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Abstract

The ewlution of cerebral imaging technologies combined with speci ¢ image processing
algorithms cortribute to improving our knowledge of the brain functioning, in particular
regarding visual perception. This thesis contributes to current understanding implied in
visual motion perception in humans, based on complemertary information brought by
di erent Magnetic Resonancemaging (MRI) modalities.

The rst part of this work focuseson functional MRI (fMRI) identi cation of low-level
visual areas. We detail the fMRI retinotopic mapping procedure we deweloped, from the
stimulus designto the nal anatomo-functional analysis. A speci ¢ functional localization
of the hMT/V5+ complexis alsoobtained with a block design. Thesemethods, optimized
according to some stimulation parameters, allow the extraction of individually de ned
and homogeneousRegionsOf Interest (ROI).

In the secondpart, we characterize functionally these previously identied low-level
visual areas. Basedon the recert fMR-Adaptation paradigm, which allows to investigate
the sensitivity of a cortical region to quartitativ e variations of a given feature, we
demonstrate a functional di erentiation acrossareasregarding their relative sensitivity to
visual direction of motion.

Lastly, we combine fMRI and Di usion Tensor MRI (DTI) to study the anatomical
connectivity within the low-level visual cortex. Basedon state of the art white matter
b ers mapping algorithms, this characterization gives insights on the network of areas
implied, among others, in visual motion processing.

Key words: visual cortex, fMRI, retinotopy, motion perception, direction selectivity, adap-
tation, DTI, anatomical connectivity.
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Resume

L'ewolution destechnologiesd'imagerie cerebrale alliee aux developpemen d'algorithmes
speci ques de traitement d'images permettent d'ameliorer nos connaissancessur le
fonctionnemert du cerveau, en particulier s'agissam de la perception visuelle. L'ob jectif
de cetravail de theseest de corntribuer ala comprehensiondesaires corticales impliqu ees
dans la perception visuelle du mouvemert chez 'homme, en analysart l'information des
signaux de di ererntes modalites complemertaires d'Imagerie par ResonanceMagnetique
(IRM).

Une premiere partie concernelidenti cation individuelle des aires visuelles de bas-
niveau. Nous detaillons la methode de cartographie retinotopique par IRM fonctionnelle
(IRMf ) que nous avons deweloppee, depuis la conception des stimuli visuels a I'analyse
anatomo-fonctionnelle nale. Par ailleurs, une localisation fonctionnelle du complexe
hMT/V5+ est obtenue par un paradigme en bloc. Ces methodes, optimisees suivant
certains parametres de la stimulation, permettent d'extraire pour tout individu des
Regionsd'Interét homogenes.

Dans un deuxieme temps, nous proposons une caracterisation fonctionnelle des
di erertes aires visuelles primaires. En se fondant sur le paradigme recern d'IRM
d'adaptation qui permet d'etudier la sensibilite d'une region cerebrale a des variations
quartitativ es d'un parametre de la stimulation, nous demortrons une di erenciation de
la sensibilite a la direction du mouvemert dansles aires etudiees.

Enn, nous decrivons une experience combinant les modalites d'IRMf et d'IRM de
diusion (IRMd) dansle but d'etudier la connectivite anatomique au seindu cortex visuel
primaire. Cette caracterisation, etablie en s'appuyant sur desalgorithmes receris de car-
tographie des bres de matiere blanche, donne desindicessur le reseaud'aires notammert
impliqu eesdans le traitement du mouvemert visuel.

Mots cles: cortex visuel, IRMf, retinotopie, perception du mouvemer, selectivite a la
direction, adaptation, IRMd, connectivite anatomique.

13



14



cContents

Intro duction et contributions (in frenc h)

1 Intro duction and contributions
1.1 Context . . . . . . . . e e
1.2 Thesisoutline . . . . . . . . . . . . . . e
1.3 Contributions . . . . . . . . .. e
1.4 Other cortributions . . . . . . .. ... e

2 Magnetic Resonance Imaging and the human visual brain
2.1 A quick tour in the anatomy of the human brain . . . . ... ... ... ..
2.1.1 The certral nervoussystem . . . . . . .. ... ...
212 Theneuron . . .. . . . . . . e
2.1.3 Structure and organization of the greymatter . . . . . . .. .. ...
2.1.4 White matter connections . . . . . .. ... .. L.
2.2 Thevisual system . . . . . . . . . . . .. .. e
221 Fromthe eyestothecortex . .. ... ... ... .. .. .......
2.22 Thevisualcortex . . . . . . . .. ..
2.3 Magnetic Resonancemaging . . . . . . . . . ... . e
2.3.1 MRI principles . . . . . . ..
2.3.2 Functional MRI: the B.O.L.D. signal . . . . ... ... ........
2.3.3 Diusion MRl . . .. . ... . . .
2.4 Experimental setup. . . . . . . ..
241 Thesubject . . . . . .. ...
2.4.2 The scannerand the stimulation device . . . .. ... ... .....
243 Visual stimuli . . . .. ...
244 MR dataacquisition . . . .. .. ... .. . e

3 Anatomical image analysis
3.1 Motivation . . . .. ...
3.2 Method overview . . . . . . . . . . e
3.3 Hemisphereidentication . . ... ... ... ... .. ... .. .. ...,
3.3.1 Biascorrection . . . . . . .. ...
3.3.2 Grey level histogramanalysis . . . . ... ... ... .........

15

19

27
27
28
30
32

35
36
36
38
39
42
44
44
45
53
53
59
64
68
68
68
69
70



3.3.3 Skull stripping . . . . ... 78

3.3.4 Brain masksegmemation . . . ... ... ... ... ... ... 79

3.4 Cortical surfacesextraction . . . . . ... .. .. ... ... ... ..., 79
3.4.1 Algorithm 1: BrainVISA . . . . . . .. ... ... ... ... ..., 79
3.4.2 Algorithm 2: ABSOLUt . .. .. ... ... ... .. ......... 82
3.4.3 Cortical surfacesextraction . . . ... ... ... ... ........ 83
3.4.4 Algorithms comparison . . . .. ... ... .. ... .. .. ..... 83

3.5 Cortical surfaceinating . . .. ... .. .. .. ... .. .. . 84
3.6 Volumetric data projection . . . .. .. .. .. ... .. .. .. .. ..., 87
4 Functional data analysis 89
4.1 PreproCessiNg. . . . . . v v v i i e e e 90
4.1.1 Motion correction . . . . . . ... 91
4.1.2 Anatomical/F unctional imagealignment . . . . .. ... ... .... 92
4.1.3 Correction of the inter-slice gap or slice-timing . . . . ... ... .. 93
4.1.4 lIsotropic spatial smoothing . . . .. ... ... ... ......... 94
4.1.5 Cortical surfaceconstrainedsmoothing . . . . . ... ... ...... 94
41.6 Temporal ltering . . . . . . . . . ... ... e 99

4.2 Statistical analysisof fMRI data . . . ... ... ... ... ......... 102
421 Problemstatemert . . . ... .. ... ... 102
4.2.2 Classication of methods . ... ... ... .............. 102
4.2.3 The GeneralLinear Model. . . . . ... ... ... ... ....... 104
4.2.4 Non-parametric HRF estimation . . . . ... ... .......... 109
4.2.5 Frequencydomainanalysis . ... ... ... ... ... ....... 112
4.2.6 Multiv ariate analysismethods. . . . . . ... .. ... ... ..... 112

5 Visual areas mapping 117
5.1 Retinotopic areasmapping. . . . . . . . . . e e e 118
5.1.1 The cortical retinotopic organization . . . ... ... ... ...... 118
5.1.2 Experimental protocol . . .. .. ... ... ... .. .. .. ... 124
5.1.3 Functional imagespreprocessing . . . . . . . ... 125
5.1.4 Statistical analysis . . . . . . .. ... .. .. . 126
5.1.5 Angular valuescomputation . . . ... ... ... ... ... 133
5.1.6 Angle mapsanalysis . . . .. .. .. ... .. .. .. . 0. 135
5.1.7 Mapping reproducibility . . . .. .. .. ... . o o oo 143
5.1.8 Mapping eciency . . .. . . . . . . e 145
5.1.9 Areadelineation . ... ... ... ... ... ... .. 149
5.1.10 Conclusion . . . . . . . . 154

5.2 Functional mappingof hMT+ . . . . .. .. .. .. ... .. ......... 155
5.21 The hMT+ complex . . . . . . . . . . . . . . . ... 155
5.2.2 hMT+ localizer: previouswork . . . . . .. ... .. ... ...... 156
5.2.3 hMT+ optimal mapping. . . .. .. ... ... ... . ........ 156



5.24 ResUlts . . . . . . o e
5.25 Conclusion . . . . . . . .

6 fMR-adaptation of direction selectivit y

6.1 Introduction . . . . . . . . . . ..
6.1.1 Problemstatemert . . . . .. ... ... L
6.1.2 fMR-adaptation: principle and previouswork . . . . ... ... ...
6.1.3 Direction selectivity and fMR-adaptation . . .. .. ... ... ...

6.2 Experimental procedure . . . . . . . . . ...
6.2.1 Subjects . . . . . ... e
6.2.2 MRI data acquisition. . . . . .. .. ... .. .. . e
6.2.3 Visual stimuli. . . .. . ... o
6.2.4 Dening thevisualareas. . . .. ... ... ... ... ........
6.2.5 The adaptation stimulus. . . . . ... ... ... ... ........
6.2.6 Attentional measuremers. . . . . . ... ...

6.3 fMRI dataanalysis.. . . . . . . . . . .. ...
6.3.1 Visual areasidenti cation experiment . .. ... ...........
6.3.2 Adaptation experiment . . ... ... ... e

6.4 ResuUlts. . . . . . . . . e
6.4.1 BOLD signaladaptation . . . . . .. ... ... ... ... .....
6.4.2 Direction selectivity . . . . .. ... ... L
6.4.3 Quantitativ e comparisonsbetweenareas. . . . . . ... ... .. ..
6.4.4 Responsesto stimulus transient . . . . ... ... ... ...

6.5 DISCUSSION. . . . . . . . e e
6.5.1 Motion direction selectivity . . . .. ... .. ... ... ... ...
6.5.2 Macaque/human homologiesin V1 andMT . .. ... ........
6.5.3 Attention, adaptation and direction tuning . . . ... ... .....
6.5.4 fMR-adaptation methodology . . . . . ... ... ... ... .....

6.6 Conclusion . . . . . ... e

Anatomical connectivit y in the low-lev el visual cortex

7.1 DTI connectivity mapping and the human visual brain: state of the art
7.1.1 DTI connectivity mapping techniques . . . . . ... ... ......
7.1.2 Human visual cortex connectivity: previouswork . . . . . ... ...

7.2 Methods . . . . . . . . e
7.2.1 MR data acquisition . . . .. .. .. ... . e
7.2.2 Processingpipeline . . . . . . ... . . o e
7.2.3 Connectivity mapsand b er tracts computation . . ... ... ...
7.2.4 Seedvoxelsplacemen . ... ... ... ... .. .. .. .. .00,

7.3 Results. . . . . . e
7.3.1 Optic radiations . . . .. .. .. ... ... e
7.3.2 Callosalconnections . . . . . .. . ... ... ...

169
170
170
170
173
173
173
173
174
174
174
176
177
177
177
178
179
179
181
184
185
185
187
187
188
189



7.3.3 hMT+ intra-hemispheric connectivity . . . . .. ... .. ... ...
7.4 DISCUSSION. . . . . . o i i
7.4.1 Visual cortex connectivity . . . . . . . . ... oo
7.4.2 Methodologicalissues . . . . . . .. . ... . ...
7.5 Conclusion . . ...

8 Conclusion and persp ectiv es
8.1 Summary of our cortributions . . . . .. .. ... L L L
8.2 Perspectives. . . . . . . . e e

Conclusion et perspectiv es (in frenc h)

Bibliograph y

18

217
217
218

221

225



Intro duction et contributions

Contexte

Comprendre les processuscomplexesrealises par notre cerveau an d'interagir avec le
monde est assuemert I'un des plus grands de s scierti ques de la recherche contempo-
raine. Au-dela d'apporter desdebuts de reponsesa desquestionsphilosophiquestelles que
la relation entre notre perception individuelle et le monde "r eel”, cette quéte peut avoir
de nombreusesretombeesdans le domaine de la sarte, suggerer de nouvellesarchitectures
d'ordinateurs, desinterfaceshomme-madine ou desalgorithmes biologiquemen inspires,
etc... Celaconcernetout particuli eremen le systemevisuel, la vision etant indeniablemern
notre sensle plus sollicite dansla vie courante.

Jusqu'au milieu du vingti eme siecle, la theorie dominante sur le systeme visuelle ne fai-
sait etat que d'une aire visuelle unique. De nombreusesaires visuellesont ete decouwertes
depuischezdi ererts mammiferes,en particulier 'homme. Quatre crit eresprincipaux sort
courammert utilis espour identi er cessubdivisions du cortex visuel: (i) I'architecture cel-
lulaire locale du cortex (ii) les motifs de connectionsertre lesdi erertes zonescorticales,
(i) lesproprietesfonctionnellesdesneuroneset (iv) I'organisation retinotopique. Lesdeux
dernieresmethodesont pu etre rapidemen appliqueesa I'hnomme graceaux techniquesde
neuroimagerie. En revandhe, la resolution spatiale limit ee de cestechniques non-invasives
restreint l'utilisation descrit eresd'architecture anatomiquein vivo. Par ailleurs, seuleune
minorit e d'etudes de neurcimageriedu systeme visuel combinent plusieurs de cescriteres
acejour.

La technique d'imagerie par resonancanagnretique (IRM) gure commeun outil privil egie
pour aborder cesquestions. L'IRM permet en particulier d'obtenir desimagesanatomiques
de haute resolution, une mesureindirecte de l'activit e neuronalevia I'lRM fonctionnelle
(IRMf ) et l'organisation macroscopiquedes bres de matiere blanche via I''RM de dif-
fusion (IRMd). Dans cette these,nous avons utilis e cestrois modalites de I''RM pour
aner la caracterisation du cortex visuel de bas niveau, avec un accen particulier sur la
perception du mouvemen.
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Organisation de la these

Cette theseest organisee en 6 chapitres apres cette introduction generale. Le premier
chapitre rappelle les principales connaissancesactuelles concernan le systeme visuel
cortical et preserte lesdi erertes modalitesd'IRM utilis eesdans ce travail. Cette partie
reste relativemert generale, un etat de l'art plus precis ouvrant les chapitres suivants.
Dans le deuxieme chapitre, nous detaillons deux approches de traitement des images
anatomiguesque nous avons employees. Nous presetons ensuite les principales methodes
de traitement et d'analyse des images fonctionnelles, en introduisant notammen une
nouvelle approche de lissage des donneesfonctionnelles cortraint a la surface corticale.
Le chapitre 5 traite de la cartographie de di erertes aires visuelles de bas niveau,
suivant le critere de retinotopie d'une part et la speci cit e fonctionnelle du complexe
human MT (note hMT+) d'autre part. Grace a un paradigme d'IRM d'adaptation,
nous demortrons dans le chapitre 6 la speci cit e fonctionnelle de chacune des aires ainsi
identi eesdans le traitement de la direction du mouvemert. Le dernier chapitre preserte
quant a lui une etude de la connectivite de matiere blanche entre les di erertes aires
visuelles en se fondant sur une methode recerie d'analyse des images d'IRMd. Nous
terminons cette thesepar une conclusion generale sur nos cortributions puis suggerons
guelquesdirections futures de cetravail (cette partie estegalemen disponible en francais).

Chapitre 2

Ce chapitre proposeun survol des connaissancesctuellessur le cerveau humain
(1ere section) avant de detailler plus preciemern [|'etat de l'art sur le systeme
visuel (2eme section). Nous rappelons ensuite les principes fondamenaux de
I'IRM, en insistant sur les modalites d'IRMf et d'IRMd. La section 4 presene
enn le dispositif experimertal disponible au certre IRMf ou nous avons conduit
nos experienceset les parametres speci ques aux di erertes sequencespermet-
tant respectivemen d'acquerir lesimagesanatomiquesfonctionnelleset dedi usion.

Chapitre 3

La segmetation individuelle desdi erenrs tissus du cervweau et I'extraction d'un
modele geonetrique de la surfacecorticale sort grandemen pro tables a I'analyse
et a la visualisation des images fonctionnelles et de di usion. Nous detaillons
dans ce chapitre deux algorithmes que nous avons utilises: la plate-forme logicielle
BrainVISA, deweloppee au sein de l'Institut Federatif de Rederdhe n 49 et une
approche complemenaire, avec le logiciel ABSOLUt recemmei deweloppe dansle
laboratoire Odysse. Cesdeux methodes fournissert une segmetation precisedes
di ererts tissusdu cerweauet unereconstructiondessurfacesnterneset externesdu
cortex. Il estimportant de soulignerqu'au dela du reglagede quelquesparametres,
aucune correction manuelle n'est requise. Nous justions enn notre choix en
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faveur de l'approche implemertee dans le logiciel ABSOLUt en nous fondart sur
une comparaisonqualitativ e de sesresultats avec ceux de BrainVISA.

Chapitre 4

Une experienceclassiqueen IRMf conduit a I'obtention d'un jeu de donnees4D, i.e.
une ou plusieurs series temporelles d'images 3D. Des traitements speci ques sort
alors requis pour compensercertains artefacts lies a l'acquisition desimageset en
extraire l'information d'interét. Cette information peut correspndre a la detection
de zonesd'activation ou encorea l'estimation de la forme locale de la reponse
BOLD dans certainesregionsdu cerveau. La premiere section se pendie sur les
pretraitemerts courammer appliquesaux donneesd'IRMf. Nousy introduisonsen
particulier unenouvelle approche au problemedu lissagedesdonneesiRMf cortraint
a la surface corticale. Cette technique, reposart sur la methode des ensenbles
de niveaux (level sets), ore des avantages a la fois pratiques et theoriquespar
rapport a la technique classiquede Itrage 3D isotrope mais aussipar rapport aux
approchesde regularisationfondeessur un maillage explicite de la surfacecorticale.
La secondesection donne une syrthesedes principales approches d'analyse statis-
tigue desdonneesd'IRMf, en insistant plus particulieremen sur deux methodes:
la methode standard implemeriee dans le logiciel SPM du Functional Imaging
Laboratory a Londres, et une methode d'estimation non-paranetrique de la reponse
BOLD dewloppeeau seinde I'Institut Federatif de Redherche n 49.

Chapitre 5

Ce chapitre est dedie a l'identi cation de di erertes aires du cortex visuel. 1l est
divise en deux sectionsdistinctes, suivant le critere employe pour reveler cesaires.
La premiere section est ainsi une description de la methode de cartographie des
aires retinotopiques par IRMf. Apresun etat de l'art desdi erertes approches
decrites dans la litt erature, nous detaillons notre procedure depuis la generation
desstimuli visuelsjusqu'a I'analyse anatomo-fonctionnelle nale. Nous preseions
di erertes con gurations de stimuli ervisageespour optimiser la dureed'acquisition
et la qualite descartesdu champsvisuel correspndartes, puis nouscomparonsnos
resultats avec ceux rapportesdansla litt erature. Nousdetaillons en n la procedure
retenue pour segmeter di erertes aires visuelles retinotopiques et extraire des
regionsd'interet tri-dimensionnellespour chacuned'entre elles. La secondesection
de ce chapitre est dediee a la methode de cartographie fonctionnelle du complexe
hMT+. A l'instar dela methode deretinotopie, di erertes con gurations de stimuli

sort testeesan d'optimiser la procedure. Les resultats obtenus sort nalement

confrortesa ceuxdecrits dansla litt erature.
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Chapitre 6

Partant de l'identi cation precise de di erertes aires visuelles de bas niveau
decrite precedemmen, ce chapitre preseme une caracterisation de leur speci cit e
fonctionnellerespective par rapport a la direction du mouvemer. Cette experience
reposesur le paradigmed'IRMf d'adaptation. Ce chapitre s'ouvre par une revue de
cerecert paradigme, en insistant sur sesapplications a I'etude du systeme visuel.
Nous detaillons ensuite notre experienced'|IRMf d'adapation evenemetielle. Une
estimation robuste de la reponse hemadynamique permet d'evaluer pour chaque
aire la selectivite a la direction du mouvemen et d'en deduire les proportions
respectives de deux sous-mpulations neuronalessensiblesa cet attribut visuel. Le
complexehMT+, directemert suivi par l'aire V3A, apparaisseh comme les plus
selectifs a la direction. Une forte selectivite a la direction est egalemen trouvee
dans les aires V1 et V4v, conrmant ainsi les obsenations d'une recerte etude
d'IRMf menree chez le macaque. En outre, cesresultats valident la capacite du
paradigme d'adaptation a preciserla segregation fonctionnelle des aires visuelles
primaires, tout en soulignart I'aspect dynamique de la selectivite fonctionnelle des
neurones.

Chapitre 7

Nous proposons de raner notre connaissancedu cortex visuel humain en
etudiant un autre aspect fondamenal de I'organisation du cerveau: la connectivite
anatomique. Nous commerconspar un etat de I'art desmethodesde cartographie
de la connectivite anatomiquea partir desimagesdu tenseurde di usion (DTI), en
mettant I'accert sur leurs applications au cortex visuel. Notre approche, combinant

cartographie desaires visuelleset une methode geonetrique d'analyse desdonnees
de DTl recemmen deweloppee au laboratoire est ensuite presenee. Une chane de
traitement complete permet I'analyse conjointe des informations complemenaires
apporteespar chacune des modalites d'IRM dans un espacede reference. Apres
une premierevalidation de notre approche sur lesradiations optiques, une topologie
des connectionsinterhemispheriquesentre aires visuellesau sein du splenium est
mise en evidence.Une evaluation de la connectivite ertre le complexehMT+ et les
di erertes airesretinotopiquesest egalemeh exposee. Cesresultats, ainsi que leurs
implications theoriqueset methodologiques,sort discutesdansune derniere section.

Nous concluons cette these en rappelart nos cortributions principales avant
de suggerer quelquesdirections futures de cetravail.
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Contributions

Les cortributions de cette thesesort a la fois methodologiqueset experimertales.
D'un point de vue methodologique, ce travail propose de nouwelles approches a
I'analyse des donneesd'IRM et constitue une validation de di ererts algorithmes
recemmenh dewveloppesdans ce domaine:

Nous introduisons au chapitre 3 une nouvelle approche pour le lissagedes
donneesIRMf cortraint a la surfacedu cortex. Cette demarde s'appuiesur la
methode desensenblesde niveauxpour lisserdirectemert I'image fonctionnelle
le long de la direction parallele a la surfacecorticale. Cette nouwvelle technique
estcomparea la methode classiquede ltrage 3D isotrope ainsi qu'a une ap-
proche deregularisationdesdonneesfonctionnellesprojeteessur un modeleex-
plicite (maillage) de la surfacecorticale. Comparativemert au classiqueltrage
isotrope, lesmethodesincorporant l'information dela geomretrie propre au cor-
tex de l'individu sort naturellemert moins sujettes a un indesirable melange
d'informations provenart de tissus heterogenes. En outre, la methode de lis-
sagedesdonneesfonctionnellesfondeesur lesensenblesde niveauxpresere les
avantagessuivants par rapport aux methodesreposarn sur une represetation
explicite dela surfacecorticale: (i) tout d'abord, aucuneprojection desdonnees
fonctionnellessur la surfacecorticale n'est requise, ce qui evite le choix sou-
vert arbitraire de la methode de projection; (i) en consquencee choix dela
technigue de projection utiliseepour visualiserlesresultats naux d'une anal-
ysepeut alors tre e ectue a posteriori, ce qui confere davantage de souplesse
a la chame globale destraitements; (iii) enn, l'implantation de la methode
de lissagefondee sur les ensenbles de niveaux conduit a un traitement plus
e cace desdonneesdu point du vue computationnel. Le seul incorveniert
de la methode par ensenble de niveaux provient de la necessié de disposer
d'une represemation implicite (i.e. sousforme d'un ensenble de niveaux)de la
surfacecorticale. Toutefois, cette etape est executeee cacement par un algo-
rithme de la librairie ABSOLUt. Nousillustrons lesresultats obtenus avecles
di erertes approchessur deux jeux de donneesreellesd'experiencedRMf por-
tant sur desmacaqueset sur deshumains. Cette cortribution methodologique
a ete presemeea la conferenceHuman Brain Mapping en 2004[257].

L'optimisation de parametres fondameriaux des stimuli utilises pour les
experiencesde retinotopie d'une part et d'identi cation fonctionnelledu com-
plexehMT+ d'autre part estdecrite dansle chapitre 5. Gracea cesprocedures,
I'identi cation able de nombreusesaires visuellesde bas niveau est obterue
enernviron 30 minutes avecun scannerlRM a 3 Tesla,enincluant I'acquisition
d'une imageanatomiquede haute resolution. De plus, nousavonsimplante une
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methode d'extraction de regionsd'interét tri-dimensionnellescorrespndart a
chaqueaire visuelleretinotopique.

La procedure de cartographie des aires retinotopiques a ete presenee a la
conferenceHuman Brain Mapping en 2003[252.

La validation de nouveauxalgorithmessur desjeux de donneesexperimertales
constitue une etape necessaireen vue de leur integration a la complexechame
de traitement desimagesIRM. Le presen travail apporte quelqueseclairages
en ce sens. Nous comparonstout d'abord dans le chapitre 3 deux outils de
segmeiation recens et discutonsleurs avantageset inconvenierns respectifs.
Par ailleurs, les resultats de I'experiencepresetee au chapitre 6 constituert
une validation supplemernaire du paradigme d'IRMf d'adaptation. De plus,
ce meémechapitre illustre la sensibilite accruequ'il est possibled'obtenir avec
desapprochesalternatives au modele lineaire generalise classiguemen utilise
pour I'analyse des donneesIRMf. C'est en particulier le cas de la methode
d'estimation non-paranetrique de la reponsehemadynamique que nous avons
adoptee dans cette etude. En n, lesimplications methodologiquesde I'etude
dela connectivite anatomiquea partir d'imagesDT]I, detailleedansle chapitre
7, sort de deux ordres. D'une part, cette etude prouve qu'il est possible
de combiner les informations provenart de di erertes modalitesd'IRM, dans
notre casl'information desimagesanatomique, fonctionnelle et de di usion.
D'autre part, cette experienceest une premiere validation de la technique de
resolution par Fast Marching du problemede cartographie de la connectivite
anatomique fondee sur une modelisation RiemanniennedesimagesDTI. Ce
cadre methodologique est en cours de soumissiona la conference Computer
Vision and Pattern Recognition(CVPR), tandis quelesresultats preliminaires
sur le cortex visuel ont ete presemesa la conferenceHuman Brain Mapping en
2005[250.

D'un point de vue plus experimertal, cette theseapporte de nouveauxeclairagessur
I'organisation fonctionnelle et anatomiquedu cortex visuel de bas niveau:

I'experiencedecrite au chapitre 6 conduit a une estimation de la selectivite a
la direction du mouvemen dansdi erertes airesvisuellesde bas niveau. Les
resultats con rment que cette selectivite depend de I'aire consiceree. Ainsi, le
complexehMT+ et l'aire V3A sort lesplus selectifs, suivisde V1, V3, V4v puis
V2. Cetordreetaiel'id eedetraitement hierarchiquedel'information au seindu
cortex visuel. De plus, lesmesuresobtenuessort plus precisegjue lesresultats
precderis, bien que le paradigme d'adaptation utilise soit relativemert peu
cortraignant. Les indices de selectivite obsenes dans l'aire V1 et hMT+

sort singulieremen comparablesa ceux rapportes dans une experience sim-
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ilaire e ectueesur le macaque. Cette obsenation peut constituer une preuve
supplemenaire del'homologiede ceszonescorticalesdanslesdeuxespeces.En-
n, lesselectivitesa la direction particulieremen importantes obseneesdans
lesairesV1 et V4v ravivent la notion d'une selectivite fonctionnelledependarte
du contexte. Cetravail estencoursde soumissiona la revue Journal of Vision.

L'experience combinant les donnees d'IRMf et d'IRMd expose dans le
dernier chapitre permet de reconstruirelesradiations optiquesreliant le Corps
Genouille Lateral a I'aire V1. De plus, nos resultats con rment la topologie
des connectionsoccipito-callosalesdans le splenium. Nous presemons en n

la premiere caracterisation de la connectivite anatomique ertre le complexe
hMT+ et lesairesretinotopiquesoccipitales. V1 revele systematiqguemen les
plus forts indicesde connectivite, ce qui est coherert avecles donneesrecueil-
lies chez I'animal. D'autre part, les plus faibles indices de connectivite avec
hMT+ se trouvert invariablemert dans l'aire V4, ce qui est coherert avec
I'id ee de segregation de voies parallelesvertrales et dorsalesde traitement de
I'information visuelle. Cette partie est en coursde soumissiona Neurolmage.

Autres contributions

Dans un soucisde coherence,certainescortributions realiseesdurant ce travail de
thesene sort pasinclusesdansle presem manuscrit. Nous les mertionnons rapide-
ment ci-dessous.

La procedure de cartographie retinotopique est actuellemen appliquee par
I'equipe DyVA?!, INCM, CNRS, Marseille pour etudier l'organisation corti-
cale aupresde patients sou rant de dysfonctionnemets de la retine. Ceux-cCi
incluent des pathologiestelles que les scotomesvisuels ou la degernerescence
maculaire lieea I"age (DMLA). Deux seriesd'experiencesont deja ete merees
sur 8 sujets sains. Les cartesretinotopiquesde cessujetsont ete dansun pre-
mier temps acquiseset reconstruitessuivant la methode decrite au chapitre 5.
Dans un secondtemps, un paradigmeen blocs alternant ertre un fond gris et
un damier couvrart le champsvisuel complet et papillotant a ete presere aux
meémessujets. Danslesdeuxtypesd'experience desconditionsavec4 scotomes
circulairesperi-foveauxdedi erertestailles et placesa di erertes excertricit es
ont ete ajoutees.Les projections corticalesdesdi ererts scotomesont pu &tre
identi eeset leursrelations con rm eesquartitativ emert, en comparar lespo-
sitions corticaleset les surfacesdeszonescorticalesinactiveesavec les valeurs
conruesde rayon, excertricit e et surfacedesscotomesdansle champ visuel.
Au dela du transfert de la technique complete de cartographie retinotopique,

Lwww.incm.cnrs-mrs.frlen _equipedyva.php
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j'ai concu les stimuli ainsi que les programmesd'analyse des donneesissues
du paradigme en bloc. Ce travail a donne lieu a deux presetations a des
conferencesd'ophtalmologie en mai 2005, 'une a la conferenceARVO (Asso-
ciation for Researb in Vision and Ophtalmology) [103 et lI'autre au Congres
Annuel de la Sceiete Francaised'Ophtalmologie [103. Suite a cette premiere
phasede validation, une etude de la represemation corticale aupresde patients
atteints de pathologieretinienneestactuellemern meneepar Dr. Louis Ho art,
ophtalmologue a I'h®pital de la Timone a Marseille et etudiant en thesedans
I'equipe DyVA.

J'ai cortribu e a une experienced'lRMf meneechezle macaqueet conduite par
le ProfesseurGuy A. Orban et Mr. Koen Nelissenau laboratoire de neuro-
psydo-physiologie de I'univ ersite catholique de Louvain?. L'etude porte sur
le traitement de la vitessedu mouvemern visuel dansle cortex du macaque.
Cette experiencefut une initiation a I'experimenation animale ainsi qu'aux
cortraintes speci ques lieesa I'environnemert hospitalier. Certainesdonnees
de cette experiencesort utiliseesdansle chapitre 4 pour valider notre methode
de lissagedesdonneesIRMf cortraint a la surfacecorticale.

J'ai concu un programme parametrique permettant de generer les stimuli vi-
suelsd'une experiencelRMf portant sur la perception du mouvemern trans-
parert. Cette experiencea ete realise dans le cadre du reseaude recherche
"P erception for Recognition and Action" 3. L'analyse des donneesfonction-
nellesest en coursde realisation.

En n, mon travail de theseinclue une part importante de developpemert logi-
ciel. J'ai ecrit de nombreux scripts Matlab et shellspour automatiserla plupart
desetapesde traitements d'imagesutiliseesdanscette these.La plupart com-
prend une interface fondeesur le logiciel SPM pour permettre une interaction
aisee avec l'utilisateur. Certainesde cesmethodesont ete transfereesaupres
de I'equipe DyVA, au Cerire IRMf de Marseille et au laboratoire de neuro-
psydo-physiologiede Louvain.

2http://134.58.34.1/index.php
Shitp://pra.psy .gla.ac.uk/
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Chapter 1

Intro duction and contributions

1.1 Context

Understanding the complex processegaking place in our brain to interact in the
world is undoubtly one of the greatestscieni c challengeof currernt researtr. Be-
yond bringing possibleanswersto someold agephilosophicalquestions,for instance
regarding the relation betweenindividual perception and the "actual" world, this
questmay provide seeral outcomesin healthcare, be an inspiration sourcefor en-
hancedcomputerhardware architecture, computer-ruman interfacesand biologically
inspired algorithms,etc. It is in particular the casewith the visual systemsincevi-
sion is probably the most called-upon sensen our daily life.

Until the middle of the twertieth certury, the main theory of the visual perception
and the brain considereda single visual cortical area. Sincethen howewer, various
visual areashave been discorered in mammalians, including humans. Four main
criteria are now commonly usedto identi ed these subdivisions of the visual cor-
tex: (i) local anatomical architecture of cortical cells, (i) white matter connectivity
patterns acrosscortical zones,(iii) global functional properties of neuronsand (iv)
retinotopic organization. The last two methods were rapidly applied to humans
thanks to neuroimagingtechniques. On the other hand, the low spatial resolution
relativeto cellsdimensionsactually reated by thesenon-invasive techniqueslimited
the useof the anatomical architecture criteria in vivo. Besidesto date only a small
proportion of visual neuroimagingexperimerts usemore than one of thesecriteria.
The exciting -and relaxing, sinceit is not rare that subjects fall asleepwhile lying
inside the tunnel!- technique of Magnetic Resonancémaging (MRI) is a particularly
promising tool to tackle theseissues.It indeedo ers the possibility, amongothers,
to obtain high resolutionanatomicalimagesand, at reasonablespatial resolution, in-
direct measuremets of neural activity through functional MRI (fMRI) and of white
matter connectionsthrough di usion weighed MRI (DWI).

In this thesis, we use these three di erent modalities of MRI to characterize the
human low-level visual cortex, with a particular emphasison motion direction per-
ception.
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1.2 Thesis outline

This thesisis organizedin 6 chapters (following this introduction). The rst oneis
an introduction to current knowledgeabout the cortical visual systemand the MRI
modalities we used. In the secondchapter, we detail the approatheswe applied to
the anatomicalimage processing.We then descrike di erent processingmethods to
analyze BOLD signal images,including a new surface-basedpproad to perform
the spatial smoothing of fMRI data. Chapter 5 dealswith visual areasmapping,
for which we deweloped a complete retinotopic mapping experimert as well as a
speci ¢ functional identi cation of the hMT+ complex. Basedon the identi cation
of these areas, we demonstrate, with an fMRI adaptation paradigm, a functional
characterization of motion direction selectivity for ead area (chapter 6). The last
chapter presens a study of white matter connectivity acrossthe samevisual areas,
using a recerly deweloped framework to analyze Di usion TensorImages (DTI),
a particular model of DWI. We nally closethis thesis with a generalconclusion
about our cortributions and future work.

Chapter 2

We give in this chapter an overview of the human brain (section 1) beforedetailing
more speci cally current knowledge on the visual system (section2). We then
recall the basic principles underlying the Magnetic Resonancemaging technique,
emphasizingon the modalities of fMRI and DWI we usedin this thesis. We nally
presern the experimertal setup available at the Centre IRMf de Marseille wherewe
recordedour data and give the parametersof the di erent scannersequencesve
usedfor our anatomical, functional and di usion-w eighted images.

Chapter 3

The segmetnation of the individual brain tissuesand the extraction of a geometrical
model of the cortical surfaceare of great interest for the analysis and display of
functional and di usion weighted images. We detail in this chapter two algorithms
we used: the BrainVISA software, deweloped within the Institute Federatif de
Rederdhe n 49, and a complemenary approad, ABSOLUt, recerly deweloped
at the Odysse Laboratory. The two methods allow an accurate segmeiation of
the di erent brain tissuesand a reconstruction of the inner and outer grey matter
surfaces. Importantly, beyond a few parameterstuning, no manual editing is
required. We then justify our choicein favor of the ABSOLUt software approach
basedon a comparisonof their respective outcomes.

Chapter 4
A typical fMRI experiment results in a 4D dataset. Specic processingis then

28



required to correct for some acquisition artifacts and extract the information of

interest. This information can be the detection of activation loci or the estimation

of the local BOLD responseshape in speci ¢ zones.The rst sectiondealswith the

preprocessingusually applied to fMRI datasets. In particular, we introduce a new

approad to addressthe problem of fMRI data smaothing alongthe cortical surface.
This method, basedon the level set framework, o ers theoretical and practical

advantagesover the typical 3D-isotropic smoothing technique aswell as mesh-based
approatesproposedso far. In the secondsection, we review the main approades
proposedfor the statistical analysisof fMRI data, with a particular emphasison two

methods we used: the standard SPM framework and a non-parametric estimation

method of the BOLD response.

Chapter 5

This chapter is divided into two parts, ead correspnding to a speci c criterium
we usedto delineate distinct low-level visual areas. In the rst part, we descrike
the fMRI retinotopic mapping procedure we employed to segmeh the early
occipital retinotopic areas. After a review of the di erent approates described
in the literature, we detail our procedure,from the stimuli generationto the nal
anatomo-functional analysis. We descrite dierent stimulus con gurations we
tried to optimize the acquisition processas well as the resulting maps quality and
then compareour results with the literature. We nally detail the procedureto
segmen the visual areasand extract 3D RegionsOf Interest for ead retinotopic
areaiderti ed. In the secondpart, we presen the functional mapping we usedto
localizethe hMT+ complex. Similarly to the retinotopic mapping experimert, we
varied some stimulus parametersto optimize the procedure. We nally confrort
our results with the literature.

