C. Simulations, . G. De, and . De-sleipner-la-surface, Les courbes qui montrent la surface de dolomite ont la même allure. Elles croissent vers divers régimes quasi-stationnaires représentatifs de l'´ etape de germination, qui durent jusqu'au passagè a la croissance, synonyme de changement de pente et d'une accélération très nette de la production de surface, induite par le caractère auto-catalytique de la loi de croissance, Sur certaines de ces courbes (celles associées aux simulations dolom04-gm03 et dolom04-gm04), nous pouvons même remarquer la diminution légère de la surface sous l'effet du mûrissement

-. Cristaux, Plutôt que de s'intéresser au rayon de la sphèré equivalente au germe, peu parlant physiquement puisque très petit (les calottes sphériques sont très petites en volume, mais, si l'angle de contact estégalementestégalement petit, leur rayon peutêtrepeutêtre assez grand), nous avons choisi de tracer lesévolutionslesévolutions dans le temps du nombre de molécules contenues dans un cristal

. Ensuite, sous l'action du mûrissement d'Ostwald, le nombre de molécules contenues dans un germe

. Pendant-l-'´-etape-de-croissance, les courbes sont ensuite très proches, le système n'est donc jamais très sursaturé effectivement et cela explique le retour plus progressif vers la position d'´ equilibre. A la fin des simulations, les valeurs de K dol. (r) atteintes sont, par ailleurs, plus ou moinséloignéesmoinséloignées de la solubilité macroscopique K dol. (?), ` a cause de la difficulté qu'a ´ eprouvée le système pour faire germer la dolomite

. Remarques, Cette configuration K dol. (r) > Q dol. vient du fait qu'au début de la nucléation, on forme peu de gros germes, alors que par la suite

&. H. Aagaard and . Helgeson, Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions; I, Theoretical considerations, American Journal of Science, vol.282, issue.3, pp.237-285, 1982.
DOI : 10.2475/ajs.282.3.237

R. R. Arvidson and &. F. Mackenzie, The dolomite problem; control of precipitation kinetics by temperature and saturation state, American Journal of Science, vol.299, issue.4, pp.257-288, 1999.
DOI : 10.2475/ajs.299.4.257

J. W. Ball, E. A. Jenne, and &. D. Nordstrom, WATEQ2???A Computerized Chemical Model for Trace and Major Element Speciation and Mineral Equilibria of Natural Waters, Chemical Modeling in Aqueous Systems (ed. E. A. Jenne) -Am, pp.815-835, 1979.
DOI : 10.1021/bk-1979-0093.ch036

B. Bazin, E. Brosse, and &. F. Sommer, Chemistry of oil-field brines in relation to diagenesis of reservoirs 1. Use of mineral stability fields to reconstruct in situ water composition. Example of the Mahakam basin, Marine and Petroleum Geology, vol.14, issue.5, pp.481-495, 1997.
DOI : 10.1016/S0264-8172(97)00004-4

B. Bazin, E. Brosse, and &. F. Sommer, Chemistry of oil-field brines in relation to diagenesis of reservoirs -2. Reconstruction of paleo-water composition for modelling illite diagenesis in the Greater Alwyn area (North Sea). Marine and Petroleum Geology, pp.497-511, 1997.

J. Bear, Dynamics of Fluids in Porous Media, Soil Science, vol.120, issue.2, 1972.
DOI : 10.1097/00010694-197508000-00022

C. W. Beenakker and &. J. Ross, Theory of Ostwald ripening for open systems, The Journal of Chemical Physics, vol.83, issue.9, pp.4710-4714, 1985.
DOI : 10.1063/1.448995

R. A. Berner, Sedimentary pyrite formation, American Journal of Science, vol.268, issue.1, pp.1-23, 1970.
DOI : 10.2475/ajs.268.1.1

R. A. Berner, Principles of chemical sedimentology, 1971.

C. Bethke, The Geochemist's Workbench T M version 2.0, A users guide to Rxn, 1994.

C. M. Bethke, Geochemical Reaction modeling, 1996.

C. M. Bethke, Modeling transport in reacting geochemical systems, C. R. Acad. Sci. Paris, vol.324, pp.513-528, 1997.

O. Bildstein, Modélisation géochimique des interactions eau-gaz-roche. ApplicationàApplicationà la diagenèse minérale dans les réservoirs géologiques, Thèse de Doctorat, 1998.

