn in (Ga,Mn)As and 

with the interpretation of the pre-edge x-ray absorption structure described above; 

• our band structure calculation predicts a strong intensity of Mn p-states in the top of 

the valence band in (Ga,Mn)As, however electronic transitions to the p states are not 

observed in the experimental K-edge x-ray absorption spectrum of Mn. We explain 

this disagreement by two possible reasons: (i) the density of the empty 3d states of Mn 

in the top of the valence band is overestimated, and this leads to an overestimation of 

the density of Mn p states in the top of the valence band. This hypothesis can be 

checked using the LDA+U approximation; the U parameter should be chosen 

sufficiently large to shift the 3d bands (spin up) away from the top of the valence 

band; so the 3d-4p hybridization would not be possible; (ii) the hybridization of the 4p 

states of Mn with the states of the valence band is overestimated. This second cause is 

more probable: according to our calculation, the hybridization of the 3p states of Mg 

with the states of the valence band is present in (Ga,Mg)N, and a strong pre-edge 

absorption line is predicted, but there are no 3d states of Mg near the top of the 

valence band. 

 

Optical spectroscopy is another powerful method which allows us to study the electronic 

properties of crystals. This method has its own advantages and shortcomings as compared to 

x-ray absorption spectroscopy. An optical approach to solve the same problems (electronic 

state and distribution of Mn) was briefly described in parallel to the x-ray absorption method. 

Such a comparison allows us to reveal strong points of the methods and to optimize our 

research by combining the strongest points of the x-ray spectroscopy, optical spectroscopy 

and ab-initio calculations. Let us outline the main results of this comparison: 

• a very sharp line at 1.4 eV is observed in the optical absorption spectra of very diluted 

Ga1-xMnxN (x<0.001) samples [1,2,3]; this line was attributed to an internal e-t2 (spin 

up) transition of Mn [1,2,4]; the e-t2 splitting is due to the crystal field induced by the 

four nearest neighbor N atoms, therefore the optical spectroscopy allows measuring 

the crystal field splitting (10Dq), while the exchange splitting of the 3d states of Mn 
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can be obtained from the x-ray absorption spectra; the value of the e-t2 splitting 

obtained from an ab-initio calculation [5] is close to the experimental value 1.4 eV; 

this value is much lager than the e-t2 splitting in II-VI semiconductors; 

• the resolution of the optical spectra is significantly better than the resolution of the x-

ray absorption spectra: the natural width of 1s level (1.16 eV for Mn) limits precision 

of x-ray absorption spectroscopy, only rough features in the electronic structure can be 

identified by this method. In contrast, optical method allows a much more precise 

investigation of the electronic structure; 

• the calculated width of the absorption line at 1.4 eV in Ga1-xMnxN (x=0.0625) with a 

homogeneous distribution of Mn [5] agrees well with the broadening of the line 

obtained from optical absorption measurements of a Ga1-xMnxN (x=0.06) [6, fig. 3.3]. 

This points to a homogeneous distribution of Mn in heavy doped (Ga,Mn)N samples; 

the same conclusion was obtained from the x-ray absorption spectra; 

• the intensity of the absorption line at 1.4 eV per one Mn atom decreases when the Mn 

content x in Ga1-xMnxN become larger than 0.01 [6], while the intensity of the line A2 

(transitions to the t2 band, spin up) in our x-ray absorption spectra of Mn in Ga1-xMnxN 

does not depend on the concentration of Mn. This disagreement between the x-ray and 

optical measurements can be explained by a stronger influence of the surface and 

substrate properties on optical absorption spectra. The x-ray absorption spectra are less 

influenced by interfaces and surfaces, and therefore the x-ray absorption spectra 

reflect essentially bulk properties of the (Ga,Mn)N layers. 

 

Finally, magnetic properties of our (Ga,Mn)N samples can be explained using the results 

listed   above.   Magnetization   measurements   demonstrate   a   paramagnetic   behavior   of  

Ga1-xMnxN (x~0.017) at T=2K [7] and a ferromagnetic behavior of Ga1-xMnxN (x~0.063) with 

TC~8K [8]. Thus, exchange interaction between Mn atoms in the samples is weak. Strong 

exchange interaction between the Mn atoms was predicted in p-type (Ga,Mn)N [9], however 

the valence state of Mn in (Ga,Mn)N is 3+, Mn is not acceptor in (Ga,Mn)N. Therefore the 

exchange interaction induced by free holes is absent in (Ga,Mn)N and this explains the low 

Curie temperature of our (Ga,Mn)N samples. However additional doping by acceptor [9] or 

donor [10] impurities may enhance the exchange interactions between Mn ions and increase 

the Curie temperature of (Ga,Mn)N.  
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Brève description de la thèse en français 

Les semiconducteurs magnétiques dilués sont considérés aujourd'hui comme une base 

potentielle de composants pour l'électronique de spin, qui permettraient d'utiliser dans le 

traitement de l'information non seulement la charge des porteurs, mais aussi leur spin. 

