Statistical modeling of tumorigenesis
Modèles statistiques du développement de tumeurs cancéreuses

Soutenance de thèse de
Mathieu Emily

22 Septembre 2006

préparée au
Laboratoire TIMC - Grenoble
Cancer is a multistage process with at least 3 major steps:

- Initiation,
- Promotion,
- Progression.

Many mathematical models are dedicated to the study of cancer development (Komarova, 2005):

- Modeling in the context of epidemiology,
- Modeling of tumor growth,
- Modeling of cancer initiation as somatic evolution.
Introduction - Objectives

• This work focuses on mathematical models for cancerous tissues at the initiation and the promotion stage.
• It provides statistical tests for early detection of cancer based on:
 • Gene expression measures within a tissue (promotion step).
 • Cell DNA sequences within a tissue (initiation step).
Introduction - Biological levels

Breast cancer tissue

Phenotypic markers

Gene expression

DNA Sequences
Genotypic markers

acgtgatgatgatgatgatgacgtgcga
acctgatgatgatgatgatgacgtgcga
attatcgatcgatcgtacgtacgtacgt
• **Cell adhesion** in cancer at the promotion step. Lower expression of Cellular Adhesion Molecules (CAMs) are correlated with:
 • Breast cancer (Berx and Van Roy, 2001).
 • Lung cancer (Bremnes *et al.*, 2002).
• **Cell adhesion** in cancer at the promotion step. Lower expression of Cellular Adhesion Molecules (CAMs) are correlated with:
 - Breast cancer (Berx and Van Roy, 2001).
 - Lung cancer (Bremnes et al., 2002).

• **Genetic instability** at the initiation step.
 - Less accuracy in DNA repair.
 - Genetic instability $\xrightarrow{20\text{ years}}$ tumor manifestation (Bielas and Loeb, 2005).
 - Hereditary Colon Cancer implicates MSH2, MSH6 and MLH1 genes (Fishel et al., 1993).
This thesis contribution

- A model for studying adhesion properties between contiguous cells using gene expression data.
 - Marked Point Processes framework.
 - Estimating an adhesion strength parameter characterizing the tissue.
This thesis contribution

- A model for studying adhesion properties between contiguous cells using gene expression data.
 - Marked Point Processes framework.
 - Estimating an adhesion strength parameter characterizing the tissue.
- A model of genetic instability using DNA sequences.
 - Coalescent models of gene genealogies.
 - Testing the occurrence of genetic instability by estimating a raised mutation rate parameter.
Part A. **Gibbsian spatial point process for tissue organization**
A. Spatial model - Biological context

Spatial development of biological tissues

- Cell patterns play a major role in many biological processes:
 - Embryogenesis,
 - Morphogenesis,
 - Tumorigenesis.

- Gene expression data may help to characterize cell patterns within a tissue:

 Checkerboard
 (Honda et al., 1986)

 Cell Sorting
 (Armstrong, 1989)

 Engulfment
 (Armstrong, 1989)
Cell adhesion - DAH

- The Differential Adhesion Hypothesis (DAH) is one of the most robust hypothesis (Steinberg, 1962):
 - Adhesion is function of differential expression of Cellular Adhesion Molecules (CAMs).
 - Cell arrangements minimize the adhesion energy,
- Among the CAMs, the Cadherin-Catenin complex is known to be deeply implicated in tumorigenesis.

\[\beta - Catenin \text{ gene expression in human hepatocellular carcinoma (Lin, 2003)}. \]
A. Spatial model - Biological context

Cadherin-catenin complex

- A zipper-like structure (Shapiro, 1995):

Crystal structured model (a) and picture (b) of linear zipper adhesion between cadherin-catenin complexes of two cells.

- The adhesion energy is function of the membrane separating contiguous cells.
A. Spatial model - Mathematical Models

Mathematical models of the Differential Adhesion Hypothesis (DAH) are classified according their geometry (Brodland, 2004):

- **Sub-cellular lattice model**: Graner and Glazier’s model (1992).

Example of Graner and Glazier’s model configuration with two cells
Graner and Glazier’s model

- Each cell, denoted by σ, is a set of pixels and each pixel (i, j) is characterized by a type τ_{ij} (3 different types: ℓ for light cells, d for dark cells and M for extracellular matrix).

