S. Datta, Electronic Transport in Mesoscopic Systems, 1997.
DOI : 10.1017/CBO9780511805776

J. M. Luttinger, An Exactly Soluble Model of a Many???Fermion System, Journal of Mathematical Physics, vol.4, issue.9, p.1154, 1963.
DOI : 10.1063/1.1704046

J. A. Gibson, Early nanotubes?, Nature, vol.359, issue.6394, p.369, 1992.
DOI : 10.1038/359369c0

A. Oberlin, Filamentous growth of carbon through benzene decomposition, Journal of Crystal Growth, vol.32, issue.3, p.335, 1976.
DOI : 10.1016/0022-0248(76)90115-9

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, p.56, 1991.
DOI : 10.1038/354056a0

S. Iijima, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol.363, issue.6430, p.603, 1993.
DOI : 10.1038/363603a0

D. S. Bethune, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, vol.363, issue.6430, p.605, 1993.
DOI : 10.1038/363605a0

T. Guo, Catalytic growth of single-walled manotubes by laser vaporization, Chemical Physics Letters, vol.243, issue.1-2, p.49, 1995.
DOI : 10.1016/0009-2614(95)00825-O

S. J. Tans, Individual single-wall carbon nanotubes as quantum wires, Nature, vol.386, issue.6624, p.474, 1997.
DOI : 10.1038/386474a0

URL : http://repository.tudelft.nl/islandora/object/uuid%3A4e58e2bc-5f69-4dbe-9942-aabcc9eaad35/datastream/OBJ/view

B. Gao, Evidence for Luttinger-Liquid Behavior in Crossed Metallic Single-Wall Nanotubes, Physical Review Letters, vol.92, issue.21, p.216804, 2004.
DOI : 10.1103/PhysRevLett.92.216804

URL : https://hal.archives-ouvertes.fr/hal-00018125

B. Gao, Four-Point Resistance of Individual Single-Wall Carbon Nanotubes, Physical Review Letters, vol.95, issue.19, p.196802, 2005.
DOI : 10.1103/PhysRevLett.95.196802

URL : https://hal.archives-ouvertes.fr/hal-00018002

G. S. Painter, Electronic Band Structure and Optical Properties of Graphite from a Variational Approach, Physical Review B, vol.1, issue.12, p.4747, 1970.
DOI : 10.1103/PhysRevB.1.4747

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, 1998.
DOI : 10.1142/p080

J. W. Mintmire, Are fullerene tubules metallic?, Physical Review Letters, vol.68, issue.5, p.631, 1992.
DOI : 10.1103/PhysRevLett.68.631

A. Bachtold, Scanned Probe Microscopy of Electronic Transport in Carbon Nanotubes, Physical Review Letters, vol.84, issue.26, p.6082, 2000.
DOI : 10.1103/PhysRevLett.84.6082

P. J. De-pablo, Nonlinear Resistance versus Length in Single-Walled Carbon Nanotubes, Physical Review Letters, vol.88, issue.3, p.36804, 2002.
DOI : 10.1103/PhysRevLett.88.036804

M. Freitag, Role of Single Defects in Electronic Transport through Carbon Nanotube Field-Effect Transistors, Physical Review Letters, vol.89, issue.21, p.216801, 2002.
DOI : 10.1103/PhysRevLett.89.216801

M. S. Gudiksen, Growth of nanowire superlattice structures for nanoscale photonics and electronics, Nature, vol.415, issue.6872, p.617, 2002.
DOI : 10.1038/415617a

Y. Yaish, Electrical Nanoprobing of Semiconducting Carbon Nanotubes Using an Atomic Force Microscope, Physical Review Letters, vol.92, issue.4, p.46401, 2004.
DOI : 10.1103/PhysRevLett.92.046401

A. Bezryadin, Multiprobe Transport Experiments on Individual Single-Wall Carbon Nanotubes, Physical Review Letters, vol.80, issue.18, p.4036, 1998.
DOI : 10.1103/PhysRevLett.80.4036

J. Nygard, Electrical transport measurements on single-walled carbon nanotubes, Applied Physics A: Materials Science & Processing, vol.69, issue.3, p.297, 1999.
DOI : 10.1007/s003390051004

M. Büttiker, Four-Terminal Phase-Coherent Conductance, Physical Review Letters, vol.57, issue.14, p.1761, 1986.
DOI : 10.1103/PhysRevLett.57.1761

M. Büttiker, Small normal-metal loop coupled to an electron reservoir, Physical Review B, vol.32, issue.3, p.1846, 1985.
DOI : 10.1103/PhysRevB.32.1846

H. R. Shea, Electrical Transport in Rings of Single-Wall Nanotubes: One-Dimensional Localization, Physical Review Letters, vol.84, issue.19, p.4441, 2000.
DOI : 10.1103/PhysRevLett.84.4441