L'extrapolation aux semiconducteurs à grande bande interdite du modèle du champ moyen 

[1,2] utilisé pour décrire les semiconducteurs dopés par le manganèse prédit pour ces 

matériaux un comportement ferromagnétique à température élevée [2]. Ainsi, le 

semiconducteur Ga1-xMnxN (x=0,053) serait ferromagnétique à température ambiante, à 

condition que le Mn substitue le Ga dans GaN sous la forme d'un ion Mn2+. Dans ce cas, le 

Mn porte un spin 5/2 et joue le rôle d'un accepteur, assurant un dopage de type p, et des 

interactions d’échange entre les atomes de Mn sont induites par des trous libres. Une autre 

hypothèse raisonnable est que le Mn adopte la configuration Mn3+, isoélectronique du 

gallium. Il est donc très important de déterminer le mode d'incorporation et l'état électronique 

du Mn dans (Ga,Mn)N. En outre, les propriétés électroniques de (Ga,Mn)As et (Ge,Mn) ont 

été étudiées. En effet, les propriétés de (Ga,Mn)As sont déjà bien connues et de nombreux 

résultats expérimentaux et théoriques sont disponibles. Dans ce travail nous utilisons 

(Ga,Mn)As comme une référence pour profiter de ces nombreux résultats. Le semiconducteur 

(Ge,Mn) est un autre matériau qui peut trouver de nombreux applications en électronique de 

spin: d’une part, la technologie de croissance du germanium est bien développée et d’autre 

part, des propriétés ferromagnétiques de (Ge,Mn) à température élevée (TC~285K) ont été 

observées [3]. Dans ce travail la structure de bande de (Ge,Mn) a été calculée pour déterminer 

l’état électronique du Mn dans (Ge,Mn). 

Les propriétés électroniques de (Ga,Mn)N ont été étudiées par spectroscopie 

d’absorption des rayons X au seuil K du Mn. Cette méthode a plusieurs avantages. 

Premièrement, elle permet d’étudier séparément les différents éléments chimiques dans un 

alliage complexe. Deuxièmement, l’intensité de ces spectres peut souvent être directement 

associée à la densité d’états p au dessus du niveau de Fermi. En outre, les spectres 

d’absorption au seuil K sont moins influencés par la surface des échantillons que les spectres 

au seuil L. Les spectres au seuil K permettent donc d’étudier les propriétés intrinsèques du 

cristal. Enfin, cette méthode est couramment utilisée à Grenoble et des résultats préliminaires 

étaient disponibles dans notre équipe. 
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Les couches de Ga1-xMnxN (x=0,003-0,057) ont été préparées par épitaxie par jets 

moléculaires [4]. La structure wurtzite de ces échantillons a été confirmée par des mesures de 

diffraction des rayons X. La forte dynamique de ces mesures a montré également que les 

couches de (Ga,Mn)N ne contiennent pas de phases secondaires, comme GaMn3N [4]. Les 

spectres d’absorption des rayons X au seuil K du Mn ont été enregistrés par X. Biquard et al. 

au Synchrotron Européen (ESRF, ligne BM30B) à Grenoble [5]. Une simulation de la partie 

EXAFS des spectres d'absorption au seuil K du Mn a confirmé que les atomes de Mn 

substituent les atomes de Ga dans GaN [5]. 

 

Fig. 1. La partie XANES des spectres d’absorption des rayons X au seuil du Mn dans 
Ga1-xMnxN (la concentration x du Mn est montrée sur la figure). Mesures: X. Biquard et 
al. [5]. 

