J. J. Loferski, Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion, Journal of Applied Physics, vol.27, issue.7, pp.777-784, 1956.
DOI : 10.1063/1.1722483

A. Ricaud, Photopiles solaires; Presses polytechniques et universitaires Romandes, 1997.

L. Protin and S. Astier, Convertisseurs photovoltaïques, Techniques de l'ingénieur 1996, pp.1-19

A. Moliton, In Optoélectronique moléculaire et polymère : des concepts aux composants

C. W. Tang and S. A. Van-slyke, Organic electroluminescent diodes, Applied Physics Letters, vol.51, issue.12, pp.913-915, 1987.
DOI : 10.1063/1.98799

J. H. Burroughes, D. D. Bradley, A. R. Brown, R. N. Marks, K. Mackay et al., Light-emitting diodes based on conjugated polymers, Nature, vol.347, issue.6293, pp.539-541, 1990.
DOI : 10.1038/347539a0

D. C. , D. Santos, D. A. Brédas, J. L. Lögdlund, M. Salaneck et al., Electroluminescence in conjugated polymers, Nature, vol.397, pp.121-128, 1999.

R. H. Friend and N. C. Greenham, Electroluminescence in conjugated polymers, Handbook of conducting polymers, II 1997, pp.823-845

H. Koezuka, A. Tsumura, and T. Ando, Field-effect transistor with polythiophene thin film, Synthetic Metals, vol.18, issue.1-3, pp.699-704, 1987.
DOI : 10.1016/0379-6779(87)90964-7

A. Tsumura, H. Koezuka, and T. Ando, Polythiophene field-effect transistor: Its characteristics and operation mechanism, Synthetic Metals, vol.25, issue.1, pp.11-23, 1988.
DOI : 10.1016/0379-6779(88)90318-9

G. Horowitz, D. Fichou, A. Yassar, and F. Garnier, Molecular order in organic-based field-effect transistors, Synth. Met, pp.81-163, 1996.

Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, Stacked pentacene layer organic thin-film transistors with improved characteristics, IEEE Electron Device Letters, vol.18, issue.12, pp.606-608, 1997.
DOI : 10.1109/55.644085

F. Garnier, R. Hajlaoui, A. Yassar, and P. Srivastava, All-Polymer Field-Effect Transistor Realized by Printing Techniques, Science, vol.265, issue.5179, pp.1682-1684, 1994.
DOI : 10.1126/science.265.5179.1684

Z. Bao, Y. Feng, A. Dodabalapur, V. R. Raju, and J. Lovinger, High-Performance Plastic Transistors Fabricated by Printing Techniques, Chemistry of Materials, vol.9, issue.6, pp.1299-1301, 1997.
DOI : 10.1021/cm9701163

I. Seguy, P. Destruel, and H. Bock, An all-columnar bilayer light-emitting diode, Synthetic Metals, vol.111, issue.112, pp.111-112, 2000.
DOI : 10.1016/S0379-6779(99)00405-1

L. E. Lyons, Energy gaps in organic semiconductors derived from electrochemical data, Australian Journal of Chemistry, vol.33, issue.8, pp.1717-1725, 1980.
DOI : 10.1071/CH9801717

G. A. Chamberlain, Organic solar cells: a review, Solar Cells, pp.47-83, 1983.

K. Petritsch, Organic solar cell architectures, Thèse de l'université de Graz (Autriche), 2000.

P. Peumans, A. Yakimov, and S. R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells, Journal of Applied Physics, vol.93, issue.7, pp.3693-3723, 2003.
DOI : 10.1063/1.1534621

B. Valeur, Molecular Fluorescence: Principles and Applications, 2001.
DOI : 10.1002/9783527650002

I. G. Hill, A. Kahn, Z. G. Soos, and R. A. Pascal, Charge-separation energy in films of ??-conjugated organic molecules, Chemical Physics Letters, vol.327, issue.3-4, pp.181-188, 2000.
DOI : 10.1016/S0009-2614(00)00882-4

B. A. Gregg, Excitonic Solar Cells, The Journal of Physical Chemistry B, vol.107, issue.20, pp.4688-4698, 2003.
DOI : 10.1021/jp022507x

B. A. Gregg and M. C. Hanna, Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation, Journal of Applied Physics, vol.93, issue.6, pp.3605-3614, 2003.
DOI : 10.1063/1.1544413

G. A. Chamberlain and P. J. Cooney, Photoelectric properties of aluminium/copper phthalocyanine/gold photovoltaic cells, Chemical Physics Letters, vol.66, issue.1, pp.88-94, 1979.
DOI : 10.1016/0009-2614(79)80374-7

J. Rostalski and D. Meissner, Photocurrent spectroscopy for the investigation of charge carrier generation and transport mechanisms in organic p/n-junction solar cells, Solar Energy Materials and Solar Cells, vol.63, issue.1, pp.37-47, 2000.
DOI : 10.1016/S0927-0248(00)00018-0

C. Videlot, Cellules photovoltaïques organiques: conception, fonctionnement, modélisation, Thèse de l'université Paris XI Orsay (France), 1999.

