. Ensuite, 2, nous introduisons leprobì eme Max k-Hitting Set (Max k-HS en abrégé), qui est simplement un formulation alternative de Max k-Cover. C'est par réduction depuis Max k-HS que nous montrons notre résultat principal concernant

. Mais, quel que soit le réel ? vérifiant 1 ? ? < e e?1 , leprobì eme d'´ evaluation associéassociéà Max k-Cover n'admet pas d'algorithme d'approximation de borne constante ?

. Une-formulation-alternative-de-max-k-cover, Max k-Hitting Set On nomme Maximum k-Hitting Set (Max k-HS en abrégé) leprobì eme suivant Supposons donnés un n-uplet (F 1 F n ) d'ensembles finis et un entier k ? 0. On cherche un ensemble C de cardinal k maximisant le nombre des indices j ? [1, n] tels que C ?F j = ? " . Dans cette section, nous montrons que Max k-HS est exactement aussi difficilè a approximer que Max k-Cover comme suggéré dans

P. Alors and . Np, il n'existe pas d'algorithme d'approximation de borne constante ? pour leprobì eme d'´ evaluation associéassociéà Max k-HS

. Preuve, Supposons (absurde) que Max k-HS E admette un algorithme d'approximation de borne ?. Nous allons montrer, ` a l'aide d'une réduction, que Max k-Cover E admet un algorithme d'approximation de même borne, demanì erè a pouvoir appliquer le résultat de Feige

C. and =. ?}, Correction de notre réduction Résoudre leprobì eme Max k-HS sur l'instance ((F 1, k) consistè a trouver un ensemble C de cardinal k maximisant le cardinal de J C . Pour terminer notre preuve, il suffit de montrer que les deux assertions suivantes sontéquivalentessontéquivalentes

@. Réciproquement, montrons que (ii) ? (i) Supposons (ii) : il existe une partie C ? E de

C. Onécritonécrit, C. La-forme, and . {e-c1, c k sont desélémentsdeséléments de [1, m] (non nécessairement distincts deuxàdeuxà deux) Posant C := {c 1

. Preuve and . Par-hypothèse, Construisons un algorithme d'approximation pour Max k-HS de même borne , F n ), k) de Max k-HS. Posons U := F 1 ? F 2 ? . . . ? F n . Pour chaque u ? U , on calcule l'ensemble E u des indices j ? [1, n] tels que u ? F j . On construit ensuite l'ensemble E := {E u : u ? U } puis l'instance (H, k) de Max k-Cover Cette construction prendévidemment prendévidemment un temps polynomial et on vérifie

?. .. Appliquons-maintenant-l-'algorithme-a-sur, C. Tels-que, }. .. {e-u1, and . Enfin, on obtient, en temps polynomial, une partie C ? E de cardinal au plus k telle que # ( C) soit au moinségaìmoinségaì a 1 / b(k) fois l'optimum

N. Ceprobì-eme-est-trivialement-dans, De plus, lorsqu'on se restreintàrestreintà des tuiles de cardinal 2, d- DFRT se réduit auprobì eme du couplage parfait, donc devient polynomial [31] En revanche, posons H 2 := {(0, 0) 2)} et P 23 := {H 2 , V 3 } : les tuiles H 2 et V 3 sont appelés respectivement domino horizontal et triomino vertical, La restriction de 2-DFRT aux instances (F, P) vérifiant P = P 23 est NP-difficile [9]. Ainsi, décider si 2 tuiles de cardinal au plus 3 pavent une forme finie plane est NP-difficile

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, Journal of Molecular Biology, vol.215, issue.3, pp.403-410, 1990.
DOI : 10.1016/S0022-2836(05)80360-2

A. Amir, M. Lewenstein, and E. Porat, Faster algorithms for string matching with k mismatches, Journal of Algorithms, vol.50, issue.2, pp.257-275, 2004.
DOI : 10.1016/S0196-6774(03)00097-X