 

Une information sur l’état électronique du Mn peut être obtenue à partir de la partie XANES 

des spectres d’absorption des rayons X (fig. 1). La forme du XANES ne dépend pas de la 

concentration de Mn dans Ga1-xMnxN. L'état électronique du Mn et la structure cristalline 

locale autour du Mn sont donc les mêmes dans tous nos échantillons. Cependant, il est assez 

compliqué de trouver un lien entre le XANES et la structure électronique du cristal. Nous 

utilisons des calculs ab-initio pour obtenir une information quantitative à partir de ces 

spectres. 
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Fig. 2. (a) Densité d’états totale (ligne noire) et densité d’états 3d du Mn (ligne grise); 
(b) densité d’états p du Mn. Le niveau de Fermi est indiqué par une ligne verticale à 0 
eV. 

 

La structure de bandes de Ga1-xMnxN (x=0,0625) a été calculée par la méthode LAPW [6]. 

Les densités d’états de spin up (spin d’électron a la même direction que l’aimantation du 

cristal) et de spin down sont présentés sur la fig. 2a. Le haut de la bande de valence est 

constitué essentiellement par des états 2p des atomes d’azote, ces états se trouvent au-dessous 

de -1eV. Les états de la bande de conduction sont situés au-dessus de +2eV. Des états 3d du 

Mn sont localisés dans la bande interdite. L’interaction d’échange entre les électrons 3d d’un 

atome de Mn décale les états 3d de spin up vers les basses énergies par rapport aux états 3d de 

spin down et ce décalage est environ 2 eV (fig. 2a). Chaque atome de Mn dans (Ga,Mn)N a 

comme proches voisins quatre atomes d’azote. Ces quatre atomes forment un tétraèdre 

régulier autour du Mn. Le champ cristallin induit par ces quatre atomes d’azote lève la 

dégénérescence des états 3d du Mn et il divise ces états en deux bandes: e (deux états) et t2 

(trois états). Les orbitales 2p de l’azote agissent plus fortement sur les orbitales de la bande t2 

et cette interaction pousse la bande t2 au-dessus de la bande e [7]. Le niveau de Fermi se 

trouve dans la bande t2 de spin up et il devise cette bande en deux parties (remplie et vide) 

avec un rapport 2:1. Ainsi, la bande e de spin up est complètement remplie par 2 électrons, 

tandis que la bande t2 est partiellement vide. 
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Les orbitales 4p du Mn acquièrent la symétrie t2 dans le champ cristallin tétraédrique des 

quatre atomes d’azote. Une hybridation de ces orbitales aux états 3d du Mn dans les bandes t2 

est donc possible et une forte densité d’états p du Mn est présente dans les bandes t2 de spin 

up et down (fig. 2b). Ainsi, il y a deux bandes avec une forte densité d’états p du Mn dans le 

gap: la bande t2 de spin up et la bande t2 de spin down. Les spectres d’absorption des rayons X 

au seuil K du Mn correspondent à transitions des électrons 1s du Mn vers des états vides. 

Selon la règle de sélection dipolaire l’intensité de ces transitions est très forte si les états 

finaux ont la symétrie p. Les deux bandes (t2 de spin up et down) doivent donc apparaître dans 

les spectres. Une estimation montre que les transitions quadrupolaires sont dix fois plus 

faibles que les transitions dipolaires. 

 

Fig. 3. Le spectre d’absorption des rayons X au seuil K du Mn: spectre expérimental de 
Ga1-xMnxN (x=0,057, carrés), spectre calculé de Ga1-xMnxN (x=0,0625, ligne). 

 

Le spectre d’absorption des rayons X au seuil K du Mn dans Ga1-xMnxN (x=0,0625) a été 

calculé par la méthode LAPW [6], uniquement les transitions dipolaires ont été prises en 

compte. Puis, pour comparer ce calcul à nos résultats expérimentaux le spectre calculé a été 

élargi avec la fonction de Voigt V(ΓL,ΓG), où le paramètre ΓL est la largeur du niveau 1s (cette 

largeur est inversement proportionnelle au temps de vie du trou 1s), ΓG est la résolution du 

monochromateur. Le paramètre ΓL vaut 1.16 eV [8] pour le niveau 1s du Mn, le paramètre 

ΓG=0.5 eV a été ajusté pour obtenir un bon fit des raies d’absorption qui se trouvent devant le 
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seuil d’absorption (fig. 3). Deux raies d’absorption séparées par un intervalle de 2 eV sont 

présentes dans le spectre calculé: une raie (A2) correspond à transitions vers la bande t2 de 

spin up et une autre raie (A3) correspond à transitions vers la bande t2 de spin down. Deux 

pré-pics sont présents également dans nos spectres expérimentaux. Nous attribuons ces deux 

pré-pics aux transitions vers les bandes t2 de spin up et down. 