L. Sicot, Etude et réalisation de cellules photovoltaïques en polymère, Thèse de l'université Paris XI Orsay (France), 1999.

J. Nunzi, Organic photovoltaic materials and devices, Comptes Rendus Physique, vol.3, issue.4, pp.523-542, 2002.
DOI : 10.1016/S1631-0705(02)01335-X

J. Rostalski and D. Meissner, Monochromatic versus solar efficiencies of organic solar cells, Solar Energy Materials and Solar Cells, vol.61, issue.1, pp.87-95, 2000.
DOI : 10.1016/S0927-0248(99)00099-9

U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel et al., Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature, vol.395, pp.583-585, 1998.

E. Arici, N. S. Sariciftci, and D. Meissner, Hybrid Solar Cells Based on Nanoparticles of CuInS2 in Organic Matrices, Advanced Functional Materials, vol.13, issue.2, pp.165-171, 2003.
DOI : 10.1002/adfm.200390024

S. A. Jenekhe and S. Yi, Efficient photovoltaic cells from semiconducting polymer heterojunctions, Applied Physics Letters, vol.77, issue.17, pp.2635-2637, 2000.
DOI : 10.1063/1.1320022

T. Tsuzuki, Y. Shirota, J. Rostalski, and D. Meissner, The effect of fullerene doping on photoelectric conversion using titanyl phthalocyanine and a perylene pigment, Solar Energy Materials and Solar Cells, vol.61, issue.1
DOI : 10.1016/S0927-0248(99)00091-4

T. Fromherz, F. Padinger, D. Gebeyehu, C. J. Brabec, J. C. Hummelen et al., Comparison of photovoltaic devices containing various blends of polymer and fullerene derivatives, Solar Energy Materials and Solar Cells, vol.63, issue.1, pp.61-68, 2000.
DOI : 10.1016/S0927-0248(00)00020-9

L. Schmidt-mende, A. Fechtenkötter, K. Müllen, E. Moons, R. H. Friend et al., Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics, Science, vol.293, issue.5532, pp.1119-1122, 2001.
DOI : 10.1126/science.293.5532.1119

T. Stübinger and W. Brütting, Exciton diffusion and optical interference in organic donor???acceptor photovoltaic cells, Journal of Applied Physics, vol.90, issue.7, pp.3632-3641, 2001.
DOI : 10.1063/1.1394920

G. Smestad and H. Ries, Luminescence and current-voltage characteristics of solar cells and optoelectronic devices, Solar Energy Materials and Solar Cells, vol.25, issue.1-2, pp.51-71, 1992.
DOI : 10.1016/0927-0248(92)90016-I

C. M. Ramsdale, J. A. Barker, A. C. Arias, J. D. Mackenzie, R. H. Friend et al., The origin of the open-circuit voltage in polyfluorene-based photovoltaic devices, Journal of Applied Physics, vol.92, issue.8, pp.4266-4270, 2002.
DOI : 10.1063/1.1506385

J. H. Schön, C. Kloc, and B. Batlogg, Efficient photovoltaic energy conversion in pentacene-based heterojunctions, Applied Physics Letters, vol.77, issue.16, pp.2473-2475, 2000.
DOI : 10.1063/1.1318234

D. Wöhrle, Controlled p-doping of pigment layers by cosublimation: Basic mechanisms and implications for their use in organic photovoltaic cells, Sol. Energy Mater. Sol. Cells, vol.63, pp.83-99, 2000.

B. A. Gregg and R. A. Cormier, Doping Molecular Semiconductors:?? n-Type Doping of a Liquid Crystal Perylene Diimide, Journal of the American Chemical Society, vol.123, issue.32, pp.7959-7960, 2001.
DOI : 10.1021/ja016410k

A. Hagfeldt, M. Grätzel, and M. Photovoltaics, Molecular Photovoltaics, Accounts of Chemical Research, vol.33, issue.5, pp.269-277, 2000.
DOI : 10.1021/ar980112j

R. Argazzi, C. A. Bignozzi, T. A. Heimer, F. N. Castellano, and G. J. Meyer, Interfaces with Phenothiazine Donors, Light-Induced Charge Separation across Ru(II)-Modified Nanocrystalline TiO2 Interfaces with Phenothiazine Donors, pp.2591-2597, 1997.
DOI : 10.1021/jp9619393

K. Hara, M. Kurashige, S. Ito, A. Shinpo, S. Suga et al., Novel polyene dyes for highly efficient dye-sensitized solar cells, Chem. Com, pp.252-253, 2003.

