. Focalisation-du-faisceau-excitateur....., 52 4.1.2 ´ Emission et collection de la fluorescence, p.52

D. Le-contexte and P. `-es-1909, Debye [50] développa une théorie scalaire pour calculer l'effet diffractif d'une lentillè a forte ouverture numérique sur un faisceau spatialement cohérent non polarisé. Cette méthode sera reprise et développée par J. Picht [51] en 1925. A la différence du principe de Huygens-Fresnel qui Bibliographie [1] D. B. Murphy, Fundamentals of light microscopy and electronic imaging, 2001.

K. Brejc, T. K. Sixma, P. A. Kitts, S. R. Kain, R. Y. Tsien et al., Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein, Proceedings of the National Academy of Sciences, vol.13, issue.2, pp.2306-2311, 1997.
DOI : 10.1038/nbt0295-151

J. Mertz and L. Moreaux, Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers, Optics Communications, vol.196, issue.1-6, pp.325-330, 2001.
DOI : 10.1016/S0030-4018(01)01403-1

D. Débarre, W. Supatto, E. Farge, B. Moulia, M. Schanne-klein et al., Velocimetric third-harmonic generation microscopy:???micrometer-scale quantification of morphogenetic movements in unstained embryos, Optics Letters, vol.29, issue.24, pp.2881-2883, 2004.
DOI : 10.1364/OL.29.002881

A. Zumbusch, G. R. Holtom, and X. S. Xie, Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering, Physical Review Letters, vol.82, issue.20, p.4142, 1999.
DOI : 10.1103/PhysRevLett.82.4142

W. Denk, J. H. Strickler, and W. W. Webb, Two-photon laser scanning fluorescence microscopy, Science, vol.248, issue.4951, pp.73-76, 1990.
DOI : 10.1126/science.2321027

C. J. Sheppard and M. Gu, Image formation in two-photon fluorescence microscopy, Optik, vol.86, pp.104-106, 1990.

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak et al., Three-photon excitation in fluorescence microscopy, Journal of Biomedical Optics, vol.1, issue.1, pp.71-74, 1996.
DOI : 10.1117/12.229062

E. Abbe, Beitr??ge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung, Archiv fur mikroskopische Anatomie, pp.413-468, 1873.
DOI : 10.1007/BF02956173

URL : http://publikationen.ub.uni-frankfurt.de/files/11525/E001743295.pdf

V. Westphal and S. W. Hell, Nanoscale Resolution in the Focal Plane of an Optical Microscope, Physical Review Letters, vol.94, issue.14, p.143903, 2005.
DOI : 10.1103/PhysRevLett.94.143903

S. W. Hell and J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy, Optics Letters, vol.19, issue.11, pp.780-782, 1994.
DOI : 10.1364/OL.19.000780

V. Westphal, J. Seeger, T. Salditt, and S. W. Hell, Stimulated emission depletion microscopy on lithographic nanostructures, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.38, issue.9, pp.695-705, 2005.
DOI : 10.1088/0953-4075/38/9/017

S. Hell and E. H. Stelzer, Properties of a 4Pi confocal fluorescence microscope, Journal of the Optical Society of America A, vol.9, issue.12, pp.2159-2166, 1992.
DOI : 10.1364/JOSAA.9.002159

C. J. Sheppard and Y. R. Gong, Improvement in axial resolution by interference confocal microscopy, Optik, vol.87, issue.3, pp.129-132, 1991.

E. H. Stelzer and S. Lindek, Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy, Optics Communications, vol.111, issue.5-6, pp.5-6, 1994.
DOI : 10.1016/0030-4018(94)90533-9

E. H. Stelzer, C. Cremer, and S. Lindek, Theory and applications of confocal theta-microscopy, Zoological Studies, vol.34, pp.67-69, 1995.