G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-spaccamela et al., Complexity and Approximation, pp.15-17, 2003.
DOI : 10.1007/978-3-642-58412-1

URL : https://hal.archives-ouvertes.fr/hal-00906941

W. C. Babcock, Intermodulation Interference in Radio Systems, Bell System Technical Journal, vol.32, issue.1, pp.63-73, 1953.
DOI : 10.1002/j.1538-7305.1953.tb01422.x

V. Bafna, E. L. Lawler, and P. A. Pevzner, Approximation algorithms for multiple sequence alignment, Theoretical Computer Science, vol.182, issue.1-2, pp.233-244, 1997.
DOI : 10.1016/S0304-3975(97)00023-6

URL : http://dx.doi.org/10.1016/s0304-3975(97)00023-6

D. Beauquier, M. Nivat, E. Rémila, and M. Robson, Tiling figures of the plane with two bars, Computational Geometry, vol.5, issue.1, pp.1-25, 1995.
DOI : 10.1016/0925-7721(94)00015-N

A. Ben-dor, G. Lancia, J. Perone, and R. Ravi, Banishing bias from consensus sequences, Proceedings of the 8th Annual Symposium on Combinatorial Pattern Matching (CPM'97, pp.247-261, 1997.
DOI : 10.1007/3-540-63220-4_63

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.40

G. Benson, Tandem repeats finder: a program to analyze DNA sequences, Nucleic Acids Research, vol.27, issue.2, pp.573-580, 1999.
DOI : 10.1093/nar/27.2.573

H. L. Bodlaender, R. G. Downey, M. R. Fellows, M. T. Hallett, and H. T. Wareham, Parameterized complexity analysis in computational biology, Bioinformatics, vol.11, issue.1, pp.49-57, 1995.
DOI : 10.1093/bioinformatics/11.1.49

H. L. Bodlaender, R. G. Downey, M. R. Fellows, and H. T. Wareham, The parameterized complexity of sequence alignment and consensus, Theoretical Computer Science, vol.147, issue.1-2, pp.31-54, 1995.
DOI : 10.1016/0304-3975(94)00251-D

P. Bonizzoni and G. D. Vedova, The complexity of multiple sequence alignment with SP-score that is a metric, Theoretical Computer Science, vol.259, issue.1-2, pp.63-79, 2001.
DOI : 10.1016/S0304-3975(99)00324-2

R. Boppana and M. M. Halldòrsson, Approximating maximum independent sets by excluding subgraphs, BIT, vol.30, issue.4, pp.180-196, 1992.
DOI : 10.1007/BF01994876

H. Bunke and U. Buehler, Applications of approximate string matching to 2D shape recognition, Pattern Recognition, vol.26, issue.12, pp.1797-1812, 1993.
DOI : 10.1016/0031-3203(93)90177-X

S. Burkhardt, A. Crauser, P. Ferragina, H. Lenhof, and ´. E. , Rivals, and M. Vingron. q-gram Based Database Searching Using a Suffix Array (QUASAR), Proceedings of the 3rd Annual International Conference on Computational Molecular Biology (RECOMB'99), pp.77-83, 1999.

S. Burkhardt and J. Kärkkäinen, Better Filtering with Gapped q-Grams, Fundamenta Informaticae, vol.56, issue.12, pp.51-70, 2003.
DOI : 10.1007/3-540-48194-X_6

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.5942

A. Califano and I. Rigoutsos, FLASH: a fast look-up algorithm for string homology, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.56-64, 1993.
DOI : 10.1109/CVPR.1993.341106

J. Chen, I. A. Kanj, and W. Jia, Vertex Cover: Further Observations and Further Improvements, Journal of Algorithms, vol.41, issue.2, pp.280-301, 2001.
DOI : 10.1006/jagm.2001.1186

URL : http://anyserver.cityu.edu.hk/weijia/publication/vertex_cover.pdf

K. Chung, A fast algorithm for stereo matching, Information Processing Letters, vol.63, issue.2, pp.57-61, 1997.
DOI : 10.1016/S0020-0190(97)00101-4

S. A. Cook, The complexity of theorem-proving procedures, Proceedings of the third annual ACM symposium on Theory of computing , STOC '71, pp.151-158, 1971.
DOI : 10.1145/800157.805047

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, pp.12-15, 2001.

