. Le-modèle-de-prolifération-virale-utilisé-est-le-système-d-'edo-s-v3, ), et le modèle d'activation lymphocytaire T est celui dit, pp.164-92

. La-prolifération-virale-peut-durer, en réalité (clinique), plusieurs jours (par exemple 5 à 6 jours pour un rhume) La réponse immunitaire n'est généralement apparente que

. Ici, le pas de temps de l'algorithme de couplage (?t) a été fixé à 15 minutes. Nous avons choisi d'augmenter ce pas de temps par

. La-deuxième-raison-de-ce-choix, Plus le pas de temps (?t) sera petit, et plus le temps de calcul sera long. Dans notre cas, avec ce second jeu de paramètres

. La-figure-15, 3 présente également les quantités uCell, iCell 0 , iCell 1 , iCell 2 et V ir obtenues avec le couplage des deux modèles (prolifération virale et activation du lymphocyte T) La figure 15.4 indique le nombre de cellules filles du lymphocyte T spécifique de l'antigène viral, sur le lieu de l'infection, pour la période de temps s

. Dans-ce-cas,-la-durée-de-la, maladie" est aussi d'environ 50 heures Et les lymphocytes T cytotoxiques se trouvent sur le lieu de l'infection environ 49,5 heures (1, 782.10 5 secondes) après l'apparition du virus

. Dans-cette-annexe, nous cherchons les états stationnaires des modèles d'activation du lymphocyte T Cette recherche nous a conduits, p.92

L. Modèles, complet" et "simplifié") proposés pour l'activation du lymphocyte T étant non-linéaires, il est difficile d'obtenir pour chaque concentration stationnaire une expression simple

. Dans-cette-annexe, nous cherchons à explorer les modèles d'infection virale, S v1

L. Nous-faisons-ici-l-'hypothèse-que-le-paramètre, spécifiques du virus, présents sur le lieu de l'infection) est une constante, 2001.

N. Gualde, Révision accélérée en IMMUNOLOGIE. Maloine, 1989.

B. Asquith, C. Debacq, D. C. Macallan, L. Willems, and C. R. Bangham, Lymphocyte kinetics: the interpretation of labelling data, Trends in Immunology, vol.23, issue.12, pp.596-601, 2002.
DOI : 10.1016/S1471-4906(02)02337-2

A. T. Vella, T. Mitchell, B. Groth, P. S. Linsley, J. M. Green et al., CD28 engagement and proinflammatory cytokines contribute to T cell expansion and long-term survival in vivo, Journal of Immunology, vol.158, pp.4714-4720, 1997.

D. Sancho, A. G. Santis, J. L. Alonso-lebrero, F. Viedma, R. Tejedor et al., Functional Analysis of Ligand-Binding and Signal Transduction Domains of CD69 and CD23 C-Type Lectin Leukocyte Receptors, The Journal of Immunology, vol.165, issue.7, pp.3868-3875, 2000.
DOI : 10.4049/jimmunol.165.7.3868

S. Valitutti, S. Müller, M. Cella, E. Padovan, and E. A. Lanzavecchia, Serial triggering of many T-cell receptors by a few peptide???MHC complexes, Nature, vol.375, issue.6527, pp.148-151, 1995.
DOI : 10.1038/375148a0

A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw et al., The Immunological Synapse: A Molecular Machine Controlling T Cell Activation, Science, vol.285, issue.5425, pp.221-227, 1999.
DOI : 10.1126/science.285.5425.221

D. J. Irvine, M. A. Purbhoo, M. Krogsgaard, and M. M. Davis, Direct observation of ligand recognition by T cells, Nature, vol.90, issue.6909, pp.845-849, 2002.
DOI : 10.1126/science.282.5397.2266

A. V. Gett and P. D. Hodgkin, A cellular calculus for signal integration by T cells, Nature Immunology, vol.1, issue.3, pp.239-244, 2000.
DOI : 10.1038/79782

A. Lanzavecchia and F. Sallusto, Dynamics of T Lymphocyte Responses: Intermediates, Effectors, and Memory Cells, Science, vol.290, issue.5489, pp.92-97, 2000.
DOI : 10.1126/science.290.5489.92