S. Lindek and E. H. Stelzer, Optical transfer functions for confocal theta fluorescence microscopy, Journal of the Optical Society of America A, vol.13, issue.3, pp.479-482, 1996.
DOI : 10.1364/JOSAA.13.000479

S. Lindek and E. H. Stelzer, Resolution improvement by nonconfocal theta microscopy, Optics Letters, vol.24, issue.21, pp.1505-1507, 1999.
DOI : 10.1364/OL.24.001505

S. Lindek, R. Pick, and E. H. Stelzer, Confocal theta microscope with three objective lenses, Review of Scientific Instruments, vol.65, issue.11, pp.3367-3372, 1994.
DOI : 10.1063/1.1144574

J. Swoger, J. Huisken, and E. H. Stelzer, Multiple imaging axis microscopy improves resolution for thick-sample applications, Optics Letters, vol.28, issue.18, pp.1654-1656, 2003.
DOI : 10.1364/OL.28.001654

O. Haeberlé, C. Xu, A. Dieterlen, and S. Jacquey, Multiple-objective microscopy with three-dimensional resolution near 100??????nm and a long working distance, Optics Letters, vol.26, issue.21, pp.1684-1686, 2001.
DOI : 10.1364/OL.26.001684

H. Rigneault and P. Lenne, Fluorescence correlation spectroscopy on a mirror, Journal of the Optical Society of America B, vol.20, issue.10, pp.2203-2214, 2003.
DOI : 10.1364/JOSAB.20.002203

URL : https://hal.archives-ouvertes.fr/hal-00072362

S. Lindek, J. Swoger, and E. H. Stelzer, Single-lens theta microscopy: Resolution, efficiency and working distance, Journal of Modern Optics, vol.4, issue.5, pp.843-858, 1999.
DOI : 10.1080/09500349908231308

N. Sandeau, H. Rigneault, P. Lenne, and H. Giovannini, Axial localization of luminophores by partial coherence interferometry, Biophotonics Micro- and Nano-Imaging, pp.51-56, 2004.
DOI : 10.1117/12.545661

URL : https://hal.archives-ouvertes.fr/hal-00078959

E. Etienne, Spectroscopie de Correlation de Fluorescence sur miroir : Détection et exaltation de la luminescence de molécules biologiques individuelles diffusant en solution ou en milieu cellulaire. Thèse, 2003.
DOI : 10.1051/jp4:20020170

P. F. Lenne, E. Etienne, and H. Rigneault, Subwavelength patterns and high detection efficiency in fluorescence correlation spectroscopy using photonic structures, Applied Physics Letters, vol.80, issue.22, pp.4106-4108, 2002.
DOI : 10.1063/1.1483116

URL : https://hal.archives-ouvertes.fr/hal-00078511

A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, High-resolution full-field optical coherence tomography with a Linnik microscope, Applied Optics, vol.41, issue.4, pp.805-812, 2002.
DOI : 10.1364/AO.41.000805

URL : https://hal.archives-ouvertes.fr/hal-00627977

M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, An application of interference microscopy to integrated circuit inspection and metrology, Integrated circuit metrology, inspection and process control, pp.233-247, 1987.

G. S. Kino and S. S. Chim, Mirau correlation microscope, Applied Optics, vol.29, issue.26, pp.3775-3783, 1990.
DOI : 10.1364/AO.29.003775

F. C. Chang and G. S. Kino, 325-nm Interference microscope, Applied Optics, vol.37, issue.16, pp.3471-3479, 1998.
DOI : 10.1364/AO.37.003471

T. Okamoto, S. Kawata, and S. Minami, Fourier transform spectrometer with a self-scanning photodiode array, Applied Optics, vol.23, issue.2, pp.269-273, 1984.
DOI : 10.1364/AO.23.000269

T. H. Barnes, Photodiode array Fourier transform spectrometer with improved dynamic range, Applied Optics, vol.24, issue.22, pp.3702-3706, 1985.
DOI : 10.1364/AO.24.003702

]. L. Mandel, Interference and the Alford and Gold Effect, Journal of the Optical Society of America, vol.52, issue.12, p.1335, 1962.
DOI : 10.1364/JOSA.52.001335

H. Giovannini, ´ Etude et mise en oeuvre des méthodes de démodulation pour les capteursàcapteursà fibres optiques utilisant le codage de modulation spectrale . Thèse, 1991.