- The Energy, H_{GG}, is defined as:

$$H_{GG} = H_{Adh} + \text{Constraint}$$

The adhesion term is an extension of the Potts interaction function:

$$H_{Adh} = \sum_{(i,j) \sim (i',j')} J \left(\tau(\sigma_{ij}), \tau(\sigma_{i'j'}) \right) \left(1 - \delta_{\sigma_{ij},\sigma_{i'j'}} \right)$$

and $\text{Constraint} = \sum_{\sigma} C(\text{area}(\sigma))$
Graner and Glazier’s model

\[\ell = \text{light}, \quad d = \text{dark} \quad \text{and} \quad M = \text{medium}. \]

Example of GG’s configuration using \(J_{\ell,\ell} = 14, \quad J_{d,d} = 14, \quad J_{\ell,d} = 29, \quad J_{\ell,M} = J_{d,M} = 16 \) (Glazier and Graner, 1993).
Graner and Glazier’s model

- GG’s model has been extended to cancerous processes:
 - Avascular tumor growth (Scott et al., 1999).
 - Tumor invasion (Turner and Sherratt, 2002).
- Despite the large success of this model, there exist some limitations:
 - Loss of cell connexity.
 - Algorithm sensitive to the lattice discretization.
 - No convergence for the algorithm.
 - Lack of mathematical framework for estimating parameters.
Objectives of our model

- **Continuous** geometry for cells.
- **Simulation algorithm** with good convergence properties.
- **Statistical framework** for estimating the strength of adhesion: marked point processes theory.
Geometrical modeling

- According to Honda’s studies (Honda 1978, 1983), cells can be modeled by a Dirichlet tiling based on cell nuclei.

Example of a tissue modeled by a Dirichlet tiling
A. Spatial model - Modeling

Energy functional

\[H_{CC}(\varphi) = H_{Adh} + \text{Constraint} \]

with:

\[H_{Adh} = \sum_{i \sim j} \text{length}(i, j)J(\tau_i, \tau_j) \]

and:

\[\text{Constraint} = \sum_i C(\text{area}(x_i)) \]

and where:

- \(\varphi = \{x_1, \ldots, x_n\} \) and \(x_i = (x_i, \tau_i) \), \(x_i \) is the center of the cell \(i \) and \(\tau_i \) the type of cell \(i \) (\(x_i \) is marked point).
Adhesion strength parameter

• With respect to the Poisson process, the density of a configuration φ can be written as:

$$f(\varphi) \propto \exp(-\theta H_{CC}(\varphi))$$

where θ quantifies the strength of adhesion within a tissue.

• Estimating the strength of adhesion is of particular interest.
A. Spatial model - Modeling

Mathematical study

Theorem

Let $H_{CC}(\phi)$ be the energy function of the following form:

$$H_{CC}(\phi) = \sum_{i \sim j} g(\text{length}(i, j))J(\tau_i, \tau_j) + \sum_i C(\text{area}(x_i))$$

Assume that g, J and C are bounded on \mathbb{R}. Then, there exists a Gibssian marked marked point process that satisfies the local specifications derived from H_{CC}.
Mathematical study - sketch of the proof

Let $E(x, \varphi) = H_{CC}(\varphi \cup x) - H_{CC}(\varphi)$ denotes the energy needed to insert a new point x in a configuration φ.

Proposition - Sufficient conditions for existence (Bertin et al., 1999)

- **Local Stability.** For all x and φ, it exists $K > 0$ such as:

 $$E(x, \varphi) > -K$$

- **Quasilocality.** For all x, φ and Δ bounded set:

 $$|E(x, \varphi) - E(x, \varphi_{\Delta})| < \varepsilon(d(x, \Delta^c))$$

where $\varepsilon(x) \to 0$ when $x \to \infty$.

Then, there exists a Gibbsian marked marked point process that satisfies the local specifications derived from H_{CC}.
A. Spatial model - Simulation

Algo: Insertion-Deletion Metropolis-Hastings

Algorithm
- If \(\text{Random} < 1/2 \): Insertion
 - Random choice of \(x_{n+1} \) and \(\tau_{n+1} \).
- else: Deletion
 - Uniform choice of a point within the configuration.
- Acceptance probability: \(p = \min[1, \exp(-\theta(\Delta H))] \)

Theorem
Under the same conditions \((g, J \text{ and } C \text{ bounded})\), the Markov chain generated by the Metropolis-Hastings algorithm is ergodic (Harris-Recurrent and aperiodic).