O. Bildstein and &. E. Brosse, Simulation de la diagenèse minérale. Modélisation numérique couplée « réaction-transport »dans les réservoirs gréseux : Le modèle géochimique NEWKIN, 1996.

B. W. Bourcier, Improvements in the solid solution modeling capabilities of the EQ3/6 geochemical code, 1985.

W. K. Burton and &. N. Cabrera, Crystal growth and surface structure. Part I, Discussions of the Faraday Society, vol.5, pp.33-39, 1949.
DOI : 10.1039/df9490500033

W. K. Burton, N. Cabrera, and &. F. Franck, The Growth of Crystals and the Equilibrium Structure of their Surfaces, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.243, issue.866, pp.299-358, 1951.
DOI : 10.1098/rsta.1951.0006

M. Canals and &. Meunier, A model for porosity reduction in quartzite reservoirs by quartz cementation, Geochimica et Cosmochimica Acta, vol.59, issue.4, pp.699-709, 1995.
DOI : 10.1016/0016-7037(94)00355-P

C. Cassou, Modélisation numérique des interactions eau-roche : Optimisation du code de calcul Diaphore et ApplicationàApplicationà la diagenèse minérale des réservoirs, Thèse de Doctorat, Ecole Nationale Supérieure d'Arts et Métiers, 2000.

N. D. Chatterjee, Applied mineralogical thermodynamics : selected topics, 1991.
DOI : 10.1007/978-3-662-02716-5

W. Choueiri, Projet Demeter -Etude bibliographique sur les méthodes de résolution des systèmes linéaireslinéaires`linéairesà coefficients réels, 1993.

P. G. Ciarlet, IntroductionàIntroductionà l'analyse numérique matricielle etàetà l'optimisation, 1990.

A. Clément and . Kindis, Un logiciel de simulation thermodynamique et cinétique des intéractions solution-minérauxminérauxà température donnée (0-300 ? C) Notes de l, 1992.

D. A. Crerar, A method for computing multicomponent chemical equilibria based on equilibrium constants, Geochimica et Cosmochimica Acta, vol.39, issue.10, pp.1375-1384, 1975.
DOI : 10.1016/0016-7037(75)90116-7

J. Denis and &. G. Michard, Dissolution d'une solution solide : ´ etude théorique et expérimentale, Bull. Minéral., n ?, vol.106, pp.309-319, 1983.

D. D. Eberl, V. A. Drits, and &. J. Srodo´nsrodo´n, Deducing growth mechanisms for minerals from the shapes of crystal size distributions, American Journal of Science, vol.298, issue.6, pp.499-533, 1998.
DOI : 10.2475/ajs.298.6.499

P. Engesgaard and &. K. Kipp, A geochemical transport model for redox-controlled movement of mineral fronts in groundwater flow systems: A case of nitrate removal by oxidation of pyrite, Water Resources Research, vol.25, issue.1, pp.2829-2843, 1992.
DOI : 10.1029/92WR01264

B. Fritz, Etude thermodynamique et simulation des réactions entre minéraux et solutions, Applicationàcationà la géochimie des altérations et des eaux continentales. Sciences géologiques, 1975.

B. Fritz, Etude thermodynamique et modélisation des réactions hydrothermales et diagénétiques, Sciences géologiques, 1981.

I. Grenthe, W. Stumm, M. Laaksuharju, A. Nilsson, and &. P. Wikberg, Redox potentials and redox reactions in deep groundwater systems, Chemical Geology, vol.98, issue.1-2, pp.131-150, 1992.
DOI : 10.1016/0009-2541(92)90095-M

Y. S. Han, G. Hadiko, M. Fuji, and &. M. Takahashi, Crystallization and transformation of vaterite at controlled pH, Jour. Crystal. Growth, vol.289, pp.269-274, 2006.