T. Bosselmann and R. Ulrich, <title>High-Accuracy Position-Sensing With Fiber-Coupled White-Light Interferometers</title>, 2nd Intl Conf on Optical Fiber Sensors: OFS'84, pp.361-364, 1984.
DOI : 10.1117/12.945113

K. Takada, S. Tsurumi, S. Nakajima, and J. Noda, Method for measuring the trench depth of a very-large-scale-integration dynamic random-access memory capacitor based on a Michelson interferometer, Optics Letters, vol.11, issue.12, pp.767-769, 1986.
DOI : 10.1364/OL.11.000767

P. Cielo and C. Delisle, Multiplexage en communication optique par interf??rom??trie ?? grande diff??rence de marche en lumi??re blanche, Canadian Journal of Physics, vol.54, issue.23, pp.2322-2331, 1976.
DOI : 10.1139/p76-278

K. Tanaka and Y. Ohtsuka, Laser heterodyne detection of slowly varying displacements, Journal of Optics, vol.8, issue.1, pp.37-40, 1977.
DOI : 10.1088/0150-536X/8/1/004

D. K. Hamilton and C. J. Sheppard, ) in the confocal scanning optical microscope, Journal of Applied Physics, vol.60, issue.8, pp.2708-2712, 1986.
DOI : 10.1063/1.337099

A. Dubois, J. Selb, L. Vabre, and A. C. Boccara, Phase measurements with wide-aperture interferometers, Applied Optics, vol.39, issue.14, pp.2326-2331, 2000.
DOI : 10.1364/AO.39.002326

URL : https://hal.archives-ouvertes.fr/hal-00627972

J. Liu and R. M. Azzam, Polarization properties of corner-cube retroreflectors: theory and experiment, Applied Optics, vol.36, issue.7, pp.1553-1559, 1997.
DOI : 10.1364/AO.36.001553

N. Sandeau, H. Giovannini, P. Lenne, and H. Rigneault, Observation of the interferences between the emitted beams in a 4Pi microscope by partial coherence interferometry, Applied Physics Letters, vol.87, issue.18, p.181103, 2005.
DOI : 10.1063/1.2120908

URL : https://hal.archives-ouvertes.fr/hal-00078951

M. Schrader, U. G. Hofmann, and S. W. Hell, Ultrathin fluorescent layers for monitoring the axial resolution in confocal and two-photon fluorescence microscopy, Journal of Microscopy, vol.191, issue.2, pp.135-140, 1998.
DOI : 10.1046/j.1365-2818.1998.00361.x

C. Mariller and M. Lequime, Fiber-optic " white-light " birefringent temperature sensor, Conference on Fiber Optic Sensors, pp.121-130, 1987.
DOI : 10.1117/12.941095

H. R. Giovannini, S. J. Huard, and M. R. Lequime, Influence of chromatic dispersion on a dual-wavelength passive-homodyne detection method for fiber-coupled interferometers, Applied Optics, vol.33, issue.13, pp.2721-2733, 1994.
DOI : 10.1364/AO.33.002721

I. H. Malitson, Interspecimen Comparison of the Refractive Index of Fused Silica*,???, Journal of the Optical Society of America, vol.55, issue.10, pp.1205-1209, 1965.
DOI : 10.1364/JOSA.55.001205

P. Debye, Das Verhalten von Lichtwellen in der N??he eines Brennpunktes oder einer Brennlinie, Annalen der Physik, vol.9, issue.14, p.755, 1909.
DOI : 10.1002/andp.19093351406

J. Picht, Uber den schwingungsvorvang, der einem bliebigen (astigmatischen ) strahlenbundel entspricht, Ann. Phys, vol.77, p.685, 1925.
DOI : 10.1002/andp.19253821602

