I. Bibliographie, [. D. Bagley, I. B. Cutler, and D. L. , Rôle des Propriétés des Granules pour la Fabrication de Pièces de Poudres Céramiques Granulées sans Défaut de Compaction Thèse Doctorat, Institut National des Sciences Appliquées de Lyon-France, 1992.

M. Balasubramanian, S. K. Malohtra, and C. V. , Gokularathnam Influence of particule characteristics on sintering behaviour of alumina-zirconia composites Swelling of Hot-pressed Alumina, Journal of Materials Science Letters J. Am. Ceram.Soc, vol.1421, issue.68 11, pp.1484-1485, 1985.

C. Physique-du-frittage, C. D. Bernache-assolant, E. Hermèsche97, ]. R. Chen, S. W. Die75-]-g et al., McKeever Theory of Thermoluminescence and Related Phenomena World Scientific Publications Samberg Shell-model calculations of some point-defect properties in N-Al2O3 Phys Hot-stage Study of Bubble Formation During Binder Burnout Hubner Alumina : processing, properties and applications, ELM95] M. El-Morabit, Contribution à l'Etude du Déliantage Thermique de Matriaux Céramiques Système Al2O3-(PVA/PEG) : Détermination Expérimentale et Théorique des Mécanismes Réactionnels Mis à Jeu Thèse Docteur d'EtatERK95a] H. Erkalfa, Z. Misirli & T. Baykara Densification and Microstructural Development of Al2O3 with Manganese Oxide Addition J. European Ceram. SocERK95b] H. Erkalfa, Z. Misirli & T. Baykara Densification of Alumina at 1250°C with MnO 2 and TiO 2 additives Ceramics International Thèse de Doctorat, Institut National Polytechnique de Grenoble et Ecole Nationale Supérieure des Mines de Saint-Etienne, pp.576-3060, 1975.

H. R. Gitzengur87-]-n and . Gurak, The American Ceramic Society Properties and Uses of Synthetic Emulsion Polymers as Binders in Advanced Ceramics Processing Am, Ceram. Soc. Bull, vol.66, issue.78, pp.1495-1497, 1970.

]. J. Har80b, &. W. Harvey, . Jr, and . Johnson, Binder Systems in Ferrites Am, Ceram. Soc.Bull, vol.59, issue.6, pp.637-639, 1990.

J. [. Mckee, E. W. Mckeever, M. Moscovitch, P. D. Townsend-[-kro57-]-m, &. E. Davis et al., Aleshin Aluminum Oxide-Titanium Oxide Solid Solution Journal of The American Ceramic Society Kronberg Plastic deformation of single crystals of sapphire : basal slip and twinning Acta Met Kröger Defect Models for sintering and densification of Al 2 O 3 :Ti and Al 2 O 3 :Zr Processing Related Fractur Origins: Elimination of voids Produced by, Thermoluminescence Dosimetry Materials : Properties and Uses Nuclear Technology Publishing Loudjani, R. Cortès et P. Carry Étude de l'environnement et de la chimie locale autour du dopant zirconium dans l'alumine-N en relation avec la microstructure J. Phys. IV, pp.642-650, 1957.

M. , A. S. Marfunin, . K. Spectroscopy-[-moh77-]-s, and F. A. Mohapatra, Kröger Defect Structure of Al 2 O 3 Doped with Titanium, J. Am. Ceram. Soc, vol.60, pp.9-10, 1977.

G. Thèse-de, . Molnar, E. De-nice-sophia-antipolis-et-université, &. G. Lorand-de-budapest-nies, and . Messing, Effect of Glass-Transition Teperature of Polyethylene Glycol-Plasticized Polyvinyl Alcohl on Granule Compaction Role of zirconia addition in pore development and grain growth in alumina compacts, J. Am. Ceram. Soc. J. Mater. Res, vol.6712, issue.14, pp.301-304, 1984.