Proof: Using local stability and results from Geyer and Møller (1994).
Examples of simulations

(a) Checkerboard
 (Honda et al., 1996)

(b) Clustering
 (Armstrong, 1989)

(c) Engulfment
 (Armstrong, 1989)
A. Spatial model - Simulation

The algorithm performances

- Fast thanks to local the properties of insertion and deletion in the Dirichlet tessellation.
- Convergence: 50000 iterates for around 1000 cells starting from a random configuration (180 sec).
A. Spatial model - Estimation

Clustering - $J(\tau_1, \tau_1) = 0$, $J(\tau_2, \tau_2) = 0$ and $J(\tau_1, \tau_2) = 1$

Checkerboard - $J(\tau_1, \tau_1) = 1$, $J(\tau_2, \tau_2) = 1$ and $J(\tau_1, \tau_2) = 0$

The characteristic patterns emerge for large θ.

\[\theta = 1 \quad \theta = 5 \quad \theta = 10 \]
Estimation: Conditional Pseudo-Likelihood

Let Λ be a bounded set in \mathbb{R}. Conditional to the point locations, we have:

$$PL^\Lambda_C(\theta) = \prod_i \text{Prob}(\tau_i | \varphi, \tau \setminus \{\tau_i\}, \theta)$$

Definition

An estimator for the adhesion strength parameter (θ) is given by:

$$\hat{\theta}_C = \arg\max_\theta PL^\Lambda_C(\theta)$$
A. Spatial model – Estimation

Estimation: Pseudo-Likelihood

According to Jensen and Møller (1991), Pseudo-likelihood estimation for Gibbsian point processes is defined by:

\[
PL^\Lambda(\theta) = \exp \left(-\int_\Lambda \int_M \exp(-H_{CC}(x|\varphi)) d\tau_x dx \right) \prod_{x \in \varphi^\Lambda} \exp \left(-H_{CC}(x|\varphi \setminus x) \right)
\]

Definition

An estimator for the adhesion strength parameter \(\theta\) is given by:

\[
\hat{\theta} = \arg\max_\theta PL^\Lambda(\theta)
\]
A. Spatial model - Performances for estimators $\hat{\theta}_C$ and $\hat{\theta}$

<table>
<thead>
<tr>
<th>θ</th>
<th>Mean</th>
<th>Variance</th>
<th>θ</th>
<th>Mean</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.98</td>
<td>0.70</td>
<td>1.03</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.01</td>
<td>0.57</td>
<td>4.94</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10.47</td>
<td>1.20</td>
<td>9.80</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>14.58</td>
<td>2.22</td>
<td>15.03</td>
<td>1.20</td>
<td></td>
</tr>
</tbody>
</table>

Mean and Variance from 100 replicates for $\hat{\theta}_C$

<table>
<thead>
<tr>
<th>θ</th>
<th>Mean</th>
<th>Variance</th>
<th>θ</th>
<th>Mean</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.01</td>
<td>0.91</td>
<td>0.97</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.17</td>
<td>1.12</td>
<td>4.93</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10.24</td>
<td>2.24</td>
<td>10.30</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15.43</td>
<td>3.87</td>
<td>15.58</td>
<td>2.55</td>
<td></td>
</tr>
</tbody>
</table>

Mean and Variance from 100 replicates for $\hat{\theta}$
A. Spatial model - Performances for estimators $\hat{\theta}_C$ and $\hat{\theta}$

Comments

- Conditional and unconditional estimators seem to be weakly biased.
- Variances increase with θ.
- The conditional estimator is computationally faster than the unconditional estimator.
- Theoretically, $\hat{\theta}$ should be better than $\hat{\theta}_C$.
- In practice, we observe the reverse (integral approximations may be a problem).
A. Spatial model - An application to data

- Data: breast cancer - Two diseased tissues.
- Clustering pattern: \(J_{1,1} = 0, J_{2,2} = 0 \) and \(J_{1,2} = 1 \)

\[\hat{\theta}_C = 14.9 \text{ and } \hat{\theta} = 15.4 \]

\[\hat{\theta}_C = 31.9 \text{ and } \hat{\theta} = 33.7 \]
A. Spatial model - An application to data

- Data: breast cancer - Two diseased tissues.
- Clustering pattern: $J_{1,1} = 0, J_{2,2} = 0$ and $J_{1,2} = 1$