H. C. Helgeson, Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions???I. Thermodynamic relations, Geochimica et Cosmochimica Acta, vol.32, issue.8, pp.853-877, 1968.
DOI : 10.1016/0016-7037(68)90100-2

H. C. Helgeson, Thermodynamics of hydrothermal systems at elevated temperatures and pressures, American Journal of Science, vol.267, issue.7, pp.724-804, 1969.
DOI : 10.2475/ajs.267.7.729

H. C. Helgeson, T. H. Brown, A. Nigrini, and &. T. Jones, Calculation of mass transfer in geochemical processes involving aqueous solutions, Geochimica et Cosmochimica Acta, vol.34, issue.5, pp.569-592, 1970.
DOI : 10.1016/0016-7037(70)90017-7

H. C. Helgeson, R. M. Garrels, and &. F. Mackenzie, Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions???II. Applications, Geochimica et Cosmochimica Acta, vol.33, issue.4, pp.455-481, 1969.
DOI : 10.1016/0016-7037(69)90127-6

E. Jacquot, Modélisation thermodynamique et cinétique des réactions géochimiques entre fluides de bassin et socle cristallin : Application au site expérimental du programme européen de recherche en géothermie profonde (Soultz-Sous-Forêts, Thèse de Doctorat, 2000.

J. W. Johnson, J. K. Nitao, and &. K. Knaus, Reactive transport modeling of CO 2 storage in saline aquifers to elucidate fundamental processes, trapping mechanisms, and sequestration partitioning. Geological Storage of Carbon Dioxide, Geol. Soc. Spec. Publ, n ?, vol.233, 2004.

J. D. Kantorowicz, Lateral and vertical variations in pedogenesis and other early diagenetic phenomena, Middle Jurassic Ravenscar Group, Yorkshire, Proc. York, pp.61-74, 1990.
DOI : 10.1144/pygs.48.1.61

D. Kashchiev and &. G. Van-rosmalen, Review: Nucleation in solutions revisited, Crystal Research and Technology, vol.38, issue.78, pp.555-574, 2003.
DOI : 10.1002/crat.200310070

E. Keating and &. J. Bahr, Reactive transport modeling of redox geochemistry: Approaches to chemical disequilibrium and reaction rate estimation at a site in northern Wisconsin, Water Resources Research, vol.27, issue.10, pp.3573-3584, 1998.
DOI : 10.1029/98WR02610

Y. K. Kharaka and &. I. Barnes, SOLMNEQ : Solution-mineral equilibrium computations, 1973.

A. C. Lasaga, Transition state theory Reviews in Mineralogy -Kinetic of geochemical processes, pp.135-169, 1981.

A. C. Lasaga, Chemical kinetics of water-rock interactions, Journal of Geophysical Research: Solid Earth, vol.89, issue.B6, pp.4009-4025, 1984.
DOI : 10.1029/JB089iB06p04009

B. A. Lasaga, Kinetic theory in the Earth sciences, 1998.
DOI : 10.1515/9781400864874

P. Lascaux and &. R. Theodor, Analyse numérique matricielle appliquéè a l'art de l'ingénieur -tome 1, 1986.

P. Lascaux and &. R. Theodor, Analyse numérique matricielle appliquéè a l'art de l'ingénieur -tome 2, 1987.

L. Gallo, Rapport d'avancement du couplage SARIP-KINDIS : DIAPHORE, 1995.

L. Gallo, O. Bildstein, and &. E. Brosse, Coupled reaction-flow modeling of diagenetic changes in reservoir permeability, porosity and mineral compositions, Journal of Hydrology, vol.209, issue.1-4, pp.366-388, 1998.
DOI : 10.1016/S0022-1694(98)00183-8

L. Thiez, Prise en compte des phénomènes de diffusion et de dispersion dans un modèle d'´ ecoulements en milieu poreux, 1989.

L. Thiez, Physical and thermodynamical aspects in numerical model SARIP, 1992.

G. N. Lewis, &. M. Randall, and . Thermodynamics, Mc Graw-Hill, 1961.

P. C. Lichtner, Continuum formulation of multicomponent-multiphase reactive transport Reviews in Mineralogy -Reactive transport in porous media, pp.1-81, 1996.

M. H. Lietzke and &. R. Stoughton, The calculation of activity coefficients from osmotic coefficients data, Jour. Chem. Phys, vol.65, pp.508-509, 1961.

I. M. Lifshitz and &. U. Slyozov, The kinetics of precipitation from supersaturated solid solutions, Journal of Physics and Chemistry of Solids, vol.19, issue.1-2, pp.35-50, 1961.
DOI : 10.1016/0022-3697(61)90054-3

C. W. Liu and &. N. Narasimhan, Redox-controlled multiple-species reactive chemical transport: 1. Model development, Water Resources Research, vol.23, issue.8, pp.869-882, 1989.
DOI : 10.1029/WR025i005p00869

C. W. Liu and &. N. Narasimhan, Redox-controlled multiple-species reactive chemical transport: 2. Verification and application, Water Resources Research, vol.222, issue.2, pp.883-910, 1989.
DOI : 10.1029/WR025i005p00883

F. T. Mackenzie, W. D. Bischoff, F. C. Bishop, M. Loijens, J. Schoonmaker et al., Magnesian calcites : Low-temperature occurence, solubility and solid-solution behavior. Carbonates : Mineralogy and Chemistry, pp.97-144, 1983.