R. [. Roy, Coble Solubilities of Magnesia, Titania and Magnesium Titanate in Aluminium Oxide, WAN80] H.A. Wang, F.A. Kröger Chemical Diffusion in Polycristalline Al, pp.51-52, 1968.

:. K. Vii-bibliographie, A. H. Bansal, and . Heuer, On a martensitic phase transformation in Zirconia (ZrO2): I, Metallographic Evidence

M. Balasubramanian, S. K. Malhotra, C. V. Gokularathnam-[-bec83-]-p, J. Becher, . [. Amer et al., Cannon Transformation toughened ceramics for structural applications Transformation of tetragonal ZrO2 particles in a ceramic matrix, Fantozzi Comportement mécanique des céramiques composites à fibres et à dispersoïdes. Silic. Ind Thèse de Doctorat, Institut NationalGRI94] R.W. Grimes Solution of MgO, CaO and TiO 2 in Al 2 O 3, pp.1484-1485485195, 1969.

H. , Y. J. He, A. J. Winnubst, H. Verweij, and A. J. , Burggraaf Sinter forging of zirconia toughened alumina, IAC78] P. Iacconi, D. Lapraz, et R. Caruba, Traps and emission centres in thermoluminescent ZrO 2, pp.77-79, 1982.

. Phys, . Stat, . F. Sollan81-]-f, D. J. Lange, and . Green, Petzow Defect Chemistry, Phase Stability and Properties of Zirconia Polycrystals Effect of inclusions size on the retention of tetragonal ZrO2: theory and experiments. In Advances in Ceramics 3, Science and Technology of Zirconia, Proceedings of the Fifth International Conference on Science and Technology of ZirconiaLAN84] F.F. Lange, et M.M. Hirlinger, Hindrance of grain growth in Al2O3 by ZrO2 inclusions, pp.275-283, 1978.

R. [. Loudjani, P. W. Cortès, H. K. Moffatt, . V. Bowen-[-sdr98-]-v, and D. I. Sdric, Carry Etude de l'environnement et de la chimie locale autour du dopant zirconium dans l'alumine-en relation avec la microstructure J. Phys. IV France 9 Savic Grain growth in sol-gel dericed alumina-zirconia composites, Phase transformations in Zirconia. Phys. Status Solidi A, pp.164-168, 1966.

S. Taruta, K. Kawashima, K. Kitajima, N. Takusagawa, K. Okada et al., Otsuka Influence of zirconia addition on the sintering behavior of bimodal size distributed alumina powder mixtures J. Ceram Lin Effect of particle size distribution on sintering : part II -Sintering of alumina, TOM95] H. Tomaszewski, K. Godwod Influence of Oxygen Partial Pressure on the Metastability of Undoped Zirconia Dispersed in Alumina Matrix, pp.139-144, 1994.

W. , J. Wang, and R. Raj, Activation energy for the sintering of two-phase alumina/zirconia ceramics, Diffusionless phase transformations in Zirconia and Hafnia, pp.17-23, 1991.

]. H. Iii-bibliographieabd97, . A. Abdizadeh-[-bad76-]-p, J. E. Badkar, . I. Bae93-]-s, S. Bae et al., Elaboration et caractérisation des composites duplex « Composites laminaires tri-couches à base d'alumine Bailey The mechanism of simultaneous sintering and phase transformation in alumina Baik Sintering and grain growth of ultrapure alumina Moon Effects of Magnesium Oxide on Grain-Boundary Segregation of Calcium During Sintering of Alumina, Thèse de Doctorat, Institut National des Sciences appliquées de Lyon, n° d'ordre 97ISAL0076, pp.1794-1806, 1976.

M. Thèse-de and . Dauzat, Ecole Nationale Supérieure des Mines de Saint-Etienne, n°ordre CD, p.28, 1989.

D. Thèse-de and . Daviller, Ecole Nationale Supérieure des Mines de Saint-Etienne, p.43, 1990.

J. [. Dynys, . W. Dyn84-]-f, and J. W. Dynys, Halloran Alpha Alumina Formation in Alum-Derived Gamma Alumina Baykara Densification and Microstructural Development of Al2O3 with Manganese Oxide Addition J, Densification of Alumina at 1250°C with MnO 2 and TiO 2 additives Ceramics InternationalEVA78] B.D. Evans, M. Stapelbroek, Optical properties of the F+ center in crystalline Al2O3 Phys. Rev. B, pp.65-74, 1978.