M. J. Miller, O. Safrina, I. Parker, and M. D. Cahalan, T Cell Activation by Dendritic Cells in Lymph Nodes, The Journal of Experimental Medicine, vol.2, issue.7, pp.847-856, 2004.
DOI : 10.1038/ni1058

A. V. Miletic, M. Swat, K. Fujikawa, and E. W. Swat, Cytoskeletal remodeling in lymphocyte activation, Current Opinion in Immunology, vol.15, issue.3, pp.261-268, 2003.
DOI : 10.1016/S0952-7915(03)00054-2

C. R. Monks, B. A. Freiberg, H. Kupfer, N. Sciaky, and E. A. Kupfer, Three-dimensional segregation of supramolecular activation cluster in T cells, Nature, vol.395, pp.82-86, 1998.

S. A. Wetzel, T. W. Mckeithan, and D. C. Parker, Live-Cell Dynamics and the Role of Costimulation in Immunological Synapse Formation, The Journal of Immunology, vol.169, issue.11, pp.6092-6101, 2002.
DOI : 10.4049/jimmunol.169.11.6092

J. Sousa and J. Carneiro, A mathematical analysis of TCR serial triggering and down-regulation, European Journal of Immunology, vol.29, issue.11, pp.3219-3227, 2000.
DOI : 10.1002/1521-4141(200011)30:11<3219::AID-IMMU3219>3.0.CO;2-7

M. L. Dustin and J. A. Cooper, The immunological synapse and the actin cytoskeleton : molecular hardware for T cell signaling, Nature Immunology, vol.1, issue.1, pp.23-29, 2000.
DOI : 10.1038/76877

M. M. Winslow, J. R. Neilson, and G. R. Crabtree, Calcium signalling in lymphocytes, Current Opinion in Immunology, vol.15, issue.3, pp.299-307, 2003.
DOI : 10.1016/S0952-7915(03)00050-5

D. Busch and E. Pamer, MHC class I/peptid stability : implications for immunodominance, in vitro proliferation, and diversity of responding CTL, Journal of Immunology, vol.160, pp.4441-4448, 1998.

S. C. Meuer, O. Acuto, R. E. Hussey, J. C. Hodgon, K. A. Fitzgerald et al., Evidence for the T3-associated 90K heterodimer as the T-cell antigen receptor, Nature, vol.227, issue.5920, pp.808-810, 1983.
DOI : 10.1038/303808a0

C. Menné, T. M. Sørensen, M. Von-essen, N. Ødum, and E. C. Geisler, Endo- and exocytic rate constants for spontaneous and protein kinase C-activated T cell receptor cycling, European Journal of Immunology, vol.32, issue.3, pp.616-626, 2002.
DOI : 10.1002/1521-4141(200203)32:3<616::AID-IMMU616>3.3.CO;2-0

O. Acuto and F. Michel, CD28-mediated co-stimulation: a quantitative support for TCR signalling, Nature Reviews Immunology, vol.3, issue.12, pp.939-951, 2003.
DOI : 10.1038/nri1248

M. Fougereau, Que sais-je ? Presses Universitaires de France, 1995.

M. Moldovan, A. Yachou, K. Levesque, H. Wu, W. Hendrickson et al., CD4 Dimers Constitute the Functional Component Required for T Cell Activation, The Journal of Immunology, vol.169, issue.11, pp.6261-6268, 2002.
DOI : 10.4049/jimmunol.169.11.6261

A. Viola, M. Salio, L. Tuosto, S. Linkert, O. Acuto et al., Quantitative Contribution of CD4 and CD8 to T Cell Antigen Receptor Serial Triggering, The Journal of Experimental Medicine, vol.13, issue.10, pp.1775-1779, 1997.
DOI : 10.1016/1074-7613(94)90038-8

S. K. Bromley, A. Iaboni, S. J. Davis, A. Whitty, J. M. Green et al., The immunological synapse and CD28-CD80 interactions, Nature Immunology, vol.16, issue.12, pp.1159-1166, 2001.
DOI : 10.1073/pnas.94.8.3909

A. S. Llera, F. Viedma, F. Sanchez-madrid, and E. J. Tormo, Crystal Structure of the C-type Lectin-like Domain from the Human Hematopoietic Cell Receptor CD69, Journal of Biological Chemistry, vol.276, issue.10, pp.2767312-7319, 2001.
DOI : 10.1074/jbc.M008573200