 

Fig. 4. Spectres  d’absorption  des  rayons  X  au  seuil  du  Mn  (d’en haut):  Mn2+  dans  
Zn1-xMnxTe:N  (x=0,038),  Mn2+  dans  Ga1-xMnxAs  (x=0,038)  et  Mn3+  dans  Ga1-

xMnxN (x=0,057). Les positions de seuil du Mn dans Mn2O3 et MnO2 [5] sont également 
montrées. Mesures: X. Biquard et al. [5]. 

 

Cette attribution nous permet de déterminer l’état électronique du Mn dans (Ga,Mn)N. Si 

l’état électronique du Mn est 3d
5 (Mn2+), alors il y a cinq électrons d qui remplissent les 

bandes e et t2 de spin up. Dans ce cas les transitions des électrons 1s vers la bande t2 de spin 

up ne sont pas possibles et la raie A2 ne doit pas apparaître dans le XANES du Mn. 

Effectivement, l’état électronique du Mn dans (Zn,Mn)Te et (Ga,Mn)As est Mn2+ et un seul 

pré-pic (A3) est présent dans les spectres d’absorption des rayons X au seuil du Mn (fig. 4). 

Pourtant deux pré-pics sont présents dans les spectres du Mn dans (Ga,Mn)N. Cela signifie 

que la bande t2 de spin up est partiellement vide et l’état électronique du Mn dans (Ga,Mn)N 

est Mn3+. 

La position du seuil d’absorption dépend de l’état électronique du Mn: lorsque la 

valence du Mn diminue, la position du seuil décale vers les basses énergies. Le seuil du Mn 

dans (Ga,Mn)N se trouve au-dessus de celui du Mn2+ dans (Zn,Mn)Te et dans (Ga,Mn)As 
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(fig. 4). Cette différence de position du seuil confirme donc que l’état électronique du Mn 

dans (Ga,Mn)N est 3+. 

Cette conclusion est confirmée également par d’autres résultats expérimentaux: 

• nos échantillons Ga1-xMnxN ont une conductivité de type n malgré la large gamme de 

concentration de Mn: x=0,003-0,057. De plus, nous n’observons pas de corrélation 

entre la concentration d’électrons et la concentration de Mn. Cela suggère que le Mn 

n’est pas accepteur dans (Ga,Mn)N, ce qu’il serait si son état électronique était Mn2+; 

• une raie d’absorption à 1.4 eV est présente dans les spectres optiques d’absorption de 

(Ga,Mn)N [9]. Cette raie a été attribuée à une transition électronique interne du Mn: 

des électrons de la bande e de spin up passent vers la bande t2 de spin up [10,11,12]. 

Cette transition est possible si la bande t2 de spin up est partiellement vide (Mn3+), 

cette raie n’est pas observée dans les spectres optiques d’absorption des 

semiconducteurs où le Mn a l’état électronique Mn2+. 

 

Fig. 5. La densité d’états 4p du Mn dans Ga1-xMnxN (x=0,0625) de structure zinc-
blende: (a) avec une distribution des atomes de Mn homogène; (b) avec formation de 
paires d’atomes de Mn en proches voisins. En (c) et (d) les densités d’états ont été 
élargies: (c) distribution des atomes de Mn homogène; (d) formation de paires d’atomes 
de Mn en proches voisins. 
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L’interprétation du XANES nous permet également d’étudier la distribution de Mn dans 

(Ga,Mn)N. Une simulation de la partie EXAFS permet de déterminer les distances entre le 

Mn et ses proches voisins, et le nombre de ces voisins. Par contre, il est très compliqué de dire 

à partir de cette simulation s’il y a un atome du Mn parmi d’autres seconds voisins – onze 

atomes de Ga. Cette information peut être obtenue à partir de la partie XANES et cela nous 

permet de tester l'hypothèse d'une formation privilégiée de paires d'atomes proches voisin. La 

largeur des bandes d dans le gap dépend des distances entre les atomes de Mn: si la 

distribution de Mn est homogène dans Ga1-xMnxN (x=0,057) (les distances entre les atomes de 

Mn sont grandes), alors les bandes t2 dans le gap sont étroites (fig. 5a) et deux pré-pics bien 

résolus sont présents dans le XANES du Mn (fig. 5c); si au contraire, il y a une formation de 

paires d’atomes de Mn en proches voisins, alors les bandes t2 s'élargissent de façon 

significative (fig. 5b) et nous ne sommes plus capable de résoudre les deux pré-pics dans les 

spectres d'absorption des rayons X (fig. 5d). La présence des deux pré-pics bien résolus dans 

tous nos spectres expérimentaux suggère donc que la distribution du Mn est homogène dans 

tous les échantillons étudiés (fig. 1). 