M. Crochemore, G. M. Landau, and M. Ziv-ukelson, A Subquadratic Sequence Alignment Algorithm for Unrestricted Scoring Matrices, SIAM Journal on Computing, vol.32, issue.6, pp.1654-1673, 2003.
DOI : 10.1137/S0097539702402007

URL : https://hal.archives-ouvertes.fr/hal-00619573

C. De-la-higuera and F. Casacuberta, Topology of strings: Median string is NP-complete, Theoretical Computer Science, vol.230, issue.1-2, pp.39-48, 2000.
DOI : 10.1016/S0304-3975(97)00240-5

R. G. Downey and M. R. Fellows, Parameterized Complexity. Monographs in Computer Science, pp.14-18, 1999.

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research, vol.32, issue.5, pp.1792-1797, 2004.
DOI : 10.1093/nar/gkh340

J. Edmonds, Paths, trees, and flowers, Journal canadien de math??matiques, vol.17, issue.0, pp.449-467, 1965.
DOI : 10.4153/CJM-1965-045-4

I. Elias, Settling the Intractability of Multiple Alignment, Proceedings of The 14th Annual International Symposium on Algorithms and Computation, pp.352-363, 2003.
DOI : 10.1007/978-3-540-24587-2_37

L. Engebretsen and J. Holmerin, Towards optimal lower bounds for clique and chromatic number, Theoretical Computer Science, vol.299, issue.1-3, pp.1-3, 2003.
DOI : 10.1016/S0304-3975(02)00535-2

P. A. Evans and A. D. Smith, Complexity of Approximating Closest Substring Problems, Proceedings of the 14th International Symposium on Foundations of Complexity Theory (FCT'2003), pp.210-221, 2003.
DOI : 10.1007/978-3-540-45077-1_20

P. A. Evans, A. D. Smith, and H. T. Wareham, The parameterized complexity of p-center approximate substring problems, p.33, 2001.

P. A. Evans, A. D. Smith, and H. T. Wareham, On the complexity of finding common approximate substrings, Theoretical Computer Science, vol.306, issue.1-3, pp.1-3407, 2003.
DOI : 10.1016/S0304-3975(03)00320-7

M. Farach-colton, G. M. Landau, S. C. Sahinalp, and D. Tsur, Optimal Spaced Seeds for Faster Approximate String Matching, Proceedings of the 32nd International Colloquium on Automata, Languages and Programming (ICALP'05), pp.1251-1262, 2005.
DOI : 10.1007/11523468_101

U. Feige, A threshold of ln n for approximating set cover, Journal of the ACM, vol.45, issue.4, pp.634-652, 1998.
DOI : 10.1145/285055.285059

M. R. Fellows, J. Gramm, and R. Niedermeier, On the Parameterized Intractability of Closest Substring and Related Problems, Proceedings of the 19th International Symposium on Theoretical Aspects of Computer Science (STACS'02), volume 2285 of Lecture Notes in Computer Science, pp.262-273
DOI : 10.1007/3-540-45841-7_21

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP- Completeness, pp.12-95, 1979.