D. Gebeyehu, C. J. Brabec, F. Padinger, T. Fromherz, S. Spiekermann et al., Solid state dye-sensitized TiO2 solar cells with poly(3-octylthiophene) as hole transport layer, Synthetic Metals, vol.121, issue.1-3, pp.1549-1550, 2001.
DOI : 10.1016/S0379-6779(00)01239-X

K. Murakoshi, R. Kogure, Y. Wada, and S. Yanagida, Solid-state dye-sensitized TiO2 solar cell with polypyrrole as hole transport layer, Chem. Lett, pp.471-472, 1997.

K. Tennakone, G. R. Kumara, A. R. Kumarasinghe, K. G. Wijayantha, and P. M. Sirimanne, A dye-sensitized nano-porous solid-state photovoltaic cell, Semiconductor Science and Technology, vol.10, issue.12, pp.1689-1693, 1995.
DOI : 10.1088/0268-1242/10/12/020

O. 'regan, B. Schwartz, and D. T. , Efficient Photo-Hole Injection from Adsorbed Cyanine Dyes into Electrodeposited Copper(I) Thiocyanate Thin Films, Chemistry of Materials, vol.7, issue.7, pp.1349-1354, 1995.
DOI : 10.1021/cm00055a012

O. 'regan, B. Schwartz, and D. T. , /RuLL???NCS/CuSCN:?? Initiation and Potential Mechanisms, Chemistry of Materials, vol.10, issue.6, pp.1501-1509, 1998.
DOI : 10.1021/cm9705855

G. Yu, K. Pakbaz, and A. J. Heeger, Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible???ultraviolet sensitivity, Applied Physics Letters, vol.64, issue.25, pp.3422-3424, 1994.
DOI : 10.1063/1.111260

G. Yu and A. J. Heeger, Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions, Journal of Applied Physics, vol.78, issue.7, pp.4510-4515, 1995.
DOI : 10.1063/1.359792

J. J. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend et al., Efficient photodiodes from interpenetrating polymer networks, Efficient photodiodes from interpenetrating polymer networks, pp.498-500, 1995.
DOI : 10.1038/376498a0

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions, Science, vol.270, issue.5243, 1995.
DOI : 10.1126/science.270.5243.1789

N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger et al., Semiconducting polymer???buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells, Applied Physics Letters, vol.62, issue.6, pp.585-587, 1993.
DOI : 10.1063/1.108863

L. S. Roman, M. R. Andersson, T. Yohannes, and O. Inganäs, blends, Advanced Materials, vol.7, issue.15, pp.1164-1168, 1997.
DOI : 10.1002/adma.19970091508

L. S. Roman, W. Mammo, L. A. Pettersson, M. R. Andersson, and O. Inganäs, High Quantum Efficiency Polythiophene, Advanced Materials, vol.10, issue.10, pp.774-777, 1998.
DOI : 10.1002/(SICI)1521-4095(199807)10:10<774::AID-ADMA774>3.0.CO;2-J

F. Padinger, R. S. Rittberger, and N. S. Sariciftci, Effects of Postproduction Treatment on Plastic Solar Cells, Advanced Functional Materials, vol.13, issue.1, pp.85-88, 2003.
DOI : 10.1002/adfm.200390011

M. Granström, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson et al., Laminated fabrication of polymeric photovoltaic diodes, Nature, vol.395, pp.257-260, 1998.

J. F. Eckert, J. F. Nicoud, J. F. Nierengarten, S. G. Liu, L. Echegoyen et al., Fullerene???Oligophenylenevinylene Hybrids:?? Synthesis, Electronic Properties, and Incorporation in Photovoltaic Devices, Fullerene-Oligophenylenevinylene Hybrids: Synthesis, Electronic Properties, and Incorporation in Photovoltaic Devices, pp.7467-7479, 2000.
DOI : 10.1021/ja9941072

S. Glenis, G. Tourillon, and F. Garnier, Photoelectrochemical properties of thin films of polythiophene and derivatives: Doping level and structure effects, Thin Solid Films, p.9, 1984.

S. Glenis, G. Horowitz, G. Tourillon, and F. Garnier, Electrochemically grown polythiophene and poly(3-methylthiophene) organic photovoltaic cells, Thin Solid Films, p.93, 1984.