H. T. Man, Sample-Specific and Ensemble-Averaged Magnetoconductance of Individual Single-Wall Carbon Nanotubes, Physical Review Letters, vol.95, issue.2, p.26801, 2005.
DOI : 10.1103/PhysRevLett.95.026801

D. H. Cobden, Shell Filling in Closed Single-Wall Carbon Nanotube Quantum Dots, Physical Review Letters, vol.89, issue.4, p.46803, 2002.
DOI : 10.1103/PhysRevLett.89.046803

Y. Oreg, Spin Configurations of a Carbon Nanotube in a Nonuniform External Potential, Physical Review Letters, vol.85, issue.2, p.365, 2000.
DOI : 10.1103/PhysRevLett.85.365

S. Sapmaz, Electronic excitation spectrum of metallic carbon nanotubes, Physical Review B, vol.71, issue.15, p.153402, 2005.
DOI : 10.1103/PhysRevB.71.153402

J. H. Hafner, High-Yield Assembly of Individual Single-Walled Carbon Nanotube Tips for Scanning Probe Microscopies, The Journal of Physical Chemistry B, vol.105, issue.4, p.743, 2001.
DOI : 10.1021/jp003948o

H. Stahl, Intertube Coupling in Ropes of Single-Wall Carbon Nanotubes, Physical Review Letters, vol.85, issue.24, p.5186, 2000.
DOI : 10.1103/PhysRevLett.85.5186

B. Bourlon, Determination of the Intershell Conductance in Multiwalled Carbon Nanotubes, Physical Review Letters, vol.93, issue.17, p.176806, 2004.
DOI : 10.1103/PhysRevLett.93.176806

URL : https://hal.archives-ouvertes.fr/hal-00017815

V. A. Gopar, Random-matrix study of multiprobe mesoscopic devices. II. A four-probe one-dimensional system, Physical Review B, vol.50, issue.4, p.2502, 1994.
DOI : 10.1103/PhysRevB.50.2502

M. Büttiker, Chemical potential oscillations near a barrier in the presence of transport, Physical Review B, vol.40, issue.5, p.3409, 1989.
DOI : 10.1103/PhysRevB.40.3409

Y. Takagaki, Nonlocal quantum transport in narrow multibranched electron wave guide of GaAs-AlGaAs, Solid State Communications, vol.68, issue.12, p.1051, 1988.
DOI : 10.1016/0038-1098(88)90820-4

A. B. Fowler, Conductance in Restricted-Dimensionality Accumulation Layers, Physical Review Letters, vol.48, issue.3, p.196, 1982.
DOI : 10.1103/PhysRevLett.48.196

L. D. Landau and E. M. Lifshitz, Statistical Physics (Part 2) -Course of, Theoretical Physics, vol.9, 1998.

G. Morandi, P. Sodano, A. Tagliacozzo, and V. Tognetti, Field theories for lowdimensional condensed matter systems, Series in Solid-State Sciences, 2000.

C. L. Kane, Transport in a one-channel Luttinger liquid, Physical Review Letters, vol.68, issue.8, p.1220, 1992.
DOI : 10.1103/PhysRevLett.68.1220

R. Egger, Correlated transport and non-Fermi-liquid behavior in single-wall carbon nanotubes, The European Physical Journal B, vol.3, issue.3, p.281, 1998.
DOI : 10.1007/s100510050315

F. Dolcini, Oscillatory Nonlinear Conductance of an Interacting Quantum Wire with an Impurity, Physical Review Letters, vol.91, issue.26, p.266402, 2003.
DOI : 10.1103/PhysRevLett.91.266402

C. L. Kane, Transmission through barriers and resonant tunneling in an interacting one-dimensional electron gas, Physical Review B, vol.46, issue.23, p.15233, 1992.
DOI : 10.1103/PhysRevB.46.15233

A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bosonization and strongly correlated systems, 1998.

I. Safi, Conductance of a quantum wire: Landauer's approach versus the Kubo formula, Physical Review B, vol.55, issue.12, p.7331, 1997.
DOI : 10.1103/PhysRevB.55.R7331

J. Kong, Quantum Interference and Ballistic Transmission in Nanotube Electron Waveguides, Physical Review Letters, vol.87, issue.10, p.106801, 2001.
DOI : 10.1103/PhysRevLett.87.106801

K. A. Matveev, Coulomb blockade of tunneling into a quasi-one-dimensional wire, Physical Review Letters, vol.70, issue.7, p.990, 1993.
DOI : 10.1103/PhysRevLett.70.990

C. Kane, Coulomb Interactions and Mesoscopic Effects in Carbon Nanotubes, Physical Review Letters, vol.79, issue.25, p.5086, 1997.
DOI : 10.1103/PhysRevLett.79.5086

M. H. Devoret, Effect of the electromagnetic environment on the Coulomb blockade in ultrasmall tunnel junctions, Physical Review Letters, vol.64, issue.15, p.1824, 1990.
DOI : 10.1103/PhysRevLett.64.1824