Chapter 6

Based on the preciseidenti cation of the low-level visual areas, we give in this
chapter a characterization of their respective functional selectivity to motion
direction we obtain with an fMR-adaptation paradigm. We start by a review
of fMR-adaptation literature, with an emphasison its applications to the visual
system. We then detail our evert-related fMR-adaptation experimert. A robust
estimation of the hemadynamic responsefunction allows to estimate the direction
tuning and correspnding proportions of two functional sub-populations with
respect to this feature. The human MT complex (hMT+), directly followed by
V3A, appearsto be the more direction selectie. We also nd high direction
selectivity in areasV1 and V4v, thus con rming similar obsenations reported in
a macaquefMRI study. In addition, these results validate the fMR-adaptation
paradigm ability to assesghe functional segregationof early visual areas, while
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stressing the necessi§ to take into accourt dynamic aspects of the functional
selectivity to low-level features.

Chapter 7

Finally, we proposeto re ne our knowledgeof the human visual cortex by studying
another fundamertal aspect of the brain: the anatomical connectivity. We rst
review the state of the art in DTI connectivity mapping approades and their
applicationsto the visual cortex. We then presen our approad which combinesthe
functional and retinotopic identi cation of the visual areaswith arecerily deweloped
geometrical framework to analyze DTl data. A complete processingpipeline is
deweloped to allow the analysis of the complememary information brought by
eath MRI modality in a commonreferenceframe. After a rst validation of our
approad on the well-known optic radiations, we characterizethe possibletopology
of interhemispheric connections of the low-level visual cortex areas within the
splenium. An ewaluation of the connectivity betweenthe hMT+ complexand the
di erent retinotopic areasis also given. We nally discussour results and their
theoretical and methodologicalimplications.

We conclude this thesis by recalling our main coriributions before suggesting
various future directions emergingfrom this work.

1.3 Contributions

The cortributions of the current thesisare both methodological and experimertal.
From a methodological point of view, our work o ers new approadesto MRI data
analysisand provides a validation of various state of the art algorithms deweloped
in the eld:

We introduce in chapter 3 a new cortical surface basedapproad for fMRI

data smoothing. This method takes advantage of the level set framework to
directly smaoth the functional imagesalong a direction parallel to the cortical
surface. We comparethis method with the classical 3D-isotropic technique
and with a mesh-basedsmaothing approad similar to that already proposed
in the literature. Naturally, cortical surfacebasedmethods are lessprone to
undesiredmixing of voxel information than the classical3D-isotropic ltering.

Moreover, the level set method appears more adaptedto fMRI data smaoth-
ing than the mesh-basedpproadiesin many respects: (i) rst and foremost,
a projection to assignthe functional data onto the cortical surfaceis not re-
quired, avoiding a somewhatarbitrary choice; (i) consequetly, the choice of
a projection method to visualizethe results of the data analysiscan be donea
posteriori, which is more exible; (iii) the implemenrtation is computationally
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moree cien t than the mesh-baseapproates. The only drawbadk of our level
set approat over mesh-basedapproadiesis the necessiy to compute a level
set function represeting the cortical surface. Howewer, this stepis e cien tly
performedby a dedicatedalgorithm implemerted in the ABSOLUL library. We
illustrate the di erent approatieson a macaquemonkey and a human dataset.
This methodologicalcortribution waspresened at the Human Brain Mapping
(HBM) conferencan 2004[251].

The optimization of fundamertal stimuli parametersfor the retinotopic map-
ping procedureand the functional identi cation of hMT+ are descriked and
discussedn chapter 5. The retinotopic mapping procedurewas presered at
the HBM conferencan 2003[252. Using theseproceduresthe reliable identi-
cation of various low-level visual areascan be adchieved in approximately 30
minutes of scansat 3T, including the obtertion of a high resolution anatomi-
cal image. Additionally, we implemerted a method to extract 3D RegionsOf
Interest correspnding to ead retinotopic visual area.

The validation of newly introduced algorithms on real experimertal data is a
necessarystep to optimize the MRI processingpipelines. We rst compare
in chapter 3 two state of the art anatomical image segmetation tools and
discussedtheir respective advantagesand drawbads. Second,the results we
obtain in the fMR-adaptation study presetted in chapter 6 constitute a further

validation of this experimertal paradigm. Besides,this chapter illustrates the
improved sensitivity of alternative statistical approadesto the classicalGLM

analysisof fMRI data, sud asthe non-parametricHRF estimation framework
we applied. Finally, the methodologicalimplications of the DTI-based anatom-
ical connectivity experimert detailedin chapter 7 is twofold. First it provesthe
feasibility to conbine the di erent information provided by anatomical, func-
tional and di usion-w eighted MR images. Second,it givesa rst validation of
the Fast Marching implemertation of the Riemaniannapproad to DTI connec-
tivit y mapping. The methodological framework is currently submitted to the
Computer Vision and Pattern Recognition (CVPR) conference,and prelimi-

nary results of the experimertal validation on the visual cortex were presened
at the HBM conferencein 2005[25Q.

From a more experimertal point of view, our thesis brings new insights regarding
the functional and anatomical organization of the low level visual cortex:

The experimert reported in chapter 6 givesan estimation of direction selectivity
in various low-level visual areas. It con rms that motion direction selectivity
is areaspeci c in low-level visual cortex. Furthermore, we obtain ner mea-
suremerts of this particular feature with a minimally constraining adaptation
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paradigm. Our results suggesta global hierarchy among the di erent visual
areas. hMT+ and V3A are the most direction selectiw, followed by V1, V3,
V4v and V2. This ordering supports the notion of hierarchical processingin
the visual cortex. The direction indices we obsened in V1 and hMT+ are
interestingly similar to thosereported in a recent macaqueexperimert, which
might be another evidenceof the homologiesbetween the two species. Ad-
ditionally, the unexpectedly high direction selectivity we obsened in V1 and
V4v revives the notion of context-dependert neuronal tuning. This work is
currently submitted to Journal of Vision.

The combined DTI-fMRI experimert we exposein the last chapter allows to
reconstructthe optic radiations linking the LGN and V1. It con rms the topol-
ogy of occipito-callosal connectionsin the splenium. We also report the rst

preliminary characterization of the anatomical connectivity between hMT+

and the occipital retinotopic areas. As expected from animal studies, V1 ex-
hibits the highest connectivity index values. On the other hand, V4 system-
atically shaws the lowest connectivity index valueswith hMT+. This result is
consistert with the view of segregatedvertral and dorsal processingstreams.
This part is currently submitted to Neurolmage.

1.4 Other contributions

For sake of coherenceand concisenesssome cortributions made during this PhD
could not be included in this manuscript. They are shortly mertioned below.

The retinotopic mapping procedureis currertly applied by the DyVA team!,

INCM, CNRS, Marseilleto study the cortical organizationin patients su ering

from retinal diseasesThis includespathologiessud asvisual scotomasor age-
related macular degeneration. Two sets of experimerts were already ran on
8 healthy subjects. Retinotopic mapswere rst reconstructedusing the map-
ping technique descriked in chapter 5. Second,a block paradigm consisting of
a grey badkground alternating with a full eld, ic kering chederboard wasused
to stimulate the completecertral visual eld. In both experimerts, conditions
with 4 peri-foveal scotomasof di erent sizesand certered at di erent ecceiftric-

ities were interleaved. The cortical projections of eath arti cial scotomawere
identied and con rmed their relations by quartitativ e analysis: the measured
cortical positions and surfacesof the inactivated cortical zoneswere compared
with the known values of radius, eccetricit y and surfaceof scotomasin the

visual eld.

Beyond the transfer of the whole retinotopic mapping technique, | designed

Lwww.incm.cnrs-mrs.frlen _equipedyva.php
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the stimuli and the analysis programsfor the block designexperimert. This
work led to 2 presertations at ophtalmology conferencesn may 2005,oneat the
ARVO conferencgAsscciation for Researb in Vision and Ophtalmology) [103
and the other at the CongresAnnuel de la Scciete Francaised'Ophtalmologie
(French Ophtalmology Scciety Annual Conference)[104. Following this rst

validation step, the mapping of the cortical represetation in patients presert-
ing retinal pathologyis currently understudy by LouisHo art, ophthalmologist
at la Timone hospital in Marseilleand PhD studert at the DyVA team.

| cortributed to perform a macaquemonkey fMRI experimert conducted by
ProfessorGuy A. Orban and Mr Koen Nelissenat the Laboratorium voor
Neuro- en Psydhofysiologié, K.U.Leuven. The goal of this experimert wasto
study visual motion velocity processingin the macaguemonkey brain. This
was an interesting opportunity to be introducedto animal experimerts and
speci ¢ constrairts related to the work in an hospital environment. Note that
somedatasetsrelated to this experimert are usedin chapter 4 to validate our
cortical surfacebasedfMRI smaothing method.

| designedthe parametric program to generatethe visual stimuli usedin an
fMRI experimert related to motion transparencyperception. This experimert
was performed within the Perception for Recognition and Action® Researh
Training Network. The functional data analysisis currently under study.

Last but not least, my PhD work includes software dewelopmern. | wrote
Matlab and shell scripts to automate se\eral image processingtools usedin
this thesis. Most of them include an SPM basedinterface to allow a user-
friendly interaction with the user. | transfered parts of these methods to the
DyVA team, the Centre IRMf de Marseille and the Laboratorium voor Neuro-
en Psydofysiologie.

2http://134.58.34.1/index.php
Shttp://pra.psy .gla.ac.uk/
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Chapter 2

Magnetic Resonance Imaging and
the human visual brain
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The human brain is reputable of being the most complex physical object in the
world. Its complexity arisesassoon asoneconsiderdgts anatomicalorganizationand
is further emphasizedby its rich functional organization. Howewer, brain imaging
techniques,in particular Magnetic Resonancdmaging (MRI), allow to get various
complememary information about this organ.

We start this chapter by a quick tour from the nervous systemto the subdivisions
of the human brain. We more speci cally insist on two brain tissueswe particularly
targeted in this work: grey matter and white matter. The main part of the grey
matter is found in the cerebralcortex, wheremost neural processingake place,and
the white matter relays information acrossdi erent brain locations. We then ac-
court the main facts about the human visual systemorganization, with a particular
emphasison imaging cortributions. Section 3 introducesthe MRI technique and
how it can be usedto infer neuronal activity (fMRI) and anatomical connectivity
(Diusion MRI). We nally detail the experimertal setup and imaging sequences
usedin this thesis.

2.1 A quick tour in the anatomy of the human brain

The nervous system is the master piece of the organismto retrieve, corvey and
processinformation brought from the inside and the outside of the body. It also
manageghe vast majority of functionsto reactto our ervironment. The paragraphs
belov aim at giving a rough description of the brain anatomy. For a far more
completeand detailed view of the brain structures, variousatlasesand booksare now
available. For instance,wereferthe interestedreaderto the excellett Duvernoy atlas
[58 or, for those keenon web pages,the on-line atlas of Prof. Dominic Hasboun!.

2.1.1 The central nervous system

We begin our journey in the nervous system by dividing it into two major parts
which in turn can be divided into two sub-parts:

the Peripheral Nervous System. It comprises(i) the Somatic Nervous System,
whosenerves carry the information from and to the sensoryorgansand the
musclesand (ii) the Automatic Nervous system, involved in the regulation
of vital functions sud as breathing, blood circulation, digestion or hormones
secretion;

the Certral NervousSystem. The CNSis composedof the spinal chord located
within the vertebral columnand the brain housedby the skull. The CNSnerves
lie inside the cerebrospinaluid (CSF).

Yhitp:/imww.c hups.jussieu.fr/ext/neuranat/index.h tml
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Figure 2.1. Subdivisions of the nervous system and close up on the brain. From
http://mywebp ages.omcast.net/epollak/PSY255 pix/PSY 255 _pix.htm

Figure 2.1 illustrates the subdivisions of the nervous systemwith an emphasison
the brain represeted in a mid-sagittal section. This virtual plane, correspnding
to the body's median plane, splits the brain into two roughly symmetrical parts,
calledthe two hemispheres Each hemispherecommunicateswith the other through
alargebundle of nerve b ers,the corpuscallosum,and a smaller b er bundle called
the anterior commissure.

Pursuing our dissectionone step further within the brain yields to distinguish three
parts:

1. the rhombencephaloror hindbrain comprisesthe ceretellum, the ponsand the
medulla oblongata;

2. the mesencephaloror mid-brain made of the tectum, the tegmentium and the
cerebralaqueduct;

3. the prosencephalonpr forebrain, composedof two main units, one known as
the diencephaloncontaining the thalamus and hypothalamus and the other
called the telencephalonholding the basalgangliaand the cerebralcortex.

We now focusour descriptionon parts of the prosencephalorwhich was particularly
studiedin this thesis. Beforedescribingthe main facts about grey and white matter
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Figure 2.2: Schematic structure of a neuron. Adapted from www.infovisual.info

tissues,we temporally have to interrupt our dissection-like descriptionto introduce
the main structural elemen of the brain: the neuron.

2.1.2 The neuron

The nervous system comprises100 billion (10'!) neurons. One important char-
acteristic of neuronsis that they have excitable membraneswhich allow them to
generateand propagateelectrical signals. The primary role of neuronsis to process
and transmit this neural information. If neuronsexhibit a high diversity both in
shape and size (there are over 200 di erent kinds of neurons), they nonetheless
share a common structure, as illustrated in gure 2.2. Like all the cellsin the
human body, every neuron has a cell body, i.e. a membrane that surrounds its
cytoplasm and a nucleusthat cortains its genes.This part is also called the soma.
What distinguishesthe neuronsfrom other cellsis their extensions,which they use
to send and receiwe information. The dendrites are the extensionsthat conduct
the electrical stimulation received from other cells to the soma. On the other
hand, the axon carriesnerve signalsaway from the neuron. Each neuron has many
dendrites but only one axon, although it usually undergces extensive branching
called terminal arborisation. Sud a structure enablescommnunication with many
target cells, mostly neuronsbut alsoother cellslike muscles.Neuronscomnmunicate
with one another through synapsesterm derived from the Greek "syn" (together)
and "haptein” (join). Hencea synapseis found where an axon terminal of one cell
impinges upon a dendrite or the soma of another, or lesscommonly to another
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axon. Eadh neuron has on average 1,000 synaptic connectionsto other neurons,
which yields to a number of 100 trillion (10*) connections (synapses)between
neuronsin the brain. The vast majority of the synapsedound in the human brain
are chemical synapsesj.e. the information transfer from the axon terminal to the
next neuronis supplied by speci ¢ moleculesknown as neurotransmitters.

From a macroscopical point of view, aggregatesof neuron's soma and den-
drites form the grey matter wherethe main information processings thought to be
performedwhile the neuron'saxonsbehave asthe wiring network within the brain,
which constitutes the white matter.

2.1.3 Structure and organization of the grey matter

Grey matter formsthe super cial part of the brain, somenucleiwithin the brain and
the deepparts of the spinal cord. It is so-calledbecausejn post-mortem sections,
it hasa grey color dueto all the grey nuclei in the cellsthat make it up. In fact, in
the living body, grey matter is pink. Grey matter is thus mainly composedof the
bodiesof the neurons. But it alsocomprisesthe nonmyelinated sectionsof processes
(axonsand dendrites), including processegust emergingfrom the neurons,and cells
which are thought to mainly support and protect the neuronsin various ways.

The cerebral cortex

With 75% of the 10'! neuronsfound in the brain, the cerebral cortex is the most
important grey matter part. From a macroscopicalpoint of view, the cortex is
roughly a sheetof tissuethat makesup the outer layer of the brain. This is actually

the origin of the Latin word cortex, which meansouter layer or bark. Along the

ewlution, the surfaceof the cerebralcortex becomeanore and more folded to allow

an increaseof its surfacein the limited volume of the skull. This folding process
createsgrooves on the surfaceof the brain called sulci and bumps or ridges called
gyri. The two hemisphereof the brain are separatedby a prominert certral ssure.

Ead hemisphereis then made up of six lobes. The frontal lobe, located anterior to

the certral sulcus,the parietal lobe found dorsally to the samecertral sulcus,the

temporal lobe on the most lateral part of the cortex and the occipital lobe which

occupiesthe most occipital part of the cortex (gure 2.3). In addition, neurologists
consideran internal lobe, called the limbic system,which lies along the medial part

of the cortex and the insular cortex buried within the lateral sulcus(also known as
Sylvian ssure).

The thicknessof the cerebral cortex varies from 2.5 to 6 mm. Neuroanatomists
have obsened that the cortical neuronsappear to be organizedin various layers
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Figure 2.3: Cortical lobes. From www.bian.com/book/biology/whole/image/1/1-8.tif.jp g

(usually six) tangertially to the cortical surface. Theselayers can be distinguished
histologically, functionally and through the connectivity pattern they exhibit with
ead other.

Neuroanatomists also noticed that the neurons distribution and size are not
homogeneousacrossthe cortex. This led someof them to proposea parcellation
of the cortex into distinct zones,i.e. cortical "areas" with coheren cells structure.
The most famousonesare the cytoarchitectonic maps of Brodmann [17] basedon
microscopicalstudiesof local cellular and laminar structure ( gure 2.4).

Despite this generallaminar architecture parallel to the cortical surface,a neuron
may be part of dierent layers through its dendrites. This comnunication in
a direction orthogonal to the cortical surface suggestedthe concept of cortical
columns. Physiological studies con rmed this columnar organization, shoving that
neuronsin a vertical sectionof the cortex often sharesimilar functional properties.
We will illustrate this notion below in the visual system.

Other grey matter nuclei

The cortex is not the only grey matter part of the brain. The basal ganglia, sud

asthe putamen and the caudatenucleus,are aswell composedof grey matter. It is

alsothe casefor the thalamus. The latter comprisesmany di erent pairs of nuclei,

most of which project to the cortex. Someare sensoryrelay nuclei, i.e. nuclei

that receiwe signalsfrom sensoryreceptors,processthem, and then transmit them

to the appropriate areasof sensorycortex. For example, the Lateral Geniculate

Nuclei (LGN), the Medial Geniculate Nuclei (MGN), and the Vertral Posterior

Nuclei (VPN) areimportant relay stationsin the visual, auditory, and somatosensory
systems,respectively.
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Figure 2.4: Brodmann areasand cortical layers cytoarchitecture. Notice the great di er-
entiation in cortical layers thickness,for instance the predominanceof the input layers||
and IV in the primary visual cortex or of the output layerslll and V in the primary motor
cortex. From www.unige.ch/cyterdocuments/theses2003/RvaraC-B
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2.1.4 White matter connections

White matter is composedof axonal nerve b ers,coveredby a myelin sheathgiving
its distinctive color. It is found in the inner layer of the cortex, the optic nerves,
the certral and lower areasof the brain (notably the brainstem) and surrounding
the certral shaft of grey matter in the spinal cord. The white matter axonscan be
distributed di usely or concettrated in bundles, also referred to as tracts or b er
pathways.

Three main typesof neural tracts are found in the white matter:

The Pro jection tracts establishconnectionsbetweenthe cerebralcortex and
subcortical structures. Two types of projection tracts can be distinguished:
ascendingtracts and descendingtracts. Ascendingtracts carry sensoryinfor-
mation from di erent parts of the body to the cerebral cortex. All sensory
information, except olfactory, end up in the primary sensorycortex by the
meansof the thalamo-cortical b ers. The thalamus receivesthe somesthetic,
gustatory, visual and auditory stimuli through theseascendingpathways. De-
scendingtracts carry motor commandsfrom the motor cortex down to the
musclesand glands through the lower brain structures and the spinal cord.
They read structures like the thalamus, the red nucleus, the medulla and
sene musclesof the torso, extremities, facial and ned region.

The Association tracts arethe comnmunication paths betweendi erent corti-
cal areaswithin a given hemisphere.They can be divided into two categories:
short and long assaiation tracts. Short assaiation tracts build up connec-
tions betweenregionsof a givenlobe. The smallestlink adjacert cortical zones
separatedby a sulcus, hencetheir name of U-shaped b ers (seefor instance
the short arcuate bundles,identi ed with the label 1 on bottom part of gure
2.5). Long assaiation b ers establish connectionsbetweendi erent cerebral
lobesand often form a bundle macroscopicallyvisible.

The Commisural tracts are bundles of axons connecting a region in one
hemisphereo anotherregionof the opposite hemisphere.The corpuscallosum
(gure 2.5top) is the most important of the commissuraltracts and can be
broken down into four parts: The rostrum (anterior most part) and the geru
(anterior curvature) are madeup of b ersconnectingthe anterior and vertral
parts of the frontal lobes. The corpus (large middle portion) links posterior
portions of the frontal lobesaswell asthe parietal lobes. Finally, the splenium
(caudal curvature) enablescommunications betweenthe temporal and occipital
lobes.
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Figure 2.5: Various white matter bundles seen from above after partial re-
moval of the cerebral hemispheres (top) and in a sagittal slice (bottom). From
http://www.vh.or g/adult/pr ovider/anatomy/Br ainAnatomy/Br ainAnatomy.html
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2.2 The visual system

In this section, we start by a brief description of the path conveying the visual
information from the eyesto the visual primary visual cortex. We then presen the
organization of the visual cortex. For more precisedescriptions, seefor instance
[166 24, 119.

2.2.1 From the eyesto the cortex

In primates (in particular in humans), the visual systemincludesmany anatomical
elemens, from the eyesto the cortex. A human eye is approximately 2.5 cm long

and weighs 7 grams. Six bands of musclesallow the cortrol of its displacemets

to probe the ervironment. Light goessuccessigly through the cornea,the aqueous
humor, and the pupil, whosesizeis corntrolled by a muscle,the iris (giving the eye
its external color). Next it passeshrough the lens, whoseshape is cortrolled by

the ciliary muscles,beforeentering the vitreous humor. It nally strikesthe retina,

which is coveredwith over 125 million photosensitie receptorsof two families:

the cones make a population of around 8 millions cells. Mainly concerrated
in the certer of the retina, also known asthe fovea, the conesare responsible
for chromatic and normal lighting condition vision (or photopic);

the rods, which are estimated at around 120 millions. Rods are found ev-
erywhereexceptin the fovea. They deal with bladk and white perceptionand
low-lighting conditions (or scotopic).

Thesephotosensitive receptorstranslate lighting information into electricalinforma-

tion, transmitted to the optical nervesvia the ganglioncells. The two optical nerves
cross,forming the optic chiasm, after which information is transmitted separately
for eat visual hemi eld (separatedvertically with respectto the headposition): the

information from photons striking the left (respectively right) parts of both retina

and correspnding to the right (left) visual eld is brought togetherto form the left

(right) optical tractus. Nonethelessyisual signalsfrom the two eyesremain segre-
gatedin the LGN (and ewen latter in areaV1).

The vast majority of the optical tracts b ersget projectedto a part of the thalamic

sensoryrelay system, the Lateral Geniculate Nucleus (LGN). The LGN appraxi-

mately court 1 million cells, correspnding to the number of optical b ers. Finally,

the LGN axonsform the optic radiations which vanishin the primary visual cortex,

certered around the calcarine ssure (gure 2.6).
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Figure 2.6: The path of the visual information from the eyesto the primary visual cortex.
This gure is borrowed from:
http://homep age.psy.utexas.@u/homepage/Class/Psy308/Salinas/Vision/Vision.html

2.2.2 The visual cortex
From a single to multiple visual areas

Until the middle of the twertieth certury, the major theory about the visual cortex
considereda single arealocated at the occipital pole [105 256. As we mertioned
above, this part of the cortex receiwes its major inputs from the LGN. Besides,
patients who underment damageto this zonesu ered from sewereblindness. Finally,
the cytoarchitecture found there waseasilydistinguishablefrom surroundingcortical
tissue (from which camethe name"striate cortex"). Around this singlevisual area,
a large expanseof the cortical surfaceextendingto the parietal and temporal lobes
was called the ass@iation cortex. Its function could be to assaiate distinct visual
signalstogether or with complemetary information from other sensorysystems.
Howewer, an electroptysiology study performed by Hubel and Wieselin 1965[110
demonstrated some areasin the cat ass@iation cortex where neurons responded
only to visual stimulations. Se\eral studiesfurther con rmed this nding, revealing
various purely visual areasin the macaqueand the owl monkey. To date, over 30
areascould be di erentiated in the macaquemonkey basedon four main criteria
[68): (i) local cortical cellsarchitecture, (i) connectivity patterns acrossareas,(iii)

global functional selectivity and (iv) retinotopy. In humans, the last two criteria
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were successfullyusedto unveil seweral areas. We make below a list of current areas
reported in the literature, grouping them with their anatomical location. Note that

there is no systematic consensusacrossareasde nition and labeling, emphasizing
the technical aswell astheoretical di culties of sud a task [254 23§.

Early posterior occipital areas

The purely humanvisual areasare found mostly in the occipital lobe. All theseareas
exhibit a distinctiv e retinotopic map, although their low eccetricit y represemations
aredicult to separateat the spatial resolution currertly obtained with fMRI.

V1, also known as striate cortex, primary visual area or Brodmann area 17,
is viewed as the ertry of the visual cortex. As already mertioned above, it

receives most outputs of the LGN. V1 cortains a complete (mirror) represen-
tation of the cortralateral hemi eld. Beyond this retinotopy, neuronsin V1

are organizedinto sub-regionsead specializedin the analysisof a given visual
feature. Hence,cortical columnspredominartly responding to the information

comingfrom a singleeye and calledocular dominancecolumnshave beenshaowvn

in human V1 using fMRI [15Q 28] (gure 2.7-A). Within thesepopulations, it

has beenshownn in animals study that neuronsare further functional selective
to local cortrast orientation (sud asan object border) or direction of motion.

V1 regionsalso cortain neuronsthat are selectiwe for color. Theseregionsare
called blobs due to their blotchy appearancewhen the brain is stained with

Cytochrome Oxidase(CO staining). The inter-blob regionscortain orientation

columns. Sud an organization, which is repeatedthroughout V1 in an orderly
mannetr, is referredto ashypercolumn. Figure 2.7-B) shavs a model of V1 hy-

percolumn. Human V1 BOLD responseto cortrast variations has beenshown

to be limited for a low cortrast (belowv 6%) and to increasemonotonically with

cortrast increase[217]. It was shavn to contain cellsfunctionally selective to

orientation [217], direction [113, color [6]].

V2, also called prestriate area, is subdivided into two parts: V2v (for ventral)
and V2d (for dorsal). They respectively represen the upper and lower con-
tralateral quarter eld. In non-human primates, area V2 mainly receiwes its
inputs from V1. The neuronsorganization of V2 is descriked by the stripped
pattern that it exhibits after CO-staining. V2 is made up of pale stripes, thin
stripes, and thick stripes. Neuronswithin the pale stripesof V2 receiw in-
put from the V1 inter-blob regions,and exhibit orientation selectivity but not
motion selectivity. Neuronswithin the thin stripesof V2 receiw input from
the color blobs in V1, and exhibit color selectivity but not form or motion
selectivity. Neuronswithin the thick stripesof V2 receiwe input from layer 4B
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A B

Figure 2.7: Examples of the functional neuronal organization in V1. A) Human V1
ocular dominance columns demonstrated with fMRI (Reproduced from [28]). B) Hy-
percolumn model with ocular dominance, orientation and color selective columns (from
http://w eb.psyd.ualberta.ca/ iwinship/vision).

of V1 (which cortains many motion selective neurons),and exhibit orientation
and somemotion selectivity.

V3, like V2, is subdivided into two parts: V3v ventrally (sometimesalsocalled
VP, in referenceto the Vertral Posterior areain monkeys), represeting the
upper quadrart and V3d dorsally, represeting the lower quadrart. V3 neurons
exhibit a high selectivity to low cortrast and reat a saturation level at about
6% [218. The functional selectivity of human V3 nonethelessappearsdi erent
from monkeys: in macaque,V3 is moderately motion and direction selectie,
which hasnot beenobsened in humans[161, 224.

Dorsal areas

A set of areashas been found dorsally to area V3d. Various reports suggestthe
involvemert of this regionin motion and depth perception.

V3A, for V3 Accessory is found at the posterior section of the intraparietal
sulcus, posteriorly to V3d. V3A preserls a complete represemation of the
cortralateral hemi eld and a foveal represemation distinct to the con uent
V1-V2-V3 certral represetations. V3A neurons seemto exhibit a similar
cortrast responsethan area V3 [224, i.e. a high sensitivity to low cortrast.
Human V3A alsopreselts a strong responsivity to visual motion, cortrarily to
macaqueV3 [224 234.

V3B is located dorsally to V3d and laterally to V3A. At current imaging reso-
lution, V3B foveal represemation appearscon uent with that of V3A. Recen
eld map measuremets suggesta complete represemation of the cortralat-
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eral hemield [177 and not only a quarter eld mertioned in the rst reports
[202 57).

KO, for Kinetic Occipital, wasdiscoveredby the group of Orban [233 through
its markedresponsivenesgo moving boundaries(kinetic cortours). It islocated
anterior and lateral to V3 and V3A and posterior to hMT/V5+. It hasbeen
suggestedhat KO could partially or totally overlap with V3B [202 254.

V7 is located anteriorly and dorsally to V3A and represetts the completecon-
tralateral hemi eld [177. Howewer, the eccefricit y and polar anglemapsseem
to run in parallel [227. V7 neuronsreceptive elds dier from those of V3A
and V3B, either in sizeor in their spatial distribution [177.

Ventral areas

Se\eral evidencesdemonstratethe strong responsivenesgo color stimuli in the ven-
tral occipital cortical surface[148 95, 15]. There is however no consensusabout
the retinotopic organization of the visual cortex located vertrally to V3v. Dierent

viewsare currertly disputed. The group of Tootell descrike an upper quadrart rep-
resefiation adjacen to V3v they label V4v. Moving further vertrally, they consider
a complete hemi eld represemation, named V8, running perpendicular to that of
V4v [95]. The group of Wandell descrite a complete hemi eld represemation ad-
jacert to V3yv, labeled hV4 followed laterally by two hemi eld maps of the certral

5 degreedabeled VO-1 and VO-2 [15. McKeefry and Zeki refer to a V4 complex
with a complete hemi eld namedV4 and at least an upper quadrart namedV4 .

Tyler and colleagueshave yet another view, with a region similar to hV4 and an
upper quarter eld found medially to it namedVMO (VertroMedial Occipital), and
a subsequenupper quadrart represetation labeledVentral Occipital Foveal (VOF)

referring to its mostly foveal represemation. Subsequeh measuremets are needed
to clarify this issueand clearly attribute the respective functional role of the delin-

eation obtained.

Lateral areas

The human MT/V5 complex, or hMT/V5+, is easily de ned by its strong
functional selectivity to motion stimuli [257, 218 233 203. It is typically
found at the junction of the ascendinglimb of the inferior temporal sulcus
(ALITS) and the lateral occipital sulcus(LO) [241, 56]. This zoneis referred
to asa complexsinceit is thought to comprisehuman equivalert to macaque's
MT, MST, FST and perhapsadjacen areas. Somee orts have beenmadeto
segmehn hMT/V5+ into distinct componerts [55 117. In monkeys, MT/V5

and surrounding areas have been extensiwely studied (for a review, seefor
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instance[11]). The main hallmarks regarding MT/V5 is its organization into
direction columns[2], comparableto oriertation columnsin V1 and the strong
myelinated inputs it receives from V1. Regarding hMT/V5+ cells, it was
shovn among others to have a high selectivity to low cortrast but a limited
responsivity to equiluminart motion stimuli [21§, suggestinga magnacellular
dominatedarea(seebelow). Furthermore, it wasdemonstratedthat hMT/V5+
contains pattern motion cells[114. hMT+ respondsboth to rst and second
order motion [20 and is more generally involved in many aspects of visual
perceptionimplying motion [208 161, 255.

The Lateral Occipital zoneis, asindicated by its name, a regionon the lateral
occipital lobe, more speci cally closeto the Lateral Occipital Sulcus (LOS),
adjacert to the early retinotopic areasand extending up to hMT+ laterally.
The moredorsalportion wasshawvn to beinvolvedin motion and attention task
[208 224 42], while the vertral part is highly responsive to objects recognition
[91]. Todate, the retinotopic organizationin the Lateral Occipital zoneappears
elusiwe, although somemeasuremets of eccefricity represetations were re-
ported [222 227]. Various subdivisions and labeling have beenproposedin the
Lateral Occipital region. For instance,the group of Malach proposedat least
two subregions: LO (Lateral Occipital) located dorsally and pFus (posterior
fusiform) more ventrally along the fusiform gyrus [91]. The group of Orban
refersto LOS and distinguishesa motion-sensitive part, a shape-sensitive part
and a mixed part including areaKO [163.

Various subsequen visual areaswere functionally identied in the human cortex
further away from areasand zoneswe have just presened above. Theseareaswere
mostly de ned by their functional selectivity to featuresincluding motion [209,
biological motion [92, 229, faces[12(, places[64], letters [10]], etc...The retinotopic
organizationin theseareasis still unclearand may not follow the sameprinciples as
in the early posterior areas[227.

Parallel pro cessing path ways

From the above list of areas, it is presumedthat the visual information is not
processedas a block in a single stream of information. In fact, di erent visual
features, such as motion or color, are separatedand processedn parallel systems.
This separationis found as early asin the LGN, wheretwo? main typesof cellsare
found in segregatedayers: magnoand parvo. Magno and parvo cellsdi er in many
respects:

2Note that a minoritary third LGN neurons type, known as konio cells, has been reported; konio cells
function is lessunderstood but supposedto play a minor role in visual information processing.
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- magno cells have a higher temporal but lower spatial resolution (with larger
receptive elds) than parvo cells,

- magnocells exhibit a lack of color sensitivity cortrarily to parvo cells,

- a high sensitivity at low cortrast accompaniedwith a rapid saturation is found in
magno cellswhile parvo cellsresponseincreasegyradually with luminance cortrast.

A comparable segregationis found within the visual cortex, which is classi-
cally subdivided into:

a vertral or occipito-temporal pathway involved in color, patterns and shape
processingit answersthe "What?" question,

a dorsal or occipito-parietal pathway involved in spatial relation and objects
motion processing;jt answersthe "Where?" question.

This sketchy subdivision of the visual cortex, primarily demonstratedwith monkeys
lesionstudies[228, seemdo hold in humansassuggestedyy se\eral patients studies
[69). Howewer, this view was further re ned by the british psydologistsMilner and
Goodale[152 who distinguish both pathways regardingthe cognitive task they sene:

the dorsal streamis implied in visual guidanceof actions toward objects,

the vertral streamis responsiblefor the analysisof visual inputs to allow object
recognition and consciousvisual perception.

Note alsothat sud a segregationis not perfectly respected and various communi-
cations are establishedbetweenboth pathways, allowing interactions betweenthe
respective visual featuresthey process(see gure 2.8).

Hierarc hical organization

Another general and important principle in the visual brain is its hierarchical
organization. According to this principle, the di erent areasof a given pathway can
be hierarchically ordered, from low-level areasprocessingsimple visual attributes

sudh as the orientation of an edge or local motion direction to high-level areas
dealing with  more complex information sud as object identi cation or complex
motion. This hierarchy principle has emergedfrom di erent obsenations alongthe
visual pathways: (i) the increasingreceptive eld size(i.e. the portion of the visual
eld "perceived" by a cell), (i) an increasedcomplexity in neuronsreceptive eld

properties, (iii) a progressie lost of retinotopy.

In this model, information is processedn a "bottom-up” fashion from low-order
to higher order areas. The result of the computation performed at level n is
transmitted to level n + 1 through feedforward connections.

Onceagain, the hierarchy principle doesnot accourn perfectly for the actual visual
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Figure 2.8: Parallel pathways and hierarchical processingin the monkey visual cortex.
Modi ed from http://Ib c.nimh.nih.gov/people/ungerleider/science.jpg
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information processingn the brain. For instance,feedba& connectionsfrom higher
to lower order visual areas allow "top-down" information ow involved, among
others, in attentional modulations.

The recert non invasive exploration of the human visual cortex has already
provided extensive information and insight about its anatomical and functional
organization. This researt was possiblethanks to the discovery and improvemerns
of neuroimagingtechniques,amongwhich MRI has played an important role.
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2.3 Magnetic Resonance Imaging

First demonstrated on small test tube samplesin the beginning of the 70's by
Paul Lauterbur [129, MRI allows to acquire non-invasively 3D imagesat high
spatial resolution. Various modalities can be obtained with the samedevice: de-
tailed anatomy (structural MRI), functional activity (fMRI), water-moleculesdi u-

sion (DWI), blood ow measuremets (perfusionimaging), distribution of various
metabolites (MR Spectroscoly Imaging), blood vessel{MR Angiography).

The rst part of this section briey exposesthe basic principles of MR imaging,
beforegiving the outlines of functional and di usion-w eighted MRI.

2.3.1 MRI principles

Magnetic Resonancelmaging has its foundations on rich and complex theories
including electromagnetismand quantum physics, howewer it can be understood
with relatively simple physical models. The underlying mathematical model implies
Bloch equation which descrikes the relation between nuclear magnetization and
magnetic eld.

Physical model

An atom is made of electrons,holding a negative charge and rotating around a nu-
cleus. The latter is subdivided in nucleons,speci cally protons charged positively
and neutronswith no charge. We distinguish three typesof motion in an atom: the
electronsboth rotating around their own axis and in orbits around the nucleus,and
the nucleusrotating around itself. MRI is basedon the latter motion. Somenuclei
have the property to align in a magnetic eld if their massnumber is odd, i.e. if the
sum of protons and neutronsis odd. This is namedangularmomert or spin. Among
others, *H atoms, which represemn 99.89%of naturally found hydrogensatoms and
are widely represeted in biological system,have a spin. On the other hand, carbon
atoms mainly found under the 2C con guration are not proneto Nuclear Magnetic
ResonancgNMR). Hence,MRI techniquesare mainly considering'H atoms.

Spin nuclei being positively charged, their motion inducesa magnetic eld. Con-
versely the resulting magnetic momert can be oriented by the application of a
magnetic eld. This reciprocity is largely usedin MRI. From a macroscopicabpoint
of view, no resulting eld can be obsened directly sinceead spin hasits own, in-
dependen, ranldom orientation (gure 2.9-a). Howewer, when placedin an exterior
magnetic eld By, the spin directions align para}llel to this eld (gure 2.9-b). More
precisely a spin rotates within a conearound Bg: this is t|he spin precession The
spin rotation frequency or Larmor frequency is related to B, through its gyromag-
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Figure 2.9: Random directions of spinsin the absenceof an e>|<terna| magnetic eld (a) and
aligned spins in the plresenceof an external magneticleld Bo (b). Note that the actual
spin rotation around Bg occurs within a conearound By.
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dependson the atomical nucleustype. We have = 425743H z=G3 for 'H atoms,
implying a rotation frequencyof fiy = 6386 MHz in a 1.5 T magnetic eld.
Giventhis type of rotation velocity, we can considerthe spin i'nduced eld direction
to be aligned with the cone symmetry axis, i.e. parallel to Bo. Someare aligned
in the same direction (parallel or spin up), while the other are in the opposite
direction (antiparallel or spin down).

