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1 Introduction 

 

Ces dernières années, la complexité des puces a augmenté exponentiellement.  La pos-

sibilité d’intégrer plusieurs processeurs sur la même puce représente un gain important, et a 

mène au concept du système multiprocesseur hétérogène sur puce (MP-SoC).  Cet aspect a 

permis d’amplifier de manière significative la puissance de calcule fourni par ce type de 

puce.  Il est même devenu possible d'intégrer des applications complexes sur une seule 

puce, applications qui nécessitent beaucoup de calculs, de communications et de mémoires.  

Dans cette catégorie, on peut trouver les applications de traitement vidéo, comme la 

famille MPEG.  En autre, ces algorithmes ont connu une évolution continue.  Si les pre-

mières applications (ex. MJPEG, MPEG1) contenaient des algorithmes relativement sim-

ples, les nouvelles applications (ex. MPEG4, H264) contiennent des algorithmes com-

plexes.  Le travail présenté dans ce document est concentré sur l'algorithme de l'encodage 

vidéo MPEG4. 

Des architectures MP-SoC complexes doivent être mises en application, afin d'assurer 

les demandes de fonctionnalité de l'encodeur vidéo MPEG4 (ex. codage en temps réel).  

Par la nature de l'algorithme, la fonctionnalité peut être dynamique (ex. la quantité de cal-

culs exigée dépend de la nature de la vidéo d'entrée) et dépendante des paramètres/besoins 

de l'application (ex. résolution vidéo).  De plus, en fonction du domaine d'application visé 

(ex. portables, home-cinema), différentes restrictions algorithmique et architecturales sont 

imposées.  Le concepteur est donc confronté à la tâche difficile de trouver et de mettre en 

application la bonne solution, choisissant dans un grand espace de solutions possible.  Aus-

si, l’implémentation d’algorithme et d'architecture est un processus long et difficile.  Tous 

ces aspects compliquent le processus de conception et de mise en application de l'encodeur 

vidéo MPEG4 sur une architecture MP-SoC, ce qui augmente le délai de mise sur le mar-

ché et diminue considérablement la qualité des résultats.  

Afin d'obtenir un encodeur vidéo MPEG4 sur une architecture MP-SoC, il y a 3 défis 

majeurs que le concepteur doit relever : 
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1) l’implémentation de l'algorithme de l'encodeur vidéo MPEG4 

En raison de la grande complexité de l'algorithme de l'encodeur MPEG4, une quantité 

significative de code doit être écrit. L'application finale de l'encodeur MPEG4 pourrait être 

choisie en fonction des différents domaines d'applications (ex. portables) ou de configura-

tions (ex. résolution vidéo), exigeant tous une fonctionnalité d'algorithme différente.  Par 

ailleurs, en mettant l’algorithme d’encodage MPEG4 dans une architecture multiproces-

seurs, le besoin de différentes fonctionnalités parallèles et «pipelines» pourrait s’imposer.  

Implémenter différents algorithmes d’encodeur MPEG4 pour chacun de ces cas représente 

un effort considérable an temps et en main d’oeuvre.  

2) trouver les configurations correctes d'algorithme et d'architecture 

Afin d'obtenir une architecture MP-SoC efficace contenant l'algorithme de l'encodeur 

MPEG4, le concepteur doit trouver et utiliser les bonnes configurations d'algorithme et 

d'architecture. Pur les deux, il existe un grand nombre de paramètres/configurations à partir 

desquels le concepteur doit choisir les meilleurs. De, les configurations d'algorithme sont 

dépendantes des demandes du client, mais également des configurations choisies pour l'ar-

chitecture.  La même situation sont pour les configurations d'architecture, dont certaines 

dépendent des demandes du client", mais aussi des configurations choisies pour l'algo-

rithme.  

Comme simple exemple, il pourrait être nécessaire d’utiliser en fonction de la résolu-

tion vidéo (paramètre d’algorithme), un nombre et un type spécifiques de processeurs fonc-

tionnant en parallèle (paramètres d'architecture) pour assurer la puissance de calcul requise.  

Ceci impose l’adaptation de l'algorithme pour ce niveau de parallélisme (paramètre d'algo-

rithme), qui pourrait augmenter les demandes de trafic pour l’architecture de communica-

tion (paramètre d'architecture).  Si ce n'est pas possible, le concepteur pourrait être amené à 

diminuer la qualité d'image codée (paramètre d'algorithme).  Cette modification réduira la 

puissance de calcul requise, menant probablement au besoin de réduire le nombre de pro-

cesseurs (paramètres d'architecture), ce qui pourrait exiger de réadapter l'algorithme pour 

un autre niveau de parallélisme (paramètre d'algorithme), et ainsi de suite.  Il est à noter 

que, les bons paramètres d'algorithme sont directement liés aux paramètres d'architecture, 

et vice-versa. C’est pourquoi, toutes les explorations devraient se concentrer sur ces deux 
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aspects (algorithme et architecture) à la fois.  Prise en considération d’un seul de ces as-

pects n'est pas toujours suffisante.  

Ce procédé d'exploration, qui doit être répété plusieurs fois, prend beaucoup de temps.  

Ceci est dû au fait que : 

a) Le concepteur pourrait avoir à implémenter manuellement et re-implémenter plu-

sieurs fois les modèles d'algorithme et d'architecture, en utilisant des configurations 

spécifiques d'un algorithme/architecture choisies dans un grand espace de solutions, 

et vérifier chaque fois si les résultats obtenus arrivent à fournir les résultats 

d’exécutions requis.  Ceci représente un travail difficile et répétitif, et prend beau-

coup des temps.  

b) En grande partie, la simulation des modèles d'algorithme et d'architecture utilisés 

dépend du niveau d'abstraction auquel les modèles d'algorithme et d'architecture 

sont décrits. Au niveau RTL (Register Transfer Level), le temps de simulation est 

très long.  

c) La précision des résultats de simulation dépend également du niveau d'abstraction 

utilisé. Cependant, elle représente une aspect critique quelque soit le niveau 

d’abstraction utilisé, pour rassurer le concepteur au sujet de la qualité de ses résul-

tats et mesures.   

3) implémentation de l'architecture RTL qui contient l'application de l'encodeur MPEG4 

Implémenter manuellement l'architecture MP-SoC pour l'encodeur MPEG4, jusqu'au 

niveau RTL, pourrait nécessiter plusieurs mois de temps de travail.  En raison de la grande 

quantité de détails architecturaux de bas niveau qui doit être prise en considération (ex. les 

interfaces, les signaux, les protocoles, des synchronisations, décodage d'adresses, les arbi-

tres, etc.), et du fait que cette architecture doit "servir" de façon pertinente à la bonne fonc-

tionnalité de l'algorithme. Par exemple, si Tâche1 doit envoyer des données à Tâche2, 

l'architecture doit faire de telle sorte que ceci va fonctionner correctement.  A tout ce temps 

de travail est ajouté le temps nécessaire pour simuler, valider et corriger l'architecture obte-

nue, processus qui pourrait doubler le temps pour obtenir l'architecture finale.  Comme il 



 4 

sera montré dans ce document, le temps total a pris presque 6 mois pour notre expérimen-

tation.  Ainsi, dans le cas où l'architecture et l'algorithme auraient été implémenté à partir 

d'un mauvais choix de configurations, il est possible que le processus entier de développe-

ment doive être recommencé afin d'utiliser une autre configuration.  Ceci augmentera le 

délai de mise sur le marché, et en réalité il pourrait représenter l'échec du projet.  

En outre, le concepteur pourrait devoir implémenter l'application de l'encodeur MPEG4 

sur différents types d'architectures.  Par exemple, il doit implémenter l'algorithme de l'en-

codeur MPEG4 plus l'architecture MP-SoC entière, ou il doit juste implémenter l'encodeur 

MPEG4 sur une architecture MP-SoC déjà existante.  Le concepteur devra donc se familia-

riser avec plusieurs flots de conception spécifiques à chacun de ces cas.  

Les contributions présentées dans ce document sont 3 solutions qui pourraient aider à 

réduire ces 3 problèmes :  

1) Encodeur MPEG4 Parallèle 

Puisque l'encodeur MPEG4 est une application qui nécessite une grande quantité de 

calculs, l’intégration sur des architectures parallèle/pipeline pourrait être nécessaire.  Nous 

devons être capables d’adapter facilement l'algorithme en fonctions des différentes fonc-

tionnalités parallèle/pipeline.  De plus, pour chacune de ces architectures, l'algorithme de-

vrait être facilement adaptable pour différents paramètres algorithmiques (ex. résolution 

vidéo, qualité, précision d'évaluation de mouvement, bitrates, etc.).  

Ce document présente un encodeur MPEG4 flexible, qui peut être facilement adapté 

pour différents types de paramètres d'algorithme, mais également différents niveaux de 

parallélisme/pipeline.   

2) Exploration à haut niveau d'algorithme et d’architecture pour l'encodeur MPEG4 avec 

des paramètres taillés sur mesure  

Pour trouver les configurations optimales d'algorithme et d'architecture, le concepteur 

doit être capable d’examiner et d’explorer rapidement différentes configurations.  Ceci est 

possible si :  
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a) Le concepteur peut automatiquement obtenir les modèles d'algorithme et d'architec-

ture nécessaires à l'exploration de l’espace des solutions. 

b) Le temps nécessaire pour faire les mesures de performance est diminué en faisant 

l'exploration d'architecture à un haut niveau d’abstraction, et pas au niveau RTL, en 

ignorant beaucoup de détails d'architecture de bas niveau.  Ainsi, en ne prenant pas 

en compte tous les détails, les simulations deviennent plus rapides. 

c) La précision d'estimation est assurée en estimant les temps de calculs et les temps de 

communications.  

Ce document propose une méthode d’exploration d'algorithme et d’architecture à haut 

niveau pour l'encodeur MPEG4 avec des paramètres taillés sur mesure, qui pressentent les 

avantages décrits précédemment.  En utilisant cette approche, plusieurs configurations 

d'algorithme et d'architectures peuvent être explorées plus vite qu’avec à une exploration 

faite au niveau RTL.  Aussi, à un haut niveau d’abstraction, en ignorant beaucoup de dé-

tails de bas niveau, la vitesse de simulation, validation et correction est sensiblement aug-

mentée.  

3) Flot commun utilisé pour l'implémentation rapide de l'encodeur MPEG4 sur différents 

types d’architectures 

Quand l'encodeur MPEG4 doit être mis en application dans un MP-SoC, l'architecture 

visée peut être complètement nouvelle, ou déjà existante (habituellement une architecture 

basée sur des processeurs).  Utiliser différents flots d’implémentations pour ces deux cas 

pourrait se révéler inefficace.  Ceci est dû principalement par le besoin de transférer les 

résultats après chaque étape de développement entre des environnements multiples (outils), 

l'incompatibilité entre les outils et les spécifications, les limitations d'outils, etc.  L'obten-

tion du résultat final pourrait demander beaucoup de temps, et pourrait générer une quanti-

té significative d'erreurs.  

Ce document propose un flot commun pour l’implémentation de l’encodeur MPEG4 

sur MP - SoC pour différents types d’architectures.  De plus, parce que plusieurs étapes de 

ce flot sont automatisées, il aide à obtenir les résultats finaux en peu de temps.  En utilisant 
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cette approche, plusieurs architectures MP-SoC complètes au niveau RTL ont été obtenues.  

En outre, en utilisant le même flot, l'encodeur MPEG4 a également été implémenté sur une 

architecture quadri-processeurs déjà existante.  
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2 L’algorithme d’encodage vidéo MPEG4  

 La norme de l'encodeur MPEG4 a été développée par le Motion Picture Experts Group 

autour de 1994.  Depuis, beaucoup de variantes de MPEG4 ont été réalisées, dont les plus 

populaires sont OpenDivX, DivX et XviD.  Entre chacune de ces réalisations, il y a quel-

ques différences en ce qui concerne les précisions de calculs et la qualité d’image compres-

sée.  Cette variation peut exister, parce que les spécifications MPEG4 ne limite pas de fa-

çon stricte les calculs de toutes les étapes dans l’algorithme.  Cette souplesse est une des 

nombreuses raisons pour les quelles le MPEG4 est devenu si populaire. 

Une autre raison pour laquelle le MPEG4 est populaire est sa capacité de compression.  

Les expériences pratiques ont prouvé que tandis que l'encodeur vidéo MPEG2 (utilisé dans 

le DVD) compresse un film de 2 heures dans 4.7Gbytes, le MPEG4 est capable de com-

presser le même film sur un CD-ROM de 700Mbytes.  Il est vrai qu’avec le MPEG2, la 

qualité d’image obtenue est meilleure qu’avec le MPEG4, mai la qualité d’image obtenu 

est acceptable.  Par contre, l’inconvénient de l'encodeur MPEG4 est sa complexité algo-

rithmique.  Comparant l'algorithme du MPEG4 à celui du MPEG2, la complexité du 

MPEG4 est environ 3 fois plus grande que le MPEG2.  Mais, cet inconvénient ne nuit pas 

au succès du MPEG4. 

Le principe sous-jacent est de comprimer seulement les différences spatio-temporelles 

entre les images consécutives.  Ainsi, au lieu de sauvegarder une image complète, l'algo-

rithme sauvegarde seulement les différences entre cette image et l’image précédente.  Ces 

différences sont déterminées en utilisant des algorithmes complexes, et le résultat de l'algo-

rithme est un film fortement comprimé, connu sous le nom de MPEG4 bitstream.  Même le 

facteur de compression peut être modifié basé sur les préférences des utilisateurs, en aug-

mentant ou en diminuant la qualité d'images stockées dans le bitstream.  

Un diagramme simplifié de l'algorithme d'encodage MPEG4 est présenté dans la Figure 

1.  Le but de chaque fonction sera détaillé plus tard dans ce document.  Ces fonctions peu-

vent être distribués en 2 catégories : les fonctions de traitement d'image (groupées dans la 

tâche MainDivX), et les fonctions de compression (groupées dans la tâche VLC).  La tâche 
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MainDivX reçoit l'image courante non compressée, et détermine les différences spatio-

temporelles entre cette image et l'image précédente de la vidéo.  Ces résultats (qui ne sont 

pas encore compressée) sont envoyés à la tâche VLC, qui les comprime, pour obtenir à la 

fin le MPEG4 bitstream final.  La taille du bitstream MPEG4 est habituellement beaucoup 

plus petite que la taille d'image originale en entrée.  

 
quanta

VLC TaskMain DivX Task

Motion 
Estimation

Motion 
Comp.

DCT Quant.

DeQuant.

I

P VLC MPEG4/ISO 
Bitstream

YUV
t

t-1
Prediction/ 

Reconstruct IDCT

 

Figure 1. Diagramme de l’algorithme d’encodage MPEG4 

Par sa nature, l'algorithme d’encodeur MPEG4 est un algorithme séquentiel.  Cepen-

dant, le comportement de chacune de ses fonctions internes dépend fortement de vidéo à 

l’entrée et des paramètres de l'algorithme utilisé.  Dans le cas où la vidéo d'entrée contient 

des images et des séquences complexes (ex. quelqu’un qui court dans la forêt), l'algorithme 

exécutera plus de calculs.  Dans le cas où la vidéo d'entrée contient des images et des sé-

quences simples (ex. une interview devant un mur blanc), l'algorithme exécutera moins de 

calculs.  En réalité, le concepteur ne devrait pas faire ses implémentations basées sur un 

seul type de vidéo d'entrée. L'algorithme MPEG4 devrait être capable de supporter n'im-

porte quels types de vidéo, complexe ou simple.  

Il y a beaucoup de paramètres d'algorithme, proposés par les spécifications ISO de 

MPEG4, avec lesquelles le concepteur a la possibilité d’ajuster les comportement/résultats 

de l'algorithme.  Ces paramètres sont : résolution, frame_rate, bitrate, précision de 

l’estimation de mouvement, surface de recherche de mouvement, images Progressi-

ves/Entrelacées, détection de changement de scène, intervalle de quantification, type de 

quantification, rate_delay, etc.  Chacun de ces paramètres a un impact, plus ou moins im-
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portant, sur les résultats et le comportement d'algorithme.  De plus, en ajustant un de ces 

paramètres, aucune modification de code de l'algorithme ne devrait être exigée. 

Cependant, quand l'algorithme est destiné pour supporter une fonctionnalité paral-

lèle/pipeline (habituellement requise pour des architectures multiprocesseur), le code sé-

quentiel de l'algorithme doit être réécrit pour supporter ce parallélisme/pipeline.  En chan-

geant le niveau de parallélisme/pipeline, il y a un risque que le code doive encore être ré-

écrit pour cette nouvelle exigence.  Pour éviter cela, nous avons adapté l'algorithme origi-

nal MPEG4 séquentiel pour supporter différents niveaux de parallélisme/pipeline en rajou-

tant un paramètre additionnel qui contient le niveau désiré du parallélisme.  En modifiant 

ce paramètre, le code de l'algorithme ne change pas, seulement son comportement. 

Ceci a été possible en découpant les images d'entrée dans des sub-images multiples 

(secteurs), et en exécutant plusieurs instances de la même tâche MainDivX et VLC pour ces 

secteurs (Figure 2).  De plus, pour chacun de ces instances, un comportement pipeline a été 

ajouté.  L'image est fournie par une tâche de test Video, image qui sera découpée en plu-

sieurs secteurs par une tâche Splitter.  Chacun de ces secteurs est traité par une tâche 

MainDivX.  Leurs résultats sont ensuite comprimé par plusieurs tâches VLC, chacune d'el-

les obtenant une "petite partie" du MPEG4.  Enfin, la tâche Combiner reçoit toutes ces "pe-

tites parties", les trie et les enchaîne finalement pour obtenir le MPEG4 bitstream final, 

correspondant à l'image courante.  Après, ce bitstream est envoyé à une autre tâche de test, 

appelée Storage, qui simule le comportement d'un support de stockage (ex. HDD).  

Splitter

MainDivX1

MainDivX2

MainDivX3

MainDivXN

...

VLC1

VLCM

..

.
Combiner

Video Storage

MP-SoC

 
Figure 2. Structure général d’algorithme MPEG4 parallélise/pipeline 
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Ainsi, l'algorithme se comporte comme plusieurs SMP (MainDivX-SMP et VLC-

SMP).  Cependant, il est à noter que, quand l'image est divisée en un seul secteur, l'algo-

rithme se comportera comme l’algorithme séquentiel, ce qui est utile lorsque le concepteur 

ne veut pas utiliser de parallélisme dans l'algorithme. 

Comme résultat, nous avons obtenu un algorithme MPEG4 flexible, qui supporte tous 

les paramètres imposés par les spécifications ISO de MPEG4, en plus de nos paramètres 

additionnels utilisés pour ajuster le comportement de l'algorithme pour différents niveaux 

de parallélisme/pipeline.  Ainsi, l'algorithme peut être facilement adapté et utilisé pour 

l'exploration de différentes architectures MP-SoC contenant différents nombres de proces-

seurs. 
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3 Exploration d’algorithme et d’architecture á un haut niveau d’abstraction 

Implémenter une architecture MP-SoC jusqu'au niveau RTL (ce qui nécessite temps de 

conception très long), à partir d'un ensemble de paramètres mal choisis (ex. nombres/type 

de processeurs, ou topologie de communication), pourrait être onéreux.  N'importe quelle 

modification des paramètres utilisés pourrait nécessiter des modifications complexes d'al-

gorithme et d’architecture, ou dans le pire des cas l’obligation de re-implémenter complè-

tement l'algorithme et l’architecture.  Peu de produits peuvent justifier un tel budget de 

conception, et une solution pour augmenter les performances est de faire l'exploration d'al-

gorithme et d’architecture à un haut niveau d’abstraction, avant l’étape d’implémentation 

de l’architecture RTL. La Figure 3 présente notre flot d’exploration d’algorithme et 

d’architecture à un haut niveau d’abstraction. 

Flexible      
Algorithm/ 

Architecture 
Model for 
MPEG4

Algorithm/Architecture 
Executable Model 

Generation     
(customized algorithm + 

abstract architecture)

Algorithm/  
Architecture 

Configurations

Not OK

RTL Implementation
OK

Change

Performance 
Estimation

 
Figure 3. Exploration d’algorithme et d’architecture a un haut niveau d’abstraction 

Les entrées de ce flot sont un ensemble de paramètres de Configurations d'Algo-

rithme/Architecture (que le concepteur veut explorer) et un Modèle Flexible d'Algo-

rithme/Architecture pour l'Encodeur MPEG4.  En utilisant ce modèle et les configurations 

d'algorithme/architecture, différents Modèles Exécutable Taillés sur Mesure 

d’Algorithme/Architecture peuvent être obtenus.  Chaque fois que les Configurations d'Al-

gorithme/Architecture sont changées, un nouveau Modèle Exécutable Taillé sur Mesure 
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d’Algorithme/Architecture peut être obtenu.  Enfin, ce modèle est utilisé pour des évalua-

tions de performances.  Si les résultats obtenus ne satisfont pas aux exigences du concep-

teur, il doit réadapter les Configurations d'Algorithme/Architecture, et régénérer un nou-

veau Modèle Exécutable Taillé sur Mesure d’Algorithme/Architecture.  Cette itération sera 

répètee jusqu'à ce que le concepteur trouve une solution de Configurations d'Algo-

rithme/Architecture pour laquelle les performances estimées répondent aux exigences.  

Plus tard, ces configurations seront utilisées pour l'implémentation d'architecture RTL.  

Les Configurations d'Algorithme/Architecture (Figure 4) contient un ensemble de pa-

ramètres distribués en 2 catégories : Paramètres d'algorithme et Paramètres d'architecture. 

Paramètres d’algorithme Paramètres d’architecture 
Niveau de Parallélisme/Pipeline Nombre de processeurs 

Résolution vidéo Type de processeurs 
Frame_rate Partitionnement HW/SW  

Bitrate Topologie de communication 
Key_frame Type d’arbitrage 

Précision de l’estimation de mouvement Taille de messages 
Surface de recherche de mouvement Taille de données 

Mode Progressif/Entrelacer Latence de transfert de données 
Détection de changement de scène  Latence d’initialisation de transfert 

Intervalle de quantification Latence de fin de transfert  
... ... 

Figure 4. Configurations d'algorithme et d'architecture à explorer 

Le Modèle Flexible d'Algorithme/Architecture pour MPEG4 (Figure 5) représente un 

modèle template à haut niveau (décrit en utilisant une langage macro) à partir duquel diffé-

rents modèles taillés sur mesure peuvent être obtenus (par une macro génération).  Ce mo-

dèle est constitué de plusieurs modules SystemC, contenant les tâches de l'algorithme 

MPEG4 flexible présenté avant.  Ces tâches communiquent en utilisant un Modèle 

d’Exécution d’Interconnections Abstrait, qui est en charge de la gestion des communica-

tions et les synchronisations entre les tâches.  Tous les détails de bas niveau (ex. OS, Adap-

tateurs, RTL signale, etc.) sont complètement abstraits.  Plus de détails au sujet de ce mo-

dèle sont présentés plus tard dans ce document. 
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Video
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Figure 5. Modèle Flexible Algorithme/Architecture pour l’encodeur MPEG4 

En utilisant ce modèle et les configurations d'algorithme/architecture, différents modè-

les taillés sur mesure peuvent être obtenus.  Un exemple obtenu d'un tel modèle est présen-

té dans la Figure 6.  Dans ce cas, un modèle exécutable a été macro-généré contenant 4 

tâches MainDivX et 2 tâches VLC.  Le code appartenant à chacune des tâches de l'applica-

tion a été adapté basé sur les paramètres d'algorithme choisis (ex. résolution vidéo, bitrate), 

et les aspects architecturaux (ex. types de processeurs, tailles de messages) ont été taillés 

sur mesure basé sur les paramètres d'architecture.  En d'autres termes, ce modèle représente 

un modèle d’algorithme/architecture fixe et déjà taillé sur mesure en tenant compte des 

préférences du concepteur.  

MPIMPI

MPI

MPI

MPI

MPI

MPI

MPI

MPIMPI

MainDivX1

MainDivX2

MainDivX3

VLC1

VLC2

Combiner StorageSplitter

MPI–SystemC HLPPM
MPI

Video

MainDivX4

 
Figure 6. Modèle Exécutable Taillé sur Mesure d’Algorithme/Architecture pour 

l’Encodeur MPEG4 utilisé pour les évaluations de performances 

Afin de faire les évaluations de performances, des annotations de temps seront em-

ployées pour les calculs et communications, des temps qui dépendent fortement des confi-

gurations d'algorithme/architecture utilisées.  Par l'exécution de ce modèle taillé sur mesure 

et annotée avec le temps d’exécution, une estimation de ses performances peut être déter-

minée.  Si ces performances ne répondent pas aux exigences, le concepteur va réadapter les 

Configurations d'Algorithme/Architecture, obtenant un nouveau Modèle Taillé sur Mesure 
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d’Algorithme/Architecture avec les résultats d'évaluation de performances, de ce nouveau 

modèle. 

En utilisant cette approche, différentes configurations des architectures pour l'encodeur 

MPEG4 ont été explorées avec succès en peu de temps, pour différentes résolutions vidéo, 

frame_rates, bitrates, nombre de processeurs, types de processeurs, configurations de 

communication, etc.  Cette exploration s'est avérée sensiblement plus rapide comparée à 

l'exploration au niveau RTL.  Ainsi, les performances estimées à haut niveau se sont avé-

rées assez proches des performances mesurées au niveau RTL, ce qui confirme la possibili-

té d’utiliser cette approche pour nos expériences.  Les points suivants one été réalisés :  

a) La nécessité d'explorer un grand espace de solution a été facilitée en générant auto-

matiquement différents Modèles Exécutable Taillés sur Mesure d'Algorithme/Architecture.  

Ceux-ci peuvent être obtenus à partir d'un Modèle Flexible d'Algorithme/Architecture pour 

MPEG4 unique, qui a fourni la possibilité générer automatiquement l’architecture abstraite 

basée sur un ensemble de Configurations d'Algorithme/Architecture choisies par le concep-

teur. 

b) Une simulation rapide est possible en faisant l'exploration d'architecture à un haut 

niveau d’abstraction.  En ignorant beaucoup de détails d'architecture des bas niveaux dans 

le Modèle Exécutable Taillé sur Mesure d’ Algorithme/Architecture, la simulation devient 

rapid. 

c) Pour satisfaire au besoin de résultats précis d’estimations, on utilise l’Exploration 

d'Algorithme/Architecture a un Haut Niveau d’Abstraction qui fournit des résultats d'esti-

mations avec une précision élevée en termes des temps de calculs et des communications, 

par annotations basés sur les Configurations d'Algorithme/Architecture.  De plus, l'explora-

tion capture les calculs et les communications fonctionnant ensemble, pour estimer les 

exécutions du système entier. 
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4 L’implémentation d’architecture pour l’encodeur MPEG4  

Lorsqu'il implémente l'encodeur MPEG4 dans un MP-SoC, le concepteur a deux 

possibilités : 

a) Il peut implémenter l'architecture MP-SoC complète de l'encodeur. Dans ce cas, le 

concepteur doit implémenter les tâches de l'algorithme MPEG4 ainsi que les détails 

logiciels de plus bas niveau (i.e. OS) qui assurent la fonctionnalité des tâches de plus 

haut niveau sur les processeurs. De plus, il doit implémenter l'architecture MP-SoC 

avec tous les détails matériels de bas niveau (ex. adaptateurs, sous-système de pro-

cesseurs). Les résultats obtenus doivent ensuite être exécutés pour une validation fi-

nale par une approche de co-simulation précise au cycle près. 

b) l'encodeur MPEG4 peut être implémenté sur une architecture déjà existante. Dans ce 

cas, le concepteur doit implémenter seulement les tâches de l'algorithme d'encodage 

MPEG4 ainsi que les détails logiciels de bas niveau. L'implémentation matérielle 

n'est plus nécessaire puisque l'architecture existe déjà. Pour la validation finale, les 

résultats seront exécutés nativement sur l'architecture existante.  

Dans le cadre de notre approche, pour ces deux possibilités, nous pouvons utiliser 

comme entrées les mêmes spécifications d'algorithme et d'architecture. Il s'agit plus exac-

tement de la même Configuration d’Algorithme/Architecture obtenue après la phase d'ex-

ploration algorithme/architecture de haut niveau présentée précédemment, et du même 

Modèle Flexible d’Algorithme/Architecture pour encodeur MPEG4 (Figure 7).  
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Figure 7. Flot proposé pour l’implémentation de l’encodeur MPEG4 sur différentes architectures 

Toute comme dans le cas de l'exploration algorithme/architecture, un modèle taillé sur 

mesure devra être obtenu. La seule différence est, dans ce cas, que le modèle obtenu utili-

sera maintenant un réseau de communication explicite en tant qu'infrastructure d'intercon-

nections, un réseau de communication provenant d'une bibliothèque contenant différents 

types de réseaux de communication. Le modèle obtenu est appelé Modèle Abstrait Taillé 

sur Mesure d'Algorithme/Architecture avec Réseau Explicite. Un exemple de tel modèle 

est présenté à la Figure 8.  
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Figure 8. Modèle Abstrait Taillé sur Mesure d'Algorithme/Arch. avec Réseau Explicite 
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Comme nous pouvons le remarquer, les tâches des applications ont été personnalisées 

et sont prêtes, ainsi que le réseau de communication. Dans Figure 8, nous avons utilisé le 

réseau de communication DMS, qui sera décrit en détail plus loin dans ce document. Les 

seuls objets qui sont encore abstraits sont les interfaces HW/SW et HW/HW qui contien-

nent les détails d'implémentation de bas niveau du logiciel et du matériel. 

Pour obtenir ces détails de bas niveau, nous avons utilisé le flot ROSES développé au 

laboratoire TIMA par le groupe SLS. Ce flot reçoit comme entrée l'architecture abstraite 

mentionnée ci-dessus et utilise plusieurs outils internes afin d'obtenir/raffiner et valider les 

détails de bas niveau logiciels et matériels. Plus de détails au sujet de ce flot seront présen-

tés ultérieurement dans ce document. 