$\hat{\theta}_C = 14.9$ and $\hat{\theta} = 15.4$

$\hat{\theta}_C = 31.9$ and $\hat{\theta} = 33.7$
A. Spatial model - An application to data

Comments

- Capacity to discriminate between various cell patterns.
- Simulations with estimated parameters provide patterns consistent with real data.
Part B. *Conditional coalescent model for genetic instability*
B. Coalescent model - Biological levels

Phenotypic markers

Breast cancer tissue

Gene expression

DNA Sequences

Genotypic markers
Genetic instability in tumors

- Theory introduced by Loeb et al. in 1974.
- Tumors are characterized by a large number of mutations.
- A loss of genome stability functions occurs early in tumor development.
- Genetic instability as the initiating event is still a matter of debate (Loeb et al., 2003). Alternative theories are:
 - Aneuploidy (Duesberg et al., 1998).
 - Clonal selection (Tomlinson and Bodmer, 1999).
B. Coalescent model - Biological context

Loss of MMR (Mismatch Repair)

- More than 130 genes are involved in DNA repair (Anderson et al., 2001).
- Alteration of genes involved in:
 - fidelity of DNA replication.
 - efficacy of DNA repair.
- Consequence: increase from 10 to 10000 fold in the mutation rate (Bhattacharyya et al. 1994, Tomlinson et al., 1996).
 - Overall mutation rate in somatic human cells: 1.4×10^{-10} nucleotides per cell per division (Loeb, 1991).
 - Genetic instability $10^{-10} \rightarrow 10^{-6}$ shift.
B. Coalescent model - Biological context

Modeling hypothesis - Loss of MMR

- The sample of genes has **two mutation rates**. Some cells have a normal mutation rate and the others have a raised mutation rate.
- The number of affected cells is **unknown**.
- Cell genealogy can be modeled by a **coalescent process** arising as the limit of a Moran process (Moran 1962, Kingman 1982).
- **Neutrality**: mutation process is independent on the genealogical process.
- Our goal: **testing the occurrence of the loss of MMR**.
Neutral coalescent (Kingman 1982, Hein et al. 2005)

- Let T_i for $i = 2, \ldots, n$ denote the inter-coalescing times and assume that T_i’s are independent and of exponential distribution of parameter $\lambda_i = \frac{i(i-1)}{2}$.
B. Coalescent model - Mathematical background

Mutations model

- **Infinitely-many sites** model (Watterson, 1975).
- Mutations occur according to independent Poisson processes of rate $\theta/2$ along the branches of the tree.
 - $\theta = 4N \mu$ where μ is the mutation rate per base per mitotic division and N is the total number of cells.
- Classical unbiased estimators for θ: Watterson’s estimator and Tajima’s estimator.
Watterson’s estimator

- Let S be the number of segregation sites.
- S is equal to the total number of mutations under the *infinitely many sites* model.

Sequence #1	acagttacat
Sequence #2	agagctacat
Sequence #3	agagttgcgt

 Example with three DNA sequences where $S = 4$

- Watterson’s estimator for θ is defined as:

\[
\hat{\theta}_W = \frac{2S}{E[L]} = \frac{S}{\sum_{i=1}^{n-1} \frac{1}{i}},
\]

where $L = \sum_{i=2}^{n} iT_i$ is the total length of the tree.
Tajima’s estimator

- Let $\Pi(i, j)$ be the number of pairwise differences between sequence i and sequence j.
- Tajima’s estimator for θ is defined as:

$$\hat{\theta}_T = \frac{2}{n(n-1)} \sum_{i<j} \Pi(i, j)$$

Example with three DNA sequences where $\hat{\theta}_T = 2.67$ ($\hat{\theta}_W = 2.67$)

<table>
<thead>
<tr>
<th>Seq1 vs Seq2</th>
<th>Seq1 vs Seq3</th>
<th>Seq2 vs Seq3</th>
</tr>
</thead>
<tbody>
<tr>
<td>acagttacat</td>
<td>acagttacat</td>
<td>agagctacat</td>
</tr>
<tr>
<td>agagctacat</td>
<td>agagtgcgt</td>
<td>agagttgcgt</td>
</tr>
</tbody>
</table>
Back to genetic instability - Modeling constraints

- The event “Loss of MMR”, denoted by Δ, occurs once and only once in the genealogy of the sample.
 \Rightarrow Constraints on mutation rates along the Coalescent tree.