From a quantum physics point of view, the di erence between both spin states
Is viewed as a di erence in the energylevel. Little energyis required to switch
from the lower to the higher energystate. In the presenceof an external magnetic
eld, the di erence betweenthe two populations is increasedby an increaseof the
magnetic eld strength. Applying Boltzmann relation, one can estimate that at
the ambient temperature within a 1.5T eld, there is a di erence of 10in favor of
low energyprotons amonga total of 1 million protons. Although very small at rst

sight, this di erence becomessigni cant consideringthe huge amourt of protons
in a relatively tiny volume. For instance, a single gram of water cortains 6; 7:10?
protons! This imbalance bletweenlow and high energy protons results in alglobal
magnetic eld orienteql in By direction, called the net magnetizationvector M. As
showvn on gure 2.10,M canlbe splitted into two parts:

- a longitudinal componert I}'/IZ, i.e. parallel to IBo;

-a transversecomqonert My, orthogonalto Bo. At equilibrium after a su cient
exposition time to By, this componert is null. All the individual spins are indeed
precessingput they are all out of phasewith ead other.

3G, for Gauss, is the magnetic eld strength measureunit. For instance, the earth magnetic eld equals
0.5G. More currently usedin MRI is the Tesla(T), with the relation: 1 T = 10.000G.
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Fligure 2.10: The net magnetizationI vector M, decomposedinto a longitudinal componert
M, and a transversecomponert Myy .

Excitation phase

By applying a transient oscillating electromagnetic eld, or electromagneticradio-
frequency (RF), with a frequencyequal to the Larmor frequency of target nuclei,
the di erence betweenboth energyspinscanbe temporally altered. This is a typical
resonane me(hanislm (giving the "R" of MRI). The RF pulse duration is related
with a ip angleof M. A 90 degreespulse suppresseshe longitudinal componert
(gure 2.11)while a 180degreespulse, or "inversionpulse”, completely inverts the
longitudinal componert through an excessof antiparallel spins.

Resonanceamay further induce a seconde ect sothe spins magnetic momens may
get syndironized, or in phase,i.e. they may be found at the samelqcation on the
precessiortrajectory, henceincreasingthe transversalcomponert of M. A receiwer
coil, which may be the sameas that usedto apply the RF pulse, allows to record
the small voltage induced by the magnetizationrotation in the transverseplane.

Relaxation phase

When the RF is switched o, the spinsbeginto give o their energy hencegetting
badk to the equilibrium state. It results in two processes: an increaseof the
longitudinal componert to its value beforethe RF pulseand a progressie deca of
the transversemagnetizationto zero.

Spin lattice relaxation (T1)
The spin lattice relaxation is basedon the energy exdiange between protons and
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Figure '2.11: Excitation phase:the energygivenby the RF pulse ips the net magnetization
vector M of an angle (here = 90).

surrounding molecules. This energydissipation is characterizedby the restoration
of the longitudinal componert to its equilibrium value. This recovery processis
modeledby an exponertial function characterizedby a time constart T1, the period
for the longitudinal magnetization to recover 63% of its equilibrium value ( gure
2.12). For a 90-degreeexcitation pulse, we have:

M,=M(l e7)

The recovery processis consideredas nished after 5 T1 periods.

1009

63% == nmmmny

| >
T1 Time

Figure 2.12: Spin lattice relaxation describes the longitudinal componert recovery as a
function of time and is characterized by the T1 constart.
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Spin-spin relaxation (T2)

Spin-spinrelaxation refersto the lossof net magnetizationin the transverseplane
related to protons dephasing.Spinsdo not only give up their energyto surrounding
lattice moleculesbut also to other neighboring nonexcited spins. This processis
alsomodeledby an exponertial function characterizedby anothertime constart T2,
which correspndsto the period for the transversal componert to loose63% of its
value just after the RF pulse:

t

Mxy = Mge T2

This dephasingis actually further increasedby local magnetic eld inhomogeneities,
sincethe Larmor frequencywill alsobe nonuniform throughout the region. A time
constart slightly dierent to T2, T2 , is thereforeused. The transversecomponert
inducesa current in a coil, known asFreelnduction Decg (FID). The T2 constan
can be evaluated through the corvex envelop of the FID curve (gure 2.13).

Signal

|

37%1---

Figure 2.13: Spin-spin relaxation describes the exponertial decreaseof the transversal
componert as a function of time and is characterized by the T2 constart.

The di erent biological tissuesare characterizedby respective T1 and T2 values,as
shown in table 2.1. The intensities of MR imagescomesfrom thesevalues.

Tissue \ T1 (ms) \ T2 (ms) ‘

CSF 800-20000| 110-2000
Grey matter | 1090-2150| 61-109
White matter | 760-1080 | 61-100
Fat 200-750 53-94

Table 2.1: T1 and T2 in various brain tissues.
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Line readout

Free Induction Decay
(FID)

Figure 2.14: A highly simplied MRI pulse sequenceiming diagram.

Image construction through pulse sequence

A pulsesequences a seriesof RF pulsesand/or magnetic eld gradierts applied to
a sampleto produce a speci ¢ form of MR signal. It is indeed possibleto encale
and thus recover the MR signal from speci ¢ regionsin the volume of interest by
meansof RF and linear gradierts applied along the 3 spatial directionsl.

Figure 2.14illustrates a basicpulsesequenceA rst gradiert G, in the B, magnetic
eld direction results in a linear intensity varition of the magnetic eldlthat can
be usedto selecta slice. In this case,a slice is a plane orthogonal to B, with a
typical thicknessof 1-10mm. Basedon relashionship(2.1), the spinsof a given slice
are hencecharacterizedby a speci ¢ Larmor frequency After the RF pulse at the
frequencyrelated to the target slice, two transiert gradierts are applied to encae
the x and y dimensionsin the slice plane. A rst gradiert Gy in the y direction
induces a phase shift related to the position along the y axis: this is the phase
enading. A secondgradiert G4 in the remaining x direction is applied, leading to
a precessionfrequency variation along the x axis: this is the frequencyenading.
This processusactually performsan acquisition of the plane data in the frequency
space(or k-spce). An inverseFourier transform nally mapsthesedata in the 3D
space.

A pulsesequencas rst characterizedby the delay betweentwo similar RF pulses,
called the Repetition Time (TR). The other parametersof interest depend on the
actual sequence.Indeed, di erent pulse sequencesvere deweloped to measurethe
relaxation times. For instance, Gradient Echo simply repeats the Free Induction
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Decay described above and allows to sampleT2 . Most sequence®ften comprise
additional RF pulses following the slice selection one, to partially refocus the
transversemagnetization and produce an echo, leadingto a more reliable measure.
Spin-Echo is thus the application of a 90 degreepulsefollowed by a 180degreepulse
after atime TE/2. This secondpulse,which refocusesthe transversemagnetization
and resultsin an echo at time TE (Echo Time), removeslocal eld inhomogeneities
dephasing,henceallowing to directly measurethe T2 decg. On the other hand,
Inversion Recovery, which relies on a 180 degreepulse followed after a time TI
(Inversion Time) by a 90 degreepulse, enhanceshe T1 weighting. The choice of
the speci ¢ pulsesequencgarameters(TR, TE, Tl,...) nally determinesthe image
cortrast. Two distinct tissuesmay for instance have similar T1 values but dis-
tinct T2 values,sothe choiceof the sequencealependson the information of interest.

The straightforward application of a given pulse sequenceallows to get a
static image cortrasting di erent tissues. However, basedon the sameprinciples, it
is possibleto indirectly imagedynamic processesud asoxygen ow or the motion
of water molecules.

2.3.2 Functional MRI: the B.O.L.D. signal

Although the brain represeis 2% of the total body mass,it receives12-15%of the
blood outgoingfrom the heart and consume20%o0f the oxygenbreathed. Functional
imaging techniques, and in particular BOLD fMRI, build on this high metabolic
demandto derive an indirect measureof neuronal activity.

Hemo dynamic coupling

Neuronal activity requires energy supplied by an increase of the energetic
metabolism. Oxygen and glucoseconsumptionis indeed locally increasedduring
a neuronal activation. Howewer, the brain is not able to store oxygen, which is ac-
tually brought by the blood (gure 2.15). The rst evidenceof a coupling between
cerebralblood ow (CBF) and neuronal activity was obtained by Roy and Sher-
rington who, in the end of the 19th certury, reported a local changeof the cortical
tissuecolor correlatedwith stimulation [183. The brain color changesobsened was
related to blood oxygenation. A certury later, suc e ects could be conrmed in
vivo by Positron Emission Topography [181] using radioactive oxygen H,O%.

Magnetic prop erties of hemoglobin and BOLD signal

The intensity changeswe might be able to obsenre in the MR imagesis basedon
magneticproperties of hemoglobinwhich changewith its oxygenation,as rst shovn
by [170. Hemoglobincanindeedbe found undertwo con gurations: oxyhemaoglobin
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Resting Activ ated

Figure 2.15: Oxygen extraction is increasedduring neuronal activation, thereby increas-
ing the level of deaxyhaemoglobin (Hb) in the blood. The latter is nonethelessover-
compensatedby a local increasein the blood o w, leading to a net reduction of the ratio
Hb/HbO , that can be measuredwith MRI. (From [180])

(HbO,), which carries4 oxygenmoleculesand is diamagnetic,and deaxyhemoglobin
(Hb), depleted of oxygen and paramagnetic. Therefore, oxyhemoglobin has no
e ect onthe local magnetic eld while deaxyhemoglobinlocally adds magnetic eld

gradierts, increasingthe T2 value!. Hence, voxels with high Hb concerration

yield to a lower signal than tissue with high HbO, concertration. In 1990, Ogava
et al. [158 159 rst mapped T2 variations related to cortical blood oxygenation
changesat the level of capilaries and verules surrounding activated brain areas.
This signalis referredto asBOLD, for Blood Oxygen Level Depender.

But why do we actually measurethe cortrary, i.e. a signal increaseduring local
neural activation? In fact, an activation inducesa signi cant increasein CBF that

occurswithout an increaseof similar magnitude in oxygen extraction. For instance,
assumethat during "rest” neuronalactivity, if arterials supply 100%of oxygenated
blood, 40% are locally consumed. Blood returning to veins is therefore made of
40% of deaxygenatedblood and 60% of oxygenatedblood. During a neural activity,
blood supply increasesmore than needed,leading to modi ed proportions in the
arterials closeto 37-63%. This results in a correspnding local reduction in the
ratio Hb/HbO ,, leadingto a signalincrease.

Various models basedon di erent hypotheseshave been proposedto explain this
oversupply of oxygenatedblood as comparedto oxygen extraction, seee.g. [19.

4A similar e ect can be obtained with paramagnetic contrast agert such as Gadolinium or MION used
in animal experiments. Note however that the signal is then negatively correlated with neural activit y.
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There is thus no simple relation between neural activity and the BOLD sig-
nal since the signal magnitude not only depends on these magnetic properties,
but also on the current blood volume and the local vascular geometry Various
models of the hemadynamic coupling have beenproposedso far (e.g. [6]), but the
preciseunderlying medanismis still unknown. Nonethelessthe work of Logothetis
et al. [13§ combining electroptysiological recordingsand fMRI suggestsa high
correlation between local eld potertials (thought to re ect more cortical inputs
and local intracortical processingthan spiking activity) and the BOLD signal.

Hemo dynamic Response Function

From a temporal point of view, electrical and synaptical activity to a transiert
cognitive processgenerally lasts a few milliseconds,while the vascularchangesdu-
ration are a few seconds. The time courseof human BOLD responseto a similar
brief neuronal process,seenas a temporal impulse responsefunction, is called the
hemadynamic response function (HRF). The amplitude and preciseshape of the
HRF varies signi cantly not only acrosssubjects but also acrossbrain locations,
experimental tasks or scanningsessionsn a given subject. Someexamplesof this
HRF variability is shavn in gure 2.16. Nonethelessthe rough shape systemati-
cally comprisesa rst delay of the response( 2 s), followed by a ramp of 3-8 s
before slowly returning to baseline. In somecases,an initial dip of 1-2 s and/or a
signalundershat up to 20 s beforethe return to the baselinecanbe obsened. Note
that negative BOLD signals,signi cantly anticorrelated to the positive BOLD have
alsobe reported (in particular in the visual cortex) and the underlying physiological
and neural substratesare currertly under study [204 199. Apart from this high
variability of the HRF shape, the responseto longer stimuli (>8 s) can hardly be
predicted from a linear prediction basedon the HRF.

Echo Planar Imaging

As a completeimage acquisition with the sequencesnertioned above is relatively
long (a few minutes) with respect to the physiologicalewerts of interestin fMRI (a
few seconds)faster acquisition techniqueshave beendeweloped. Echo Planar Imag-
ing (EPI) is the mostfamousone. EPI relieson rapidly oscillating gradierts to allow
a completesliceacquisition from the signal generatedby a singleRF pulse. This re-
sults in a dramatic reducedacquisitiontime (30-100ms per slice), nonethelesst the
expenseof a lower spatial resolution. Alternativ e sequencesamongothers SMASH
or SENSE,have beenmorerecerily proposedto allow parallel acquisitionswith mul-
tiple coils. Sud imagingimprovemeris will certainly bring important improvemerns
in the near future.
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(a) Same subject, different days (b) Same subject, same day, different scans

Normalized signal change

Time (s) Time (s)

(c) Different subjects

Normalized signal change

Time (s)

Figure 2.16: Variabilit y of the Hemodynamic ResponseFunction acrossdays (a) and scans
(b) within subject and acrosssubjects (c). The BOLD signal from certral sulcusis sinc
interpolated and normalized to maximum. Modi ed from [1].

Measuring the BOLD signal: activ ation detection paradigms

It is not possibleto localize an activation with a single BOLD image. In fact, the
signal of interest is the variation of the BOLD intensity. Besidesthere is no prior
absolutesignallevel that canbe usedasbaseline. A typical fMRI experimert hence
consistsof seweral runs (or sessions)onsisting of alternating periods of (various)
stimulus and cortrol tasks. A run usually lasts 5 mns. Throughout ead run,
BOLD sensitive imagesare acquiredat a speci ¢ temporal frequency leadingto a
time seriesof images. Using EPI sequencesthe typical functional imagessampling
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period is around 3 seconddor a completevolume. Howewer, the acquisition can be
restricted to a particular brain region of interest, sud as the occipital pole, thus
increasingthe sampling period. Regarding spatial localization, the typical voxel
sizespansa few mmgd.

Di erent paradigms,called experimertal designs,have beenintroducedto organize
the sequenceof tasks the subject undergaes during the scanningsession. A given
experimert can generally be labeled within one of the following experimenal
designsfamilies:

- Block design: ead experimertal condition is submitted to the subject in
relatively long presertation periods, or epochs, of typically 20 s. A run is a
successiorof alternated conditions presened in a random fashion. This kind of
designis consideredas optimal for activation detection purpose[134, sinceit is
not much dependert on the BOLD responsemodel choice. On the other hand, it
is relatively time consumingsinceit precludesthe useof more than a few di erent
conditionsin a singlerun.

- Event-related design: a run is in this casea seriesof brief events of the
di erent experimertal conditions. With an optimal ewverts distribution, this kind of
designis optimal for HRF shape characterization[13q. Besidesthey are lessprone
to subjects fatigue. On the other hand, their detection power is relatively weak.
Note that most fMR-adaptation experimerts (seechapter 6) can be includedin this
category

- Periodic or Fourier design: this designis particularly useful for periodic
parametric stimulations sud as used in retinotopic mapping experimerts (see
chapter 5). A given stimulus parameter is varied periodically, so that neurons
selectiwe to a given parametervalue (or range of values) are activated periodically.
The time seriesanalysisconsistsof a Fourier transform at the stimulation frequency
The signalsof interest are then the amplitude, indicating the local selectivity of the
underlying neuronal population and the phase,related to a given parameter value
of the stimulation.

We have stressedthat the BOLD signal used in human fMRI is a complex
phenomenonstill not completely understood and requiring specic paradigms.
Howeer, the major advantage of this imaging method is its ability to noninvasively
allow high spatial resolution cortical activity measures.Hence,fMRI is more and
more usedthe neurosciencewith an exponertial increaseof study sinceits discovery
in the 1990's.
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2.3.3 Diusion MRI

Di usion MRI isthe unique non-invasive techniquethat allowsto probe and quartify
the di usion of water moleculesin the body. By modeling the local anisotropy of
this di usion process,t becomegossibleto indirectly infer local tissuearchitecture
sud aswhite matter b ers.

Physical principles

Above the absolute zero temperature, moleculesfreely moving in an isotropic
medium are prone to many shocks one against another, implying many random
changesof their motion direction. This phenomenoncan be modeledas a Brownian
motion, which from a macroscopicalscale can be seenas a di usion process. In
an isotropic medium, the probability of a moleculeto move a distancer during a
time follows a Gaussianlaw N (0; ) with = 6D . The constart D, known
as di usion coe cient, measuresthe moleculesmobility in the isotropic caseand
dependson the molecule-ype and the medium properties. For example,at normal
brain temperature, 68% of the water moleculesdi use in 50msin a sphereof 17 m
diameter.
In anisotropicbiologicaltissues,water moleculesmobility is constrainedby obstacles
formed by surrounding structures, sud as the axonal membranesin the brain. In
this case the scalardi usion coe cient D canbereplacedby a multilinear operator.
The most popular of them is the rank-2 di usion tensor proposedby Basseret al.
[8]: 0 1

Dxx ny sz

D= ?@ Dy« Dyy Dyz
sz Dzy Dzz

where D is a real symmetric and de nite-p ositive matrix, therefore related to a
quadratic form modeling intrinsic di usion properties of the tissue. The di usion
coe cient d related to any direction !g 2 R? is given by:

It then follows that the probability to nd a moleculeinitially at position x, at x
after adelay is given by:

. 1 (X Xo)”D (x Xo)
P(XjXo; ) = p—————=6X
(XjXo; ) Pm p 2
The problem of Diusion Tensorlmaging (DTI) is to estimate the 6 independert
parametersof D. This can be adieved with a minimum of 6 di usion-w eighted
images,ead measuringa T2 signal attenuation related to the di usion coe cient
in a speci ¢ direction 'gi , plus one unweighted T2 image. The di usion-w eighted
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Figure 2.17: Stejskal-Tanner imaging sequence.

imagescan be obtained with appropriate imaging sequenceaisingdi usion gradierts
. . . | . .
in the direction g of di erent amplitude and strengths.

Imaging sequence

To measurewater moleculesdi usion in a given direction g (for sake of clarity,

we note g = !g in the remainder), the Stejskal-Tanner imaging sequencd20q is
used (gure 2.17). This sequenceusestwo gradiert pulsesGq in the direction g,

before and after a 180 degreesrefocusing pulse cortrolling the di usion weigkting.

More speci cally, a rst 90 degreesRF is applied to ip the magnetizationin the
transverseplane. The rst gradiert pulse then causesa phaseshift for all these
spins. Finally, the 180degreegpulseconmbined with the secondgradiert pulsecancels
this phaseshift only for static spins. On the other hand, spins under Brownian
motion during the time period separatingthe two pulsesundergodi erent phase
shifts by the two gradient pulses,resulting in an increasedT 2 signal attenuation.

Figure 2.18shavs examplesof di usion-w eighted imagesacquiredwith two di erent

directions, illustrating the direction speci c attenuation related to white matter

b ersorientation.
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Figure 2.18: Axial slice of di usion-w eighted images (DWI) with two dierent di usion
gradient directions (red arrows). MR signal attenuation is found in regionshaving b ers
mostly aligned with di usion gradient direction (yellow arrows).

Signal attenuation obsened can be modeled by the following equation [204:
S(g) = Se' P9 P9 (2.2)

whereb is the di usion weighting factor depending on scannerparametersand pro-
posedby Le Bihan et al. [131]:

b= 22 3 ngj2
with jG,4j? the magnitude of the pulse, its duration and  the time separating
two pulses(see gure 2.17).

Hence, signal attenuation, i.e. signal sensitivity to water moleculesdi usion, is
strongerif the di usion coe cient d = g Dgisimportant. Note alsothe importance
of the b factor that hasto be appropriately tuned comparedto d to avoid either
a very low signal attenuation if b is too small or a poor SNR if b is too high. A
typical value lling this trade-o is b= 100G:mm 2.

For ead slice, images are collected with one or more b and at least 6 inde-
penden gradient directions S(g;) and 1 unweighted T2 image (Sp). The di usion
tensor D canthen be estimated at ead voxel usingthe S(g) and Sy. The classical
method to derive the tensors usesleast squaretechnique, but various alternative
methods have been proposed. We will come badk to this particular point in
chapter 7. We nally end-upwith a di usion tensorimage,i.e. a 3D imagewith 6
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parametersdescribingthe local tensorD. From the eigervalue decompsition of D,
onecanvisualizethe di usion in ead voxel by a di usion ellipsoid: the directions of
the main axesare given by the eigervectorsof D and their lengths are proportional
to the respective eigervalues. If all the eigervaluesare of the samemagnitude, the
ellipsoid will be spherical, while if one of the eigervaluesis much greater than the
others, it will have the form of a cigar. Figure 2.19illustrates the correspnding
ellipsoids eld in an axial slice. The blue (respectively red) color refersto elongated
anisotropic (resp. sphericalisotropic) ellipsoids.

Figure 2.19: Axial sliceof a Diusion Tensorimage. At ead voxel, an ellipsoid represetts
the estimated di usion tensor.

Note that to better describe the complexity of water motion, higher order models
have beenproposed[74, 226 165 21,48]. The ideais to considera discretespherical
function modeling the di usion coe cient in N directions (N typically between
50 and 300) and measurethe MR signal attenuation along ead direction at eah
voxel. This obviously requireslonger acquisition times, as N gradiert directions
have to be sampled.
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2.4 Exp erimental setup

This section describesthe experimertal ervironment and scanningsequencesised
in this work.

2.4.1 The subject

No constrairts are appliedto the subjects we recruited for our di erent experimerts,
exceptthoseinduced by the MR scanner:a completeabsenceof metal parts in the
body, including vascular clips, neuronal implants, pace-malers, etc...This also ex-
cludesglasseshut lensescould replacethem if any correction is needed.

As a rule of thumb, the idea for any global non-pathologicstudy is to use healthy
right and left-handed men and women. This is the guidelinewe followed in order to
obtain the results we presen in this documert.

All subjects gave written informed consen and were retributed for their partic-
ipation. The dierent experimerts were approved by the local ethic committee
(CCPPRB Marseille 02/56).

2.4.2 The scanner and the stim ulation device

The MRI scannerwe usedis locatedat la Timone fMRI certer® in Marseille, France.
It isa BRUCKER MEDSPEC 30/80 AVANCE, with a 3T magnetand a body coil.
A picture of the scanneris shovn in gure 2.20.

The subject lies inside the coil, with an antenna around his head. The visual

Figure 2.20: The 3T MR scannerof la Timone, Marseille and the bird-cageantenna. From
http://irmfmrs.free.fr/

stimuli usedin the fMRI experimerts are displayed at 72Hz by a SONY video-
projector, placedin a custom-designedraraday cageinside the scannerroom, onto
a large adjustable mirror then onto a translucert screeninside the bore at the badk
of subject's headand nally re ected by a custom designedmirror placedat 5cm

Shttp:/firmfmrs.free.fr
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above subject's eyes(see gure 2.21). The video projection was syndironized with

the acquisition through a trigger sent by the scannerat the beginning of eat scan.
A customdesignedkeyboard wasusedwhen subjects wereinstructed to report some
special everts, sud asthe xation cortrol and attentional tasks usedin our fMRI

experimerts. Both the stimulus preseniation and subject's behavioral responseswvere
cortrolled by a PC positionedoutside the scannerroom thanks to speci ¢ LabView?®
programsdeweloped by Dr Bruno Nazarian, researt engineerat the certre IRMf.

| Farada
Cage

MRI Scanner

— ________

Figure 2.21: The visual stimuli projection system of our experimental setup

2.4.3 Visual stim uli

Stimuli weregeneratedunder Matlab 6.1 usingthe Image ProcessingToolbox (Mat-
lab, The Mathworks), providing an avi le with eighteen 300x300pixels framesper
secondand lasting 5mn04sec.The video presertation setup leadsto a display sub-
tending a visual angleof 20.9 x20.9 . This sizeis for the momert limited by the size
of the coil and the visual stimulation setup. During the rst 5 and last 2 scans,a
mid-grey level imagewith the 0.5 red xation crosswasshown to the subjects. The
rst volumesare classicallydiscardedfrom the analysis(typically correspnding to
10 seconds)to allow the magnetizationto stabilize to a steady state. The stimula-
tion of interest therefore starts after a few volumeshave beenacquired. The last 2
scanswere acquiredto allow slice-timing corrections(seesection4.1).

8Labview web site: www.ni.com/lab view
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2.4.4 MR data acquisition
High resolution anatomical images

The acquisition of the cerebral anatonmy of a given subject was done through a
3D-gradient edho sequencewith inversion-receery. The technical characteristics of
the latter are the following:

- Echo-Time (TE): 5ms

- Repetition-Time (RT): 25msec

- Inversion-Time (IT): 800ms

- Field of view: 256x192x192nm?

- Acquisition matrix: 256x192x104for a resolution of 1x1x1.5mm?3)

- Reconstructionmatrix: 256x256x12gfor a resolution of 1x0.75x1.22mm?3)

This leads to a 15 minutes sequenceto get a high resolution anatomical im-
age.

Functional images

The functional imageswereacquiredwith a fast-imaging Echo-Planar sequencavith

the custom bird-cage head coil. In order to reducethe repetition time (RT) -and
thus the time neededto acquireead functional image-while still preservinga high
spatial resolution, we have restricted our functional scansto the occipital region of
the brain rather than the complete head, since we are interested in the low-level
visual cortex areaslocated in this region. We rst started with 18 3mm thick slices
with an inplane resolution of 3mmx3mm, oriented approximately perpendicular to

the calcarine sulcus. The corresppnding TR was 1.5s(18 83:33ms). Thanks to

acquisition sequencee nements performedby our colleaguesat the Centre IRMf de
Marseille, we then switched to either a 2x2x2mm? or a 2x2x3mm? voxel resolution
sequencepsing 20 slicesto cover a su cien t portion of the brain. The 2mm slice
thicknesswas su cient for the retinotopic mapping experimert whereaswe used
the 3mm slice thicknesssequencevhen we consideredthe hMT+ area, i.e. in the
functional localization of the latter (seechapter 5) and for the adaptation experimert

(seechapter 6). Both sequencesequire 103msto acquirea singleslice,leadingto a
RT of 2060msfor 20 slices. This RT wasslightly increasedto 2111msarti cially for
ead imagein order to get a good syndironization betweenthe presenation device
(refreshingat 72Hz and shawing 18 di erent imagesper second)and the volumes
acquisition. Indeed,within aTR of 2111mswecanpresert 18 2:111 38dierent

images(whereasl8*2.060doesnot leadto an integernumber of images). Acquisition

of the multiple slicesis interleaved, meaningthat evenslicesareacquiredsequemially

beforeodd slices.

70



Di usion-w eighted images

In a rst pilot experiment performedon 3 subjects, we tried di erent acquisition
parametersto obtain the best di usion weighted images. We xed TR=10000ms,
TE=86ms and the voxel size 2x2x2 mm3. 30 gradiert directions were used, eath
with 3 di erent b-values: 400,1000and 1500s.mm 2. The SNR waslow for b=1500
s.mm 2. Besidesthe estimatedtensors elds weremerelydi erent usingboth b=400
s.mm 2 and b=1000 s.mm 2 or only the latter b value images. Finally, we used
12 diusion directions, which is consistet with other studies [99] and allowed us
to increasethe number of repetitions to adhieve a better SNR. In the subsequen
experimerts, we usedb=1000 s.mm 2 and 12 gradiert directions repeated 6 ( rst

session)or 12 times (secondsession).
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Chapter 3

Anatomical Image analysis
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The aim of this chapter is to descrike the algorithms usedto extract a geometric
model of the cortex from an individual high resolution anatomical image. The
generalprocessis twofold: rst, segmehn the tissuesof interestin the original image
and second,extract a bidimensional model of the cortical surface. After recalling
somegoalsof anatomicalanalysis,we give an overview of the algorithms usedat eadh
step and comparethe resulting bidimensionalmodels obtained from two alternative
methods. We nally describethe in ating algorithm usedto unfold the latter model.

3.1 Motiv ation

As mertioned in chapter 2, the brain is composed of various anatomical struc-
tures and tissue types, the functions and relations of which are more and more
investigatedin researt and clinical studies. ldentifying distinct tissuescan be a
preliminary step for various image processingsud as voxel-basedmorphometry
or image coregistration, to constrain appropriate computations within a given
anatomically homogeneougart of the brain. For instance, the anatomical con-
nectivity study we presern in chapter 7 relies on sud a segmeiation, in order to
restrict the computation of the estimated b ers within the white matter tissue.
A tissue classi cation is also a prerequisite to extract geometric models of the
cerebralcortex. Thesemodels of the cortical sheetare not only of great interest for
the visualization and interpretation of the brain activity obtained from functional
imaging (shown in chapter 5), but they can also provide a frame to cortically
constrained processing. Two examplesof surfacebasedcomputations are detailed
in our work: fMRI data smaothing following the cortical geometry (seeparagraph
4.1.5) and surfacebasedretinotopic areadelineation (paragraph5.1.9).

Firstly, brain structures, sud as the white matter tissue or the cortex, dier

greatly in shape and sizeacrosssubjects, making impossiblethe useof a single xed

model. A T1 anatomicalimageis thereforeacquiredfor eat subject to provide the
individual structural information. Furthermore, a manual structure identi cation

for eat subject is particularly inappropriate as awkward and potertially expert
dependen, urging the useof automatic and e cien t algorithms. Basically, we could
seethe cortex as a strongly folded sheetof tissue. It is thus a 2D surfaceembedded
in 3D space.ldeally, nding this surfacein the MR anatomical image comesdown
to determining the grey level value of the voxels correspnding to the cortex in the
brain. A similar approad could be devisedfor the white matter tissue viewed as
the high grey level value volumeincluded inside the cortical surface. Actually, many
image distortions prevent us from applying these straightforward procedures: (i)

becauseof its relatively large size,the anatomical voxel often holds di erent tissues
that are averagedtogether, phenomenoncalled partial volumee ect; (ii) depending
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on the acquisition sequenceused, sometissuesdo not di erentiate clearly in the
image; (iii) heterogeneitiesn the coil alsoleadto a non-uniformity of the grey level
in the image (bias), changingthe grey level of a given tissue acrossthe volume.

Numerous techniques based on di erent assumptionsand frameworks have been
proposedto perform anatomical image processing. Establishing a comprehensie
list of every available padagesis beyond the purposeof this work. Furthermore, an
exhaustive comparisonof the di erent padkagesis still missingto date.

We detail belov two methods we have particularly explored. They provide reli-
able results and successfulhighly automated computation. The rst one, called
BrainVISA, is a free and open sourcesoftware suit, deweloped at the CEA-SHFJ,
Orsay, France' and preserted e.g. in [3§ (seealso more speci ¢ referencesgiven
belon). A recent comparisonperformed on three commonly used cortical surface
reconstruction softwares, namely INCsurf [207, Freesurfef [45] and BrainVISA,
concludedin favor of the latter [123. The secondmethod, called ABSOLUt for
Automatic Brain Segmeiation Odysselab. Utilities, wasvery recerily deweloped
at the Odysseelaboratory by Jean-Philippe Ponsand Florent Segonne[67,179 and
generally leadsto ner results than BrainVISA with respect to cerebral anatomy
represemation accuracyand topological properties of the reconstructedsurfaces.

3.2 Metho d overview

Our anatomical processingcan be split into two main sub-procedures.Firstly, start-
ing from the initial whole brain anatomical image, two binary images(or masks)
are computed, correspnding to subsetsof voxels from ead hemisphere. Secondly
ead hemispheres labeledwith respectto the Cerebro-SpinalFluid (CSF), the grey
matter and the white matter (noted GM and WM respectively), and the interfaces
betweenthe latter are then tessellated.

The approad usedto segmen of interest and extract cortical surfacesmodels for
ead hemisphererelies mainly on the BrainVISA software but various stepsare al-
ternatively processedising the ABSOLUt software.

3.3 Hemisphere identi cation

The rst step of the hemisphereidenti cation procedureis meart to correct for the
intensity bias mertioned above. It is then followed by a histogram analysisto detect
the range of valuesfor the di erent tissuesof interest, after what morphomathe-
matical operations are applied to the image to remove skin, bone, fat and other

1The BrainVISA package can be found at http://brain visa.info/index.h tml
2The Freesurfer package can be found at http:/surfer.nmr.mgh.harv ard.edu
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non-brain tissuesand alsoto compute a labeledimage of both hemispheresand the
cerelellum. To perform thesesteps,we usethe BrainVISA software.

3.3.1 Bias correction

If one obsenesa standard quality grey-level MR-anatomical brain image, it seems
that ead tissueis represeed homogeneouslyHowewer, taking a closerlook reveals
that it is not the case,aswe mertioned above: our visual systemis usedto correctfor

this kind of luminancevariations. A computerprogramis not ableto compensatefor

theseinhomogeneitiesithere is thus the needto correct for this lack of uniformity,

which is unfortunately not only linked to the scannerand the sequenceused (in

which casemeasuringit oncewith an appropriate phantom would be su cient to

descrike it) but is alsosubject depender.

To compute an intensity correction, the BrainVISA algorithm is basedon a model

of the obsened intensity:

O(x) = 1(x)F (x) + N(x)

where: | isthe intrinsic intensity of the tissue,
F the spatial bias,
N the acquisition noise,
O the obsened intensity.

A B

Figure 3.1: Bias correction of the anatomical image. Axial slice of an anatomical image
before(A) and after (B) the bias correction. The latter providesa more uniform grey-level
value for ead tissue. The colormap used here, identical for both images,illustrates the
intensity uniformization induced by the bias correction.

The aim is to best estimate the spatial bias F, supposedto be spatially smooth
which is reasonablewith regardto the MR acquisition process.The algorithm relies
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on the minimization of the following energyU:
U(F) = ksS(O) + krR(F) + ky M (O)

where S(O) is the resulting image ertropy, R(F) a function measuringthe spatial
smaothnessof the correction eld F andM (O) a measureof the discrepancybetween
the original image global mean and the correctedimage global mean. This latter
term prevens the algorithm to corvergeto a uniform grey level image. The con-
stants ks, kg and ky weight ead criterion of the energy The optimization method
implemerted relieson a stochastic sheme. For a more detailed presertation of this
method, seeMangin 2000[142.

In order to judge the quality of the result after corvergence,one comparesvisu-
ally the two images(original input image and the bias correctedoutput image) and
especially cheds for the homogeneiy of the white matter grey level (see gure 3.1).

3.3.2 Grey level histogram analysis

Relying on the bias correctedimage, the next step is to automatically compute a

rough grey level evaluation of the di erent tissuesof interest, here to distinguish

mainly three classes:GM, WM and the other brain tissues(including CSF). As

mertioned above, the latter valuesdier strongly acrossscanners,MR sequences
and subjects.

The algorithm implemerted in BrainVISA performsa grey level histogram analysis

basedon the scale-spacdheory (seefor instance Koenderink 84,[123, Witkin 83

[244) and relieson the two following invariant properties of T1 MR images:

there are three peaksin this histogram: one for the badkground, one for the
grey matter and onefor the white matter, the order being always the latter;

thesepeaksaccour for the largestamourt of voxels.

We give an overview of the algorithm, detailed in [143. Ead tissue classshould
produce a speci ¢ mode in the imagegrey level histogram, and the modesorder is
constart acrossmages. Howeer, the detection of thesemodesis not always straight-
forward: astwo neighboring modes,e.g. GM and WM modes, can be mixed, grey
level histogram and rst derivative extrema analysis are not su cient. Starting
from the study of scale-spacemagesderived from a mixture of two Gaussiandis-
tributions, one noticesa structure linking the trajectoriesof the orderi derivatives
extremato thoseof the orderi + 1 derivatives. This structure is always preset in-
dependerily of the Gaussianparameters,taking a large enoughorder of derivatives
dependinguponthe case.With MR images,the rst two derivativesof the histogram
are empirically su cient for the two modes of interest (GM and WM). Assuming
the modesto be relatively symmetric, the meansare given by the minima of the
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Figure 3.2: Histogram analysisbasedon the scalespacetheory. The grey levelsare showvn
horizontally and the scalesvertically (on a log-scale). The red curve is the grey level
histogram of the image, the trajectories of the minima (m) and the maxima (M) of the
rst two derivativesare showvn in dark blue, green,light blue and purple respectively. The
diamonds are the results of the analysis usedto identify the CSF, GM and WM tissues
modes (mean and variance). Figure borrowed from http://brain visa.info.

secondorder derivatives and the standard deviations correspnd to the maxima of
the closest rst derivatives. The algorithm thus usesthat information to group the
trajectories using the notion of cascadesand, after an automatic characterization
of the sequencaisedto acquirethe image (InversionRecwery sequenceshav very
distinct histogramsfor instance), the algorithm estimatesthe CSF, GM and WM
modes. Figure 3.2 illustrates the result of the scalespaceanalysisof the grey-le\el
histogram for a given anatomical image.

3.3.3 Skull stripping

A rst binary image of the brain is computed by thresholding the original image
with the valuesfound in the previous step; this new mask stands for the voxels
correspndingto the white and grey matter (mask=1) and removesthe other tissues
voxels (mask=0). This is howewer insu cien t, many other elemeits being kept (the

eyes, meninx,...). A parameterizederosionprocessis simulated in order to whittle

down this binary image. This erosiongivesrise to di erent connectedcomponerts,
from which the largestoneis kept asa brain seed.A dilation processs then applied
to this seedto recover the brain. Figure 3.3illustrates thesedi erent steps,referred
as skull stripping.

As for the bias correction, the resulting mask should be chedked visually againstthe

78



original image. For our retinotopic mapping studiesfor instance,we focusedon the
occipital lobes (at the badk of the brain) where the low-level cortical visual areas
are located.

3.3.4 Brain mask segmentation

Our work mainly focuseson the low-level visual areasmostly located on the medial
parts of the occipital cortex. The latter are facing eat other very closely which
makesimpossiblethe visualization on a single model of the whole cortical surface.
A separationof both hemispheress thereforerequired to allow an optimal display
of the medial surfaces.The cerelellum is alsoincluded in the mask after the skull
stripping. An algorithm basedon Chamfer distancesand a VVoronoi graph compu-
tation allows to classifythe maskinto three distinct parts: the cerelellum, the left
hemisphereand the right hemisphere.The nal resultis shavn in gure 3.4.