Selon l'architecture ciblée, il est possible d'obtenir deux types de résultats : 

a) Il est possible d'obtenir une architecture MP-SoC complète au niveau RTL et qui 

contient l'algorithme d'encodage MPEG4. Dans ce cas, le flot ROSES est utilisé afin 

d'obtenir tous les détails de bas niveau, HW et SW. Le résultat final, appelé architec-

ture RTL, contient les tâches des l'application avec les détails logiciels de bas niveau 

(i.e. OS, aussi connu sous le nom d'adaptateurs logiciels), ainsi que la totalité de l'ar-

chitecture MP-SoC au niveau RTL qui contient le réseau de communication, adapta-

teurs HW, sous-systèmes CPU (architecture locale du processeurs avec composants 

auxiliaires RTL). La figure 9 illustre une architecture de MP-SoC obtenue au niveau 

RTL qui contient l'encodeur MPEG4.  
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Figure 9. Architecture RTL pour l’encodeur MPEG4 
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Le modèle complet est un modèle exécutable décrit en SystemC et ses performances 

peuvent être mesurées en utilisant une co-simulation classique précise au niveau cy-

cle. Le principal désavantage est que la co-simulation est très lente. Selon nos expé-

riences, il a fallu plus de 4 heures pour co-simuler le processus d'encodage d'une 

seule image du film. L'avantage est qu'il est possible d'analyser le comportement de 

n'importe quel composant de l'architecture.  

b) Si l'encodeur MPEG4 doit être implémenté sur une architecture existante, seules les 

tâches de l'application et les détails logiciels de bas niveau doivent être obtenus. 

Lors de nos expériences, l'architecture existante était une plateforme quadri-

processeurs, contenant 4 processeurs Sparc. Sur une telle architecture, il est suffisant 

de faire une compilation croisée des tâches et des détails logiciels de bas niveau et 

ensuite d'allouer et d'exécuter les fichiers binaires résultants sur la plateforme. Puis-

que l'application est entièrement exécutée nativement, ceci confère comme avantage 

que les mesures de vitesse d'exécution et de performance sont élevées (temps réel). 

Le principal désavantage est la difficulté d'analyser le comportement des compo-

sants matériels. Cependant, ceci n'affecte pas l'analyse du logiciel et les post-

optimisations du logiciel.  
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5 Conclusions 

L'implémentation d'encodeurs vidéo, un encodeur MPEG4 par exemple, dans des MP-

SoC est souvent nécessaire dans de nombreuses applications : télécommunication mobile, 

home cinéma, vidéo surveillance, etc. Etant donné que chacune de ces applications impo-

sent différents algorithmes, contraintes architecturales et besoins, l'implémentation d'enco-

deur MPEG4 dans un MP-SoC doit faire face à de nombreux défis.  

Ce document a présenté une nouvelle approche qui a été utilisée avec succès pour l'im-

plémentation d'un encodeur MPEG4 dans un MP-SoC avec différentes configurations d'al-

gorithmes et d'architectures. Ceci a été possible grâce à notre solution, parce que: 

a) un Algorithme d'Encodeur MPEG4 Flexible a été implémenté avec 2 SMP pour des 

tâches nécessitant beaucoup de calcul. Cet algorithme peut être facilement paramétré 

(ex. résolution, frame-rate, bitrate, précision de l'estimation de mouvement, type de 

quantification, etc.) et aussi parallélisé, en ajustant simplement le niveau de parallé-

lisme dans chacun de SMP. De cette manière, l'algorithme obtenu peut-être facile-

ment configuré pour plusieurs besoins de l'application, mais également pour diffé-

rentes architectures avec un petit ou un grand nombre de processeurs.     

b) une Exploration d’Algorithme/Architecture à un Haut Niveau d’Abstraction avec 

des paramètres taillés sur mesure a été utilisée afin d'explorer rapidement plusieurs 

configurations d'algorithmes/architectures. Ceci nous a permis de trouver les bons 

paramètres satisfaisant aux besoins bien avant l'implémentation de l'architecture 

RTL. En faisant l'exploration à un niveau élevé, beaucoup de détails de l'architecture 

de bas niveau ont été complètement abstraits, rendant la simulation d'autant plus ra-

pide. En outre, les modèles de simulation ont été automatiquement obtenus à partir 

d'un unique Modèle d'Algorithme/Architecture Flexible pour l’Encodeur MPEG4, à 

partir duquel beaucoup de models de simulation à haut niveau peuvent êtres obtenus 

automatiquement en utilisant une approche de macro génération. L'estimation de 

performance a été réalisée en insérant des annotations de temps pour les calculs et 

les communications dans les modèles de simulation résultants. A partir de notre ex-
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périence, la précision de cette approche d'exploration de haut niveau s'est montrée 

suffisamment proche des mesures réelles à bas niveau, ce qui a donc confirmé la 

possibilité d’utiliser notre approche pour cette application.  

c) une approche à base de composants a été utilisée pour l'implémentation de l'enco-

deur MPEG4 aussi bien sur des architectures MP-SoC complètes, que sur des 

architecture existantes. Cette approche est basée sur le flot ROSES, développée dans 

le Groupe SLS du laboratoire TIMA. Le principal objectif de ce flot est de raffiner 

les détails de bas niveaux (interfaces Matériel/Logiciel) qui étaient abstraits lors de 

l'exploration algorithme/architecture de haut niveau. En utilisant le flot présenté 

dans ce document, l'encodeur MPEG4 a été implémenté avec succès dans plusieurs 

architectures MP-SoC au niveau RTL. La même approche a été utilisée pour 

l'implémentation de l'encodeur MPEG4 sur une architecture quadri-processeurs 

existante, pour différentes résolutions, frame-rate, bitrates, etc.  

Basé sur l'approche présentée dans ce document, plusieurs autres applications vidéo ont 

également été implémentées avec succès : encodeur MPEG1, décodeur MPEG1, décodeur 

MPEG2 et décodeur MPEG4. Ceci a été possible en adaptant le Modèle 

d’Algorithme/Architecture Flexible pour MPEG4 pour supporter des paramètres 

supplémentaires de type d'algorithmes et d'encodeur/décodeur. Il est également prévu 

d'étendre cette approche au format H.264. Toutefois, l'extension de cette approche vers 

d'autres domaines d'applications que la vidéo reste un sujet de recherche ouvert pour un 

travail futur. 
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1 Introduction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter is an introduction related to the implementation of the video ap-
plications on multi-processors systems on chip (MP-SoC). It also presents the 
difficulties of integrating the video applications on a single chip, along with 
some related work. Finally, it lists the objectives and the contributions 
brought during this work. 
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1.1 Introduction about the MP-SoC as a solution for the implementa-

tion of video applications on a chip 

During the last years, a revolution took place in the domain of the integrated circuits 

due to the appearance of the Multi-Processor Systems on Chips (MP-SoC). These allowed 

the integration of a larger amount of computational/communicational units into the same 

chip, which allowed the designers to take advantage of a much higher computation power.  

Because of their complexity, today’s applications, like multimedia, gaming, telecom-

munication, etc. require more and more processors to be integrated in the same chip. 90% 

of new ASICs in 130nm technology [ 1 ] already include at least one CPU. Multimedia 

platforms, like Nomadik [ 2 ] and Nexperia [ 3 ], are already multi-processor systems on 

chip using different types of programmable processors. Heterogeneous cores are explored 

to meet the tight performance and cost constraints. This trend of building heterogeneous 

multi-processor systems on chips will even accelerate. Future SoCs will be composed of a 

high number of parallel processors for applications requiring large computations. The de-

sign of SoCs will consists of an assembly of processors executing concurrent tasks. It is 

easy to imagine that the design of a SoC with more then a hundred of processors will be-

come a current practice in few years (e.g. with 65nm technology in 2007). Compared with 

the conventional ASIC design, such a multi-processor SoC is a fundamental change in chip 

design.  

Designing such chips requires a large amount of flexibility, in order to assure fast de-

sign, reusability and verification. These can be achieved the using embedded software ap-

proach. Like mentioned in [ 4 ], “chip designers can no longer live by silicon alone. SoC 

makers must also provide embedded software, which is a major competitive component. 

Hardware will become more and more of a commodity, and the key differentiation is in the 

software. The need to focus on software comes at a time when semiconductor growth is 

slowing.” 

According to Daya Nadamuni, research vice president at Gartner’s semiconductor and 

design research group, “beyond hardware, a SoC also needs a hardware-software binding 

layer, an RTOS, middleware and applications. Traditional design automation tools look 
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only at the hardware layer. But electronic system-level (ESL) tools address hardware and 

software with an “integrated view” in which the SoC is treated as a system.” [ 4 ]    

1.2 Motivations 

The MPEG4 video encoder can be found in many application domains, like home-

cinema, mobile telecommunications, net-meetings, video surveillance, etc. The “inconven-

ience” is that each of these applications requires different functional configurations, archi-

tectural constraints, clock frequency, etc. Figure 1 shows some numbers related to the re-

quirements specific for each application.  

Application Resolution Framerate 
(fps) 

Bitrate 
(Kbs) 

Allowed clock   
frequency 

Power 
source 

Home-cinema 720x480 
1920x1072 25-100 10Mbs > 1 GHz AC 

Mobile telecom. 176x144 
352x288 15-30 256-720 < 100 MHz DC 

Video conference 352x288 
640x480 10-30 256-512 < 3 GHz AC 

Home Video Re-
cording  

352x288     
1024x768 24-30 optional < 100MHz 

< 3GHz 
DC 
AC 

Video Surveil-
lance 

640x480 
1920x1072 1-25 2Mbs < 300 MHz AC/DC 

Figure 1. Different requirements for different applications 

For example, during the implementation of the MPEG4 video encoder for the Home-

cinema applications, the designer should not be concerned about the allowed clock fre-

quency and power consumption. The main target should be the high resolution and 

frame_rate of the movie. This is not true in case of mobile telecommunication applications. 

In these cases, the power consumption and maximum allowed clock frequency are restric-

tive aspects, whereas the targeted video resolution is much smaller.  

Another aspect that has to be taken into account when implementing the MPEG4 en-

coder application is the Real-Time (RT) functionality. Depending on the application, the 

RT functionality may be required, or may NOT be required. For example, in mobile tele-

communications, the RT is required. However, in case of encoding a movie for later use, 
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the RT is not necessary. Additionally, for all these applications, many variations of video 

algorithms can be used, like H264, MPEG4, MPEG2, MPEG1 etc.  

In order to obtain an MPEG4 video encoder on MP-SoC, there are 3 difficult chal-

lenges that the designer has to face:  

1) building the MPEG4 encoder algorithm and architecture specifications for different ap-

plications  

The MPEG4 encoder algorithm and architecture specifications are highly complex, for 

which a significant amount of code has to be written. The final MPEG4 encoder can be 

targeted for different application domains (i.e. mobile phone) or configurations (i.e. video 

resolution), all these requiring a different algorithm functionality.  

Additionally, each application domain requires different multi-processors architectures. 

For each of these architectures, the MPEG4 encoder algorithm has to be adapted for spe-

cific computation distributions on multiple processors, using different parallel and pipe-

lined execution schemes. For example, for the mobile-phone applications, the MPEG4 en-

coder may have to execute approximately 300MIPS (Million Instructions Per Second) for 

QCIF (176x144) video resolution. Taking into account that for mobile phones the system 

cannot work at more than 100MHz (application restriction), the computations has to be 

distributed on multiple processors by using parallel and pipeline execution schemes.  

Implementing manually different MPEG4 encoder algorithms and architecture specifi-

cations for each of the targeted applications requires a large amount of work.  

2) using the correct algorithm and architecture configurations to reduce the design cost 

For every application (i.e. mobile-telecom, home-cinema), the designer has to find and 

use the right algorithm and architecture configurations to obtain an efficient MP-SoC ar-

chitecture for the MPEG4 encoder algorithm. For both, algorithm and architecture, there is 

a large number of parameters/configurations from which the designer has to select the right 

one. Using wrong algorithm and architecture configurations may lead to an inefficient 

chip, failure that might turn out to be very costly.   
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The algorithm configurations are dependent on the “client” requests, but also on the 

chosen architecture configurations. Architecture configurations are also dependent on the 

“client” requests and the chosen algorithm configurations.  

For example, let us consider a mobile telecom application that requires a real-time 

MPEG4 encoder capable of encoding a 352x288 video resolution (algorithm parameter) 

using a system running at 80MHz (architecture parameter). To cope with the computation 

requirements, it is necessary to use a specific number and types of processors running in 

parallel (architecture parameter). Thus, the MPEG4 encoder algorithm has to be adapted 

for this parallelism level (algorithm parameter). The parallelism may increase the architec-

ture communication requirements (architecture parameter). However, in case these com-

munication requirements are unacceptable for this mobile telecom application, the designer 

may need to decrease the used parallelism level by reducing the number of processors run-

ning in parallel (architecture parameter). Such a modification imposes the need of readapt-

ing the MPEG4 encoder algorithm for the new parallelism level (algorithm parameter), and 

so on. Thus, it can be noticed that, it is not easy to find the correct algorithm and architec-

ture parameters. Implementing a chip for each configuration, until finding the correct one, 

is a very costly approach.   

3) implementing the architecture for the MPEG4 encoder application in a short time  

Manually implementing the MP-SoC architecture for MPEG4 encoder, or mapping the 

MPEG4 encoder algorithm on already existing architecture platforms, requires a long de-

sign time. The reason is the large amount of low-level architectural details that has to be 

manipulated (i.e. interfaces, signals, protocols, synchronizations, addresses decoding, arbi-

ters, etc.). In addition, this architecture has to “serve” correctly the algorithm functionality 

(i.e. if Task1 needs to send data to Task2, the architecture has to assure that this happens 

correctly). To this work time, is added the time required to simulate, validate and debug the 

obtained results, process that (from our experiences) might double the design time.  

Additionally, the designer may need to implement the MPEG4 encoder application on 

different types of architectures. For example, he has to implement the MPEG4 encoder 

algorithm plus a complete new MP-SoC architecture, or he has to implement the MPEG4 

encoder on an already existing MP-SoC architecture. As a result, the designer will be 
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forced to become familiar with multiple design flows, specific for each of these cases. 

Learning all these flows requires time.  

1.3 Objectives 

To cope with these problems, the objectives of our work are: 

1) Increase the number of potential applications, by using a common MPEG4 encoder 

specification. This will avoid rewriting the MPEG4 algorithm and architecture 

specifications for different targeted applications requiring different performances 

and computation distributions. The resulted MPEG4 specifications should be easy to 

adapt for different functionalities requiring different performances constraints. In 

addition, these specifications should be easy to adapt to support different levels of 

parallelism, required for mapping the algorithm on MP-SoC using different number 

of CPUs.  

2) Reduce the design cost by finding the correct algorithm and architecture configura-

tions before starting to implement the MPEG4 encoder on MP-SoC. This is done by 

exploring a large amount of solutions at a high-level, before the architecture imple-

mentation.  

3) Reduce the design time by being capable of implementing the MPEG4 encoder on 

different types of architectures in a short time, using the same flow. This flow 

should be automated, to shorten the design time. The resulting architectures have to 

be either a completely new one, or an already existing architecture.  

1.4 State of the art 

There are multiple chips implementations containing video applications. Depending on 

the targeted architectures, these implementations can be categorized into 3 approaches: 

1) implementations using HW approach: 

The implementations using HW approach consists of designing specific HW compo-

nents containing a specific algorithm. Such implementations can be found in [ 18 ] and [ 49 
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]. The implementation from [ 18 ] supports MPEG4 and MPEG2 encoders/decoders for 

CIF video resolution running at 25 frames/sec. The implementation from [ 49 ] supports 

H.264 encoder/decoder for 1024x720 video resolution at 30 frames/sec.  

The target applications are the mobile telecommunication and video conferences for [ 

18 ] and home-cinema for [ 49 ]. The advantages of these implementations are high per-

formance and low-power consumption. Their main disadvantage is that they are not suit-

able for applications that should support different algorithm parameters. For example, in 

case of home video recording applications (i.e. video camera), the user may want to choose 

a different compression quality, video resolution, frame_rate, bitrate, etc., based on his 

preferences. Since in the implementations from [ 18 ] and [ 49 ], most of these parameters 

are hardwired into the chip, they do not provide many manipulation options. These imple-

mentations are application specific, and they cannot be adapted for other applications. 

The design cost of these implementations is high, since any exploration for algorithm 

and architecture configurations can be done only after the implementation phase. Thus, in 

case the algorithm and architecture parameters prove to be wrong, the implementation 

phase has to be started all over again.  

The design time is high since the entire algorithm and architecture has to be imple-

mented using low-level description languages by manipulating a large amount of fine HW 

details. Additionally, the simulation, validation and debug phases require a fastidious and 

long work time.  

2) implementations using SW approach 

The implementations using SW approach consist of mapping the entire algorithm on 

architectures containing one or more CPUs. The instructions from the algorithm will be 

interpreted and executed by these CPUs. Such implementations can found in [ 17 ] and [ 50 

]. The implementation from [ 17 ] contains an MPEG4 encoder specially developed to en-

code a movie at CIF (352x288) video resolution at a frame_rate of 30 frames/sec. The im-

plementation from [ 50 ] contains an H.264/AVC encoder (no specifications are made 

about the supported video resolution and frame_rate). 
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 The targeted applications are the video conferences for [ 17 ] and mobile telecommu-

nication for [ 50 ]. The advantage of these implementations is the easiness of designing and 

modifying the algorithm. Their main disadvantages are the low performances and high 

power consumption. Thus, the implementations from [ 17 ] and [ 50 ] cannot be targeted 

for applications requiring a large amount of computations, like home-cinema. Additionally, 

since in [ 17 ] the MPEG4 encoder algorithm was specifically implemented for a CIF video 

resolution at a frame_rate of 30 frames/sec., the algorithm may have to be modified if other 

configurations are required (i.e. other video resolution).  

The design cost of these implementations is significantly lower than the implementa-

tions using a HW approach. This is due to the fact that multiple algorithm configurations 

can be explored without having to implement the architecture. Additionally, even after the 

architecture is implemented, the algorithm can be sometimes modified and remapped on 

the architecture, without having to modify the architecture. However, in the implementa-

tions from [ 17 ] and [ 50 ], the used algorithms do not allow to change the number of 

CPUs from the architecture.   

The design time of these implementations is significantly smaller than the design time 

required for the implementations using the HW approach. The implementation consists 

mainly of SW mapping on the processors. Since the algorithm is implemented in SW, 

fewer HW details will have to be implemented. However, such implementations require 

the use of mixed HW and SW tools.   

3) implementations using mixed HW/SW approach (a.k.a. ASIP approach) 

The implementations using mixed HW/SW approach consist of mapping just a part of 

the algorithm on CPUs, and the other part is integrated in HW. Usually, on HW are inte-

grated the algorithm’s computational intensive functions. On CPUs are mapped the func-

tions which do not require intensive computations, like control functions. Such implemen-

tations can be found in [ 19 ] and [ 51 ]. The implementation from [ 19 ] contains an 

MPEG4 encoder for VGA (640x480) at 25 frames/sec, on an architecture containing 4 

ARM9 processors at 200MHz, and a shared HW accelerator. The implementation from [ 

51 ] contains a H.264/AVC decoder for 1440x1080 interlaced video resolution running on 

a specific processor running at 90MHz.    
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The targeted applications are video surveillance and video conferences for [ 19 ] and 

home-cinema for [ 51 ]. The advantages of these implementations are the medium per-

formances and medium power consumption. Additionally, since a part of the algorithm is 

implemented in CPUs, this part is easy to design and modify. However, their disadvantage 

is the need of implementing the algorithm’s computational intensive functions in HW, 

which is reducing the configurability of these functions for different parameters. This 

means that is difficult to use these implementations for applications that require manipulat-

ing a large amount of parameters, like the home video recording applications.   

The design cost is somewhere between the design cost required for HW approach and 

design cost required for SW approach. The higher the amount of functions is implemented 

in HW, the higher the design cost is. In addition, exploring different algorithm and archi-

tecture configurations may turn out to be very costly when many functions from the algo-

rithm are implemented in HW. 

The design time is also between the design time required for HW approach and the de-

sign time required for SW approach. The higher the amount of functions is implemented in 

HW, the higher the design time is. In addition, the time required for simulation, validation 

and debug depends on the amount of functions implemented in HW. However, such 

implementations require the use of mixed HW and SW tools. 

  

In all these 3 approaches, the presented implementations have some common points: 

1) The number of applications that can be targeted is limited. One of the reasons is that 

the MPEG4 algorithm is designed and configured for the targeted application and 

used architecture. When targeting another application or architecture, the algorithm 

will have to be modified.  

2) The design cost depends on the amount of low-level architecture details that has to 

be implemented until measuring some performances becomes possible. These meas-

ured performances help to find the correct algorithm and architecture configurations. 

If these measurements are done after completely implementing the low-level archi-

tecture, any change into the algorithm and architecture configurations becomes a 
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costly decision. Additionally, based on the requirements of the targeted application, 

different algorithms and architecture configurations are needed.  

3) The design time depends on the amount of low-level architecture details which has 

to be implemented and the amount of algorithm mapped into CPUs. In addition, this 

design time depends on the speed of simulation, validation and debugging.  

1.5 Contributions 

1.5.1 Flexible modeling style to describe the algorithm and architecture specifica-

tions for MPEG4 encoder 

To be able to target multiple applications, we propose a MPEG4 encoder algorithm that 

can be used for multiple applications. This algorithm can be configured for different algo-

rithm parameters required by the target application (i.e. video resolution, compression 

quality, bitrate, frame_rate, etc). Additionally, this algorithm can be configured for differ-

ent multiprocessor architectures required by the targeted application. This is done thanks to 

the use of computation distribution techniques, using parallel/pipeline execution schemes.   

As contribution, this document is presenting a flexible modeling style to describe the 

algorithm and architecture specifications for MPEG4 encoder. Starting from a unique 

MPEG4 algorithm/architecture representation, we can obtain automatically different algo-

rithm/architecture models for MPEG4, for different algorithm/architecture parameters and 

parallel/pipeline execution schemes. This contribution will be detailed in chapter 3. 

1.5.2 High-Level algorithm/architecture exploration for MPEG4 encoder with cus-

tom parameters 

To reduce the design cost, we propose to find the correct algorithm and architecture be-

fore starting the architecture implementation. This is done using a High-Level algo-

rithm/architecture exploration. The key benefits of this approach are:  
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a) The designer can automatically obtain the algorithm and architecture models re-

quired to achieve the exploration, thanks to the flexible modeling style used to ob-

tain the required algorithm and architecture specifications. 

b) Measuring the performances at a high-level, and not at a low-level, is done much 

faster, since many low-level architecture details are abstracted. This allows the de-

signer to test many algorithm and architecture configurations, in a short time. 

c) The precision of the measurements done at a high-level is assured by precisely esti-

mating the computation times and communication times running together.  

The contribution is a high-level algorithm/architecture exploration method for MPEG4 

encoder with custom parameters, which is covering the previously presented advantages. 

Using this approach, multiple algorithm and architecture configuration solutions can be 

explored in a much shorter time compared to the exploration done at a low-level. This will 

avoid implementing a costly MP-SoC architecture for MPEG4 encoder with wrong algo-

rithm and architecture configurations. As a result, the design cost is decreased. This contri-

bution will be detailed in chapter 4.  

1.5.3 Common flow used for the implementation of MPEG4 encoder on different 

targeted architectures 

To reduce the design time, we propose a method to obtain in a short time the low-level 

MP-SoC architecture for MPEG4 encoder. This is done thanks to a component based de-

sign technology. The benefits are the possibility to obtain automatically the low-level SW 

and HW details for the MP-SoC architecture for MPEG4 encoder. The validation and de-

bug speed is increased by allowing the simulations at different abstraction levels.  

The contribution is a common flow used for the implementation of MPEG4 encoder on 

different targeted architectures, required for multiple applications. Using this flow, a com-

plete MP-SoC architecture for MPEG4 encoder was implemented. Additionally, using this 

same flow, the MPEG4 encoder was implemented on existing quadric-processors architec-

ture. The design time required to obtain different MPEG4 encoder architectures was 

drastically reduced.  
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1.6 Document outline 

The rest of the document is organized as follows. Chapter 2 presents in detail the 

MPEG4 video encoder algorithm. Chapter 3 addresses the adaptation of MPEG4 encoder 

for parallelism/pipeline support along with the flexible modeling style used to describe the 

algorithm and architecture specifications. Chapter 4 describes the high-level algo-

rithm/architecture exploration for MPEG4 encoder with custom parameters, and some ex-

ploration results. Chapter 5 details the flow used for implementing the MPEG4 video en-

coder on a completely new architecture and on the existing quadric-processors architecture, 

along with some implementation and performance results. Finally, some conclusions are 

presented in chapter 6.   
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2 MPEG4 video encoder algorithm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter presents the MPEG4 encoder algorithm. The algorithm receives 
as input an uncompressed movie. The algorithm is in charge of compressing 
this movie, and the output is an MPEG4 bitstream containing the compressed 
movie with lower image quality. The MPEG4 video encoder algorithm com-
presses the movie frame by frame. Each frame is compressed in two possible 
ways: either as I frame, either as P frame. For an I frame, the algorithm com-
presses the entire original frame. For a P frame, the algorithm compresses 
only the spatio-differences between this frame and the previous frame. The 
MPEG4 video encoder algorithm can be configured using different parame-
ters: video resolution, frame_rate, bitrate, quality, etc. These have a direct im-
pact on the algorithm’s computations requirements. 
 
 



 14 

2.1 Introducing the MPEG4 video encoder  

2.1.1 MPEG4 video encoder as new solution to MPEG2 video encoder  

Video compression has become an essential component of home entertainment video 

and Internet streaming video. The success of these ones boosted upon the arrival of 

MPEG2 video encoding standard. This standard proved its effectiveness, but after almost 

15 years of existence, and almost 10 years of use, it becomes obsolete. It is clear that the 

time is right to replace the MPEG2 video encoding with a more effective and efficient 

technology, that can take advantage of the recent progress in processing power [ 5 ].  

In the last years, there was an assiduous debate which technology should replace the 

MPEG2. There is no doubt that the winner is the MPEG4 video encoder standard, and re-

cently also the H264 video encoder standard, too. However, the H264 video encoder stan-

dard is just at its early stages of development, while the MPEG4 video encoder standard is 

already a mature solution [ 5 ]. 

The MPEG4 video encoder standard was developed by the Motion Picture Experts 

Group, and it was standardized around 1994 [ 6 ][ 7 ]. Only in the last approximately 6-7 

years it started to be implemented. Since then, many MPEG4 implementations were done, 

from which the most popular are OpenDivX[ 8 ], DivX[ 9 ] and XviD[ 10 ]. Between each 

of these, there are some differences, mainly in the computations precisions and the com-

pressed frame quality. This variation can exist, because the MPEG4 specifications are not 

restricting severely the computations inside all the steps required by the compression. The 

main restrictions are related to the steps that have to be followed, and the syntax of the 

output (compressed movie). This “non-strictness” is one of the many reasons why the 

MPEG4 becomes so popular. 

Another reason why the MPEG4 is so popular is its compression capability. Practical 

experiments showed that while the MPEG2 video encoder is compressing a 2 hour movie 

on a 4.7Gbytes DVD, the MPEG4 is capable of compressing the same movie on a 

700Mbytes CD-ROM. It is true, that using MPEG2, the resulted frame quality may be bet-

ter, still with MPEG4 the resulted frame quality is still acceptably high [ 5 ].  
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However, a disadvantage of the MPEG4 encoder, compared with the MPEG2 encoder, 

is its algorithmic complexity. Comparing the algorithm used by MPEG4 with the one used 

by MPEG2, the algorithm of the MPEG4 is about 3 times bigger than the MPEG2. How-

ever, this disadvantage is not penalizing enough to break the success of the MPEG4 [ 5 ]. 

2.1.2 Usual method of using the MPEG4 video encoder 

The MPEG4 video encoder receives an uncompressed movie, encodes it and obtains a 

compressed bitstream (Figure 2).  

MPEG4 
encoder

frame tframe t+1frame t+2frame t+3

MPEG4 
bitstreamUncompressed movie

 
Figure 2. Using the MPEG4 video encoder 

The difference between the MPEG4 video encoder and the other video encoding stan-

dards are the algorithm used to compress the movie, and the syntactic format of the re-

sulted bitstream. These will be detailed later in this document.  

Yet, the MPEG4 video encoder uses the same syntactic format for the input movie, as 

the other video encoders. The input movie is in uncompressed format, as a continuous 

stream of pixels. In this work, the format used by the uncompressed movie is called 

YUV411 [ 48] where the pixels streaming order is line by line from top to bottom, and 

each line is filled from left to right. The stream bandwidth depends on the number of 

frames per second, and frame size.  

2.1.3 Describing the YUV411 video format used as input by the MPEG4 video 

encoder 

The YUV411 is a video format used for video encoders, including the MPEG4. It was 

developed first for the TV video signal broadcast, in order to assure the signal compatibil-
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ity between the new color TVs, and the old black&white TVs [ 5 ]. Visually, the frames 

using YUV411 format (Figure 3) are different from the usual frames using RGB format.  

YY

UU VV

 
Figure 3. Color frame represented in YUV411 format 

In RGB format, each pixel is represented using 3 color values: Red, Green and Blue. 

This means that the size required to store an RGB frame is 3 times bigger than the number 

of pixels from the frame.  

In case of YUV411, each pixel is represented using 3 color values: Luminance, U and 

V. The last two are also known as Chroma Blue (Cb) respectively Chroma Red (Cr). The 

Luminance values are forming exactly the black&white frame. The U and V are values that 

are “adding” the colors. In the YUV411 format, there are 4 times less numbers of U and V 

values than the number of Luminance values (Figure 3). Each 4 pixels are represented us-

ing 4 Luminance values, 1 U value and 1 V value [ 5 ]. Therefore, unlike RGB format, the 

size required to store a YUV411 frame is only 1.5 times bigger than the number of pixels 

from the frame. A common method to stream a frame in YUV411 format is to transmit all 

the Luminance values first, then all the U values, and then the V values.  

In order to assure the conversion possibility from a frame in RGB format to YUV411 

format, and vice-versa, mathematical transformations are used [ 11 ]. These are presented 

in Figure 4, and are applied for each pixel from the frame.    

Y        =  0.299*R + 0.587*G + 0.114*B

U =Cb=  0.564*(B-Y) 

V =Cr =  0.713*(R-Y)  
R = Y + 1.402*V 

G = Y – 0.344*U – 0.714*V 

B = Y + 1.772*U  
Figure 4. Conversion equation from RGB to YUV and vice-versa 
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The reason why the MPEG4 video encoder uses the frame in YUV411 format, and not 

RGB format, is that in YUV411 format, the objects in the frame (stored in the Luminance 

values) are clearly separated from the colors in the frame (stored in the chromas values). 

Moreover, the MPEG4 video encoder algorithm treats differently these two elements, as it 

will be shown later in this document. However, this is not possible using the RGB format.  

2.1.4 Presenting the structure of the MPEG4 video encoder algorithm 

The video compression using MPEG4 algorithm is done by saving only the spatio-

temporal differences between consecutive frames: the current one, and the previous one. 