K. Kajihara, K. Tanaka, K. Hirao, and N. Soga, Photovoltaic Effect in Titanium Dioxide/Polythiophene Cell, Japanese Journal of Applied Physics, vol.36, issue.Part 1, No. 9A, pp.5537-5542, 1997.
DOI : 10.1143/JJAP.36.5537

C. Sentein, C. Fiorini, A. Lorin, and J. M. Nunzi, Molecular rectification in oriented polymer structures, Synthetic Metals, vol.91, issue.1-3, pp.81-82, 1997.
DOI : 10.1016/S0379-6779(98)80069-6

URL : https://hal.archives-ouvertes.fr/cea-01075430

L. Sicot, C. Fiorini, A. Lorin, P. Raimond, C. Sentein et al., Improvement of the photovoltaic properties of polythiophene-based cells, Solar Energy Materials and Solar Cells, vol.63, issue.1, pp.49-60, 2000.
DOI : 10.1016/S0927-0248(00)00019-2

H. Meier, Organic Semiconductors; Verlag-Chemie, 1974.

C. W. Tang, Two???layer organic photovoltaic cell, Applied Physics Letters, vol.48, issue.2, pp.183-185, 1986.
DOI : 10.1063/1.96937

M. Hiramoto, Y. Kishigami, and M. Yokoyama, Doping Effect on the Two-layer Organic Solar Cell, Chemistry Letters, vol.19, issue.1, pp.119-122, 1990.
DOI : 10.1246/cl.1990.119

M. Hiramoto, M. Suezaki, and M. Yokoyama, Effect of Thin Gold Interstitial-layer on the Photovoltaic Properties of Tandem Organic Solar Cell, Chemistry Letters, vol.19, issue.3, pp.327-330, 1990.
DOI : 10.1246/cl.1990.327

D. Wöhrle and D. Meissner, Organic Solar Cells, Advanced Materials, vol.1989, issue.3, pp.129-138, 1991.
DOI : 10.1002/adma.19910030303

S. Siebentritt, S. Günster, and D. Meissner, Junction effects in phthalocyanine thin film solar cells, Synthetic Metals, vol.41, issue.3, pp.41-43, 1991.
DOI : 10.1016/0379-6779(91)91581-T

D. Meissner and J. Rostalski, Photovoltaics of interconnected networks, Synthetic Metals, vol.121, issue.1-3, pp.1551-1552, 2001.
DOI : 10.1016/S0379-6779(00)01496-X

D. Wöhrle, L. Kreienhoop, G. Schnurpfeil, J. Elbe, B. Tennigkeit et al., Investigations of n/p-junction photovoltaic cells of perylenetetracarboxylic acid diimides and phthalocyanines, J. Mater. Chem., vol.86, issue.44, pp.1819-1829, 1995.
DOI : 10.1039/JM9950501819

P. Peumans and S. R. Forrest, Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells, Applied Physics Letters, vol.79, issue.1, pp.126-128, 2001.
DOI : 10.1063/1.1384001

N. Noma, T. Tsuzuki, and Y. Shirota, ?Thiophene octamer as a new class of photo-active material for photoelectrical conversion, Advanced Materials, vol.70, issue.43, pp.647-648, 1995.
DOI : 10.1002/adma.19950070709

F. Garnier, G. Horowitz, X. Z. Peng, and D. Fichou, Structural basis for high carrier mobility in conjugated oligomers, Synthetic Metals, vol.45, issue.2, pp.163-171, 1991.
DOI : 10.1016/0379-6779(91)91800-P

J. J. Halls, K. Pichler, R. H. Friend, S. C. Moratti, and A. B. Holmes, heterojunction photovoltaic cell, Applied Physics Letters, vol.68, issue.22, pp.3120-3122, 1996.
DOI : 10.1063/1.115797

J. J. Halls and R. H. Friend, The photovoltaic effect in a poly(p-phenylenevinylene)/perylene heterojunction, Synthetic Metals, vol.85, issue.1-3, pp.1307-1308, 1997.
DOI : 10.1016/S0379-6779(97)80252-4

D. Fichou, Structural order in conjugated oligothiophenes and its implications on opto-electronic devices, Journal of Materials Chemistry, vol.10, issue.3, pp.571-588, 2000.
DOI : 10.1039/a908312j

C. Videlot, A. Kassmi, and D. Fichou, Photovoltaic properties of octithiophene-based Schottky and p/n junction cells: Influence of molecular orientation, Solar Energy Materials and Solar Cells, vol.63, issue.1, pp.69-82, 2000.
DOI : 10.1016/S0927-0248(00)00021-0

T. Toccoli, A. Boschetti, C. Corradi, L. Guerini, M. Mazzola et al., Co-deposition of phthalocyanines and fulleren by SuMBE characterization and prototype devices, Synth. Met, 2003.