G. Schön and A. D. Zaikin, Quantum coherent effects, phase transitions, and the dissipative dynamics of ultra small tunnel junctions, Physics Reports, vol.198, issue.5-6, p.237, 1990.
DOI : 10.1016/0370-1573(90)90156-V

A. N. Cleland, Influence of the environment on the Coulomb blockade in submicrometer normal-metal tunnel junctions, Physical Review B, vol.45, issue.6, p.2950, 1992.
DOI : 10.1103/PhysRevB.45.2950

I. Safi, One-Channel Conductor in an Ohmic Environment: Mapping to a Tomonaga-Luttinger Liquid and Full Counting Statistics, Physical Review Letters, vol.93, issue.12, p.126602, 2004.
DOI : 10.1103/PhysRevLett.93.126602

R. Egger, Effective Low-Energy Theory for Correlated Carbon Nanotubes, Physical Review Letters, vol.79, issue.25, p.5082, 1997.
DOI : 10.1103/PhysRevLett.79.5082

H. W. Postma, Electrical transport through carbon nanotube junctions created by mechanical manipulation, Physical Review B, vol.62, issue.16, p.10653, 2000.
DOI : 10.1103/PhysRevB.62.R10653

A. Bachtold, Suppression of Tunneling into Multiwall Carbon Nanotubes, Physical Review Letters, vol.87, issue.16, p.166801, 2001.
DOI : 10.1103/PhysRevLett.87.166801

R. Tarkiainen, Multiwalled carbon nanotube: Luttinger versus Fermi liquid, Physical Review B, vol.64, issue.19, p.195412, 2001.
DOI : 10.1103/PhysRevB.64.195412

W. Yi, Tunneling into Multiwalled Carbon Nanotubes: Coulomb Blockade and the Fano Resonance, Physical Review Letters, vol.91, issue.7, p.76801, 2003.
DOI : 10.1103/PhysRevLett.91.076801

R. Egger, Bulk and Boundary Zero-Bias Anomaly in Multiwall Carbon Nanotubes, Physical Review Letters, vol.87, issue.6, p.66401, 2001.
DOI : 10.1103/PhysRevLett.87.066401

E. G. Mishchenko, Zero-Bias Anomaly in Disordered Wires, Physical Review Letters, vol.87, issue.24, p.246801, 2001.
DOI : 10.1103/PhysRevLett.87.246801

A. Komnik, Nonequilibrium Transport for Crossed Luttinger Liquids, Physical Review Letters, vol.80, issue.13, p.2881, 1998.
DOI : 10.1103/PhysRevLett.80.2881

A. Komnik, Transport and Coulomb drag for two interacting carbon nanotubes, The European Physical Journal B, vol.19, issue.2, p.271, 2001.
DOI : 10.1007/s100510170336

J. Kim, Correlated Electrical Transport through Multiwall Carbon Nanotubes in a Crossed Geometry, Journal of the Physical Society of Japan, vol.70, issue.6, p.1464, 2001.
DOI : 10.1143/JPSJ.70.1464

J. W. Janssen, Scanning tunneling spectroscopy on crossed carbon nanotubes, Physical Review B, vol.65, issue.11, p.115423, 2002.
DOI : 10.1103/PhysRevB.65.115423

S. Berber, Unusually High Thermal Conductivity of Carbon Nanotubes, Physical Review Letters, vol.84, issue.20, p.4613, 2000.
DOI : 10.1103/PhysRevLett.84.4613

P. Kim, Thermal Transport Measurements of Individual Multiwalled Nanotubes, Physical Review Letters, vol.87, issue.21, p.215502, 2001.
DOI : 10.1103/PhysRevLett.87.215502

T. Hertel, Deformation of carbon nanotubes by surface van der Waals forces, Physical Review B, vol.58, issue.20, p.13870, 1998.
DOI : 10.1103/PhysRevB.58.13870

A. Rochefort, Electrical and mechanical properties of distorted carbon nanotubes, Physical Review B, vol.60, issue.19, p.13824, 1999.
DOI : 10.1103/PhysRevB.60.13824

M. B. Nardelli, Mechanical deformations and coherent transport in carbon nanotubes, Physical Review B, vol.60, issue.24, p.16338, 1999.
DOI : 10.1103/PhysRevB.60.R16338

R. Egger, Current Bistability and Hysteresis in Strongly Correlated Quantum Wires, Physical Review Letters, vol.84, issue.16, p.3682, 2000.
DOI : 10.1103/PhysRevLett.84.3682

Z. Yao, High-Field Electrical Transport in Single-Wall Carbon Nanotubes, Physical Review Letters, vol.84, issue.13, p.2941, 2000.
DOI : 10.1103/PhysRevLett.84.2941

B. Gao, Cotunneling and one-dimensional localization in individual disordered single-wall carbon nanotubes: Temperature dependence of the intrinsic resistance, Physical Review B, vol.74, issue.8
DOI : 10.1103/PhysRevB.74.085410

URL : https://hal.archives-ouvertes.fr/hal-00107253