L. G¸asieniecg¸asieniec, J. Jansson, and A. Lingas, Approximation algorithms for Hamming clustering problems, Journal of Discrete Algorithms, vol.2, issue.2, pp.289-301, 2004.
DOI : 10.1016/S1570-8667(03)00079-0

T. F. González, Clustering to minimize the maximum intercluster distance, Theoretical Computer Science, vol.38, pp.293-306, 1985.
DOI : 10.1016/0304-3975(85)90224-5

O. Gotoh, An improved algorithm for matching biological sequences, Journal of Molecular Biology, vol.162, issue.3, pp.705-708, 1982.
DOI : 10.1016/0022-2836(82)90398-9

J. Gramm, R. Niedermeier, and P. Rossmanith, Fixed-Parameter Algorithms for CLOSEST STRING and Related Problems, Algorithmica, vol.37, issue.1, pp.25-42, 2003.
DOI : 10.1007/s00453-003-1028-3

D. Gusfield, Algorithms on Strings, Trees, and Sequences. Computer Science and Computational Biology, pp.38-39, 1997.

M. M. Halldòrsson, Approximations of weighted independent set and hereditary subset problems, Journal of Graph Algorithms and Applications, vol.4, issue.20, pp.18-67, 2000.

J. Håstad, Clique is hard to approximate within n1?????, Acta Mathematica, vol.182, issue.1, pp.105-142, 1999.
DOI : 10.1007/BF02392825

D. S. Hirschberg, Algorithms for the Longest Common Subsequence Problem, Journal of the ACM, vol.24, issue.4, pp.664-675, 1977.
DOI : 10.1145/322033.322044

D. S. Hochbaum and D. B. Shmoys, -Center Problem, Mathematics of Operations Research, vol.10, issue.2, pp.180-184, 1985.
DOI : 10.1287/moor.10.2.180

URL : https://hal.archives-ouvertes.fr/hal-00897097

T. J. Hubbard, A. M. Lesk, and A. Tramontano, Gathering them in to the fold, Nature Structural Biology, vol.3, issue.4, pp.313-338, 1996.
DOI : 10.1006/jmbi.1993.1413

O. H. Ibarra and C. E. Kim, Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems, Journal of the ACM, vol.22, issue.4, pp.463-468, 1975.
DOI : 10.1145/321906.321909

S. Y. Itoga, The string merging problem, BIT, vol.23, issue.1, pp.20-30, 1981.
DOI : 10.1007/BF01934067

T. Jiang, E. L. Lawler, and L. Wang, Approximation algorithms for tree alignment with a given phylogeny, Algorithmica, vol.16, issue.3, pp.302-315, 1996.

T. Jiang and M. Li, On the Approximation of Shortest Common Supersequences and Longest Common Subsequences, SIAM Journal on Computing, vol.24, issue.5, pp.1122-1139, 1995.
DOI : 10.1137/S009753979223842X

Y. Jiao, J. Xu, and M. Li, On the k-Closest Substring and k-Consensus Pattern Problems, Proceedings of the 15th Annual Symposium on Combinatorial Pattern Matching, pp.130-144, 2004.
DOI : 10.1007/978-3-540-27801-6_10

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.9205

D. S. Johnson, Approximation algorithms for combinatorial problems, Proceedings of the fifth annual ACM symposium on Theory of computing , STOC '73, pp.256-278, 1974.
DOI : 10.1145/800125.804034

W. Just, Computational Complexity of Multiple Sequence Alignment with SP-Score, Journal of Computational Biology, vol.8, issue.6, pp.615-623, 2001.
DOI : 10.1089/106652701753307511

R. M. Karp, Reducibility among combinatorial problems, Complexity of Computer Computations, vol.6, pp.85-103, 1972.
DOI : 10.1007/978-3-540-68279-0_8

J. D. Kececioglu, The maximum weight trace problem in multiple sequence alignment, Proceedings of the 4th Annual Symposium on Combinatorial Pattern Matching (CPM'93), pp.106-119, 1993.
DOI : 10.1007/BFb0029800

D. E. Knuth, J. H. Morris-jr, and V. R. Pratt, Fast Pattern Matching in Strings, SIAM Journal on Computing, vol.6, issue.2, pp.323-350, 1977.
DOI : 10.1137/0206024

B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms, volume 21 of Algorithms and Combinatorics, p.11, 2002.