M. Murgia, F. Biscarini, M. Cavallini, C. Taliani, and G. Ruani, Intedigitated p-n junction: a route to improve the efficiency in organic photovoltaic cells, Synthetic Metals, vol.121, issue.1-3, pp.1533-1534, 2001.
DOI : 10.1016/S0379-6779(00)01167-X

D. Gebeyehu, B. Maennig, J. Drechsel, K. Leo, and M. Pfeiffer, Bulk-heterojunction photovoltaic devices based on donor???acceptor organic small molecule blends, Solar Energy Materials and Solar Cells, vol.79, issue.1
DOI : 10.1016/S0927-0248(02)00369-0

P. Peumans, S. Uchida, and S. R. Forrest, Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films, Nature, vol.425, issue.6954, pp.158-162, 2003.
DOI : 10.1038/nature01949

G. Horowitz, F. Kouki, P. Spearman, D. Fichou, C. Nogues et al., Evidence for n-type conduction in a perylene tetracarboxylic diimide derivative, Advanced Materials, vol.54, issue.3, pp.242-245, 1996.
DOI : 10.1002/adma.19960080312

R. O. Loufty and J. H. Sharp, Photovoltaic properties of metal-free phthalocyanine I

H. Meier, Photoconductivity in organic solids - Intensity dependence, In Organic Semiconductors, Chapter, p.317, 1974.

C. W. Struijk, A. B. Sieval, J. E. Dakhorst, M. Van-dijk, P. Kimkes et al., Liquid Crystalline Perylene Diimides:?? Architecture and Charge Carrier Mobilities, Journal of the American Chemical Society, vol.122, issue.45, pp.11057-11066, 2000.
DOI : 10.1021/ja000991g

E. Hadicke and F. Graser, Structures of eleven perylene-3,4:9,10-bis(dicarboximide) pigments, Acta Crystallographica Section C Crystal Structure Communications, vol.42, issue.2, pp.42-189, 1986.
DOI : 10.1107/S0108270186096828

M. Sadrai, G. R. Bird, J. A. Potenza, and H. J. Schugar, A charge-transfer complex of benzene with a highly twisted perylene derivative, Acta Crystallographica Section C Crystal Structure Communications, vol.46, issue.4, pp.637-640, 1990.
DOI : 10.1107/S0108270189008437

A. Bondi, van der Waals Volumes and Radii, The Journal of Physical Chemistry, vol.68, issue.3, pp.441-451, 1964.
DOI : 10.1021/j100785a001

C. Videlot, A. Kassmi, and D. Fichou, Photovoltaic properties of octithiophene-based Schottky and p/n junction cells: Influence of molecular orientation, Solar Energy Materials and Solar Cells, vol.63, issue.1, pp.69-82, 2000.
DOI : 10.1016/S0927-0248(00)00021-0

R. R. Chance, A. Prock, and R. Silbey, Molecular Fluorescence and Energy Transfer Near Interfaces, Adv. Chem. Phys, vol.37, pp.1-65, 1978.
DOI : 10.1002/9780470142561.ch1

H. Becker, R. H. Friend, A. Lux, and A. B. Holmes, PL and EL quenching due to thin metal films in conjugated polymers and polymer LEDs, Synthetic Metals, vol.85, issue.1-3, pp.1289-1290, 1997.
DOI : 10.1016/S0379-6779(97)80245-7

K. Kuhnke, R. Becker, M. Epple, and K. Kern, Exciton Quenching near Metal Surfaces, C 60 Exciton Quenching near Metal Surfaces, pp.3246-3249, 1997.
DOI : 10.1103/PhysRevLett.79.3246

V. M. Agranovich and M. D. Galanin, Electronic excitation energy transfert in condensed matter, 1982.

G. A. Chamberlain, Organic solar cells: a review, Solar Cells, pp.47-83, 1983.

D. Wöhrle and D. Meissner, Organic Solar Cells, Advanced Materials, vol.1989, issue.3, pp.129-138, 1991.
DOI : 10.1002/adma.19910030303

P. Peumans, A. Yakimov, and S. R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells, Journal of Applied Physics, vol.93, issue.7, pp.3693-3723, 2003.
DOI : 10.1063/1.1534621

A. K. Ghosh and T. Feng, Merocyanine organic solar cells, Journal of Applied Physics, vol.49, issue.12, pp.5982-5989, 1978.
DOI : 10.1063/1.324566

D. L. Morel, A. K. Ghosh, T. Feng, E. L. Stogryn, P. E. Purwin et al., High???efficiency organic solar cells, High-efficiency organic solar cells, pp.495-497, 1978.
DOI : 10.1063/1.90099