D. Sancho, M. Gómez, and F. Sánchez-madrid, CD69 is an immunoregulatory molecule induced following activation, Trends in Immunology, vol.26, issue.3, pp.136-140, 2005.
DOI : 10.1016/j.it.2004.12.006

A. Caruso, S. Licenziati, M. Corulli, A. D. Canaris, M. A. De-francesco et al., Flow cytometric analysis of activation markers on stimulated T cells and their correlation with cell proliferation, Cytometry, vol.27, issue.1, pp.71-76, 1997.
DOI : 10.1002/(SICI)1097-0320(19970101)27:1<71::AID-CYTO9>3.0.CO;2-O

E. Arvå and B. Andersson, Kinetics of Cytokine Release and Expression of Lymphocyte Cell-Surface Activation Markers After In Vitro Stimulation of Human Peripheral Blood Mononuclear Cells with Streptococcus pneumoniae, Scandinavian Journal of Immunology, vol.157, issue.3, pp.237-243, 1999.
DOI : 10.1046/j.1365-3083.1996.d01-25.x

J. Thèze, P. M. Alzari, and E. J. Bertoglio, Interleukin 2 and its receptors: recent advances and new immunological functions, Immunology Today, vol.17, issue.10, pp.481-486, 1996.
DOI : 10.1016/0167-5699(96)10057-C

P. A. Van-der-merwe, D. L. Bodian, S. Daenke, P. Linsley, and S. J. Davis, CD80 (B7-1) Binds Both CD28 and CTLA-4 with a Low Affinity and Very Fast Kinetics, The Journal of Experimental Medicine, vol.47, issue.3, pp.393-403, 1997.
DOI : 10.1093/intimm/5.6.695

K. C. Howland, L. J. Ausubel, C. London, and A. K. Abbas, The Roles of CD28 and CD40 Ligand in T Cell Activation and Tolerance, The Journal of Immunology, vol.164, issue.9, pp.4465-4470, 2000.
DOI : 10.4049/jimmunol.164.9.4465

V. Volterra, Leçons sur la théorie mathématique de la lutte pour la vie, 1931.

I. A. Sidorov and A. A. Romanyukha, Mathematical modeling of T-cell proliferation, Mathematical Biosciences, vol.115, issue.2, pp.187-232, 1993.
DOI : 10.1016/0025-5564(93)90071-H

E. K. Deenick, A. V. Gett, and P. D. Hodgkin, Stochastic Model of T Cell Proliferation: A Calculus Revealing IL-2 Regulation of Precursor Frequencies, Cell Cycle Time, and Survival, The Journal of Immunology, vol.170, issue.10, pp.4963-4972, 2003.
DOI : 10.4049/jimmunol.170.10.4963

L. R. Borisova and V. A. Kuznetsov, A mathematical model of T lymphocyte proliferation controlled by interleukin-2 internalization, Membrane & Cell Biology, vol.11, issue.2, pp.259-267, 1997.

L. R. Borisova, S. G. Andreev, and V. A. Kuznetsov, Kinetics of T cell proliferation : a mathematical model and data analysis, Membrane & Cell Biology, vol.12, issue.1, pp.111-119, 1998.

J. D. Rabinowitz, C. Beeson, D. S. Lyons, M. M. Davis, and H. M. Mcconnell, Kinetic discrimination in T-cell activation., Proceedings of the National Academy of Sciences, vol.93, issue.4, pp.1401-1405, 1996.
DOI : 10.1073/pnas.93.4.1401

M. A. Nowak, S. Bonhoeffer, A. M. Hill, R. Boehme, H. C. Thomas et al., Viral dynamics in hepatitis B virus infection., Proceedings of the National Academy of Sciences, vol.93, issue.9, pp.4398-4402, 1996.
DOI : 10.1073/pnas.93.9.4398

M. A. Nowak, K. Tarczy-hornoch, and E. J. Austyn, The optimal number of major histocompatibility complex molecules in an individual., Proceedings of the National Academy of Sciences, vol.89, issue.22, pp.10896-10899, 1992.
DOI : 10.1073/pnas.89.22.10896

M. A. Nowak and C. R. Bangham, Population Dynamics of Immune Responses to Persistent Viruses, Science, vol.272, issue.5258, pp.74-79, 1996.
DOI : 10.1126/science.272.5258.74

