H. Amadou-boubacar, Outils pour la Détection de Changement de Comportement d'un Système, 2002.

H. Amadou-boubacar and S. Lecoeuche, A new kernel-based algorithm for online clustering, International Conference on Neural Networks (ICANN05), pp.583-588, 2005.

H. Amadou-boubacar and S. Lecoeuche, System Drifts Monitoring using Neural Supervision System, IASTED proceedings of Artificial Intelligence and Applications (AIA05, pp.803-808, 2005.

H. Amadou-boubacar, S. Lecoeuche, and S. Maouche, Self-Adaptive Kernel Machine: Online Clustering in RKHS, IEEE proceedings, p.5, 2005.

H. Amadou-boubacar, S. Lecoeuche, and S. Maouche, AUDyC Neural Network using a new Gaussian Densities Merge Mechanism, the 7th International Conference on Adaptive and Natural Computing Algorithms (ICANNGA05, pp.155-158, 2005.

S. Amari, Backpropagation and stochastic gradient descent method, Neurocomputing, vol.5, issue.4-5, pp.185-196, 1993.
DOI : 10.1016/0925-2312(93)90006-O

M. A. Arbib, Levels of modeling of mechanisms of visually guided behavior, Behavioral and Brain Sciences, vol.1, issue.03, pp.407-465, 1987.
DOI : 10.1016/0004-3702(81)90026-6

S. Balakrishnan and V. , Fast Incremental Adaptation Using Maximum Likelihood Regression and Stochastic Gradient Descent, 8th European Conference on Speech Communication and Technology, 2003.

G. Ball and D. Hall, ISODATA: a novel method of data analysis and pattern classification, 1965.

R. E. Belleman, Adaptive Control Processes, 1961.

A. Ben-hur, A. Hava, T. Siegelmann, and V. Vapnik, Support vector clustering, Scholarpedia, vol.3, issue.6, pp.125-137, 2002.
DOI : 10.4249/scholarpedia.5187

J. Bennett and C. Campbel, Support vector machines, ACM SIGKDD Explorations Newsletter, vol.2, issue.2, pp.1-13, 2000.
DOI : 10.1145/380995.380999

S. Bertier, Surveillance et diagnostic d'un procédé thermique basé sur une modélisation de classes dynamiques, DEA Automatique & Informatique Industrielle, 2004.

J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, 1982.
DOI : 10.1007/978-1-4757-0450-1

J. C. Bezdek, FCM: The fuzzy c-means clustering algorithm, Computers & Geosciences, vol.10, issue.2-3, pp.191-203, 1984.
DOI : 10.1016/0098-3004(84)90020-7

J. A. Bilmes, A gentle tutorial of the EM algorithm and its application to parameter estimation for gaussian mixture and hidden Markov models, 1998.

C. M. Bishop, Neural Networks for Pattern Recognition, 1995.

S. Borer, New Support Vector Algorithms for Multi-categorical Data: Applied to Real-Time Object Recognition, 2003.

L. Bottou, Online Algorithms and Stochastic Approximations, Online Learning and Neural Networks, 1998.

L. Bottou, Stochastic Learning, Advanced Lectures on Machine Learning, no. LNAI 3176, pp.146-168, 2004.
DOI : 10.1007/978-1-4757-2440-0

L. Bottou and Y. Bengio, Convergence properties of the k-means algorithms, Advances in Neural Information Processing Systems, pp.585-592, 1995.

A. Boudaoud and N. , Conception d'un système de diagnostic adaptatif en ligne pour la surveillance des systèmes évolutifs, Thèse de l'Université de, 1998.

O. Bousquet, S. Boucheron, G. Lugosi, and O. Bousquet, Introduction to Statistical Learning Theory, Advanced Lectures on Machine Learning Lecture Notes in Artificial Intelligence, vol.3, issue.3, pp.169-207, 2004.
DOI : 10.1007/3-540-45435-7_5

C. Bruges, A tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, vol.2, issue.2, pp.121-167, 1998.
DOI : 10.1023/A:1009715923555

G. Cauwenberghs and T. Poggio, Incremental and Decremental Support Vector Machine Learning, Advances in Neural Information Systems, pp.409-415, 2001.