S. Siebentritt, S. Günster, and D. Meissner, Junction effects in phthalocyanine thin film solar cells, Synthetic Metals, vol.41, issue.3, pp.41-43, 1991.
DOI : 10.1016/0379-6779(91)91581-T

G. A. Chamberlain and P. J. Cooney, Photoelectric properties of aluminium/copper phthalocyanine/gold photovoltaic cells, Chemical Physics Letters, vol.66, issue.1, pp.88-94, 1979.
DOI : 10.1016/0009-2614(79)80374-7

K. Petritsch and R. H. Friend, Ultrathin organic photovoltaic devices, Synthetic Metals, vol.102, issue.1-3, p.976, 1999.
DOI : 10.1016/S0379-6779(98)01034-0

P. Peumans and S. R. Forrest, Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells, Applied Physics Letters, vol.79, issue.1, pp.126-128, 2001.
DOI : 10.1063/1.1384001

P. Peumans, V. Bulovic, and S. R. Forrest, Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes, Applied Physics Letters, vol.76, issue.19, pp.2650-2652, 2000.
DOI : 10.1063/1.126433

C. W. Tang, Two???layer organic photovoltaic cell, Applied Physics Letters, vol.48, issue.2, pp.183-185, 1986.
DOI : 10.1063/1.96937

.. Evaluation-de-nouveaux-donneurs-dérivés-d-'oligothiophènes, 71 3.1. Evaluation de donneurs dérivés d'oligothiophènes hybrides 71 3.1.1. Evaluation de dérivés du terthiophène, p.75

P. Peumans and S. R. Forrest, Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells, Applied Physics Letters, vol.79, issue.1, pp.126-128, 2001.
DOI : 10.1063/1.1384001

P. Peumans, V. Bulovic, and S. R. Forrest, Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes, Applied Physics Letters, vol.76, issue.19, pp.2650-2652, 2000.
DOI : 10.1063/1.126433

C. D. Dimitrakopoulos and P. Malenfant, Organic Thin Film Transistors for Large Area Electronics, Advanced Materials, vol.10, issue.211, pp.99-117, 2002.
DOI : 10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9

F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre et al., Molecular engineering of organic semiconductors: design of self-assembly properties in conjugated thiophene oligomers, Journal of the American Chemical Society, vol.115, issue.19, pp.8716-8721, 1993.
DOI : 10.1021/ja00072a026

C. Videlot, J. Ackermann, P. Blanchard, J. M. Raimundo, P. Frère et al., Field-Effect Transistors Based on Oligothienylenevinylenes: From Solution ??-Dimers to High-Mobility Organic Semiconductors, Advanced Materials, vol.15, issue.4, pp.306-310, 2003.
DOI : 10.1002/adma.200390074

H. E. Katz, A. J. Lovinger, and J. G. Laquindanum, ??,??-Dihexylquaterthiophene:?? A Second Thin Film Single-Crystal Organic Semiconductor, Chemistry of Materials, vol.10, issue.2, pp.457-459, 1998.
DOI : 10.1021/cm970627p

C. Videlot, A. Kassmi, and D. Fichou, Photovoltaic properties of octithiophene-based Schottky and p/n junction cells: Influence of molecular orientation, Solar Energy Materials and Solar Cells, vol.63, issue.1, pp.69-82, 2000.
DOI : 10.1016/S0927-0248(00)00021-0

L. Schmidt-mende, A. Fechtenkötter, K. Müllen, E. Moons, R. H. Friend et al., Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics, Science, vol.293, issue.5532, pp.1119-1122, 2001.
DOI : 10.1126/science.293.5532.1119

D. Wöhrle and D. Meissner, Organic Solar Cells, Advanced Materials, vol.1989, issue.3, pp.129-138, 1991.
DOI : 10.1002/adma.19910030303

S. A. Jenekhe and S. Yi, Efficient photovoltaic cells from semiconducting polymer heterojunctions, Applied Physics Letters, vol.77, issue.17, pp.2635-2637, 2000.
DOI : 10.1063/1.1320022

U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel et al., Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-toelectron conversion efficiencies, Nature, vol.395, pp.583-585, 1998.