These differences are then compressed and stored into a well-defined (and strict) stream 

format, called MPEG4 bitstream. This bitstream will be used as input during the video de-

coding process. A simplified block diagram of the MPEG4 video encoder is presented in 

Figure 5. 
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YUV411

YUV411

Bitrate
controller

 
Figure 5. Simplified block diagram of the MPEG4 video encoder 

It is important to mention that every time when encoding the current frame, the previ-

ous frame used by the MPEG4 video encoder to determine the spatio-temporal differences, 

is not the original one, but the decoded one. To obtain this frame, the algorithm first en-

codes the frame, and then it has to decode it, to be used later when encoding the following 

frame. The reason is the following: the MPEG4 decoder will never know the previous 

original frame, but only the previous decoded frame. When the MPEG4 decoder will de-
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compress the current frame (which initially contains only differences), it will “add” it to 

this decoded previous frame, in order to obtain the final current decoded frame.  

If the MPEG4 encoder would compute these differences relative to the previous origi-

nal frame (perfect quality), and not the previous decoded frame (lower quality), these dif-

ferences are not “capturing” the quality degradation of the decoded previous frame. If the 

MPEG4 decoder would “add’ these incomplete differences to its previous decoded frame, 

it will result in a continuous increase of quality degradation after decoding each frame.   

Nevertheless, if the MPEG4 encoder computes these differences relative to the previ-

ous decoded frame, and not the previous original frame, these differences will “capture” 

also the quality degradation of the previous decoded frame. By “adding” these complete 

differences to the previous decoded frame, the MPEG4 decoder will arrive also at restoring 

the quality of the previous decoded frame, and at obtaining the new decoded frame.  

In conclusion, by using the previous decoded frame during the MPEG4 encoding, and 

not the previous original frame, the MPEG4 encoder will compute the differences in such a 

way that the MPEG4 decoder will be able to keep the movie‘s quality degradation to a 

constant level. Otherwise, this level would increase exponentially. This is why, the 

MPEG4 encoder has to encode the current frame, but also to decode it. This way, the 

MPEG4 encoder knows what the decoded frame will look like when decoding the movie 

by the MPEG4 decoder.     

In order to compress the movie, the MPEG4 video encoder algorithm distributes the 

frames into two categories. For each category, the MPEG4 video encoder will compress 

the frames using different encoding principles.  

2.1.5 Different types of encoding principles used for the video’s frames 

The MPEG4 video encoder treats the frames as I (Integral frame, a.k.a Intra) or as P 

(Partial frame, a.k.a Inter). The frames encoded as I, are encoded as “new” frames, without 

taking into the consideration the previous frame. The frames encoded as P will be treated 

taking into account the information existing in the previous frame.  
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The first frame from the movie is encoded all the time as I (because there is no previ-

ous frame to be taken into account). During the movie, several other frames can be en-

coded as I. The frames existing between two I frames will be encoded as P (Figure 6). The 

interval between two I frames is called key_frames. In case the key_frames value is 100, 

that means that an I frame will be used every 100 frames, the remaining 99 frames between 

these two I frames will be treated as P. 

.   .   .   .   .   .   .
IP P
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Bitstream 
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encoding
Frame 1 
original

Frame 2 
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Frame 3 
original

Frame 4 
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Frame N 
original

Frame N+1 
original

...

 
Figure 6. Representing the different types of encoding principles for the video frames 

Taking into account that the compressed size of the I frames is generally bigger than 

the compressed size of the P frames (exceptions may occur), by using too many I frames 

during a movie will lead to decreased compression efficiency, and worse compressed 

frame quality. However, using many I frames will improve the speed of seeking into the 

compressed movie (by the decoder). The advantage of using I frames, is the increased tol-

erance to possible errors that might appear in the bitstream, because of multiple factors: 

error in the bitstream construction, transmission, storage, etc. 

Theoretically, it is possible to use during a movie only one I frame at the beginning, 

and the rest of the movie’s frames to be encoded as P. This is a risky solution, because it 

eliminates the seek feature. Additionally, in case the bitstream is deteriorated during the 

movie, the remaining movie sequence will be completely compromised.    

The specifications of the MPEG4 video encoder mention nothing regarding a ‘recom-

mended” value for the key_frame. This aspect is completely left to the decision of the hu-

man factor. However, the algorithm is capable of forcing a frame to be compressed as I, 

even if it was supposed to be compressed as P. This happens when the current frame is too 

different from the previous frame, in which case compressing the frame as P will lead to 

worse compression ratio compared with the case of treating this frame as I. This feature is 
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called “scene change detection” [ 5 ]. Additionally, this can also be applied for a region of 

the frame only, as will be shown later in the document.  

2.2 Describing the encoding principle for an I frame 

2.2.1 Introducing the concept of encoding an I frame 

In order to encode an I frame, the MPEG4 video encoder partitions the frame into small 

areas of 16x16 pixels, called MacroBlocks. In addition, each of these MacroBlocks is parti-

tioned into 4 small areas of 8x8 pixels called MicroBlocks (Figure 7).  

16 pixels16 pixels

16 pixels16 pixels

8 pixels8 pixels

8 pixels8 pixels

Frame MacroBlock MicroBlock  
Figure 7. Frame partitioning into MacroBlocks and MicroBlocks 

Since, as previously mentioned, the frame is formed by three colors (Y, U and V), each 

of the frame’s MacroBlocks is formed from 6 MicroBlocks: 4 for Y, 1 for U and 1 for V. 

This is because the U and V frames are not partitioned into MacroBlocks, but only in 

MicroBlocks (Figure 8).  

Y U V
 

Figure 8. MicroBlock partitioning for Y, U and V colours 

2.2.2 Representation of the algorithm and functions used for encoding an I frame 

In case of the I frame, the MPEG4 video encoder will treat each of these MacroBlocks, 

and its MicroBlocks, in a progressive order, starting with the MacroBlocks on the first line, 
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from left to right, then the second line, and so on. Figure 9 shows the functions used to 

encode a MacroBlock for an I frame. 
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Quantized MacroBlock for Y (4 MicroBlocks)

2 Quantized MicroBlocks for U and V

 
Figure 9. Algorithm and functions responsible for encoding an I frame 

For each of the MacroBlocks, the MPEG4 video encoder will first transform frame 

values into frequency values using FDCT (Fast Discrete Cosine Transformation) transfor-

mation. After that, it will Quantize these values in order to loose an amount of quality. The 

following steps are used to decode the MacroBlock. The quantized values are DeQuantized 

in order to restore them close to the original values (before Quantization), and then retrans-

form them into frame values using IDCT function. In the end, the quantized values are 

executed by the IntraPrediction function, in order to determine “fading” (AC coefficients) 

in the MacroBlock. The result will be this “fading” and the quantized MacroBlock from 

which the “fading” was subtracted (Predicted MacroBlock). These two elements will be 

sent to the VLC (Variable Length Compression), which will b compress them.  

2.2.3 Describing the Fast Discrete Cosine Transformation (FDCT)     

By using the FDCT, the frame values stored into a MacroBlock will be transformed 

into frequency values. The FDCT is applied separately for each of the 6 MicroBlocks 

forming the MacroBlock. Since the size of the MicroBlock is 8x8 pixels, the FDCT will be 

an 8x8 transformation. Figure 10 presents an example of DCT values obtained from an 8x8 

MicroBlock, and its actual purpose is described in detail in [ 5 ].  
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Figure 10. Obtaining from the original 8x8 MicroBlock the DCT values 

The obtained DCT value from the [0,0] position belongs to the lowest frequency of the 

frame, while the value from the [7,7] belongs to the highest frequency. Just like sounds, 

every frame can be composed from a multitude of frequencies with different amplitudes. 

The values obtained after the FDCT are these amplitudes, associated to each frequency.  

In order to achieve these transformations, the equations presented in Figure 11 are 

used. The Xij are the pixels belonging to the original frame, and the Yxy are the obtained 

DCT values. The value of the N is 8.  

, N
C yx

1
, =

 

Figure 11. FDCT transformation equation 

 As it can be noticed, this equation requires cosine operations, which leads to float-

ing point operations. However, because the parameters used by them are well known, there 

are existing methods using fixed point operations, from which one of the most popular is 

Lee’s algorithm [ 12 ].    
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2.2.4 Describing the Quantization function 

Using the transformed MacroBlock after the FDCT function, the next step is to quan-

tize these values. Just like the FDCT function, the quantization is done for each Micro-

Block from the current MacroBlock, and it is the main source of the quality degradation 

caused by the MPEG4 video encoder. The quantization is done by removing a specific 

number of bits from all the 8x8 DCT values. The number of bits that has to be removed is 

called quanta. This quanta can vary from frame to frame, but it is unique during the quan-

tization of the MacroBlocks from the same frame.  

1150 39 -43 -10 26 -83 11 41
-81 -3 115 -73 -6 -2 22 -5
14 -11 1 -42 26 -3 17 -38
2 -61 -13 -12 36 -23 -18 5

44 13 37 -4 10 -21 7 -8
36 -11 -9 -4 20 -28 -21 14

-19 -7 21 -6 3 3 12 -21
-5 -13 -11 -17 -4 -1 7 -4

144 5 -5 -1 3 -10 1 5
-10 0 14 -9 -1 0 3 -1

2 -1 0 -5 3 0 2 -5
0 -8 -2 -2 5 -3 -2 1
6 2 5 -1 1 -3 1 -1
5 -1 -1 -1 3 -4 -3 2

-2 -1 3 -1 0 0 2 -3
-1 -2 -1 -2 -1 0 1 -1

Quantization 
quanta=3

8x8 DCT values 8x8 quantized values

 
Figure 12. Example of obtaining the quantized valued from the DCT values 

In the example presented in Figure 12, by quantizing with 3 it is equivalent with a divi-

sion of 8 (23). In case the DCT value is 1150 (in binary is 10001111110), after the quanti-

zation using a quanta=3, the resulted value is 143.75. Depending on the designer’s choice, 

in order to avoid using floating point values, this value can be either truncated (ignore the 

decimals) to obtain the value 143, or it can be rounded up to obtain the value 144. Using 

the rounding feature provides a slightly better image quality, compared with the case of 

truncating the value [ 5 ]. 

The purpose of the quantization is to “sacrifice” frame information in order to obtain 

values that can be better compressed. By quantizing the DCT values, the resulted quantized 

values will contain many zero values. As will be explained later in this document, the more 

zeros there are, the better the compression ratio obtained by the VLC function will be. 

However, the quantization process is irreversible, so using too big quanta value will lead to 

significant quality loss, but a good compression. The minimum possible quanta value men-

tioned in the MPEG4 specifications is 2, and the maximum possible quanta value is 31.  
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2.2.5 Describing the DeQuantization function 

If until this moment the MacroBlock was encoded, several steps are needed to decode 

it. After encoding and decoding all the MacroBlocks, the entire decoded frame can be ob-

tained. This will be used as “previous frame” when encoding the next frame.  

The first decoding step is to DeQuantize the values of the MacroBlock, which were 

Quantized in the previous function. The DeQuantization function works at MacroBlock 

level, and it treats separately the 6 MicroBlocks contained in the current MacroBlock.  

Overall, the operations executed during the DeQuantization are exactly the opposite of 

the operations executed during the Quantization. It takes all 64 values of the MicroBlock, 

and concatenates a number of less significant bits. The number of added bits is the same as 

the one used by the Quantization for removing the less significant bits, defined by the 

quanta parameter (Figure 13).  

144 5 -5 -1 3 -10 1 5
-10 0 14 -9 -1 0 3 -1

2 -1 0 -5 3 0 2 -5
0 -8 -2 -2 5 -3 -2 1
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-16 -8 24 -8 0 0 16 -24
-8 -16 -8 -16 -8 0 8 -8

Decoded 8x8 DCT values

 
Figure 13. Example of obtaining the decoded DCT values after the DeQuantization 

Comparing the obtained Decoded 8x8 DCT values with the original DCT values before 

the Quantization (Figure 12), it can be noticed that the values are different, even if they are 

close. This is caused by the irreversible quality loss resulted after the Quantization. There-

fore, the higher is the value of quanta, the higher will be the difference between the De-

coded 8x8 DCT values and the original DCT values.  

2.2.6 Describing the Inverse Discrete Cosine Transformation (IDCT) 

After the Decoded 8x8 DCT values are obtained for the current MacroBlock, the next 

step is to retransform these frequency values into actual frame values. Just like the initial 
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FDCT function applied it computations for each MicroBlock from the current MacroBlock, 

so is the IDCT function (Figure 14).  
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Figure 14. Executing the Inverse Discrete Cosine Transformation over a MicroBlock 

In order to achieve these transformations, the equations presented in Figure 15 are 

used. The Yxy are the values belonging to the Decoded DCT values, and the Xij are the 

frame pixels belonging to the resulted decoded frame. The value of the N is 8.   

N
C yx

1
, =,

 
Figure 15. IDCT transformation equation 

The IDCT transformation equation also contains cosine operations, which leads to 

floating point operations. However, as the FDCT, there are algorithms using fixed point 

operations [ 12 ]. 

The important thing is that after this phase, was obtained completely the decoded Mac-

roBlock, which will form a part of the decoded frame. The other parts of the decoded 

frame are obtained similarly, by encoding and decoding all the other MacroBlocks. The 

resulted decoded frame will be used as “previous frame” when encoding the next frame. 

However, the process of treating the current MacroBlock is not yet finished. There is still 

one step before sending the results to the VLC for compression. 
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2.2.7 Describing the Intra Prediction function 

Before sending the Quantized MacroBlock to the VLC for compression, one more 

transformation can be achieved over this MacroBlock. Even if the values of this MacroB-

lock contain many zeros after the quantization, there is still some information that can be 

eliminated, but this time without any more quality degradation.  

 This step is applied only for the Y color from the current MacroBlock, and it is 

achieved at MacroBlock level, contrary to the previous steps that worked at MicroBlock 

level. Often, the 16x16 quantized values from the current MacroBlock represent a frame 

that contains a well-defined pattern, also known as “fading”. This “fading” has to be de-

termined, and eliminated. 

Usually, only by knowing the frame values stored into the neighboring MacroBlocks of 

this current MacroBlock, it is possible to predict what this current MacroBlock might look 

like (Figure 15). It is true, that the predicted result might be different with what the current 

MacroBlock contains. In this case, the prediction will be aborted.  
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MacroBlock Prediction

Current   
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Figure 16. Predicting a MacroBlock based on the neighbor MacroBlocks 

 

In order to predict the current MacroBlock, a set of values from the neighboring Mac-

roBlocks (Figure 17) are used. These neighboring MacroBlocks are already decoded, from 

a previous step of the current loop of encoding the MacroBlocks of the current frame as I. 

From these values and the prediction algorithm described in [ 5 ], are determined a set of 6 

values, called AC predictors. Using also the quantized values of the current MacroBlock, 

the algorithm can adjust these AC predictors, or in the worse case abort the prediction if 

the actual current MacroBlock is different from the predicted one. 
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Figure 17. Values used from the neighboring MacroBlocks to predict the current MacroB-

lock 

 

After the prediction is finished, this “fading” will be eliminated from the Quantized 

current MacroBlock, obtaining a Residue MacroBlock (Figure 18). As a result will be ob-

tained a MacroBlock from which were replaced a great amount of values with only 6 val-

ues (the AC predictors).  

Quantized current MacroBlock

Predicted MacroBlock (6 AC predictors)

Intra Prediction

Residue MacroBlock

 
Figure 18. Obtaining the final Residue MacroBlock after prediction  

So, instead of sending the Quantized current MacroBlock to the VLC for compression, 

after the Prediction, only the Residue MacroBlock (which contains a great amount of zero 

values) and 6 AC predictors values are sent to the VLC. The MPEG4 video decoder will 

receive the Residue MacroBlock with the 6 AC predictors. From these 6 AC predictors and 

the neighboring MacroBlocks it will reconstruct the Predicted MacroBlock, which will be 

added to the Residue MacroBlock to obtain the actual Quantized current MacroBlock. 
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2.3 Describing the encoding principle for a P frame 

2.3.1 Introducing the concept of encoding the P frame 

When encoding a P frame, just like in the case of encoding an I frame, the algorithm 

partitions the frame into 16x16 pixels MacroBlocks, each of these MacroBlocks being par-

titioned into 4 MicroBlocks with the size of 8x8 pixels (Figure 7). Because the frame is 

formed by 3 elements (Y, U and V), for each of the frame’s MacroBlocks it will be associ-

ated 6 MicroBlocks: 4 for Y, 1 for U and 1 for V. In this case, the U and V frames are not 

partitioned into MacroBlocks, but only MicroBlocks (Figure 8). 

2.3.2 Representation of the algorithm and functions used for encoding a P frame 

For encoding a P frame, the algorithm takes into account the current frame, but also the 

previously decoded frame. It is irrelevant if previously, this decoded frame was obtained 

after encoding an I or P frame. In Figure 19 is presented the algorithm and functions re-

sponsible for encoding a P frame. 
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Figure 19. Algorithm and functions responsible for encoding a P frame 

Using these 2 frames, the Motion Estimation phase determines if the current frame in-

cludes information which can be already found in the previous decoded frame, even if not 

at the same coordinates. For each MacroBlock from the current frame, the Motion Estima-

tion can obtain two possible results: either this MacroBlock was found in the previous 

frame (even if it is not 100% similar), either this MacroBlock contains 16x16 pixels which 

are completely new, and it cannot be found in the previous frame.  
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In case the MacroBlock was not found, the algorithm will compress this MacroBlock 

as I. The algorithm used for compressing a MacroBlock as I was presented in the previous 

subchapter.  

In case the MacroBlock was found somewhere in the previous decoded frame, the Mo-

tionEstimation will provide a motion vector for this MacroBlock. This motion vector is 

indicating the origin of this current MacroBlock, from the previous decoded frame. Of 

course, this current MacroBlock might contain some small differences compared to the 

frame from the previous decoded frame. Therefore, the MotionCompensation will compute 

this difference, obtaining a MacroBlock that contains only residues (extra data). As a re-

sult, the current MacroBlock, which initially contained a 16x16 original pixels, after the 

MotionEstimation and MotionCompensation, it will contain only some few data. The rest 

can already be found somewhere in the previous decoded frame.  

This resulted MacroBlock containing residues will be encoded and decoded using the 

FDCT, Quantization, DeQuantization and IDCT functions. Finally, these encoded/decoded 

residues will be “added”, MacroBlock after MacroBlock, to the previously decoded frame 

by the Reconstruction function, obtaining in the end the new decoded current frame. This 

will be used as previous frame when encoding the next frame.  

2.3.3 Describing the Motion Estimation function  

The goal of the MotionEstimation function is to find for each of the MacroBlocks from 

the current original image, if there exists a similar one in the previous decoded one. If it 

does, the MotionEstimation computes the motion vector. In addition, the MotionEstimation 

is executed using the Y image. The U and V are not used by the MotionEstimation. 

The MotionEstimation estimation can use the decoded previous image in two ways: ei-

ther zoomed by 2 on both axes (interpolated), or as it is (unchanged). In the first case, the 

MotionEstimation will provide precise results, but it will require more computations [ 5 ]. 

In the second case, the MotionEstimation will provide less precise results, but it will re-

quire approximately 4 times less computations. Choosing which of these cases to use de-

pends on the application.  
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The interpolated frame is computed using an interpolation algorithm. By zooming a 

frame twice on both axes, for each of the frame’s pixels will have to be computed 3 extra 

new pixels. As it can be seen in Figure 20, if the original frame (left) is formed only by P 

pixels, the interpolated frame (right) contains these P pixels, along with new 3 types of 

pixels associated to each P pixels: Horizontal pixels, Vertical pixels, and HV pixels.  

P P

V

H

HV

 
Figure 20. Representing the interpolation of a frame 

The value of the H, V and HV pixels are computed using a six tap Finite Impulse Re-

sponse (FIR) filter algorithm [ 5 ], based on a set of surrounding P pixels.  

Original frame (16x16 pixel) Interpolated frame (32x32 pixel)  
Figure 21. Close look at an original frame, and the resulted interpolated frame 

After this, the MotionEstimation takes each MacroBlock from the current original 

frame, and searches for an equivalent in the previous decoded frame. Using this current 

MacroBlock, the Motion Estimation compares it with multiple 16x16 regions into a spe-

cific search area from the previous decoded frame, until it finds an acceptable similar one.  
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In the example presented in Figure 22, the current MacroBlock with coordinates 

(32,48) in the current frame, is compared with a multitude of 16x16 regions in the previous 

decoded frame, into the search area between the coordinates (16,32) and (64,80). In the 

current example, the search area is (±16, ±16). However, this aspect depends on the will of 

the user. In the end, the Motion Estimation will find that the 16x16 region with the coordi-

nates (24,38) in the decoded previous image is similar with the current MacroBlock. The 

motion vector is obtained by computing the difference between the coordinate of the cur-

rent MacroBlock (32,48) and the coordinate of the similar 16x16 region (24,38) from the 

previous decoded image. The resulted motion vector is (8,10).  

Current frame Previous decoded frame

search area

�
(32,48)

�
(24,38)

�
(64,80)

�
(16,32)

 
Figure 22. Representing the Motion Estimation for a MacroBlock 

The similarity factor between two 16x16 regions is computed using the Sum of Abso-

lute Differences (SAD) formula (Figure 23). The bigger is the SAD value, the bigger is the 

difference between these two regions.  
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Figure 23. SAD formula used to compute the similarity between two 16x16 regions 

The MotionEstimation computes the SAD value for multiple coordinate’s positions, 

until it finds the smaller one. When the resulted SAD value is smaller than a given thresh-

old, the Motion Estimation considers that it found the most similar 16x16 region with the 

one contained in the current MacroBlock. By default, the MPEG4 encoder specifications 
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propose the value of this threshold to be 512. However, this can also be adjusted depending 

on the will of the user.  

 There are many methods of choosing which 16x16 regions from the previous de-

coded frame to be compared with the current MacroBlock. FullSearch [ 5 ] method is the 

simplest one, and it compares the current MacroBlock with all the possible 16x16 regions 

from the search area. This method is slow, even if it provides the best results.  However, 

different other methods were developed. The most popular ones are the DiamondSearch [ 

13 ] and SquareSearch [ 14 ]. These are based on comparing only some of the possible 

16x16 regions from the search area, based on algorithmic decisions. They are significantly 

faster than the FullSearch, and provide appropriated results with the FullSearch method.  

Identically, the Motion Estimation function will compute the motion vectors for all the 

MacroBlocks from the current frame. The MacroBlocks to which was found a similar 

16x16 region in the previous decoded image will be encoded in the following steps as P. 

The MacroBlocks for which was not found any similar 16x16 region in the previous de-

coded image will be encoded in the following steps as I, using the principle described ear-

lier in this document.  

In addition, in the moment the Motion Estimation finds that a significant number of 

MacroBlocks has to be encoded as I, the Motion Estimation will stop, and it decides that 

all the MacroBlocks will be encoded as I. This feature is called “scene change detection”.   

2.3.4 Describing the Motion Compensation function 

After the MotionEstimation had computed the motion vectors for each of the frame’s 

MacroBlock, the next step is to find for each of the MacroBlocks from the current frame, 

the remaining differences (“residues”) compared with its corresponding best match 16x16 

region from the previous frame. For the example presented in Figure 22, the resulted dif-

ference for the MacroBlock with coordinates (32,48) is presented in Figure 24. The values 

stored on the Difference MacroBlock are “negative” values of the actual differences.  
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Current MacroBlock

Previous best match 
16x16 region

Difference MacroBlock

 
Figure 24. Determining the Difference MacroBlock by the Motion Compensation function 

From this moment, the MPEG4 video encoder considers that this difference is in fact 

the original current image received.  

2.3.5 Describing the FDCT, Quantization, DeQuantization and IDCT functions for 

the P MacroBlock 

The algorithm takes each Difference MacroBlock, and transforms it from image into 

frequencies, using the FDCT function (presented previously in the document). The resulted 

DCT values are quantized, and sent to the VLC to be stored into the MPEG4 bitstream.  

An important difference of encoding a MacroBlock as P, compared with the case of 

encoding as I, is that it may be declared as skipped MacroBlock if the values resulting after 

the quantization are only zeros. In this case, the MPEG4 video encoder will inform the 

MPEG4 video decoder (through the bitstream) that this MacroBlock does not have to be 

decoded, because it has not changed since the previous frame. This is often the case when 

the movie contains static sequences.  

In addition, just like the I MacroBlock, the MPEG4 algorithm is decoding these quan-

tized values, in order to build the decoded current frame to be used later when encoding the 

next frame. For this purpose, the quantized values are dequantized, obtaining the decoded 

DCT values. These DCT values are decoded using the IDCT function, in order to obtain 

the decoded MacroBlock.   
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2.3.6 Describing the Reconstruction function 

At this moment, the current MacroBlock, which contains only differences (“residues”) 

was encoded and decoded. Therefore, the last step is to reconstruct the current MacroB-

lock, using the decoded MacroBlocks (obtained after the IDCT) and the previous best 

match (Figure 25). This phase is doing the inverse of the MotionCompensation function.   

Current Decoded MacroBlock

Previous best match 

Difference Decoded MacroBlock

 
Figure 25. Obtaining the Current Decoded MacroBlock by the Reconstruction function 

It can be noticed by comparing the Difference MacroBlock from the Figure 24 with the 

Difference Decoded MacroBlock from the Figure 25, that this decoded MacroBlock is a 

little bit different from the initial difference MacroBlock. This is due to the quality degra-

dation resulting after encoding (FDCT,Quantization) and decoding (DeQuantization, 

IDCT). By using this Difference Decoded MacroBlock and its previous best match Mac-

roBlock (used also by the MotionCompensation), the Current Decoded MacroBlock is re-

constructed. This MacroBlock is also a little bit different from the Original Current Ma-

croBlock (see Figure 24).  

In conclusion, after processing all the MacroBlocks of the frame, the resulting decoded 

current image contains some differences compared with the original image, caused by the 

quality degradation of all the Difference MacroBlocks. However, this altered image is ex-

actly the one that will be obtained by the MPEG4 video decoders, and displayed on the 

screen to the spectator.  
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2.4 Detailed description of the VLC and Bitrate Controller 

2.4.1 Description of the compression phase done by the MPEG4 video encoder 

After encoding an I or P frame, the size of all the results are more than twice bigger 

than the original input image. One of the reasons is the fact that the original input image is 

represented on 8 bits/pixel, while the encoded results for each of the image pixels are on 16 

bits/pixel. Even more, there are extra motion vectors for each MacroBlock, plus 6 AC pre-

dictors on 16bits/predictor for each MacroBlock, skipped MacroBlock flags, MacroBlock 

encoding mode (I or P) flag, etc.  

However, the great majority of these values are containing many 0 values. This is why, 

this kind of results is ideal for compression. The MPEG4 video encoder is compressing 

these results using the VLC function [ 5 ]. The final output of the VLC function is a well-

defined (and strict) result, called MPEG4 bitstream. This MPEG4 bitstream will be used 

later by an MPEG4 video decoder, in order to decode the movie. The block diagram of the 

VLC function is presented in Figure 26.   

ZigZag RLE HuffmanResults from 
the encoding

MPEG4 
bitstream

 
Figure 26. Block diagram of the VLC function 

For each of the encoded MacroBlocks, is applied the ZigZag function (a.k.a. Reorder-

ing) to reorder the values of this encoded MacroBlock into a well-defined order. The re-

sults are then compressed using the RLE (Run-Length Encoding) algorithm, and finally 

compressed even more using the Huffman algorithm. This phase is executed identically for 

all the other encoded MacroBlocks, and the result will be the MPEG4 video encoder. 

2.4.2 Applying ZigZag reordering on a MacroBlock 

Currently, the encoded MacroBlocks are in two dimensional matrix forms. Because the 

following RLE and Huffman compressions are using as input the data in a vector form, it is 

imperative to reorder the values of the encoded MacroBlock under the form of a vector.  
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The ZigZag function is in charge of doing this reordering. It is applying the reordering 

for each of the 6 MicroBlocks associated for the current MacroBlock (Figure 27), resulting 

6 vectors each of them with 64 values. 

8

8 …
64

 
Figure 27. Reordering a MicroBlock using the ZigZag function 

The ZigZag reordering is used, because the values stored in an encoded MicroBlock 

contains the highest values at the top-left corner, and the lowest at the bottom-right corner. 

This is caused by the FDCT function, as was already presented earlier in this document. 

Therefore, by doing the ZigZag reordering, the resulted 64 values vector will contain the 

highest values at the beginning, and lowest values (many zero values) at the end. This way, 

it is assured to have in the resulted vector, consecutive regions containing the same values. 

This aspect is highly exploitable by the following RLE and Huffman compression phase. 

2.4.3 Compressing the ZigZag-ed MacroBlock using RLE and Huffman compres-

sion  

Using the resulting 6 vectors, the next step is to compress them using the RLE com-

pression algorithm [ 15 ]. The basic idea of this algorithm is to use sequences of consecu-

tive identical values, and to code them as two values: number of repetition, and value.  

The resulting compressed results are compressed even more, using the Huffman com-

pression algorithm [ 16 ]. The idea behind this algorithm is to assign to each of the values 

from this vector, a symbol (on bits) based on the probability of occurrence of each value. 

The problem with using the original Huffman algorithm is that all these coding symbols 
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(called dictionary) have to be calculated, and stored into the resulted compressed result, to 

be used by the decoder. This leads to extra computations, and decreased compression ratio. 

To avoid this, the MPEG4 uses a standard dictionary, called VLC tables [ 5 ]. This way, 

only the compressed results have to be stored. The MPEG4 video decoder will use the 

same VLC tables when decoding the bitstream. 

2.4.4 Structure of the MPEG4 bitstream 

In order to ensure that the compressed results will be decodable by any MPEG4 video 

decoder, the MPEG4 specifications impose a strict result format, called MPEG4 bitstream. 

This is structured on multiple levels: movie, frame and MacroBlock (Figure 28). 

Frame 
Header 
(VOP)

Movie 
header 
(VOL)

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7 Frame 8 Frame 9 ...

...MacroBlock 
(0,0)

MacroBlock 
(0,1)

MacroBlock 
(0,2)

MacroBlock 
(0,3)

MacroBlock 
(0,4)

MacroBlock 
(1,0)

MacroBlock 
(1,1)

...

type AC predictors or 
Motion Vectors

MacroBlock encoded values 
(predicted or differences)

Movie 
bitstream

Frame 
bitstream

MacroBlock 
bitstream  

Figure 28. MPEG4 bitstream structure for movie, frame and MacroBlock 

At the beginning of every movie bitstream, there is a header called VOL (Visual Object 

Layer) header. This is storing basic information regarding the movie: resolution, 

frame_rate, type of motion estimation used (full pixel or half-pixel), etc.  

This header is followed by the bitstream associated to each of the movie’s frames. This 

bitstream is initiated using a VOP (Visual Object Picture) header. This header is storing 

basic information regarding the encoding phase of the current frame: quanta, frame type 

(I,P), etc. This header is followed by the bitstream associated to each of the frame’s Mac-

roBlocks, in a sequential order.  