 

Fig. 6. Calcul: densité d’états totale (ligne noire) et densité d’états 3d du Mn (ligne 
grise) dans (a) Ga1-xMnxAs (x=0,125) et (b) Ge1-xMnx (x=0,125). 

 

La structure de bandes de Ga1-xMnxAs (x=0,125) et de Ge1-xMnx (x=0,125) a été calculée par 

la méthode LAPW [6]. Dans ces deux cas les états 3d du Mn de spin up se trouvent dans la 
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bande de valence: il sont totalement remplis par cinq électrons et fortement hybridés à la 

bande de valence (fig. 6). Le nombre calculé d’électrons 3d près de l’atome de Mn est 4.90 

dans (Ga,Mn)As et 5.01 dans (Ge,Mn). Ainsi selon ce calcul la configuration électronique du 

Mn est 3d
5 (Mn2+) dans ces deux semiconducteurs. Selon l’interprétation de la structure du 

XANES, qui a été proposée ci-dessus, un seul pré-pic (A3) doit être présent dans le XANES 

du Mn dans (Ge,Mn). Cependant cette conclusion doit être confirmée par l’expérience. 

Des études expérimentales montrent que le ferromagnétisme à haute température que 

nous observons dans (Ga,Mn)As est induit par les trous libres: des échantillons de (Ga,Mn)As 

de type p avec une haute concentration des trous sont ferromagnétiques, en même temps des 

échantillons de (Ga,Mn)As électriquement compensés sont antiferromagnétiques [13]. L’état 

électronique du Mn dans (Ga,Mn)N est Mn3+: le Mn n’est pas accepteur dans (Ga,Mn)N et 

ces échantillons ont une conductivité de type n. Le mécanisme d’échange induit par les trous 

libres entre les atomes de Mn n’est pas présent dans (Ga,Mn)N. Cela explique une faible 

valeur de la température de Curie (TC~8K) que nous observons dans Ga1-xMnxN (x=0.063) 

[14]. Cependant un co-dopage par un accepteur [2] ou par un donneur [15] peut renforcer 

l’interaction d’échange entre les atomes de Mn dans (Ga,Mn)N. Dans le dernier cas un co-

dopage par un donneur change l’état électronique d’une partie des atomes de Mn. Si la 

concentration de donneurs est plus basse que celle du Mn, alors une partie des atomes de Mn 

acquiert l’état Mn2+, tandis qu’une autre partie reste dans l’état Mn3+. Dans ce cas le 

mécanisme de double échange de Zener [16] apparaît, et il peut significativement renforcer 

interaction entre les atomes de Mn dans (Ga,Mn)N [15]. 

 

 

Conclusion 

 

Dans ce travail nous avons essayé de combiner les recherches expérimentales et théoriques 

pour obtenir d’une part une information directe sur les propriétés des semiconducteurs et 

d’autre part pour optimiser notre recherche. Les objectifs principaux de ce travail sont: 

• l’estimation des possibilités prédictives des calculs ab-initio en comparant les spectres 

expérimentaux d’absorption des rayons X à ceux calculés par des méthodes ab-initio; 

• l’interprétation des spectres d’absorption des rayons X au seuil K du Mn; 

• l’étude des propriétés électroniques des DMS. 
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Les résultats principaux: 

• l’état électronique du Mn dans (Ga,Mn)N est Mn3+ (configuration électronique 3d
4): 

une raie dans le spectre d’absorption des rayons X au seuil K du Mn est attendue dans 

le cas du Mn2+ (3d
5) parce que la bande t2 de spin up est remplie et une seule transition 

vers la bande t2 de spin down est possible, mais deux raies d’absorption sont présentes 

dans les spectres de (Ga,Mn)N et cela signifie que la bande t2 de spin up est 

partiellement vide dans (Ga,Mn)N; 