E. Arici, N. S. Sariciftci, and D. Meissner, Hybrid Solar Cells Based on Nanoparticles of CuInS2 in Organic Matrices, Advanced Functional Materials, vol.13, issue.2, pp.165-171, 2003.
DOI : 10.1002/adfm.200390024

A. Annexe-expérimentale and .. , 95 A.1.1. L'électrode d, PEDOT et LiF, p.100

D. Caractérisations-des, 100 A.2.1. Mesure de l'épaisseur des couches, p.101

A. Figure, 1 : Spectre en transmission d'une plaque d'ITO (pointillés) et d'une couche de 30 nm de PEDOT sur ITO (trait continu)

. La-gravure-se-fait-À-l, acide chlorhydrique 37% pendant 30 min sans chauffage, en protégeant l'ITO par de l'adhésif d'électricien résistant à l'acide. On peut aussi utiliser certains adhésifs de bureau translucides, chauffer l'acide à 50-60°C et ainsi diminuer le temps de gravure à 3 minutes

A. Figure, 2 : Scan AFM d'une plaque d'ITO. L'échelle de couleur donne la topographie de la surface

. Le-nettoyage-des-lames-de-verre, ITO est une étape de grande importance permettant l'adhérence des matériaux organiques déposés par la suite [2] Un soin particulier est porté à cette étape et aux stockages des lames de verres et d'ITO. La première étape utilise l'action conjuguée d'ultrasons et de détergent, premier bain des lames est réalisé dans le bac à ultrasons avec les détergents Deconex ou TFD4 (Hydroxyde de Potassium de c < 5%) utilisé dans la décontamination de la radioactivité

. Minutes-chacun, Pour l'ITO, le traitement continue par deux bains successifs de 10 min dans l'éthanol puis l'acétone

. La-troisième-Étape-est-le-traitement-par-uv-ozone-de-l-' and . Ito, Pour cela, nous utilisons le UVO-Cleaner (modèle 42-220) de Jelight Company, Inc. Ce traitement UV-O3 permet de nettoyer la surface de nos substrats de verre de toute trace de contaminants organiques. Il permet d'autre part de baisser le travail de sortie de l'ITO [3, 4], et d'améliorer la mouillabilité des composés déposés par la suite

P. Le and . Est-un-polymère-conjugué-qui-peut, être déposé par spin-coating à partir d'une solution aqueuse. Les résistivités du PEDOT déposé sur plaque de verre et d'une plaque d'ITO ont été mesurées par la technique quatre pointes. On trouve typiquement 1.5 10 -5 ?/ pour le PEDOT contre 20 ?/ pour l'ITO. Par contre, une couche de PEDOT déposée sur une plaque d'ITO possède la même résistivité que l

A. Tableau, 1 : Travail de sortie de différents matériaux

. Un-désavantage-connu-de-l-'ito-est-la-diffusion, On obtient une distribution homogène de concentration en atome de 1%, se réduisant à 0.1 at.% si le substrat est porté à plus haute température lors du recuit du PEDOT Ce recuit est nécessaire pour faire disparaître l'eau résiduelle du PEDOT. En effet, l'eau provoque une gravure de l'ITO par protonation, due à l'environnement acide du PSS (acide sulfonique) et favorise donc la diffusion de l'Indium. Contrairement à l'Indium, l'aluminium ne diffuse pas dans la couche active et ceci quelque soit la vitesse de dépôt (de 1 nm/s à 10 nm/s) mais présente une grande rugosité de surface [16]. Il faut toutefois penser qu'augmenter la vitesse de dépôt signifie aussi augmenter la température du creuset, risquant ainsi l'échauffement excessif des couches organiques. L'évaporation de l'électrode d'aluminium est précédée du dépôt d'une fine couche fine de fluorure de lithium (LiF) de 0.5 nm d'épaisseur entre le matériau organique et l'aluminium

. La-synthèse-des-dérivés-d, oligothiophènes linéaires a été réalisée dans le groupe Systèmes Conjugués Linéaires (SCL) par Mathieu Turbiez et a fait l'objet d'une thèse de l'université d'Angers sous la direction de Pierre Frère intitulée "Nouveaux systèmes conjugués linéaires intégrant des motif 3, EDOT) : synthèse et étude des propriétés életroniques, p.4, 2003.

Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy, Applied Physics Letters, vol.68, issue.19, pp.2699-2701, 1996.
DOI : 10.1063/1.116313

J. S. Kim, F. Cacialli, M. Granstrom, R. H. Friend, N. Johansson et al., Characterisation of the properties of surface-treated indium-tin oxide thin films, Synthetic Metals, vol.101, issue.1-3, pp.111-112, 1999.
DOI : 10.1016/S0379-6779(98)01127-8

J. S. Kim, B. Lagel, E. Moons, N. Johansson, I. D. Baikie et al., Kelvin probe and ultraviolet photoemission measurements of indium tin oxide work function: a comparison, Synthetic Metals, vol.111, issue.112, pp.111-112, 2000.
DOI : 10.1016/S0379-6779(99)00354-9