J. B. Keller, The geometric optics theory of diffraction, The McGill Symposium on Microwave Optics, pp.207-210, 1959.

J. B. Keller, Geometrical Theory of Diffraction*, Journal of the Optical Society of America, vol.52, issue.2, pp.116-130, 1962.
DOI : 10.1364/JOSA.52.000116

E. Wolf, Electromagnetic Diffraction in Optical Systems. I. An Integral Representation of the Image Field, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.253, issue.1274, pp.349-357, 1959.
DOI : 10.1098/rspa.1959.0199

B. Richards and E. Wolf, Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.253, issue.1274, pp.358-379, 1959.
DOI : 10.1098/rspa.1959.0200

R. K. Luneberg, Mathematical Theory of Optics, 1944.

J. Gasper, G. C. Sherman, and J. J. Stamnes, Reflection and refraction of an arbitrary electromagnetic wave at a plane interface, Journal of the Optical Society of America, vol.66, issue.9, pp.955-961, 1976.
DOI : 10.1364/JOSA.66.000955

H. Ling and S. Lee, Focusing of electromagnetic waves through a dielectric interface, Journal of the Optical Society of America A, vol.1, issue.9, pp.965-973, 1984.
DOI : 10.1364/JOSAA.1.000965

J. J. Stamnes, Waves in focal Regions, 1986.

S. Chang, J. H. Jo, and S. S. Lee, Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused gaussian beam, Optics Communications, vol.108, issue.1-3, pp.133-143, 1994.
DOI : 10.1016/0030-4018(94)90228-3

A. Egner, M. Schrader, and S. W. Hell, Refractive index mismatch induced intensity and phase variations in fluorescence confocal, multiphoton and 4Pi-microscopy, Optics Communications, vol.153, issue.4-6, pp.211-217, 1998.
DOI : 10.1016/S0030-4018(98)00216-8

S. H. Wiersma, P. Török, T. D. Visser, and P. Varga, Comparison of different theories for focusing through a plane interface, Journal of the Optical Society of America A, vol.14, issue.7, pp.1482-1490, 1997.
DOI : 10.1364/JOSAA.14.001482

P. Török, Z. Varga, P. Laczik, and G. R. Booker, Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation, Journal of the Optical Society of America A, vol.12, issue.2, pp.325-332, 1995.
DOI : 10.1364/JOSAA.12.000325

S. H. Wiersma and T. D. Visser, Defocusing of a converging electromagnetic wave by a plane dielectric interface, Journal of the Optical Society of America A, vol.13, issue.2, pp.320-325, 1996.
DOI : 10.1364/JOSAA.13.000320

M. Gu and C. J. Sheppard, Three-dimensional transfer functions in 4Pi confocal microscopes, Journal of the Optical Society of America A, vol.11, issue.5, pp.1619-1627, 1994.
DOI : 10.1364/JOSAA.11.001619

J. Enderlein, Theoretical study of detection of a dipole emitter through an objective with high numerical aperture, Optics Letters, vol.25, issue.9, pp.634-636, 2000.
DOI : 10.1364/OL.25.000634

M. Bohmer and J. Enderlein, Orientation imaging of single molecules by wide-field epifluorescence microscopy, Journal of the Optical Society of America B, vol.20, issue.3, pp.554-559, 2003.
DOI : 10.1364/JOSAB.20.000554

D. Patra, I. Gregor, and J. Enderlein, Image Analysis of Defocused Single-Molecule Images for Three-Dimensional Molecule Orientation Studies, The Journal of Physical Chemistry A, vol.108, issue.33, pp.6836-6841, 2004.
DOI : 10.1021/jp048188m

P. Török, Propagation of electromagnetic dipole waves through dielectric interfaces, Optics Letters, vol.25, issue.19, pp.1463-1465, 2000.
DOI : 10.1364/OL.25.001463

J. Enderlein and M. Bohmer, Influence of interface???dipole interactions on the efficiency of fluorescence light collection near surfaces, Optics Letters, vol.28, issue.11, pp.941-943, 2003.
DOI : 10.1364/OL.28.000941