3.4 Cortical surfaces extraction

The cortical surfaceof a given hemisphereis modeled using the GM/WM and the
GM/CSF (CerebroSpinal Fluid) interfaces. To perform the tissueclassi cation and
the cortical surfacesextraction, we have two alternative approades, both starting
from the above hemisphereseparation. We useeither the BrainVISA or the ABSO-
LUt software algorithms, which are respectively described and nally comparedin
the following paragraphs. Note that, before ABSOLUt software was deweloped, we
tried another algorithm alsodesignedat the laboratory and descritedin [85], which
can be seenas a special caseof the ABSOLUt method and therefore led to lower
quality results. Moreover, this method did not allow a tissue classi cation.

3.4.1 Algorithm 1: BrainVISA
Tissue classi cation

Although not explicitly performed during the surfacesextraction (seebelow), the
BrainVISA padage also implemerts an algorithm dedicatedto the GM and WM
tissueslabeling within the mask of each hemisphere. The method relies on the
histogram analysis presetted in paragraph 3.3.2, further re ned with a Markovian
regularization favoring a voxel to have the samelabel asits neighbors.

Cortical surfaces extraction

The approad implemerted in BrainVISA is basedon a combination of the Homo-
topic Deformable Region (HDR) method and mathematical morphologytools. We
give the main stepsof the method which is fully descriked in [144].
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Figure 3.3: lllustration of the dierent steps for the brain mask computation. A: bias
corrected anatomical image. B: thresholded image; the thresholds were automatically
chosenbasedon the histogram analysisresult. C: result after the rst erosionon B. D:
the largest connectedcomponert in C. E: nal brain mask after dilation.
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Figure 3.4: Brain mask segmetmation, separating both hemispheresand the cerekellum

The following cortical surfacesdetection is applied separatelyto both previously
computed masksof eatch hemisphere. An initial empty parallelepipedic bounding
box (hence homotopic to a sphere) of the hemispheremask, noted Og, is rst
deformedto the hemispheremaskborder with a homotopically preservingdeforma-
tion. This is performedin two steps:

Oy is iteratively dilated conditionally to the complemen of the maskin Og
inside, leadingto O; O standsfor a sphericaltopology outer part of the mask.

Oo outside is iterativ ely dilated conditionally to O, subject to the constrairnt
that no connectionbetweenthe inside and outside of O is allowed.

At the end of these steps, O correspndsto the estimated subsetof voxels repre-
serting the thin layer outside the GM (the brain hull). Note that the conditional
dilations are performedin a pyramid multiscale fashion, allowing faster computa-
tion.

The model O is then homotopically dilated conditionally to its original inside to-
ward the GM/WM interface. The deformation comesdown to adding to O eat
voxel that decreaseshe two terms energyE (O) = E4(O) + E,(O) where:

Eq is a data driven term, i.e. a sum of potertials for eat voxel basedon a
K-meansclassi cation of GM or WM voxels with respect to their grey levels

E, isaregularizationterm basedon Ising models,i.e. minimizing the GM/WM
interface length.
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As the ewlution of O is homotopically constrained, the GM/WM interface is
therefore constrainedto have a sphericaltopology. A topology-consisteh marching
cube algorithm is nally usedto compute a meshof the GM/WM (which holds the
sphericaltopology) and the GM/CSF interface (which is a priori not topologically
spherical). Finally, a decimation is applied to the meshes,including a smaothing
to avoid artifacts due to the underlying discretization. The decimation strength
dependson the trade-o betweenthe nal expectedquality of the meshwith respect
to the segmeiation and the meshsize.

3.4.2 Algorithm 2: ABSOLULt

In this approad, a statistical classi cation method is usedto provide a good ini-
tialization of deformablemodelsthat further ewlve to the estimated GM/CSF and
GM/WM interfaces. Constraints on the ewlution guarartee topological proper-
ties of both meshessud as spherical topology, absenceof self-inersections and
mutual intersections. Thesetwo steps are performed on a masked version of the
original anatomical image for ead hemisphere. Note that we usedilated versions
of the hemispheresmasks computed with BrainVISA to include CSF voxels that
are mandatory for a reliable tissue classi cation with the default implemertation; a
typical value for the dilation radius is 2 voxels.

Tissue classi cation

The tissue segmetation relies on a hidden Markov Random Field classi cation,
coupled with an automatic estimation of the tissue distribution parametersand
of the bias eld with the expectation-maximization (EM) algorithm. Similarly to
BrainVISA's tissue segmetation method, the tissue distribution is modeled by a
Markov RandomField (MRF) encouragingneighboring voxelsto have the sameclass
labels, while the obsened intensity of ead tissue classis modeled by a Gaussian
distribution. The labelsL of the voxels are estimated from the obsened intensities
| with a maximum a posteriori (MAP) criterion:

= argmaxP (Ljl) = argmaxP(IjL) P(L):

The parametersof the tissue statistical model are the mean and the standard de-
viation of ead tissue class,and a bias eld accouring for the inhomogeneitiesin
the image grey-lewel values. This bias is taken asa ne with respect to intensities,
smaooth and non-parametric over space.

A rough initial estimate of CSF, GM and WM meangrey-lewelsis provided by the
user, for instance using BrainVISA's automatic histogram analysis (seeparagraph
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3.3.2). Then, iterativ ely, classlabels are estimatedby MAP and the tissue parame-
ters and the bias eld are then updated with the EM algorithm.
The di erent outputs of this step are:

a labeling of image voxels,
the meanand the standard deviation of ead tissueclass,
a bias-correctedimage.

Note that a bias-correctedimage is once again computed in this approad, which

is redundart with the bias eld computation previously performedin BrainVISA

during the hemispheresegmetation procedure. Howeer, this bias correction step
is intrinsic to the ABSOLUt software. The latter lacks an automatic hemisphere
separationalgorithm that must be performedwith BrainVISA's method.

3.4.3 Cortical surfaces extraction

The hidden Markov RandomField classi cation is powerful for automatic parameter
estimation but it is not sub-wvoxel accurate and disregardstopology. Extracting
an isosurfaceof the labeling would give a very coarsereconstruction with a lot
of topological defects. Hence, the labeled image of the previous step is fed into
a deformablemodel segmeration task with a topology preservingnestedlevel set
method basedon [97] and re ned asdescritedin [179, section3.2. More speci cally,
in orderto obtain a closeand topologically consistet initialization, a setof topology
preservingnestedlevel setsare t to the labeling beforestarting a surfaceewlution.
Later in the algorithm, the labels are no more taken into accoun, and the surfaces
are homotopically ewlved accordingto the intensities of the bias-correctedimage.
Sincethe image inhomogeneitieshave beenremoved in the latter, the boundaries
betweenthe di erent tissuescan be found robustly with a Bayesianregion-based
ewlution. Finally, the meshescan be computed by a topology-consisteth marching
cube algorithm.

3.4.4 Algorithms comparison

As we consideredtwo alternative approadesfor the nal stepsof the anatomical
image processing,it is natural to comparetheir respective outcome, especially for
the GM/WM interface we are mostly interestedin.

We have carried out various qualitative comparisonson our normal human brain
datasetimagesand also on macaguemonkey brain MR imagesfrom ProfessorOr-
ban's group, K.U. Leuven, Belgium. Note that thesecomparisonsare always done
on meshesof comparablesize,a parameterthat canroughly be tuned in both meth-
ods. The sheet-like parts of the GM/WM interfaceat the extremities of the gyri are
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better recoveredby the ABSOLUt method, which alsoavoids mis-reconstructionlike
splittings of connectedparts or unexpected connectionsthrough CSF or vertricles,
asillustrated in gures 3.5. Another interesting feature of the ABSOLUt softwareis
the implicit represemation, i.e. through levelsetfunctions, of the surfacesproduced
asoutput. Sud a represemation is of particular interest for computationally e -
cient cortical surfacebasedprocessing,sut as the smoothing of fMRI data along
the cortical geometry descriked in paragraph 4.1.5. Finally, the GM/CSF surface
sphericaltopology as well as absenceof intersectionsbetweeninner and outer cor-
tex surfacesare guararteed by the ABSOLUt method, which is not the casewith
BrainVISA procedures.

Globally, we usethe ABSOLUt softwarefor the WM/GM interfaceextraction which,
for a given meshsize,providesa ner estimate of the cortical surfacesthan Brain-
VISA while guararteeing better topological properties.

3.5 Cortical surface in ating

The cortical surfacehas complex geometry mainly through its highly folded con-
guration, making the results visualization particularly awkward inside the sulci.
Two di erent techniques, basedon unfolding the cortical surface,are usually used
to facilitate the visualization: attening and in ating. Figure 3.6 illustrates both
approadies. In both cases,distancesand/or angular distortions are unavoidable.
The attening allows larger cortical surfaceportion visualization in a single view,
but at the costsof losing spatial relationship at points wherethe surfaceis cut and
operator dependent surfacepositioning of the latter.

In our studies, we usedthe secondmethod, in ating the cortical surface of eat
cerebral hemisphere. The algorithm we used was implemerted by Dr Olivier
Coulon® and is available in the BrainVISA Padkage. It relies on an energy mini-
mization allowing to compute an in ating force at eat vertex of the mesh. This
forceis made of three componerts:

a strictly speakingin ating componert, alongthe current vertex normal,

an \elastic" componert, trying to maintain the distancesbetweenneighboring
nodes,

a smoothing componert, moving ead node toward its neighboring vertices.

3Qlivier Coulon is currently at the Laboratoire des Sciencesde I' Information et des Systmes, CNRS,
Marseille, France.
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Figure 3.5: Comparison of BrainVISA and ABSOLUt GM/WM surface extraction. The
red and greencurvesrepresen the intersection of the GM/WM interface mesh extracted
with BrainVISA and ABSOLUt respectively and image slices of the original anatomical
image. To ful ll an unbiased comparisonwith respect to the surface models resolutions,
both mesheshave a similar size,with 100822and 99511nodesrespectively (1.3% relative
di erence). The meshesare mostly identical, though someimportant di erences plead in
favor of the ABSOLUt procedure: the blue arrows emphasize ner segmemations of sheet-
like parts of the thinnest gyri (1) while avoiding the splitting of a connex white matter
regions(2) and crossingsthrough the vertricules or the CSF (3).
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Figure 3.6: Represemations of the ducial cortical surface (left) either in ated (middle)
or attened (right). The sulci are represerted in red, the light in green. Adapted from
[71].

i=0 i=4 i=15

i=50 i=200 i=500

Figure 3.7: Di erent stagesof the in ating algorithm on a given left cortical hemisphere,
i indicates the iteration step.

The in ating is the result of a trade-o betweenthesethree componerts. Interme-
diate imagescan be saved during the energy minimization, thus allowing an easy
tracking of the sulci and gyri along the process. The global result is satisfying,
although perfectible notably whenthe curvature is locally large. Figure 3.7 presents
someviews of a left cortical surfaceat di erent stagesof the in ating process.
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3.6 Volumetric data pro jection

There are various ways to project volumetric information from a 3D imageto a
2D surface. A typical application of sud a projection is to overlay the statistical
signi cance map coming from the functional imagesanalysison the cortical surface
model. In the Anatomist software, which is the visualization software provided in
the BrainVISA padkage,various projections methods are proposed. Thesemethods
can be separatedin two consecutie steps: rst the geometricalsampling,i.e. how
the information to represemn on ead meshvertex is seartied in the 3D volume, and
secondthe merging mode of thesevalues,i.e. how to compute a single value per
vertex when eadt vertex is related to multiple voxels by the geometricalsampling
method chosen.

The geometricalsampling at eat vertex can be donein the following ways:

- Point to vertex: only the information coming from the voxel encompassinghe
meshvertex is used.

- Point to vertex with depth o set: only onevoxel information is takeninto accour,
but its position is shifted along the local normal to the mesh;the shift length and
the shift direction, either inside or outside the mesh,can be tuned.

- Segmen to vertex: information is taken along the normal line, both inside and
outsidethe mesh,with a segmen length and sampling step speci ed by appropriate
parameters.

- Inside/outside segmen to vertex: similar to the segmen to point method but only
oneside of the meshis considered.

- Sphereto vertex: voxelsinformation is taken from voxelswithin a spherecertered
at the current vertex; the sphereradius and sampling step can be tuned.

When the geometrical sampling method chosenimplies multiple voxels for eat
vertex, di erent merging techniques can be applied to assigna single value per
vertex. The most obvious way is to take the mean of the voxel valuesencourered
at eat sampling step. A more suitable mixing implemerted in Anatomist discards
the 3D image minimum value in the mean computation to avoid a blurring of the
mapped valueswith, for instance,under threshold voxels. Finally, the maximum (or
minimum) value of all the voxels within the sampledlocation can alsobe chosen.
Changingthe geometricalsamplingand/or the mergingmethods can have dramatic
e ects on the nal result. The choice should therefore depend on the 3D data
considered.To overlay our statistical T mapsor the retinotopic angular maps (see
chapter 4), we employed the segmeh to vertex geometrical sampling, taking into
accourt the voxelscrossedalongthe local outer normal to the GM/WM interfaceat
a distanceup to 2.5mm from the current vertex and with a spatial step of 0.5mm.
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Regardingthe merging technique, we usedthe corrected mean for the retinotopic
angular mapsand the maximum for the statistical T-maps.

Somere nements might be ervisagedto assign3D valuesto a 2D surface for instance
taking into accourt the GM/CSF interface in the segmen to vertex approad to

restrict the integration segmen in the sub-wlume de ned by the inner and outer
cortical surfaces. Howewer, regarding the large functional voxel size (2mm?®) with

respect to the cortical thickness(ranging between1 and 4.5mm, with a meanof 2.5
[70]) and the currertly imperfectcoregistrationbetweenanatomicaland EPI images,
we speculatea ner approad should not improve dramatically our functional maps
overlays.

*kk

We have preseited in this chapter variousalgorithms mainly basedonimageprocess-
ing and computational geometry methods usedto generatee cient segmetations

of brain tissuesand extractions of the cortical surfacemodels. The overall process
takesfrom 30 minutesto 1 hour for a given subject, including somemanual editing

of the maskswheneer necessary The results of this analysis of the anatomical
information are further usedto visualize fMRI activations over the cortical surface
(chapter 5) but alsoasa basefor anatomically constrainedcomputationssud ascor-

tical surfacebasedfMRI data smaothing (section4.1.5)or DTl based b er tracking

restricted to the white matter tissue (chapter 7).
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Chapter 4

Functional data analysis
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The indirect measuremen of brain activations can be performed with BOLD
signalimages.A typical fMRI experimert consistsin acquiring a set of consecutie
imageswhile the subject undergcesa stimulation and/or performsa cognitive task.
At ead voxel in the functional volume, we thereforerecord a time seriesof BOLD
signal variations. In the following, the functional serieswill be viewed as 4D data
(3 spatial dimensions+ time). Ead volume acquiredwithin a givenrepetition time
(RT) is seenas an image, and a set of volumesacquiredin a row is calleda run or
a session.

A fMRI data analysistypically comprisesthe following steps:

the pre-processingwhich aims at correcting possibledefectsin the acquisition
(head motion, acquisitions gapsbetweenslices,...) and performs somespatial
and temporal ltering of the data,

the statistical analysis:it allowsto assesshe volume'selemeits whoseactivity
are correlatedwith the experimertal paradigm,

results interpretation: confront quartitativ e statistical results to, amongoth-
ers, qualitativ e stimulus or task criteria.

Following this typical analysisprocesswe rst descrike various preprocessingmeth-
ods commonto most fMRI studies. We exposea methodological cortribution re-
garding anatomically constrainedspatial Itering of fMRI data. The secondsection
dealswith the statistical analysis. After a brief overview of the main approades
proposedin the literature, we detail a few of them, emphasizingon the methods
we usedto analyzeour own experimert datasets. Although a speci ¢ sectionis not
dedicatedto the results interpretation, this topic is addressedn the description of
eat method.

4.1 Prepro cessing

To begin the functional data analysis, it is preferableto apply dierent prepro-
cessingsteps;indeed, sinceonly the BOLD signal is of interest to brain activation
characterization, any other signal is thus consideredas noise and should, as much
as possible,be removed.

It is rst necessaryto discard the rst imagesfrom the temporal series. We
indeedalways take a few images(typically 5 RT in our case,i.e. about 10 seconds)
during the MR signal stabilization phase;the latter, depending on the scannerand
the sequenceused, is known to give rise to many artifacts in the images, which
are mostly abnormal high level valuesin the signal. Naturally, no stimulation are
preserned during thesefew scans. We can then apply the following preprocessing
stepsto the remaining images.
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41.1 Motion -correction

The subject's headmotion during a scanningsessions unavoidable and may induce
artifacts, leadingto a mislocalization or a lossof activation or, worst, to false pos-
itiv es,i.e. to voxels consideredactivated by the stimulation or task wherethey are
actually not. All subsequehanalysisor processingon seriescomprisingmotion can
be invalid asthe signal and the voxels cannot be properly iderti ed.

The imagesrealignmen, i.e. an estimation followed by a correction of subject's
head motion, can be performedusing the standard realign tool implemerted in the
SPM! software. A referencemagel i is designatedby the userand the other images
are registeredto it using a rigid transformation T. A 3D rigid displacemeh can be
descriked by 6 parameters: 3 for the translations in ead direction of the 3D space
and 3 for the rotations around ead axis x, y and z (called pitch, roll and yaw re-
spectively). The error E betweenthe referenceémagel r and the imagel; to realign
is the sum of the squaresof the intensity di erences at eat voxel x:

X
E?= (Ir(x) 1(T())?
X
E is minimized with respect to T using a classicalleast squarestechnique. At the
end of this step, we can visualize the correctionsattached to ead 3D image, and
thus have an estimation of subject's motion (see gure 4.1).

Following the work of Freire and Mangin [75 to more appropriately estimate head
motion without creating spuriousactivations in fMRI time series,we actually used
a di erent tool implemerted in the INRIAlign software?. This toolbox, interfaced
with the SPM software, implemerts various similarity measurego avoid the di er-
enceof squaresdrawbadks, as proposedin SPM99 realign technique. We usedthe
default algorithm relying on the Geman-McClurerobust estimator which leadsto
the most reliable resultsin their validation study. See[76] for more details.

Note that many other motion correction softwareshave beenproposedin the liter-
ature. A very recen study [15¢ comparedthe most popular amongthem, namely
AFNI, AIR, BrainVoyager,FSL, and SPM2, on phantom aswell ason typical human
studiesdata. Their conclusionis threefold: (i) although slight di erences could be
obsened, no single software outperformedthe others (ii) the parametertuning for
eat method hasvery little impact on the nal results (iii) they nonethelessvarmly
recommendthe inclusion of the motion correction step in fMRI data analysis.

The global estimatedmotion wasgenerallyinferior to 1mmin ead translation direc-
tion and to 1 degreearound ead rotation axis. In caseof more important motion,

Lwe will often refer to the SPM software in the remainder of the thesis. It refersto a set of methods
implemented in a popular software classically used for fMRI signal processing. The core of the SPM
approach will be detailed in the next section.

2INRIAlign, developed in the Epidaure Team, INRIA Sophia-Antip olis, France, is available at
http://www-sop.inria.fr/epidaure/soft  ware/INRIAlign/
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Figure 4.1: Typical output le producedby a motion correction of the fMRI time series.
The upper graph shows the estimated valuesof the 3 coordinates of translation directions
for ead image with respect to the rst, the lower one shaws the 3 estimated coordinates
valuesof the rotation motion computed. We notice that the motion is larger betweenead
sessionof 144images,corresponding to a singlerun, which seemsconsistert with a motion
of the subject waiting betweentwo runs. Note that this wasnot speci ed to the algorithm
during the motion correction: the estimation seemsreliable.

subject could be removed from the analysis.

4.1.2 Anatomical/F unctional image alignmen t

As we use information from the anatomical image to constraint computations on
functional imagessud as cortical constrained ltering (seeparagraph4.1.5) or for
the segmetration of retinotopic areasover the cortical surface(seeparagraph5.1.9),
the alignmert between functional and anatomical scansis crucial. There are two
main sourcesfor disalignemeit
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the subject moved the head betweenthe anatomical and the functional scans.
Sud a coregistration issue should be well corrected by a rigid deformation
computation (rotation and translation).

asit is often reported in high eld Echo Planar Images(EPIs), there could be
distortions in the functional imagesthat might not be appropriately handled
by arigid deformation alone.

We addressedthis coregistration issue using a non-rigid deformation algorithm,
estimating a deformation eld to be applied to the functional images. We useda
software deweloped in the laboratory, MATCH, which is fully detailed in [26, 25.
Briey, a densedeformation eld is computed by composing small displacemets
minimizing a local correlation criterion. Sud a local similarity measureallows
to cope with nonstatic behaviors in the intensity pro les of imagescoming from
di erent modalities. The estimated deformation eld is nally regularizedby a
low-pass Itering.

Considering the coronal acquisition sequenceused for our functional studies, the
estimated dense deformation eld was negligible with respect to voxel size, we
thereforedecidednot to apply the non-rigid correction eld. The coregistrationwas
nonethelesgperformed by the classicalSPM routine and the result was systemati-
cally assessedisually using SPM's chek reg function.

A complememary solution is to rely on a specic measuremen of the known
Echo Planar Imaging (EPI) geometric distortions causedby magnetic eld inho-
mogeneiy [117. This can be achieved by acquiring a phasemap, i.e. an image
mapping the spatial distribution of eld inhomogeneities. A specic method is
for instance proposedin a SPM interfaced toolbox3. Howewer, the phase maps
acquisition was only recerily available at the certre IRMf de Marseille where we
performed our experimerts, so that we could only apply sud a correction to the
experiment descrikedin 7.

4.1.3 Correction of the inter-slice gap or slice-timing

A volume is made of di erent slicesthat are not acquiredat the sametime during
the scanningprocess. Thus, in the caseof the interlaced sequencess usedin our
experimerts, a time discrepancyof the magnitude of half the RT can be presen
betweentwo spatially adjacert slicesof the samevolume. A temporal analysis of
the raw imagesshould take into accourt thesedi erences. A simple solution is to

3The Fieldmap toolbox can be freely downloaded at: www. l.ion.ucl.ac.uk/spm/to  olbox/ eldmap
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correct for this discrepancyto be able to apply the samestatistical analysisto eadh

sliceand considerthem as acquiredat the samepoint in time.

This pre-processings performedby the Slice-Timing method of the SPM software,

which movesslicesin time to get a volume consideredto be acquired at the same
time. This correction relies on a temporal interpolation of the time seriesat eah

slice using an interpolation with a sinc function. The algorithm then realignsead

slice by changingthe phaseof the signaltaken in the Fourier space.Note that this

method assumeshereis no information of interestbeyond the Nyquist frequency i.e.

the sampling frequencydivided by two. The output of the algorithm is a temporal

seriesof imageswhere eat slice would have beenacquired at the samereference
time point within the RT.

4.1.4 lIsotropic spatial smoothing

Although surprisingat rst, aspatial smoothing iscommonlyappliedto fMRI images
[79]. The main reasonis to increasethe signal to noiseratio (SNR), by reducing
the e ect of spatially uncorrelatednoise. This smaothing alsoincreaseghe validity
of the assumptionsusedduring the statistical analysisdone by the SPM software,
I.e. the residualsof the regressiormodel can be treated asa Gaussianrandom eld
(seeparagraph4.2.3below). Lastly, this alsohelpsinsuring a better spatial overlap
betweenactivations acrossdi erent subjects in multi-subjects analysis.

The Gaussiankernel we typically usehasa Full Width at Half Maximum (FWHM)
equalto 1.5times the voxel size. The FWHM s linked to the standard deviation
of the Gaussiankernel by the formula:

FWHM = © 8in(2)

In our visual area mapping experimerts, this smaothing step highly increasesthe
quality of the resulting maps. Howewer, sud a 3D-smamthing is not optimal asit does
not take into accoun the geometry of the cortical surface,thus mixing voxels from
di erent tissuesor remotecortical locations. We have thereforeimplemerted another
approad enablingan anisotropic smaothing alongthe cortical surface,presened in
the following paragraph.

4.1.5 Cortical surface constrained smoothing

As mertioned above, the typical spatial smoothing applied to fMRI data is usually
3D-isotropic, thus mixing voxelsfrom di erent anatomicaltissues(e.g. grey matter,
white matter and CSF). This leadsto undesirableaveragingof signalsat neighboring
voxels, potertially a ecting the analysissensitivity. Furthermore, due to the highly
convoluted geometryof the cortex, the "tissue-blindness"of this smaothing yields a
mixing of signalsacrosssulci at voxels closeto ead other in the volume but distant
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on the cortical surface,reducing further the spatial discrimination power. Taking
into accour the cortical geometryin the smaothing processseemsto be a natural
way to avoid thesedrawbadks, asillustrated in gure 4.2.

Original activation 3D isotropic smoothing Surface constrained smoothing

Figure 4.2: Synthetic illustration of the advantage of cortical surface based smoothing
methods. Left: original activation; Middle: 3mm 3D isotropic smoothing, leading to false
activation on the opposite bank of the sulcus;Right: 3mm Laplace-Beltrami smoothing.

We implemerted and comparedtwo algorithms for surface-basedsmaoothing, one
basedon an explicit meshschemeand the other on the level set framework. Both
implemertations solve the sameproblem: minimizing the variations of the scalar
valuesu, de ned along the cortical surfaceS  R3; in other words it consistsin

nding u that minimizesthe energyE:
Z

E = kr uk®dx (4.1)
S
As shown in [3, 30] for the mesh basedapproad and by [149 for the level set
basedapproad, 4.1is formally equivalert to solvingthe partial di erential equation
(PDE):

Qu(x; 1)
u(x; 0)

su(x; t)
Uo(X)
where su(x;t) is the Laplace-Beltrami operator. The equivalent Gaussiankernel
FWHM is easilylinked to the equation running time T:

(4.2)

FWHM:4pﬂma

Note that sud a formulation could easily lead to a scale-spacestudy of the
smaoothing in uence over the data. The smoothing processis naturally bounded,
sincerunning equation 4.2 for a su cien tly longtime leadsto a constart solution
u =u(l;::;1)

The cortical surfacemodels, either represeted asa meshor a level set function, are
obtained with the anatomical image analysismethods descrited in chapter 3. Note
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that an e cient algorithm implemerted in the ABSOLUt padkageallows to switch
from onerepresemation to the other. Depending on the represemation chosen,two
alternative and non-equialent approatesare performed.

The mesh-based approac h

The mesh-basedpproad, illustrated in gure 4.3-A) starts with a projection of the
cortical voxels valuesfrom the functional image onto the GM/WM interface mesh.
More speci cally, we assignat eat vertex of the meshthe scalarvalue of the voxel
located at a distanced along the local outer normal to the surface. To insure the
voxel chosenlies within the grey-matter tissue, possiblevaluesfor d range between
0 and 3.5mm. We typically took d = 1:5mm. The PDE descrikedin equation4.2is
then ran on the assignedscalar values,leading to a smaothed scalar eld over the
mesh. Finally, a simple "back projection” replacesead node smaothed value to its
original voxel in the 3D space.Getting bad to the original image 3D spaceenables
the direct use of the classicalvolumetric functional data analysistools as SPM.
Note that, consideringthe projection step from the 3D volume to the 2D surface,
alternative techniquesthan the d mm-translated nearest neighbor projection can
be used,as detailed previously in paragraph3.6; nonethelessassigninginformation
from di erent voxelsto a given node leadsto a non-invertible operation during the
badk-projection to the 3D volume step. This method thus implies a compressionof
the information originally available in the cortical voxels. The procedureis repeated
for eath volumein the time seriesand the analysisis then performedclassicallyover
the whole time series. Nonethelesswhile visualizing the results one hasto keepin
mind that only a subsetof voxelswas concernedby the anisotropic smaothing. Ap-
plying the sameprojection on the surfaceto the resultsimages(sud as T-contrasts)
avoids any confusionbetweenresults comingfrom Itered and not Itered signals.

The level set approac h

The level set approad, illustrated in gure 4.3-B, relieson level set represemation
of the GM/WM interface, i.e. a 3D volume which intensities correspnd to the
signedEuclideandistancefrom this surface. The PDE is then solved directly in the
functional volumes,in the vicinity of the zerolevel (which correspndsby de nition
to the GM/WM interface). The di usion is thereforeencouragedn directions par-
allel to this boundary and discouragedotherwise. We repeat the procedurefor ead
volume, after what the analysis can be performed classically over the whole time
series. Similarly to the meshbasedapproad, the analysisof the results hasto be
performed consideringthat only a subsetof voxels was actually concernedby the
Itering.
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A) Mesh basedapproac B) Level Set basedapproadc

Figure 4.3: The di erent stepsof the meshbased(A) and the level setbased(B) smoothing
approades. Starting from the GM/WM interface meshesand the original functional data
(A-a), the meshbasedapproadc requiresa projection of the functional data on the explicit
cortical surfacerepresenations (A-b); the data are then smoothed on the meshgrid (A-c)

before being badk-projected to the original image to be further analyzed (A-d). Based
either on GM/WM interface meshesor directly on the anatomical scan (B-a), the level
set basedapproach rst requiresthe computation of an implicit level set represertation

of the cortical surface(B-b). The Laplace-Beltrami anisotropic Itering is then performed
directly in the image 3D spacein the vicinity of the GM/WM interface, favoring di usion

in directions parallel to this boundary (B-c).
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Deriving global thresholds

Sinceonly a subsetof brain voxels is concernedby the smaothing procedure, it is
necessaryto take this restriction into accourt in subsequenstatistical thresholding
which classically end the activation detection analysis. Based on the framework
of GaussianRandom Field Theory introduced by [248 247, we derived a formula
to adapt the threshold value for a T-test (seebelonv paragraph 4.2.3) performed
on cortical surfaceconstrainedsmaothed data. Transformingthe T variable to a
Z variable using standard procedures,the correspnding z-map can be considered
as a GaussianRandom Field of dimension 2 on a surface A (the cortical sheet)
with a given smoothness. From the expected Euler-Poincare characteristic ; of the
2D- eld oncethresholdedat level t, we have:

E( )= Aj J5(2) tHo(e?

where is the covariancematrix of the eld (basically, its smaothness)and Hp the
Hermite polynomial of degreeD. For a high value of t, the signi cance value (or
p-value) of the z-map s related to the Euler-Poincare characteristic:

P(zmax t) P(¢1) 1 ef®lV E(y)
The smoothnessof the eld can be expresseds:
Aj jz = RESELS(4l0g2))

where RESELS is the number of resolution elemetts, a notion also introduced by
Worsley and given for the cortical surfaceby:

RESELS = =wimz

whereFWHM correspndsto the Full Width at Half Maximum of the smoothing
Iter we applied. Finally, we thus have:
t2

S (dlog2)2 ) FE
F WH M2
Note that Bonferroni correction or False Discovery Rate technique can also be ap-
plied to correctly derive appropriate thresholds.
Computing sud a correction now allows us to comparethe results of both methods
with the standard volumetric SPM-smathing at equivalert p-value.

P(z 1)

Metho ds comparison

We have performed comparisonson various datasets between the classical 3D-
isotropic smaothing and both methods of cortical surfacebasedanisotropic smooth-
ing. Figure 4.4illustrates the resultson a datasetfrom a monkey visual speedmotion
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experimernt. Thesedata are courtesyof Prof. Orban laboratory, KUL, Leuven. Fig-
ure 4.5 shav someresults on the hMT+ complexlocalizer experimernt descriked in
5.2. Globally, both anisotropic approadies lead to higher statistical valuesand
to spatially more coheren activation foci as comparedto the classical3D-isotropic
method. Theseresults con rm the bene ts of anatomical information introduction
in fMRI signal pre-processing,as already stressedn [3].

Besides this work is to our knowledgethe rst implemertation of an fMRI smooth-
ing method basedon the level setframework. We nd expecteddi erences between
both anisotropic methods that can be attributed to the useof di erent numerical
sdhemesand, to a moreimportant degree,to the fact that the mesh-basedpproat
is restricted to projected voxels only whereasthe level set basedapproad solves
equation 4.2 cortinuously within a band around the GM/WM interface. This is an
important argumert that favors the level set basedapproad at di erent steps:

the approad is independernt of a method assigningfunctional data to the cor-
tical surface,

consequetly, the choice of a projection method to visualize the statistical
results on the cortical meshcan be madea posteriori,

the implemertation is more straightforward, avoiding intermediate surfacical
data les and faster in terms of computation time.

Whenewer a smoothing waservisagedto preprocessour data, we thereforesystemat-
ically usedthe level set basedanisotropic smaothing to pre-processour fMRI data.
The core program to resole the PDE was implemerted by Jean-Philippe Ponsin
C++ within the ABSOLULt software library. We alsodeweloped a Matlab interface,
basedon SPM functions, to give ergonomicinteractions with the user. The input
cortical surfacecan be either in BrainVISA explicit meshformat (.tri or .meshex-
tension les) or directly in the implicit level set format. In the latter case,the level
set image has obviously to be coregisteredwith functional data. If necessaryan
automatic resamplingof the level setimageis performedto t the functional images
space. The desired Iter FWHM is then entered and the programs estimatesthe
appropriate running time T of the equation (more speci cally an iteration time step
t and a global iteration number n, with T = n t).

416 Temporal ltering

Correction of the scanner trend

Instabilities of somescannerequipmens give rise to a trend in the signal baseline.
Furthermore, aliasedphysiologically induced e ects (cardiac, breathing,...) alsoin-
troduce low frequency componerts in the signal. These confoundscan easily be
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No spatial SPM isotropic mesh based level set based
smo othing approac h approac h approac h

Figure 4.4: Comparison of the di erent smoothing approacheson a monkey fMRI dataset. Each
column corresponds to a smoothing approad, namely from left to right: non-smamothed data,
SPM 3D-isotropic approadc, mesh-basedapproad and nally levelset based approach. In ead
smoothing process,the FWHM of the Gaussiankernel was set to 3mm. The dataset belongsto
a macaquevision study, where the animal passiwely viewed textures either static or moving at
di erent velocity (1,2,8,16deg/secrespectively). The experimental paradigm consistsin randomly
alternated presenation of 35.31secepochs for ead condition. The only task the monkey had to
perform wasto maintain gazeat the xation point located at the certer of the display. 9 scansof
154 volumesead where analyzedthe classicalGLM. Thresholded T-test p-valuesof two di erent
cortrasts betweenthe conditions are shovn on the reconstructions of the GM/WM interfacesfor
ead hemisphere. We restricted the display to partial view of the occipital polesto focus on the
low-level visual system. The rst two rows represent p-valuesof a corntrast betweenlow velocities
conditions (1 and 2 deg/sec) and the static condition. The last two rows represen p-values of a
cortrast betweenfast velocities conditions (8 ari((j) 86 deg/sec) and the static condition.



SPM isotropic mesh based level set based
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Figure 4.5: Comparison of the di erent smoothing approaceson a human fMRI data.
Data were smoothed by a 3mm Gaussian kernel FWHM by the classical 3D isotropic
method (left), the meshbasedapproac (middle) and the level set basedapproad (right).
The dataset comesfrom the hMT+ localizer experiment, detailed in section5.2.

removed applying a high-pass Iter during the statistical analysisof the voxelstime
series.The cutting period (the inverseof the cutting frequency)is chosento depend
on the interval of time separatingtwo equivalert stimulations in a given session.
This interval is classically called the Stimulus Onset Asynchrony (SOA). We typi-
cally used 2.5 times this value (expressedin seconds)to remove ewvery frequencies

1
lower than >ESOA -

Low pass ltering

A temporal smaothing is classically performed on the data to consideras known
the residual time seriesautocorrelations. This procedureinsuresbetter estimates
of the statistical model parametersusedin the analysisdone at the next step (see
section4.2). We usea simple Gaussiantemporal ltering on the data that will be
taken into accour in the statistical analysis.

We have given in the above paragraphsan overview of the main pre-processing
stepsthat can be ervisagedin the cortext of fMRI signal analysis. The nal chain
applied to a given dataset and the parameter tuning involved in eat step can
have dramatic impact on the results [47, 128. Selectingthe appropriate procedure
dependsstrongly on the underlying experimertal paradigm and the assumptionsof
the analysis method usedto assesgshe data. We mertion the assumptionsmade
in the analysis methods of the next section and precisethe speci c preprocessing
chain performedfor our di erent experimerts in their respective chapters.
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4.2 Statistical analysis of fMRI data

This sectionsummarizeghe main approadesthat have beenproposedto analyzethe
pre-processedMRI data. After a brief statemert of the problem and a classi cation
of the main methods that have been proposedto addressthis problem, we will
descrike the GeneralLinear Model methodology widely usedin fMRI literature. We
then presen a non-parametric approat we usedto analyzeour motion adaptation
experimert, and mertion frequencydomainanalysisoften usedin periodic paradigms
as retinotopic mapping. We end this chapter with a rapid overview of the most
popular multiv ariates methods.

4.2.1 Problem statement

The goal of fMRI data analysisis to extract relevant information from the spatio-
temporal data recordedduring the experiment, linking the experimertal protocol to

the presumedbrain activity.

The statistical analysisof functional imagesis a complextask for various reasons.
First, the amourt of 4D data to be analyzedcanrestrict the choiceof analysistech-

nigue. Indeed,atypical fMRI sessiomrecordinggeneratese\eral hundred megalytes
of data for eat subject which may not be computationally tractable by every method

in terms of memoryand computational time. Besidesthe signalto noiseratio (SNR)

of the BOLD e ect is low, asthe signal of interest is mixed with various artifacts:

the respiratory and cardiac rhythms of the subject, subject motion which is only

partially correctedby pre-processingmethods, EPI spatial distortions createdby in-

homogeneitiesn the magnetic eld, scannerartifacts sud assignaldrift andthermal

noise. Last but not least, the link betweenthe neural responseand the BOLD e ect

is still not well understood [138 137, limiting the results interpretation.

Beyond theseimportant technical reasons,a fundamertal questionraises: what is
the relevant information we want to extract? We generally wish to test between
di erent hypothesesrelated to the experimertal protocol and to derive statistical

activation maps from them. The information of interest can then be the detec-
tion of responseto the experimertal protocol, but alsothe delay or the amplitude

of the response. Another goal can be to build a more synthetic represemation of

the dynamics of the dataset. Various analysis methods have beenproposedin the

literature which can be classi ed given the questionsthey are able to address.