G. Celeux, S. Christien, F. Forbes, and A. Mkhadri, A Component-Wise EM Algorithm for Mixtures, Institut National de Recherche en Informatique et en Automatique, 1999.
DOI : 10.1198/106186001317243403

URL : https://hal.archives-ouvertes.fr/inria-00072916

G. Celeux and G. Govaert, Gaussian parsimonious clustering models, Pattern Recognition, vol.28, issue.5, pp.781-793, 1995.
DOI : 10.1016/0031-3203(94)00125-6

URL : https://hal.archives-ouvertes.fr/inria-00074643

D. Chaudhuri, B. B. Chaudhuri, and C. A. Murthy, A new split-and-merge clustering technique, Pattern Recognition Letters, vol.13, issue.6, pp.399-409, 1992.
DOI : 10.1016/0167-8655(92)90046-3

G. Chelcea, P. Bertrand, and B. Trousse, Un Nouvel Algorithme de Classification Ascendante, pp.2-3, 2004.

P. H. Chen, C. J. Jin, and B. Schölkopf, -support vector machines, Applied Stochastic Models in Business and Industry, vol.190, issue.2, pp.111-136, 2005.
DOI : 10.1002/asmb.537

URL : https://hal.archives-ouvertes.fr/hal-00109057

A. Cornuéjols, Training Issues in Incremental Learning, Proceedings of the AAAI Spring Symposium, 1993.

A. Cornuéjols and L. Miclet, Apprentissage artificiel -concepts et algorithmes, 2002.

R. Coulon, Apprentissage par Renforcement utilisant des Réseaux de Neurones, avec des applications au contrôle moteur, Thèse de Doctorat, Institut National Polytechnique de Grénoble (INPG), 2002.

T. M. Cover and P. E. Hart, Nearest neighbor pattern classification, IEEE Transactions on Information Theory, vol.13, issue.1, pp.21-27, 1967.
DOI : 10.1109/TIT.1967.1053964

N. Cristianini and J. Shawe-taylor, An Introduction to Support Vector Machines, 2000.

A. Cuevas, M. Febrero, and R. Fraiman, Cluster analysis: a further approach based on density estimation, Computational Statistics & Data Analysis, vol.36, issue.4, pp.441-459, 2001.
DOI : 10.1016/S0167-9473(00)00052-9

M. V. Dang, Classification de Données Spatiales: Modèles Probabilistes et Critères de Partitionnement, Thèse de Doctorat, 1998.

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the EM Algorithm (with) discussion, Journal of the Royal Statistical Society series B, vol.39, pp.1-38, 1977.

D. Deng and N. Kasabov, On-line pattern analysis by evolving self-organizing maps, Neurocomputing, vol.51, pp.87-103, 2003.
DOI : 10.1016/S0925-2312(02)00599-4

T. Denoeux, A neural network classifier based on Dempster-Shafer theory, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol.30, issue.2, pp.1083-4427, 2000.
DOI : 10.1109/3468.833094

F. Desobry, Méthodes à noyau pour la détection de ruptures, Thèse de Doctorat, 2004.

F. Desobry, M. Davy, and C. Doncarli, An online kernel change detection algorithm, IEEE Transactions on Signal Processing, vol.53, issue.8, pp.8-10, 2005.
DOI : 10.1109/TSP.2005.851098

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.1469

J. L. Dessalles, L'ordinateur génétique. Edition Hermès, 1996.

L. Devroye and G. L. Wise, Detection of Abnormal Behavior Via Nonparametric Estimation of the Support, SIAM Journal on Applied Mathematics, vol.38, issue.3, pp.480-488, 1980.
DOI : 10.1137/0138038

X. Dongxin, Entropie and Information Potential for Neural Computation, 1999.

D. Doye and T. Sontakke, Speech Recognition Using Modified General Fuzzy Min-Max Neural. The Pennsylvania State University CiteSeer Archives, 2002.
DOI : 10.1080/03772063.2002.11416263

D. Dumitrescu, Genetic Algorithms and Evolution Strategies, 2000.

J. Einmahl and D. Mason, Generalized Quantile Processes, The Annals of Statistics, vol.20, issue.2, pp.1062-1078, 1992.
DOI : 10.1214/aos/1176348670

URL : http://repository.tue.nl/683226

T. Eltoft, A new neural network for cluster-detection-and-labeling, IEEE Transactions on Neural Networks, vol.9, issue.5, pp.1021-1035, 1998.
DOI : 10.1109/72.712183

T. Evgeniou, M. Pontil, and T. Poggio, Regularization Networks and Support Vector Machines, Advances in Computational Mathematics, vol.13, issue.1, pp.1-50, 2000.
DOI : 10.1023/A:1018946025316

P. Fabiani, A New Approach in Temporal Representation of Belief for Autonomous Observation and Surveillance Systems, European Conference on Artificial Intelligence ? ECAI, pp.391-395, 1994.