O. Haeberlé, M. Ammar, H. Furukawa, K. Tenjimbayashi, and P. Török, Point spread function of optical microscopes imaging through stratified media, Optics Express, vol.11, issue.22, pp.2964-2969, 2003.
DOI : 10.1364/OE.11.002964.m002

N. Martini, J. Bewersdorf, and S. W. Hell, A new high-aperture glycerol immersion objective lens and its application to 3D-fluorescence microscopy, Journal of Microscopy, vol.206, issue.2, pp.146-151, 2002.
DOI : 10.1046/j.1365-2818.2002.01016.x

S. T. Hess and W. W. Webb, Focal Volume Optics and Experimental Artifacts in Confocal Fluorescence Correlation Spectroscopy, Biophysical Journal, vol.83, issue.4, pp.2300-2317, 2002.
DOI : 10.1016/S0006-3495(02)73990-8

L. Wawrezinieck, P. Lenne, D. Marguet, and H. Rigneault, Fluorescence correlation spectroscopy to determine diffusion laws: application to live cell membranes, Biophotonics Micro- and Nano-Imaging, pp.92-102, 2004.
DOI : 10.1117/12.545014

URL : https://hal.archives-ouvertes.fr/hal-00078551

A. Masuda, K. Ushida, and T. Okamoto, New Fluorescence Correlation Spectroscopy Enabling Direct Observation of Spatiotemporal Dependence of Diffusion Constants as an Evidence of Anomalous Transport in Extracellular Matrices, Biophysical Journal, vol.88, issue.5, pp.3584-3591, 2005.
DOI : 10.1529/biophysj.104.048009

F. H. Johnson, H. Eyring, R. Steblay, H. Chaplin, C. Huber et al., THE NATURE AND CONTROL OF REACTIONS IN BIOLUMINESCENCE: WITH SPECIAL REFERENCE TO THE MECHANISM OF REVERSIBLE AND IRREVERSIBLE INHIBITIONS BY HYDROGEN AND HYDROXYL IONS, TEMPERATURE, PRESSURE, ALCOHOL, URETHANE, AND SULFANILAMIDE IN BACTERIA, The Journal of General Physiology, vol.28, issue.5, pp.463-537, 1945.
DOI : 10.1085/jgp.28.5.463

T. Takahashi, Y. Nakakita, J. Watari, and K. Shinotsuka, A new rapid technique for detection of microorganisms using bioluminescence and fluorescence microscope method, Journal of Bioscience and Bioengineering, vol.89, issue.5, pp.509-513, 2000.
DOI : 10.1016/S1389-1723(00)89108-2

C. M. Blanca and S. W. Hell, Axial superresolution with ultrahigh aperture lenses, Optics Express, vol.10, issue.17, pp.893-898, 2002.
DOI : 10.1364/OE.10.000893

L. Wawrezinieck, Mesures de lois de diffusion par spectroscopie de corrélation de fluorescence pour sonder l'organisation submicronique des membranes biologiques. Thèse, p.2006

G. Toraldo-di-francia, Super-gain antennas and optical resolving power, Il Nuovo Cimento, vol.6, issue.S3, pp.426-435, 1952.
DOI : 10.1007/BF02903413

G. Toraldo-di-francia, Nuevo pupille superresolventi Atti Fond, Giorgio Ronchi, vol.7, pp.366-372, 1952.

M. G. Gustafsson, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. SHORT COMMUNICATION, Journal of Microscopy, vol.198, issue.2, pp.82-87, 2000.
DOI : 10.1046/j.1365-2818.2000.00710.x

I. Leiserson, S. G. Lipson, and V. Safaris, Superresolution in far-field imaging, Optics Letters, vol.25, issue.4, pp.209-211, 2000.
DOI : 10.1364/OL.25.000209