Each MacroBlock bitstream is initiated by the type of this MacroBlock (I, P, or 

skipped). Then, depending on their type, the next pieces of information are the motion vec-
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tors (P MacroBlock) or AC predictors (I MacroBlock). In the end, the compressed encoded 

MacroBlock values are stored. It is obvious that, if the MacroBlock type is skipped, there 

will be no informations stored for the current MacroBlock bitstream, except the type of it.  

An important aspect is that all these components forming the MPEG4 bitstream are 

concatenated at bit level, and not byte level. This aspect will be an important issue that had 

to be taken into account later in this document.  

2.4.5 Quantization adjustment by Bitrate Controller for the next frame encoding  

After each frame encoding and compression, the result is the MPEG4 bitstream for that 

frame. The size of this bitstream is variable, depending on the nature of the movie.  

In case the size of this bitstream is bigger than a desired value (specified by the user), 

the Bitrate Controller will increase the quanta value which will be used when encoding the 

next frame. This way, more quality degradation will occur during the next frame encoding, 

but the size of the bitstream for that next frame will be lower.  

In case the size of this bitstream is lower than a desired value (specified by the user), 

the Bitrate Controller will decrease the quanta value which will be used when encoding the 

next frame. This way, less quality degradation will occur during the next frame encoding, 

but higher will be the size of the bitstream for the next frame. 

As a result, when encoding an entire movie, the user has to specify its targeted average 

bitstream size for a frame. The Bitrate Controller will adjust the quanta value “on the fly’ 

during the encoding, in order to keep the bitstream for each frame as close as possible to 

the user’s demand. 

2.5 MPEG4 algorithm parameters 

To compress a movie, the MPEG4 video encoder requires multiple parameters.   
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2.5.1 Image resolution parameter  

This parameter specifies the height and width of the video’s image. Since the MPEG4 

algorithm is processing the image at MacroBlock level (16x16), the height and width of the 

image has to be a multiple of 16. Therefore, the MPEG4 algorithm is able to compress any 

video with an image resolution multiple of 16. However, some commonly used resolutions 

are presented in Figure 29.  

Resolution name Width Height 
QCIF 176 144 

QVGA 320 240 
CIF 352 288 

VGA 640 480 
4CIF 704 576 

HDTV 720 1280 720 
HDTV 1072 1440 1072 

Figure 29. List of different standardized resolutions 

In case the image resolution is not a multiple of 16, the algorithm is doing some pixels 

stuffing, by copying the border pixels, to obtain an image resolution multiple of 16. 

2.5.2 Frame rate parameter  

This parameter specifies the number of frames existing for one second of movie. The 

higher the frame rate, the smother (and more visually comfortable) will be the moving 

sequences in the movie, but also the image quality will decrease (because more frames 

have to be stored into 1 second of bitstream). Figure 30 shows some common frame_rates. 

 Frame rate Example of application domain 
1 Long term video surveillance 

15 or 16 Video conferences, Mobiles 
24 (PAL) 

25 (SECAM) TV (Europe) 

29.996 (NTSC) TV (USA & Japan) 
50 Cinema 

Figure 30. List of frame rates for different examples of application domains 
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2.5.3 Keyframe rate parameter  

This parameter is specifying the number of frames between two I frames. In case the 

keyframe rate is 100, the compressed movie will contain 99 P frames between each two I 

frames. The higher is the value of the keyframe rate, the higher will be the resulting com-

pression factor, fewer computations will be required, but lower will be the “tolerance” of 

the decoder to errors inside the bitstream will be lower, and it will take more time to seek 

into the movie. In practice, the most common values for the keyframe rate are between 5 

and 300. For example, by default, the OpenDivX uses the keyframe 5, the DivX uses 100, 

and the XviD uses 300. However, in each of these cases, the value for the keyframe can be 

changed by the user.  

2.5.4 Compression rate (bitrate) parameter 

By adjusting the compression rate parameter, it is possible to demand from the encoder 

a specific compression factor. The higher the compression rate will be, the lower the image 

quality of the resulted encoded movie will be, but fewer computations are required. There 

are 2 methods of demanding a desired compression rate: 

1) variable compression: in this case, the user specifies to the encoder that the com-

pression rate is not important for him, and it can vary in time. The only thing important is 

to obtain a specific image quality for the encoded movie. This aspect is controlled by ad-

justing the interval between which the quantization factor can change. Normally, the quan-

tization factor is varying between the values 2 (highest quality) and 31 (lowest quality). By 

specifying that the quantization factor has to be 2 all the time, the encoder will compress 

the movie obtaining the higher quality, but will also obtain the lowest compression factor 

which will vary (depending on the movie images). 

2) targeted compression: in this case the user will specify the targeted size of the re-

sulted bitstream, also known as bitrate factor. Depending on the actual resulted bitstream 

size, the encoder will adjust automatically the quantization factor in order to obtain the 

desired bitstream size. For example, in case of a QCIF movie at 25 frames/sec, the uncom-

pressed size of 1 second in RGB format is 1.900.800 bytes. By adjusting the bitrate to 

700kbits/sec, the resulting compression factor will be approximately 1:21. The resulted 
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image quality will hugely depend on the image complexity of the movie. This method is 

usually used when a specific storage support is targeted for the encoded movie (i.e. CD-

ROM, DVD). 

2.5.5 Quantization range parameter 

This parameter represents the interval through which the quanta value can be adjusted 

by the encoder. By default, in any encoders (OpenDivX, DivX, XviD), this interval is be-

tween 2 and 31. It is important to mention that the use of value 1 is not allowed, since the 

standard imposes to save into the bitstream the value of the quanta minus 2. The decoders 

will read this value, and increment it with 2, in order to obtain the real quanta value. 

Thus, based on the value of the targeted bitrate parameter (see previous sub-chapter) 

and the resulting bitstream size for the current frame, the MPEG4 encoder (most exactly 

the BitrateController function) will readapt the quanta value for the next frame. This value 

will be forced to stay in the interval specified using this quantization range parameter.  

The smaller this interval is, the more difficult it will be to keep the size of the com-

pressed movie into the required compression rate. However, this will avoid significant 

quality variations during the movie, since the quanta value is the one that directly affects 

the quality of the compressed movie.  

By setting this interval to a single value, the quanta value is kept constantly to this sin-

gle value. This feature practically eliminates the use of compression rate parameter, since 

the quanta will not change, in order to obtain the required compression rate. 

2.5.6 Rate control delay parameter 

This parameter adjusts the number of frames between which the quanta value will be 

readjusted. Choosing the value of the rate delay to 1 will force the algorithm to adjust the 

quanta value after each frame. The disadvantage is that the quality of the movie might 

change after each frame, which might lead to a visually unpleasant effect. The advantage is 

that, the size of the compressed movie is correctly kept in the targeted size. 
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By default, the OpenDivX uses for the rate_delay a value of 10, DivX is using 30, and 

the XviD is using a value equal with the frame_rate (i.e. 25).    

2.5.7 Computations precision parameter 

This aspect is related to the precisions of the computations done during the encoding 

phase. The higher the computation precisions are, the higher the quality and compression 

rate of the encoded movie will be, but more computations and memory will be required. 

For example, in case of the MotionEstimation phase, different computation precisions can 

be set by choosing between different motion estimation algorithms to be used (full search, 

halfpixel, earlystop, diamond, square), each of them with its own complexity/precision. In 

case of Quantization and DeQuantization phases, it can be chosen between different quan-

tization methods (h263 quantization, mpeg4 quantization).  

2.5.8 Scene change detection parameter 

This parameter is a Boolean parameter with which can be activated or deactivated the 

use of the scene change detection feature. 

It is common during a movie that the current frame contains a different scene, com-

pared with the previous frame. This can be determined during the MotionEstimation func-

tion. Normally, when a scene is changed, a large number of MacroBlocks from the current 

frame will be different from the ones existing in the previous frame. Thus, the MotionEsti-

mation will “mark” these MacroBlocks to be encoded as I (new MacroBlocks), even if the 

current frame is encoded as P frame. When the number of I MacroBlocks bypasses a speci-

fied threshold (the standard proposes half the number of total MacroBlocks from the im-

age), the MotionEstimation will stop its computations, and the MPEG4 encoder will do a 

forced compression of the entire frame in I mode.  

In other words, when using this feature, the algorithm will decide to use I frames when 

scene changes are detected, along with the I frames imposed by the key_frame parameter.  
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2.5.9 Compression mode parameter  

There are 2 ways an image can be treated: progressive or interlaced.  

1) progressive: the entire image will be compressed. The advantage is the high quality 

of the resulting encoded image (Figure 31, left). The disadvantages are the high computa-

tions and memory required to compress it. 

2) interlaced: only every 2 lines of the image is compressed. For example, for the 1st 

image are compressed only the Odd lines, and for the 2nd image are compressed only the 

Even lines. The advantages are the low computations and memory required (twice fewer 

than the progressive mode). The disadvantage is the low quality of the resulted encoded 

image, which can be unacceptable in case of high movements (Figure 31, right).  

  
Figure 31. Image encoded in progressive mode VS. Image encoded in interlaced mode 

2.5.10 Algorithm type parameter 

The MPEG4 encoder algorithm is not the only video encoder algorithm that com-

presses an image using the concept of MacroBlocks. Several other algorithms are using 

similar approaches. Historically, the first algorithm that used this concept was the MPEG1 

encoder algorithm (Figure 32). After that was developed the MPEG2 algorithm, which 

contains more features compared with MPEG1. The H263 algorithm followed the MPEG2, 

bringing additional new features. The MPEG4 encoder algorithm appeared after the H263, 

and its complete name is MPEG4 Part 2. Additional other algorithms preceded the 

MPEG4.     
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Figure 32. Representing the algorithms inclusion based on their capabilities (features)   

Every new algorithm was in fact an “extension” of an already existing algorithm. For 

example, the MPEG4 part 2 encoder algorithm already contains the features provided by 

the MPEG1, MPEG2, H263 algorithms, plus some new specific features. In Figure 33 are 

presented the most important features used for each algorithm.   

In our work, we use the MPEG4 part 2 algorithm (presented previously in the docu-

ment). With this algorithm it is possible to encode the movie also in MPEG2 and MPEG1 

modes. This is possible by “deactivating” in the algorithm some features specific for 

MPEG4, and use only the ones specific for MPEG2 and MPEG1. For example, one of 

them is related to the IntraPrediction. If the MPEG4 uses the left, left-top, top and right-top 

MacroBlocks to compute the “fading” for the current MacroBlock, the MPEG2 encoder 

uses only the left MacroBlock to compute the “fading” for the current MacroBlock. How-

ever, some other functions are identical. For example, the MPEG4, MPEG2 and MPEG1 

use the same FDCT and IDCT functions.  

With the Algorithm type parameter, it is possible to mention which algorithm to be 

used. Based on this value, some features will be used, or will be “skipped”. Currently, our 

work supports the MPEG4, MPEG2 and MPEG1 algorithms.  

We have left as future work the support for the H263 and H264 algorithms. It is impor-

tant to mention that the H26L algorithm was never completely developed by the JVT 

(Joined Video Team). During its developing process, the JVT group and the MPEG group 

merged, in order to develop the AVC algorithm (a.k.a. H264, MPEG4 part 10).  
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Figure 33. Listing the features supported by each video compression algorithm 

2.6 Conclusions  

The objective of this chapter is to introduce the MPEG4 video encoder algorithm. The 

algorithm receives as input an uncompressed movie, and obtains an MPEG4 bitstream con-

taining the compressed movie with some quality degradations. The different steps used to 

compress the movie were detailed. The study of this algorithm allowed us to understand its 

high complexity. Additionally, the algorithm behavior is dynamic, because it depends on 

the input video and the used algorithm parameters. The amount of required computations 

depends on the targeted application domain, since each of these applications require the 

use of different configurations for the MPEG4 encoder algorithm. To obtain efficient re-

sults, the algorithm has to be correctly configured and optimized for the targeted applica-

tion and the used architecture. This requires a significant amount of work time. However, 

the average time to market for the video applications should not be more than some months 

(half year). To cope with this problem, the MPEG4 video encoder algorithm has to be eas-
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ily adaptable for different architectures containing different number of processors. This can 

be done using an MPEG4 video encoder algorithm that supports different computations 

distributions on multiprocessor architectures, using parallel and pipeline execution 

schemes.   



 47 

3 Flexible modeling style to represent the Combined Algorithm/ Architec-

ture Model for MPEG4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter presents a flexible modeling style to represent the algo-
rithm/architecture model for a parallelized and pipelined MPEG4 encoder. 
First, this chapter presents the techniques used to parallelize and pipeline the 
MPEG4 encoder. Then, the chapter presents the targeted Flexible Architec-
ture with 2 SMPs for MPEG4 encoder. Then, the chapter focuses on the 
Combined Algorithm/Architecture Executable Model, used to describe at 
high-level of abstraction this Flexible Architecture with 2 SMPs. Since differ-
ent architectures are required, for different algorithm and architecture parame-
ters, this chapter presents a flexible modeling style to obtain automatically 
different Combined Algorithm/Architecture Executable Models starting from 
a unique Flexible Algorithm/Architecture Model for MPEG4.  
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3.1 Parallelism/pipeline support for the MPEG4 video encoder algo-

rithm 

3.1.1 Amount of computations required by the MPEG4 encoder 

The original MPEG4 video encoder is a sequential algorithm, computing sequentially 

each of the frame’s MacroBlocks, either during a single function (i.e. Motion Estimation), 

or during multiple functions (i.e. FDCT, Quantization, DeQuantization, IDCT). The 

MPEG4 video encoder is a single task application. Because of the high complexity of the 

MPEG4 video encoder, the amount of computations required by this task is high.  

There are multiple factors which are affecting this amount of computations, like: image 

resolution, spatio-temporal complexity of the movie, motion estimation search area, de-

sired computation precisions, etc. Figure 34 shows an approximate amount of computa-

tions required to encode different video resolutions, at 25 frames/sec, using 16x16 motion 

search area and maximum computation precision.  

Resolution MIPS 
QCIF 280 

QVGA 800 
CIF 1120 

VGA 3200 
4CIF 4500 

HDTV 720 10200 
HDTV 1072 17000 

Figure 34. Computations required by MPEG4 video encoder for different video resolutions 

These values may become even bigger, in case of increasing the motion search area. 

For example, for HDTV 1072 video resolution at 100 frames/sec and using full motion 

search area (128x128), the amount of required computations is close to 32TIPS (Tera In-

structions Per Second). In case of targeting this algorithm to be implemented on a chip, 

there is no processor today that can provide such an amount of computation power. This 

computation power may be a limitation even in case of simple QCIF resolution. For exam-

ple, inserting a processor running at 300MHz into a mobile phone is unacceptable in term 

of power consumption.  
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3.1.2 Objectives 

Our objective is to implement an MPEG4 encoder algorithm that can easily be adapted 

for different configurations of computations distribution. This allows the implementation 

for reasonable frequencies. Moreover, we want the same approach to be applicable for dif-

ferent other video encoding algorithms (i.e. MPEG1, MPEG2).  

We intend to do this by using 2 computations distribution techniques: computations 

distribution for parallel execution, and computations distribution for pipeline execution. 

Additionally, the resulting algorithm should be as flexible (modifiable) as possible, in or-

der to easily adapt it for multiple computations distribution configurations (i.e. different 

levels of parallelism).   

3.1.3 State of the art 

There are several existing works for MPEG4 video encoders that are using the concept 

of computations distribution over multiple processors architectures. In the following sec-

tions, we will present the examples that are the most important for our work. 

a) In [ 55 ], the MPEG4 algorithm is implemented using a SW approach. The complete 

MPEG4 algorithm is mapped on a single processor, more exactly a TM1300 CPU. 

This means that, in this case, the algorithm computations are not distributed over 

multiple processors (since there is only one processor). Thus, in case of increasing 

the computation requirements of the MPEG4 algorithm (i.e. by increasing the video 

resolution, or frame rate), the processor may become saturated. The only solution 

would be to boost the speed of this processor (i.e. increase its clock frequency, HW 

accelerators).  

    As a result, the MPEG4 algorithm cannot be used for applications that require a 

large amount of computations, because that would require over-clocking this single 

processor to unacceptable clock frequencies. These applications are home-cinema, 

video recording, and mobile telecommunications requiring low clock frequencies.   

b) In [ 19 ], the MPEG4 video encoder is implemented using a mixed HW/SW ap-

proach, where the MPEG4 algorithm is distributed over multiple processors, and 
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some computational intensive functions are implemented into a shared HW accelera-

tor. The algorithm behavior is pipelined, by distributing the computations over mul-

tiple processors (4 ARM9 CPUs running at 200 MHz). This distribution is achieved 

by mapping one or more functions from the MPEG4 video encoder on different 

processors that communicate with each other (i.e. the MotionEstimation is mapped 

on a processor, the FDCT in another processor, etc). Thus, pipeline approach is 

used, even if overall the MPEG4 encoder still has a sequential behavior.  

The problem of this approach is that, this pipeline can become saturated when in-

creasing the computation requirements of the MPEG4 video encoder, which leads to 

the need of HW accelerators. Additionally, this pipeline is not “perfect”, because 

generally speaking, the MPEG4 encoder is an output dependent application. For ex-

ample, the MotionEstimation (which is the first function executed during a frame 

encoding process) has to wait for the entire pipeline to be “consumed”. This is due 

to the fact that the MotionEstimation requires the current frame, but also the previ-

ous decoded frame. Moreover, this previous decoded frame is obtained only at the 

end of the entire encoding and decoding process, after the entire pipeline is “con-

sumed”. 

Any parallelism approach is done at function level, mainly using HW instructions. 

For example, a SIMD [ 52 ] approach can be used for the FDCT function. This will 

execute in parallel the same FDCT instructions for each of the 6 MicroBlocks con-

tained in the current MacroBlock.  

The problem with this kind of parallelization approach (based on HW instructions) 

is that it drastically reduces the portability of the algorithm on other types of archi-

tectures. Additionally, the parallelized functions are too small (fine grain parallel-

ism). When targeting a HW implementation, this is ok. However, in case of target-

ing this application for CPUs, the result will be a large number of required context 

switches, which might drastically reduce the performance of the application.  

As a result, this MPEG4 algorithm cannot be used for applications requiring a large 

amount of computations, or using an architecture with more than 4 processors. Such 
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applications are home-cinema, video surveillance, mobile telecommunication (since 

the 200MHz required clock frequency is unacceptable in such applications).  

c) In [ 20 ] and [ 21 ], the MPEG4 video encoder algorithm, and the H.26L video en-

coder algorithm are distributed over multiple processors, using a SMP [ 53 ] ap-

proach. The idea of these approaches is to instantiate multiple tasks of MPEG4 en-

coders (or H26L encoder), each of them operating over a different small area of the 

image. For example, if the algorithm will be parallelized into 4 tasks, the original 

image will be split into 4 parts (areas), and each task will operate over one of these 

areas. Thus, the application has a parallelized behavior with a single SMP.  

The advantage of their approach is its scalability. It is quite easy to adapt the algo-

rithm for different other levels of parallelization (i.e. for 9 tasks running in parallel, 

each of them operating on a ninth of the image).  

The disadvantage of their approach is the fact that the compression phase (VLC) is 

executed during the encoding phase (MotionEstimation, FDCT, Quantization, De-

quantization, IDCT, etc). For example, when the MotionEstimation determines the 

motion vector for a MacroBlock, this motion vector is immediately compressed into 

the bitstream using the corresponding VLC instructions. The same thing happens 

practically after each function. As a function finishes its computations, some of its 

results are immediately stored into the bitstream. In other words, the encoding phase 

and the compression phase are merged into a single phase. Since the encoding phase 

contains an algorithm whose input is dependent on its output (previous encoded and 

decoded image), no pipeline is allowed. To conclude, the approaches presented in [ 

20 ][ 21 ] are targeted only for parallel execution scheme (single SMP), and pipelin-

ing is not possible without changing the algorithm. 

Another disadvantage of their approach is the memory requirements. The compres-

sion phase (VLC) requires a large amount of memory to store its standard Huffman 

tables (compression dictionary), tables needed to compress the data into the bit-

stream. In case of MPEG4 encoder, the size of these tables is approximately 

100Kbytes. Since the compression phase (VLC) is not separated by the encoding 

phase, after the algorithm distribution, they will have the same number of phases for 
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compression and encoding. Thus, these standard Huffman tables might need to be 

multiplied, to have 1 instance for each VLC (unless shared memory architecture is 

used). Additionally, the compression phase represents maybe 10% of the entire algo-

rithm computation requirements. This means that, the compression phase is in “idle” 

mode for approximately 90% of the algorithm’s execution time. Therefore, this al-

gorithm requires a significant amount of data and code memory.   

Additionally, in their approach, the image is split into completely different areas, ar-

eas that have no common image regions between them. This might impose some de-

tection problems during the MotionEstimation in case of MacroBlocks which are 

moving during a movie sequence, from an area (belonging to one task) to another 

area (belonging to another task).This might decrease the quality of the resulting 

compressed movie.   

Additionally, in [ 20 ] and [ 21 ], their approaches are demonstrated to work on only 

one video encoding algorithm. This raises the following question: “Is it possible to 

apply this approach for different other encoder algorithms?”  

As a result, this MPEG4 algorithm cannot be used for applications requiring low 

memory, or high quality compressed movie. Such applications are mobile telecom-

munication (low memory), respectively home-cinema and video surveillance (high 

quality movie).   

3.1.4 Contributions 

The contributions presented in this chapter, is an MPEG4 video encoder algorithm that 

can be easily adapted for multiple applications. This algorithm supports different computa-

tions distributions over multiple processors, using different levels of parallelism and pipe-

line behavior. Additionally, the resulted algorithm consumes less memory than the ap-

proaches presented in [ 20 ][ 21 ] by using a smaller number of VLCs. In order to represent 

this algorithm on an MP-SoC architecture, we propose a flexible modeling style used to 

describe the Combined Algorithm/Architecture Executable Model for MPEG4, starting 

from a unique Flexible Algorithm/Architecture Model for MPEG4. The same approach can 
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be extended to other video encoder algorithms (i.e. MPEG1 and MPEG2) only by setting 

the Algorithm Type parameter.  

3.2 Proposed MPEG4 video encoder supporting different paral-

lel/pipeline configurations  

3.2.1 Presenting the approach used for inserting parallelism and pipeline support 

into the MPEG video encoder 

In our approach, we use computations distribution using SMP approach, for the execu-

tion in parallel of heavy computations. Compared with the cases presented in [ 20 ] and [ 

21 ], which used only 1 SMP, in our approach we use 2 separated SMPs: one SMP for the 

encoding phase, and one SMP for the compression phase. Additionally, these two SMPs 

will be executed in a pipeline. This section presents in detail how this is achieved.  

All the functions forming the MPEG4 video encoder algorithm were grouped into 2 big 

tasks: MainDivX task and the VLC task (Figure 35). The MainDivX task represents the en-

coding process of an image, while the VLC task is in charge of compressing the results 

obtained by the MainDivX task. 

quanta

VLC TaskMain DivX Task

Motion 
Estimation

Motion 
Comp.

DCT Quant.

DeQuant.

I

P VLC MPEG4/ISO 
Bitstream

YUV
t

t-1
Prediction/ 

Reconstruct IDCT

MacroBlock level

Frame level

 

Figure 35. Partitioning the MPEG4 video encoder in multiple tasks 

Compared with the approaches presented in [ 20 ][ 21 ], where the MainDivX task and 

the VLC task are merged into a single task, in our approach, these two tasks were sepa-
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rated. This was possible in the following way: every time a function from the MainDivX 

task obtained some results which should be inserted in the bitstream by the VLC task, we 

are not inserting them immediately, but we are memorizing (buffering) them. After finish-

ing the MainDivX task to encode a MacroBlock, the VLC task will start to compress all the 

buffered results. While the VLC task is compressing all these results, the MainDivX task 

can continue to encode the next MacroBlock.  

Thus, the MainDivX task and the VLC task have a pipelined behavior, and the commu-

nication between them is done using 2 buffers. While the MainDivX task is writing the 

results in buffer 1, the VLC task is reading from buffer 2 the previously computed result of 

MainDivX. In the next step, the MainDivX task will write the results in buffer 2, while the 

VLC task will read from buffer 1. This technique is called “flip-flop” [ 56 ]. As a result, 

compared with the approaches from [ 20 ][ 21 ], we have succeeded to separate the com-

pression phase by the encoding phase. 

The reason why the MainDivX task was not distributed into more pipelined tasks (like 

in [ 19 ]), is due to the fact that the input of the entire MainDivX task is output dependent. 

As it can be seen in Figure 35, the MotionEstimation requires along with the current 

frame(t)  also the previous encoded and decoded frame(t-1). However, in the current status, 

the entire MPEG4 encoder algorithm has a pipelined behavior with two stages: MainDivX 

and VLC. 

In order to insert parallel behavior into the algorithm, we have distributed the computa-

tions of each of these tasks using a SMP approach: 

a) The SMP for the MainDivX task is obtained just like in [ 20 ][ 21 ], by dividing the 

original image into multiple smaller areas, and instantiating the same number of 

MainDivX tasks, each of them in charge of processing the corresponding area.  

b) The SMP for the VLC task is obtained by the instantiation of multiple identical VLC 

tasks, each of them compressing the results from the MainDivX tasks, more exactly 

the encoded MacroBlocks obtained by the MainDivX tasks. Each of the VLC task 

will be in charge of compressing some of the encoded MacroBlocks. For example, if 

we use 2 VLC tasks, each of them will be in charge of compressing only half the 
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number of total MacroBlocks encoded by all the MainDivX tasks. To do this, we had 

to adapt the code of the VLC task to execute at MacroBlock level. Additionally, we 

have exploited the fact that the VLC tasks do not have to wait for the MainDivX 

tasks to finish processing the entire image. By adapting the VLC tasks to work at 

Macro-Block level, once a MainDivX task finished encoding a MacroBlock, the cor-

responding VLC task can start to compress it, while that MainDivX task continues to 

process the next MacroBlock. 

This way, the resulting MPEG4 video encoder algorithm contains 2 SMPs which are 

executing as a pipeline at MacroBlock level. The level of parallelism into each of these 

SMPs can easily be adapted for different configurations. For example, in case of the SMP 

for the MainDivX, changing from 4 MainDivX tasks running in parallel to 9 MainDivX 

tasks running in parallel can be made by dividing even more (9 areas) the original image, 

and instantiating 9 MainDivX tasks for each of the resulting image areas. In case of the 

SMP for the VLC, changing from 2 VLC tasks running in parallel to 5 VLC tasks running in 

parallel can be made by associating the number of encoded MacroBlock to be compressed 

by each of these VLC tasks.  

Since the two SMPs require different kinds of computation power (our experiments 

showed an average rate of 6 to 1 between the MainDivX and the VLC), the structure of 

both SMPs may be different in term of number of tasks. This way, compared with the ap-

proaches from [ 20 ][ 21 ] where the number of VLC tasks were identical to the number of 

MainDivX tasks, in our approach we can use a number of VLC tasks much smaller than the 

number of MainDivX tasks, but just enough to not become a computational bottleneck. 

When one of the tasks becomes a bottleneck, the amount of data associated to that task is 

reduced [ 22 ]. As a result, in our approach, the application’s required memory is reduced. 

However, in our approach, the use of 2 additional smaller tasks is required: Splitter (for 

image splitting) and Combiner (for final reordering). For test-bench purposes, we have also 

used 2 test-bench tasks: Video and Storage (Figure 36).  
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Figure 36. General data flow for the parallel/pipelined MPEG4 video encoder application 

The Video task does not belong to the final design. It is just a test-bench task, needed to 

simulate the behavior of a video source. It sends the video under the form of a pixels 

stream, compatible with YUV411 standard, to the Splitter. The Splitter divides the image 

into multiple areas (1 area for each of the MainDivX tasks) by rutting its pixels to the cor-

responding MainDivX, which will encode this area. Each time the MainDivX tasks finished 

encoding a MacroBlock, its encoded results are sent to a corresponding VLC task, which 

will compress this MacroBlocks one by one. The compressed MacroBlocks are then sent to 

the Combiner, which reorders all the VLC results, in order to obtain an MPEG4/ISO bit-

stream. Additionally, the Combiner also contains the Bitrate Controller function of the 

MPEG4 video encoder. After that, this bitstream is sent to the output Storage task, which is 

another test-bench task that simulates a storage support.  

As a result, the final algorithm behavior is composed of 2 pipelines. One pipeline at 

frame level between the Splitter and the rest of the algorithm, and a second local pipeline 

at MacroBlock level between the MainDivXs, VLCs and the Combiner. All the MainDivX 

tasks are executed in parallel, and all the VLC tasks are executed in parallel. 

It can be noticed that the Combiner task is returning a data to be used as input for the 

Splitter task. This data represents the quanta value. Since these two tasks belong to a pipe-

line, it may give the impression that the Splitter has to wait for the Combiner to give feed-

back to the quanta. However, this is not true, since the Splitter will use the previous quanta 
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value if the Combiner did not arrive at sending the new quanta value. Overall, this does not 

affects the good functionality of the algorithm, especially when the rate_control_delay pa-

rameter is high, in which case the quanta value will remain constant for a large number of 

frames. Similar cases can be found in the DivX and XviD implementations, when using 

multi-pass encoding strategy (this encoding strategy is out of the scope of this document, 

so we will not detail it further).    

The coarse grain partitioning was chosen, instead of fine grain partitioning (i.e. every 

basic function of the MainDivX task, like ME, SAD, DCT, IDCT, Quant, DeQuant be a 

different task) for simplicity and efficiency. In addition, fine-grained partitioning for 

highly called tasks (like in case of SAD) may induce serious performance degradation, 

because of the required context switches between them. 

3.2.2 Describing the method used for dividing the input image into multiple 

smaller areas required for the parallelized MainDivX tasks 

As the processing unit of the MPEG4 video encoder is the MacroBlock, the frame (im-

age) division is done at MacroBlock level. After dividing the frame, multiple smaller areas 

will be obtained. For all the resulting areas, the same number of the MainDivX tasks will 

encode them in parallel. Depending on the required level of parallelism, the frame will be 

divided into a specific number of areas. This division can be done in multiple ways. Figure 

37 shows 3 examples, when a QCIF resolution frame is divided into different areas.  
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Figure 37. Three examples of frame division methods for the QCIF resolution 

It can be noticed that between all neighboring areas, an overlap line/column region is 

used. The goal of this overlap is to assure the continuity of the global MPEG4 video en-

coder processing, caused by the progressive nature of the algorithm. For example, during 
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the Intra Prediction, the computations for a MacroBlock depend on the nature of the 

neighbor MacroBlocks from the left, top-left, top, and top-right. By using the overlap, we 

provide to the current Macro-Block (for example, from the first line in Figure 37 left) all 

the required neighbor Macro-Blocks.  