P. Fabiani, Représentation dynamique de l' incertain et stratégie de prise d' information pour un système autonome en environnement évolutif, Thèse de doctorat, Ecole Nationale, 1996.

E. Fiesler, Neural network classification and formalization, Computer Standards & Interfaces, vol.16, issue.3, 1994.
DOI : 10.1016/0920-5489(94)90014-0

S. Fleury, Représentation et classification évolutives pour le traitement automatique du langage naturel, 1998.

J. Friedman, Another approach to polychotomous classification, 1996.

K. Fukunaga, Introduction to Statistical Pattern Recognition, 1990.

B. Gabrys and A. Bargiela, General fuzzy min-max neural network for clustering and classification, IEEE Transactions on Neural Networks, vol.11, issue.3, pp.769-783, 2000.
DOI : 10.1109/72.846747

G. B. Todd and K. L. , Weight space probability densities in stochastic learning: II. transients and basin hopping times, Advances in Neural Information Processing Systems 5, 1993.

C. Gentile, A new approximation maximal margin classification algorithm, Journal of Machine Learning Research, vol.2, pp.313-242, 2001.

G. Golub and V. Loan, Matrix computations. 3 rd édition, The J, 1996.

P. Gordon, Théorie des chaines de Markov finies et ses applications, 1965.

R. Gorunescu and D. Dumitrescu, Evolutionary Clustering using an Incremental Technique, Studia Univ. babes, vol.8, issue.2, 2003.

G. Govaert, L'analyse des données. Edition Hermès, 2003.

P. J. Green, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, vol.82, issue.4, pp.711-732, 1995.
DOI : 10.1093/biomet/82.4.711

A. Gretton and F. Desobry, Online one-class nu-svm, an application to signal segmentation, IEEE Proceedings, ICASSP'03, pp.709-712, 2003.

Y. Guermeur, Combining Discriminant Models with New Multi-Class SVMs, Pattern Analysis & Applications, vol.5, issue.2, pp.168-179, 2002.
DOI : 10.1007/s100440200015

URL : https://hal.archives-ouvertes.fr/inria-00107869

Y. Guermeur and H. Paugam-moisy, Théorie de l' apprentissage de Vapnik et SVM, Support Vector Machines, Apprentissage automatique, pp.109-138, 1999.

S. K. Halgamuge and L. Wang, Classification and Clustering for Knowledge Discovery, Series: Studies in Computational Intelligence, 2005.
DOI : 10.1007/b98152

J. A. Hartigan, Classification and Clustering, Journal of Marketing Research, vol.18, issue.4, 1975.
DOI : 10.2307/3151350

H. Hartley, Maximum Likelihood Estimation from Incomplete Data, Biometrics, vol.14, issue.2, pp.174-194, 1958.
DOI : 10.2307/2527783

D. O. Hebb, The Organization of Behavior, 1949.

R. Herbrich, Learning Kernel Classifiers, 2002.

R. V. Hogg and D. C. Whittinghill, A Little Uniform Density With Big Instruction Potential, Jounal of Statistics Education, vol.9, issue.2, 2001.

J. Holland, Adaptation in Natural and Artificial Systems, 1975.

A. Jain, R. Duin, and J. Mao, Statistical pattern recognition: a review, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.1, pp.4-37, 2000.
DOI : 10.1109/34.824819

B. Jin, A. R. Hurson, and L. Miller, Neural Network-Based Decision Support for Incomplete Database Systems. Knowledge Acquisition and Performance Analysis, Conference on Analysis of Neural Network Applications, pp.62-75, 1991.

J. F. Jodouin, Les Réseaux Neuromimétiques: Modèles et applications. Editions Hermès, 1994.

N. K. Kasabov, Evolving Connectionist Systems: Methods and Applications in Bioinformatics, Brain Study and Intelligent Machines, 2003.
DOI : 10.1007/978-1-4471-3740-5

L. Kaufman, Solving the Quadratic Programming Problem Arising in Support Vector Classification Advances in Kernel Methods -Support Vector Learning, pp.147-167, 1999.