M. Krivelevich, R. Nathaniel, and B. Sudakov, Approximating Coloring and Maximum Independent Sets in 3-Uniform Hypergraphs, Journal of Algorithms, vol.41, issue.1, pp.99-113, 2001.
DOI : 10.1006/jagm.2001.1173

M. Krivelevich and B. Sudakov, Approximate coloring of uniform hypergraphs, Journal of Algorithms, vol.49, issue.1, pp.2-12, 2003.
DOI : 10.1016/S0196-6774(03)00077-4

G. Kucherov, L. Noé, and M. Roytberg, Multi-seed Lossless Filtration, Proceedings of the 15h Annual Symposium on Combinatorial Pattern Matching, pp.297-310, 2004.
DOI : 10.1007/978-3-540-27801-6_22

URL : https://hal.archives-ouvertes.fr/inria-00000718

G. Kucherov, L. Noé, and M. Roytberg, Multiseed Lossless Filtration, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.2, issue.1, pp.51-61, 2005.
DOI : 10.1109/TCBB.2005.12

URL : https://hal.archives-ouvertes.fr/inria-00354810

J. , K. Lanctot, M. Li, B. Ma, S. Wang et al., Distinguishing string selection problems, Information and Computation, vol.185, issue.1, pp.41-55, 2003.

G. M. Landau, E. W. Myers, and J. P. Schmidt, Incremental String Comparison, SIAM Journal on Computing, vol.27, issue.2, pp.557-582, 1998.
DOI : 10.1137/S0097539794264810

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.1766

G. M. Landau and U. Vishkin, Fast parallel and serial approximate string matching, Journal of Algorithms, vol.10, issue.2, pp.157-169, 1989.
DOI : 10.1016/0196-6774(89)90010-2

V. I. Levenshtein, Binary codes capable of correcting deletions, insertions and reversals. Cybernetics and Control Theory, pp.707-710, 1966.

M. Li, B. Ma, D. Kisman, and J. Tromp, PATTERNHUNTER II: HIGHLY SENSITIVE AND FAST HOMOLOGY SEARCH, Journal of Bioinformatics and Computational Biology, vol.02, issue.03, pp.417-439, 2004.
DOI : 10.1142/S0219720004000661

M. Li, B. Ma, and L. Wang, Finding similar regions in many strings, Proceedings of the thirty-first annual ACM symposium on Theory of computing , STOC '99, pp.473-482, 1999.
DOI : 10.1145/301250.301376

M. Li, B. Ma, and L. Wang, Finding Similar Regions in Many Sequences, Journal of Computer and System Sciences, vol.65, issue.1, pp.73-96, 2002.
DOI : 10.1006/jcss.2002.1823

M. Li, B. Ma, and L. Wang, On the closest string and substring problems, Journal of the ACM, vol.49, issue.2, pp.157-171, 2002.
DOI : 10.1145/506147.506150

D. J. Lipman, S. F. Altschul, and J. D. Kececioglu, A tool for multiple sequence alignment., Proceedings of the National Academy of Sciences of the United States of America, pp.4412-4415, 1989.
DOI : 10.1073/pnas.86.12.4412

B. Ma, J. Tromp, and M. Li, PatternHunter: faster and more sensitive homology search, Bioinformatics, vol.18, issue.3, pp.440-445, 2002.
DOI : 10.1093/bioinformatics/18.3.440

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.8001

M. Maes, On a cyclic string-to-string correction problem, Information Processing Letters, vol.35, issue.2, pp.73-78, 1990.
DOI : 10.1016/0020-0190(90)90109-B

D. Maier, The Complexity of Some Problems on Subsequences and Supersequences, Journal of the ACM, vol.25, issue.2, pp.322-336, 1978.
DOI : 10.1145/322063.322075

B. Manthey, Non-approximability of weighted multiple sequence alignment, Theoretical Computer Science, vol.296, issue.1, pp.179-192, 2003.
DOI : 10.1016/S0304-3975(02)00439-5