J. Olivier, B. Servet, M. Vergnolle, M. Mosca, and G. Garry, Stability/instability of conductivity and work function changes of ITO thin films, UV-irradiated in air or vacuum, Synthetic Metals, vol.122, issue.1, pp.87-89, 2001.
DOI : 10.1016/S0379-6779(00)01337-0

S. Radhakrisnan, S. Unde, and A. B. Mandale, Source of instability in solid state polymeric electrochromic cells: the deterioration of indium tin oxide electrodes, Materials Chemistry and Physics, vol.48, issue.3, pp.268-271, 1997.
DOI : 10.1016/S0254-0584(96)01900-1

F. Cacialli, J. S. Kim, T. M. Brown, J. Morgado, M. Granström et al., Surface and bulk phenomena in conjugated polymers devices, Synthetic Metals, vol.109, issue.1-3, pp.7-11, 2000.
DOI : 10.1016/S0379-6779(99)00188-5

A. C. Arias, M. Granstrom, K. Petritsch, and R. H. Friend, Organic Photodiodes using Polymeric Anodes, Organic photodiodes using polymeric anodes, pp.953-954, 1999.
DOI : 10.1016/S0379-6779(98)00976-X

S. Karg, J. C. Scott, J. R. Salem, and M. Angelopoulos, Increased brightness and lifetime of polymer light-emitting diodes with polyaniline anodes, Synthetic Metals, vol.80, issue.2, pp.111-117, 1996.
DOI : 10.1016/S0379-6779(96)03690-9

W. Bantikassegn and O. Inganäs, Electronic properties of junctions between aluminum and doped poly(3,4-ethylenedioxythiophene), Thin Solid Films, pp.138-143, 1997.

F. Zhang, M. Johansson, M. R. Andersson, J. C. Hummelen, and O. Inganäs, Polymer Photovoltaic Cells with Conducting Polymer Anodes, Advanced Materials, vol.14, issue.9, pp.662-665, 2002.
DOI : 10.1002/1521-4095(20020503)14:9<662::AID-ADMA662>3.0.CO;2-N

T. Kugler and W. R. Salaneck, Chemical species at polymer/ITO interfaces: consequences for the band alignment in light-emitting devices, Comptes Rendus de l'Acad??mie des Sciences - Series IV - Physics, vol.1, issue.4, pp.409-423, 2000.
DOI : 10.1016/S1296-2147(00)00140-2

T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik et al., Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer, Applied Physics Letters, vol.75, issue.12, pp.1679-1681, 1999.
DOI : 10.1063/1.124789

S. P. Armes and R. Corradi, Chemical synthesis of poly, Synth. Met, vol.3, issue.84, pp.453-454, 1997.

G. Greczynski, T. Kugler, and W. R. Salaneck, Characterization of the PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy, Thin Solid Films, pp.129-135, 1999.

M. P. De-jong, D. P. Simons, M. A. Reijme, L. J. Van-ijzendoorn, A. W. Denier-van-der-gon et al., Indium diffusion in model polymer light-emitting diodes, Indium diffusion in model polymer light-emitting diodes, pp.1-6, 2000.
DOI : 10.1016/S0379-6779(99)00087-9

J. Rispens, M. T. Hummelen, J. C. Janssen, and R. A. , In-situ compositional and structural analysis of plastic solar cells, Adv. Funct. Mater, vol.12, pp.665-669, 2002.

C. J. Brabec, S. E. Shaheen, C. Winder, and N. S. Sariciftci, Effect of LiF/metal electrodes on the performance of plastic solar cells, Applied Physics Letters, vol.80, issue.7, pp.1288-1290, 2002.
DOI : 10.1063/1.1446988

F. Padinger, R. S. Rittberger, and N. S. Sariciftci, Effects of Postproduction Treatment on Plastic Solar Cells, Advanced Functional Materials, vol.13, issue.1, pp.85-88, 2003.
DOI : 10.1002/adfm.200390011

L. A. Pettersson, L. S. Roman, and O. Inganäs, Modeling photocurrent action spectra of photovoltaic devices based on organic thin films, Journal of Applied Physics, vol.86, issue.1, pp.487-496, 1999.
DOI : 10.1063/1.370757

J. Rostalski and D. Meissner, Photocurrent spectroscopy for the investigation of charge carrier generation and transport mechanisms in organic p/n-junction solar cells, Solar Energy Materials and Solar Cells, vol.63, issue.1, pp.37-47, 2000.
DOI : 10.1016/S0927-0248(00)00018-0

G. Meinhardt, D. Gruber, G. Jakopic, Y. Geerts, W. Papousek et al., Photocurrent action spectroscopy in organic photovoltaic cells, Synthetic Metals, vol.121, issue.1-3, pp.1593-1594, 2001.
DOI : 10.1016/S0379-6779(00)01311-4