Skip to Main content Skip to Navigation
Theses

an intuitionistic lambda calculus with exceptions

Abstract : We introduce a typed lambda-calculus which allows the use of exceptions in the ML style. It is an extension of the system AF2 of Krivine & Leivant (Krivine, 1990; Leivant, 1983). We show its main properties: confluence, strong normalization and weak subject reduction. The system satisfies the “the proof as program” paradigm as in AF2. Moreover, the underlined logic of our system is intuitionistic logic.
Document type :
Theses
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-00093187
Contributor : Georges Mounier <>
Submitted on : Tuesday, September 12, 2006 - 10:25:33 PM
Last modification on : Friday, November 6, 2020 - 3:28:47 AM
Long-term archiving on: : Thursday, September 20, 2012 - 10:26:11 AM

Identifiers

  • HAL Id : tel-00093187, version 1

Collections

Citation

Georges Mounier. an intuitionistic lambda calculus with exceptions. Mathématiques [math]. Université de Savoie, 1999. Français. ⟨tel-00093187⟩

Share

Metrics

Record views

316

Files downloads

173