4.2.2 Classication of metho ds

Figure 4.6 givesan overview of the main existing methods. Following [212 121], we
will classifythe methods in two categories:hypothesis-driven and exploratory.
Hypothesisdrivenmethodsrely on an explicit modeling of the responseto the exper-
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Figure 4.6: Overview of the main fMRI analysismethods. The main classi cation separates
univariate and multiv ariate approades. The gure is borrowed from [212].

imental paradigm. This leadsto an estimation of the model parametersfollowed by
statistical tests on the latter to assesshe presenceof an activation and comparisons
betweendi erent experimertal conditions. Most of thesemethods are univariate, in
the sensethat they consideread voxel asindependen. The main weaknessf these
approatesis the more or lessrestrictive assumptionsmade on the responseshape
which may not t actual responses.Their main advantage is the clear answer, with
an estimated probability of con dence, they can give to particular questionssud
as: "which voxel's activity is strongly correlated with the stimulation?" or "what
voxelsare more activated in condition A than in condition B?". The methodological
variations betweenhypothesis-driven methods can concernthe signal modeling, the
parameter estimation method employed or the framework on which statistical tests
rely.

On the other hand, exploratory methods work directly on the functional data, often
ignoring the experimertal paradigm. The ideais to extract temporally and/or spa-
tially structured patterns from the dataset. Theseapproatesare called multiv ariate
becausehey considerall voxelssimultaneously They try to give a generalaccourn of
the data cortent which is particularly interesting when consideringthe complexand
mixed sourcesof the data generation. Yet, the interpretation of the resulting pat-
terns is often di cult. Exploratory methods can therefore be employed to identify
someconfoundsthat could be removed but alsoto identify possibleresponseshapes
that can further be usedin univariate approades. The methodological variations
comefrom the way featuresare discriminated in the data: it can be the decorrela-
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tion betweenthe componerts (yielding to Principal Componert Analysis -or PCA-
methods), the independence(independert Componert Analysis) or a distancein a
feature space(clustering approades).

Note that this rough classi cation is not exclusiwe, as some methods sud as the
Multiv ariate Linear Models [249 are just betweenboth categories.

4.2.3 The General Linear Mo del

The General Linear Model (GLM) is a standard statistical framework in data
analysis on which is basedthe most popular analysis software usedin the fMRI
community: SPM*. Behind this acrorym stands Statistical Parametric Mapping
which is a kind of image from which functional activations are detected. By
extension, the SPM methodology often refers to the processingchain o ered by
the SPM software, including some pre-processingtools we already mertioned in
the previous section, SPM estimation and statistical inferencetools. For a more
comprehensie presenation of the methods implemerted in SPM, one can refer to
[79°. Here we give a description of the model speci cation and the inferencesteps
we relied on to analyzesomeof our datasets.

Mo del speci cation

The GLM is a voxel-basedmethod, i.e. it addressesad voxel individually. In
the following description, we therefore consider a single voxel time course. The
obsenation at time t of a temporal signal Y = (y(t))=t,:t; IS modeledasthe linear
conbination of C explicative variablesf x; (t)gi=; -.c, calledthe regressors and a noise
term (t):

x

y(t) = X() + Xa(t) + i+ exc(t) + () = Xi(t) + (1)
i=1

The ( ¢)e=1::c aresupposedto be time independen, leadingto:

Xa(ty) + o+ eXxe(t) + 0 (ty)

8
2 Y(t1)

>
y(tr)

which can be written in matrix form:

Xa(tr) + o+ eXxe(ty) + 0 (tr)

Y=X + with E()=0 and Var()= 2

4SPM was developed at the Wellcome Department of Cognitiv e Neuroscience,Functional Imaging Lab-

oratory, London, UK and is freely available at: www. l.ion.ucl.ac.uk/spm
SA comprehensive manual is freely available from the web page:

http://www. l.ion.ucl.ac.uk/spm/do  c/b ooks/h bf2
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Assuming E( ) = 0 comesdown to take a constart regressorx;(t) = 1 8t 2

fty;::;trg or to considerthe signal Y certered.

The T C matrix X is called the designmatrix and is formed of ead regressor
in its column. The basic regressorcorrespnds to a convolution of the time P, of
a given condition c in the experimertal paradigm with a canonical model of the

hemadynamic responsefunction (HRF) noted h:

Xc(t) = h(t) Pc(t)

The typical HRF usedin SPM is obtainedwith a di erence of two Gammafunctions,
but other alternatives have been proposed. Sud modeling is the consequencef
the following assumptions:

the responseis linear with respect to the stimulation; in other words, if a stim-
ulation leadsto a BOLD responsein a given voxel, then the samestimulation
repeatedover time will produce as a responsethe sum of the responseat eath
stimulation,

the responseis time-invariant; a delay in the stimulation inducesthe same
delay in the response,

the responseis causal;the output signal doesnot depend on future everts.

The linearity of the BOLD response holds for stimulations su cien tly separated
in time [84] and for block designexperimerts, but non linear e ects were consis-
tently revealedin various event-related studies[236 84]. Non linearity of stimulus
repetition is alsothe certral assumptionof fMR-adaptation experimerts aswill be
preserted in chapter 6.

Other regressorsan alsobe introducedas explicative variables: rst or secondtem-
poral derivativesof the HRF corvoluted by the stimulation to model somevariations
in the responsesud asthe delay, head motion estimates[82, 11§ or low-frequency
signalsthat behave as high-pass lters to model low-frequencyvariations (cardiac
and respiratory e ects, signal drift). Figure 4.7 shavs two examplesof designma-
trices usedeither in an event-related or in a block designexperimert.

Parameter estimation

The vector of parameters = ( ()=1:-c Can be estimated by the ordinary least
squaresmethod which comesdown to minimizing the residual sum-of-squaresij.e.
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Figure 4.7: Examplesof designmatrices usedin an evert-related paradigm (left) or a block
design paradigm (right) with two sessiondn both case. In ead matrix, the columns are
the model regressorsand the rows the temporal steps(i.e. the images).

the sum of the squaredi erences betweenthe actual and tted values,noted E:
E = ~n
= (Y XOHN(Y X9
=Y>Y 2™x°Y+ "x>x”
A necessarycondition (and also su cient as we are consideringa quadratic posi-
tive de nite form) for minimizing the error E leadsto the socallednormal equations:

— = XY = (X>X)"
@ % (X*X)

Thus, (X~ X) beinginvertible (i.e. if the matrix X is of full rank®), the leastsquare
estimation of is:

"= (X7X) XY
with the dispersionmatrix:

Var(")= .= *X*X) !

Note that the least square solution can have a geometric interpretation in which
estimating comesdown to project Y into the sub-spacegeneratedby the model
regressors.

Under the assumptionof Gaussianiy for the residualsand also assumingtheir in-
dependencethis estimation is the one of maximum likelihood and also, in virtue of

5In caseswhere the designmatrix is not of full rank, which should be avoided in general, pseudo-inverses
such as Moore-Penrosecan be used.
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Gauss-Marlov theorem, the best linear un-biasedestimation of . In other words,
this meansthat amongall estimatorsthat are linear conbinations of the data with a
meanequalto the true value of the parameters(E(") = ), its varianceis minimum.
It is howewer known that fMRI noiseis correlated, at least temporally, making the
independenceassumptionincorrect. In caseof colorednoise:

N(0;) with = 2y
we can get the following estimations:

"= (X*V 1IX) IX>V 1y
AT 2XTX) IXPVX(XPX) L

This estimator is onceagain the best linear un-biasedestimation of . Howewer, it
is necessaryo have a preciseestimation of  or V, which isin generalunlikely. Two
main solutions can be envisaged: whitening the noiseor imposea known covariance
matrix. Both can be seenas a temporal Itering of the data achieved through a
convolution matrix K:

KY =KX +K

which give the following parameter estimation:

"= (XPK”KX) IX*K>KY
Var(M = 2(XK”KX) IX"K>KVK KX (X>K>KX) 1

Whitening the noiseconsistsin choosingK = V 2, which alsorequiresan estimation
of the covariancematrix V. This can be doneby imposinga certain structure to V,
sud as an auto-regressie model as proposedin [81, 244.

The alternative solution, called precoloringand implemerted in SPM, is to impose
a known correlation structure by applying a low-pass Iter K sothat:

Var(K )= 2KVK”>  2KK~

In other words, a "strong" enough lter is applied in order to neglectthe intrinsic
data correlations.

As argued in [8]], both techniques are biased but the precoloring appears more
robust for a moderate lossof e ciency .

Statistical inference

Basedon the parameterestimation, we can now derive two kinds of statistical maps
to test our hypotheses:T mapsand F maps. We de ne cortrasts , which arelinear
conbination of the estimates " related to a null hypothesiswe wish to test:

N

Ho:> =0
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It allowsto test if the e ects linked to a given subsetA of experimertal conditions
led to greateror smallere ects than anothersubsetof conditionsB. The signi cance
of the estimated responseto the contrast is given by:

> A A

= p— 4
Var( > =~

wherety is the Studert distribution with d degreesof freedom,d being derived from
the designmatrix X by standard methodsdetailedin [245. Weindeed nd a Studert
distribution for the left handedterm of the above equationunder the null hypothesis
and assumingthe Gaussianiy of the residual . Note that the Studert test is signed
which allows to answer if an e ect is smaller or greater than another. When the t
scoresare computed over all the voxels, we get a statistical t map. The t map can
alsobe converted to a normal variable z map through standard procedures.

To assessf a given regressorsubset“"explains” well the obsened signal, one can
considera setof cortrasts = f 4;::: 4g and derive a statistical scoreto assesshe
squarenorm of  with respect to its dispersion:

As /\d2

Fa.:d
N dl 1,U2

>

where Fg,.4, IS the Fisher distribution with d; and d, degreesof freedom of the
numerator and the denominator respectively. The computation of the F scores
over the brain leadsto a statistical F map that cantest for a subspacespannedby
cortrasts of the designmatrix.

Note that in both kind of maps, the covariance matrix is implied, emphasizing
the importance of its estimation.

The inference nally consistsin rejecting the null hypothesis given the statis-
tical map. Knowing the distributions under the null hypothesis Hy, one can
analytically derive the related threshold for a given signi cance value (or P-value).
A voxel shaving a higher statistical value than the threshold rejects the null
hypothesisand is therefore declaredas responding to the experimertal paradigm.

Map-wise threshold

The inferencedescrited above leadsto a voxel-basedthreshold, which doesnot take
into accour the global map. A rst solution to cortrol the number of false positive
voxelsin the whole map is the Bonferroni correction: assumingthe independenceof
the N voxels considered,the probability g that any voxel in the map hasa z score
above the threshold ty under the null hypothesisis related to the sameprobability

for a given voxel, p, by:
N

a=p
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This method is particularly straightforward to apply, but the independencehypoth-
esissimply ignoresthe spatial correlationswithin the data, speci cally the fact that
the activations we seekare more likely to be a subsetof clusteredvoxels than just
isolated ones. The GaussianRandom Field Theory wasthereforeintroducedto take
into accoun thesespatial correlationsand derive more appropriate thresholds. The
generalidea was already preseried above in paragraph 4.1.5 (although in general,
the map shouldbe consideredasa 3D GaussianRandomField, implying slight mod-
I cations in the above formula). Note that this approad givesanother justi cation
for the spatial smoothing of the data, which makesthe stationary Gaussianrandom
eld hypothesismore credible.

Alternativ. e univ ariate approac hes

Variousalternativeshave beenproposedto improve someaspectsof the GLM frame-
work in the perspective of univariate fMRI analysis. For instance, [80] have intro-
ducednon-linearterms in the GLM to model non-linearities of the BOLD response
suc asobsened in rapid event-related paradigms;other frameworks have alsobeen
introducedto addressthe parameterestimation, sud asBayesianinferenceor Max-
imum Likelihood estimators. Making a detailed accournt of all thesecortributions is
far beyond our purposeand we referthe readerto [212 121] for more comprehensie
reviews.

In the next two paragraphs,we will focus on two univariate approadesthat are
of particular interest for the analysisof our experimerts data. We rst descrike a
method allowing non parametric estimation of the BOLD responseusedto analyze
our motion direction adaptation experimert dataset (chapter 6). We then quickly
mertion frequency domain basedanalysis that is usedin most fMRI retinotopic
mapping procedures.

4.2.4 Non-parametric HRF estimation

Parametric approatessut asthe GLM may introducea bias on the Hemadynamic
ResponseFunction (HRF) modeling. Howeer, getting a precisemodeling of this
signal can be of interest for various purposes:

compareits shape variations (regarding for instance the amplitude, delay or
width) betweenexperimertal conditionsin a given voxel or brain region,

investigatethe spatial variability acrossbrain regions,

retrieve a ner characterization of the BOLD signal, including its link with
neuronal activity,

ultimately allow a better understandingof cerebralactivations.
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Non-parametric models of the HRF could be achieved by consideringead voxel (or
brain region) as a systemcharacterizedby a Finite Impulse Respnse. The general
idea is to introduce physiologically motivated temporal priors in the response
model and, basedon the Bayesian framework, to accurately estimate the HRF
given thesepriors and the obsened data. The rst methods descrited in [88, 144
could only be usedto estimate one HRF in responseto a single condition of a
periodic or synchronouseven-related paradigm. Besides thesemethods could only
consideread sessionseparately A generalizationof this approad was achieved in
[35, 34, 147 and further implemerted by Dr Philipp e Ciuciu in a MATLAB toolbox
interfaced with the SPM software: the HRF toolbox’. We give belov an overview
of the di erent stepsand underlying assumptionsof this method. It was applied
to the analysis of our motion direction adaptation experimert data descrilked in
chapter 6.

In the following, we consider the obsened signal y, at a given brain voxel v.
To lighten the notations, we drop the v index, sothat y, = y. For a given session

Ys=h Xs+ Psls+ 5 (4.3)
where:
-h Xg= he xg, with x¢ the binary vector with 1 at condition ¢ onsetsand

0 elsewheré:é%wd h. the unknown HRF time coursecharacterizing the voxel BOLD
responseto condition c. Note that it is implicitly assumedhere that the di erent
conditions HRFs add linearly. The method allows an interesting feature regarding
asyndironousparadigms,in which stimulus onsetscan occur at any time during the
session:the HRFs can be estimatedon a ner temporal grid than that induced by
the scannersamplingperiod (i.e. the Repetition Time or TR) without oversampling
the original data. Let t TR be the sampling period of this re ned temporal
grid, we have:

X

he Xs(tn) = he(k t)xg(ta Kk 1)

k=0
Sud a temporal re nement procedure allows to estimate the HRF model with
a precise temporal resolution, taking advantage of the asyndirony between the
experimental paradigm and the scanningrate.
- Psls is a nuisanceterm modeling the known low frequency uctuations of the
fMRI signal. Ps is a N  Q; matrix which consistsof Q; functions taken from
an orthonormal basis modeling low frequencies(e.g. low order polynomial or
1-dimensiondiscrete cosinetransform). Is 2 R is the weiglting coe cien ts of the

"The HRF toolbox can be freely downloaded at www.madic.org/do wnload/HRFTBXx
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basisfunctionsnsthat hasto be estimated by the method.
- s isthe residualerror, assumedo follow a N (0; ;) distribution, further indepen-
dert of h.

The model descrited in 4.3 is applied to ead sessionof the experimert with

the following hypothesisset:

1) The HRF time courseh, for eat condition ¢ 2 f1;::;;Cg is assumedto remain

constart acrosssessions.

2) The noise uctuations acrosssessionsare assumedto be mainly due to physio-
logical variations, which leadsto model the low frequency confoundsin a session
speci ¢ way while the residualvariance ? is taken constart acrosssessionsDespite
the known temporal correlation of fMRI time series,the authors arguethat various
noisecorrelation structures have little impact on the estimation performances.

3) Finally, basedon physiologically plausible assumptions, eacn HRF temporal

structure is constrainedby the following priors: (a) its amplitude is closeto zeroat

the rst and end points. Note howewer that this constrainedcan be relaxed.

(b) its variations are smoothed. This is adhieved by the introduction of hyperpa-
rameters which allow to minimize the discrete approximation of kh."k.

(c) the dierent HRFs be estimated show a prior statistical independence.

The estimation is achieved by a two step procedure:

model . This stepis performedby computing the Maximum-Likelihood estimator
with an Expectation Conditional Maximization (ECM), a variant of the classical
Expectation Maximization (EM) algorithm.

- compute the Maximum A Posteriori (MAP) of p(hjy;l; ) basedon Bayesrule.

This results in estimations of eady HRF with relative error bars at ead time
point. Theseestimatesare atrade-o betweenthe information brought by the raw
data and the prior constrairts. The authors have demonstratedthe robustnessof
the estimated HRFs with respect to various featureson realistic simulations aswell
asreal fMRI datasets. This includesdeparture from the hypothesisof equal noise
variance acrosssessionsrelevanceof the temporal re nement procedure,validity of
the HRF estimateserror bars. They nonethelesgrecisethe limits of their method
regarding low signal to noise ratios or the selection of high dimension nuisance
model (which shouldtypically be: Q; 5).

A useful feature of this method is the possibility to perform region-basedHRF

estimation. Consideringeat ROI asfunctionally homogeneousthe procedureuses
all the available time serieswithin the ROI to characterizethe shape of the HRF
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for eat condition. The more straightforward approad is to estimate the HRFs
from the ROl mean signal. Nonetheless,to avoid inaccurate estimation in case
of inhomogeneousROI (for instance due to partial volume e ects), a preliminary
outliers detection step can also be used to remove outlier voxels from the ROI.
It is achieved using the least trimmed squares(LTS) method. Note that a rough
estimation of the outliers proportion hasto be given asinput to the algorithm.
Finally, statistics can be computed over the estimated HRFs. This includes a
rough activation detection, assessingif the estimated response is signi cantly
dierent from a null time course,and, more interestingly, a comparisonbetween
two estimated HRFs. The latter allows to obsene signi cant dierences in the
HRFs elicited by di erent experimerntal conditions, suggestingdi erences in the
underlying neural processing. Sud an application of this method is demonstrated
in chapter 6.

4.2.5 Frequency domain analysis

Another univariate method that can be usedis frequency domain analysis. This
approad allowsto easily separatethe di erent frequenciesof the signaltime course
leading to lessbiased hypothesistesting due to the approximate independenceof
the Fourier coe cien ts. Although their useof has beenlimited asthey are mainly
restricted to periodic paradigms, this approad has shovn to be useful for specic

purposes.First, it is particularly appropriate whena selectedfeaturein the stimulus
is varied periodically. Basedon the Fourier transform of the voxel time course,we
analyzethe componert correspnding to the stimulus frequency The amplitude is
linked to the voxel neuronssensitivity to the feature while the phaseindicatestheir

preferredvalue for this feature. This procedureis classicallyusedto analyzeretino-
topic mapping data [239, but hasalso beenusedto study functional sensibility to

color [63], spatial frequency[21§ or orientation [217. Note howewer that a classical
GLM approad canequivalertly be usedto analyzeperiodic stimulations, aswe will

shaw in section5.1.

Note that frequencydomain analysiscan alsobe usedto detect physiologicalcoun-
fondsas shawn in [98].

4.2.6 Multiv ariate analysis metho ds

We give in the following paragraphsa brief overview of the main multiv ariate meth-
ods that have beenproposedfor an exploratory analysisof fMRI data. As opposed
to univariate methods suc asthosepresertied above, thesemethods considerall the
voxels simultaneously and generally do not rely on a speci ¢ model of the signal.
If they do not lead to statistical inference,these approatescan help in designing
appropriate regressordo build a model of the signal. Another important applica-
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tion is alsofunctional connectivity studies[78, 96] which aim at nding correlations
betweenthe temporal signalsof spatially remote voxels. Multiv ariate methods are
indeedparticularly sensitive to temporal correlation betweensignalsand wheresuc-
cessfullyapplied to functional connectivity [5, 171. Finally, they can be usedto
idertify counfondsin the raw data.

Principal Comp onents Analysis (PCA)

The Principal Componert Analysismethod relieson a SingularValue Decomposition
(SVD) of the data matrix. The fMRI spatio-temporal signalsare represeted as a
N T matrix Y, N being the number of voxels consideredand T the number of
points in the time series.Applying the SVD technique, we get:

Y=U V’

with:
-UaN N orthogonal matrix of singular imageswhich diagonalizesYY ~,
-V aT T orthogonal matrix of singular time series which diagonalizesY Y,
- aN T adiagonalmatrix of the correspnding singular values( ;) =1::)-
Further constraining the ordering of ; to be decreasing,the decommsition is
unique (up to a sign changebetweenU and V). Eacd componert, orthogonal to

the others, models a portion of the variability that can be obsened in the data,

Xk
with ;= i the percern of total variancecarried by the j -th componert.

Applyingl_all PCA to the raw data therefore separatesdi erent variations of the
signals which can detect, without specifying any hypothesison the paradigm, a
temporal signal presen in the data sud as low frequency confounds. The GLM

residualscan also be analyzedthrough a PCA to reveal variations modesthat do
not ful Il the Gaussiandistribution hypothesiswhich are not modeledin the design
matrix.

Various re nements have beenproposedto project the data in a spaceof interest,
sud asintroducing the designmatrix X and performing the SVD of X > Y. These
variations around the PCA are performed by applying distinct normalizations of
the matricesX or Y.

Indep endent Comp onents Analysis (ICA)

Unlike the PCA which leadsto orthogonal componerts both spatially and tem-
porally, one may be interestedin extracting statistically independert componerts
from the data. This is the purposeof Independert Componerts Analysis (ICA)
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techniques. Howeer, sud a decompsition hasto be done separatelyfor the spa-
tial and the temporal domains. Consideringspatial ICA for instance,the ideais to
model our N T matrix Y (the dataset) as the superposition of M independen
sourcesS plus a residual noiseterm

Y = AS +

where A, called the mixing matrix, models the superposition of the sources. The
problem is now to estimate the unmixing matrix B, S and K suc that:

S=B(X ) (4.4)

B can be viewed as a generalizedinverseof A. Solving equation 4.4 supposesto

de ne an independencecriterion for the sourcesand to choosethe rank of the gen-
erative model K, which can appear to be arbitrary. Finally, the estimated source
termsin S canbe interpreted asindependern activation mapsstanding for di erent

e ects presen in the dataset[2(].

To give an illustration, we have applied a spatial ACI technique to a retinotopic
mapping datasetusingthe SICA toolbox deweloped at the U494 INSERM team lab-
oratory, Paris, France. Figure 4.8 shows the two rst spatial componerts extracted
by the algorithm, without giving any prior about the experimertal paradigm. It

illustrates the possibleadvantagesof the method to separatecomponerts consistet

with the stimulation from confoundssud as non-correctedhead motion or physio-
logical noise,as shavn in [173.

Clustering analysis

Clustering approadesallow to group a collection of objectsinto subsets(or clusters)
basedon a similarity measurebetween these objects. In the fMRI data analysis
context, the time coursesof voxels can be consideredas a set of N features (our
objects) belongingto a given feature spaceF .

Someclustering methods rely on parametric models of the featuresdistribution in
F: classifyingthe data into di erent subsetscomesdown to identifying the main
modesof this distribution.

An important issueis the de nition of the feature spaceF; this is related to
the choice of the metric used to quarnify the similarity between time courses.
The Euclidean distance on the raw time courseshas naturally been considered,
but alternatives such as the Mahalanobis metric can also be used. Someauthors
proposedto apply clusteringmethodsto variousfeaturesextracted from the dataset:
the cross-correlationcoe cien ts between the time coursesand an ideal response
to the paradigm [87], or t-maps, nite impulse response Iter model [86]. Using
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Figure 4.8: lllustration of the spatial ICA method on a retinotopic mapping dataset,
as detailed in 5.1. Without any information regarding the experimental paradigm, the
two rst componerts extracted shav a spectrum picked at the stimulation fundamertal

frequency (1/38 Hz)
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these features can have seeral advantages: rst it reducesthe dimensionality of
the time courseto classify thus improving the computational e ciency. This also
introducessomeknowledgeabout the paradigmin the analysis,leadingto an easier
interpretation of the nal clusters. Finally, it allows to perform a meta-analysis
that can separateactivated voxelsinto di erent clusters[86).

Another problematic aspect of clustering is to choosethe number of clusterswhich
leadsto a bias/variancetrade-o . The main clustering algorithms, sud asK-means
or fuzzy C-meanshave beenusedto computethe nal solution, yielding to similar
results.

Another clustering method applied to fMRI in [29 is self-organizingmaps, which
are designedto map the input vectors onto a 1, 2 or 3D maps. This method
has howewer received lessattention sinceit is quite technical and relies on se\eral
non-interpretable parameters.

We have presened in this chapter the main methods we consideredto pre-
processand analyze our datasets. The speci c processingchain we used for the
experimerts descriked in the remainder of the thesis will be detailed in their
respective chapters.
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Chapter 5

Visual areas mapping
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The generalcortical architecture is globally consiste acrosssubjects of a given

species,that is the sametype of areaand the sameamourt are found in any non-
pathologicalindividual. Howeer, the strong physiognomicalvariations of the cortex
folds implies an important anatomical variability acrossindividuals. Furthermore,
studies of the cortical plasticity suggestthat the anatomy-function correspndence
can vary acrosstime for a given subject. An individual identi cation of distinct
areascan thereforebe consideredasa prerequisiteto any study of the human visual
cortex. This givesmore information about the visual systemorganization over the
cortical sheet,which canbe comparedto other speciesin an ewlutionary perspective
or betweendi erent populations to investigate pathologiesor dewelopmeral med-
anisms. Moreover, an objective areadelineation can be usedto de ne independen
Regionsof Interest (ROIs) that will be further characterizedin subsequeh experi-
mernts.
This chapter is divided into two parts, ead onecorrespndingto a speci ¢ criterium
we usedto delineatelow level visual areas. In the rst part, we descrite the fMRI
retinotopic mapping procedureemployedto delineatethe early occipital retinotopic
areas. In the secondpart, we presen the functional mapping usedto identify the
hMT+ complex.

5.1 Retinotopic areas mapping

5.1.1 The cortical retinotopic organization

From the retina to the low level visual cortex, a perceptual elemen sud as a
retinal ganglion cell or a cortical neuron is only sensitie to a restricted por-
tion of the visual eld called its receptive eld. Coarsely the receptive eld is
\what the perceptual elemen sees". More precisely the visual receptive eld of
a cell generally correspnds to a small portion of surfacein the xation plane
which, when a stimulation erters it, modi es the response of the cell. In our
experimerts, this xation planeis the screenthe subjects look at; the terms classi-
cally usedto referto di erent portions of the visual eld areillustrated in gure 5.1.

Let us now state three fundamertal properties of the visual areasthat de ne
their retinotopic organization:

1) The neurons from dierent layers of a given cortical column share the
samereceptive eld [109 117].

2) Two points close to ead other in the visual eld project closely on the
retina. After various stepsand following di erent paths, thesecloseretinal stimuli
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Figure 5.1: The visual eld is split along the vertical meridian into two hemi elds, eadh
again split into two quarter elds along the horizontal meridian. The latter further splits
the vertical meridian into its lower and upper parts.

will be analyzed,inside a given area,in neighboring regionsof the cortex. Although
the precisedistancesand anglesare not presened, the local topology is presened
from the visual eld to the cortical surfaceof retinotopic areas. Figure 5.2illustrates

this property, shawing the represemation of the visual eld in macaquemonkey
areaV1.

Figure 5.2: Retinotopy in macaquevisual cortex: a ic kering stimulus (left) and its retino-
topic represeration in a attened view of layer 4C of areaV1 (right), revealedthrough a

t4C-2-dexy-d-glucose (DG) autoradiography procedure. Reproduced from Tootell et al.
[220]

For instance, the primary visual cortex in humans (V1), anatomically found in the
occipital lobe around the calcarinesulcus, preseits a retinotopic organization. The
latter is approximately polar:
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- whenonemovesalong the cortical surfacefrom a posterior to an anterior position
in V1, the represemation in the visual eld movessmaothly from the certer (fovea)
to the surround. We say we vary the eccentricity .

- similarly, a displacemen from the inferior limb of the calcarineto the superior
limb resultsin a smooth variation of the represemation from the superior vertical
meridian of the visual eld to the inferior part of this vertical meridian. We say we
vary the polar angle

This type of represemation is found in various visual areas, implying that the
visual cortex cortains seweral maps of the visual eld. The correspndencewith
polar coordinateshasnaturally led to de ne polar-caded stimuli aswe will seebelow.

3) Two adjacent areas on the cortical surface (such as V1 and V2) dier
with respect to their represemation of the visual eld. This is a crucial point for
the di erentiation of areaswe are looking for. Indeed, some areaspresen a so
called reverse or mirror represemation, the visual eld being projected on the
cortical surfaceas if it was seenthrough a mirror, whereasothers have a normal
represemation, consistet with the visual eld spatial order. The represemations
change chirality? for two adjacen areas, a useful information we will take into
accourt to detect the borders betweenthem. We illustrate this property in the
sketch of gure 5.3.

Figure 5.3: Scematic illustration of the retinotopic properties of the visual system in
primates: continuity between the visual eld and the cortical surface, inversion of the
chirality betweentwo adjacert areas.

YIn geometry, a gure is chiral (and said to have chiralit y) if it is not identical to its mirror image, or
more speci cally can't be mappedto its mirror imagesby rotations and translations alone, i.e. both gures
are related like our left and right hands.
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Previous work

The rst studiesof human cortical retinotopy were basedon patients having focal
occipital lesions [104 105 107, 104. Non-human primates visual cortex was
extensiwely studied over recert decadesby invasive studies, mainly electrophysi-
ology [46, 253 230, resulting in a far more detailed understanding of retinotopic
organization. More recerly, the rst human functional imaging studies appeared
using TEP [73] and fMRI [190Q.

The periodic fMRI retinotopic mapping paradigm was introducedin [6(Q], in which
the authors usedtwo expandingrings to measurethe eccetricit y map within the
calcarine sulcus. The stimulation was subsequetly completed with a rotating

wedgeto establishthe polar angle coordinates[50, 192 49]. This generalprocedure
has since then been used in numerous studies, with some variations regarding
various parameterssud as:

- the number of simultaneousrings or wedgesin the display [62, 233,

- the stimulus pattern which is often a black and white [197 or colored[222 239
chederboard, but alsoa moving dots pattern [117 or a video [196 187,

- the stimulus pattern ic ker frequency

- the amount of completecycles,the cycle duration, the number of averagedruns,

- the task performed by the subject, which can be a passiwe-viewing, certral or
peripheral attentional task.

We will comebadk to someof thesedi erences belov while comparing our choices
to the literature.

Alternative approades to retinotopic mapping have been proposed to reveal
cortical visual eld maps with fMRI. Some groups have used block designswith
static stimulations of a limited spatial positions amourt, sud as a few eccefricit y
bands [95 100 or the horizontal and vertical meridians only [101, 72]. These
approadies naturally cannot give a detailed account of the visuotopic maps and
may be prone to a poor spatial localization as mertioned in [23§. [83 ewaluated
the binary m-sequencgparadigmfor a retinotopic stimulus preseration which leads
to comparable maps than those obtained with periodic paradigms but without
lowering the acquisition duration. Two di erent groups recerly investigated the
feasibility of mapping a precise sub-region of the visual eld using randomized
block designswith spatially restricted localizers [127 or a multifo cal mapping
stimulation technique [239; these approades have the advantage to be faster and
more precise than the classical procedure when only a task-rele\ant subsets of
positionsis mandatory.

From previous studies of the cortical retinotopy in humans, we can infer the
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retinotopic structure classicallyfound in the human occipital cortex. First, asthe
two hemi elds (the vertical separationof the visual eld) split at the level of the
optical chiasm, ead hemispheres only concernedwith the visual information of its

opposite hemi eld. Secondasfound in animal studies,someareasare split into two
parts at the represemation of the horizontal meridian. Hencethe limits between
adjacent areascorrespnd to horizortal or vertical meridians. More speci cally,

most studiesagreein the visual eld represetation and labeling asfollows:

- V1-alsocalledthe \striate" cortex with respectto its markedly laminated anatomy
andits 11layers(rather than the customary6 in other areas)and by opposition with

the next \extrastriate" areas-hasa completecortralateral hemi eld represemation,

covering the calcarine sulcus. The horizontal meridian lies in the fundus of the
latter and the represemation smoothly changesto the superior vertical meridian in

the vertral lip of the calcarinesulcusand to the lower vertical meridian in the dorsal
lip of the calcarine sulcusrespectively. Thesevertical meridians de ne the borders
of V1 with the two distinct parts of V2. The represemation in V1 is qualied of
mirror, asthe visual eld is projected on the cortical surfaceas if seenthrough a
mirror (seesection5.1.1).

- V2 is divided into two distinct quarter- eld represetations, the upper cortralat-

eral quadrarnt being located ventrally to V1 (V2v for V2 ventral) and the lower
cortralateral quadrant dorsally (V2d for V2dorsal). Unlike V1, the represemation

in V2 is non-mirror. In other words, the polar angle gradiert along the surfaceis
reversedwith respect to V1. The borders of V2v and V2d with respectively V3v

and V3d are de ned alongthe horizortal meridian represemations.

- V3, akin to V2, is split into two quadrarts. V3d follows V2d as one moves
dorsally and shows another lower quarter- eld represemation; V3v, also called VP

for Vertral-P osterior becauset was suspectedto be distinct from V3d in monkeys
studies, follows ventrally V2v and shaws an upper visual eld quadrart. We chose
to call this portion of the cortex V3v instead of VP, asthis separationbetweenthe

two aim at beinglessand lesssupported in the monkey literature and asno evidence
was presenied to distinguish them in humans (for a more complete discussion,see
Zeki's paper about \improbable areas"[254). The represemation in both parts of
V3 is reversedwith respect to V2, thus mirror like V1.

- V3A, locateddorsally to V3d, showvs a completecortralateral hemi eld non-mirror

represemation.

Figure 5.4 illustrates this description. Note howewer that beyond V3v vertrally

and V3A dorsally, there is still no consensudn the actual visual eld maps and
consequetly the areaslabeling. We will discusssomeof theseissuesvhenanalyzing
our resultsin paragraph5.1.8. For now, we seehow the knowledgeabout the visual
eld represemation over the cortical sheetcanbe su cien t to delineatethe low-level
visual areas.
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Figure 5.4: Polar angle retinotopy of the right hemisphere,i.e. the left visual hemi eld.
The left-hand side of the gure illustrates the spatial arrangemen of dierent areasand
their retinotopy, the hemi-circle at the certer corresponding to the color code employed
for eadh angle of the visual eld (from Warnking [239]). The right-hand side of the gure
shows results obtained from human fMRI on an unfolded cortical surfaceby Pr.Wandell's
team, V3v and V3d respectively corresponding to V3 and VP in the text and on the
left-hand side of the gure.

Applications

fMRI retinotopic mapping is not only the main way to explore the organization of
the visual eld mapsin humansbut has also beenapplied to study many aspects
of the early visual areas. This technique allowed quartitativ e estimation of parame-
tersto characterizefurther the visual mapssud asthe cortical magni cation factor
[60, 192 62], the receptive eld size[203 or the cortical surfaceareafor ead vi-
sual area[53. It can naturally be usedin children [39], o0 ering opportunities to
dewelopmernal studies. Similarly, retinotopic mapping of patients allow to study
the cortical represemation of retinal diseaseg21Q 7, 103 and the presenceor ab-
senceof a related cortical plasticity [20]]. The method was also successfullyapplied
to sub-cortical brain structures like the lateral geniculate nucleus[27, 189 or the
superior colliculus [189 and to other speciessud as cat [16(0 and macaque[16],
serving as a useful referenceto study homologiesand di erences along the ewlu-
tion [221, 163 195. From a methodological point of view, fMRI retinotopic maps
can alsobe helpful to constrairt the sourcelocalization in Electro-encephalograph
(EEG) or Magneto-encephalograph (MEG) studies[5]]
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5.1.2 Exp erimen tal proto col

Taking into accoun the retinotopic properties of the visual cortex descrited above
and building on previously published work on the subject, we now de ne our ex-
perimertal paradigm and our stimuli. Let us recall that the aim is to uncover the
mapping of the visual eld over the cortical surface. This canbe achieved by stimu-
lating locally and periodically the visual eld of the subject whosegazestays xated

at the certral point. The basic pattern of our stimuli is a radial chedkerboard dis-
tributed in the radial and the polar dimensions,similar to those descriked in the
literature (e.g. [192 239). To take into accoun the cortical magni cation, the size
of squaresis increasingwith the eccenricit y.

The stim uli

We nally require two families of stimulus:

- The walgeis a 80 degreeswide conical sectorrotating around the certral xation
point. This stimulus moves in discrete 20 degreesstepsin the visual eld in a
circular clockwise or anti-clockwise fashion, thus leading to 18 di erent positions
for a complete 360 degreegotation (see gure 5.5).

Figure 5.5: The \w edge" stimulus seenin di erent positions. It encadesthe polar angle
coordinate of the visual eld.

- The ring is an annulus certered at the xation point, its sizevarying with respect
to the eccertricit y. Similarly to the walge it hastwo "directions of rotation™: either
cortraction or expansion;a completerotation is achieved in 18 distinct steps. When
the annulus reatesits maximal eccetricit y (respectively minimal), it is replaced
by an annulus at minimal (resp. maximal) eccefricity, with an intermediate
position of coexistence(cf. the right image of gure 5.6). This wrapping around
allows to have a closeto cortinuous motion of the stimulus.

In terms of polar coordinates, the walge stimulus encalesthe polar angle compo-
nent whereasthe ring encalesthe radial componert. The completevisual eld is
then completely covered, and these two families of stimuli carry complememary
information with respect to the simulation of the visual eld.
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Figure 5.6: The \ring" stimulus at di erent positions. It encadesthe eccertricit y coordi-
nate of the visual eld.

For eadt position of the stimulus, we scana functional volume, yielding at the end
of eat stimulation a temporal seriesof images(Y;)i=o .1 1.

The chedkerboard pattern of these stimuli ic kers (at 9Hz in our setup, one
cycle consistingof 1/18 secblack and 1/18 secwhite) in order to insure a sustained
neuronal response. Indeed, most of the receptive elds cellsin the retina and the
Lateral Geniculate Nucleus -the main inputs for the rst visual cortical areas-
consistof two antagonistic regions,the bestresponseof the cellsbeing obtained with
a luminance local cortrast betweentheir certer and surround. This chederboard
pattern is superimposedon a mid grey-lewel equiluminart badground to let the
cellswhosereceptive elds do not fall on the chederboard at rest.