For instance, for the second case from Figure 37, when the MainDivX2 task (which is 

encoding the 2nd area) starts processing the first line, it is aware of the final results of the 

MainDivX1 task (which is encoding the 1st area) for that line. Thus, the MainDivX2 can 

anticipate the results of the MainDivX1 for that MacroBlock, so that it does not have to 

wait for the MainDivX1 to finish that first line. This way, perfect parallelism is assured. 

Another reason of the overlap is to assure the correct functionality of both MainDivX tasks 

in case objects in the image are moving from an area to another. This feature was not pos-

sible in the approaches presented in [ 20 ][ 21 ].  

There are multiple other methods of dividing a frame. For example, a QCIF image can 

be divided into 8 areas: 4 horizontal x 2 vertical, or 2 horizontal x 4 vertical, etc. The num-

ber of these methods becomes significantly bigger when increasing the video resolution.  

The only restriction is that, a divided area cannot be smaller than 1 MacroBlock. Using 

divided areas of exactly 1 MacroBlock (16x16 pixels) leads to a significant reduce of the 

number of MacroBlocks treated in P mode, because the MotionEstimation cannot be used. 

The smallest recommended divided area should be of 3x3 MacroBlocks, which ensures the 

good functionality of the MotionEstimation and the encoding of a MacroBlock as P. 

3.3 Flexible Architecture with 2 SMPs 

3.3.1 Global view of the Flexible Architecture with 2 SMPs 

The targeted architecture model (Figure 38) is a flexible architecture containing 2 

SMPs (1 SMP for MainDivX and 1 SMP for VLC) and an interconnect structure in charge 

of the inter-processors communications. This architecture is not yet implemented. It just 

gives an idea about the targeted architecture for the MPEG4 encoder. Additionally, it can 

impose some architecture parameters. In the case from Figure 38, it was freely chosen to 

map all the time the Splitter and Combiner on HW, to avoid becoming I/O bottlenecks. 
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This architecture is flexible, since it can be configured for different parameters. For ex-

ample, it can be configured for different number of CPUs for the MainDivX-SMP and the 

VLC-SMP, depending on the chosen level of parallelism. Each of these CPUs contains 

only one task. Additionally, the Communication Network can be configured to manage the 

communication between different number of CPUs, as it will be described later in this 

document. 
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Figure 38. Flexible architecture with 2 SMP 

3.3.2 Describing the functionality of the Splitter 

The Splitter is in charge of receiving a stream of pixels, and of deciding the corre-

sponding MainDivX for each pixel. Since the stream of pixels does not contain any infor-

mation regarding the coordinate of each pixel in the image, is the Splitter’s job to count the 

coordinates for each pixel. Based on this coordinate, and a list of coordinates tables associ-

ated to it for all divided images of all the MainDivX, the Splitter can easily determine to 

which MainDivX belongs this pixel. This pixel is stored into a buffer of pixels targeted for 

this MainDivX, along with the relative address (position) of this buffer in the divided area 

associated to this MainDivX (Figure 39).  

The sizes of each of the buffers are customizable. The quanta value provided to the 

Splitter by the Combiner will be the last value sent to the all MainDivX. If this quanta did 

not arrive from the Combiner until that moment, the Splitter will send the previous quanta 

value.  
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The division coordinates table depends on the method used to divide the image. For 

example, for the first case from Figure 37, the division coordinates will contain 

(x1_start=0, y1_start=0, x1_end=176, y1_end=80) for the 1st area associated to Main-

DivX1, and (x2_start=0, y2_start=64, x2_end=176, y2_end=144) for the 2nd area associated 

to MainDivX2. Since some pixels can belong to multiple regions (overlap), this pixel will 

be stored into each pixels buffer corresponding to those areas.  
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Figure 39. Simplified representation of the Splitter 

3.3.3 Describing the functionality of the MainDivX  

The MainDivX receives its current frame, which is the corresponding part of the frame 

prepared by the Splitter. The MainDivX executes the MPEG4 video encoder algorithm on 

this image. Each time it has finished encoding a MacroBlock, its results are stored into an 

output buffer to be sent to the corresponding VLC (Figure 40). The size of the structure 

storing the encoded results is always 820 bytes for a MacroBlock, irrelevant if this Mac-

roBlock was encoded as I or P.  
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Figure 40. Simplified representation of the MainDivX 
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Meanwhile, the MainDivX continues to encode the next MacroBlock. This loop is re-

peated until the MainDivX has finished processing all the MacroBlocks.  

It is important to mention that in the encoded results for a MacroBlock are stored also 

the coordinates of this MacroBlock in the image. This will be used later by the Combiner 

in order to be able to reorder correctly the MacroBlocks for constructing the MPEG4 bit-

stream.  

Regarding the overlap region, only one of the MainDivX will send to the VLC the en-

coded results for a MacroBlock belonging to that overlap. For example, in the first case 

from the Figure 37, the MainDivX1 will send the result for the overlap, while the Main-

DivX2 will not. In the third case from the Figure 37, for the overlap between the 2nd and 4th 

area, only the MainDivX2 will send the results, and not the MainDivX4. Generally, the 

MainDivX that sends the results of an overlap is the task with the lower index counter. As a 

result, all the VLCs will receive only one encoded result for each MacroBlock.  

3.3.4 Description of the functionality of the VLC 

The VLC receives the encoded results for a MacroBlock, and compresses it (Figure 41). 

In case this MacroBlock belongs to the (0,0) coordinates in the image, the VLC is attaching 

in front of this compressed MacroBlock the VOL and VOP headers [ 5 ]. 
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Figure 41. Simplified representation of the VLC 

If the size of the input for the VLC is known, then the size of the compressed output 

MacroBlock is variable. The maximum possible size for a compressed MacroBlock is 800 

bytes [ 5 ]. This maximum is achieved for extreme cases (e.g. white noise in the image). 
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Therefore, even if the average size is approximately 100 bytes, the maximum allocated 

buffer size for the compressed MacroBlock has to be able to encapsulate these 800 bytes.  

The compressed buffer contains the compressed bitstream for that MacroBlock, the 

size of the bitstream for that MacroBlock, and the coordinates in the image of that Mac-

roBlock.  

It is important to mention that the size of a bitstream for a MacroBlock is represented 

in bits, and usually this size is not a multiple of 8. Thus, any future concatenation of multi-

ple bitstreams for MacroBlocks has to be done at bit level, and it cannot be done at byte 

(octet) level. The concatenations are achieved by the Combiner.  

3.3.5 Describing the functionality of the Combiner 

The Combiner receives the Bitstreams of MacroBlocks from all the VLCs. Based on the 

coordinate in the image for the received MacroBlock bitstream, the Combiner stores this 

bitstream into a Bitstreams Buffer (array) used to store all the Bitstreams for each MacroB-

lock (Figure 42). When each position in this Bitstream Buffer is occupied, then the current 

frame is completely encoded and compressed. The last phase is to concatenate at bit level 

all these MacroBlock Bitstreams, obtaining the final MPEG4 bitstream for the current 

frame.  
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All ? Concatenate bitstreams
MPEG4 bitstream

Bitrate Controller

size

quanta
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Figure 42. Simplified representation of the Combiner 
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Once the MPEG4 bitstream is obtained for the current frame, the Combiner uses the 

size of this bitstream along with the Bitrate Controller function, in order to compute (ad-

just) the quanta value to be used when encoding the next frame. This quanta will be sent to 

the Splitter, which will send it to all the MainDivX.  

The resulted MPEG4 bitstream is sent under the form of a data stream. In practice, this 

MPEG4 bitstream will have to be sent either to a Real-Time Transmition Protocol Inter-

face (RTTPI), for example in case of a mobile-mobile communication, either to a Cinema 

File System Interface (CFSI), in case this MPEG4 bitstream will have to be stored into a 

cinema file format (i.e. AVI, WMV). However, these aspects are out of the purpose of the 

MPEG4 video encoder. In our experiments, the resulted MPEG4 bitstream is sent to a test-

bench module, called Storage, which writes the MPEG4 bitstream on a HDD.  

In order to describe the Flexible Architecture with 2 SMPs, we use the concept Com-

bined Algorithm/Architecture Executable Model. Since multiple architecture configurations 

may exist (i.e. for different number of CPUs), different configurations of Combined Algo-

rithm/Architecture Executable Models are needed. To obtain them automatically, we use a 

flexible modeling style using a unique Flexible Algorithm/Architecture Model for MPEG4, 

from which multiple configurations of Combined Algorithm/Architecture Executable Mod-

els can be generated.   

3.4 Combined Algorithm/Architecture Executable Model 

3.4.1 Concept of Combined Algorithm/Architecture Executable Model 

The Combined Algorithm/Architecture Executable Model represents a high-level simu-

lation model used to describe a system. This system contains an architecture and an algo-

rithm. The algorithm will be executed on this architecture. Such a model allows to create 

accurate executable specifications for a complex system, from the beginning of the design 

flow. This model provides significant advantages [ 27 ]: 

a) It avoids inconsistency, errors and helps to ensure the completeness of the specifica-

tions. Creating an executable specification for a system represents in fact the realiza-

tion of a program that behaves in the same way as the system.  
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b) It captures the behavior of the architecture and the algorithm, and the interaction be-

tween them. This allows us to build a correct system, which ensures the good 

functionality of the algorithm and the architecture “running together”.  

c) It allows to validate, simulate and debug the system functionality, even before the 

actual chip implementation begins. These are achieved by the executing the specifi-

cation, and monitor its behavior.   

d) It helps to create early performance models of the system and validate system per-

formances. 

e) It allows the use of test-bench data as input for the system. This allows the possibil-

ity to test different functionality scenarios, even before implementing the chip.    

To describe a system as a simulation model, there are 3 important aspects which have 

to be taken into account: the concept of components, links and organization (Figure 43).  

Component 1

Component 2

Compo-
nent 3

Compo-
nent 4

System

Lin
ks

 
Figure 43. Describing a system using components and links 

a) A component is a basic building block used to describe a part of the system. A com-

plete system is composed by one or multiple components. These components allow 

the designers to break complex systems into smaller more manageable pieces. Addi-

tionally, a component allows the hiding of internal data representation and algorithm 

from other components. Thus, the change of a component can be done without modi-

fying other components. This allows the designer to optimize the design locally, at 

component level. Each component contains a behavior description (named contain) 
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and an interface [ 57 ]. The contain represents an algorithm describing the function-

ality of the component, or a system. In other words, it is possible to describe a com-

ponent as another system containing multiple sub-components. This is called hierar-

chical system description. The interfaces contain a behavior that allows the compo-

nent to interact with the rest of the system, through the system’s links. More details 

about components can be found in [ 57 ]. 

b) The links represent the interconnection infrastructure between the components. The 

links allow the interaction between the components, by ensuring the transport of the 

data between the components. The links between the components can be described at 

different abstraction levels, as a network (Philips AEthereal, STMicroelectronics 

Octagon, etc), abstract interconnections (FIFO channel, MPI channel, etc) or physi-

cal interconnections (physical wires).  

Depending on their abstraction levels, the links can hide some communication de-

tails from the components. If the links are described at a high-level (abstract 

interconnections), the components do not have to manage explicitly the protocol, but 

only the “services” provided by such links. For example, in case the links are MPI 

channels, the low-level communication details are completely hidden from the com-

ponents. As will be detailed later in this document, the components are communicat-

ing by calling specific MPI functions, like MPI_Send or MPI_Recv. However, if the 

links are described at low-level (physical interconnections), the components will 

have to manage explicitly the protocols (i.e. handshake) imposed by such links. 

More details about the links can be found in [ 57 ]. 

By using the concept of components and links, the computation aspects are separated 

from the communication aspects. 

c) To obtain a correct functional simulation model, all the components and links have 

to be assembled together using specific organization semantics (“rules”) [ 57 ]. In 

other words, it is not only sufficient to build components and links to obtain a simu-

lation model, they also have to be assembled correctly. For example, every link has 

to be connected with two components. Additionally, the obtained simulation model 

has to be executed, in order to validate its behavior. The execution of a simulation 
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model can be done in two ways: execution using a simulation environment, execu-

tion as a standalone executable program. Examples of simulation models that are 

executed using a simulation environment are the models described using Matlab, 

VHDL, Simulink, etc. [ 57 ]. To execute these models, it is required to use an addi-

tional tool containing the execution environment needed to “interpret” the function-

ality of this model. An example of simulation model that is executed as standalone 

executable program is the model described in SystemC. Since this model is based on 

C/C++ language, it is sufficient to compile the model using a typical C/C++ compi-

lation approach, to obtain the standalone executable program containing the func-

tionality of the model [ 27 ]. In this case, the execution environment is integrated 

into the executable program.  

3.4.2 SystemC used for the description of the Combined Algorithm/Architecture 

Executable Model 

SystemC is a C++ class library and a language to design system description models [ 

27 ]. These models are described using executable specifications. An executable specifica-

tion is essentially a C/C++ program that exhibits the same behavior as the system when 

executed. Syntactically, designing a model in SystemC is identical to classical Object Ori-

ented Programming. All the aspects from a model, either components or links, are in fact 

C++ objects. This makes the entire model compilable, and thus executable.  

A model described using SystemC uses the following concepts: 

a) The components in SystemC are called Modules. These modules are declared using 

the SC_MODULE class. The contain of these modules can be algorithmic tasks de-

scribed as threads (SC_CTHREAD, SC_THREAD, SC_METHOD). The complete 

behavior of these tasks can be described using C/C++ language. Additionally, the 

contain of a module can be another module (SC_MODULE). This allows a hierar-

chical description of the system. The interface of a Module is declared using 

SC_INTERFACE class. This is used to ensure the interaction between the contain of 

the module with the exterior of the module.  
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b) The links in SystemC are defined as ports (SC_PORT), signals (SC_SIGNAL) and 

channels (SC_CHANNEL). The ports of a module are in fact external interfaces of 

that module, which pass information to and from the module, and trigger actions 

into the module. The signals create elementary connections between the modules 

ports allowing the modules to communicate [ 27 ]. In fact, signals can be seen as 

physical wires. The channels represent an abstract interconnect method between the 

modules ports, which can abstract multiple signals and protocols. By using chan-

nels, like MPI channels, it is possible to model abstract interconnections. 

c) The SystemC execution environment is in fact an executable simulation engine, 

called SystemC scheduler, used to execute the behavior of the modules, ports, sig-

nals and channels. The execution is divided into two phases: initialization phase and 

execution phase [ 57 ]. During the initialization phase, the scheduler is loaded, after 

which are instantiated all the modules, ports, signals and channels from the current 

simulation model. During the execution phase, SystemC executes all the tasks until 

they arrive at a “blocking point”, for example at wait instructions [ 57 ]. In this mo-

ment, the SystemC updates all the values from the ports and signals, and the list of 

tasks that has to be executed in the next simulation time (clock cycle). If there is no 

task to be executed, the SystemC keeps advancing the simulation time until there is 

a task to be executed. So, the SystemC simulation is cycle-based [ 27 ], and the syn-

chronizations between the tasks can be of two types: synchronization using physical 

clock, or synchronization using logical clock (when there is no existing physical 

clock). More details about SystemC execution environment can be found in [ 57 ] 

and [ 27 ]. 

The main advantage of describing a model in SystemC is that it provides an under-

standable language for both software and hardware designers. For the same model, the 

software designers can interpret it as an object oriented program, while the hardware de-

signers can interpret it as an ensemble of ports, signals, clocks, modules, etc. Additionally, 

when describing models in SystemC, it allows the software designers to use typical C/C++ 

programming techniques for the implementation of complex algorithm tasks that will be 

integrated into modules (i.e. MainDivX task).      
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3.4.3 Combined Algorithm/Architecture Executable Model using MPI-SystemC 

HLPPM 

The Combined Algorithm/Architecture Executable Model using MPI-SystemC abstract 

interconnect execution model is a system described completely in SystemC. This system is 

formed by multiple SystemC modules. Each module contains one or more algorithmic 

tasks. The communications between the tasks are done using message passing. The inter-

connections between the tasks are done through an abstract interconnect execution model, 

called MPI_SystemC (Figure 44). In [ 30 ], such an interconnect execution model is called 

High-Level Parallel Programming Model (HLPPM). A HLPPM hides completely the low-

level architecture details: Communication Network, HW/SW & HW/HW Interfaces. 
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MPI_SEND(…,data1,…,MainDivX3_ID,…); MPI_RECV(…,data1,…,Splitter_ID,…);

 
Figure 44. Combined Algorithm/Architecture Executable Model using MPI-SystemC 

The example in Figure 44 shows an example of Combined Algorithm/Architecture Ex-

ecutable Model for MPEG4, using 4 MainDivXs and 2 VLCs. The model is formed by 

multiple SystemC modules, each of them containing one task. These tasks contain the al-

gorithm behavior, described in C/C++. It can be noticed that this model also contains the 

Video and Storage modules. However, these 2 modules are only for test-bench purpose, 

and they will not be used in the final architecture. The tasks from the modules are commu-

nicating through message passing by calling a set of MPI primitives Figure 45. The syntax 

and purpose of each MPI primitive are detailed in [ 31 ] and [ 58 ].  
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MP_Init(*this,argc,argv);
MP_Finalize(*this);

MP_[I]Send(*this,buf,count,datatype,dest,tag,comm);
MP_[I]Recv(*this,buf,count,datatype,source,tag,comm,status);

MP_[I]BSend(*this,buf,count,datatype,dest,tag,comm);
MP_[I]BRecv(*this,buf,count,datatype,source,tag,comm,status);

MP_[I]SSend(*this,buf,count,datatype,dest,tag,comm);
MP_[I]SRecv(*this,buf,count,datatype,source,tag,comm,status);

MPI_Wait(*this,request,status);
MPI_Test(*this,request,flag,status);  

Figure 45. Subset of MPI communication primitives 

The Splitter task sends a message data1 to MainDivX3 task, by mentioning in the 

MPI_SEND primitive the unique IDs of MainDivX3 task. On the other sides, the Main-

DivX3 task will call an MPI_RECV primitive to receive the data from the Splitter task. 

When using communication with MPI primitives, the low-level communication proto-

cols and details, HW/SW and HW/HW interfaces are completely abstracted, thanks to the 

MPI_SystemC HLPPM.  

The MPI_SystemC HLPPM [ 58 ] is a runtime execution environment for message 

passing communication using the subset of MPI primitives presented in Figure 45. It is 

similar to MPICH [ 31 ] (supports the same MPI primitives) but with the possibility of in-

cluding configurable timing annotations for the communication, using SystemC libraries. 

Figure 46 shows that the communication between two tasks is done using Communication 

Units (CU) (one CU for each task), which manages the MPI requests from the tasks, the 

communication with other CUs, and inserts the timing annotations. Since a CU can be 

connected to many other CUs, the MPI-SystemC HLPPM can support point to point and 

bus topologies.   



 70 

Task CU TaskCU
Transfer

Comm request

Data access

SystemC 
channel

SystemC 
process

 
Figure 46. Task-to-Task communication using MPI-SystemC 

3.5 Flexible Algorithm/Architecture Model for MPEG4 

In the followings section, the unique Flexible Algorithm/Architecture Model for 

MPEG4 is presented. It is used to obtain automatically different configurations of Com-

bined Algorithm/Architecture Executable Models. This is possible by using the concepts of 

tasks with Flexible Computations, Flexible Outputs and Flexible Inputs. The resulted 

Combined Algorithm/Architecture Executable Models is used to represent a specific con-

figuration of the Flexible Architecture with 2 SMPs for MPEG4.   

3.5.1 Concept of tasks with Flexible Computations 

We call a task with flexible computations, the task from which can be obtained multi-

ple tasks forming a SMP. This is obtained by instantiating this task into multiple identical 

tasks that will be executed in parallel. Such tasks can be the MainDivX task, VLC task. For 

each example, the code of all the instantiated tasks is identical. The only difference is the 

working parameters. However, in the task with flexible computations, these parameters are 

not yet decided. An example of obtaining multiple customized tasks forming a SMP from a 

task with flexible computations is presented in Figure 47.  
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Figure 47. Task with flexible computations used to obtain multiple customized tasks in a SMP 

To describe a task with flexible computations we use the concept of macro-code. A 

task described into macro-code can be expanded into multiple identical tasks using a 

macro-expander tool. Example of such macro-expender tools is the RIVE. The RIVE 

macro-expander tool was developed by Lovic Gauthier as part of his PhD work [ 41 ]. The 

purpose of this language is similar to M4 [ 32 ], but it is easier to use. This tool receives as 

input a file described in macro-code, and a file containing a set of parameters. Using these 

two files, the RIVE tool generates one or more text files, by customizing the macro-code 

with the parameters contained in the configuration file. The advantage of using this ap-

proach is to be able to describe generic elements, from which can be generated specific 

elements.  

The process of macro-expending the MainDivX task is presented in Figure 48. This 

task is described into MainDivX.cpp.riv file (in this example, we have decided to present 

only the code lines significant to this sub-chapter). This file contains the macro-code for 

the main function of the MainDivX task. This function is called MainDivX”N”_MAIN. The 

value N means that it was not yet decided how many MainDivX tasks will be used later. 

Inside this function is called the function MainDivX_COMPUTE, which contains the com-

putations needed to encode an image. The values for the parameters used by this function 

are not yet decided. These parameters are the height and length of the image that will be 

processed by the MainDivX, some border related parameters required for the overlaps and 

MotionEstimation, and some internal specific data structures.  
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MainDivX.cpp.riv
void MainDivX”N”_MAIN(void)
{

…………

MainDivX_COMPUTE(&image_memory”N”, height”N”,length”N”,top_border”N”,left_border”N”, 
bottom_border”N”, right_border”N”,&result);

………….
}

Macro-Expansion

MainDivX0.cpp
void MainDivX0_MAIN(void)
{

…………

MainDivX_COMPUTE(&image_memory0, height0,length0,top_border0,left_border0, 
bottom_border0, right_border0,&result);

………….
}

MainDivX1.cpp
void MainDivX1_MAIN(void)
{

…………

MainDivX_COMPUTE(&image_memory1, height1,length1,top_border1,left_border1, 
bottom_border1, right_border1,&result);

………….
}

MainDivX2.cpp
void MainDivX2_MAIN(void)
{

…………

MainDivX_COMPUTE(&image_memory2, height2,length2,top_border2,left_border2, 
bottom_border2, right_border2,&result);

………….
}

Parameters

N=3

 

Figure 48. Macro-generation from a task with flexible computations 

From the MainDivX.cpp.riv file, multiple instances of MainDivX tasks can be macro-

generated. The macro-generation is done calling the RIVE macro-expander using the fol-

lowing syntax: RIVE MainDivX.cpp.riv –i Parameters –o MainDivX.cpp. The macro-

generator will use as input file the MainDivX.cpp.riv which will be expanded using the 

parameters from the file Parameters. In this example, the used parameter is N=3, which 

means that we want to obtain 3 MainDivX tasks. The results of the macro-generation are 3  

compilable C/C++ files belonging to the 3 MainDivX tasks.  

For each of the MainDivX task, the parameters are now fixed. The actual values for 

some of these parameters are stored into a header file that is generated using the same 

macro-generation technique. The important thing is that all 3 MainDivX tasks will use the 
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same function to encode their corresponding images. The only differences are the used 

parameters.   

As a result, a task with flexible computations represents a task from which multiple 

customized tasks can be macro-generated. These customized tasks are forming a SMP. The 

code of these tasks is practically identical, the only difference are the used parameters.  

3.5.2 Concept of tasks with Flexible Output 

We call a task with flexible output, a task that can be adapted to send data to a different 

number of other tasks. The destination tasks are usually belonging to a SMP. An example 

of such task is the Splitter task (Figure 36 and Figure 39). The Splitter task has to send data 

to multiple MainDivX tasks. The problem is that, the number of MainDivX tasks may vary. 

This means that it should be easy to adapt the Splitter task to support a customizable num-

ber of outputs (Figure 49).  

Splitter Splitter

Task with 
flexible output

to MainDivX0

to MainDivX1

to MainDivX2

to MainDivX

Task with 
customized 
number of 

outputs  
Figure 49. Task with flexible output used to obtain task with customized number of outputs 

To achieve this, we use the same macro-expansion technique, like the cases used for 

the tasks with flexible computations. The process of macro-expending the Splitter task is 

presented in Figure 50.  

The code of the Splitter task is in the Splitter_MAIN function from the Splitter.cpp.riv 

file. In this function, the Splitter task will send data to N targeted MainDivX tasks. This is 

done by using a loop approach, in which the target_divx is from 0 to N-1. In each loop 

iteration, the Splitter will check first if the buffer corresponding to the current target_divx 

is full. If it is full, the Splitter will send it to the target_divx MainDivX task, using an 

MPI_SEND call. None of the parameters of the MPI_SEND are fixed yet. In addition, the 

number of MainDivX tasks is also not yet fixed.  
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void Splitter_MAIN(void)
{

…………

for (target_divx=0; target_divx<“N”; target_divx++)
{

if (buffer_for_divx[target_divx].full)
MPI_”PROTOCOL”Send(&this, buffer_for_divx[target_ divx].data,”BURST_SIZE”,            

”DATA_WIDTH”,MainDivX[target_divx]_ID,22,MPI_COMM_WORLD);
}  

………….
}

Splitter.cpp.riv

Macro-Expansion

Parameters
N=3
PROTOCOL= “”
BURST_SIZE=16
DATA_WIDTH=32

void Splitter_MAIN(void)
{

…………

for (target_divx=0; target_divx<3; target_divx++)
{

if (buffer_for_divx[target_divx].full)
MPI_Send(&this, buffer_for_divx[target_ divx].data,16,            

32,MainDivX[target_divx]_ID,22,MPI_COMM_WORLD);
}  

………….
}

Splitter.cpp

 
Figure 50. Macro-generating a task with flexible outputs  

From Splitter.cpp.riv can be macro-generated the Splitter.cpp file, containing the Split-

ter task with customized outputs. In this file, the number of MainDivX tasks is already 

fixed to 3. Thus, the target_divx counter will advance from 0 to 2. For each target_divx 

value, the Splitter tasks will check if the buffer for MainDivX target_divx is full. If it is 

full, it will send the data from this buffer to the MainDivX[target_divx]. Additionally, the 

parameters for the MPI_SEND communication primitive are fixed: the protocol is blocking 

(because the PROTOCOL=”” resulting in blocking MPI_SEND), the burst size is set to 16, 

and the data width is set to 32 bits. As a result, the Splitter task was customized to be able 

to send data to 3 MainDivX tasks and using customized communication parameters. 

As a result, a task with flexible output is used to macro-generate a task that can send 

data to a customized number of destinations using customized communication parameters. 
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3.5.3 Concept of tasks with Flexible Input 

We call a task with flexible input, a task that can be adapted to receive data from dif-

ferent number of tasks. The source tasks are usually belonging to a SMP. An example of 

such task is the Combiner task (Figure 36 and Figure 42). The Combiner task receives data 

from multiple VLC tasks. However, the number of VLC tasks can vary. This means that the 

Combiner task will have to be easily adaptable to support a customizable number of inputs.  

Combiner Combiner

Task with 
flexible input

from VLC0

from VLC

Task with 
customized 

inputs

from VLC1

 
Figure 51. Task with flexible input used to obtain task with customized number of inputs 

In this case also, a macro-expansion technique is used, similar to the one used for the 

tasks with flexible computations and tasks with flexible outputs. The process of macro-

expending the Combiner task is presented in Figure 50. The code of the Combiner task is 

in the Combiner_MAIN function from the Combiner.cpp.riv file. In this function, the 

Combiner task will receive data from any VLC that is sending data to the Combiner task. 

The Combiner tasks will receive the data in the same order as the VLCs are sending the 

data. This is possible by using in the MPI_RECV (from the Combiner task) the parameter 

MPI_ANY_SOURCE. Of course, in each VLC task is used an MPI_SEND(…., Com-

biner_ID, ….). Thus, compared with the flexible outputs, for the flexible inputs it is not 

necessary to mention the number of sources. The MPI_SEND primitive will be in charge 

of arbitrating the data coming to the Combiner task from the VLC tasks.  

The Combiner.cpp file, containing the Combiner task with customized inputs can be 

macro-generated from the Combiner.cpp.riv file. The communication parameters for the 

MPI_Recv are also customized. As a result, the Combiner task was customized to be able 

to receive data from all the VLC tasks sending data to the Combiner. 
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void Combiner_MAIN(void)
{

…………

MPI_”PROTOCOL”Recv(&this, &input_buffer, ”BURST_SIZE”,”DATA_WIDTH”, 
MPI_ANY_SOURCE,11,MPI_COMM_WORLD,&status);

………….
}

Combiner.cpp.riv

Macro-Expansion

Parameters
PROTOCOL= “”
BURST_SIZE=820
DATA_WIDTH=32

void Combiner_MAIN(void)
{

…………

MPI_Recv(&this, &input_buffer, 820,32, 
MPI_ANY_SOURCE,11,MPI_COMM_WORLD,&status);

………….
}

Combiner.cpp

 
Figure 52. Macro-generating a task with flexible input 

3.5.4 Flexible Algorithm/Architecture Model for MPEG4 

The Flexible Algorithm/Architecture Model for MPEG4 (Figure 53) is composed of 

Modules and an Abstract interconnect execution model (MPI-SystemC HLPPM). Each 

Module contains one task. Each task can be of 2 types:  

a) flexible task, which has at least one of following characteristics: 

    - flexible computations – task belonging to a SMP : MainDivX, VLC 

    - flexible input – task which is receiving data from a SMP: VLC, Combiner 

    - flexible output – task which is sending data to a SMP: Splitter, MainDivX 

b) fixed task – none of the above: Video, Storage  
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Figure 53. Flexible Algorithm/Architecture Model for MPEG4 

Each element of this model is written as macro-code: tasks, SystemC modules. There 

are approximately 30 files written as macro-code, representing around 2000 lines of code. 

The main files which are not written as macro-code are the files containing the computa-

tions belonging to the MainDivX and VLC tasks, and the MPI-SystemC. These are ap-

proximately 50 files, representing around 15000 lines of code for the MPEG4 encoder al-

gorithm and approximately 4000 lines of code for the MPI-SystemC.   

The tasks are communicating through message passing by using MPI primitives. A 

simplified macro-code for the MainDivX task with MPI primitives is shown in Figure 54. 

MPI_”PROTOCOL”Recv(this,&image_memory”N”,sizeof(image_memory”N”),”DATA_

WIDTH”,SPLITTER_ID,22,MPI_COMM_WORLD,&status) receives data from the Split-

ter task. This primitive specifies the pointer were data will be stored, the amount of data, 

the communication data width and the unique ID assigned to the source task (Splitter). It 

can be noticed that most parameters are not yet fixed.  