A. Marzal and G. Peris, Normalized Cyclic Edit Distances: An Efficient Algorithm, Proceedings of the 10th Conferencia de la Asociación Española Para la Inteligencia Artificial (CAEPIA'03), pp.435-444, 2004.
DOI : 10.1007/978-3-540-25945-9_43

W. J. Masek and M. S. Paterson, A faster algorithm computing string edit distances, Journal of Computer and System Sciences, vol.20, issue.1, pp.18-31, 1980.
DOI : 10.1016/0022-0000(80)90002-1

M. Middendorf, More on the complexity of common superstring and supersequence problems, Theoretical Computer Science, vol.125, issue.2, pp.205-228, 1994.
DOI : 10.1016/0304-3975(92)00074-2

W. Miller and E. W. Myers, Sequence comparison with concave weighting functions, Bulletin of Mathematical Biology, vol.44, issue.2, pp.97-120, 1988.
DOI : 10.1007/BF02459948

R. A. Mollineda, E. Vidal, and F. Casacuberta, CYCLIC SEQUENCE ALIGNMENTS: APPROXIMATE VERSUS OPTIMAL TECHNIQUES, International Journal of Pattern Recognition and Artificial Intelligence, vol.16, issue.03, pp.291-299, 2002.
DOI : 10.1142/S0218001402001678

E. W. Myers, AnO(ND) difference algorithm and its variations, Algorithmica, vol.21, issue.1, pp.251-266, 1986.
DOI : 10.1007/BF01840446

G. Navarro and M. Raffinot, Flexible Pattern Matching in Strings: Practical on-Line Search Algorithms for Texts and Biological Sequences, p.86, 2002.
DOI : 10.1017/CBO9781316135228

F. and N. Rivals, Complexities of the centre and median string problems, Proceedings of the 14th Annual Symposium on Combinatorial Pattern Matching (CPM'03), pp.315-327, 2003.

F. and N. Rivals, Hardness of optimal spaced seed design, Proceedings of the 16th Annual Symposium on Combinatorial Pattern Matching (CPM'05), pp.144-155, 2005.
URL : https://hal.archives-ouvertes.fr/lirmm-00106448

L. Noé and G. Kucherov, YASS: enhancing the sensitivity of DNA similarity search, Nucleic Acids Research, vol.33, issue.Web Server, pp.540-543, 2005.
DOI : 10.1093/nar/gki478

R. Ostrovsky and Y. Rabani, Polynomial-time approximation schemes for geometric min-sum median clustering, Journal of the ACM, vol.49, issue.2, pp.139-156, 2002.
DOI : 10.1145/506147.506149

C. H. Papadimitriou, Computational Complexity, pp.13-93, 1994.

W. R. Pearson and D. J. Lipman, Improved tools for biological sequence comparison., Proceedings of the National Academy of Sciences, vol.85, issue.8, pp.2444-2448, 1988.
DOI : 10.1073/pnas.85.8.2444

G. Peris and A. Marzal, Fast cyclic edit distance computation with weighted edit costs in classification, Object recognition supported by user interaction for service robots, pp.184-187, 2002.
DOI : 10.1109/ICPR.2002.1047428

K. Pietrzak, On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems, Journal of Computer and System Sciences, vol.67, issue.4, pp.757-771, 2003.
DOI : 10.1016/S0022-0000(03)00078-3

K. Räihä and E. Ukkonen, The shortest common supersequence problem over binary alphabet is NP-complete, Theoretical Computer Science, vol.16, issue.2, pp.187-198, 1981.
DOI : 10.1016/0304-3975(81)90075-X

R. Ravi and J. D. Kececioglu, Approximation algorithms for multiple sequence alignment under a fixed evolutionary tree, Discrete Applied Mathematics, vol.88, issue.1-3, pp.355-366, 1998.
DOI : 10.1016/S0166-218X(98)00079-1

D. Sankoff, Minimal Mutation Trees of Sequences, SIAM Journal on Applied Mathematics, vol.28, issue.1, pp.35-42, 1975.
DOI : 10.1137/0128004

D. Sankoff and J. B. , Time Warps, String Edits and Macromolecules: the Theory and Practice of Sequence Comparison, pp.19-38, 1999.