A. V. Herz, S. Bonhoeffer, R. M. Anderson, R. M. May, and M. A. Nowak, Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay., Proceedings of the National Academy of Sciences, vol.93, issue.14, pp.7247-7251, 1996.
DOI : 10.1073/pnas.93.14.7247

S. Bonhoeffer, R. M. May, G. M. Shaw, and M. A. Nowak, Virus dynamics and drug therapy, Proceedings of the National Academy of Sciences, vol.12, issue.2, pp.6971-6976, 1997.
DOI : 10.1038/nm0297-212

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC21269

D. Wodarz and M. A. Nowak, Specific therapy regimes could lead to long-term immunological control of HIV, Proceedings of the National Academy of Sciences of the United States of America, pp.9614464-14469, 1999.
DOI : 10.1073/pnas.94.13.6971

D. Wodarz and M. A. Nowak, Correlates of cytotoxic T-lymphocyte-mediated virus control: implications for immuno-suppressive infections and their treatment, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.355, issue.1400, pp.1059-1070, 2000.
DOI : 10.1098/rstb.2000.0643

D. Wodarz, R. M. May, and M. A. Nowak, The role of antigen-independent persistence of memory cytotoxic T lymphocytes, International Immunology, vol.12, issue.4, pp.467-477, 2000.
DOI : 10.1093/intimm/12.4.467

D. Wodarz, S. E. Hall, K. Usuku, M. Osame, G. S. Ogg et al., Cytotoxic T-cell abundance and virus load in human immunodeficiency virus type 1 and human T-cell leukaemia virus type 1, Proceedings of the Royal Society B: Biological Sciences, vol.268, issue.1473, pp.1215-1221, 2001.
DOI : 10.1098/rspb.2001.1608

H. C. Tuckwell and F. Y. Wan, On the behavior of solutions in viral dynamical models, Biosystems, vol.73, issue.3, pp.157-161, 2004.
DOI : 10.1016/j.biosystems.2003.11.004

D. Wilson, P. Timms, and E. D. Mcelwain, A mathematical model for the investigation of the Th1 immune response to Chlamydia trachomatis, Mathematical Biosciences, vol.182, issue.1, pp.27-44, 2003.
DOI : 10.1016/S0025-5564(02)00180-3

J. R. Faeder, W. S. Hlavacek, I. Reischl, M. L. Blinov, H. Metzger et al., Investigation of Early Events in Fc??RI-Mediated Signaling Using a Detailed Mathematical Model, The Journal of Immunology, vol.170, issue.7, pp.3769-3781, 2003.
DOI : 10.4049/jimmunol.170.7.3769

U. S. Bhalla and R. Iyengar, Emergent Properties of Networks of Biological Signaling Pathways, Science, vol.283, issue.5400, pp.381-387, 1999.
DOI : 10.1126/science.283.5400.381

S. Qazi, A. Beltukov, and B. A. Trimmer, Simulation modeling of ligand receptor interactions at non-equilibrium conditions: processing of noisy inputs by ionotropic receptors, Mathematical Biosciences, vol.187, issue.1, pp.93-110, 2004.
DOI : 10.1016/j.mbs.2003.01.001

S. Y. Qi, J. T. Groves, and A. K. Chakraborty, Synaptic pattern formation during cellular recognition, Proceedings of the National Academy of Sciences of the United States of America, pp.986548-6553, 2001.
DOI : 10.1016/S0198-8859(99)00159-7

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC34390

N. M. Ferguson, S. Mallett, H. Jackson, N. Roberts, and E. P. Ward, A population-dynamic model for evaluating the potential spread of drug-resistant influenza virus infections during community-based use of antivirals, Journal of Antimicrobial Chemotherapy, vol.51, issue.4, pp.977-990, 2003.
DOI : 10.1093/jac/dkg136

N. Jumbe, A. Louie, R. Leary, W. Liu, M. R. Deziel et al., Application of a mathematical model to prevent in vivo amplification of antibiotic-resistant bacterial populations during therapy, Journal of Clinical Investigation, vol.112, issue.2, pp.275-285, 2003.
DOI : 10.1172/JCI16814DS1