Using the Flexible Algorithm/Architecture Model for MPEG4, many customized mod-

els can be macro-generated. This is done by expanding every file containing macro-code 

with the desired algorithm/architecture configuration parameters. The result represents the 

Combined Algorithm/Architecture Executable Model in which the entire algorithm and 

architecture are customized. 
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//------------------ MainDivX task ---------------------------------------------
EXTERN *image_memory“N”,height“N”, length“N”, top_border“N”, left_border”N”,

bottom_border“N”, right_border“N”,*result”N”; 

void MainDivX”N”_MAIN (void)
{

//initialization of computations
MainDivX_INIT (&image_memory“N”, height”N”, length”N”); 

//infinite loop for every frame
while (1)
{

//data_receive_communication from the Splitter
MPI_”PROTOCOL”Recv(this,&image_memory”N”,sizeof(image_memory”N”),

”DATA_WIDTH”,SPLITTER_ID,22,MPI_COMM_WORLD,&status);

//calls the function with flexible computations
MainDivX_COMPUTE (&image_memory“N”,height“N”, length“N”, top_border“N”, 

left_border”N”, bottom_border“N”, right_border“N”,&result”N”);

//send_results_communication to the VLC
MPI_”PROTOCOL”Send(this,&result”N”,sizeof(result”N”),”DATA_WIDTH”,

VLC[“target_vlc”]_ID,22, MPI_COMM_WORLD);
}  

Figure 54. Example of task description using MPI primitives 

3.5.5 Algorithm and Architecture configurations 

During the macro-expansion process, we use 2 categories of configuration parameters, 

shown in Figure 55.  

Algorithm parameters Architecture parameters 
Level of Parallelism/Pipeline Number of CPUs 
Video resolution Type of CPUs 
Frame rate HW-SW partitioning 
Bitrate Communication topology 
Key frame Blocking/Non-blocking comm. 
MotionEstimation precision Arbitration type 
MotionEstimation search area Message size 
Progressive/Interlaced mode Data width 
Scene change detection Data transfer latency 
Quantization range Transfer initialization latency 
Quantization type (H263,MPEG4) Transfer close latency 

Figure 55. Algorithm and Architecture parameters  

Using these configurations, the designer is able to choose the configuration of the gen-

erated Combined Algorithm/Architecture Executable Model for MPEG4 into multi-

processor architecture. Additionally, these parameters allow targeting different applications 
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(i.e. mobile telecommunication), each of them requiring different algorithm and architec-

ture configurations (i.e. video resolution, frame rate, number of CPUs, type of CPUs, etc).  

3.5.6 Obtaining the Combined Algorithm/Architecture Executable Model 

Figure 56 shows an example of macro-generated SystemC Model with 2 SMP subsys-

tems (MainDivX and VLC), and the data dependencies between the tasks (the dotted ar-

rows). This model is called Combined Algorithm/Architecture Executable Model. It is an 

un-timed model, and it captures both the architecture and the algorithm.  
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Figure 56. Example of obtained Combined Algorithm/Architecture Executable Model 

This model is obtained by macro-generating each file containing macro-codes from the 

Flexible Algorithm/Architecture Model for MPEG4. Figure 57 shows the C/C++ code of 

the resulted MainDivX1 task after the macro-expansion. 
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//------------------ MainDivX task ---------------------------------------------
EXTERN *image_memory1,height1, length1, top_border1, left_border1,

bottom_border1, right_border1,*result1; 

void MainDivX1_MAIN (void)
{

//initialization of computations
MainDivX_INIT (&image_memory1, height1, length1); 

//infinite loop for every frame
while (1)
{

//data_receive_communication from the Splitter
MPI_Recv(this,&image_memory1,sizeof(image_memory1),

32,SPLITTER_ID,22,MPI_COMM_WORLD,&status);

//calls the function with flexible computations
MainDivX_COMPUTE (&image_memory1,height1, length1, top_border1, 

left_border1, bottom_border1, right_border1,&result1);

//send_results_communication to the VLC
MPI_BSend(this,&result1,sizeof(result1),32,

VLC[0]_ID,22, MPI_COMM_WORLD);
}  

Figure 57. Code of MainDivX1 task obtained after the macro-expansion 

It can be seen that all the algorithm/architecture parameters are now fixed. For different 

algorithm/architecture configuration parameters, different Combined Algorithm/ Architec-

ture Executable Models are obtained. The key advantage of such a model is its suitability 

for performances analysis, algorithm debug, synchronization debug, etc. 

3.6 Conclusions 

The objective of this chapter was to present our proposed flexible modeling style used 

to obtain automatically different Combined Algorithm/Architecture Executable Models for 

MPEG4 starting from a unique Flexible Algorithm/Architecture Model for MPEG4. This is 

used to represent at high-level of abstraction different configurations of the targeted Flexi-

ble Architecture for MPEG4 with 2 SMPs, containing a highly parallelizable/pipelined 

MPEG4 video encoder algorithm.  

This algorithm can be used for multiple applications, like home-cinema, video re-

cording, video surveillance, mobile telecommunications, etc. For each application, the al-

gorithm can be configured with the required algorithm parameters, and adapted to the used 

multiprocessors architecture. This algorithm can support different computations distribu-
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tion configurations on multiprocessors architectures, using parallel and pipeline execution 

schemes. The parallelism support is done using 2 SMP, each SMP containing multiple 

identical tasks running in parallel. The parallelism level is configurable, based on the con-

figuration of the required multiprocessor architecture. The pipeline support is done by 

separating the MPEG4 encoder algorithm in two phases: encoding phase, and compression 

phase. These two phases can execute in pipeline, at MacroBlock level. 

The generation of different Combined Algorithm/Architecture Executable Model for 

MPEG4 is possible thanks to the unique Flexible Algorithm/Architecture Model for 

MPEG4, containing flexible tasks with flexible computations (MainDivX-SMP and VLC-

SMP), flexible inputs and flexible outputs. Using a macro-expansion approach, different 

executable models are automatically obtained for different algorithm and architecture pa-

rameters.  

This approach allows to obtain automatically different configurations of algo-

rithm/architecture executable models for MPEG4, for different algorithm and architecture 

parameters, even for a large number of processors (i.e. >100 CPUs). The resulted models 

can be used for performances analysis, algorithm debug, synchronization debug, etc. 
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4  High-Level Algorithm/Architecture Exploration  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter presents the proposed High-Level Algorithm/Architecture Ex-
ploration flow. This flow allows us to explore different algorithm and archi-
tecture configurations, even before starting the implementation of the MPEG4 
encoder on MP-SoC. This approach leads to a significant reduction of the de-
sign cost. This flow is using the unique Flexible Algorithm/Architecture 
Model for MPEG4 from which different customized models can be automati-
cally obtained. These customized models are used for performance estima-
tions, using time annotation technique. Using this flow, multiple configura-
tions of MPEG4 encoder on MP-SoC were successfully explored, for differ-
ent algorithm and architecture configurations. 
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4.1 Principle of the High-Level Algorithm/Architecture Exploration 

4.1.1 Introduction 

Video encoding is widely included in most of consumer, multimedia, mobile and tele-

communication applications [ 17 ]. This is becoming a key technology for many future 

applications. These different applications impose different constraints on the encoding pa-

rameters (video resolution, frame rate) and on the resulting design (cost, speed and power). 

Even if MPEG4 seems to be a nearly accepted common standard for most embedded sys-

tems domains, a plethora of MPEG4 architectures exists today to comply with different 

applications [ 3 ][ 17] [ 18 ][ 19 ]. 

Implementing an MP-SoC architecture until the RTL level, starting from a wrong set of 

ad-hoc parameters (i.e. CPUs number/type, or communication topology) implies a costly 

design. Each modification of parameters will lead to the need of complex modifications 

(which may also lead to a deteriorated result, because of the bugs appearing after these 

“forced” modifications), or in the worst case the need to redesign completely the architec-

ture. In case of simple architectures, these problems appear rarely, but in case of complex 

applications, like MPEG4 video encoder on MP-SoC, this represents an important block-

age for the project. Additionally, this effort needs to be repeated for each application con-

figuration requiring an MPEG4 video encoder (i.e. for a different resolution). Few products 

may justify such a design budget, and the only working solution to get video encoding for 

low cost products (such as consumers) is to reduce the design cost of the product. One so-

lution to reduce the design cost is to do the architecture exploration at a high-level, before 

implementing the low-level architecture. 

4.1.2 Solution space for MPEG4 encoder on MP-SoC 

Implementations of MPEG4 video encoder on MP-SoC can be applied in multiple do-

mains: video surveillance, camera recorders, mobile telecommunications, home cinema, 

etc. Each of them requires specific architecture configurations, and imposes their own con-

straints in term of speed, power and chip surface. Finding the final implementation solution 
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requires adjusting a large number of parameters. These parameters can be split into two 

categories: 

a) Standard MPEG4 Algorithm parameters are related specifically to the algorithm 

functionality: video resolution, frame rate, bitrate, quantization range, quantization 

type, motion estimation precision, motion search area, progressive/interlaced encod-

ing, key frame rate, scene change detection, etc [ 5 ]. To be able to implement the 

MPEG4 video encoder on a parallel architecture, the algorithm is able to be parallel-

ized/pipelined, by adding parameters for parallelism/pipelining support.   

b) Architecture parameters are related to the targeted MP-SoC architecture: number of 

CPUs to be used, type of CPUs, HW-SW partitioning, communication topology, 

blocking/non-blocking protocol, arbitration type, message sizes, data width, maxi-

mum allowed data transfer latency, transfer initialization latency, etc. 

4.1.3 State of the art - classical exploration flow 

Several work in the literature tried to use the concept of high-level architecture explo-

ration in order to reduce the design cost [ 24 ][ 25 ] [ 26 ][ 28 ][ 29 ]. Even if the concept is 

very powerful in some application domains, this is still not widely used in the case of com-

plex design requiring MP-SoC. When estimating the performances of an entire system, it is 

imperative to estimate the performances of both, communication and computations.  

In [ 24 ], the performance estimations are covering only the communication parts, de-

pending on the usage of the tokens. However, from the authors’ knowledge, it is impossi-

ble to obtain different communication performances for the same architecture configura-

tions, by testing different communication times (i.e. communication initialization latency, 

data communication latency). Because video encoding applications are also extremely in-

tensive in term of computations, the method presented in [ 24 ] is not sufficient. Also, their 

programming model based on tokens, requires already to manage explicitly the tokens lo-

cations and allocations, using very specific APIs provided by the TTL model. However, in 

the case of our MPEG4 encoder, these details might be irrelevant because the communica-

tion is predictable and follows a well known pattern. 
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In [ 25 ], the performance estimations are covering only the communication times. 

Also, the computation part is completely ignored. During experiments, the execution time 

is determined using the standard clock instruction in C. The problem of using the clock 

instruction is that it might return different results between simulations, depending on the 

workstation status (cache status, background applications, etc). 

In [ 26 ], the performance estimations are covering both computations and communica-

tions, with high precision, using an ISS (Instruction Set Simulator) linked with SystemC [ 

27 ]. However, this model is already at low-level, and it requires many low-level parts of 

the architecture to be already build (i.e. HW/SW wrappers). Computation times are deter-

mined only for the processors supported by that ISS, and changing the type of the ISS is a 

long design process. 

In [ 28 ], the communication and computation estimation is done using a set of specific 

primitives which are explicitly annotated inside the code of the application (algorithm and 

architecture). Each of these primitive is “linked” with a high-level model of an architecture 

component. For example, the algorithm’s memory accesses are captured by manually an-

notating each variable access, using specific memory read and write primitives. Behind 

these primitives can be found complex high-level memory models (caches, local memo-

ries, shared memories, etc). Depending on the configuration used for these memory mod-

els, these read and write primitives will capture the performances of the memory accesses. 

Similarly is done to capture other aspects: interconnect network, computations, etc. This 

approach captures almost all the aspects of a system, and it provides a high degree of gen-

erality and flexibility. However, this approach, even if it looks attractive, requires to “fine” 

annotations. For video applications, this approach has two significant weaknesses:  

1) it requires a very long time to annotate manually the code of a video application, since 

such code is big (i.e. for MPEG4 encoder, around 100.000 annotations are required)  

2) annotating the code leads to the impossibility to capture the compiler optimizations, for 

example the register vs. memory accesses optimizations (i.e. for our experiments, the com-

piler optimizations provided approximately 40% performance boost).  
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Commercial tools are already offering some early architecture explorations. One of 

them is the Xtensa Xplorer [ 29 ]. It captures the computation requirements very precisely, 

but the inter-processor communication is done via “an always available” shared memory. 

This tool is not sufficient in case different communication topologies or different processor 

models had to be used. 

In all the presentedclassical exploration flows [ 24 ][ 25 ][ 26 ][ 28 ][ 29 ] (Figure 58a) , 

the designer implements manually the Algorithm Specifications starting from a set of al-

ready chosen Algorithm Configurations. Then, the Architecture Specifications is manually 

implemented, which should match with the Algorithm Specifications. In the end, the Algo-

rithm Specifications and Architecture Specifications are combined manually, to obtain a 

Combined Algorithm/Architecture Executable Model. This model simulates the algorithm 

and architecture running together, and it is used for Performance Estimations. If these es-

timations are not satisfying the requirements, the designer has to modify/redesign the algo-

rithm and/or architecture specifications. This flow has some weak points:   

a) The exploration space is reduced. When having to change the algorithm and/or ar-

chitecture specifications, the only things that can be changed are related to the paral-

lelism/pipelining execution scheme of the algorithm on the architecture. Addition-

ally, some mapping decisions [ 29 ], data organizations and communications con-

figurations [ 24 ][ 25 ] may be changed. However, any change leads to complex 

modifications of the algorithm specifications and/or architecture specifications. This 

is increasing the time required to obtain the final product. 

b) Building the Combined Algorithm/Architecture Executable Model has to be done 

manually, which is a difficult, time consuming and error prone [ 26 ]. In addition, 

this model has to be re-designed every time the algorithm and/or architecture speci-

fications are changed. The simulation speed of this model depends on the used ab-

straction level. If the abstraction level is too low [ 26 ], the simulation speed be-

comes unacceptable long. 

c) The performance estimation precision depends on the used abstraction level. At 

whatever level of abstraction, the estimation precision is a key issue. In [ 24 ][ 25 ], 

the performance estimations are covering only the communication. In [ 29 ], the per-
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formance estimations are covering precisely the computations, but the communica-

tion performances are estimated using an “always available” shared memory. This is 

insufficient if another communication topology is required. In [ 26 ], the estimations 

are precise, but the lack of abstractions makes the simulations long.  

4.1.4 Contribution of the proposed High-Level Algorithm/Architecture Exploration 

The key contribution is the use of a unique Flexible Algorithm/Architecture Model for 

MPEG4, from which multiple configurations of Combined Algorithm/Architecture Execu-

table Models can be obtained automatically. Our proposed exploration flow (Figure 58b) is 

able to cover multiple requirements:  

a) The need to explore a large solution space is solved by automatically generating the 

Combined Algorithm/Architecture Executable Model from a unique Flexible Algo-

rithm/Architecture Model for MPEG4, thanks to the flexible modeling style pre-

sented in the previous chapter. This approach provides the possibility to customize 

automatically the algorithm and build the abstract architecture, based on a set of Al-

gorithm/Architecture Configurations. 

b) The need of obtaining a fast simulation is covered by doing the architecture explora-

tion at a high-level. As a result, by ignoring many low-level architecture details in 

the Combined Algorithm/Architecture Executable Model, the simulation becomes 

fast. 

c) The need of precise simulation results is solved by using a High-Level Architecture 

Exploration that provides estimation results with high precision. This is done by us-

ing precise estimations for the computations and communication times, by annotat-

ing the computations time and communications time. In addition, the exploration 

captures the computations and communications running together, to estimate the 

performances of the entire system. If these performances are not satisfying the re-

quirements, the designer will have to change the algorithm and/or architecture con-

figurations, or rarely, to modify the Flexible Algorithm/Architecture Model for 

MPEG4. 
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Figure 58. Classical exploration(a) vs. Proposed exploration(b) 

This architecture exploration is achieved at a high-level using the Flexible Algorithm / 

Architecture Model for MPEG4, from which multiple configurations of Combined Algo-

rithm/Architecture Executable Models are automatically obtained. This decreases the time 

needed to obtain and test multiple architecture configurations. This helps to find in a much 

shorter time the correct algorithm and architecture configurations for the MPEG4 encoder 

into MP-SoC. Since the entire exploration is done at a high-level, there is no need to im-

plement and test multiple MP-SoC architectures at a low-level, which is drastically reduc-

ing the design cost. The proposed approach was applied successfully for the generation of 

several configurations of MPEG4 encoders.  

4.2 High-level Algorithm/Architecture Exploration flow for MPEG4 

This section describes in detail the High-Level Algorithm/Architecture Exploration 

flow (Figure 59) used for the MPEG4 video encoder. 



 89 

Timing 
annotations

Execution & 
performance
estimations

Acceptable 
solution?

No

Algorithm and Architecture 
configurations file

Expansion
Abstract 

Architecture

Communication
Network

Executable Model with Explicit 
Network 

HW-SW Interfaces 
Architecture Refinement

RTL Architecture with 
executable SW

Classical RTL design flow

MP-SoC chip

Yes

Flexible Algorithm/  
Architecture Model

for MPEG4

Macro-expansion

Algorithm & Architecture 
Parameters

Combined 
Algorithm/Architecture

Executable Model

Timed Executable
Model

Communication time
tables

High-Level 
Algorithm/Architecture 
Exploration  

Figure 59. Detailed representation of the design flow 

This flow is composed of 4 major phases: (1) generating the Combined Algo-

rithm/Architecture Executable Model; (2) obtaining the Timed Executable SystemC Model; 

(3) performance estimation and reconfiguration; (4) building the final RTL architecture. 

Only the first 3 phases are part of the high-level architecture exploration and will be de-

tailed. Presenting the phase of building the final RTL [ 47 ] architecture will be explained 

later in this document.   
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4.2.1 Obtaining the Timed Executable Model required for performance estima-

tions 

For performance estimations, a Timed Executable Model is used. This model is ob-

tained in two steps: 

a) The Flexible Algorithm/Architecture Model for MPEG4 is macro-expanded to obtain 

the Combined Algorithm/Architecture Executable Model. This initial model is used 

to compute the delays for the computations. Delays are obtained using a classical 

approach consisting of executing the C/C++ code of the tasks on an Instruction Set 

Simulator (ISS) of the targeted CPU. This gives an approximate number of clock 

cycles required by the different tasks, independently of the communications. The ob-

tained times are not 100% accurate, because the scheduling effect is not captured 

with this approach. The experiments show that the performance estimation is precise 

enough for our architecture exploration, as will be shown later in this paper. 

b) The obtained computational delays are inserted in the Combined Algo-

rithm/Architecture Executable Model, by inserting time annotations for computa-

tions and communications into the tasks code. The time annotations for computa-

tions are done by inserting WAIT calls to simulate the computations delays [ 33 ]. 

The time annotations for communications are embedded within the MPI-SystemC. 

Communication times are given for different communication configurations (mes-

sage size, data width, protocol, transfer latencies). In this work, these times are 

given as parameterized delay functions associated to each MPI primitive. The execu-

tion of each primitive is divided into 3 steps: initialization (initial synchronizations), 

transfer (for each data) and closure (communication release). An execution time is 

associated to each of these steps, allowing a detailed viewing/analyzing of the com-

munication behavior. 

By annotating time indications on the Combined Algorithm/Architecture Executable 

Model, the Timed Executable Model is obtained. Figure 60 shows the code of the resulting 

time annotated C/C++ code for the MainDivX1 task, which contains the time annotations 

for the computations, and the time annotations for the communications (integrated into 

MPI-SystemC HLPPM). The values for these delays are captured in tables and depend on 
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the configurations chosen for the computations (i.e. CPU model, CPU clock frequencies) 

and communication primitives (i.e. data width, message sizes, latencies). The resulted 

Timed Executable Model allows performance estimations at a high-level of abstraction for 

different algorithm/architecture configurations.  

//------------------ MainDivX task ---------------------------------------------
EXTERN *image_memory1,height1, length1, top_border1, left_border1,

bottom_border1, right_border1,*result1; 

void MainDivX1_MAIN (void)
{

//initialization of computations
MainDivX_INIT (&image_memory1, height1, length1); 
WAIT(13.224);

//infinite loop for every frame
while (1)
{

//data_receive_communication from the Splitter
MPI_Recv(this,&image_memory1,sizeof(image_memory1),

32,SPLITTER_ID,22,MPI_COMM_WORLD,&status);

//calls the function with flexible computations
MainDivX_COMPUTE (&image_memory1,height1, length1, top_border1, 

left_border1, bottom_border1, right_border1,&result1);
WAIT(2.312.564);

//send_results_communication to the VLC
MPI_BSend(this,&result1,sizeof(result1),32,

VLC[0]_ID,22, MPI_COMM_WORLD);
}

 
Figure 60. Obtained time annotated code for MainDivX1 task 

4.2.2 Performance estimations and architecture exploration 

By compiling and executing the Timed Executable Model, performances can be meas-

ured using the function sc_simulation_time() after encoding every frame. The execution of 

this timed model gives an estimation of performances. The obtained performances can be 

represented using performances diagrams (graphic tables), and they include the time anno-

tated computations and communications running together. In addition, in the same graphic 

can be displayed for comparison the performances measured for multiple different algo-

rithm/architecture configurations, to help the designer to take the next decisions. Figure 61 

gives the estimated performance for the execution of MPEG4 for 25 frames of QCIF 
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(176x144) video resolution movie, using 1,2,4,8,16 and 32 CPUs ARM7 [ 36 ] at 60MHz 

for the MainDivX tasks and 1 CPU for VLC. 
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Figure 61. Performance estimated for QCIF, using ARM7, 60MHz 

As benchmark movie we used one second (25 frames) of „snow-show” movie (similar 

to what the TV receivers show when there is no signal on the antenna). This represents the 

worst-case scenario for the MPEG4 application. Consequently, the real-time encoding for 

any other input case is assured. In addition, the used search area for the Motion Estimation 

is 16x16. The reason is that previous research experiments showed that for QCIF 

(176x144) and CIF (352x288) resolutions, the full search area can be discarded, because 

the compression gain does not pay for the performance loss. However, this is not true for 

higher video resolutions.  

Figure 62 shows the estimated performances using ARM946E-S, 4kI$, 4kD$ CPUs at 

60MHhz [ 36 ]. In order to achieve real-time, maximum 2.400.000 cycles are allowed for 

the compression of 1 frame. From Figure 61 and Figure 62, we can determine that mini-

mum 5 ARM7 or 2 ARM946E-S processors are required to achieve real-time. 
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Figure 62. Performance estimated for QCIF, with ARM946E-S CPUs, 4kI$,4kD$, 60 MHz 

Different curves of these simulations are obtained doing a new macro-expansion of the 

Flexible Algorithm/Architecture Model for MPEG4 with different parameters. Besides 

number and types of CPU, several other parameters may be explored. For example, the 

communication may be explored via message size, data width, protocols and latencies. 

4.2.3 Validation of the high-level simulation results 

The architecture exploration allows us to fix a set of parameters that will define the 

number of required CPUs, models of CPUs, communication protocols, message sizes, 

maximum latencies, etc. These parameters will be followed during the architecture imple-

mentation. Figure 63 shows an example of obtained configurations. 
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CPUs Number  � 5 (4 MainDivX + 1 VLC)
IPs Number      � 2
Splitter             � IP
MainDivX1 � CPU (ARM7)
MainDivX1 � 60MHz
MainDivX1 � no cache
… the same for the other 3 MainDivX
VLC1 � CPU (ARM7)
VLC1 � 60MHz
VLC1 � no cache
Combiner         � IP
Splitter-MainDivX1 send protocol         � Blocking
MainDivX1-Splitter recv. protocol         � Non-Blocking
Splitter-MainDivX1 burst size               � 128 bytes
Splitter-MainDivX1 data_width � 32 bits
Splitter-MainDivX1 init_latency � 2 cycles
Splitter-MainDivX1 data_latency � 3 cycles
MainDivX1-VLC1 send protocol           � Blocking (FIFO 810bytes)
VLC1-MainDivX1 recv. protocol           � Blocking
VLC1 recv. arbitration                         � AnySource
MainDivX1-VLC1 burst size                 � 810 bytes
MainDivX1-VLC1 data_width � 32 bits
.... similar for the other modules

 
Figure 63. Example of architecture configuration file 

The communication time tables are following the performances/requirements of a DMS 

communication network [ 40 ] which we’ve targeted to be used during the architecture 

implementation at RTL level. More details regarding the DMS will are presented in the 

fifth chapter. However, different other communication time tables can also be used for 

other communication networks. In [ 61 ], were estimated the encoding performances at 

high-level when using different communication networks: DMS, AMBA and Octagon. 

4.3 Experiments and results analysis 

This section presents the experimental results obtained for the architecture exploration 

of the MPEG4 application for QCIF (176x144) and CIF (352x288) video resolution at 25 

frames/sec, using ARM7 and ARM946E-S processors running at 60 MHz. 

4.3.1 Performance estimated for QCIF, using ARM7, 60MHz 

For QCIF video resolution using only ARM7 processors running at 60MHz, the result-

ing architecture required 5 processors: 4 processors for 4 MainDivX tasks, and 1 processor 

for 1 VLC task. Simulation results for 1, 2, 4, 8, 16 and 32 CPUs for MainDivX and 1 for 

VLC was shown in Figure 61. The architecture configurations obtained after the High-

Level Algorithm/Architecture Exploration was presented in Figure 63. 
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4.3.2 Performance estimated for QCIF, using ARM946E-S, 4kI$, 4kD$, 60MHz 

For QCIF video resolution using only ARM946E-S processors running at 60MHz, us-

ing 4kbytes cache for instruction and 4kbytes cache for data, the resulted architecture re-

quired only 3 processors: 2 processors for 2 MainDivX tasks, and 1 processor for 1 VLC 

task. Simulation results for 1, 2, 4, 8, 16 and 32 CPUs for MainDivX and 1 for VLC was 

shown in Figure 62. 

4.3.3 Performance estimated for CIF, using ARM7, 60MHz 

For CIF (352x288) video resolution, the same experiments were conducted. In case of 

using only ARM7 processors, the architecture required 23 processors: 20 for MainDivX 

task and 3 for VLC task. Initially, 16 processors were sufficient for the MainDivX tasks, but 

the communication degradation made this impossible. Therefore, we opted for more proc-

essors, instead of choosing a “super” communication. Figure 64 shows the performance 

diagram using ARM7 CPUs at 60 MHz. 
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Figure 64. Performance estimated for CIF, using ARM7, 60MHz 
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4.3.4 Performance estimated for CIF, using ARM946E-S, 4kI$, 4kD$, 60MHz 

Figure 65 shows the obtained performance diagram for CIF video resolution, using 

ARM946E-S processors. In order to achieve real-time functionality, 10 ARM946E-S proc-

essors at 60 MHz were required: 8 for MainDivX tasks and 2 for VLC tasks.   
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Figure 65. Performance estimated for CIF, using ARM946E-S CPUs, 4kI$, 4kD$, 60 MHz 

4.3.5 Results analysis 

For higher resolutions of MPEG4, ARM7 and ARM9 are not powerful enough. Addi-

tionally the amount of embedded memory gets higher than the amount allowed by the cur-

rent technology. In term of memory, an off chip memory may be required which might 

change the required interconnect. For computations, powerful DSP or VLIW processors 

are needed, or HW instructions [ 19 ][ 37 ][ 38 ]. 

To validate the precision of the High-Level Algorithm/Architecture Exploration, an 

RTL architecture was built more or less manually, using one of the architecture configura-

tions obtained during the high-level architecture exploration. Figure 66 shows that the pre-

cision of the performance estimations, obtained during the high-level architecture explora-

tion, are close to the one measured at RTL level. The communication infrastructure used in 
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case of the RTL architecture, is a customizable data transfer architecture [ 40 ] providing 

high performances, that can easily be configured with the communication parameters ob-

tained by architecture explorations. 

 
Figure 66. Estimated vs. Measured performance precision 

[QCIF, 1 frame, 2 ARM7 CPUs (1 MainDivX + 1 VLC), 60MHz] 

To compress 1 frame at QCIF resolution, using 2 ARM7 CPUs (1 MainDivX + 1 VLC) 

running at 60MHz, the high-level estimations predicted that 115.02 ms are required (in 

Figure 61, 6.82 million cycles is equivalent to 115.02 ms). The performance measured for 

the obtained RTL architecture proved that 123.53 ms were required to compress 1 frame. 

The 7.39% precision error comes from the impossibility to capture with our proposed high-

level estimations, the performance degradations of the: 

a) OS (scheduling, service calls latencies induced by the API calls) 

b) Interconnect between the CPU buses and communication infrastructure (the conflicts 

for local bus grant between the CPUs and the Network Interfaces). 

c) HW/SW Wrappers 

By using the proposed High-Level Algorithm/Architecture Exploration, different and 

already validated architecture configurations were quickly explored, even for a big number 

of CPUs, complex communications and different algorithm configurations (video resolu-

tion). This process dramatically shortened the time required to do the architecture explora-

tion. As an example, in case of 25 frames of QCIF resolution video and using ARM7 proc-
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essors running at 60MHz, approximately 15 minutes were required to generate the Timed 

Executable Model. The simulation for 25 frames took approximately 2 minutes. Exploring 

one architecture solution takes less than one hour. This is the time required just to simulate 

one frame at RTL level. Approximately 25 hours were required to simulate 25 frames us-

ing the RTL model. Therefore, the high-level performance estimations error of less than 

10% compared with the low-level performance measurements is more than acceptable, 

considering the gain of design time. In these experiments we have used a Pentium4, 3GHz, 

1Gbytes RAM, using Linux Mandrake 9.2. 

Currently, in order to adapt this approach to other video applications, the Flexible Al-

gorithm/Architecture Model for MPEG4 must be adapted manually. In addition, if the 

communication network is changed (using topologies different from the ones already sup-

ported), the MPI-SystemC HLPPM model needs to be adapted to the new communication 

constraints. Automating these tasks or finding a method to reduce the effort needed for 

applying the proposed design paradigm to different applications are, in our opinion, open 

research subjects, and we have chosen to leave this point for future works. 

To improve the estimation precision, we intend to use in the future the approach pre-

sented in [ 62 ] which proposes to use an general abstract CPU architecture model, instead 

of simply abstracting the CPU by a SystemC module. This approach will allow us to cap-

ture (even if still not 100% precisely) the low-level details (i.e. HW/SW wrappers, grant on 

CPU bus, etc) which in current approach are completely abstracted (missing).  

