Géométrie des Groupes de Lie symplectiques

Abstract : A symplectic Lie group is a Lie group endowed with a left invariant symplectic form. These groups are naturally endowed with an affine structure associted to a symplectic form.
In this thesis, on the one hand, we determine the $4$ and $6$-dimentional connected and simply connected symplectic Lie groups and on the other hand we study an infinity familly of symplectic groups in which the symplectic form is "invariantly" exact.
In all these cases we are interesting to the existence of the Lagrangian subgroups and sometimes transversal Lagrangian subgroups to underline left invariant symplectic affines structures.
The structure of these groups is studied using the momentum map
Document type :
Theses
Mathematics. Université Montpellier II - Sciences et Techniques du Languedoc, 2005. French


https://tel.archives-ouvertes.fr/tel-00078872
Contributor : Hassène Siby <>
Submitted on : Tuesday, June 20, 2006 - 3:09:40 PM
Last modification on : Tuesday, June 20, 2006 - 3:37:40 PM

Identifiers

  • HAL Id : tel-00078872, version 1

Collections

Citation

Hassène Siby. Géométrie des Groupes de Lie symplectiques. Mathematics. Université Montpellier II - Sciences et Techniques du Languedoc, 2005. French. <tel-00078872>

Export

Share

Metrics

Consultation de
la notice

182

Téléchargement du document

116