M. Kijima, Markov Processes for Stochastic Modeling, 1997.
DOI : 10.1007/978-1-4899-3132-0

J. Kivinen, A. J. Smola, and R. C. Williamson, Online Learning with Kernels, IEEE Transactions on Signal Processing, vol.52, issue.8, 2004.
DOI : 10.1109/TSP.2004.830991

T. Kohonen, Self-organizing maps, 2001.

H. W. Kuhn and A. W. Tucker, Nonlinear programming, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp.481-492, 1950.

I. Lapidot, H. Guterman, and A. Cohen, Unsupervised speaker recognition based on competition between self-organizing maps, IEEE Transactions on Neural Networks, vol.13, issue.4, pp.877-887, 2002.
DOI : 10.1109/TNN.2002.1021888

S. Lecoeuche, Apprentissage Récursif: Quelques méthodes d'identification et de classification pour le suivi de systèmes évolutifs, 2006.

S. Lecoeuche and S. Lalot, Neural network based online detection of fouling in a Water Circulating Temperature Controller (WCTC) Proceeding of 6 th Int, Conf. on Heart Exchanger Fouling and Cleaning. IRSEE, 2005.

S. Lecoeuche and C. Lurette, Auto-adaptive and Dynamical Clustering Neural Network, ICANN'03 proceedings, pp.350-358, 2003.
DOI : 10.1007/3-540-44989-2_42

S. Lecoeuche and C. Lurette, New supervision architecture based on on line modelization of non stationary data, Neural Computing and Applications, pp.323-338, 2004.

S. Lecoeuche, G. Mercère, and H. Amadou-boubacar, MODELLING OF NON STATIONARY SYSTEMS BASED ON A DYNAMICAL DECISION SPACE, 14th IFAC Symposium on System Identification, 2006.
DOI : 10.3182/20060329-3-AU-2901.00197

URL : https://hal.archives-ouvertes.fr/hal-00091332

J. Leski, Fuzzy c-varieties/elliptotypes clustering in reproducing kernel Hilbert space, Fuzzy Sets and Systems, vol.141, issue.2, pp.259-280, 2004.
DOI : 10.1016/S0165-0114(03)00184-2

G. Letac and M. Mora, Natural Real Exponential Families with Cubic Variance Functions, The Annals of Statistics, vol.18, issue.1, pp.1-37, 1990.
DOI : 10.1214/aos/1176347491

Q. Liu, S. Levinson, Y. Wu, S. Thomas, and S. Huang, Interactive and Incremental Learning via a Mixture of Supervised and Unsupervised Learning Strategies, Proc. of Joint Conf. on Information Systems (JCIS' 00), 2000.

L. Ljung, System identification. Theory for the user, Practice Hall Information, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00854858

P. Loonis and H. Locteau, Planification markovienne du choix d' agents de classification pour la poursuite de classes évolutives, pp.1039-1048, 2004.

C. Lurette, Développement d' une technique neuronale auto-adaptative pour la classification dynamique des données évolutives: Application à la supervision d' une presse hydraulique, Thèse de doctorat Université des Sciences et Technologies de, 2003.

G. J. Mclachlan and D. Peel, Finite Mixture Models, 2000.
DOI : 10.1002/0471721182

J. Mcqueen, Some methods for classification and analysis of multivariate observations, proceedings of the Fifty Berkeley Symposium on Mathematical Statistics and Probabilty, pp.281-297, 1967.

J. M. Mendel and K. S. Fu, Adaptive, Learning and Pattern Recognition Systems: Theory and Applications, 1970.

M. Meneganti, M. F. Saviello, and R. Tagliaferri, Fuzzy neural networks for classification and detection of anomalies, IEEE Transactions on Neural Networks, vol.9, issue.5, 1998.
DOI : 10.1109/72.712157

R. Merwe, E. Wan, and A. , Efficient Derivative-Free Kalman Filters for Online Learning, ESANN' 01 proceedings -European Symposium on Artificial Neural Networks Bruges, Belgium, pp.205-210, 2001.

G. Mercère, Contribution à l'identification récursive des systèmes par l'approche des sous-espaces, 2004.

C. A. Micchelli, Interpolation of scattered data: Distance matrices and conditionally positive definite functions, Constructive Approximation, vol.23, issue.1, pp.11-22, 1986.
DOI : 10.1007/BF01893414

J. Milgram, R. Sabourin, and M. Cheriet, Système de classification à deux niveaux de décision combinant approche par modélisation et machines à vecteurs de support. Colloque International Francophone, pp.25-29, 2004.

