A. Mees, T. Klar, P. Gnau, U. Hennecke, A. P. Eker et al., Crystal Structure of a Photolyase Bound to a CPD-Like DNA Lesion After in Situ Repair, Science, vol.306, issue.5702, pp.1789-1793, 2004.
DOI : 10.1126/science.1101598

V. Berg, B. J. Et-sancar, and G. B. , Evidence for Dinucleotide Flipping by DNA Photolyase, Journal of Biological Chemistry, vol.273, issue.32, pp.20276-20284, 1998.
DOI : 10.1074/jbc.273.32.20276

H. Park, K. Zhang, Y. Ren, S. Nadji, N. Sinha et al., Crystal structure of a DNA decamer conatining a cis-syn thymine dimer, Proc. Natl. Acad, 2002.

Y. Kao, C. Saxena, L. Wang, A. Sancar, and D. Et-zhong, Direct observation of thymine dimer repair in DNA by photolyase, Proc. Natl. Acad. Sci. USA, pp.16128-16132, 2005.
DOI : 10.1038/nsb1197-887

C. B. Harrison, L. L. O-'neil, and O. Et-wiest, Computational Studies of DNA Photolyase, The Journal of Physical Chemistry A, vol.109, issue.32, pp.7001-7012, 2005.
DOI : 10.1021/jp051075y

Y. M. Gindt, J. P. Schelvis, K. L. Thoren, and T. H. Et-huang, Substrate Binding Modulates the Reduction Potential of DNA Photolyase, Journal of the American Chemical Society, vol.127, issue.30, pp.10472-10473, 2005.
DOI : 10.1021/ja051441r

F. Boussicault, O. Krüger, M. Robert, U. Et-wille, M. Robert et al., Dissociative electron transfer to and from pyrimidine cyclobutane dimers: an electrochemical study Photoinduced dissociative electron transfer: is the quantum yield theoretically predicted to equal unity ? Stepwise and concerted pathways in thermal and photoinduced electron-transfer/bond-breaking reactions, Org. Biomol. Chem. J. Am. Chem. Soc. J.-M. J. Phys. Chem. A, vol.2, issue.104, pp.2742-2750, 2000.

K. Hitmoi, S. Kim, S. Iwai, N. Harima, E. Otoshi et al., Binding and Catalytic Properties of Xenopus (6-4) Photolyase, Journal of Biological Chemistry, vol.272, issue.51, pp.32591-32598, 1997.
DOI : 10.1074/jbc.272.51.32591

S. T. Kim, K. Malhotra, C. A. Smith, J. S. Taylor, and A. Et-sancar, Characterization of (6-4) photoproduct DNA photolyase, J. Biol. Chem, vol.269, pp.8535-8540, 1994.

S. Yasuhira and A. Et-yasui, Visible light-inducible photolyase gene from the goldfish Carassius auratus, J. Biol. Chem, vol.276, pp.25644-25647, 1992.

T. Kato, T. Todo, H. Ayaki, H. Ishizaki, T. Morita et al., Cloning of a marsupial DNA photolyase gene and the lack of related nucleotide sequences in placental mammals, Nucleic Acids Research, vol.22, issue.20, pp.4119-4124, 1994.
DOI : 10.1093/nar/22.20.4119

H. W. Park, S. T. Kim, A. Sancar, and J. Et-deisenhofer, Crystal structure of DNA photolyase from Escherichia coli, Science, vol.268, issue.5219, pp.1866-1872, 1995.
DOI : 10.1126/science.7604260

Y. Higuchi, K. Inaka, A. Yasui, P. E. De-ruiter, A. P. Eker et al., Crystal structure of DNA photolyase from Anacystis nidulans, Nat. Struct. Biol, vol.4, pp.887-891, 1997.

H. Komori, R. Masui, S. Kuramitsu, S. Yokoyama, T. Shibata et al., Crystal structure of thermostable DNA photolyase: Pyrimidine-dimer recognition mechanism, Proc. Natl. Acad. Sci. USA, pp.13560-13565, 2001.
DOI : 10.1107/S0907444994006396

V. Berg, B. J. Et-sancar, and G. B. , Evidence for Dinucleotide Flipping by DNA Photolyase, Journal of Biological Chemistry, vol.273, issue.32, pp.20276-20284, 1998.
DOI : 10.1074/jbc.273.32.20276