• Mn n’est pas accepteur dans (Ga,Mn)N; cette conclusion est confirmée par nos 

mesures de transport électrique: nos échantillons ont une conductivité de type n; nous 

n’observons pas de corrélation entre la concentration d’électrons et la concentration du 

Mn; 

• les bandes 3d du Mn sont étroites dans (Ga,Mn)N et cela signifie que la distribution du 

Mn est homogène dans nos échantillons; 

• l’interaction d’échange induite par les trous libres n’est pas présente dans (Ga,Mn)N et 

cela explique la basse valeur de la température de Curie de nos échantillons de 

(Ga,Mn)N; 

• selon notre calcul ab-initio, l’état électronique du Mn dans (Ge,Mn) est Mn2+ et donc 

une seule raie d’absorption doit être présente dans le XANES du Mn, mais cette 

conclusion doit être confirmée expérimentalement. 
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Appendix I: list of samples 

Label 
Mn content 

(x) 
Layer thickness Substrate Laboratory 

Ga1-xMnxN 

E166 
0.3% - 

Lumilog 

(Al2O3/GaN) 

CEA-CNRS-

UJF (Grenoble) 

Ga1-xMnxN 

E363b 
2.0% 240 nm 

Lumilog 

(Al2O3/GaN) 

CEA-CNRS-

UJF (Grenoble) 

Ga1-xMnxN 

E414 
3.0% 170 nm 

Lumilog 

(Al2O3/GaN) 

CEA-CNRS-

UJF (Grenoble) 

Ga1-xMnxN 

E476 
5.7% 210 nm 

Lumilog 

(Al2O3/GaN) 

CEA-CNRS-

UJF (Grenoble) 

Ga1-xMnxAs 8% - - 
University of 

Nottingham 

Zn1-xMnxTe:N 3.8% - - 
CEA-CNRS-

UJF (Grenoble) 
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Résumé 

Les propriétés électroniques de (Ga,Mn)N ont été étudiées par spectroscopie d’absorption des 

rayons X au seuil K du Mn. Des calculs ab-initio ont été utilisés pour interpréter les spectres 

d’absorption de (Ga,Mn)N. Deux pré-pics sont présents dans le seuil du Mn: le premier pré-

pic est attribué aux transitions électronique vers les états 3d du Mn de spin up, tandis que le 

second pré-pic correspond aux transitions vers les états 3d du Mn de spin down. Cette 

interprétation nous permet de déterminer que l’état électronique du Mn dans (Ga,Mn)N est 

Mn3+: deux pré-pics sont présents dans les spectres d’absorption du Mn3+ et un seul pré-pic 

reste dans les spectres du Mn2+. Ce changement des spectres a été vérifié expérimentalement 

sur des échantillons de (Zn,Mn2+)Te et (Ga,Mn2+)As. De plus, cette interprétation permet 

d’étudier la distribution du Mn dans (Ga,Mn)N: la forme des spectres d’absorption suggère 

que la distribution du Mn est homogène dans nos échantillons de (Ga,Mn)N. 

 

Mots-clés: semiconducteurs magnétiques dilués, GaN:Mn, GaAs:Mn, Ge:Mn, XANES, 

spectroscopie d’absorption des rayons X, ab-initio, valence 

 

 

Abstract 

Electronic properties of the diluted magnetic semiconductor (Ga,Mn)N were studied by x-ray 

absorption spectroscopy at the K-edge of Mn. The measured x-ray absorption spectra were 

further interpreted using the ab-initio calculations. Two pre-edge absorption lines are 

observed in the x-ray absorption spectra: the first line was attributed to electronic transitions 

into 3d states of Mn of spin up, while the second line corresponds to transitions into 3d states 

of Mn of spin down. This interpretation allows us to determine the valence state of Mn: two 

absorption lines are present in the pre-edge structure of Mn3+ and only one line remains in 

case of Mn2+. Such a change of the pre-edge structure was checked experimentally on 

(Zn,Mn2+)Te and on (Ga,Mn2+)As. In addition, the distribution of Mn in (Ga,Mn)N can be 

studied using the interpretation: the shape of the spectra points to a homogeneous distribution 

of Mn in our (Ga,Mn)N samples. 

 

Keywords: diluted magnetic semiconductor, GaN:Mn, GaAs:Mn, Ge:Mn, XANES, x-ray 

absorption spectroscopy, ab-initio, valence 