F. Fereyges62, ]. S. Geschwind, P. Kislink, M. P. Klein, J. P. Remeika et al., Institut National Polytechnique de Grenoble et Ecole Nationale Supérieure des Mines de Saint-Etienne, n° d'ordre 262 CD, Thèse de Doctorat, 2002.

. Phys, L. L. By, D. R. Hench, W. R. Ulrich, &. I. Keski et al., Agglomerates and agglomeration in ceramics processing Ultrastructure Processing of Ceramic, Glass and Composites Effect of manganese oxide on sintering of alumina J. Amer, Halloran, pp.126-1684, 1954.

V. S. Kortov, T. S. Bessenova, M. S. Akselrod, I. I. Milman, S. J. Kostic et al., Hole-induced exoelectron emission and luminescence of corundum doped with Mg Phys Sintering and microstructure development in the Al 2 O 3 ?MnO?TiO 2 system Pow Thermostimulated luminescence and fluorescence of -Al 2 O 3 :Cr 3+ samples (ruby) Phys McMurdie Phase diagrams for ceramics, Lougjani, R. Cortés Study of Local Structure Around Zirconium Ions in Grain Boundaries of Polycrystalline -alumina by X-ray Absorption Spectroscopy and Chemical Analysis of thin Foils, pp.629-639, 1969.

E. Thèse-de and . Papin, Ecole Nationale Supérieure des Mines de Saint-Etienne, p.172, 1997.

P. [. Rabe, B. Nobst, and . Moser, Phasenbestand und sintervhalten von Mn-Ti-dotierter Al2O3-keramik in abhängigheit von der sinteratmosphare Silikattechnik, pp.49-52, 1983.

V. Bibliographie, [. A. Badkar, J. E. Bag70-]-r, I. B. Bagley, and D. L. Cutler, Bailey The mechanism of simultaneous sintering and phase transformation in alumina, J. Mat. Sci, vol.11, pp.1794-1806, 1976.

C. [. Cahoon, H. E. Cooke, C. Roberts, . Jr, and . Alexander, Christensen Sintering and grain growth of -alumina Thermoluminescence and emission spectra of UV-grade Al 2 O 3 from 90 to 500, J. Am. Ceram. Soc. J. Am. Ceram. Soc. J. Appl. Phys, vol.5310, issue.496, pp.136-141, 1956.

]. H. Erk95a, Z. Erkalfa, and &. Misirli, Baykara Densification and Microstructural Development of Al 2 O 3 with Manganese Oxide Addition J. European Ceram. Soc Baykara Densification of Alumina at 1250°C with MnO 2 and TiO 2 additives, Evans, M. Stapelbroek, Optical properties of the F + center in crystalline Al, pp.165-171, 1995.

. Phys, . Rev, . D. Beva94a-]-b, . D. Eva94b-]-b, G. J. Evans et al., Evans Ubiquitous blue luminescence from undoped synthetic sapphires, Optical properties of lattice defects in -Al 2 O 3, pp.7089-7098, 1978.

. Nucl, . [. Instr, and . Ferey, Institut National Polytechnique de Grenoble et Ecole Nationale Supérieure des Mines de Saint-Etienne, n° d'ordre 262 CD, Thèse de DoctoratGRI94] R.W. Grimes Solution of MgO, CaO and TiO 2 in Al 2 O 3, pp.258-262, 1994.