Let usrecall that the display sizeof our videosand the experimertal setup provide
a 20.9x20.9degreesdisplay. The extert of the diameter reated by the stimuli
circular aperture is 19.5 degrees,giving a maximum radial opening in the visual
eld of 19.5/2=9.75 degrees.

The stimuli we usedwere programmedin Matlab to generatea video sequencean
avi format. A number of parameterswere adjustable.

Stim ulus optimization

Our main goalis to designan experimental setupallowing a fast and reliable retino-
topic mapping to accurately delineate the visual areas. We varied three di erent
parametersof our stimulus: the number of sectorsin the wedge,the number and
the duration of completerotations (or cycles). The results, preserted in [253, are
descriked below in paragraph5.1.6.

5.1.3 Functional images prepro cessing

Our retinotopic mapping functional datasets are systematically preprocessedas
follows:
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- The motion correction step is run rst, taking as referencefunctional image the
closestto the anatomical scanin the acquisition order.

- We then apply the rigid coregistration step betweenthe anatomicalimageand the
functional scans.

- The data are then smaothed using either the classical3D isotropic Gaussiankernel
or the cortical surfacebasedmethod? descrited in paragraph4.1.5. In both cases,
the lter FWHM is setto 1.5the inplane voxel size.

- Finally, a temporal ltering is applied to the data. A high-pass lter is used
to remove low-frequency confoundsand a low-pass Iter to roughly control the
temporal auto-correlations.

5.1.4 Statistical analysis

This stage aims at establishing which functional voxels are correlated to our
stimulation. The method used is based on the General Linear Model (GLM)
framework (seeparagraph4.2.3)and can be quali ed as:

- univariate: the analysisis performedindependerily for ead voxel (as opposedto
multiv ariate analysiswhich considersall voxels simultaneously),

- di erential: the inferenceanswersto a binary question (a voxel is quali ed either
as activated or not activated),

- parametric: someassumptionsare made about the linearity of the responsewith
regardto the stimulation and about the structure of image noise.

We descrile in this section the model specication followed by the de nition
and estimation of statistical tests usedto reveal the activated voxels. Practically,
our analysisis performedwith the SPM99 software.

Speci cation of a linear statistical mo del

As mentioned above, a frequency analysis is classically usedto analyze periodic
paradigms sudh as the retinotopic mapping. Howewer, we shov belonv how this
kind of paradigm can be viewed as a particular caseof a linear model and therefore
tackled with classicalGLM analysis.

In the following description, we consider a given voxel v and a given session
(e.g. clockwisewealge) of length T. Basedon the retinotopic properties (paragraph
5.1.1) and our stimulus paradigm (paragraph 5.1.2), the voxel v should only show
a correlated signal, if any, when the stimulus position overlapsthe receptive elds
of the neuronswithin this voxel. As our stimuli are moving periodically and as

2We have been systematically using the cortical surface based approach sinceit was validated.
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far as the responseis linear (which is reasonableif two consecutie stimulations
should also be periodic, with a frequency equal to the stimulation frequency
denotedf,. It is therefore natural to study the discrete Fourier transform of our
time series:

X 1 |
Y ()= c(f)eT  8t2f0 T 1g (5.1)
f=0
X 1 |
wherec,(k) = £ Y, (t)e “T° 8k 2 fo; ;T 1g
t=0

A simple relation links the stimulus frequency ko to !, the stimulus pulsa-

tion3:
2k

T

"o

We are interested in the part of the signal at the frequencyk,. According to the
discrete Fourier transform properties, equation (5.1) can be written:

2i kot 2i (T

81210, T 1gGY,(1)= vo+ (ko) 7o + (T ko)e T + (1)

where . is the mean of the temporal signal and ,(t) the signal componerts at
frequenciedi erent from Ko.
We have the following properties:

Yu(t) 2 R=) (T ko) = cy(ko)

t2N=) e = t=1

sothat 8t2 f0;, ;T 1g

ot ko)e ™ + oko)e T+ (1)
= o+ 2Re@(ko)e ™) + (1)

= o+ 2Re((ko) cog2et)  2Im(cy (ko)) sin(Zet) + (1)
= o+ 2Re( (ko)) cog! of) + 2Im(cy(Ko)) Sin(! o) + (1)

Yo(t)

Detailing the formulas, it yields:

8
2 YV(O) = vo T V;]_COi! 0 0) + V;zSin(! 0 O) + V(O)

g Yo(T 1).: vo * vacolo (T 1)) + osin(ly (T 1) + (T 1)

3The pulsation ! ¢, expressedin radian per second,is linked to the stimulation period To, expressedin
seconds,by the simple relation: ! o = %
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We thereforede ne two temporal regressors:

0 1 0 1
costo O) sin(lo 0)
cos( 1 sin(’! 1
Xl:% Co 1) E and xzzg Co D E (5.2)
costo (T 1)) sinlo (T 1))
sothat:
Yv= voXot vaXit+ y2Xot+ B (5.3)
where: - X, isthe temporally constarn regressorj.e. a unity vector of dimensionT

(all coordinatesequalto 1)
- E 2 RT is the residualerror, i.e the part of the signal not explainedby our
model, correspnding to all frequenciesdi erent from Ko.

Equation (5.3) can be written in matrix form:

Y, = XBy+ E (5.4)

(iid), following a N (0; ) law. This assumptionis justi ed thanks to the high-pass
temporal Iter applied during the preprocessingstep, which removes temporal
autocorrelations.

The constart regressordoes not play any special role in the remainder, it is just
a way to certer eat sessionsignal. The vectors X; and X, are decorrelated,as
Cov(X1;X,) = 0. Furthermore, the regressorsare decorrelatedfrom one session
to the other as they are not applied to the samedata. Consequetly, our design
matrix X is of full rank.

We can get a graphical description of our model via SPM, as shavn in gure 5.7,
in particular with the correlationsbetweenthe di erent model regressorsX;.

Lastly, within this model we will look closelyat two parameters:

- k2c,(ko)k? = 2, + 2, cading the strength of the frequencyk, in the voxel time
course,

- = arctan Z—j which is an estimator of the fMRI signal phase.

The same model is applied to ead stimulus, so that for ead subject we de-
ne 4 models (formally similar) with 2 regressorseat (ignoring the constart
regressors).
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Figure 5.7: Graphical description of the statistical model usedin retinotopic data analysis.
The upper graph represetts the SPM design matrix, in which ead column corresponds
to the values of a given regressoracrossscans. The four right columns are the constan
regressors. The lower graphic shows the orthogonality of the design matrix, i.e. the
correlation betweenthe regressorsof our model. They all appear to be decorrelated as
expected (represened by the white color), implying that our designmatrix is of full rank.
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The regressorgoe cien ts ., estimationis performedwith the classicaleast-square
technique, asdetailedin paragraph4.2.3. Let usrecall that under the assumptionof
Gaussianiy for the residualsand alsoassumingtheir independencethis estimation
is the one of maximum likelihood and also the best linear un-biasedestimation of
our regressors.

Statistical tests

The next step consistsin producing statistical tests on the parameters . in order
to decidewhether a given voxel signal variations is explainedor not by our model.
It naturally leadsto an F-test on thesecoe cien ts. We will deducefrom this test a
mask of the voxels consideredas activated in the nal step.

In our study, we de ned two slightly dierent tests that can be applied to ewery
voxel: the globaltest canbe usedwhenwe acquireboth polar angleand eccetricit y
maps, whereasthe speci c test is applied to a single stimulation type. To lighten
the notations, we drop the v index in the remainder.

Global test
The rst test, allowsto answer the question: \is our setof regressorsaccouriing well
for the signal variations at the voxel considered?". It is called \e ect of interest"
in the SPM language. The constart regressordeing excluded,we test for the null
hypothesis:

(Ho): $=0and 5=0 8s2 S= fwc;wa;re;rcg

where wc, wa and re, rc are respectively notations for welge clockwise or anti-
clockwiseand ring exmnsion or contraction. The null hypothesis(H) is equivalert
to the nullity of ke, (ko)k, implying that no signal cortains any signi cant energyat
the fundamertal frequencyof the stimulus.

The alternative hypothesisis:

(Ho) :9(i;s)2fl,2g S = °60

meaningthat our model \explains" at leasta signi cant part of the signal, or from
a frequertial point of view, that a signi cant part of the signal cortains energy at
the stimulation fundamenal frequency

To be able to perform a statistical test, we need an additional assumption on
the ?: they are supposedto follow a Gaussianlaw N (O; 0). They are thereforeall

independert (asthey comefrom Fourier decompsitions) and Gaussian. Then:
X2 X .
(92 () %8

i=1 s2S
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The global model residuals variance is estimated with the sum of the residuals
divided by their degreesof freedom. By assumption, N (0; ) and are
independert, we then have:

LX " _ FE > T
T a, " T q T ¢
whereT qis the number of degreesf freedomremainingin . Here,q= 12 (the
eight ? plus the four constart regressors).
The respective variancesof the residualsand the ? areidertical ( = ", asthey
correspnd to the global variance of the signal Y. Moreover, the residualsand the
are independen thanks to the Fourier decomposition of the signal (equation 5.1).

The statistical test thus relieson:
X2 X

1 s\2
8 ()
F=122  F@ET 12

ETE
T 12

where F (x;y) is the Fisher law with x and y degreesof freedom. This ratio is
estimated and then comparedto the p-valuef of the correspnding Fisher law* at
eah voxel. We typically take p = 10e 3. Any voxel verifying F > f (unilateral
right test) doesnot follow (Hy), soits signalis partly explainedby our model. Suc
a voxel will be part of the \e ect of interest" mask.

Specic tests

The other cortrast we de ned can be consideredas more speci ¢ in the sensethat
it is linked to only one family of stimulus (wedge or ring). It allows to test one of
the two assumptions:

(H): Y¢=0and y°=0and *=0and 54=0
or

(H): {*=0and ,°=0and ;°=0and ;=0

The correspnding statistical tests are derived as before, leadingto a F(4; T  6)
law. Specic \wedge" and \ring" masks can thus be derived. This specic test

41t shall be noted that the way SPM computes the degreesof freedom is slightly more complicated
becauseit takesinto accourt the high-passand low pass ltering applied by SPM; this leadsto non integer
values for these degreesof freedom, but the used here is su cien t, the threshold values computed being
very closeto the theoretical values.
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allows to ched if the respective model of eat type of stimulus explains well the
obsened signal, or can also be usedwhen only one stimulus type is used. Figure
5.8 preserts typical F valuesof a speci ¢ test for the wedge stimulus.

Figure 5.8: An axial slice of the values of the statistics F for the wedge stimulus. The
values under the theoretical p-value computed for p = 0:001 are discarded. The colored
voxels are those consideredas activated and kept in the analysis.

Globally, even whenwe acquire both polar angleand ecceftricit y data, we prefer to

analyzeour resultswith ead speci ¢ maskseparately asthe two families of stimuli

can be viewed asindependert. We howewer consideredthe global mask as neurons
activated by one family of stimulus (e.g. the "wedge") should also be activated by
the other (e.g. the "ring"), the portion of the visual eld globally coveredby both

stimuli being strictly idertical. The dierence in the nal activated voxel masks
derived either from a global or two speci c tests has shovn to be negligible in

practice.

We wrote a series of scripts ("batches" in the SPM99 vocabulary) to auto-
mate this computing stepsusing SPM99, sincede ning the model by hand is time
consumingand repetitive when analyzing many datasets. Those scripts de ne the
model and the cortrasts leading to our F-test, then call the appropriate SPM99
function usedfor the regressionstep and the statistics estimation. Note that the
temporal Itering parametersare also driven with this script and applied before
the model parametersestimation. Various parameterscan be easily changedto t,
amongothers, with the session'duration, the stimulus fundamertal frequency the
TR duration, etc.

132



5.1.5 Angular values computation

The last step in the analysisof retinotopic data consistsin recovering the phaseof
the signal for eat voxel included in the statistical mask computed previously The
latter is linked to the stimulus position that inducedthe voxel's response.
According to our paradigm and the construction of our model, this would be
relatively straightforward without the hemadynamic Itering. Indeed, as seen
previously = arctan(-%) is an estimator of the signal phase,corresnding to a
unique stimulus position in the visual eld. But the responsewe are facedwith is
ltered and delayed by the hemadynamic response,making the underlying position
estimation more di cult. Taking advantage of the two directions of rotation
for ead family of stimulus nonethelessallows to estimate, for each voxel this
hemadynamic delay.

Let us consider a given supra-threshold voxel v, and de ne the following no-
tations:
- (respectively ) is the angle coding for the position of the stimulus rotating
positively (resp. negatively) in the visual eld.
* (resp. ) is the periodic signal estimated phasefor the stimulus in positive
(resp. negative) rotation.
- T (resp. ) is the \expected" signal phase,i.e. the delay of the neuronal
response (closeto zero at our temporal scale), linked with the position * (resp.
) of the stimulus by the relation * = *! (resp. = 1) where! g is the
stimulus pulsation. We have the relation * = 2 .
- ty is a delay in the recordedBOLD response,i.e. the hemadynamic delay at the
voxel v plus the acquisition delay linked to the correspnding slice in the volume.
We assumethat this delay is identical for the two directions of rotations of the same
stimulus, which appearsto be reasonablé. Similarly, this delay could alsocomprise
somephysiologicalaspects as lateral propagation e ects which could reasonablybe
assumedo be identical in both directions of rotation.

5Note that this assumption is valid concerning the slice acquisition delay becauseour stimulus time
course is precisely synchronized with the volume's acquisition, making ead slice acquired with the same
delay with respect to the stimulus change of position in both directions of rotation.
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Figure 5.9: Description of the stimulus positions in the visual eld linked to the periodic
signal measuredphases.This sketch refersto the wedge stimulus. The red and greencolor
correspond to a positive and negative rotation respectively. is the angle corresponding
to the stimulus position in the visual eld inducing a simulation of the neuronsincluded
in the voxel considered,t;, is mainly due to the hemodynamic delay of this voxel, ! o the
stimulus pulsation. The conjunction of the estimated phasesin the periodical signals, *
and , allowsto evaluate the valuesof and ty.

We thus have:

|
+
—

=

— +

=2 To +
We canremovethe term 2 , uselesereasour resultswill in ne be de ned modulo
2 . It leadsto:

4+
th= —— (5.5)
+ _ IO( ¥ )
= S (5.6)

The hemadynamic delay is de ned modulo by equation (5.5), but the ambiguity
is removed by the fact that the stimulus frequencyis chosenlow enoughto allow
the hemadynamic delay value to be, expressedn terms of stimulus position angle,
betweenO and (modulo 2 ).

At the end of this step, we are thus able to evaluate at eat voxel concernedby our
stimulus the value of the angle (thus the underlying position) of the stimulus giving
rise to its activity.

As for the statistical model de nition and the estimation of parameters, this
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phaseestimation step was automated using a Matlab program. It leanson the SPM
interfaceto selectthe images(i.e. the imagesand the F-valuesimage).

5.1.6 Angle maps analysis

We can now analyzethe angular maps obtained through the functional processing
and the statistical analysisdescribed above. In the following paragraphs,after a rst
rapid veri cation of the results, we discussthe qualitativ e aspectsof our visual eld
mapsand compareour resultsto the literature. We alsostudy the polar anglemaps
we obtained while varying somestimulus parameters,leadingto an optimal stimula-
tion paradigm. Finally, we addressboth the intra- and inter-subject reproducibility
of our approad.

First veri cation

The rst point to addressis whether the angle valuesfound are properly located
accordingto anatomo-functional a priori knowledge. As mertioned in paragraph
5.1.1,the eccettricit y mapsaround the calcarine ssure should show increasingval-
uesfrom the occipital pole to more anterior brain regions,while polar angle maps
shouldrevealthe visual eld splitting, eat hemi eld projecting on the cortralateral
hemisphere. We also chedk for both angular maps smaoothnessalong the cortical
surface. This rough veri cation can be performedon 2D slicesshowving the angular
maps overlaid on the subject anatomical image, asillustrated in gure 5.10.

A more appropriate way to assesshe results is to render the eccetricit y and the
polar angle maps on the subject's cortical surfaces,using the construction of cor-
tical geometry models with methods detailed in chapter 3. From these surfacical
maps, we can alsoaddresssomedebatedissuesregardingthe organization of human
occipital visual eld maps.

Eccentricit y maps

General results The ring stimulus is usedto get the phase-encded eccetricit y
map, mapping the cortical responsesto a ring located at various eccetricities. Our
stimulus extendsradially up to a maximum of 9.75degreesof visual angle.

As a generalqualitativ e result, we nd, for every subject tested, the classicalpattern

in which a large foveal represemation lies at the occipital polesaround the calcarine
ssure and as eccetricit y increasesthe correspnding represetations appear more
anterior and medial.

In [237, Wade and colleaguesreported an isolated foveal represetation vertrally

and anteriorly to the V1/V2v/V3v areas. We con rm the presenceof this foveal
represemation in our maps for every hemispheresanalyzed. In the dorsal surface,
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Figure 5.10: Eccenricit y (left) and polar angle (right) maps obtained for a given subject,
overlaid on an axial slice of the anatomical image. Both maps appear reasonably smooth
along the cortical surfaceof the occipital lobe. Furthermore, well-known global properties
of human retinotopic mapsare veri ed: the anglescorresponding to low eccerricit y values
(foveal) are closeto the occipital lobe, and we move further anteriorly asthe eccertric-
ity increases;in the polar angle map, ead visual hemi eld projects respectively to the
cortralateral hemisphere.
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Figure 5.11: Example of the eccertricit y map in a medial view of the left occipital lobe of
subject JK. The left gure shows the original surfaceand the right one an in ated view.
We can clearly seethe isolated ventral foveal activation reported by Wade et al. (lower
arrow) [237], located ventrally beyond the V1-V2v-V3v con uent foveal region. The areas
borders are de ned using the subject's polar angle map (seebelow). The upper arrow
designate a dorsal foveal represenation lying clearly beyond V3d. The color gradient
going to blue at the border of the map doesnot correspond to an angular represertation
but is actually an OpenGL interpolation that cannot be removed under the current version
of the Anatomist visualization software.

extendingfrom the posterior portion of the intraparietal sulcus,the samegroup also
reported two distinct foveal represemations [177. We can obsene a clear foveal
activation in somesubjects but can not reliably distinguish two distinct represen-
tations. Figure 5.11shaows an eccetricit y map overlaid on the subject's left hemi-
sphere,whereboth a ventral and a dorsal activations to low eccetricities are found.

Foveal sensitivit y The eccefricity mapson the cortical surfaceare smooth and
gualitatively match what we expectedto seefrom other studies. Howevwer, the ex-
treme occipital pole is not fully covered of angular values, whereaswe can expect
herea fovealrepresemtation. We wonderedif the periodic stimulation paradigmused
was sensitive enoughto foveal stimulus position. To answer this question, we tested
in onesubject a classicalblock designto cortrast a 5 degreescceitricit y stimulation
with a uniform grey eld xation (see gure 5.12). Each condition was presetted 10
times, ead block lasting 8 TR (or 16,888s).

137



Figure 5.12: The block design usedto map the foveal represenations in the occipital
cortex. Betweentwo foveal stimulation blocks, the baseline condition is a uniform mid-
grey eld with the red xation cross.

The analysiswasperformedclassicallywith alinear regressiorof the box carfunction

represefing the stimulation (1 during foveal presenation, 0 otherwise) convoluted
with a classicalhnemadynamic responsemodel from SPM. No spatial smoothing was
performedon the data, to prevert any blurring e ect. We show in gure 5.13the
comparisonbetweenthe t-map drawn from this block designexperimert thresholded
at p < 0:001uncorrectedand the angularvaluescomputedfrom 4 cycles(contracting

and expanding)of the ring stimulus. We compareddirectly the resultsin slicesof the
3D volumeto avoid any mismatd that could arisefrom the cortical surfaceextrac-
tion or the projection of the functional data onto it. The comparisonis preserted

here for a single axial slice, but the result is qualitatively equivalert for any slice
of the volume: there is a strong overlap betweenany value in the eccetricity map
coding for a foveal ring position and supra-thresholdt-valuesfrom the block design
foveal stimulation. This isin particular the casein the vertral foveal represemation,

located ventrally beyond areaV3v, asalready mertioned above. At the very pole of
the occipital lobe, we do not nd any signi cant t-value with our block paradigm,
consister with our eccetricit y maps. This lack of signal at this preciseanatomical
location is also found in most gures of the literature shaving eccefricit y maps,
though this point is generallynot addressed.lt is nonethelesqquickly discussedn a
footnote in [192. Onereasoncould be small eye movemeris cana ect the signalto

noiseratio in the macula, wherethe receptive elds sizeis smallest. Another source
for this missingsignalmay be attributed to edo-planar geometricdistortions induc-
ing a compressionin the occipital pole. For technical reasons,we could not record
the appropriate eld mapsto estimate and correct thesedistortions. Finally, a lack
of power in the measuremets and the di erent analysisprocessesould alsoexplain
this missing\center of gaze"represetation.
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(A) Block foveal (B) Ring (4 cycles)

Figure 5.13: Comparison between (A) the t-map, cortrasting foveal stimulation blocks
versusuniform grey eld xation blocks (3.2 is the t-value for p=0.001 uncorrected) and
(B) the eccertricit y map derived from the 4 cyclesring stimulus, in an axial slice. The t
values above the statistical threshold in (A) systematically match the low angular values
in (B).

Polar angle maps

General results  Stimulating a subject using the wedgestimulus allows to get his
polar anglemap, mapping the cortical activity implied by a conelocatedat di erent
positionsaround the certer of gaze. From previousneuroptysiologicalstudies,it ap-
pearsthat the boundariesof early retinotopically organizedvisual areasare de ned
by reversalsin the represemation of the polar angle. This stimulus is thus su cien t
to segmen the rst retinotopic visual areas.

As for the eccertricit y maps,the generalpattern of represemation of the visual eld
on the cortical surfaceis smooth, accordingly to the basic principles of the retino-
topy. Basedon the literature agreemets, we can reliably idertify areasV1, V2v,
Vad, V3v, V3d and V3A in ewery subject scanned. Figure 5.14 shows the polar
anglepatterns generallyfound in human fMRI retinotopic mapping reports overlaid
both an the original and an in ated versionof the GM/WM interface.

Wedge stim ulation optimization We tested di erent conditions for the wedge
stimulus in order to optimize our stimulation process.Following [239 200, we tried
a bi eld wedgestimulus instead of the uni eld wedge,for two main reasons:

- the stimulus being symmetrical with respect to the xation point, the subject
would be helped maintaining its gazein the certer of the display,

- the stimulation could run up to twice quicker.

The main drawbad of n-wedgesstimulus (n 2 being the number of simultaneous
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Figure 5.14: Polar angle map overlaid on subject's left hemisphereeither folded (left) or
in ated (right). We nd the general angular values pattern all investigators are agreed
uponin the literature for areasV1, V2v, V2d, V3v, V3d and V3A. The boundariesbetween
the above mertioned areasare manually drawn.

sectors) stems from the more dicult signal phase interpretation than in the

uni eld wedgecase. Indeed, with multiple wedgesstimuli, the analysis globally

remains the same, but the results shov a phaseambiguity: a given value of the

BOLD responsephasecorrespndsto n locationsin the visual eld. Whenn = 2,

the prior knowledge about the hemisphere/hemi eld specialization implies this

ambiguity only appears for the vertical positions, other positions being uniquely
de ned in eadh hemield, thus in eath hemisphere. The vertical position can
then be disambiguated taking into accourt the expected local smaoothnessof the

maps. An alternative was proposedin [20q in which the authors proposedto split

vertically the bield wedgestimulus while it spansthe vertical meridian to avoid

this phaseambiguity (seetheir gure 1). For n 3, the phaseambiguity becomes
more problematic and a priori knowledgemay not be su cien t to resohe the latter.

We tested a bi eld wedgestimulation in comparisonto the classicaluni eld wedge,
also varying the spatial extent of the sectors(see gure 5.15) and the rotation

velocity for the bi eld stimulus.

Dieren t velocities

We rst comparedon 3 subjects the nal maps obtained with (i) the classical80
degreeuni eld wedge, (i) a 40 degreebield wedgeand (iii) a 80 degreebi eld
wedge,asillustrated in gure 5.15.
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\Unield" Wedge \bield" 80 Wedge \bield" 40 Wedge

Figure 5.15: The di erent wedgestimuli tested.

In the 6 hemisphereswe analyzed, we obsened a lower signal in both bield
wedges conditions, leading to less supra-threshold voxels (see table 5.1) and
therefore lesscomprehensie maps than the uni eld wedgeas illustrated in gure

5.16.

Subject || Unield 80 | Bield 40 | Bield 80
CG 31106 19287 20195
GR 50473 23282 21711
SR 49154 25774 24683

Table 5.1: Number of supra-threshold voxels (p=10e 2 uncorrected) for di erent stimulus
pattern rotating at dierent velocities, the bield wedgesstimuli rotating twice quicker
than the uni eld wedge.

\Uni eld" Wedge \bi eld" 80 Wedge \bi eld" 40 Wedge

Figure 5.16: Comparison of polar angle maps projected on the in ated left hemisphere
with respect to di erent stimulations (subject CG). The unield stimulus clearly leadsto
more signal, thus angular values, than the bield, rotating at twice the unield wedge
velocity.
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Theseresults might appear in contradiction with the study of Slotnick and Yartis

[20Q at rst sight, but having a closerlook at their gure 3 suggestsa comparable
signal losswith the bield wedgeascomparedto the uni eld wedge. The rotation

velocity, which for the bi eld wedgeswas twice that of the uni eld wedge, might

accoun for this important signal loss. Indeed, if the stimulation frequencyis too

high, the low pass Iter of the hemadynamic responsea ects thesehigh frequencies,
including the fundamenal stimulation frequency in many voxels. Moreover, the

higher quality achieved with the 40 degreebi eld wedgethan with the 80 degree
alsoprobably comesfrom the hemadynamic responselow-pass lter, preverting the

signalto return to its baselinebetweentwo consecutie stimulations with the larger
wedge. This phenomenonis supposedto occur twice as much with the 80 degree
wedgethan with the 40 degree.

Same velocity

To strictly isolate the bi eld versusthe uni eld wedgecomparison,we performeda
subsequen experimert on 3 di erent subjects, using the samerotation velocity for
ead stimulus. Maps qualitativ ely look much closerto ead other in this comparison
than in the previous one. Howeer, the amourt of supra-thresholdvoxels is still

higher for the unield stimulus (seetable 5.2). Figure 5.17 shavs a qualitative
comparisonon a represetative hemisphere.

Subject || Unield 80 | Bield 40 | Bield 80
LQ 60902 46151 42570
Ccv 45197 37310 34494
IH 64413 51070 42671

Table 5.2: Number of supra-threshold voxels (p=10e 2 uncorrected) for di erent stimulus
pattern rotating at the samevelocity.

Eye movemerts could be a reasonresponsible for this di erence between uni eld
and bield wedge maps. Eye movemers are indeed twice more likely to lead
to unexpected stimulation with the bield than with the unield stimulus. The
resulting signal is thus more likely to be inconsistent with respect to the stimulus
frequencyand consequetly consideredas noise. Howewer, as we were not yet able
to measureeye movemens during the experimerts, we could not quartitativ ely
con rm this assumption.

As a result of these multiple comparisonswith the wedge stimulus, the uni-
eld wedgewith a rotation frequencyof 1/38 Hz was kept for its higher accuracy
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\Uni eld" Wedge \bi eld" 80 Wedge \bi eld" 40 Wedge

Figure 5.17: Comparisonof polar angle mapsprojected on anin ated left hemispherewith
respect to di erent stimulations. The uni eld stimulus leadsto more activations than the
bi eld, evenif rotating at the samevelocity (subject LQ).

5.1.7 Mapping repro ducibilit y

Beyond the confrontation of our mapswith the results from other labs, oneway to
assesdhe robustnessof our retinotopic mapping procedureis to study its repro-
ducibility for di erent subjects (inter-subjects reproducibility) but alsofor a single
subject in di erent scanningsessiongintra-subject reproducibility).

Inter-sub jects repro ducibilit y

As already discussedin paragraph5.1.6, our maps shov a high agreemen across
subjects, aswe globally nd the samepatterns of angular valuesrepresermations, at

least in the systematically mapped cortical region comprising V1, V2v, V2d, V3y,

V3d and V3A.

Intra-sub ject repro ducibilit y

Intra-session  The stimulus optimization previously detailed allows us to chek
for the reproducibility of the polar angle map in a given subject within the same
scanningsession.Figures 5.16 and 5.17 illustrate this intra-sessionreproducibility
of a given subject, using di erent stimulus parameters. The red crossesare linked
for ead image, shaving the high quality alignmert of areaborders (here the lower
boundary of V1) found in each map. The di erences in the mapsresult mainly in
a lack of signi cant signal at somevoxels. This is to be mainly linked with the
changesin stimulation asdiscussedn the previousparagraph.
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Figure 5.18: Intra-subject inter-sessionsreproducibilit y (subject LQ). The data from ses-
sion 2 wererealignedin sessiorl coordinate systemusingthe anatomical imagescoregistra-
tion transformation. The mapsare qualitativ ely identical, showving the high reproducibilit y
of the whole procedure. Speci cally, the areasborders basedon the polar angle map from
sessionl, depicted by the black linesin the top images, t accurately the polar angle map
derived from session2 data.
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Inter-session  The reproducibility of the mapsderived from a givensubject through

di erent scanningsessionsvas also assessedor two di erent subjects. The results
for one of them are shavn in gure 5.18. The di erent maps are computed inde-

penderily for ead session.The realignmert betweendi erent structural T1 images
acquiredat eat sessions doneusing the standard SPM2 coregistration algorithm,

registering ead sessionanatomical scanon that of an arbitrary chosenreference
session. The transformations estimated are then applied to the respective func-

tional imagesand the preprocessingand analysisare applied independerily to eat

functional dataset. Resulting independert phasemapsare nally displayed on the

in ated meshof the GM/WM interfaceextracted from the referencesessioranatom-
ical scan. Both ecceitricities and polar anglemapsshow a strong overlappingaswell

asthe areassegmetation that can be obtained from thesemaps. This inter-session
reproducibility was found in both hemispheref the two subjects analyzed. These
results prove the high intra-subject and inter-sessionreproducibility of the whole
procedureimplemerted.

5.1.8 Mapping e ciency

Following the validation of our method, we now compare our approad with the
literature, rst in terms of the overall experimert duration and secondregarding
cutting edgeissuesabout the cortical visual eld represemations.

Exp erimen t duration

Our initial goal was to accurately identify the low-level retinotopic areas within

a minimum scanning duration. The experimertal and image analysis procedure
we have designedallows to preciselymap the occipital visual eld represemations
consensuallyreported in the literature basedon a 15 minutes functional scanning
experimert. This rapid method comparesfavorably to the di erent proceduresre-
ported in the literature, assummarizedin table 5.3. Note that although Slotnik and
Yantis claim a very low duration of just over 4min, they do not perform eccetric-

ity maps measuremets and only usea singlerotation direction for the polar angle
stimulus. The latter point, alsoexplicitly noti ed in [49, 62 39|, implies the use of
a constart hemadynamic responsedelay over the voxels, which might signi cantly

bias the resulting phasemap. Consideringsimilar limitations, our procedureis ac-
tually comparableto that of Slotnik and Yantis as we require 5mn30sto acquire a
completeset of the wedgerotating in a singledirection and globally faster than the
other groups. As we already mertioned above, this rapid acquisition might explain
the lower signal obtained dorsally and vertrally .
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Reference #Cycles | Averaging Eccertricit y Polar Angle
/run mapping mapping
Serenoet al. [192] n.s. n.s. n.s. n.s.
DeYoe et al. [49] n.s. 2-4 n.s. n.s.
Engel et al. [62] 4-6 n.s. n.s. n.s.
Tootell et al. [222, 95] n.s. 4-12 4-12x8mn32s 4-12x8mn32s
20mn-1hr 20mn-1hr
Smith et al. [203] 4 2 4x216sec 14mn 4x216sec 14mn
Wadeet al. [237] 6-8 2-4 n.s. n.s.
Warnking et al. [240] 14 none 2x7mnl6 14mn30s| 2x7mnl6 14mn30s
Dumoulin et al. [57] 10 3-4 3-4x6.5mn 22mn | 3-4x6.5mn 22mn
Slotnik et al. [20Q 6 none none 4mn30
Conner et al. [39] 8 2 2x8mn32 17mn 2x8mn32 17mn
Brewer et al. [15 25 n.s. 25x24sec 10mn 25x24sec 10mn
Our method 4-8 none 2x2mn32s 5mn 2x5mn04s 10mn

Table 5.3: Comparison of the retinotopic mapping methods reported in the literature with
respect to the number of completecyclesby run, the number of identical runs averagedand
the functional imagesacquisition duration for ead phasemap type. "n.s."=non speci ed

Beyond the \great agreement zone"

Beyond V3A dorsally and V3v vertrally, maps and conclusionsare getting less
consensualn the human fMRI retinotopic mapping literature.

Dorsal maps

In the dorsal occipital region, another quarter eld represetation labeled V3B was
reported by Smith et al. [203. Regardingits location, it was suggestedto be
similar to area KO previously iderti ed by Van Oostendeet al. [233 on the basis
of strong responsesto kinetic boundaries. A completehemi eld represetation was
afterwards reported by Wandell's group in [177 at the samelocation (following
Smith and colleaguesthey labeled it V3B). Tootell's group also reported in [217]
and [216 another area abutting dorsally the V3A/V3B region, labeled V7 and
supporting an upper quarter- eld represemation. Yet, Presset al. later reported in
[177 a completehemi eld represetation in this areaV7.

Our resultsin this portion of the cortical surfaceare lessreproducible from subject
to subject and often lack signal, probably becausewe read the accuracy of our
method which performs retinotopic map acquisitions too fast to provide enough
signal (only 8 complete cyclesfor ead rotation direction of the wedge, without
any additional averaging of runs). Theseissuesshould be resohed with a more
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Figure 5.19: Concurrent scenarii for the vertral occipital visual eld maps beyond V3v.
The hV4 model proposedby Wandell's group assignsa complete hemi eld represertation
parallel to V3v upper vertical meridian represertation. On the other hand, the V8 model
proposed by Tootell's group suggestsa parallel quarter eld represertation labeled V4v
followed by perpendicular complete hemi eld represettation labeled V8. The valuesfrom
the white circlesshow the expectedpolar angleand eccettricit y valuescloseto V3v ventral
border by both models. Figures are adapted and modi ed from [15].

sensitive data acquisition (for instanceusing a surfacecoil), with more cyclesin the
stimulus preseration or an averagingof signalsacrossdi erent acquisition sessions
and maybe with further improvemernts in the data processing.

Ventral maps

Moving vertrally beyond V3v, we also nd someretinotopic signal, but the visual
eld represemation and the labelingis onceagainnot in agreemen here. Hadjikhani
et al. reported in [95 a quarter eld represemation, labeled V4v, followed by a
completerepresemation they called V8 (supposedto be a color sensitive area). But
the authors only shav onedatasetwith a V8 fovea, whereaslater publications from
this group (see for instance [229) show retinotopic maps not always consister
with this interpretation. On the other hand, Brewer et al. recerily reported in [15]
three complete hemi eld represemations located vertrally to the vertical meridian
represemation of areaV3v. Figure 5.19 summarizesthe concurrent labeling in the
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vertral occipital cortex.

According to our data, our conclusionsare closerto those from Wandell's group,
asshown in gure 5.20. In particular, the V8 assumptionseemsnvalidated by the
absenceof foveal represemation for eat polar anglevaluesin this portion of cortex
beyond V3v. But similarly to the dorsal occipital region, more reliable signal is
required in this vertral region of the occipital cortex to draw a solid conclusion
and to conrm or inrm the VO model further suggestedby Wandell's group.
For instance, ner measuremets should be obtained using more specic stimuli
patterns sud aschromatic cortrast, ashigh selectivity to color stimuli wasreported
in this part of the visual cortex [148 237.

Figure 5.20: Example of hV4 polar angleand eccertricit y maps(subject LQ). Theseresults
are consistert with a complete hemi eld represenation beyond V3v.
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5.1.9 Area delineation

Beyond the characterization of the visual eld represemations over the cortical
surface,the retinotopic mapping allows to delineatethe di erent retinotopic areas
revealed. One can then extract the subset of cortical voxels correspnding to
ead area identied, thereby building coheret Regions Of Interest (ROIs) that
can be usedin subsequen analysis. We rst presen below the Visual Field Sign
method tested on our data and then quickly describe a manual procedurewe can
alternatively useto properly delineatethe visual areas.

Visual Field Sign maps

In [193, Serenocet al. introduced an automatic method conbining the eccerricit y
and polar angle maps to construct the Visual Field Sign (VFS) map, allowing a
direct delineation of the retinotopic cortical areasfrom electro-ptysiological data.
The technique was then applied to fMRI retinotopic mapsin [199 and [239, and
further implemerted in a volumetric fashionin Dumoulin et al. [57].

The Visual Field Sign is built to indicate the orientation of the represemta-
tion of the visual eld, either mirror or non-mirror, on the cortical surface. It is
given by:

VFES = sign(det(@ ))

where :(x;y) 2 R>7! (; )2 R* [ ; [is the function mapping, for eath
point (x;y) on the cortical surface,its preferredposition (; ) in the visual eld, as
illustrated in gure 5.21.

‘I;he VFS computation thereforeiqvolvesthe local gradierts of the eccetricit y (noted
r' ) and the polar angle (noted r' ) maps,leadingto the equivalert formulation:

I
VFS = sign(det(r’ ;r

|

;N))

WherelN is the exterior normal to the cortical surface. According to the retinotopic
properties of the visual cortex, this signwill changebetweentwo neighboring areas,
allowing us to easily delineatethem. | |

The gradiert directions of both functions r and r (de ned on the cortical
surface) are estimated at ead vertex of the underlying meshwith a least square
method, using the current vertex neighborhood information. Formally, we look for
the vector ¥ verifying:

V= Min KF V Xk
V
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Figure 5.21: Sthematic represenation of the  function, linking points de ned on the
cortical surfaceto the corresponding preferred position - supposedto be the certer of an
ideal voxel's receptive eld - in the visual eld.

Where: - F isthe function or , F alocal variation of F,
- X is alocal variation of the cortical surfacecoordinates.

By de nition of the gradiert:

dF = r FdX
) dFT = dXTr FT
) rFT = dXxdXxT ‘dXdFT

This computation is done at ead vertex of the mesh, direcI:tIy on the cortical
surface,modeling it locally asa plane orthogonalto the normal N . We perform this
computation on the in ated surface,avoiding problemswith locally high curvature
values (where the local plane appraximation of the surface would not be valid
anymore).