J. P. Schmidt, All Highest Scoring Paths in Weighted Grid Graphs and Their Application to Finding All Approximate Repeats in Strings, SIAM Journal on Computing, vol.27, issue.4, pp.972-992, 1998.
DOI : 10.1137/S0097539795288489

G. D. Schuler, S. F. Altschul, and D. J. Lipman, A workbench for multiple alignment construction and analysis, Proteins: Structure, Function, and Genetics, vol.153, issue.3, pp.180-190, 1991.
DOI : 10.1002/prot.340090304

J. S. Sim and K. Park, The consensus string problem for a metric is NP-complete, Proceedings of the Tenth Australasian Workshop on Combinatorial Algorithms (AWOCA'99), pp.107-113, 1999.
DOI : 10.1016/S1570-8667(03)00011-X

J. S. Sim and K. Park, The consensus string problem for a metric is NP-complete, Journal of Discrete Algorithms, vol.1, issue.1, pp.111-117, 2003.
DOI : 10.1016/S1570-8667(03)00011-X

T. F. Smith and M. S. Waterman, Identification of common molecular subsequences, Journal of Molecular Biology, vol.147, issue.1, pp.195-197, 1981.
DOI : 10.1016/0022-2836(81)90087-5

Y. Sortais and R. Sortais, La géométrie du triangle. Hermann, second edition, p.32, 1997.

G. A. Stephen, String Searching Algorithms, Lecture Notes Series On Computing. World Scientific, vol.3, p.20, 1994.
DOI : 10.1142/2418

J. D. Thompson, D. G. Higgins, and T. J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Research, vol.22, issue.22, pp.4673-4680, 1994.
DOI : 10.1093/nar/22.22.4673

V. G. Timkovskii, Complexity of common subsequence and supersequence problems and related problems, Cybernetics, vol.2, issue.No. 1, pp.565-580, 1990.
DOI : 10.1007/BF01075212

A. M. Turing, On computable numbers, with an application to the entscheidungsproblem, Proceedings of the London Mathematical Society, pp.230-265, 1936.

L. Wang and D. Gusfield, Improved Approximation Algorithms for Tree Alignment, Journal of Algorithms, vol.25, issue.2, pp.255-273, 1997.
DOI : 10.1006/jagm.1997.0882

L. Wang and T. Jiang, On the Complexity of Multiple Sequence Alignment, Journal of Computational Biology, vol.1, issue.4, pp.337-348, 1994.
DOI : 10.1089/cmb.1994.1.337

L. Wang, T. Jiang, and D. Gusfield, A More Efficient Approximation Scheme for Tree Alignment, SIAM Journal on Computing, vol.30, issue.1, pp.283-299, 2000.
DOI : 10.1137/S0097539796313507

. Mesure, Le cardinal de I, ` a maximiser Page: 18. Notes: La notion d'indépendant est définie page 18. Le cardinal maximum pour un indépendant de l'hypergraphe H est noté ?(H) La restriction de MISH aux hypergraphes r-uniformes est notée r-MISH

. Mesure, Page: 29. Notes: La mesure d'une solution optimale est notée R d (W )

. Nom, Weighted Common Subsequence (-WCS) o` u est une longueur pondérée sur ? , ? désignant un alphabet

. Mesure, Le poids de g, ` a maximiser

. Mesure, Le nombre de similarités appartenantàappartenantà S et détectées par g, ` a maximiser. Page: 95. Notes: ` A ne pas confondre avec sa variante RSOSs définié egalement dans la section 4

. Mesure, Page: 108. Notes: C est l'ensemble des sommets de H couverts par C, c'est-` a-dire l'

. Nom, Maximum k-Hitting Set (Max k-HS)

. Mesure, Le nombre des indices j ? [1, n] pour lesquels C ? F j est non vide