- Our sample is divided into 2 subsamples:
 - \mathcal{N} in which the mutation rate θ_0 is “normal”,
 - \mathcal{R} in which the mutation rate θ_1 is “raised” ($\theta_1 > \theta_0$).
 \Rightarrow Topological constraints on the Coalescent tree.

- Our goal: correcting Watterson’s and Tajima’s estimators for the raised mutation rate knowing the normal mutation rate.
B. Coalescent model - Conditional coalescent modeling

- Mutations follow Poisson processes of rates:
 - $\theta_0/2$ along the blue branches.
 - $\theta_1/2$ along the red branches.
B. Coalescent model - Conditional coalescent modeling

Frequency spectrum

- The genealogy of the sample is a *conditional coalescent tree* (Griffiths and Tavaré 1998, Wiuf and Donnelly 1999).
- The number B of descendants of Δ has the following distribution:

$$P(B = b) = \frac{1}{bH_{n-1}}$$

$b = 1, \ldots, n - 1$.

where H_n is the n^{th} harmonic number.
Correction of Watterson’s estimator

- S_n, the number of segregating sites, is a random variable equal to the total number of mutations.
- Two contributions for S_n, S_{0n} and S_{1n} where:
 - $E[S_{0n}] = E[L_0] \theta_0 / 2$
 - $E[S_{1n}] = E[L_\Delta] \theta_1 / 2$

An unbiased estimator of θ_1 is:

$$\hat{\theta}_{1,W} = \frac{S_n - E[L_0] \theta_0 / 2}{E[L_\Delta] / 2}$$
B. Coalescent model - Results

Correction of Watterson’s estimator - \(\mathbb{E}[L_\Delta] = \mathbb{E}[L_1] + \mathbb{E}[\eta_n] \)

Proposition

Let \(L_1 \) be the total length of the red sub-genealogy (Griffiths and Tavaré, 2003):

\[
\mathbb{E}[L_1 | B = b] = \sum_{j=2}^{n-b+1} p_j^\Delta \sum_{k=j+1}^{n} \frac{2}{k(k-1)} c_{jk},
\]

Proposition

Let \(\eta_n \) be the time that separates the MRCA of red sub-sample to \(\Delta \) (Wiuf and Donnelly, 1999):

\[
\mathbb{E}[\eta_n | B = b] = 2 \sum_{k=2}^{n-b+1} \frac{p_k^\Delta}{k}.
\]
B. Coalescent model - Results

Correction of Watterson’s estimator - L_0

- $E[L_0]$ and $E[L_0 | B]$ are unknown in the literature.
- $L_0 = L - L_\Delta$ where:
 - L is the total length of the tree.
 - L_Δ is the length of the red subtree.

![Diagram showing past and length L0 with red subtree and total length L]
Correction of Watterson’s estimator - L

Proposition

Assume that the mutation Δ has $B = b$ descendants. In a conditional coalescent tree we have:

$$\frac{1}{2} \mathbb{E}[L | B = b] = H_{n-1} + \frac{1}{H_{n-1}} \sum_{k=2}^{n-b+1} \frac{p_k}{b(k-1)}$$

Sketch of the proof: $L = \sum_{i=2}^{n} iT_i$ where T_i are the inter-coalescing times.
Sketch of the proof

Theorem - Inter-coalescing times in a conditional coalescent tree

Assume that the mutation Δ has $B = b$ descendants. The joint probability distribution of (T_2, \ldots, T_n) has a density equal to:

$$f(t_2, \ldots, t_n) = \sum_{k=2}^{n-b+1} p_k^\Delta \lambda_k t_k \prod_{\ell=2}^{n} f_\ell(t_\ell)$$

where $f_\ell(t_\ell)$ is the probability density function of the exponential distribution of rate λ_ℓ and:

$$p_k^\Delta = \left(\begin{array}{c} n - k \\ b - 1 \end{array} \right) \left(\begin{array}{c} n - 1 \\ b \end{array} \right)^{-1} \quad k = 2, \ldots, n - b + 1$$
Correction of Tajima’s estimator

- Mean number of pairwise differences between genes: Π.
- An unbiased estimator of θ_1 is:

$$\hat{\theta}_{1,T} = \frac{\Pi - C_n \theta_0}{D_n}$$

- C_n and D_n were founded by considering 3 average coalescing times between two sequences:
 - within \mathcal{R} (in the red subtree),
 - within \mathcal{N} (in the blue subtree),
 - one in each subsample.
Correction coefficients