The rst problem we encouriered with this computation was many gradierts
closeto zero. The cortical meshis much more precisethan the original volume
of the functional data. Consequetly, the original angular maps are oversampled
on the mesh, often giving rise to closeto null variations betweentwo neighboring
vertices. To solwe this problem, we considereda higher order neighborhood. For
instance, the 2nd order neighborhood of a vertice v is made of the neighbors of the
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neighbors of v, without its rst order neighborhood and v itself. Depending on the

degreeof the mesh precision (increasingthe latter globally decreaseghe distance
betweenneighboring vertices), it wasfound to be usefulto usea third or evenhigher

order neighborhood to have a more reliable estimation of these gradierts. This

indeed solvesthe problem that leadsto null gradierts at many vertices. Howeer,

an important issueremained: the VFS map obtained was still noisy with respect to

the ideal delineation expected (see gure 5.22-B). Two techniqueswere ervisaged
to improve the VFS maps. We rst tried to smaooth the ring and wedge phase
maps de ned over the cortical surface using an appropriate surface-constrained
smaoothing method deweloped by Radhid Deriche et al. in the laboratory [205. It

is actually the samealgorithm employed in the mesh based smaothing approad

descrikedin 4.1.5. The local gradierts estimation followed by the VFS computation

are then performed classically Although this technique removes most unexpected
VFS reversal while preserving the seeled borders, it actually does not enhance
suciently the results to allow a straightforward area segmeration (see gure

5.22-C).In a se'condatte'mpt, we performeda ltering directly on both surfacical
gradiert elds r andr . Each original vector eld is independerly smaoothed

with an appropriate method alsodeweloped by LuceroLopezand colleagues Details

about this method can be found in [139 19§. This 3D vector eld smoothing step
is followed by the classicalVFS computation. The resulting VFS maps are once
again far lessnoisy than the classicalonesand also better than that obtained with

the phasemaps surfacical smoothing, especially preservingbetter the stripesshape
of V2 and V3 (see gure 5.22-D). Nonetheless,the nal maps are not accurate
enoughto allow a fully automatic identi cation of the occipital retinotopic areas.

A closerlook at the data over the cortical surfacerevealsthat our angular maps
were not asregular asthey are supposedto be with respect to electroplysiological
data, explaining the problemswe encourer with this VFS computation. Besides,
personalcomnunications with other laboratories applying the retinotopic mapping
techniqguesand trying the VFS lead us to the conclusionthat this method is not
robust enoughfor fast retinotopic map acquisition. Let us recall that our technique
allows the acquisition of thesemaps(eccertricit y and polar angle) within 15 minutes
of functional scans, which is signi cantly lessthan what is usually reported in
the literature. Last but not least, a closerinspection of the results shavn in the
literature usingthe VFS computation often revealsthe samenoisinessn their VFS
maps, (e.g. gure 3in [193, gures 7 and 8 in [57]). This review led usto look for
an alternative way to segmehn our retinotopic areas.
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A) Polar angle map B) original VFS map

C) VFS map after 1D smoothing D) VFS map after 3D smoothing

Figure 5.22: Visual Field Sign maps (seetext). A) Polar angle map overlaid on the
in ated left occipital cortex. The areasboundaries were drawn by hand, basedon the
angular variations pattern. The VFS results basedon B) the original polar angle and ec-
certricit y maps, C) the surface-basedmoothing of the angular maps (equivalent Gaussian
kernel with - =3mm) and D) the surface-basedangular gradients eld smoothed along
the cortical geometry. Yellow (blue) indicates a locally mirror (non-mirror) visual eld
represertation.
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Man ual area delineation

In order to get a correct delineation of our visual retinotopic areas,we can usea
manual areade nition, mainly basedon the polar angle map of the subject. As we
already mentioned above, this map givesthe information of anglereversionneeded
to properly delineatethe rst retinotopic areas.

This method allows us to correct for the noisefound in our VFS maps -which can
nonethelessbe usedas a starting point. Most importantly, it can also be usedto
completely delineate the retinotopic areassolely basedon the polar angle values,
allowing faster functional scanningsessiorto identify low-level visual areas.

We adapted the SUMA® software to our needs,allowing to draw directly on the
in ated cortical surfaceand to save the 3D vertices coordinates from the original
(nonin ated) surface. This adaptation mainly involved data format and coordinate
systemcorversionsbetweenthe di erent softwvareswe used. Figure 5.23 llustrates
the delineation obtained with this procedure.

Figure 5.23: The subject's polar angle map projected on a meshof the GM/WM interface
(left) allows to delineate various occipital retinotopic areasas shawvn on the original mesh
(top-right) and on the in ated surface(bottom-right).

Using the manual area delineation procedure, we are able to delineate low-level
retinotopic areasof any given subject basedon 15 minutes functional scansplus
the anatomical image acquisition time. Howewer, our approad is time consuming

5SUrface MApping software, developed by Saadand Cox at the NIMH, NIH; documentation and binaries
are freely available at http://afni.nimh.nih.go v/sscc/sta /ziad/SUMA/SUMA  _doc.htm
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and manual editing is somewhatlessreproducible than a completely automatic de-
lineation. We might further try other approateslike [53], using a model for eah
phasemap and warping thesemodels onto the actual measuremets, or in [57)], al-
lowing a volumetric visual eld sign computation (even if the resulting VFS maps
of the latter technique are not as accurateasideally expected).

Volumetric de nition of ROIs

The visual area segmetation technique described above can be usedto derive vo-
lumic RegionsOf Interest (ROIs) from surface-basedie ned regions, for instance
the subsetof voxels represeting V1. Starting from the surfacicalarealabeling, we
perform a \back-projection” consistingin the attribution, for ead labeledvertex, of
a subsetof voxelsin the original volume, accordingto the projection technique used
to map the functional valueson the cortical surface. We typically usean integration
(averaging) of the valuesat di erent voxels from the vertex considered(lying on
the GM/WM interface)to a certain distancealong the local normal to the surface;
this distanceis supposedto match the cortex thickness,typically 3mm. TheseROls
can then be used for any further experimert characterizing more precisely these
retinotopic visual areas.

5.1.10 Conclusion

The retinotopic mapswe obtained are globally in agreemen with the related litera-
ture and our resultscon rm somecutting edgequestions,asthe presenceof a vertral
fovearepresemation beyond areaVV3v. Our generalprocedureis also currertly ap-
plied by the INCM teamin Marseillein a clinical study of the cortical organizationin
patients su ering from retinal diseasesud asvisual scotomas.Preliminary results
were presered at two ophtalmology conference§103 104. Beyond this mapping
aspects, we can derive within 10 minutes of functional scanssurfacic or volumic
ROIs that can be usedin other experimerts exploring the human cortical visual
system. As our acquisitionsare fast, complememary MRI scanssud as functional
or di usion tensorimagescan be acquiredwithin the samescanningsession.
Various aspects may nonethelessbe addressedin future work. First, using com-
plemertary stimuli patterns, we can expect to clarify visual eld represetations
beyond what we have called "the greatagreemeh zone". Secondthe scanduration
required to get retinotopic maps might be further lowered not only with technical
imaging advancesbut alsowith judicious stimulation tricks. For instance,it might
be possibleto simultaneouslymap the polar angleand ecceitricit y coordinatesusing
two distinct frequencies,ead speci c to one dimension. Finally, a fully and reli-
able automatic method to delineatethe di erent visual eld mapswould be of great
interest to facilitate this tedious and expert-dependert task.
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5.2 Functional mapping of hMT+

This sectionis dedicatedto the functional mapping of areahMT+. We rst recall
the main cortributions in the neuroimagingliterature to idertify this portion of the
visual cortex beforedescribingour choicesand experimertal results.

5.2.1 The hMT+ complex

The functional specialization of human cerebralcortex has rst beendemonstrated
with neuroimaging by Zeki and colleagues[257. Using PET, they reported two
extrastriate regions,onein the vertral lingual and fusiform gyrus specially activated
by color stimuli, the other in the temporo-parieto-cccipital junction activated by
motion stimuli. The latter is classicallyreferredto as hMT/V5+ (i.e. the human
MT/V5 complex,we will referto ashMT+ in the remainder), becauset was orig-
inally thought to be the human equivalent to macaque'sMT, MST and adjacen
areas. Se\eral other evidenceslater supported and precisedthis broad homology
Using both PET and fMRI, [24]] reported the consister localization of hMT+ at
the junction of the ascendinglimb of the inferior temporal sulcus(ALITS) and the
lateral occipital sulcus(LO). This localization wasfurther re ned in [56]. These nd-
ings had to be linked with anatomical studieswhich shaved the particularly dense
myelination of this regionin humans([37, 223 4], which is characteristic of macaque
MT/V5 area[233. Moreover, various studiesimproved the functional characteriza-
tion of hMT+. Tootell and colleaguegrecisedits functional selectivity, showving its
responseto various moving patterns and alsoincoherert ic ker, its high sensitivity
to low cortrasts and its lower activity elicited by isoluminart color stimuli [218.
They alsosuggestedn [219, later followed by others[43], the implication of h(MT+
in the Motion After-E ect (MAE) ‘. This result was actually in rmed by Huk and
colleagueswvho later shaved that the activation was only due to attentional e ects
[113. The latter group demonstratedthe presenceof pattern motion cellsin this
complex[114.

Somee orts were nally madeto distinguish subregionswithin the hMT+ complex,
basedon putative homologiesvith non-human (especially macaque)motion sensitive
areas. [55] subdivided hMT+ into areaMT responding to cortralateral visual eld
only, areaMSTd shawing ipsilateral peripheral selectivity and areaMSTI basedon
non-visually driven pursuit eye movemer. Theseresults were partially con rmed
by [119 who distinguished the putative MT homologuerelying on its retinotopic
property and the putative MST homologuebasedon its functional selectivity to

"The Motion After-E ect refersto a famous optical illusion which involves the apparent motion of a
stationary stimulus in the opposite direction to a previously observed one. It is also called the waterfall
illusion as staring for a few tens of secondsto a waterfall before looking at a xed object aside producesa
MAE.
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peripheral and ipsilateral stimuli. Howewer, sud temptative subdivisions of this
motion selective region require many speci ¢ scansand needa more precisechar-
acterization, explaining the referenceto the hMT+ complexin most neuroimaging
literature.

5.2.2 hMT+ localizer: previous work

We presen an overview of the dierent stimulation paradigms used in fMRI
to functionally identify the hMT+ region. This review does not pretend to be
exhaustive but rather accourts for the main approatesproposedso far.

In most fMRI experimerts to localize hMT+, subjects undergo a passi\e viewing
task with blocks of either a motion condition or a cortrol condition. Beyond
this generaland rather natural principle, the methods di er between groups with
respect to di erent parameters:

the stimulus pattern: random black and white chederboard (also called a ran-
domtexture pattern or RTP), randomdots pattern (RDP), sinusoidalgratings,
concetric rings,

the type of motion presened: simpletranslation (vertical or in any direction),
expansion/corraction (alternating or not), incoherert motion (ic ker),

the control condition: a static or a ic kering presenation of the stimulus pat-
tern.

Other lesscrucial parametersmay alsodi er acrossstudies. For instance,the block
duration and number of blocks usedshouldimpact the nal t-maps obsened, which
is obviously linked to the amourt of signal available. Stimulus size has shovn to
have little e ect on hMT+ activations[209, although increasingthe stimulus extert
should naturally lead to larger activation focus since MT has a crude retinotopy.
When a ic ker condition is included, it seemghat the ic kering rate doesnot have
much in uence on the nal resultsin areahMT+ [209. Similarly, [14] reported a
weak di erence in hMT+ activations to di erent velocities they tested (5 and 20
deg.s?).

Table 5.4 summarizesthe di erent combinations employed in somerepresemativ e
studiesregardingthe main stimulation parameters.

5.2.3 hMT+ optimal mapping
Stim uli

As various stimuli are described in the literature to revealthe hMT+ complexusing
neuroimaging, it was not obvious to decide which stimulus con guration would
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Reference Pattern Coherert motion Flicker
Tootell et al. 1995[218] random dots expansionor cortraction
squares/rectangles translation 2-3 Hz
sinusoidal grating translation
Van Oostendeet al. 1997[233 || random chederboard translation 30 Hz
Smith et al. 1998[202] concertric rings 1.2Hz -
with various patterns | expansion/cortraction
Sunaert et al. 1999[209] random chederboard translation 6 or 15 Hz
Dumoulin et al. 2000[56] random chederboard - 2 Hz
Braddick et al. 2001[14] random chederboard vertical translation 50 Hz

Huk et al. 2002[114]

random dots

1Hz alternating

expansion/cortraction

Table 5.4: Overview of the main stimulation con guration usedin the literature to reveal
the hMT+ complex.

optimally drive hMT+ activations. We tested the in uence of two parameters:the
cortrol condition and the stimulus pattern.

Control condition

We tried a cortrast betweencoheren motion (COH) and non-cohereh motion, i.e.
a randomly ic kering pattern (FLI). Evenif hMT+ was showvn to be responsive to
ic ker [218 233, we can expect a signi cant di erence with the coherem motion
condition asshowvn in [14]. The useof sud a cortrast is justi ed by three theoretical
reasons:

- it should only drive \coherert motion" sensitive neurons,

- neuronsonly sensitive to high spatial frequenciesvould thus be avoided,

- it could help discriminating local and global motion processingneurons.

We also presened blocks with a static image presenation (STA) of the same
pattern, which allowed us to comparethe di erent cortrasts usedin the literature:
coheret minus incoheren motion (COH-FLI), coherem motion minus a static
stimulus (COH-STA) and incoherert motion minus a static stimulus (FLI-STA).

Stim ulus pattern

We tried two di erent kinds of stimulus pattern:

(1) a black and white RDP on a mid-grey badkground with a 10.28 dots.deg ?
density, similar to [114. For this stimulus, the coheren motion blocks consistin
inward and outward radial motion with a velocity of 7.53deg.s !, alternating every
500ms;this alternated motion prevents adaptation e ects. In this radial motion,
dots leaving the mask were replacedthrough a radial wrap-around constrainedto

157




keepthe dots density constart. The ic ker condition is randomly drawn patterns
at 18Hz.

(2) a rectangular black and white chederboard, similar to that usedin Orban's
group [209. The coherem motion condition is a global translation at 7.53 deg.s *
in a randomly selectedaxis changing every second;the translation direction along
the sameaxis is further reverted every 500ms. The ic ker condition is a randomly
drawn pattern at 18Hz.

Both stimuli were presened within a circular aperture, asillustrated in gure 5.24.

Dots pattern Texture pattern

Figure 5.24: The two kinds of pattern tried for our motion localizers. The circular aperture
diameter subtended 19.5 degree.

Imaging

We tested both stimuli patterns (RDP and RTP) and the 3 conditions (COH, FLI
and STA) in 4 subjects. Both patterns were preserted in separateruns. We used
a typical block design,in which eat of the 3 modesof stimulation was preserted
during blocks of 8 RT (16.888sec) A run started with 5 scanswith only the xation
cross (MR signal stabilization), followed by 6 repetitions of ead of the 3 block
typesshu ed in a pseudo-randomfashionand endedwith 2 xation crossscansto
allow slice-timing correction, henceleadingto a total of 151scans( 5mn20sec).
Eacdh functional image spans 20 coronal slices 3mm thick and 2x2mn? in plane
resolution, appraximately orthogonal to the calcarine sulcus covering the occipital
retinotopic areasand extendingvertrally to con dently include the expectedhMT+
location. A high resolution anatomical image was also acquired from which an
individual model of the cortical surfacewas extracted with methods descriled in
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chapter 3, enabling to smaoth the functional imagesalong the cortical geometry
and to visualize the activation maps.

Data analysis

The time courseswere slice-timing corrected, motion corrected, coregisteredto

the anatomical image and smaothed with our cortical surface based method
(FWHM=3mm). For more details about eat preprocessingsteps, refer to sec-
tion 4.1. Eacd voxel time courseswere then analyzed under the classical GLM

implemerted through SPM99 custom designedbatches, eat stimulation condition
being modeled by a box-car corvolved with the standard HRF model, as detailed
in section 4.2. T-maps cortrasting two conditions of stimulation were nally

estimated and thresholdedat p=10 * uncorrectedto reveal the voxels considered
as signi cantly more activated in a condition comparedto another.

5.2.4 Results

hMT+ activations

Figures 5.25t0 5.28 show the estimated activations for the di erent cortrasts and
pattern we testedin a lateral view of the GM/WM interface. This point of view was
particularly appropriate to showv the expectedlocation of areahMT+. We do not
show in ated surfacesto avoid important areal changesthat occurred at the highly
folded location of hMT+ activations.

The COH-STA cortrast systematically reveals an activation focus in the inferior
temporal sulcusof the 8 hemispheresanalyzed, either with the RDP or the RTP
stimuli. We note howewer that the RTP led to a smaller activation extert in one
hemisphereof subject GG ( gure 5.27).

The sameresult was found with the COH-FLI cortrast, alsoleadingto signi cant
activations at the expected location in the 8 hemispheresconsidered,with also a
smalleractivation extert in onehemisphereof another subject for the RTP stimulus
(subject HR in gure 5.25). Interestingly, within the expected location of hMT+,

the COH-FLI activation patch was systematicallyincludedin that of the COH-STA
cortrast and the p-valueswere systematically smaller in the former as compared
to that in the latter, independerly of the pattern used. This result con rms the
higher functional selectivity of the COH-FLI cortrast with respectto the COH-STA
cortrast. Furthermore, when the COH-FLI activation area was strictly smaller,
it was always located in the most dorsal part of the COH-STA activation patch.
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We relate this result with previous fMRI attempts to subdivide hMT+, [55 112
which distinguished putative human homologuesof macaqueMT and MST located
in posterior-ventral and anterior-dorsal parts of hMT+ respectively. We therefore
hypothesizethat the subregionrevealedby the COH-FLI cortrast canbe the human
homologueof macaqueMST. Further experimerts to map complememary informa-
tion sud asretinotopic organization, receptive elds sizeor functional selectivity to
pursuit eye movemerts in hMT+ would be neededto con rm this hypothesis.

The FLI-STA cortrast elicited more erratic activations in the hMT+ region, with
only 3/8 hemisphereshawing a clearhMT+ activation with the RDP and 4/8 with
the RTP. This result suggestghe sub-optimality of a comparisonbetweenincoher-
ernt motion and a static condition to reveal the hMT complex. This is to be related
with the report in [56], who found no signi cant responsesin 33% of the cases(5
subjects out of 15in their study).

Wethusdiscouragehe useof anincoherert motion minus a static condition cortrast
(FLI-STA) to revealthe human MT complex. On the other hand, choosingthe more
appropriate cortrol condition to be comparedwith coherem motion is lessclear for
this iderti cation purpose. At this point, we cannot reliably label the sub-region
revealedby the COH-FLI contrast. We prefer to considerthe COH-STA contrast
and label the inferior temporal sulcusdi erential activation asthe hMT+ region.
Regardingthe stimulus pattern, our RDP led to higher p-valuesand larger activa-
tion patchesascomparedto the RTP. This might be due to the density of stimulus
elemens bringing motion information which are lower in the RTP, in which only
the squarecornersand the edgesnon parallel to the motion direction carry motion
signal, with respectto our RDP stimulus, in which every dot providesa motion sig-
nal. Further experimerts are nonethelesgequiredto study the correlation between
motion signal energyand hMT+ activation.
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COH-ST A COH-FLI FLI-ST A

Figure 5.25: hMT+ localizer, for di erent stimulus pattern and contrasts (subject HR)
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COH-ST A COH-FLI FLI-ST A

Figure 5.26: hMT+ localizer, for di erent stimulus pattern and contrasts (subject GM)
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COH-ST A COH-FLI FLI-ST A

Figure 5.27: hMT+ localizer, for di erent stimulus pattern and contrasts (subject GG)
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COH-ST A COH-FLI FLI-ST A

Figure 5.28: hMT+ localizer, for di erent stimulus pattern and contrasts (subject LH)
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Intra-sub ject repro ducibilit y
We cheded the intra-subject reproducibility of the hMT+ functional mapping by
analyzing data from the samesubject in distinct scanningsessions.The scansfrom
both sessionsvere coregisteredon a arbitrary de ned referencesessiorthrough the
high resolution anatomical imagesusing SPM2 coregistration algorithm. We glob-
ally found a good overlap acrosssessionsasillustrated qualitatively in gure 5.29.

Sessionl Session2

Figure 5.29: Intra-subject multi-sessionreproducibility of hMT+ mapping with the RDP
stimulus and COH-FLI cortrast, p= 10 3 uncorrected (subject EC).

Occipital cortex activ ations

Even if our main goal was to individually localize the hMT+ complex, we could
also obsene somesigni cant activations in the occipital cortex depending on the
cortrast and pattern considered.
The COH-FLI cortrast elicited no activation in the occipital cortex around the cal-
carine sulcusin ewvery hemispherewe analyzed. On the other hand, this region was
signi cantly more activated by ic ker than by a static stimulus (FLI-STA), asil-
lustrated in the rst two columnsof gure 5.30. This preferencefor ic kering as
comparedto static stimuli is not surprising, as recen studies con rmed that hu-
man V1 and surrounding extrastriate areascomprisedirection selectiwe cells ([113
and next chapter in this thesis). More interestingly, we also found that the ic ker
condition elicited a greaterresponsethan a coherert motion stimulation within the
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FLI-ST A FLI-COH

HR

GM

GG

LH

Figure 5.30: Relative activations in the occipital pole when contrasting FLI-STA or FLI-
COH for both stimuli patterns. Each subject's right hemisphereis preseried in a row
corresponding to di erent contrasts betweenconditions and stimulus pattern.

occipital pole in various hemisphereq4/8 for the RDP, 5/8 for the RTP), asillus-
trated in both right rows of gure 5.30. This result con rms a previously reported
obsenation [14]. Sud a relative activation in V1 suggestghe involvemern of more
cells stimulated by incoherert motion than the amourt of cells stimulated on their
preferred direction by the coheren stimulus in areaV1. This obsenation should
be linked to the receptive eld size: direction selective neuronswith small receptive
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Figure 5.31: Dorsal and vertral activations revealedwith the RDP stimulus and COH-FLI
contrast and the corresponding polar angle maps (subject LH).

elds should not be disrupted by incoherent direction information that doesnot fall
inside their receptive elds. On the other hand, direction selectiwe cellswith large
receptive elds will respond lessto incoherert motion signals. Interestingly, recep-
tive eld sizewasshown to be smallestin V1 ascomparedto other extrastriate areas
[203.

Further away from the occipital pole, we also systematically found a stronger re-
sponseto coheren motion than ic ker (COH-FLI) in regionslocated both dorsally
andvertrally. Basedon retinotopic angularmapsalsoacquiredin the samesubjects,
the dorsal locations seemto correspnd to V3A-V3B and even more dorsal corti-
cal regionswhich could include V7 [177, while the vertral activations is extends
to vertral regionsbeyond putative hV4. Figure 5.31 shows these activated areas
and the correspnding polar angle maps obsened on the in ated hemisphereof a
represemativ e subject.
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5.2.5 Conclusion

Basedon an analysisof the experimerts described in the literature, we testeddi er-
ent stimulus patterns and cortrasts betweenconditions to decidethe most reliable
procedureto identify the hMT+ complex. We nally decidedto usea random dot
pattern and a cortrast betweencoheren motion and a static condition which sys-
tematically led to highly signi cant and reproducible activations at the expected
cortical location.

Our data also opened di erent perspectives. First and foremost, the systematic
inclusion of the COH-FLI activation within the COH-STA activation suggestsa
possiblefunctional subdivision of the hMT+ complex. This assumptionshould be
con rmed with complemenary criteria such asprecisevisual eld mapping or stud-
ies of anatomical connectivity. Addressingtheseissuesis of particular interest to
study the possiblehomologieswith non-human primates and better characterizevi-
sual motion processingtaking placein this cortical region[163 195. Secondly we
found distinct activation pro les in the occipital cortex when comparing coheren
or incoherert motion with a stationary stimulation, consiste with previousreports
of similar subdivisions [209 14]. This characterization of motion responsive regions
needsto be further investigated, for instance with a more cortinuous variation of
the motion stimulus coherenceand performing complemerary parametric measure-
mernts of functional selectivity asshowvn in the next chapter.

*kk

We descrikedin this chapter two techniquesdeweloped to accuratelyidentify various
visual areasin any subject within 30 minutes of functional scans. The next two
chapters build on these individual mapping to further characterize the low-level
visual cortex, rst functionally by revealingdistinct direction selectivity and second
structurally by studying the anatomical connectivity amongthem.
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Chapter 6

fMR-adaptation of direction
selectivit y
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6.1 Intro duction

6.1.1 Problem statement

The low-level visual cortex has been extensiwely studied using invasive techniques
in non-human primates. In ead area, functional selectivity was characterizedwith
respect to various stimulus dimensionssud as orientation or direction. Especially,
the tuning bandwidths of visual motion direction selective neuronsare known to
be area speci ¢ in monkeys, as shovn in various electrophysiological and imaging
studies(e.g. [15], 52]). A similar knowledgeis missingin humans.

The major goal of our study is to estimate the motion direction selectivity of di er-
ert human visual areaswith fMRI. A classicalsubtraction paradigm, comparingthe
BOLD signalsrecordedin responseto di erent stimulation conditions, is not su -
ciert to assesseuronalselectivity to a particular stimulus dimensionsud asmaotion
direction. Indeed, a single fMRI voxel contains seeral neuronal sub-populations,
with a priori the sameproportions of neuronspreferertially tuned for any direction.
The BOLD signals elicited by two di erent directions would therefore be equal,
leading to a null cortrast betweenboth stimulation conditions. Fortunately, a fun-
damertal property of neurons,neural adaptation, can be usedin fMRI asa tool for
inferring neural sensitivities.

6.1.2 fMR-adaptation:  principle and previous work

The ring rate of a stimulated neuron decreasesvhen the samestimulation is re-
peatedly preserted: this is neural adaptation. Figure 6.1 illustrates this property in
a typical neuronfound in macaqueMT.

This generalfeature can also be obsened using fMRI, in which a sustained pre-
sertation of the samestimulus leadsto a decreaseof the BOLD signal. The fMR-
adaptation paradigm takesadvantage of this property to allow inferencesabout the
functional selectivity of neuronal populations within a voxel [90]. The basicideais
to proceedin two steps. First, the neural population is adapted using a repeated
presertation of a single stimulus, leadingto a signi cant reduction of the fMRI sig-
nal. Seconda given stimulation parameter(e.g. the direction of motion) is changed
and two situations can appear: either the signalremainsat the sameadaptedlevel,
suggestingthe neuronalinvarianceto the stimulation change;or the signal recovers
a higher level, suggestingthe neuronssensitivity to the stimulus feature varied.
We review here somework that have usedfMR-adaptation paradigm in human or
macaquestudies, with an emphasison the experimertal designsemployed. Table
6.1 summarizesthis overview. We distinguish 2 main subsetsof fMR-adaptation
paradigm: block and eert-related.

The fMR-adaptation block designwas rst introducedin [89 to study the visual per-
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Figure 6.1: Neural adaptation of a typical macaqueMT neuron. The upper part shows the
neuron responseto 256 repetitions of the samestimulus. The histogram givesthe mean
over the di erent repetitions. Below is showvn the stimulation time course. From [178].

ception of objects and facesunder various presertation conditions. Within a block,
a successiorof n stimuli (e.g. imagesof objects) either identical or di erent with
respect to a given feature of interest (e.g. the object size)is preserted. The degree
of dissimilarity betweenthe n stimuli is varied acrossthe blocks, from the block with
a single stimulus presened repeatedly to the block containing n di erent stimuli.
The analysisthen consistsin comparingthe meanfMRI signal over the block types.
The typical prediction is a lowest meansignal in the identical blocks and a highest
meansignal in the all di erent blocks. The block designadaptation paradigm was
applied to investigate the presenceof pattern-motion cellsin hMT+ [114 or the
cortical specialization for inanimate objects and placesin the visual cortex [65]. A
similar paradigm to that of Grill-Spector and colleaguesvas recerily usedby [184
to comparehuman'’s and macaque'sobject adaptation in shape-sensiti\e regions.
Even-related fMR-adaptation is more widely used, mainly becauseit is faster and
allows an estimation of the hemadynamic responsefunction shape. In this paradigm,
atrial is generallya pair of stimuli separatedby a blank. Both stimuli in a trial are
either identical or distinct regarding a feature under study. The stimuli presena-
tion duration and the Inter-Stimulus-Interval (also calledthe blank period) between
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them are variable acrossstudies but are generally on the order of a few hundreds
millisecondseadt. The BOLD responseto ead trial type (either similar or di er-
ernt paired stimulations) are then comparedto assesghe in uence of a stimulation
variation in a given cortical region. This paradigm was applied in various studiesto
characterizeobject priming sensitive regions[18], object shape processing124, ori-
enation selectivity [13], attentional processe$154, faceperception[59], numerosity
[173, form analysis[12].

A few ewvert-related fMR-adaptation experimerts were conducteddi erently, reveal-
ing di erent assumptionsand interpretation of the underlying neural processesin a
study often misleadingly referredto as a block designfMR-adaptation experimert,
Tootell and colleaguesnvestigatedorientation selectivity in human V1 [217. They
presetted black and white gratings with similar orientations within ead 40 seconds
block and measuredthe signal increaseoccurring at ead block transition. Rather
this experimert can be consideredas even-related since the signal of interest is
mainly the transients betweentwo blocks.

To prevent possiblestrategy changeswhenthe subject becomesaware of the repeti-
tion paradigm, Naccatie and Dehaenesuggestedhe useof subliminal presenation
ofthe rst stimulus and demonstratedits e ciency in anumberrepresemation study

[155.

Reference Purp ose Design
Buchner et al. 98 [18] Orientation priming E-R
Tootell et al. 98 [217] V1 orientation selectivity E-R

Grill-Sp ector et al. 99 [89] || Object/F aceprocessingin LOC | Block
Kourtzi et al. 00 [126] Object shape E-R

processingin LOC

Huk et al. 01[113] Direction selectivity E-R
Huk et al. 02 [114] Pattern motion in hMT+ Block
Boynton et al. 03 [13] Orientation selectivity E-R
Murray et al. 04 [154] Attention in LOC E-R
Eger et al. 04 [59] Invariant face perception E-R
Piazzaet al. 04 [173] Numerosity E-R
Ewbank et al. 05 [65] Object and placesselectivity Block
Kourtzi et al. 05[125 Form analysis E-R
Savamura et al. 05 [184] Shape processing Block

Table 6.1: Overview of the human fMR-adaptation literature. E-R:=event-related.
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6.1.3 Direction selectivit y and fMR-adaptation

Single-unit electrophysiology experimernts of short-term motion adaptation in
macaquearea MT have showvn that the tuning of the adaptation is similar to the
tuning of the neuronto direction [179 17§. fMR-adaptation data on visual motion
tuning would therefore help de ne more accurately the functional properties of dif-
ferert visual areas.

Our study complemetrs a recert work which investigated direction selectivity de-
ned as the imbalance between opposite directions of motion ([113). The new
aspectsintroducedin our work are the following: we usean ewen-related paradigm
to allow more than two opposite directions to be preseried within a run, so that
estimatesof direction tuning and proportions of functional population types with
respect to this feature can be assessedWe also addressthe attentional issueraised
by Huk and colleaguesin a di erent way. To cortrol attention, Huk et al. used
a speed-discriminationtask which requires highly-trained obseners who also have
to perform extensiwe pilot experimens outside the scanner. This stringent cortrol
is necessarypecausetheseauthors have shavn that the increasedactivity obsened
during a Motion After-E ect or MAE (e.g. [219) arisesbecauseof attention to this
after-e ect. This is actually a concernwhenusingblock designswheretest durations
are long enoughto elicit an MAE. We anticipated howeer that this problem would
be highly minimized by using an event-related paradigm with short test durations
which do not elicit MAEs. We therefore simpli ed the attentional cortrol task to
allow the inclusionin our study of non psycophysically-trained obseners.

6.2 Experimental procedure

6.2.1 Subjects

Four subjects (1 female,age 28-40years)with normal or corrected-to-normalvisual
acuity participated in the study.

6.2.2 MRI data acquisition.

Subjects participated in two separatel hour long scanningsessionsoneto idertify
the retinotopic areasand hMT+, the other to measuremotion direction adapta-
tion. A scanningsessionstarted with a fast low-resolution anatomical localizer to
appropriately setthe subsequenfunctional scanssliceslocation, followed by 8 func-
tional scansand endedwith a T1-weighted imageacquisition. Thesehigh resolution
anatomical scanswere usedas referencedo coregisterthe di erent sessions.
During ead functional scan,151Echo Planar Imageswere acquired over 5Smnl19sec
using our coronal sequencgseeparagraph 2.4.4). Ead functional image spans20
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coronalslices3mm thick and 2x2mn? in planeresolution, appraximately orthogonal
to the calcarine sulcuscovering the occipital retinotopic areasand extending ven-
trally to hMT+. The rst v eimages(10.555secsyvere systematically discardedto
avoid magnetic saturation e ects. The following 144 imagescorrespnd to the vi-
sual stimulus per se. The last two imagesweretakento allow slice-timing correction
preprocessing.

6.2.3 Visual stim uli.

Stimuli weregeneratedunder Matlab 6.1 usingthe ImageProcessingToolbox (Mat-

lab, The Mathworks), providing an avi le with eighteen 300x300pixels framesper
secondand lasting 5mn04sec.The stimulation was preserted through our classical
setup, leadingto a display subtendinga visual angleof 20.9 x20.9 . The stimuli are
all preserted within a circular aperture of 19.5 in diameter. During the rst 5 and
last 2 scans,a mid grey-level image with the 0.5 red xation crosswas shown to

the subjects.

6.2.4 Dening the visual areas.
Occipital areas

Low-level retinotopic areaswere identied and delineated using the method de-
scribed in the previous chapter. V2v and V2d (respectively V3v and V3d) were
mergedas one area V2 (respectively V3). Lacking the eccerricity mapsto accu-
rately separateV3A from V3B [202 177, we consideredthe most medial hemi eld
represemation that abuts the dorsal border of V3d, consideringit as V3A.

hMT+

The human mid-temporal complex, hMT+, was revealed with the block design
method detailed in the previous chapter. The clusters were found either with the
COH-FLI cortrast or with the COH-STA cortrast and werealways within or closeto
the inferior temporal sulcus(cf.[56]). As already noticedin our preliminary mapping
experimerts, the (COH-FLI) contrast gave systematically a smaller cluster always
included in the (COH-STA) cluster. We also consideredthe cluster de ned by the
(COH-FLI) cortrast asthe hMT+ ROI in our adaptation data analysis.

6.2.5 The adaptation stim ulus.

We useda bladk and white random dots pattern (RDP) on a mid-grey badkground
with a 10.28dots.deg 2 density, which was similar to the hMT+ localizer stimulus
except for the corntrast. In [211]], adaptation was indeed reducedfor large visual
stimuli while using a high cortrast as comparedto a low cortrast. We therefore
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Figure 6.2: Stimulation designdiagram in the adaptation experiment. After a 25.33sec
adaptation epoch (direction chosenfor eat run betweenrightward -asin the gure-, left-

ward, downward or upward), 42 test trials lasting 780msead were preseried in a pseudo
random-fashion. A test trial consistedin either no changein the motion direction ( ¢ con-
dition) or a motion direction change of 45 or 180 degrees(The 45 and 139 conditions
respectively). The Inter-Trials Intervals (ITl) betweentwo test trials consistedin a return

to the adaptation direction or top-up adaptation. The duration of ead ITI was drawn

from a truncated gamma distribution, mean 5sec,sigma 1sec,min 4sec,max 8sec. The

random dot pattern was systematically redrawn at ead condition transition, i.e. at eath

test trial onset and ead top-up adaptation onset. Subjects made a size discrimination

task at the xation cross.
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reducedthe cortrast to 20%, still certered around the mid-grey level. In eat con-
dition, the RDP drifted coherenly at 7.53deg.s . The time courseof the stimulus
started with a 12 RT (25.33sechdaptationepoch in the randomly chosenadaptation
direction (either left, down, right or up, xed for the whole run but randomly
changedacrossruns to avoid any directionality bias), followed by 42 test trials of
780mswherethe direction of motion was changedby an angledelta with respect to

the adaptation direction ( X = 0, 450r 180)(see gure 6.2). A run thus cortained
14 test trials for eat delta value tested; the trials were presened in a pseudo
random fashion to equalizethe trials apparition order (two successig trials with

identical delta valueswere not allowed). Note that the 45 test condition evenly
led to a clockwise (+45 degrees)r counterclockwise( 45 degreesdirection change
with respect to the adaptation direction. Betweentwo test trials, the Inter-Trial

Intervals (ITI) consistedof a top-up adaptation in which the dots shifted bad to the
adaptation direction. The ITI distribution follows a gammalaw (5 ;1) truncated
for valuesoutside [4sec,8sec] This top-up adaptation allowed to keepthe adapta-
tion state relatively constart along the run. Note that we did not add any blank
betweenthe trials and the top-up adaptation ITI, in cortrast to other event-related
adaptation paradigms. Nonethelessthe random dot pattern was redrawn at eadh
condition transition, namely at ead test evert onsetand ead top-up adaptation
onset. This resetting led to a brief visual transiert that could resultin a non-sgeci c

alerting e ect (seethe discussiorbelow). Note that a similar stimulation wasusedat
the sametime in arecenly publishedstudy investigating orientation selectivity [66].

6.2.6 Atten tional measuremen ts.

To cortrol subject's attention, a simple attentional task was performedduring eadh
functional scan(localizer and adaptation sessions).Subjects wereinstructed to x-

ate a certral red cross(0.5) and to click when the crosssize increasedto 0.77

during 167msec. Concerningthe localizers, attentional events followed a uniform
distribution between2 and 6 sec,mainly usedto help and ched&k xation. For the
adaptation experimert, wherethe attention is far more crucial for the results inter-
pretation, attentional everts were systematically placedwithin a test trial and also
during the adaptation block starting ead run and the inter-trial adaptation periods,
globally following a uniform distribution between?2 and 6 secs. More importantly,
we stressedthat this attentional task was always irrelevant with the random dots
pattern motion, either during the adaptation epoch, the inter-trial top-up adapta-
tion or the test trials. This attentional task could not in uence the motion direction
perception,nor shouldit have modi ed dramatically the tuning propertiesof motion
direction sensitive neurons(seeDiscussion). Resmpnsesvereanalyzedo -line. Over
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all the adaptation sessionsye obsened a meanhit rate of 81.91%correct (ranging
from 60.61%to 97.53%correctacrosssubjects and runs), thusreliably above chance.
No signi cant di erences were found acrossthe analyzedsubjects (respective mean
acrossruns of 76.99%,84.12%and 83.99%).