B. Madé, Modélisation thermodynamique et cinétique des réactions géochimiques dans les interactions eau-roche, Thèse de Doctorat, 1991.

B. Madé, A. Clément, and &. B. Fritz, Modélisation thermodynamique et cinétique des réactions diagénétiques dans les bassins sédimentaires, pp.569-602, 1994.

M. Marder, Correlations and droplet growth, Physical Review Letters, vol.55, issue.27, pp.2953-2956, 1985.
DOI : 10.1103/PhysRevLett.55.2953

M. Marder, Droplet growth, Thèse de Doctorat, 1986.

J. A. Marqusee and &. J. Ross, Kinetics of phase transitions: Theory of Ostwald ripening, The Journal of Chemical Physics, vol.79, issue.1, pp.373-377, 1983.
DOI : 10.1063/1.445532

J. A. Marqusee and &. J. Ross, Theory of Ostwald ripening: Competitive growth and its dependence on volume fraction, The Journal of Chemical Physics, vol.80, issue.1, pp.536-543, 1984.
DOI : 10.1063/1.446427

H. M. May, D. G. Kinniburgh, P. A. Helmke, and &. M. Jackson, Aqueous dissolution, solubilities and thermodynamic stabilities of common aluminosilicate clay minerals: Kaolinite and smectites, Geochimica et Cosmochimica Acta, vol.50, issue.8, pp.1667-1677, 1986.
DOI : 10.1016/0016-7037(86)90129-8

W. Mcnab and &. N. Narasimhan, Modeling reactive transport of organic compounds in groundwater using a partial redox disequilibrium approach, Water Resources Research, vol.24, issue.43, pp.2619-2635, 1994.
DOI : 10.1029/94WR01305

G. Michard, Dissolution d'une solution solide : compléments et corrections, Bull. Minéral., n ?, vol.109, pp.239-251, 1986.

N. Michau, Modélisation cinétique de la formation des argiles en fonction de leur composition et de leur morphologie, 1997.

E. P. Moldovanyi and &. L. Walter, Regional trends in water chemistry, Smackover Formation, Southwest Arkansas, geochemical and physical controls, The American Association of Petroleum Geologists Bulletin, vol.76, pp.10-19, 1992.

F. M. Morel and &. J. Hering, Principles and applications of aquatic chemistry, 1993.

J. W. Jr and . Morris, The kinetics of calcium carbonate dissolution and precipitation. Carbonates : Mineralogy and Chemistry, pp.227-264, 1983.

J. W. Morse and &. W. Casey, Ostwald processes and mineral paragenesis in sediments, American Journal of Science, vol.288, issue.6, pp.537-560, 1988.
DOI : 10.2475/ajs.288.6.537

J. W. Morse and &. J. Cornwell, Analysis and distribution of iron sulfide minerals in recent anoxic marine sediments, Marine Chemistry, vol.22, issue.1, pp.55-69, 1987.
DOI : 10.1016/0304-4203(87)90048-X

J. W. Murray, Iron oxydes. Marine Minerals

B. G. Nancollas, Z. Amjad, and &. P. Koutsoukos, Calcium Phosphates???Speciation, Solubility, and Kinetic Considerations, Chemical Modeling in Aqueous Systems (ed. E. A. Jenne) -Am. Chem
DOI : 10.1021/bk-1979-0093.ch023

A. E. Nielsen, Kinetics of precipitation, 1964.

A. E. Nielsened, E. J. Jan´cicjan´cic, . De, and . Jong, Theory of electrolyte crystal growth Industrial Crystallisation, pp.35-44, 1982.

A. E. Nielsen, Electrolyte crystal growth mechanisms, Journal of Crystal Growth, vol.67, issue.2, pp.289-310, 1984.
DOI : 10.1016/0022-0248(84)90189-1

A. E. Nielsen, Mechanisms and rate laws in electrolyte crystal growth from aqueous solution. Geochemical Processes at Mineral Surfaces, ) -ACS Symposium Ser. 323, pp.600-614, 1986.