K. Matsui, J. J. Boniface, A. Reay, H. Philip, B. Schild et al., Low affinity interaction of peptide-MHC complexes with T cell receptors, Science, vol.254, issue.5039, pp.1788-1791, 1991.
DOI : 10.1126/science.1763329

K. C. Garcia, C. A. Scott, A. Brunmark, F. R. Carbone, P. A. Peterson et al., CD8 enhances formation of stable T-cell receptor/MHC class I molecule complexes, Nature, vol.384, issue.6609, pp.384577-581, 1996.
DOI : 10.1038/384577a0

X. Wei, B. J. Tromberg, and M. D. Cahalan, Mapping the sensitivity of T cells with an optical trap: Polarity and minimal number of receptors for Ca2+ signaling, Proceedings of the National Academy of Sciences, vol.159, issue.4, pp.8471-8476, 1999.
DOI : 10.1073/pnas.91.7.2873

J. Dietrich, C. Menné, J. P. Lauritsen, M. Von-essen, A. B. Rasmussen et al., Ligand-Induced TCR Down-Regulation Is Not Dependent on Constitutive TCR Cycling, The Journal of Immunology, vol.168, issue.11, pp.5434-5440, 2002.
DOI : 10.4049/jimmunol.168.11.5434

M. Krummel, W. Christoph, C. Sumen, and M. M. Davis, Thirty-six views of T-cell recognition, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.355, issue.1400, pp.1071-1076, 2000.
DOI : 10.1098/rstb.2000.0644

M. Corr, A. Slanetz, L. Boyd, M. Jelonek, S. Khilko et al., T cell receptor-MHC class I peptide interactions: affinity, kinetics, and specificity, Science, vol.265, issue.5174, pp.265946-949, 1994.
DOI : 10.1126/science.8052850

P. Holler, A. Lim, B. Cho, L. Rund, and E. K. Dm, T Cell Transfectants That Express a High Affinity T Cell Receptor Exhibit Enhanced Peptide-Dependent Activation, The Journal of Experimental Medicine, vol.14, issue.8, pp.1043-1052, 2001.
DOI : 10.1074/jbc.274.40.28329

K. Matsui, J. J. Boniface, P. Steffner, A. Reay, M. M. Philip et al., Kinetics of T-cell receptor binding to peptide/I-Ek complexes: correlation of the dissociation rate with T-cell responsiveness., Proceedings of the National Academy of Sciences of the United States of America, pp.12862-12866, 1994.
DOI : 10.1073/pnas.91.26.12862

Z. Wu, K. W. Johnson, Y. Choi, and T. L. Ciardelli, Ligand Binding Analysis of Soluble Interleukin-2 Receptor Complexes by Surface Plasmon Resonance, Journal of Biological Chemistry, vol.270, issue.27, pp.16045-16051, 1995.
DOI : 10.1074/jbc.270.27.16045

H. Liu, M. Rhodes, D. L. Wiest, and D. A. Vignali, On the Dynamics of TCR:CD3 Complex Cell Surface Expression and Downmodulation, Immunity, vol.13, issue.5, pp.665-675, 2000.
DOI : 10.1016/S1074-7613(00)00066-2

R. M. May, S. Gupta, and A. R. Mclean, Infectious disease dynamics: what characterizes a successful invader?, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.356, issue.1410, pp.901-910, 2001.
DOI : 10.1098/rstb.2001.0866

G. Li and H. Rabitz, A general analysis of approximate lumping in chemical kinetics, Chemical Engineering Science, vol.45, issue.4, pp.977-1002, 1990.
DOI : 10.1016/0009-2509(90)85020-E

P. Duchêne and P. Rouchon, Kinetic scheme reduction via geometric singular perturbation techniques, Chemical Engineering Science, vol.51, issue.20, pp.4661-4672, 1996.
DOI : 10.1016/0009-2509(96)00310-7

D. Dochain, State and parameter estimation in chemical and biochemical processes: a tutorial, Journal of Process Control, vol.13, issue.8, pp.801-818, 2003.
DOI : 10.1016/S0959-1524(03)00026-X

G. Maria, Relations between apparent and intrinsic kinetics of ???programmable??? drug release in human plasma, Chemical Engineering Science, vol.60, issue.6, pp.1709-1723, 2005.
DOI : 10.1016/j.ces.2004.11.009