4.4 Conclusions 

The objective of this chapter is to present the proposed High-Level Algo-

rithm/Architecture Exploration flow. This flow is used to explore different algorithm and 

architecture configurations to be chosen from a large solution space. The flow uses a 

unique Flexible Algorithm/Architecture Model for MPEG4. For different algorithm and 

architecture configurations, this model can be macro-expanded to obtained different Com-

bined Algorithm/Architecture Executable Models. These models capture the behavior of 

both algorithm and architecture already customized for different algorithm/architecture 

configurations. Timed Executable Models are used for performance estimations. These are 
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obtained by annotating the computations and communications delays into the Combined 

Algorithm/Architecture Executable Model. These delays depend on the used algorithm and 

architecture configurations.    

As a result, multiple MPEG4 encoders on MP-SoC were successfully explored, using 

different algorithm and architecture configurations. The obtained estimations precisions 

proved to be very close to the performances measured at RTL level. This assured the feasi-

bility of this approach. Since the entire exploration is done before implementing the 

MPEG4 encoder at RTL level on MP-SoC, this flow helps to reduce the design cost. 
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5 MPEG4 video encoder architecture implementation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter presents the flow used for the implementation of the MPEG4 
encoder on MP-SoC. This flow uses as input a high-level model for MPEG4 
configured with the algorithm/architecture configurations determined during 
the high-level algorithm/architecture exploration. In this model, all the low-
level details are completely abstracted. The flow is in charge of generating all 
these low-level details. Since the flow’s steps are automated, this approach is 
drastically reducing the design time needed to implement the MPEG4 encoder 
on MP-SoC. Using this flow, different MPEG4 encoders were implemented, 
on completely new RTL architectures, or on an existing MP-SoC platform.  
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5.1 Introducing the MPEG4 video encoder architecture implementa-

tion  

5.1.1 Difficulties of implementing the MPEG4 video encoder on an MP-SoC archi-

tecture 

The implementation of the MPEG4 video encoder on MP-SoC architecture (RTL level) 

requires a long design time, because the designer has to manage several difficulties: 

a) The first aspect is related to the configurations of the architecture that has to be im-

plemented. These configurations are related to both, high-level (portioning, map-

ping, communication network topology, etc) and low-level details (HW/SW Inter-

faces: Operating Systems [ 41 ], CPU SubSystems, Wrappers[ 45 ]) of an architec-

ture.  

The high-level details can be found using the previously proposed High-Level Algo-

rithm/Architecture Exploration flow. In case of low-level details, the designer 

should use a tool capable of configuring them automatically, depending on the ap-

plication’s requirements. 

b) Another aspect is related to the actual architecture implementation phase. In classi-

cal approaches, the designer has to implement manually the complete RTL architec-

ture. This is an exhaustive approach, which requires long design time, involves 

many bugs, and many design loop-backs. 

The solution is the implementation of the architecture at a high-level that abstracts 

many of the low-level details (HW/SW Interfaces), by implementing an abstracted 

architecture model of the targeted RTL architecture. For obtaining the final RTL ar-

chitecture, the designer should use a component based approach [ 39 ], in order to 

refine (generate) the low-level details which were abstracted. This generation should 

be as automatic as possible.  

c) When designing MPEG4 video encoders on MP-SoC, there are always two possibili-

ties: either the MPEG4 video encoder will be implemented on an existing architec-
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ture, or a complete new MP-SoC architecture has to be built for the MPEG4 video 

encoder. Using separate flows for these two approaches becomes a difficult aspect to 

be managed by the designer. One reason is the need of becoming familiar with these 

flows. Another reason is the need of implementing differently the same architecture 

specifications for each flow. Finally, porting required libraries from one flow to an-

other can become a difficult thing, sometimes even impossible.    

The solution would be to use a unique flow for both cases. In both cases, the flow 

has to use the same input specifications, the same abstract architecture model, and 

the same tools. In the end, the flow has to be capable of obtaining different results. 

These depend on the case if the MPEG4 video encoder is implemented on an exist-

ing architecture, or on a completely new architecture.    

5.1.2 Principle of the proposed flow used for implementing the MPEG4 video en-

coder on MP-SoC 

The proposed flow uses as input specifications the Flexible Algorithm/Architecture 

Model for MPEG4, as the one used during the High-Level Algorithm/Architecture Explo-

ration. Thus, we benefit from the fact that these specifications were already validated and 

debugged.  

Using the Flexible Algorithm/Architecture Model for MPEG4 and the algo-

rithm/architecture configurations found during the High-Level Algorithm/Architecture 

Exploration, an abstract architecture model can be automatically generated (Figure 68), 

called Executable Model with Explicit Network. This model is generated using the same 

macro-expansion approach used to obtain the Combined Algorithm/Architecture Executa-

ble Model during the High-Level Algorithm/Architecture Exploration. The only difference 

is that instead of using the MPI-SystemC HLPPM, we will use an explicit communication 

network configured automatically with the configurations found during the high-level ex-

ploration. This Executable Model with Explicit Network is still a high-level model, in 

which all the low-level details are abstracted. More details about this model will be pre-

sented later in this document. 
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Figure 67. Proposed flow for implementing the MPEG4 encoder on MP-SoC architectures 

In order to obtain the final implementation, we propose the use of ROSES flow, de-

signed by TIMA-SLS Group, for refining the required abstracted low-level details 

(HW/SW Interfaces). Depending on the targeted architecture case for the MPEG4 video 

encoder, there are two possibilities: 

a) Existing architecture: since in this case, the architecture is already implemented, the 

only low-level details that have to be refined are the SW interfaces, which represent 

the Operating Systems (OS) of each CPU of this architecture. 

After obtaining all the OS by the use of ROSES flow, along with the tasks of the 

MPEG4 encoder, the entire MPEG4 video encoder application can be mapped on 

the existing architecture, and executed.   

2) New specific architecture: in this case, the RTL architecture has to be obtained, 

along with the SW application (OS+MPEG4 tasks). The OS for each CPU are ob-

tained using the same principle as for an existing architecture. Additionally, the HW 
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interfaces (CPU-SubSystems, HW Wrappers) required by the RTL architecture have 

to be generated. The result will be the synthesizable RTL architecture with the ex-

ecutable SW application.  

These results will be integrated on silicon, using a classical RTL design flow, in or-

der to obtain the final MP-SoC chip for the MPEG4 video encoder. This last phase 

will not be covered in this document. 

5.2 ROSES: a component based approach used for Hard-

ware/Software integration 

5.2.1 Representing the ROSES flow used for Hardware/Software integration 

The ROSES flow developed at TIMA Laboratory-SLS Group is used for the design of 

single-network MP-SoC at RTL level starting from high-level abstract architecture models 

using heterogeneous components. This flow solves the problems of the automatic genera-

tion of the HW and/or SW interfaces required by the architectures at RTL level. In addi-

tion, it allows us to validate the obtained results during the flow at different levels of ab-

straction. A simplified diagram of the ROSES flow is presented in Figure 68. 
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Figure 68. Representation of the ROSES flow used for HW/SW interfaces generation 
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The flow uses as input model an abstract architecture, called Executable Model with 

Explicit Network. This is made of multiple components described in SystemC. In this 

model, all the low-level details are completely abstracted, like OS, CPU-SubSystems and 

HW Wrappers. 

The input model is transformed into an intermediary architecture description model, 

described using Colif language, used by all the tools of this flow. This language allows the 

description of a heterogeneous system containing modules at different levels of abstraction.  

The SW interfaces, also known as Operating System (OS), are generated using the 

ASOG tool [ 41 ]. The HW interface generations, which consists of building the CPU-

SubSystems and HW wrappers, are generated using the ASAG tool [ 42 ]. During the flow, 

the architecture can be executed and validated at different abstraction levels using the Co-

simX tool [ 43 ].  

As a result, the ROSES flow generates for the initial abstract architecture (Executable 

Model with Explicit Network) all the low-level architecture details, in order to obtain the 

final RTL architecture (Figure 69). 
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Figure 69. Refining an Abstract architecture to RTL architecture using ROSES 

5.2.2 Describing the COLIF representation model  

This language allows the description of a heterogeneous system containing different 

types of modules (CPUs or IPs), and it is saved into an XML type of file. With Colif, the 
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system description is done independently of its behavior. This allows modeling a heteroge-

neous system by using its level of abstraction, description language (SystemC in our case) 

and their type (CPUs or IPs). This language describes an architecture based on 4 concepts: 

modular structure, different levels of abstraction, virtual components and hierarchical 

ports. 

a)  modular structure:  

Colif describes a system under the form of an ensemble of interconnected objects, 

which are of 3 types: modules, ports and nets [ 44 ]. An object is composed of two parts: 

an interface called entity, and a contain. Two objects can be interconnected by connecting 

their corresponding entities. The contain of an object points to a reference to an actual be-

havior, or to another object. This “linking” possibility allows the development of modules, 

hierarchical ports and hierarchical nets. This way, into a module, it is possible to instantiate 

complete subsystems formed by other modules, ports or nets (Figure 70). 

Task1

Task2

Module Module

Task1

Module1

 
Figure 70. Example of architecture containing modules, ports and nets 

The module represents a hardware (IP) or software (CPU) component. Its entity gives 

the types of the ports through which it communicates. The contain points to a behavior 

which can be a typical C/C++ file, or another subsystem which can be formed by other 

modules, ports and nets. 

The port represents a communication point of a module. Its contain is composed of two 

parts: one part is in relation with the interior of the module, the other with the exterior of 

the module. These parts can be either hidden, or point to a behavior or to other ports. 
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The net represents a connection between two ports. In this case, the net can also point 

to an actual behavior, or to other net instances.   

b) different levels of abstraction 

In Colif, a component can be described at two levels of abstraction: Macro-

Architecture level, and RTL level. 

At Macro-Architecture level, the communication is done using abstract wires, which 

contain drivers in charge of managing the communication protocols. Thus, at this level, 

only the protocol and the topology of the communication are chosen. In addition, the time 

granularity is at the transaction level. 

At RTL level, the communication is done using physical wires and buses. At this level, 

all the ports and interfaces are refined, and cycle accurate adapters [ 46 ] are used to “link” 

different communication protocols. In this case, the time granularity is cycle accurate.  

c) virtual components and hierarchical ports 

To allow the interconnection between the components described at different levels of 

abstraction, the Colif uses the concept of virtual components. Each of these virtual compo-

nents encapsulates one or more modules. 

A virtual component contains two communication interfaces: internal and external. The 

internal interface is adapted at the level of abstraction used by the module encapsulated in 

this virtual component (Figure 71). The external interface is adapted at the level of abstrac-

tion used by the channel linked to the virtual component. For communication, the internal 

interface uses internal ports, while the external interface uses external ports. A virtual port 

encapsulates one or more of these internal/external ports, in order to form a communication 

protocol.  
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Figure 71. Structural representation of a virtual component 

5.2.3 Describing the ASOG tool used for OS generation 

This tool generates one application specific OS for each processor. The OS generation 

consists of assembling the required OS, using a library which contains a set of macrocodes 

files for each of the services of an OS, and a service dependency graph used to determine 

which services will form the current generated OS. 

1) macro-code files for the services of an OS 

These files are written using a macro-language. From these files are macro-generated 

the customized files for the current OS. This macro-generation approach is identical to the 

one used during the previously presented High-Level Algorithm/Architecture Exploration. 

2) service dependencies graph 

The service dependency graph is described using a structural description language, 

called LiDeL (Library Description Language), developed at SLS group. It is composed of a 

set of data structures manipulated by some APIs. The description is composed of 3 items:  

a) elements represent an OS part, and they are the basic components of an OS. They 

represent a non-specialized component, which is not yet dedicated for a particular 

architecture case.  

b) services represent a system functionality. It is an abstract term, which allows divid-

ing and structuring the behavior of an OS. The services are provided by elements, 

but an element may also require a service from another element. 
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c) implementations represent a particular behavior description. An element can have 

multiple implementations. Each implementation corresponds to a part of generic 

code of an OS.   

The ASOG tool uses as input the system description in Colif, the tasks code, the LiDeL 

library and the library containing the elements written as macro-code. The Colif descrip-

tion contains the services needed by the application, along with the parameters needed for 

these services (Figure 72).   

 
Figure 72. Representation of the flow used by ASOG tool for OS generation 

When SW tasks require a service (i.e. services for MPI communication), the ASOG 

tool starts crossing the service dependency graph from the required service down to the 

low-level services. Based on the crossed services, the ASOG will macro-generate the files 
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for the implementations of the elements associated to these services. The generated files are 

C/C++ or ASM files. The ASOG also generates the required compilation Makefile scripts, 

along with some log files useful for debugging the OS generation process.    

5.2.4 Describing the ASAG tool used for hardware generation 

The concept behind this tool is similar to the one used by ASOG, except that in this 

case the HW components (which were abstracted in the virtual architecture) are assembled. 

Hence, the ASAG uses a library containing a set of generic structures for the interfaces, 

and a behavior library containing the macro-codes of their required components. 

a) structure library : this library contains two types of components described in Colif. 

One of them is the component forming the local architecture of the current proces-

sors, also known as CPU-SubSystem. The other components are targeted for the 

communication adapters, also known as HW Wrappers.  

b) behavior library: this library contains a set of files described in macro-code, and 

contains the generic behavior of the interfaces. For each of these interfaces, multiple 

behavior codes can be associated, depending on their targeted description language: 

i.e. SystemC, VHDL. 

The ASAG flow (Figure 73) consists of 5 phases: 

a) analysis of architecture description: the ASAG parses the Colif system description 

(XML file) and gathers all the configuration parameters from it. 

b) load structure library: this allows us to know the availability of the architectural re-

sources required for the current architecture refinement. This library contains a set 

of different architecture parts, formed from one component or multiple intercon-

nected components. For each component, its behavior is pointed into the behavior 

library.  

c) module refinement: based on the configuration of the module (virtual module) con-

tained in the Colif description, the module is replaced with a local architecture (de-

scribed also in Colif) contained into the structural library. Based on the parameters 
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used for its virtual ports, a set of channel adapter interfaces are instantiated, in order 

to adapt the ports of the local architecture with the ports of the channel connected to 

this module [ 45 ].  

 
 Figure 73. Representation of the flow used by ASAG tool for HW generation 

d) channel refinement: by analyzing all the ports of the channel, it is possible to find 

out the characteristics of the refined channel to be chosen from the library.  

e) code generation: to each component of the local architecture and channel adapters 

corresponds a macro-code generic behavior implementation contained in the behav-

ior library. Even if this macro-code is not representing an executable or synthesiz-

able component, it can become after its macro-expansion using the configuration pa-
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rameters contained in the Colif system description. The resulted macro-expended 

code becomes the final generated code (SystemC or VHDL) of the module adapters 

(HW wrapper). In addition, the new resulting Colif system description contains only 

RTL components. Even the virtual modules that were previously only “marked” as 

CPUs, now they contain a complete local RTL architecture (CPU SubSystem). 

5.2.5 Describing the CosimX tool used for mixed level architecture co-simulation 

It does not matter if the architecture is described at a high-level (no low-level details) 

or at RTL level (with low-level details), the architecture can be executed and validated 

using the CosimX tool.  

The tool is used to validate the system at different levels of abstractions. It takes the 

Colif representation of the architecture and builds an executable SystemC model. For ex-

ample, the mixed level interconnections are replaced by the CosimX with SystemC com-

ponents (from library) which “emulates” their behavior. The CPU cores are replaced by 

processor simulators: ISS (Instruction Set Simulator) plus simulation adapter (BFM). It is 

obvious that, the co-simulation speed depends on the abstraction level used by the architec-

ture that has to be validated. 

5.3 Implementing a complete MP-SoC architecture for MPEG4 video 

encoder using ROSES tool 

5.3.1 Describing the Executable Model with Explicit Network used for ROSES 

flow to build the MPEG4 encoder on a complete new MP-SoC architecture 

In order to implement an MPEG4 video encoder on a complete new MP-SoC architec-

ture using ARM processors, there are three elements which have to be implemented: the 

MPEG4 tasks, the Operating System, and the RTL architecture of the MP-SoC. This sub-

chapter will describe the model used as input for the ROSES flow, in order to obtain all of 

these three elements. 
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The model used as input for the ROSES flow, is called Executable Model with Explicit 

Network. This model is obtained from expanding the Flexible Algorithm/Architecture 

Model for MPEG4 using the algorithm/architecture configurations determined from the 

architecture exploration. This process is similar with the ones used to obtain the Combined 

Algorithm/Architecture Executable Model. The only difference is that the Module encapsu-

lating the MPI-SystemC HLPPM is replaced by a Module containing an actual Communi-

cation Network implementation. 

This Communication Network is called DMS (Distributed Memory Server) [ 40 ]. The 

DMS is a highly configurable, flexible and scalable communication network. As commu-

nication APIs, the DMS uses MPI primitives, like the ones used during the algo-

rithm/architecture exploration phase. This is why there is absolutely no need to change the 

code of the applications, which are using MPI primitives to communicate between them. If 

during the high-level exploration, the MPI primitives were managed by the MPI-SystemC 

HLPPM, during the architecture implementation the DMS will manage them. The differ-

ence is that what was first a High-Level Parallel Programming Model, now is an actual 

RTL communication network. 

The DMS is also configured according to the selected communication concurrency and 

topology. For instance, in our case we have configured the DMS to use a P2P communica-

tion topology. The connection graph was configured accordingly with the data flow used 

for the MPEG4 encoder. Figure 74 presents the connection graph used inside the DMS, in 

the case of MPEG4 video encoder, QCIF resolution, with 4 MainDivXs, 1 VLC, and of 

course, Splitter and Combiner.  

As described in [ 40 ], the DMS uses an MSAP (Memory Service Access Point) con-

nected to each processing unit (Module containing an MPEG4 task). Each MSAP is a 

highly customizable data transfer engine that can be seen as a super DMA capable to trans-

fer multiple local and external requests. All these MSAPs are in charge of managing the 

message requests from the corresponding processing unit, or from other MSAPs. The in-

terconnection graph between these processing units is done by interconnecting the MSAPs 

between them. 



 114 

DivXDivX DivXDivX DivXDivX DivXDivX CombinerCombiner

SplitterSplitter VLCVLC

MSAP 1 MSAP 2 MSAP 3 MSAP 4 MSAP 6

MSAP 0 MSAP 5
RDNETID_0

RCNETID_1 RCNETID_2 RCNETID_3

RCNETID_0

RCNETID_4

RCNETID_5

RCNETID_6RDNETID_1 RDNETID_2 RDNETID_3 RDNETID_4

RDNETID_5

RDNETID_6

0    1    2    3 4   5    6    7 0    1    2    3   4 5    6    7    8   9

0    1                2    3 0    1             2    3 0    1             2    3 0    1             2    3 0             1

DD
MM
SS

 
Figure 74. DMS internal architecture for MPEG4 video encoder QCIF,4 MainDivX,1 VLC 

For the example presented in Figure 74, the 4th DivX is connected to the Splitter and 

the VLC. Therefore, the ports 0 and 2 of the MSAP4 (connected to this DivX) are con-

nected to the ports 3 and 7 of the MSAP0 (connected to the Splitter). In addition, the ports 

1 and 3 of MSAP4 (connected to this DivX) are connected to the ports 3 and 8 of the 

MSAP5 (connected to the VLC). There are always two connections between two MSAPs, 

in order to achieve communications in both directions for data and control. However, these 

ports and their ID are “invisible” for the outside world, and the application programmer 

does not need to know them. 

The DMS is capable of sending data (commanded by the MPI primitives) for different 

message sizes, data widths and protocols. Even latencies can be adjusted, by configuring 

the MSAPs scheduling policy (i.e. 3 cycles are required for communication instantiation, 

and extra 3 cycles if acknowledgement is desired).  
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 All these features of the DMS enabled the replacement of the MPI-SystemC 

HLPPM. Figure 75 presents an example of generated Executable Model for MPEG4 video 

encoder, with DMS, 4 MainDivXs, 2 VLCs, Splitter and Combiner. 
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Figure 75. Executable Model for MPEG4 with DMS, 4 MainDivXs, 2 VLCs 

In these models, the MPEG4 tasks contain already the final customized code. The last 

step that has to be done is to refine the Abstract HW/SW Interfaces by replacing them with 

Operating Systems, CPU Local Architectures and HW Wrappers. To achieve this, we will 

use the ROSES flow starting from the generated Executable Model with Explicit Network.  

5.3.2 Representing the flow used for the implementation of a complete MP-SoC 

architecture for MPEG4 video encoder using the ROSES tool 

The ROSES flow uses as input the generated Executable Model with Explicit Network. 

In this model, the MPEG4 tasks are ready and customized. The ROSES flow will build the 

file for the Operating Systems, and the RTL architecture (Local CPU architectures, and 

HW Wrappers). The flow used to achieve this is presented in Figure 76.  

The Executable Model with Explicit Network is obtained by expanding the Flexible Al-

gorithm/Architecture Model for MPEG4 with the algorithm/architecture configurations 

found during the High-Level Algorithm/Architecture Exploration. The module containing 

the MPI-SystemC is replaced by a Module containing a DMS communication network. 
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Figure 76. Detailed flow used to implement the MPEG4 on a new MP-SoC architecture 

The resulting model can be executed using the CosimX tool in order to do some early 

architecture validations, tasks debugging, testing the synchronization between the tasks and 

the DMS, debugging the DMS, etc. 

The next step is to generate the OS of the application, using the ASOG tool and a Li-

DeL library containing the general OS services for the ARM processors.  

The RTL architecture is obtained by replacing the CPU Modules containing the 

MPEG4 tasks, with an actual RTL architecture for the CPU Subsystems of each targeted 

ARM processors. To be able to interconnect each CPU SubSystem with the DMS, a set of 

HW Wrappers is generated.  

After these steps, the result is a complete synthesizable RTL architecture for the 

MPEG4 video encoder using ARM processors, along with executable SW for MPEG4 

tasks and Operating System. This RTL architecture can also be co-simulated using the Co-

simX tool. During this co-simulation, there are many low-level details that are simulated 
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with cycle-accurate precision, the simulation time is slow in this case (approximately 25 

hours for co-simulating the MPEG4 video encoder, for 25 frames of QCIF movie, using 5 

ARM7 processors for 4 MainDivX and 1 VLC). Instead of the actual CPU core, an ISS 

(Instruction Set Simulator) is used connected to the RTL architecture through a BFM (Bus 

Functional Model) [ 43 ]required to link the RTL architecture simulation environment with 

the ISS environment.  

5.3.3 Libraries used for the implementation of a complete MP-SoC architecture 

for MPEG4 video encoder 

In order to build the Executable Model with Explicit Network, generate the Operating 

System, the CPU Subsystems and HW Wrappers, and build the model that will be co-

simulated at RTL level, multiple libraries are used: 

a) Communication network: as explicit communication network was used a DMS 

communication network between the processors. This model is completely de-

scribed in SystemC, as a macro-code. This macro-code can be expanded and config-

ured with the required parameters, in order to obtain the currently needed configured 

DMS module. Its usage was presented previously in this document. 

b) LiDeL Library for ARM: this library is used by the ASOG tool to build the applica-

tion specific OS for the ARM processors. It contains a generic macro-code for the 

boot of the ARM processors, application loader, scheduling, MPI behavior, context 

switches (a simple one between a task and the sleep task which executes the idle 

status of the processor) and interrupt programming. Depending on the configuration 

of the current Executable Model with Explicit Network, the ASOG tool will build 

the files of a customized OS for each processor, starting from these macro-codes. 

c) ASAG library for ARM: this library contains the Colif architecture for the ARM 

processors subsystem, which is dedicated to the MPEG4 application. In addition, 

this library contains the synthesizable files describing the behavior of each compo-

nent of this processor subsystem (i.e. Memory Controller, Address Decoder, etc). 

Figure 77 presents the CPU SubSystem used for the MainDivX3 task.  
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Figure 77. CPU SubSystem RTL architecture for the processor of MainDivX3 task 

It can be noticed that the CPU module is in fact the core of the ARM processor. The 

Timer module provides the clock of the processor. The ROM and RAM modules are 

the local memory of the processor. The Address Decoder and Memory controller 

module provides the arbitration between the CPU and the memory modules. The 

HW wrapper is required to interconnect the entire CPU SubSystem to the Commu-

nication Network (DMS). All these modules are fully synthesizable, and their be-

havior is described in SystemC. 

d) ARM ISS and BFM: in order to co-simulate the core of the ARM processors, the 

CPU Module from Figure 77 is replaced for the co-simulation by an ARM ISS and a 

BFM.  
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Figure 78. Replacing the ARM core by the CosimX with an ARM-ISS and BFM 

The BFM is a SystemC module, which “translates” the signals of the ports con-

nected to the local communication network into APIs required to control the ISS 

environment. This ISS environment is in fact a tool (i.e. armsd [ 34 ], Vtune [ 35 ]) 

which simulates a cycle accurate processor behavior. Every time the processor is 

changed, the ISS and BFM have to be changed with ones specific for this new proc-

essor.  

5.3.4 Architecture implementation results for the MPEG4 video encoder on MP-

SoC 

We have implemented multiple configurations of MPEG4 video encoder on MP-SoC. 

The configurations used were those provided after the High-Level Algorithm/Architecture 

Exploration for the MPEG4 video encoder for QCIF and CIF resolutions, using ARM7 

respectively ARM946E-S processors. 

Figure 79 presents the diagram of the resulting RTL architecture for the MPEG4 video 

encoder for QCIF video using 5 ARM7 processors (4 MainDivXs + 1 VLC). It can be no-

ticed that, for all the CPUs, the ROSES flow generated the SW Wrappers (OS), the CPU-

SubSystems, and for all the Modules were generated the HW Wrappers to interconnect 

them to the ports of the DMS communication network.  
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Figure 79. RTL architecture for MPEG4, QCIF, ARM7, 4 MainDivX, 1 VLC 

Figure 80 presents the Colif system specifications for the obtained RTL architecture, 

displayed using the CView tool. The CView tool was developed at TIMA-SLS Group, and 

it displays graphically and hierarchically the architecture described in the XML file con-

taining the Colif system specifications.  
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Figure 80. Colif representation of RTL Arch. for QCIF, ARM7, 4 MainDivX, 1 VLC 

There are 5 CPUs in the obtained RTL architecture: 4 CPUs for the 4 MainDivX tasks, 

and 1 CPU for the VLC task. For each of these CPUs, an internal architecture was gener-

ated, containing the ARM7 CPU core, Address Decoder, Memory Controller, ROM, RAM 

and HW Wrapper. The Splitter, Combiner and DMS are HW modules. The modules con-
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taining the Video and Storage tasks were not included in the architecture, because those are 

just benchmark modules required during the simulation/validations.  

After the RTL synthesis, this architecture required additional 54.7K gates in addition to 

the 5 CPUs. The size of the entire embedded memory required for this case, is approxi-

mately 594Kbytes (ROM+RAM). 

Figure 81 presents the Colif system specifications for the RTL architecture obtained for 

the MPEG4 video encoder for CIF, using 10 ARM9 processors (8 processors for 8 Main-

DivXs tasks and 2 processors for 2 VLC tasks). It can be easily noticed that the DMS has 

now much more ports than the previous example. The Splitter, DMS and Combiner are IPs 

in this case also. 
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Figure 81. Colif representation of RTL Arch. for CIF, ARM9, 8 MainDivX, 2 VLC 

 After the RTL synthesis, the architecture presented in Figure 81 required 100.4K 

gates in addition to the 10 CPUs, and 2.418Kbytes embedded memory (ROM+RAM)  
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5.3.5 Performance measurements for the final MPEG4 video encoder on MP-

SoC  

All the obtained RTL architectures can be co-simulated at this low-level using the Co-

simX tool. The simulation is extremely slow, but it is precise.  

We have co-simulated the RTL architecture for MPEG4 video encoder for QCIF, using 

2 ARM7 processors (1 MainDivX and 1 VLC) running at 60MHz. The co-simulation con-

sisted of encoding 25 frames of QCIF movie, movie that was used also during the High-

Level Algorithm/Architecture Exploration.  

The co-simulation for those 25 frames took approximately 25 hours. Hence, we were 

able to check the precision factor of the performances estimated during the High-Level 

Algorithm/Architecture Exploration, by comparing them with the ones measured at RTL 

level.   

To compress 1 frame at QCIF resolution, using 2 ARM7 CPUs (1 MainDivX + 1 VLC) 

running at 60 MHz, the high-level estimations predicted that 115.02 ms are required (in 

Figure 61, 6.82 million cycles is equivalent to 115.02 ms). The performances measured for 

the obtained RTL architecture proved that 123.53 ms were required to compress 1 frame. 

Therefore, there was a 7.39% precision error at the high-level estimations (Figure 82). 

 
Figure 82. Estimated vs. Measured performances [QCIF, 1 frame, 2 ARM7 CPUs] 
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The 7.39% precision error comes from the impossibility to capture with our proposed 

high-level estimations, the performance degradations of the: 

- OS (scheduling, service calls latencies induced by the API calls) 

- Interconnect between the CPU buses and communication infrastructure (the conflicts 

for local bus grant between the CPUs and the Network Interfaces). 

- HW Wrappers 

 

Six months were required to build the ROSES libraries (by 5 persons) which are re-

quired to generate the RTL architecture for the current MPEG4 video encoder application. 

Once all the libraries are ready, approximately 5 minutes are required to generate the Ex-

ecutable Model with Explicit Network. Obtaining the final RTL architecture by the ROSES 

flow is completely automatic (all the tools are automated) and it requires approximately 15 

minutes (caused mainly by compilations). 25 hours are required to co-simulate at RTL 

level the encoding of 25 frames. Any error found in the implementation leads to the need 

of correcting it, regenerating the Executable Model with Explicit Network, regenerating the 

RTL architecture, and executing again the 25 hours of co-simulation. Comparing this effort 

with the one required by the high-level architecture exploration, the latter requires a much 

smaller effort and it is logical to consider that the 7.39% estimation error is more then af-

fordable. Most of all, during the high-level algorithm/architecture exploration, many errors 

can be found and corrected quickly. Thus, the number of possible errors that may appear at 

RTL level is drastically reduced.    

5.4 Implementing the MPEG4 video encoder on an existing Quadric-

Processors platform using ROSES tool 

5.4.1 Describing the targeted Quadric-Processors platform 

The second implementation for MPEG4 video encoder consists of integrating the 

MPEG4 video encoder on an already existing architecture. This approach consists of map-
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ping the MPEG4 video encoder application on the platform along with an application spe-

cific OS.   

The Quadric-Processors platform (Figure 83) is formed of 4 processor sub-systems. All 

of these processors have the same type of RISC core: Sparc V8. 