A. E. Nielsen and &. J. Christoffersen, The mechanisms of crystal growth and dissolution, Biological Mineralization and Demineralization, pp.37-77, 1982.

A. E. Nielsen and &. O. Söhnel, Interfacial tensions electrolyte crystal-aqueous solution, from nucleation data, Journal of Crystal Growth, vol.11, issue.3, pp.233-242, 1971.
DOI : 10.1016/0022-0248(71)90090-X

E. Nourtier, Modélisation géochimique et numérique des interactions entre des solutions solides et une solution aqueuse. Extension du logiciel de réaction-transport Archimède et applicationàapplicationà la diagenèse minérale des réservoirs, Thèse de Doctorat, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2003.

E. Nourtier-mazauric, B. Guy, B. Fritz, E. Brosse, D. Garcia et al., Modelling the Dissolution/Precipitation of Ideal Solid Solutions, Oil & Gas Science and Technology, vol.60, issue.2, pp.401-415, 2003.
DOI : 10.2516/ogst:2005024

URL : https://hal.archives-ouvertes.fr/emse-00613150

E. H. Oelkers, Physical and chemical properties of rocks and fluids for chemical mass transport calculations. Reviews in Mineralogy -Reactive transport in porous media

W. Z. Ostwald, StudienüberStudien¨Studienüber die Bildung und Umwaldung fester Korper, Zeitschr. Phys. Chem, vol.22, pp.289-330, 1897.

D. L. Parkhurst, User's guide to PHREEQC, a computer model for speciation, reaction-path, advective transport and inverse geochemical calculations, Water-Ressources Investigations Report, pp.95-4227, 1995.

D. L. Parkhurst, D. C. Thorstenson, and &. L. Plummer, PHREEQE -a computer model for geochemical calculations, U.S. Geological Survey, Water-Ressources Investigations Report, pp.80-96, 1980.

E. H. Perkins and &. H. Brown, Program PATH, calculation of isothermal and isobaric mass transfer, 1982.

E. A. Perry and &. J. Hower, Burial Diagenesis in Gulf Coast Pelitic Sediments, Clays and Clay Minerals, vol.18, issue.3, pp.165-177, 1970.
DOI : 10.1346/CCMN.1970.0180306

L. N. Plummer, B. F. Jones, and &. A. , WATEQF -A FORTRAN IV version of WATEQ, a computer program for calculating chemical equilibria of natural waters, U.S. Geological Survey, 1976.

L. N. Plummer, D. L. Parkhurst, and &. D. Thorstenson, Development of reaction models for ground-water systems, Geochimica et Cosmochimica Acta, vol.47, issue.4, pp.665-686, 1983.
DOI : 10.1016/0016-7037(83)90102-3

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and &. B. Flannery, Numerical recipes in FORTRAN 77 : the art of scientific computing -volume 1, 1999.

I. Prigogine, Thermodynamics of Irreversible Processes, 1967.

A. Putnis, C. M. Pina, J. M. Astilleros, L. Fernández-diaz, and &. M. Prieto, Nucleation of solid solutions crystallizing from aqueous solutions, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.361, issue.1804, pp.615-632, 2003.
DOI : 10.1098/rsta.2002.1142

M. H. Reed, Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase, Geochimica et Cosmochimica Acta, vol.46, issue.4, pp.513-528, 1982.
DOI : 10.1016/0016-7037(82)90155-7

F. Saaf, A study of reactive transport phenomena in porous media, Thèse de Doctorat, 1996.

&. M. Sagui and . Grant, Theory of nucleation and growth during phase separation, Physical Review E, vol.59, issue.4, pp.4175-4187, 1999.
DOI : 10.1103/PhysRevE.59.4175

K. Sangwal, On the estimation of surface entropy factor, interfacial tension, dissolution enthalpy and metastable zone-width for substances crystallizing from solution, Journal of Crystal Growth, vol.97, issue.2, pp.393-405, 1989.
DOI : 10.1016/0022-0248(89)90221-2

K. Soetaert, P. Herman, and &. J. Middleburg, A model of early diagenetic processes from the shelf to abyssal depths, Geochimica et Cosmochimica Acta, vol.60, issue.6, pp.1019-1040, 1996.
DOI : 10.1016/0016-7037(96)00013-0

C. I. Steefel and &. A. Lasaga, A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems, American Journal of Science, vol.294, issue.5
DOI : 10.2475/ajs.294.5.529