<table>
<thead>
<tr>
<th>n</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_n</td>
<td>0.595</td>
<td>0.68</td>
<td>0.713</td>
<td>0.732</td>
<td>0.746</td>
<td>0.756</td>
<td>0.764</td>
<td>0.771</td>
<td>0.776</td>
</tr>
</tbody>
</table>

Tables for $A_n = E[L_0]/2$ and $B_n = E[L_\Delta]/2

<table>
<thead>
<tr>
<th>n</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_n</td>
<td>0.996</td>
<td>1.019</td>
<td>1.021</td>
<td>1.02</td>
<td>1.02</td>
<td>1.019</td>
<td>1.019</td>
<td>1.018</td>
<td>1.018</td>
</tr>
<tr>
<td>D_n</td>
<td>0.253</td>
<td>0.218</td>
<td>0.199</td>
<td>0.187</td>
<td>0.178</td>
<td>0.171</td>
<td>0.166</td>
<td>0.161</td>
<td>0.156</td>
</tr>
</tbody>
</table>

Tables for C_n and $D_n
B. Coalescent model - Results

Algorithm for simulating a conditional coalescent tree

Algorithm

- Draw B according to the frequency spectrum.
- Draw J_{Δ}, the number of ancestors at the time Δ occurs (Cf. Stephens, 2000).
- Draw the total number of ancestors at the time the subsample R first has r ancestors ($1 < r < b - 1$) (Tavaré, 2004).
- Sample T_ℓ from the exponential distribution $\text{Gamma}(1, \lambda_\ell)$, for $\ell \neq J_{\Delta}$ and $T_{J_{\Delta}}$ from the Gamma distribution $\text{Gamma}(2, \lambda_{J_{\Delta}})$.
B. Coalescent model - Results

Statistical errors of $\hat{\theta}_{1,W}$ and $\hat{\theta}_{1,T}$ for $\theta_0 = 1$
($N = 2.5 \times 10^9$ and $\mu = 10^{-10}$)

<table>
<thead>
<tr>
<th>n</th>
<th>$\theta_1 = 10$</th>
<th>$\theta_1 = 100$</th>
<th>$\theta_1 = 1000$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E</td>
<td>SD</td>
<td>E</td>
</tr>
<tr>
<td>10</td>
<td>9.9</td>
<td>12.0</td>
<td>97.4</td>
</tr>
<tr>
<td>30</td>
<td>10.2</td>
<td>12.8</td>
<td>102.9</td>
</tr>
<tr>
<td>50</td>
<td>10.4</td>
<td>13.5</td>
<td>102.0</td>
</tr>
</tbody>
</table>

Expectation and Standard Deviation for $\hat{\theta}_{1,W}$ using 1000 replicates.

<table>
<thead>
<tr>
<th>n</th>
<th>$\theta_1 = 10$</th>
<th>$\theta_1 = 100$</th>
<th>$\theta_1 = 1000$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E</td>
<td>SD</td>
<td>E</td>
</tr>
<tr>
<td>10</td>
<td>9.9</td>
<td>13.7</td>
<td>107.3</td>
</tr>
<tr>
<td>30</td>
<td>9.5</td>
<td>15.5</td>
<td>100.9</td>
</tr>
<tr>
<td>50</td>
<td>10.3</td>
<td>17.6</td>
<td>106.5</td>
</tr>
</tbody>
</table>

Expectation and Standard Deviation for $\hat{\theta}_{1,T}$ using 1000 replicates.
B. Coalescent model - Results

Statistical errors of $\hat{\theta}_{1,W}$ and $\hat{\theta}_{1,T}$ for $\theta_0 = 1$

- Watterson and Tajima’s corrected estimators are unbiased.
- They behave like the classical Watterson and Tajima’s estimator (high variance).
- The corrected estimators may not be consistent.
- Watterson’s corrected estimator seems to have less variance than Tajima’s corrected estimator.
B. Coalescent model - Results

Testing the absence of the “Loss of Mismatch Repair”

- \(H_0 \): Absence of \(\Delta \).
- \(H_1 \): Occurrence of \(\Delta \) and \(\theta_1 > \theta_0 \).