. [. Mckee-jr, P. Lapraz, D. Iacconi, B. Daviller, . H. Guilhot-[-lee79-]-k et al., Akselrod et I.I. Milman, Hole-induced exoelectron emission and luminescence of corundum doped with Mg Phys Kröger Defect Models for sintering and densification of -Al 2 O 3 :Ti and -Al 2 O 3 :Zr Thermostimulated luminescence and fluorescence of -Al 2 O 3 :Cr 3+ samples (ruby) Phys Shoda Effect of TiO 2 doping on rapid densification of alumina by plasma activated sintering The effect of temperature on the structural and textural evolution of sol-gel Al 2 O 3 -TiO 2 mixed oxides, Aleshin Aluminum oxide ? titanium oxide solid solution J. AmerI. Surdo Photoluminescence and thermoluminescence of titanium ions in sapphire crystals Radiation Measurements, pp.77-79, 1963.

R. [. Roy, ]. W. Coble-solubilities-of-magnesiasmo54, H. J. Smothers, . J. Spr84-]-m, J. A. Springis et al., Titania and Magnesium Titanate in Aluminum Oxide Reynolds Sintering and grain growth of alumina Visible luminescence of colour centres in sapphire Phys Influence of titania and zirconia addition on sintering of bimodal size distributed alumina powder mixtures Ceramic Interfaces: properties and applications, WAN80] H.A. Wang, F.A. Kröger Chemical Diffusion in Polycristalline Al, pp.51-52, 1954.

D. S. Wong, S. A. Mcclure, and M. R. Basun, Kokta Charge exchange processes in titanium doped sapphire crystals. I. Chargeexchange energies and titanium-bound excitons Phys Kokta Charge exchange processes in titanium doped sapphire crystals. II. Charge transfer transition states, carrier trapping and detrapping Phys, et B. Henderson Optical and electron spin resonance spectroscopy of Ti 3+ and Ti 4+ in Al 2 O 3, pp.11-12, 1980.

D. Thèse-de and . Daviller, Ecole Nationale Supérieure des Mines de Saint-Etienne, p.43, 1990.

]. H. Erk95a, Z. Erkalfa, and &. Misirli, Baykara Densification and Microstructural Development of Al2O3 with Manganese Oxide Addition J. European Ceram. Soc, Stapelbroek, Optical properties of the F+ center in crystalline Al2O3 Phys, pp.165-171, 1978.

S. Taruta, K. Sakatsume, Y. Itou, N. Takusagawa, K. Okada et al., Otsuka Influence of titania and zirconia addition on sintering of bimodal size distributed alumina powder mixtures Ceramic Interfaces: properties and applications Charge transfer spectra of metal ions in corundum, Phys. Rev. B, issue.1, pp.367-386, 1970.

D. Iacconi, R. Lapraz, and . Caruba, Traps and emission centres in thermoluminescent ZrO2, Physica Status Solidi (a), vol.57, issue.1, p.275, 1978.
DOI : 10.1002/pssa.2210500133

. Enfin, une partie du mélange ainsi réalisé a été calciné à 1400°C sous O 2 pdt 3 h

T. La-figure-présente-Également-la-courbe-de, un mélange après calcination : l'échantillon « C1 ». On retrouve sur cette courbe les pics B et B', par contre le pic C' disparaît et l'on voit apparaître le pic C

. Si, évolution de ces pics en fonction de la teneur en dioxyde de titane dans les mélanges calcinés (figure du bas), on constate l'augmentation du pic D (150°C) ainsi que la disparition du pic C' (50°C) lequel est défavorisé par l'atmosphère oxydante de calcination. L'intensité du pic C " augmente avec la teneur en titane jusqu'à 1 % massique de titane ajouté

B. Dans-le-cas-des-pics and B. , intensité de la bande d'émission centrée sur 740 nm évolue en fonction de la teneur en dopant comme l'intensité des pics de TL. L'évolution de l'intensité des pics de TL à basse température est donc liée à la présence de l'ion Ti 3+ dans la matrice

. Le-tableau-À-droite-Évoque-la-possibilité, non confirmée) d'une émission à 510 nm dû à un ion Al 3+ en position interstitielle, mais il n'y a aucune raison de créer des défauts de type « interstitiel