C. I. Steefel and &. P. Van-cappellen, A new kinetic approach to modeling water-rock interaction: The role of nucleation, precursors, and Ostwald ripening, Geochimica et Cosmochimica Acta, vol.54, issue.10, pp.2657-2677, 1990.
DOI : 10.1016/0016-7037(90)90003-4

G. Strang, Introduction to applied mathematics, 1986.

W. Stumm, Aquatic chemical kinetics. Reaction rates of processes in natural waters, 1990.

. Tazaki, Observation of primitive clay precursors during microcline weathering, Contributions to Mineralogy and Petrology, vol.119, issue.1, pp.86-88, 1986.
DOI : 10.1007/BF00373965

D. C. Thorstenson and &. L. Plummer, Equilibrium criteria for two-component solids reacting with fixed composition in an aqueous phase; example, the magnesian calcites, American Journal of Science, vol.277, issue.9, pp.1203-1223, 1977.
DOI : 10.2475/ajs.277.9.1203

B. A. Truesdell and &. B. Jones, WATEQ : a computer program for calculating chemical equilibria of natural waters, U.S. Geological Survey J. Research, vol.2, pp.233-248, 1974.

D. Turnbull and &. J. Fisher, Rate of Nucleation in Condensed Systems, The Journal of Chemical Physics, vol.17, issue.1, pp.71-73, 1949.
DOI : 10.1063/1.1747055

J. Van-der-lee, CHESS, another speciation and complexation computer code, 1993.

J. Van-der-lee, Thermodynamic and mathematical concepts of CHESS, 1998.

G. Venzl, Ostwald Ripening of Precipitates I. Numerical Solution for the Particle Size Distribution Function in Closed Systems, Berichte der Bunsengesellschaft f??r physikalische Chemie, vol.15, issue.4, pp.318-324, 1983.
DOI : 10.1002/bbpc.19830870410

M. Volmer, Kinetik der Phasenbildung, 1945.

P. W. Voorhees, The theory of Ostwald ripening, Journal of Statistical Physics, vol.3, issue.1-2, pp.231-252, 1985.
DOI : 10.1007/BF01017860

P. W. Voorhees and &. M. Glicksman, Ostwald ripening during liquid phase sintering???Effect of volume fraction on coarsening kinetics, Metallurgical Transactions A, vol.31, issue.6, pp.1081-1088, 1984.
DOI : 10.1007/BF02644701

C. Wagner, Theorie der alterung von neiderschlägen durch umlösen (Ostwald reifung), Zeitschr. Elektrochem, vol.65, pp.581-591, 1961.

J. C. Westall, J. L. Zachary, and &. F. , MINEQL, a computer equilibria program for the calculation of chemical equilibrium composition of aqueous systems, Technical Note, vol.18, 1976.

T. M. Wigley, WATSPEC : a computer program for determining the equilibrium speciation of aqueous solutions, Brit. Geomorph. Res. Group Tech. Bull, vol.20, 1977.

L. A. Williams and &. D. Crerar, Silica diagenesis, II, General mechanisms, Jour. Sed. Pet, vol.55, pp.312-321, 1985.

L. A. Williams, G. A. Parks, and &. D. Crerar, Silica diagenesis, I, Solubility, Jour. Sed. Pet, vol.55, pp.301-311, 1985.

T. J. Wolery, Calculation of chemical equilibrium between aqueous solution and minerals : the EQ3/6 software package, p.52658, 1979.

T. J. Wolery, EQ3/EQ6, a software package for geochemical modeling of aqueous systems, package overview and installation guide (version 7.0), p.110662, 1979.

T. Xu, J. K. Apps, and &. K. Pruess, Mineral sequestration of carbon dioxide in a sandstone???shale system, Chemical Geology, vol.217, issue.3-4, pp.295-318, 2005.
DOI : 10.1016/j.chemgeo.2004.12.015

J. B. Zeldovich, Theory of formation of a new phase, Acta Physiochim. USSR, vol.18, issue.1, 1943.

H. Zhang, X. Y. Wang, L. L. Zheng, and &. S. Sampath, Numerical simulation of nucleation, solidification, and microstructure formation in thermal spraying, International Journal of Heat and Mass Transfer, vol.47, issue.10-11, pp.2191-2203, 2004.
DOI : 10.1016/j.ijheatmasstransfer.2003.11.030