S. W. Hell, S. Lindek, C. Cremer, and E. H. Stelzer, Measurement of the 4Pi???confocal point spread function proves 75 nm axial resolution, Applied Physics Letters, vol.64, issue.11, pp.1335-1337, 1994.
DOI : 10.1063/1.111926

S. W. Hell, E. H. Stelzer, S. Lindek, C. Cremer, and S. W. Hell, Confocal microscopy with an increased detection aperture : type-b 4pi confocal microscopy Coherent use of opposing lenses for axial resolution increase. ii. power and limitation of nonlinear image restoration, Optics Letters Journal of the Optical Society of America A, vol.19, issue.18 1, pp.222-224, 1994.

M. Schrader, S. W. Hell, H. T. Van, and . Voort, Three-dimensional super-resolution with a 4Pi-confocal microscope using image restoration, Journal of Applied Physics, vol.84, issue.8, pp.4033-4042, 1998.
DOI : 10.1063/1.368616

A. Chomik, A. Dieterlen, C. Xu, O. Haeberlé, J. J. Meyer et al., Quantification in optical sectioning microscopy: a comparison of some deconvolution algorithms in view of 3D image segmentation, Journal of Optics, vol.28, issue.6, pp.225-233, 1997.
DOI : 10.1088/0150-536X/28/6/001

C. M. Blanca, J. Bewersdorf, and S. W. Hell, Single sharp spot in fluorescence microscopy of two opposing lenses, Applied Physics Letters, vol.79, issue.15, pp.2321-2323, 2001.
DOI : 10.1063/1.1407303

M. Martinez-corral, A. Pons, and M. T. Caballero, Axial apodization in 4Pi-confocal microscopy by annular binary filters, Journal of the Optical Society of America A, vol.19, issue.8, pp.1532-1536, 2002.
DOI : 10.1364/JOSAA.19.001532

H. Gugel, J. Bewersdorf, S. Jakobs, J. Engelhardt, R. Storz et al., Cooperative 4Pi Excitation and Detection Yields Sevenfold Sharper Optical Sections in Live-Cell Microscopy, Biophysical Journal, vol.87, issue.6, pp.4146-4152, 2004.
DOI : 10.1529/biophysj.104.045815

S. Hell and E. H. Stelzer, Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation, Optics Communications, vol.93, issue.5-6, pp.277-282, 1992.
DOI : 10.1016/0030-4018(92)90185-T

M. Nagorni and S. W. Hell, Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy I Comparative study of concepts, Journal of the Optical Society of America A, vol.18, issue.1, pp.36-48, 2001.
DOI : 10.1364/JOSAA.18.000036

N. Sandeau and H. Giovannini, Increasing the lateral resolution of 4Pi fluorescence microscopes, Journal of the Optical Society of America A, vol.23, issue.5, 2006.
DOI : 10.1364/JOSAA.23.001089

URL : https://hal.archives-ouvertes.fr/hal-00078944

N. Sandeau and H. Giovannini, Arrangement of a 4Pi microscope for reducing the confocal detection volume with two-photon excitation, Optics Communications, vol.264, issue.1, 2006.
DOI : 10.1016/j.optcom.2006.02.017

URL : https://hal.archives-ouvertes.fr/hal-00087130

A. Roda, M. Guardigli, P. Pasini, M. Mirasoli, E. Michelini et al., Bio- and chemiluminescence imaging in analytical chemistry, Analytica Chimica Acta, vol.541, issue.1-2, pp.25-36, 2005.
DOI : 10.1016/j.aca.2004.11.083

P. Pasini, M. Musiani, C. Russo, P. Valenti, G. Aicardi et al., Chemiluminescence imaging in bioanalysis, Journal of Pharmaceutical and Biomedical Analysis, vol.18, issue.4-5, pp.4-5, 1998.
DOI : 10.1016/S0731-7085(98)00209-X

R. Creton and L. F. Jaffe, Chemiluminescence microscopy as a tool in biomedical research, Biotechniques, vol.31, issue.5, pp.1098-1100, 2001.