M. Minoux, Programmation Mathématique : Théorie et Algorithmes. Dunod édition, 1983.

R. K. Mobley, La maintenance prédictive, Organisation Industrielle, 1992.

C. Moon, J. Kim, G. Choi, and Y. Seo, An efficient genetic algorithm for the traveling salesman problem with precedence constraints, European Journal of Operational Research, vol.140, issue.3, pp.606-617, 2002.
DOI : 10.1016/S0377-2217(01)00227-2

M. Mora, Famille Exponentielle et Fonctions Variance, Thèse de doctorat, 1986.

M. S. Mouchaweh, Conception d' un système de diagnostic adaptatif et prédictif basé sur la méthode Fuzzy Pattern Matching pour la surveillance en ligne des systèmes évolutifs, Thèse, Laboratoire d' Automatique et de Micro-électronique (LAM), 2002.

D. W. Muller, The excess mass approach in statistics, 1992.

K. S. Murray, Learning as Knowledge Integration, 1995.

D. R. Musicant, Data Mining via Mathematical Programming and Machine Learning, 2000.

R. Neal and G. Hinton, A view of the EM algorithm that justifies incremental, sparse, and other variantes, Learning in Graphical Models Dordrecht: Kluwer Academic, pp.355-368, 1998.

A. Nobile and A. Fearnside, Bayesian finite mixtures with an unknown number of components: The allocation sampler, Statistics and Computing, vol.14, issue.2, 2005.
DOI : 10.1007/s11222-006-9014-7

J. P. Nougier, Méthodes de calcul numérique, 1993.

F. S. Osorio, INSS : Un système hybride neuro-symbolique pour l'apprentissage automatique constructif Thèse de l'Institut National Polytechnique de Grenoble I Alternative EM methods for nonparametric finite mixture models, Biometrika, vol.88, pp.535-550, 1998.

J. C. Platt, Fast training of support vector machines using sequential minimal optimization Advances in kernel methods: support vector learning, 1999.

R. Polikar, L. Udpa, S. Udpa, and V. Honavar, Learn++: an incremental learning algorithm for supervised neural networks, IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), vol.31, issue.4, pp.497-508, 2001.
DOI : 10.1109/5326.983933

F. Portera, Loss Functions and Structured Domains for Support Vector Machines, 2005.

L. Pronzato and A. Pazman, Moindres carrés pondérés récursifs dans les modèles de régression à variance paramétrée, Journées Francaises de Statistiques, 2004.

S. Richardson and P. J. Green, On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion), Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.59, issue.4, pp.731-792, 1997.
DOI : 10.1111/1467-9868.00095

H. Robbins and S. Monro, A Stochastic Approximation Method, The Annals of Mathematical Statistics, vol.22, issue.3, pp.400-407, 1951.
DOI : 10.1214/aoms/1177729586

F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain., Psychological Review, vol.65, issue.6, pp.386-408, 1958.
DOI : 10.1037/h0042519

C. Saint-jean, Classification paramétrique robuste partiellement supervisée en reconnaissance des formes, Thèse de l'université de, 2001.

J. Salomon, Support Vector Machines for Phoneme Classification. Master of science, School of Artificial Intelligence, 2001.

A. B. Samé, Modèles de mélange et classification de données acoustiques en temps réel, Thèse de l'Université de Technologie de Compiègne (UTC), 2005.

A. B. Samé, C. Ambroise, and G. Govaert, A Mixture Model Approach for On-line Clustering, 2004.

O. F. Santos, INSS: un système hybride neuro-symbolique pour l' apprentissage automatique constructif, Thèse de doctorat, 1998.

B. Schölkopf, J. Platt, J. Shawe-taylor, and A. Smola, Estimating the Support of a High-Dimensional Distribution, Neural Computation, vol.6, issue.1, pp.1443-1471, 2001.
DOI : 10.1214/aos/1069362732

B. Schölkopf and A. Smola, Learning with Kernels, 2002.

B. Schölkopf, A. Smola, R. Williamson, and P. Bartlett, New Support Vector Algorithms, Neural Computation, vol.20, issue.5, pp.1207-1245, 2000.
DOI : 10.1016/S0893-6080(98)00032-X

B. Schölkopf, K. Sung, C. Burges, F. Girosi, P. Niyogi et al., Comparing support vector machines with Gaussian kernels to radial basis function classifiers, IEEE Transactions on Signal Processing, vol.45, issue.11, pp.2758-2765, 1997.
DOI : 10.1109/78.650102

K. Shaohua and R. Shellappa, Kullback-Leibler Distance between Two Gaussian Densities in Reproducing Kernel Hilbert Space, 2004.