S. Kim and A. Et-sancar, Effect of base, pentose, and phosphodiester backbone structures on binding and repair of pyrimidine dimers by Escherichia coli DNA photolyase, Biochemistry, vol.30, issue.35, pp.8623-8630, 1991.
DOI : 10.1021/bi00099a019

T. Nakayama, T. Todo, S. Notsu, M. Nakazono, and K. Et-zaitsu, Assay method for Escherichia coli photolyase activity using single-strand cis-syn cyclobutane pyrimidine dimer DNA as substrate, Analytical Biochemistry, vol.329, issue.2, pp.263-268, 2004.
DOI : 10.1016/j.ab.2004.03.021

M. Hada, K. Hino, G. Buchholz, J. Goss, E. Wellmann et al., Assay of DNA Photolyase Activity in Spinach Leaves in Relation to Cell Compartmentation-Evidence for Lack of DNA Photolyase in Chloroplasts, Bioscience, Biotechnology, and Biochemistry, vol.54, issue.2, pp.1288-1291, 2000.
DOI : 10.1562/0031-8655(1998)068<0319:UIDDAI>2.3.CO;2

M. C. Derosa, A. Sancar, and J. K. Et-barton, Electrically monitoring DNA repair by photolyase, Proc. Natl. Acad. Sci. USA, pp.10788-10792, 2005.
DOI : 10.1073/pnas.95.22.12902

A. Mees, T. Klar, P. Gnau, U. Hennecke, A. P. Eker et al., Crystal Structure of a Photolyase Bound to a CPD-Like DNA Lesion After in Situ Repair, Science, vol.306, issue.5702, pp.1789-1793, 2004.
DOI : 10.1126/science.1101598

A. Sancar, Structure and Function of DNA Photolyase and Cryptochrome Blue-Light Photoreceptors, Chemical Reviews, vol.103, issue.6, pp.2203-2237, 2003.
DOI : 10.1021/cr0204348

X. Zhao, J. Liu, D. S. Hsu, S. Zhao, J. Taylor et al., Reaction Mechanism of (6-4) Photolyase, Journal of Biological Chemistry, vol.272, issue.51, pp.32580-32590, 1997.
DOI : 10.1074/jbc.272.51.32580

S. T. Kim, K. Malhotra, C. A. Smith, J. S. Taylor, and A. Et-sancar, Characterization of (6-4) photoproduct DNA photolyase, J. Biol. Chem, vol.269, pp.8535-8540, 1994.

K. Hitomi, H. Nakamura, S. Kim, T. Mizukochi, T. Ishikawa et al., Role of Two Histidines in the (6-4) Photolyase Reaction, Journal of Biological Chemistry, vol.276, issue.13, pp.10103-10109, 2001.
DOI : 10.1074/jbc.M008828200

M. K. 18-cichon, S. Arnold, and T. Et-carell, A (6-4) Photolyase Model: Repair of DNA (6-4) Lesions Requires a Reduced and Deprotonated Flavin, Angewandte Chemie, vol.181, issue.5, pp.767-770, 2002.
DOI : 10.1002/1521-3757(20020301)114:5<793::AID-ANGE793>3.0.CO;2-W

. La-première-vague, . Irréversible, and . Large, 174 et 114 mV à 0,1 V s -1 , pour les dérivés chloré et bromé respectivement) correspond à la réaction de coupure de la liaison azote-halogène, avec expulsion de l'halogénure. La stoechiométrie électronique de la vague montre que la réduction implique l'échange de 2 électrons, La coupure est en effet suivie de la réduction du radical formé : >N-X + 1 e ? ? >N ? + X ? >N ? + 1 e ? ? >N ?

L. Largeur-de-la-vague, vitesse de balayage conduisent à des valeurs de ? de l'ordre de 0,3 et 0,4 pour les composés chloré et bromé respectivement De telles valeurs du coefficient de transfert indiquent que le potentiel de pic est plus négatif que le potentiel standard de la réaction

J. Savéant, A simple model for the kinetics of dissociative electron transfer in polar solvents. Application to the homogeneous and heterogeneous reduction of alkyl halides, E ?? pour les deux sultams se situe autour de ? 0, pp.6788-6795, 1987.
DOI : 10.1021/ja00256a037

C. P. Andrieux, E. Differding, M. Robert, and J. Et-savéant, Controlling factors of stepwise versus concerted reductive cleavages. Illustrative examples in the electrochemical reductive breaking of nitrogen-halogen bonds in aromatic N-halosultams, Journal of the American Chemical Society, vol.115, issue.15, pp.6592-6599, 1993.
DOI : 10.1021/ja00068a016