Assume the knowledge of the sample genealogy and that the data set consists of all intercoalescing times \((T_k) \). The likelihood ratio can be described as:

\[
r = \frac{L(H_1)}{L(H_0)} = \sum_{k=2}^{n-b+1} \lambda_k p_k^\Delta t_k
\]

Powers for type I error: \(\alpha = 0.05 \):

- \(1 - \beta = 0.2 \) when \(b \approx n \) and dropped to 0.1 when \(b/n \approx 0.5 \), where \(b \) is the number of affected cells.
Testing the absence of Δ (LMMR) - $\theta_0 = 1$

- H_0: Absence of Δ.
- H_1: Occurrence of Δ and $\theta_1 > \theta_0$.

<table>
<thead>
<tr>
<th>n</th>
<th>$\theta_1 = 10$</th>
<th>$\theta_1 = 100$</th>
<th>$\theta_1 = 1000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.44</td>
<td>0.74</td>
<td>0.90</td>
</tr>
<tr>
<td>40</td>
<td>0.42</td>
<td>0.73</td>
<td>0.88</td>
</tr>
</tbody>
</table>

Power of tests for $\hat{\theta}$ estimator

<table>
<thead>
<tr>
<th>n</th>
<th>$\theta_1 = 10$</th>
<th>$\theta_1 = 100$</th>
<th>$\theta_1 = 1000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.44</td>
<td>0.69</td>
<td>0.84</td>
</tr>
<tr>
<td>40</td>
<td>0.34</td>
<td>0.64</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Power of tests for Π estimator
Testing the occurrence of Δ (LMMR) - $\theta_0 = 1$

- H_0: Occurrence of Δ and $\theta_1 > \theta_0$.
- H_1: Absence of Δ.

<table>
<thead>
<tr>
<th>n</th>
<th>$\theta_1 = 10$</th>
<th>$\theta_1 = 100$</th>
<th>$\theta_1 = 1000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.06</td>
<td>0.18</td>
<td>0.70</td>
</tr>
<tr>
<td>40</td>
<td>0.11</td>
<td>0.24</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Power of tests for $\hat{\theta}_{1,W}$

<table>
<thead>
<tr>
<th>n</th>
<th>$\theta_1 = 10$</th>
<th>$\theta_1 = 100$</th>
<th>$\theta_1 = 1000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.12</td>
<td>0.29</td>
<td>0.54</td>
</tr>
<tr>
<td>40</td>
<td>0.12</td>
<td>0.19</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Power of tests for $\hat{\theta}_{1,T}$
Comments

- Watterson’s test statistic is **more powerful** than Tajima’s test.
- Power is law when the ratio between the normal and the raised mutation rate is less than 1000 ($\theta_0 < \theta_1$).
 - In agreement with biological experiments: detecting occurrence of the Loss of Mismatch Repair is hard when $\theta_1/\theta_0 < 1.000$ (Boland et al., 1998).
- Conditional on the occurrence of the loss of MMR, powers are decreasing as the sample size increases.
 - Monitoring several loci to increase power of tests.
B. Coalescent model - Publications

Publications

• M. Emily and O. Francois. A continuous stochastic model for cell sorting, arXiv q-bio.TO/0605035.

Part C. **Conclusion**
C. Conclusion

Summary

• Two stochastic models were proposed:
 • A Gibbsian spatial model based on gene expression data within tissues.
 • Conditional coalescent model using DNA sequences data.

• Results: new statistical procedures:
 • To estimate the differential adhesion between cells in normal and tumoral tissues.
 • To test the occurrence of the Loss of MMR and to detect genetic instability.
Future works

- Spatial point process
 - Mathematical properties of estimators (Billiot et al., 2006).
 - Study the phase transition of our model (Haggström, 2000).
 - Include cell division dynamics (Thom’s criterion, 1972).
 - Adapt our model to other issues (interaction between trees - Gourlet-Fleury et al., 2004).

- Coalescent model
 - Increase power of tests using a multilocus approach (Kühner et al., 1995).
 - Include clonal selection (Ancestral Selection Graph - Neuhauser and Krone, 1997).
Impact on early diagnosis of cancer

• In the near future, Polymerase Chain Reaction (PCR) will be standard routine during medical diagnosis.
• High-throughput data such as Fluorescence In Situ Hybridation will make tissue DNA contents easier to analyze.
• Goal: Reduce the time of detection by several years in hereditary cancers (HNPCC, hereditary breast cancer).
C. Conclusion - Future

Tissue Microarrays

- High-throughput data of gene expression markers is an important emerging technology (Kononen, 1998).
- Perspective: Model-based statistical procedures.