V. R. Silva, W. Khatib, and P. J. Fleming, Performance optimization of gas turbine engine, Engineering Applications of Artificial Intelligence, vol.18, issue.5, pp.575-583, 2005.
DOI : 10.1016/j.engappai.2005.01.001

P. K. Simpson, Fuzzy min-max neural networks. I. Classification, IEEE Transactions on Neural Networks, vol.3, issue.5, pp.776-786, 1992.
DOI : 10.1109/72.159066

P. K. Simpson, Fuzzy min-max neural networks - Part 2: Clustering, IEEE Transactions on Fuzzy Systems, vol.1, issue.1, pp.32-45, 1993.
DOI : 10.1109/TFUZZ.1993.390282

J. A. Smola and B. Schölkopf, A tutorial on support vector regression, Statistics and Computing, vol.14, issue.3, pp.199-222, 2004.
DOI : 10.1023/B:STCO.0000035301.49549.88

M. Stephens, Dealing with label switching in mixture models, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.62, issue.4, 2000.
DOI : 10.1111/1467-9868.00265

M. Stephens, components?an alternative to reversible jump methods, The Annals of Statistics, vol.28, issue.1, pp.40-74, 2000.
DOI : 10.1214/aos/1016120364

B. Y. Sun and D. S. Huang, Support vector clustering for multiclass classification problems, Evolutionary Computation, vol.2, pp.1480-1485, 2003.

D. Tax and R. Duin, Support vector domain description, Pattern Recognition Letters, vol.20, issue.11-13, pp.1991-1999, 1999.
DOI : 10.1016/S0167-8655(99)00087-2

A. N. Tikhonov and V. Y. Arsenin, Solution of ill-posed problems, 1977.

S. Tong, Active learning: Theory & Applications, 2001.

Y. K. Tu, Hierarchical Text Classification using One-Class-SVM, 2003.

N. Ueda, R. Nakano, Z. Gharhamani, and G. Hinton, SMEM Algorithm for Mixture Models, Neural Computation, vol.21, issue.9, pp.2109-2128, 2000.
DOI : 10.1207/s15327906mbr0503_6

P. Vannoorenberghe and P. Smets, Partially Supervised Learning by a Credal EM Approach, ECSQARU'05, 2005.
DOI : 10.1007/11518655_80

V. Vapnik, The Nature of Statistical Learning Theory, 1995.

V. Vapnik, Statistical Learning Theory, 1998.

V. Vapnik, An overview of statistical learning theory, IEEE Transactions on Neural Networks, vol.10, issue.5, pp.988-999, 1999.
DOI : 10.1109/72.788640

C. Vasseur, R. Lakel, and P. Hublin, Estimation récursive des caractéristiques d'une classe en reconnaissance de formes, 1988.

S. Vijayakumar, Computational Theory of Incremental and Active Learning for Optimal Generalization, 1998.

T. Voegtlin, Recursive self-organizing maps, Neural Networks, vol.1589, pp.979-991, 2002.

G. Walther, Granulometric smoothing, The Annals of Statistics, vol.25, issue.6, pp.2273-2299, 1997.
DOI : 10.1214/aos/1030741072

J. Weston and C. Watkins, Multiclass support vector machines, Proceedings of ESANN99. D, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00750277

R. R. Yager, M. Fedrizzi, and J. Kacprzyk, Advances in the Dempster?Shafer Theory of Evidence, 1994.

L. A. Zadeh, Fuzzy sets, Information and Control, vol.8, issue.3, pp.338-353, 1965.
DOI : 10.1016/S0019-9958(65)90241-X

B. Zhang, C. Zhang, and X. Yi, Competitive EM algorithm for finite mixture models, Pattern Recognition, vol.37, issue.1, pp.131-144, 2004.
DOI : 10.1016/S0031-3203(03)00140-7

Z. Zhang, C. Chen, J. Sun, and K. L. Chan, EM algorithms for Gaussian mixtures with split-and-merge operation, Pattern Recognition, vol.36, issue.9, pp.1973-1983, 2003.
DOI : 10.1016/S0031-3203(03)00059-1