 
Figure 83. System architecture of the Quadric-Processors Platform 

The system uses a centralized memory architecture, using an external 32 bits shared 

SDRAM memory of 32 Mbytes (extensible at 64 Mbytes). For memory access, 2 FIFOs 

are used for storing the request “rockets”: 32 words FIFO for store, 6 words FIFO for 

reads. In addition, as internal memory, a fast 32 bits SRAM memory of 32 Kbytes is used. 

The memory access requests are fetched between the processors and the memories by a 

global DMA processor.  

The system uses a unified memory address for all its memories, caches, I/O, etc. The 

entire communication is done using a bus-centric communication topology. This bus is 

similar with the AMBA bus, with some architecture specific modifications meant to in-
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crease the system performances (i.e. uses separate channels for read & write into the 

memories). The entire system works at 90MHz clock frequency.  

The local architecture of each processor is presented in Figure 84.    

 
Figure 84. Diagram of the CPU architecture used on the Quadric-Processors Platform 

The processors do not dispose of any local memory, except for two 16kbytes caches: 

one for instruction, one for data. Each cache is four way associative with 32words/cache 

line. Between the data cache and the system bus are used 2 FIFOs with a depth of 32 words 

of 32 bits each, for storing the load and store requests. The instruction cache uses only one 

FIFO (for load) that is 16 instructions deep. 

As local execution units, the processor uses 4 separate execution units: CCP (Commu-

nication CoProcessor) used for instruction set extensions, MUL (Multiplier Unit), LSU 



 126 

(Load-Store Unit) with the possibility of managing in parallel multiple independent load 

and store requests, and an ALU (Arithmetical Logic Unit).  

Because of these separated execution units, the processor is capable of executing in 

parallel multiple operations on the condition that there is no interdependency between 

them. For instance, when the processor requests a data load, it can also execute an opera-

tion that does not depend on that data load. In addition, multiple loads and stores can be 

requested in parallel, and the data coherence is completely managed by the LSU. More-

over, because of this parallelism, it can be said that the store feature is virtually “free” in 

terms of performance. 

5.4.2 Describing the Executable Model with Explicit Network used for ROSES 

flow to build the MPEG4 application and the Operating Systems for the 

Quadric-Processors Platform  

To integrate the MPEG4 video encoder on the Quadric-Processors Platform, there are 

two elements that have to be implemented: the MPEG4 tasks, and the Operating System. In 

order to do this, we use the ROSES flow. This sub-chapter will describe the model used as 

input for the ROSES flow, in order to obtain the MPEG4 tasks, and the Operating System.  

The model used as input for the ROSES flow, is called Executable Model with Explicit 

Network. Like the implementation of the MPEG4 video encoder on a complete new archi-

tecture, this model is obtained from expanding the Flexible Algorithm/Architecture Model 

for MPEG4 using a set of algorithm/architecture configurations. For these experiments, we 

have improved the Flexible Algorithm/Architecture Model for MPEG4 to be able to map 

multiple tasks into the same Module, depending on the user’s preference. However, the 

current configuration of the Quadric-Processors Platform is restricting the number of proc-

essors to maximum 4. As explicit network, we have decided to use a P2P communication 

between the processors and an abstract global memory. This memory will play the role of 

storing all the data, which in the Quadric-Processors Platform will be mapped in the 

SDRAM. 

Figure 85 presents an example of Executable Model with Explicit Network used as in-

put for the ROSES flow, when using 2 CPUs for 2 MainDivXs, 1 CPU for 1 VLC, and 1 
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common CPU for Splitter and Combiner. Figure 86 presents another example of Executa-

ble Model used as input for the ROSES flow, when using 3 CPUs for 3 MainDivXs, and 1 

common CPU for Splitter, Combiner and VLC. Other configurations can be also obtained. 
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Figure 85. Executable Model for MPEG4 with 2 MainDivXs, 1 VLC, Splitter+Combiner 
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Figure 86. Executable Model for MPEG4 with 3 MainDivXs, Splitter+Combiner+VLC 

In these models, the MPEG4 tasks are already ready for being mapped on the platform. 

However, the last thing that still has to be done is to obtain the Operating System for the 

CPUs. Therefore, we use the ROSES flow in order to obtain the SW interfaces (OS) for the 

current configuration of Executable Model with Explicit Network. Only after this step, the 

entire application can be mapped and executed on the platform. 
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5.4.3 Representing the flow used for mapping the MPEG4 video encoder on the 

Quadric-Processors platform using the ROSES tool 

The flow uses as input an expanded Executable Model with Explicit Network, and ob-

tains in the end the tasks of the MPEG4 application and the specific OS for the CPUs of 

the platform (Figure 87). 
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Figure 87. Detailed flow used to map the MPEG4 on the Quadric-Processors Platform 

The Executable Model with Explicit Network is obtained by expanding the Flexible Al-

gorithm/Architecture Model for MPEG4 with the desired algorithm/architecture configura-

tions. The module containing the MPI-SystemC HLPPM is replaced by a module contain-

ing a P2P+Global memory communication network.  

The resulting model can be executed using the CosimX tool, in order to do some code 

or architecture validations, debugging, testing the good interaction/synchronization be-

tween the tasks and the global memory, etc.  
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The next step is to generate the OS of the application, using the ASOG tool and a Li-

DeL library containing the general OS services for the Sparc. After this step, the code of all 

the application’s tasks and OS are ready.  

In order to map the application on the platform, all the application’s codes and a library 

containing a set of Common Services provided for this platform are cross-compiled using 

the SPARC-V8 instruction set.  

After the compilation, the resulting binary is loaded on the platform, and it is executed. 

The platform is connected to a Web Camera that provides the input uncompressed movie, 

and the platform compresses the movie, and stores the MPEG4 bitstream at a specific ad-

dress into the memory. In parallel, this bitstream is loaded by a PC workstation via the PCI 

interface, and played by a media player (Xine under Linux). As a result, it is possible to see 

in real-time the resulting compressed movie (Figure 88). 

 
Figure 88. Real-time execution method used for the MPEG4 video encoder on the platform 

During the execution, the performances can be determined. In case these performances 

are not satisfactory, the application requires some modification. These modifications con-

sist either of changing the algorithm/architecture configurations (i.e. changing from using 2 

MainDivX to using 3 MainDivX), or optimizing the MPEG4 code to take advantage of 

some of the platform’s specific features (optimizations described later in this document). 
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5.4.4 Libraries used for mapping the MPEG4 video encoder on the Quadric-

Processors platform  

To build the Executable Model with Explicit Network, to generate the application spe-

cific OS, but also to obtain the application’s executable binary code which will be mapped 

on the platform, a set of libraries are used.  

a) Communication network: a P2P interconnect was used as communication network 

between the processors and an abstract global memory. This abstract global memory 

is described as a SystemC module using generic macro-code. This macro-code can 

be expanded and configured with the required parameters, in order to obtain the cur-

rently needed parameterized global memory module.  

Its behavior is a passive one (it does nothing). Its own purpose is to instantiate all 

the structures, arrays and data that will finally be mapped on the SDRAM. The 

number of ports connected to this abstract global memory is identical to the number 

of modules that will contain data to be stored into the SDRAM. It is important to 

mention that during the CosimX co-simulation is impossible to restrict the address 

where the compiler will allocate these data into the workstation’s memory. We leave 

the compiler decide these addresses. The abstract memory will Send to the MPEG4 

tasks, at the beginning of the simulation, messages containing all the addresses of 

these structures to the MPEG4 tasks.  

b) LiDeL Library for Sparc: this library is used by the ASOG tool, in order to build the 

application specific OS. It contains generic macro-code for the boot of the Sparc 

processors, the application loader and reset, scheduling, context switches, API be-

havior, interrupt programming, timer watch for performance monitoring, etc. De-

pending on the algorithm/architecture configuration used for the input Executable 

Model, the ASOG tool will assemble a customized OS starting from these macro-

codes.  

c) Columbia Common Services for Sparc: this library is provided in the SDK package 

(Software Development Kit) for the current Quadric-Processors Platform. When 

compiling the application for the platform, this library has to be included to accom-
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plish the compilation. The Common Services library contains some low level OS 

services, which are completely independent of the application (i.e. processor timer 

reset).   

5.4.5 Implementation results for MPEG4 video encoder on the Quadric-

Processors platform 

Using this flow, multiple configurations of MPEG4 video encoders were successfully 

mapped on the Quadric-Processors Platform. Approximately 3 minutes are required to 

generate automatically the Executable Model with Explicit Network and the Colif system 

description. Approximately 30 seconds are required to obtain the files of the OS, and ap-

proximately 10 minutes are required for the final compilation phase needed to obtain the 

executable MPEG4 binary code for the platform. To conclude, approximately 10-15 min-

utes are sufficient to obtain a running MPEG4 video encoder on the platform.  

Figure 89 presents the encoding performances for different MPEG4 video encoder im-

plementations on the platform, for QCIF and CIF video resolutions. It is important to men-

tion that all these performances are obtained using the initial MPEG4 algorithm, before any 

optimization.  

Resol. CPU1 tasks CPU2 tasks CPU3 tasks CPU4 tasks Encoding 
frame_rate Bottleneck 

Splitter+Combiner MainDivX1 MainDivX2 VLC 15 fps CPU2,3 
QCIF 

Splitter+Combiner+VLC MainDivX1 MainDivX2 MainDivX3 18 fps CPU1 

Splitter+Combiner MainDivX1 MainDivX2 VLC 5 fps CPU2,3 
CIF 

Splitter+Combiner+VLC MainDivX1 MainDivX2 MainDivX3 7 fps CPU1 

Figure 89. Encoding speeds for the MPEG4 encoder on the Quadric-Processors platform 

For instance, in case of QCIF video resolutions, when using 2 CPUs for 2 MainDivX 

tasks, 1 CPU for VLC, and 1 common CPU for Splitter and Combiner, the platform can 

encode 15 frames/sec. The bottlenecks are the two MainDivX tasks. 

However, when using 3 CPUs for 3 MainDivX tasks, and 1 common CPU for Splitter, 

Combiner and VLC, the maximum possible encoding frame rate became 18 frames/sec. 



 132 

Thus, even if the MainDivXs bottleneck was “relaxed” by adding more parallelism, the 

CPU1 became the new computational bottleneck.  

5.4.6 Performance analysis for the obtained MPEG4 video encoder on the Quad-

ric-Processors platform 

As can be seen in Figure 89, the Quadric-Processors Platform is not capable of process-

ing the MPEG4 video encoder in real-time for a QCIF video resolution movie at 25 

frames/sec. Of course, the current encoding speed of approximately 15 frames/sec can be 

sufficient in some application domains (i.e. video surveillance). However, in order to target 

25 frames/sec encoding speed (i.e. for mobile applications), the current MPEG4 video en-

coder implementation on the Quadric-Processors Platform requires some optimizations.  

The following section presents the approach used to optimize the MainDivX tasks. In 

order to optimize the MainDivX tasks, the first thing that has to be done is to analyze the 

computational bottlenecks inside the MainDivX. This can be done by dynamically profil-

ing the application. After profiling the application, it was easy to find out which of the 

functions of the MPEG4 tasks are consuming the most computational resources (Figure 

90), and the number of calls for each of these functions (Figure 91). The profiling was 

done for the case when encoding 905 frames of QCIF movie that contained variable mo-

tion complexity scenes.   

In order to simplify these graphs, only the relevant functions were presented. The rest 

of the functions contained into the MainDivX tasks which are not presented in these fig-

ures, were not significant in terms of computations (all of them represented ~ 1% of the 

total computation requirements).  
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Figure 90. Computation requirements for the functions used by the MPEG4 task 
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Figure 91. Number of calls for the functions used by the MPEG4 task 



 134 

5.4.7 Optimizing the MPEG4 algorithm to increase the performances of the 

MPEG4 video encoder on the Quadric-Processors platform 

The best candidate functions for the optimization can be found through the analysis of 

profiling graphs. Taking into account that the original code was already optimized for 

computations (from the implementations using ARM CPUs), the main optimizations re-

maining to be done were related to memory access.  

The memory access optimizations can be done by reducing the number of data cache 

misses. In case some data cache misses cannot be eliminated, to avoid stalling the proces-

sors when these misses occur. This last aspect can be achieved by exploiting the parallel 

LSU feature of the processors from this platform, feature described earlier in this docu-

ment.  

To achieve the memory optimizations, it had to separate the instructions related to 

memory access (load and store) by the instructions related to register based computations. 

When the processors are accessing a non-cached data from the global memory and imme-

diately after that, it is using that data, the processor will stall (wait). The stall time depends 

on the time required to load the data from the global memory (along with its “neighbor” 

data, forming a cache line), the time to transport the data through the communication net-

work and the time to load the data in the cache and in the register. In case of this architec-

ture, this latency to the global memory access is about 50 cycles.  

The idea behind this optimization is to load the data from the global memory, but to 

use it only later. This way, the memory access becomes in fact a “touch” to the global 

memory, to be sure that we are forcing that data to arrive in the cache. More exactly, we 

are using the fact that a processor contains parallel execution units for the LSU, MUL, 

ALU, CCP, and 6 independent parallel Load & Store capability in the LSU. Thus, while 

the data is loaded in the cache from the global memory, the processor will execute other 

instructions using other data, which preferably are already in the cache (Figure 92). This 

process is called data preloading. Using this strategy, the number of cycles on which the 

processor is stalled is significantly decreased. However, considering the complexity and 

unpredictability of this application, it is practically impossible to eliminate all the stalls. 
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load data2

computing on data 1

load data 3

computing on data 2

load data 4

computing on data 3

 
Figure 92. Principle of the memory access optimization used for the MPEG4 video encoder 

 In Figure 92, a 2-stage preload is used. This means that only one data is preloaded 

at a time, and it will be used only after two application steps (instructions). However, it is 

possible to have multiple stages of preloads. For example it is possible to preload the 

data1, data2, data3, and only after that to start to compute on data1.  

 The first function that was optimized using this preload strategy was the SAD func-

tion, which represents the performance bottleneck of the MotionEstimation function. In the 

Original code (Figure 93, left), to compute the value of T1, the processor had to wait all 

the time the values from address ptr_cur and ptr_ref to be available (the ptr_cur and 

ptr_ref represent the addresses of the two MacroBlocks which have to be compared). This 

meant that, if those data were not already in the cache memory, the processor had to wait 

for them to be loaded from the global memory. Therefore, the processor got stalled (wait) 

while loading those data.  
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T1=*(ptr_cur) - *(ptr_ref); 

sad += (ABS(T1))<<2;

T1=*(ptr_cur + 2) - *(ptr_ref + 2); 

sad += (ABS(T1))<<2; 

T1=*(ptr_cur + 4) - *(ptr_ref + 4); 

sad += (ABS(T1))<<2; 

T1=*(ptr_cur + 6) - *(ptr_ref + 6); 

sad += (ABS(T1))<<2;

T1=*(ptr_cur + 8) - *(ptr_ref + 8); 

sad += (ABS(T1))<<2; 

T1=*(ptr_cur +10) - *(ptr_ref +10); 

sad += (ABS(T1))<<2; 

T1=*(ptr_cur +12) - *(ptr_ref +12); 

sad += (ABS(T1))<<2; 

T1=*(ptr_cur +14) - *(ptr_ref +14); 

sad += (ABS(T1))<<2;

T1=*(ptr_cur    ); T2=*(ptr_ref    );

T3=*(ptr_cur + 2); T4=*(ptr_ref + 2);

T5=*(ptr_cur + 4); T6=*(ptr_ref + 4);

T7 += (T1>T2) ? T1-T2 : T2 - T1;

T1=*(ptr_cur + 6); T2=*(ptr_ref + 6);

T7+= (T3>T4) ? T3-T4 : T4-T3;

T3=*(ptr_cur + 8); T4=*(ptr_ref + 8);

T7 += (T5>T6) ? T5-T6 : T6 - T5;

T5=*(ptr_cur +10); T6=*(ptr_ref +10);

T7+= (T1>T2) ? T1-T2 : T2-T1;

T1=*(ptr_cur +12); T2=*(ptr_ref +12);

T7 += (T3>T4) ? T3-T4 : T4 - T3;

T3=*(ptr_cur +14); T4=*(ptr_ref +14);

T7+= (T5>T6) ? T5-T6 : T6-T5;

T7+= (T1>T2) ? T1-T2 : T2-T1;

T7+= (T3>T4) ? T3-T4 : T4-T3;

sad+=T7<<2;

Original code Optimized code

 
Figure 93. Main part of SAD function, before and after optimization 

In the Optimized code (Figure 93, right) we adapted the code so that the processor 

loaded in the variable T1 the data from the address ptr_cur, and in a second variable T2, 

the value from the address ptr_ref. The most important thing is that we did not use those 

variables immediately, giving time for those data to be loaded from the global memory. 

Instead, we started to execute other loads from the global memory, into other variables 

(which will be used later). Only after a while, we used those previously loaded T1 and T2, 

when computing the T7. As a result, while the data was loading, we have given to the proc-

essor other things to do.   

In this case, we have used 6-stage preload. Currently, finding the best stage number of 

preloads is done using brute-force method, by checking with different stages, and finding 

out which one provides the best performances. However, in case of this SAD function, just 

by doing these optimizations we have gained almost 350.000 cycles, from the required 

time to encode one P frame. This leads to an increase of possible frame rate with plus ~2.5 

frames/sec.  

Another problem found during the optimizations using preloads was about the preload-

ing strategy used in case of loops. As presented in Figure 94 (part of the FDCT function), 

the idea is to preload some of the data before entering into the loop, and to preload the 

same data before the end of the loop (to be available for the next loop step).  
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//preloading i1 & i6 for the loop
i1=(short) (*(img + 1)); i6=(short) (*(img + 6));

for (short int i=7;i>=0;i--)

{

//i1 & i6 are already preloaded before the loop or from a previous step of loop
//i1=(short) (*(img + 1)); i6=(short) (*(img + 6));

i0=(short) (*(img + 0)); i7=(short) (*(img + 7));

tmp1=i1+i6; tmp6=i1-i6;

i1=(short) (*(img + 3)); i6=(short) (*(img + 4));

tmp0=i0+i7; tmp7=i0-i7;

i0=(short) (*(img + 2)); i7=(short) (*(img + 5));

tmp3=i1+i6;tmp4=i1-i6;

//preloading the i1 & i6 for the next loop step
i1=(short) (*(img + 1 + stride)); i6=(short) (*(img + 6 + stride));

tmp2=i0+i7;tmp5=i0-i7; 

img += stride;

…………… //some other computations, irrelevant for this example

}

 
Figure 94. Preloading optimization for loops 

 For optimizations, the i1 and i6 where preloaded before the loop, even if they are 

the first values to be used in the loop. In addition, the i1 and i6 are also preloaded in the 

end of the loop, to be available for the next step of the loop. Just by applying this method, 

we have gained approximately 15.000 cycles required to encode one frame.  

5.4.8 Performance analysis for the obtained optimized MPEG4 video encoder on 

the Quadric-Processors platform 

After optimizing the functions contained in the MainDivX tasks, using the preloads 

strategy, the performance gain is approximately 1.231.000 cycles. In terms of frame rate 

encoding capability of the MPEG4 task, this is equivalent to an extra 9 frames/sec. Figure 

95 shows the graph with the amount of cycles gained for each function, after applying the 

preloads optimizations. It can be seen that the first benchmarks were useful in finding the 

actual bottlenecks.  

One can notice from Figure 95, the reason why we build our own functions for the 

memory management, like memcpy_x, instead of using the standard C/C++ memcpy. 

This way, we where able to “control” how this memory copy behaves in terms of memory 

accesses, which lead to gain of almost 175.000 cycles required to encode 1 frame. 
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Figure 95. Cycles gained after the optimization of the functions used by the MPEG4 task. 

From the total cycles gained thanks to the preloads optimizations, almost 28% were 

gained by the optimization of the SAD function, 23% because of the FDCT, and surpris-

ingly 14% because of the memcpy_x. This means that the standard C/C++ memcpy in-

struction is inappropriate for the used Quadric-Processors Platform. Figure 96 shows the 

percentage of each function optimization, from the total gained cycles. 

Interpolate8x8_halfpel_h 7%

Interpolate8x8_halfpel_v 3%

dev 2%

Interpolate8x8_halfpel_hv 8%

fdct 23%

idct 6%

transfer_16to8_copy 1%

quant_inter 4%

dequant_inter 1%

transfer_16to8add 3%

quant_intra 0%

dequant_intra 0%

transfer8x8_copy 0%

memcpy_x 14%

memset_x 0%

SAD 28%

SAD
Interpolate8x8_halfpel_h
Interpolate8x8_halfpel_v
dev
Interpolate8x8_halfpel_hv
fdct
idct
transfer_16to8_copy
quant_inter
dequant_inter
transfer_16to8add
quant_intra
dequant_intra
transfer8x8_copy
memcpy_x
memset_x

 
Figure 96. Percentage of cycles gained for each function from total gained cycles after optimizations 
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After the memory access optimizations into the MainDivX tasks, the new encoding 

speeds for the MPEG4 video encoder on the Quadric-Processors Platform are presented in 

Figure 97. A significant performance increase for the MPEG4 video encoder after the op-

timizations phase can be noticed. 

Resol. CPU1 tasks CPU2 tasks CPU3 tasks CPU4 tasks Encoding 
frame_rate Bottleneck 

Splitter+Combiner MainDivX1 MainDivX2 VLC 25 fps CPU2,3 
QCIF 

Splitter+Combiner+VLC MainDivX1 MainDivX2 MainDivX3 18 fps CPU1 

Splitter+Combiner MainDivX1 MainDivX2 VLC 10 fps CPU2,3 
CIF 

Splitter+Combiner+VLC MainDivX1 MainDivX2 MainDivX3 7 fps CPU1 

Figure 97. Encoding speeds for the MPEG4 video encoder after the optimizations 

For some configurations, the new bottleneck is the CPU1. This is due to the mapping 

of the VLC along with the Splitter and Combiner, tasks on which no memory optimization 

were yet done. Thus, in order to increase even more the encoding performances, these 

tasks will also have to be optimized. As a result, the encoding performances may be bigger 

than 25 frames/sec. Based on personal estimations, the performances in this case might 

arrive at approximately 35 frames/sec. 

In case of CIF video resolution, these optimizations are not sufficient to obtain a 25 

frames/sec encoding performance. To conclude, HW accelerators or local coprocessors 

have to be integrated. Taking into account that these are improving mainly the computa-

tions of the encoding, they still might not be sufficient in case the memory becomes the 

bottleneck. In this case, the only feasible solutions would be to change the global memory 

architecture, increase the cache sizes, or to increase the platform’s clock speed. However, 

these aspects will have to be covered during future works.  

5.5 Conclusion 

The objective of this chapter is to present the ROSES flow used during the implemen-

tation of the MPEG4 encoder on MP-SoC. The flow uses as input a Flexible Algo-

rithm/Architecture Model for MPEG4, the algorithm/architecture configurations obtained 
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after the High-Level Algorithm/Architecture Exploration and a Communication Library. 

From these, different Executable Models with Explicit Networks can be macro-generated. 

Since in these models all the low-level architecture details are abstracted, the flow is auto-

matically generating them using a component-based approach. The ROSES-ASOG tool is 

generating the low-level SW details (OS). The ROSES-ASAG tool is generating the low-

level HW details (wrappers, CPU-Subsystems). Using the ROSES-COSIMX tool, it is pos-

sible to co-simulate the resulting models at different abstraction levels. This helps to vali-

date and debug the results obtained by the flow.  

Using this flow, multiple MPEG4 encoders on MP-SoC architectures were imple-

mented, starting from high-level (Executable Model with Explicit Network) until RTL 

level. The resulted RTL architectures used different numbers of ARM processors. These 

architectures were validated using cycle-accurate ISS co-simulation approach.  

Using the same flow, multiple MPEG4 encoders were implemented on an existing 

Quadric-processor platform. The implementation consists of obtaining the low-level SW 

details, and mapping them with the application’s tasks on the platform’s CPUs. The results 

were validated using native execution on the platform. Additionally, some algorithm op-

timizations were done in order to take advantage of the platform’s features.    

As a result, the used flow proved to be efficient for the implementation of the MPEG4 

encoders on different MP-SoC. Because the flow is automated, it significantly reduces the 

design time. 
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6 Conclusions and perspectives 

 

The implementation of video encoders, like MPEG4 encoder, into MP-SoC is largely 

required into many of today’s applications: mobile telecom, home-cinema, video surveil-

lance, etc. Since each of these applications imposes different algorithm and architecture 

constraints and requirements, the implementation of the MPEG4 encoder into MP-SoC 

raises many challenges. These challenges are related to different aspects:  

a) being able to implement quickly different algorithm/architecture specifications for 

MPEG4, using different algorithm and architecture configurations, and different 

parallelism/pipeline execution schemes. 

b) being able to explore quickly multiple algorithm and architecture configurations, in 

order to find the optimal configurations which are satisfying the performance re-

quirements. 

c) using a common flow for the implementation of the MPEG4 encoder on different 

types of targeted architectures, is either a completely new architecture, or an existing 

one. 

This document presented a new approach that was successfully used for the implemen-

tation of the MPEG4 encoder in MP-SoC with different algorithm and architecture con-

figurations. Using this approach, the MPEG4 encoder was successfully implemented on 

new architectures with large number of processors, architectures which may become a 

common practice in a few years (e.g. in 65nm technology in 2007). Additionally, the 

MPEG4 encoder was also successfully implemented into one of today’s existing quadric-

processors architecture. This was possible by using our proposed solutions: 

a) a flexible modeling style was used to obtain automatically different Combined Algo-

rithm/Architecture Executable Models for MPEG4 for different algorithm and archi-

tecture parameters, starting from a unique Flexible Algorithm/Architecture Model 

for MPEG4. These models contain a highly parallel/pipelined MPEG4 encoder algo-
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rithm with 2 SMPs for the tasks with heavy computations. This algorithm can be pa-

rameterized (e.g. resolution, frame rate, bitrate, MotionEstimation precision, motion 

search area, quantization type, etc) and parallelizable, by adjusting the level of paral-

lelism into each of the algorithm’s SMP. The obtained models can easily be config-

ured for multiple application requirements, but also for different architectures with 

either a small number of CPUs, or a large number of CPUs.     

b) it was used a High-Level Algorithm/Architecture Exploration, in order to quickly 

explore multiple algorithm/architecture configurations, and to find the optimal pa-

rameters which are satisfying the requirements even before starting the actual archi-

tecture implementation. By doing the exploration at a high-level, many of the low-

level architecture details are completely abstracted. This makes the simulation much 

faster. In addition, the simulation models were automatically obtained starting from 

a unique Flexible Algorithm/Architecture Model for MPEG4, from which many cus-

tomized high-level simulation models can be automatically obtained, using a macro-

generation approach. The performance estimations were done by inserting time an-

notations for computations and communications into these simulation models. This 

document presented many estimation results for different algorithm and architecture 

configurations. The precision of this high-level exploration approach proved to be 

close enough to the real measurements at a low-level. This assured the feasibility of 

our approach for this kind of applications.  

c) a component based approach was used for the implementation of the MPEG4 en-

coder in either completely new architectures, or in an already existing architecture. 

This approach is based on the ROSES flow, developed at TIMA Laboratory – SLS 

Group. The main purpose of this flow is to refine the low-level details (i.e. HW/SW 

interfaces) which were abstracted during the previous high-level algo-

rithm/architecture exploration. Using the flow presented in this document, the 

MPEG4 encoder was successfully implemented into completely new cycle-accurate 

MP-SoC architectures using ARM7 and ARM9 processors. The same approach was 

also used for the implementation of the MPEG4 encoder on an existing quadric-

processors architectures (provided by one of our industrial partners), for multiple 

resolutions, frame rates, bitrates, etc. The final application is directly linked with a 
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video camera that is providing in real-time the images to the encoder chip, which 

compresses them, and saves them (with the help of a host driver) on a storage unit. 

Simultaneously, the resulting bitstream is displayed on the PC monitor using the 

Xine media player under Linux. 

Based on the approach presented in this document, and in collaboration with our indus-

trial partner, multiple other video applications were successfully implemented: MPEG1 

encoder, MPEG1 decoder, MPEG2 encoder (SimpleProfile, MainProfile, HighProfile), 

MPEG2 decoder (SimpleProfile, MainProfile, HighProfile), MPEG4 decoder (SimplePro-

file) and H264 encoder (Baseline, MainProfile, HighProfile). This was mainly possible by 

adapting the Flexible Algorithm/Architecture Model for MPEG4 to support additionally 

Algorithm_Type and Encoder_Decoder parameters.  

There are already plans for implementing the computational extensive functions into 

HW, and also to extend this approach to H264 decoder. However, extending the proposed 

approach to other application domains except the video applications is still an open re-

search subject, and we have decided to leave it for future works.  

Additionally, we intend to improve the precision of the High-Level Algo-

rithm/Architecture Exploration, similar with the approach presented in [ 59 ].  

Also, there is already ongoing work regarding the modeling of MPEG4 algorithm on 

MP-SoC using POSIX. Modeling it using the approach from [ 60 ] seems an interesting 

perspective, and we intend to achieve it in the future.   
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RESUME 
Ces dernières années, la complexité des puces a augmenté exponentiellement.  La possibilité 

d’intégrer plusieurs processeurs sur la même puce représente un gain important, et amène au concept du 
système multiprocesseur hétérogène sur puce (MP-SoC).  Cet aspect a permis d’amplifier de manière 
significative la puissance de calcule fourni par ce type de puce.  Il est même devenu possible d'intégrer 
des applications complexes sur une seule puce, applications qui nécessitent beaucoup de calculs, de 
communications et de mémoires. Dans cette catégorie, on peut trouver les applications de traitement 
vidéo MPEG4. Pour obtenir de bonnes implémentations en termes de performances, (1) un algorithme 
de l’encodeur MPEG4 flexible a été réalisé, pouvant être facilement adapté pour différents types de 
paramètres d'algorithme, mais également différents niveaux de parallélisme/pipeline. Puis, (2) une 
modélisation flexible a été utilisée, pour représenter différents models d’algorithme et d’architecture 
contenant 2 SMP. Utilisant ces models, (3) une exploration d’algorithme et d’architecture à un haut 
niveau d’abstraction a été proposé, en vue de trouver les configurations correctes d’algorithme et 
d’architectures, nécessaires pour différents applications. A partir de ces configurations, (4) un flot 
automatique d’implémentation d'architectures RTL a été utilisé. En utilisant ces aspects, l'encodeur 
MPEG4 a été implémenté avec succès dans plusieurs architectures spécifiques MP-SoC au niveau RTL. 
La même approche a été utilisée pour l'implémentation de l'encodeur MPEG4 sur une architecture 
quadri-processeurs existante, pour différentes résolutions, frame-rate, bitrates, etc. 
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