6.3 fMRI data analysis.

6.3.1 Visual areas identication experiment

The functional imagesfor the retinotopic and hMT+ mapping were rst realigned
with the INRIAlign toolbox and coregisteredwith the anatomicalimagewith SPM2,
then smoothed through a method taking into accourt the cortical geometry with a
3mm equivalert Gaussian lter FWHM. A high-passand a low-pass Itering were
alsoperformedon the time-coursedo respectively remove low-frequencysignaldrifts
and high frequencynoise. Finally, subsetsof connectedvoxels were extracted for
ead areaand further usedas ROIs for the adaptation experimert (seeparagraph
6.2.4).

6.3.2 Adaptation experiment

The datasetswere slice-timing corrected, realignedusing the SPM INRIAlign tool-
box and coregisteredwith the referenceanatomical scan. No spatial smoothing was
applied. Datasetswere then analyzedindependerly for eaty ROl using the HRF
approad detailed in paragraph 4.2.4. We usedthe region-basedHRF estimation
method that considersead ROI asfunctionally homogeneousnd then usesall the
available time serieswithin the ROI to characterizethe shape of the HRF for eat
trial type. A preliminary outlier detection step can be usedto remove outlier vox-
els. The underlying model is non-parametricin the sensethat no prior shape of the
HRF is assumedn advance,and this technique providesrobust HRF estimatessince
smaothnessconstrairts are introducedwithin the Bayesianframework (for more de-
tails, see[35, 34, 147]). Importantly, the subtle though statistically signi cant e ects
we obsened using this appropriate analysisframework weretotally absernn whenwe
processedur data through a classicalGeneralLinear Model analysis.

To comparethe results acrossthe di erent conditions and ROIs considered,we de-
ned an adaptation rebound index as the following ratio:

_ hrf( x) hrf( v)
hrf( o) hrf(Adapted

X Y where (X;Y) 2 (180 0); (45;0); (180G, 45)g

hrf ( x) is the estimated HRF mean computed as the mean signal at three time
points certered at the peak of the estimated HRF (mostly obsenedatt' 6seq for
x (X =0, 45 or 180) test trials. In other words, if the HRF pick was obsened
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att=to, thenhrf( x) = (hrf( x)(to 1)+ hrf( x)(to) + hrf( x)(to+ 1))=3.
The Adapted responsewas taken asthe HRF meanestimated during the last 10sec
of the 25secadaptation epoch starting ead run, i.e. whenthe signalwas maximally
adapted. The numerator of Iy y is the dierence in the resppnsemeansto two
trial types( x and vy). The denominatoris the di erence betweenthe estimated
responsemeanfor g trials and the estimatedadaptedsignalbaseline thereforerep-
reserning the subject and ROI speci ¢ responsitivity. This normalization minimizes
possibledi erencesin the BOLD responsegain due to any confoundirrelevant with
the motion direction changessud as the stimulus transient occurring at ead test
trial onset. Provided the denominatoris positive, which was systematicallythe case
in our data, we have:
-lx o (X 2 45 ,18Qy)) approximately equalto zeroindicatesthat no non-adapted
neuronsrespondedto the direction change,whereasa high value indicates the re-
cruitment of an important proportion of non-adaptedneurons
- 1180 45 @pproximatively equalto zeroindicatesno di erencesin the BOLD signals
elicitedby 1g0and 45 trials, suggestingdentical cellsproportion recruited by both
direction changes,whereashigh value indicates a strong di erence in both elicited
signals, suggestinga di erence in the proportion of non-adaptedcells recruited by
both direction conditions. We assumethat this di erence is directly related to the
population of broadly tuned neurons,sincea similar proportion of narrowly tuned
neurons,though with distinct preferreddirection, is involvedin the g9 andin the
45 trials.
We therefore consideredthe following indices: (A) |10 o, I.€. cOmparing ;g With
0, (B) l4s o, i.e. comparing 45 with ¢ and (C) l1g0 45, .. comparing 1go
with 4. We assumethat these comparisonsare related respectively to (A) the
global population of direction selectiwe cells, irrespective of their directional tuning
bandwidth, (B) a population of relatively narrowly-tuned cells which have a di er-
ertial responseto a 45 degreechangein motion direction and (C) a population of
relatively broadly-tuned cellswhich have a large di erential responseto a direction
changeof 180degreebut a small (or inexistert) di erential responseto a 45 degree
change. Consequetly, the ratios 'Ilf:o 45’ and I'l“; 00 respectively give a rough estimate
of the proportion of broad-bandand narrow-band cellswithin the motion direction
selective population of eat area.

6.4 Results

Out of four subjects scanned,three were kept in our nal analysisas one was dis-
carded becauseof important head motion (>3mm). We analyzedthe time course
of the BOLD signal during the motion adaptation stimulation separatelyin eadh
retinotopically or functionally de ned ROI.
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6.4.1 BOLD signal adaptation

Eadh run started with a rst 25.33s(12 TR) adaptation epoch, wheredots all move
coherenly in the randomly chosenadaptation direction. This stimulation led to the
expected signal decreasan every subject and areaconsidered,supposedto be cor-
related with neuronaladaptation. Figure 6.3 illustrates the meansignal decreasen
areahMT+ of subject S1during the adaptation epoch. Similar result were system-
atically obsened, though with various degreesjn eat areaand subject considered.

Figure 6.3: Time courseof the adaptation epoch (subject LQ) and tted exponertial decay.
The grey period correspondsto the adaptation epoch, in which the samemotion direction
is cortinuously preseried. The black curve shows the averagedtime coursefrom hMT+
voxels and over 8 scansacquired within the samesession.The red curve is an exponertial
t of the adaptation time course.

6.4.2 Direction selectivit y

Following the adaptation block, the runs consistedof sewral test trials in which
the direction of motion was changedwith respect to the adaptation direction for a
duration of 780ms. The angle di erence between adaptation and test direction is
noted x, and we tested the valuesO (direction unchanged), 45 and 180 (opposite
directions) degrees. According to the adaptation paradigm, two situations can
appear at any voxel during a test trial:

(1) every neuronin the voxel is insensitive to the motion direction change,therefore
the voxel meanBOLD signal remainsadapted,

or

(2) a sub-population of neuronsin the voxel is sensitive to the motion direction
change,the responsesof which induce a BOLD signalincrease(or rebound).
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We also predict that the HRF rebound will increasewith the x value. In-
deed, if a rebound occurs for 45 trials, this suggeststhe presenceof narrowly
tuned neuronswith preferred direction certered around the 45 degreesdirection
relatively to the adaptation direction. On the other hand, possiblebroadly tuned
neuronscertered at the relative 45 degreedirection should remain adapted, since
the direction dierence between the adaptation and 45 degreetest trial does
not impact signi cantly their responsivity. In the caseof g9 trials, a similar
proportion of narrowly tuned neuronsasin the 45 condition should alsorespond,
speci cally the narrowly tuned neuronswith preferred direction certered around
the relative 180 degreesdirection. Additionally, the population of broadly tuned
neuronscertered around the relative 180 degreescondition that were not adapted
by the adaptation direction will also be activated by the relative 180 direction,
leading to an additional BOLD signal increase. Hence, the rebound obsened for

180 trials should be superior (or at leastof equalvalue if no broadly tuned neurons
are involved) asthat of the 45 trials.

We computed the responsesto eatcr x value we tested through the HRF-
toolbox over all ROIs and all runs (seefMRI data analysis). Figure 6.4 shows the
estimated hemadynamic responsefunction (HRF) of ead identied areasfor one
represemativ e subject (LQ).

First of all, the estimated curves are always ordered as expected, shoving higher

reboundswith increasingdi erence betweenthe adapting and the test directions. In
other words, aswe predicted, the bigger x is, the largerthe BOLD signal rebound
should be as more neuronsrespond to the stimulus changes. Every functionally
de ned area studied shawved this ordered rebound e ect, although with varying
degrees.
To further precisethis obsenation, statistical T-test p-values shown in table 6.2
provide evidencefor (1) the signi cance in the activation for ead estimated curve,
i.e. a di erence betweenthe latter and a null vector signal ( rst 3 columns)and (2)
a statistical di erence in the estimated signalsbetweentwo test conditions (last 3
columns). The statistical testsare performedon the subsetof 4 time points between
2 and 9 sec,thus certered around the maximum of the responsetypically found at
the fourth time point (t=6.333sec) and take into accourn the relative variancesat
eadt estimated time point. The di erences betweenead pair of estimated curves
were signi cant (p<0.0015) for all 3 subjects in areashMT+, V1 and V2 and
relatively less consensualfor areasV3 (though p<10 4 for 2 subjects) and V3A
(p<0.0075for 2 subjects). VA4v curves were statistically not di erent from one
another (p>0.3) for 2 subjects, revealing a lessrobust signalthan that found in the
other visual areas.
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hMT+ V1
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V2 V3
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time (s) time (s)

Figure 6.4: Typical BOLD signaltime coursesfor ead condition and areaestimated using
the HRF toolbox (subject LQ). BOLD signalsincreasedwith increasingangular di erence
betweenadaptation and test direction (  value), suggestingsub-populations recruitment
elicited by the direction change. Error bars correspnd to 1 SEM acrossrepeated trials
and voxelsin ead ROI.

6.4.3 Quantitativ e comparisons between areas

To further quartitativ ely characterizethe motion direction selectivity, we computed
a normalized adaptation rebound index (seeparagraph 6.3). The latter allows to
perform comparisonsn the BOLD signal responseselicited by changesin the direc-
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Area H 0 ‘ 45 ‘ 180 H 45 0 180 0 180 45

HR

hMT+ || <104 |<104|<104| <104 <104 <10 4
\Val <104 <104 |<104| 0.0001 <10 4 <10 4
V2 <104|<10%4|<104| <104 <104 <10 4

V3 0.3614 | 0.0028 | < 10 4 0.8518 0.2893 <104
V3A 0.2810 | 0.0089 | 0.0004 || 0.6494 0.1614 0.0010

V4v || 0.0450 | 0.2223 | 0.0518 | 0.4002 0.3782 0.3009

GM

hMT+ | 0.0209 | 0.0009 | 0.0003 | 0.0012 <10 4 <10 4
V1 <104|<104|<104| <104 <104 <104
V2 <104|<10 4| 0.0093| <104 <104 0.0001
V3 <10 4| <10 4| 0.0001| <10 * <104 <10 4
V3A | 0.0015|<10“4|<10“| <10* 0.0013 <104
Vv | <104|<104|<10%| <104 <104 <104

GG

hMT+ || 0.0005| 0.0011| < 10 4| 0.0015 <10 4 <104
V1 <104|<104|<104| <104 0.0003 <104
V2 <104 |<10%4|<104| <10* <104 <104
V3 <104|<104|<104| <104 <104 <104
V3A | 0.0037 | 0.0050 | 0.0064 | 0.0075 0.0062 0.0021
V4v | 0.5761 | 0.4312 | 0.0010 | 0.8939 0.9753 0.9986

Table 6.2: Statistical signi cance (T-tests) for ead estimated BOLD responsesand their
di erences by pair. The rst 3 columns shawv the p-valuesfor ead estimated responseto
be di erent from zero, the last 3 represen the p-valuesregarding the di erences between
the estimated responses.

tion of motion acrossvisual areas. Figure 6.5 shavsthe meanover the three subjects
of the indiceswhen considering(A) |10 o, .. cOomparing 150 With o, (B) l45 o,

l.e. comparing 45 with ¢ and (C) 150 45, i.6. comparing 150 With 4. We
recall that theseindicesare related respectively to (see6.3):

(A) the global population of direction selectiwe cells, irrespective of their directional
tuning bandwidth,

(B) a population of relatively narrowly-tuned cellswhich have a di erential response
to a 45 degreechangein motion direction

(C) a population of relatively broadly-tuned cellswhich have a large di erential re-
sponseto a direction change of 180 degreebut a small (or inexistert) di erential

responseto a 45 degreechange.

Furthermore, the ratios 'llf:o - and ||f§; * respectively give a rough estimate of the
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A) li1go o B) l45 o

C) l1go 45

Figure 6.5: Direction selectivity indicesaveragedacross3 subjects for ead visual area. (A)
represetts the 1159 ¢ mean, which quarnti es the normalized di erence between 1g9 and

o estimated BOLD responses presumably proportionally related to the global population
of direction selective cells; (B) represens | 45 ¢ related to narrowly tuned direction selective
neurons;(C) represetts | 130 s, related to broadly tuned direction selective neurons. Error
bars correspond to 1 SEM acrosssubjects.

proportion of broad-bandand narrow-bandcellswithin the motion direction selectie
population of ead area. The estimated sub-population proportions are presened in
gure 6.6.

As shown in gure 6.5, hMT+ clearly appears as the most direction selectie
area, having the highest values for ead index computed, speci cally 0.85 for op-
posite directions (I 150 o), 0.55for a smaller angular di erence (45 o) and 0.30for
rather high angular di erence (i.e. strictly over 45 degree)(l1gp 45). Our result
clearly con rms the important proportion of direction selective neuronsin this re-
gion of the human cortex. We can further derive an estimated proportion of 35%
(0.30/0.85) of broadly-tuned versus65% of narrowly-tuned neuronswithin the mo-
tion direction selective population in hMT+. V3A showsthe secondmostimportant
di erence betweenthe estimatedresponsesfor 150 and o (I180 o = 0:6077),also
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suggestinga relatively important proportion of direction selectiwe cells. The esti-
mated proportion of broadly-tuned neuronsis 45.4%(0.2756/0.6077)versus54.6%
(0.3321/0.6077)for narrowly-tuned neuronsin V3A. V1 alsoshows signi cativ e pos-
itiv e valuesfor our three indices,implying the presenceof direction selective neurons
as well. Howewer, the index |1g9 45, Standing for the di erence between 15, and

45, 1S surprisingly high with respectto |1g9 o With respective valuesof 0.1973and
0.3508,suggestingan unlikely important broadly-tuned cells proportion of 56.2%.
This result is discussedelow in the discussion.The |15 ¢ valuesof areasV3, V4v
and V2, though lower, also suggestthe presenceof motion direction selectie cells
but with various sub-population proportions. More speci cally, V3 indices suggest
a rather equal proportion of narrow and broad neurons(0.1307/0.2655=49.2%and
0.1348/0.2655=50.8%respectively) while V4v direction selective population seems
to be more predominartly broadwith an estimatedproportion of broadly tuned cells
0f 62.2%(0.1258/0.2021).Note that the HRF estimationsfor ¢and 45 hadimpor-
tant variancesin areaV4v, leadingto lessreliable index valuesand sub-population
proportion estimations. This lack of robustnesswas also mertioned in the macaque
monkey fMRI study of [214. Nonethelessthe 59 estimated responseis signi -
cartly positivein the 3 subjects (p=.0518, p< le-4and p=0.001 respectively), clearly
arguing for direction selectivity in V4v. Finally, V2 shows the smallestl ;59 ¢ and
l 180 45 index values, suggestinga lower proportion of motion selective cellsin this
arearelative to the other areasconsidered.

6.4.4 Responsesto stimulus transien t

At ead transition betweenadaptation and test direction, the random dot pattern
was reset, leading to a brief noticeable transient. Consideringthe ( estimated
BOLD responseallows to assesshe sensitivity of ead areato sud a transiert only,
as ewery other stimulus parameter (especially the direction of motion) remained
constart. The rst column of table 6.2. shaws the p-value of the T-test comparing
the ( estimatedresponseand the null vector. We found highly signi cant p-values
(< 10e 4) for areasV1 and V2 in the three subjects. The sameobsenation also
holdsin V3 and hMT+, but on two subjects respectively, whereasit is lessclearin
V3A and V4v that the estimatedresponseto a stimulus transient statistically di ers
from zero. Theseresults reveal the di erences of responseto a stimulus transien
in the above areas, suggestinga veridical represemation of the retinal stimulus in
V1, V2 and a cruder represemation in higher level areassud asV3A and V4v [13.
Note that thesedi erences support the way we de ned our index to quartitativ ely
comparethe areassensitivity to motion direction changes.
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Figure 6.6: Estimated proportions of motion direction selective sub-populations computed
from indicesratios. Error bars correspond to 1 SEM acrosssubjects.

6.5 Discussion

6.5.1 Motion direction selectivit y

Our study extendsthe work of [113. RegardinghMT+ and V3A, we replicated
their results when comparing opposite test direction with respect to adaptation
direction (our 19 condition). But we further added a test condition to a lower
angular di erence of 45 degrees(our 45 condition), a precise BOLD response
estimation for ead test direction and area consideredand statistically relevant
comparisonsbetween them, therefore providing a rmer characterization of the
motion direction selectivity.

hMT+, directly followed by V3A, are the two areasshowing highestindices about
their direction selectivity. This general result about the involvemert of hMT+

and V3A in motion direction processingis consistem with various reports in the
neuroimagingliterature [257, 219 224 202 41], see[44] for a review. V3 is also
characterized by a signi cant, though at least twice smaller than in hMT+ and
V3A, direction selectivity. Theseresults support the di erence for areasV3 and
V3A betweenhumansand macaques.as mertioned for instancein [234 161, 224.
In macaque,V3 is moderately motion and direction selectiwe, but V3A is not. In
humans, howeer, this relationship is reversed: V3A is much more motion selective
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than V3. We found the same characterization in the presenn fMR-adaptation
experimert. V2, though direction selective, appears last in our motion direction
selectivity hierarchy with the wealkest valuesfor our three indices; this result is in
line with Huk and colleaguesstudy whereV2 appearslast with V1.

In V1 and V4v howeer, our resultsdi er from thosefrom Huk and colleagues.On
the onehand, relative to other areas,V4v is weakly direction sensitive in our study,
whereasit standsright after V3A in Huk et al. (their gure 4D, p.167). We have
stressedabove that our V4v datasetswere not as robust asin the other areasbut
alsonote that the proportion of direction selectiwe cellsshould not be that di erent
than in V1 according to single cell studies, namely about 25% ([186, 162 93
estimations are 35%, 27% and 23% respectively). Note also that human area V4
de nition is still subject to cortroversy [222 254 15|, which might explain the
di erences obsened betweenboth studies.

Regardingour V1 results, the estimated proportion of broad-band cellsis at least
as large as the estimated proportion of narrow band cells, which standsin cortra-
diction with single cells studies. A possibleexplanation to this mismatd could be
that proposedby Tolias and colleagueswho faced the same inconsistencywhen
comparing their macaque fMR-adaptation estimations with electro-physiological
data. To explain this discrepancy they rst hypothesizedin [214 that V1 and V4
direction selectivity could be increaseddue to feedba& from higher areassud as
MT, leading normally non-selectie neuronsto acquire direction selectivity after
adaptation. They very recenly publishedin [213 results from an electrophysiology
study that clearly demonstratedthis hypothesisin macaqueV4, shaving classically
nondirectional V4 neurons that deweloped direction selectivity after adaptation.
We suggestthat this high indiceswe obsened in V1, aswell asthe high estimated
proportion of broad cells in V1 could result from a modulation of selectivity
inherited from adapted neuronsin higher areas.

Furthermore, it wasrecerily shaowvn in [124], which presens a macaqueMT electro-
physiology study, that adaptation could changethe direction tuning of neurons,at
least for sub-populations with preferreddirection closeto the adaptation direction.
Similarly, considering object processingin the macaque Infero-Temporal (IT)

cortex, Savamura and colleagueqd183 demonstrateda di erence betweenstimulus
selectivity of neuronal adaptation and stimulus selectivity of the neuron.

Taking into accoun these results from electroplysiological studies, the direction
tuning we can infer from our BOLD signal rebound estimations might not be
quartitativ ely linked to actual direction tuning curves of underlying neuronal
populations in classical(i.e. non adapted) conditions. We nonethelessclaim to
show a reliable hierarchy of low-level visual areas, mostly in agreemenh with the
literature. Our study extendsthe results of Huk and colleaguesand allows us to
give a more precise motion direction selectivity hierarchy with hMT+ and V3A
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ahead,followed by V1 then V3, V4v and nally V2.

6.5.2 Macaque/h uman homologies in V1 and MT

We note that our | 159 o index valuesshavn in gure 6.5and the directionality index
valuesfrom [214 are strikingly comparablein humansand macaquesareasMT and
V1 respectively. Even if both indices are calculated in a di erent manner, they
are both meart to quantify the BOLD signal rebound when presening opposite
adaptation and test directions. We found 0.85in hMT+ comparedto their 0.84
in macaqueMT, and 0.35in V1 comparedto their 0.33 in macaqueV1. This
similarity may claim for the functional homology betweenthe two speciesin these
areassystematically found in all primates. This similarity is however not as marked
in the remaining areas(V2: 0.17vs 0.35;V3: 0.26vs 0.37;V3A: 0.61vs 0.42;V4v:
0.20vs 1.0). One of the reasonmight be the specydi erencesin theseareas:various
evidencesndeedsuggestthat V3 and V3A di er functionally betweenmacaqueand
humans[161]; similarly, the homologybetweenhuman V4v region and macaqueV4
is still a subject of cortroversy asrecerily revivedin [15]. Note alsothe important
di erence betweenthe experimerntal procedureusedin both studies: the animals
were anesthetizedin the study of Tolias and colleagues[214, while our human
subjects were awake.

6.5.3 Atten tion, adaptation and direction tuning

The importance of cortrolling attention in fMRI experimerts was clearly demon-
strated in [113, which led them to reconsiderprevious Motion After-E ect (MAE)
studies. The authors further emphasizedhe needto "employ the most similar tasks
possible" acrossblocks or trials. We thereforeimplemerted a rather simple atten-
tional task at the certral xation cross,systematically presen at ead trial but also
betweentrials (top-up adaptation), enabling us to cortrol both the attention and
the xation of the subject. Howewer, in cortrast to Huk et al., our attentional task
was not done on the motion signal itself, which was meart to minimize the atten-
tional e ects ondirection tuning, asshown in [154. The latter study indeedsuggests
that paying attention to a given feature (in their study the orientation of objects)
increasesthe functional selectivity of the neural population involved in processing
for this feature (in their study in the LOC -Lateral Occipital Cortex-, a regionof the
human brain involvedin object shape processing).Our attentional task wasthought
to minimize this selectivity changesasit is not linked with any motion estimation
judgmert.

On the other hand, a rst study [183 on V5/hMT+ further re ned by [19]] in the
retinotopic areashave shown that performing an attentional task at the certral x-
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ation impacts the peripheral visual eld signals,leadingto a signal decreasan the
peripheral visual eld with increasingattentional load. Our task was a low load
task, thus minimizing this e ect and our data nonethelessmostly show statistically
signi cant di erences between the three test conditions. Howewer, how attention
modi es the neuronal signalsand consequetly the BOLD signalis still poorly un-
derstood [12] and is thought to be a combination of enhancemehin the neuronal
response(gain) and a sharpening of the selectivity. We claim that the adaptation
index we computedminimizesthis attentional biasthanks to our normalization used
to getrid of the attentional task e ects (seeparagraph6.3).

Our simple task at the xation crossis therefore a trade-o between attentional
cortrol, certral visual eld xation corrol, neural selectivity changesand BOLD
signal decreasen the peripheral visual eld. We claim that our attentional cortrol
as sud leadsto a minimally biasedcharacterization of post-adaptation motion di-
rection selectivity in di erent low-level visual areas,leadingto a reliable hierarchy
amongthe latter.

6.5.4 fMR-adaptation metho dology

fMR-adaptation is a relatively recert paradigm enabling the measuremen of
functional neuronal populations properties. It is thereforestill necessaryto dewelop
and study the methodological aspects of this tool.

Our study brings another proof of the e ciency of ewen-related adaptation
paradigmsas a tool to examinethe functional selectivity of cortical areasto a spe-
cial feature, herethe direction of visual motion. Most fMR-adaptation studieshave
been performed on high-level processing(objects, face, numbers represetation),
our results conrm that low-level processingissuescan also be tackled with this
paradigm.

In addition, our paradigm is minimally constraining. We do not use surfacecoils
which increasethe installation time of the subject; our attentional task is easily
understood by the subjects and can reliably be performed; only a single, one
hour acquisition sessionper subject is neededfor the adaptation experimert, as
comparedto hours of scanningusually averagedin most adaptation studies. It is
thus a straightforward experimertal setup leading to reliable measuresas proved
by our error bars, which could be an important point for a use of the adaptation
paradigm in a more constrained ervironment sud as clinical. It is crucial to
stressthe cortribution of accurate and unconstrained analysis tools sud as the
HRF toolbox which, combined with imaging technical improvemeris will help in
detecting and characterizing subtle signals while alleviating scanning setup and
durations.

Importantly, we want to addressa typical aspect of fMR-adaptation paradigms
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not discussedin the literature. To our knowledge, every ewerti-related adaptation
paradigm published so far includes a short blank period betweenthe adaptation
and the test stimuli. This appears rather courter-intuitiv e as this blank period
may imply a decreasein the adaptation signal, therefore inducing a bias in the
measuredrebounds. The only justi cation for a blank period could come from
[13] who studied the e ect of the Stimulus Onset Asynchrony on the adaptation
e ect. Howewer, their psycophysical results claim for 2secSOA (their gure 7)
rather than 1.125sedthe smallestthey tested); this result doesnot t with SOA of
lessthan 1 secas mostly found in ewent-related fMR-adaptation studies. Another
possibleexplanation for this blank could be to set a stimulus transiert at the onset
of the test trial in order to increasethe neuronsresponses.We decidedto avoid this
blank period in our paradigm, thus setting the test trials just after the adaptation
stimulation to keepneuronsadaptedall alongthe run exceptduring the test trials.
Doing so, we obtained reliable results leading to conclusionsmostly in line with
previous characterization of direction processingin human low-level visual areas.
We concludethat this blank period was empirical in the rst studiesand remained
in the next ones,without justi cation or discussion,although it actually does not
appear necessaryand is rather courter-intuitiv e.

6.6 Conclusion

Our study has shavn that motion direction selectivity is areaspecic in low-level
visual cortex. We achieved ner measuremets of this particular feature with a min-
imally constraining adaptation paradigm. The global hierarchy amongthe di erent
visual areasputs hMT+ and V3A asthe most direction selectiwe, followed by V1,
V3, V4v and V2. This ordering further supports the classicalVertral-Dorsal classi-
cation. We interestingly found similar direction indicesin V1 and hMT+ asTolias
and colleagueg214 previously shoved in macaqueV1 and MT, which might further
support homologiesin both species. We also found in human V1 and V4 a compa-
rable adaptation induced selectivity e ect recerlly demonstratedin the macaqueby
the samegroup, reviving the notion of context-dependert neuronaltuning. Last but
not least, we have designeda relatively fast and unconstrainedadaptation paradigm
that could inspire further studiesto characterizenormal subjects and patients visual
areasresponsesto various visual features,nonethelesskeepingin mind the modula-
tion of selectivity induced by adaptation and attention.

To con rm the functional segregatiorwe found, future work may imply high resolu-
tion anatomical studiesto identify the local cytoarchitectony underlying ead area.
A mathematical model of neuronal adaptation in the di erent neural populations
and visual areasmay alsohelp to clarify the origin of the BOLD signal rebound ob-
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sened and its possiblelink to directionally tuned sub-populations activity. Finally,
revealing the underlying distributed connectivity network among the above areas

may alsobe achieved using Di usion weighted MRI. We addressthis questionin the
next chapter.
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Chapter 7

Anatomical connectivit y In the
low-lev el visual cortex
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Understanding the relationship betweenanatomical structure and function is a
key objective in neuroscienceln the last decadesneuroimagingadvanceshave been
providing ever more promising meansto non-invasively addressthis fundamertal is-
sue,thus opening the possibility to investigatein vivo normal and patients cerebral
architecture and activity. This is especially true for MRI, which allows to combine
anatomical (structural MRI), functional (functional MRI) and white matter connec-
tivit y (di usion MRI) information at a spatial resolution of a few millimeters. We
showved in chapters5 and 6 how anatomical and functional imagescould be jointly
usedto identify various visual areasand functionally characterizethem. In this
chapter, we proposeto re ne our knowledgeof the human visual cortex by studying
anatomical connectionsusing a recerily deweloped framework to analyze Di usion
Tensorlmages. Using a Riemanian-geometrybasedconnectivity mapping approad,
we rst identi ed the optic radiations connectingthe LGN to areaV1. Wethen stud-
ied interhemisphericconnectivity, estimating the white matter connectivity between
low-level visual areasand the splenium. Finally, we investigated intrahemispheric
connectivity betweenhMT+ and occipital retinotopic areas.

7.1 DTl connectivit y mapping and the human visual brain:
state of the art

In this section,we rst give an overview of the di erent approadesusedto estimate
the anatomical connectivity of the human brain from DTI. We then review their
main applicationsto the human visual cortex.

7.1.1 DTI connectivit y mapping techniques

Di usion Tensorlmaging (DTI) modelsthe probability density function of the three-
dimensionalwater moleculesmotion, at ead voxel of a DT image,by a local Gaus-
sian processwhosecovariance matrix is given by the di usion tensor [8]. Among
other applicationsincluding the characterization of local tissue anisotropy, DTI can
be usedto estimate the anatomical connectivity acrossremote brain regions. Var-
lous approades have been proposedto tackle this problem. They can be divided
into three main classesilocal, stochastic and geometricapproadies.

Local approadies, basedon line propagation techniques, rely on the fact that the
eigervector of the di usion tensor assaiated with the major eigervalue provides a
relatively accurate estimate of the orientation of b er bundlesat eat voxel. These
methods may bere ned to incorporate somenatural constrairts sud asregularity or
local uncertainty and to avoid being stopped in regionsof low anisotropy [153 130.
All thesee orts aim to overcomethe intrinsic ambiguity of di usion tensor data
arising from partial volume e ects at locations of b er merging, kissing or crossing.
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If they can provide relatively accuratemodelsof the main white matter macroscopic
bundles,thesemethods are sensitive to noiseand partial volume e ects and cannot
give a quartitativ e measureto evaluate the degreeof connectivity between brain

locations.

Stochastic tractography algorithms were introducedby modeling the uncertainty of

the local b er orientation [10, 77]. Through uncertainty propagation, they provide

a powerful meansto evaluate the probability of connectionbetweenremote points

of the white matter. However, the intrinsic drawbad of thesemethods is their com-
putational complexity sinceit is necessaryto resortto Markov Chain Monte Carlo

methods or to evaluate probability density functions at enoughlocationsof the space
of interest.

Geometric methods use either Level Set methods [157, 134 114, Fast Marching

methods [169 or iterativ e sweepingtechniques[115 to ewlve a front on the basisof

the di usion tensordirectional information. Although morenaturally ableto exploit

the whole tensor information in the connectivity estimation, these approadesare

usually proneto interpolation errorsat the boundary of the ewlution domain, which

may lead to erroneousconnectionsin highly convoluted areas. Besides,this class
of methods su ers from a high computational complexity like the stochastic algo-

rithms. Finally, most implemertations work directly on the whole DT image,which

canleadto anatomically impossibleconnectionsacrossnon white matter tissue.

7.1.2 Human visual cortex connectivit y: previous work

DTI basedconnectivity mapping of the human visual cortex has been adressed
by various groupswith di erent protocols and methods. Using a classicalstream-
line tractography with smaooth interpolation of the tensor eld [153, [40] could
reconstruct various bundles including visual pathway b ers. They shoved b ers
passingthrough the splenium, with a speci c topology: anterior splenium b ers
headto the parietal lobe while dorsal splenium b ers progresstoward the occipital
cortex. Howeer, although the distinction betweenthesetwo bundlesis clear, the
b ersthey show fail to read any preciselyde ned target on the grey matter and
callosal-acipital b ers seemto rapidly corvergeto a single path (see gure 1 in
[40]). They could, more corvincingly, show a topology within the geniculo-acipital
b ers, where medial (respectively lateral) LGN b ersterminate in a more superior
(resp. inferior) part of the occipital cortex. Using a similar streamlinetractography
algorithm, [22] have identied in a single subject dierent visual b er bundles
including occipito-frontal and occipito-temporal b ers. In a subsequet study, [23]
have identied dierent visual b er bundles: (i) the optic tract from the chiasm
to the LGN; (ii) the optic radiations from the LGN to the occipital cortex, which
can be further divided into a verntro-temporal bundle endingin the lower lip of the
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calcarine sulcusand a dorsal bundle terminating in the upper lip of the calcarine
sulcus; (iii) a splenium bundle connecting both occipital poles; (iv) U-shaped
occipito-temporal b ers;(v) the cortroversedinferior Longitudinal Fasciculus(ILF)

directly connectingthe extrastriate occipital cortex and temporal lobes. Despite
theseinteresting ndings, no functionally de ned areaswere used and data were
mainly analyzedon a singlemeanDT imageobtainedthru the averagingof di erent
subjects, hencediminishing the possibleinterpretations of their ndings when one
considersthe strong anatomico-functionalvariance acrosssubjects.

The group of Ciccarelli, Toosy and colleaguesisedthe Fast Marching Tractography
(FMT) technique [167] to investigate3 b er bundles: the pyramidal tract, anterior
callosal b ers and, more interestingly for our study, the optic radiations. They
rst concettrated on methodological issues,demonstrating the inter-subject repro-
ducibility [33 aswell asthe inter-obsener reproducibility [31] of the reconstructed
tracts. More recerily, they applied this technique to study changesin the optic
radiation of patients a ected by a specic optic nerve injury optic neuritis [32].
Note that the FMT method has been partly validated in a combined study on
macaquesand humans, shaving a part of the cortico-spinal tract and the optic
radiations in both species[169. Note howewer that the authors aknowledge the
currertly limited spatial resolutionin DTI which preverts reliable tractography in
macaquesand thereforea true validation.

As of today, only a few studies have combined fMRI and DTI to study the visual
cortex. In the above mentioned study, [40] usedfMRI activation mapsto roughly
idertify the LGN and the occipital visual cortex. [244 demonstrated that the
fractional anisotropy was lower in the activated occipital cortex than in the optic
radiations. This is consisten with the known relative isotropy of grey-matter voxels
as compared with white-matter voxels [174. Using a probabilistic tractography
method, [219 completed this work, shoving a correlation between the estimated
optic tracts meanFA valuesand the degreeof fMRI activity within the visual cortex
but, like the former, they did not functionally identify the occipital visual areas
they were considering. To our knowledge,the most complete and precisestudy in

the literature was done by [54] at Stanford. They conbined a classicalstreamline
tractography method with a functional identi cation of occipital retinotopic areas
to recover occipital b er tracts passingthrough the splenium. They demonstrated
a good spatial matching in the splenium of independerily estimated b ers starting

from left and right occipital poles. More speci cally, they found a topology in these
tracts in which (i) dorsal (respectively vertral) cortical regions project dorsally
(resp. vertrally) into the splenium,in agreemen with a macaqueautoradiograpty
study, (ii) a foveal-periphery gradiert can be found in the anterior-posterior
direction of the splenium.
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In the presen study, we used a Riemannian geometry based connectivity
mapping technique proposedin [133 and a recerily introduced Fast Marching
implemertation [176 to assesghe anatomical connectivity acrossindividually in-
derti ed areasin the low level visual cortex. The method estimatesthe anatomical
connectionsof the white matter as geadesicsin R® equipped with a Riemannian
metric derived from the di usion tensor. Besidesits robustnessand e ciency, this
approad naturally restricts the estimation within the white matter voxels and
further provides statistics of a local connectivity measurealong ead estimated
ber. We rst validate this methodology by recovering typically known b er
tracts before addressingnew issuesregarding intra-hemisphereconnectivity in the
occipital visual cortex.

7.2 Metho ds

7.2.1 MR data acquisition

Subjects participated in two separatescanningsessions. A scanning sessionsys-
tematically starts with a fast low-resolution anatomical localizer to appropriatly
set the subsequeh scanssliceslocation, followed by the functional and/or di usion
scans,then the phasemap acquisition is done before ending with a T1-weighted
iImage acquisition. Thesehigh resolution anatomical scanswere used as references
to coregisterthe di erent sessions.

In the rst sessionthe functional scans,later usedto identify the retinotopic areas
and the hMT+ complex, and di usion weighted imageswere acquired. Howewer,
due to an acquisition problem, the phasemap could not be reconstructed which
Is particularly problematic consideringthe important geometric distorsions of the
edo-planar di usion weighted images(seebelow). As soon as this problem was
solved, we acquiredin a secondsessiomew di usion weighted imagesand the cor-
responding phasemap for the samesubjects. As we were not acquiring functional
iImages,we took advantage of the saved time to increasethe number of repetitions
for ead direction, thusincreasingthe di usion-w eighted imagessignalto noiseratio.
We alsoacquireda T1-weighted imageto coregisterdata from both sessions.

fMRI

During ead functional scan,151 Echo Planar Imageswere acquiredover 5 mn 19s
using our coronal sequencdgseeparagraph 2.4.4). Ead functional image spans20
coronalslices3mm thick and 2x2mn? in planeresolution, appraximately orthogonal
to the calcarinesulcuscovering the occipital retinotopic areasand extending anteri-
orly to con dently include hMT+ region[56. The rst v eimages(10.555s) were
systematically discardedto avoid magnetic saturation e ects. The 144 following
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imagescorresmnd to the visual stimulus per se. The last two imageswere taken to
allow slice-timing correction preprocessing.

Diusion Tensor Imaging

As mertioned in paragraph2.4.4,we rst tried dierent acquisition parametersto
obtain the bestdi usion weighted images.We nally used12di usion directionsfor
b=1000s.mm 2, which is consisten with other studies[99] and allowedusto increase
the number of repetitions to adciieve a better SNR. Each gradiert directions was
repeated6 (rst session)or 12 times (secondsession).The other useful parameters
are TR=10000ms, TE=86ms and the voxel size 2x2x2 mm?3.

7.2.2 Pro cessing pip eline

Each dataset was analyzedon a subject basisto avoid undesiderablenormalizing
e ects sud asthe strong smoothing implied by this procedure.[243 shoved it was
possibleto obtain geometrically matched fMRI and DWI with appropriate acqui-
sition sequencestherefore avoiding various distorsions correction steps. Howewer,

these imagesare not coregisteredwith the anatomical image and this procedure
supposesto acquire data with the samevolume prescriptions. In this study, aswe
consideredcomplememary information from 3 di erent MRI modalities (anatomi-

cal, functional and di usion-w eighted images),acquiredtwo distinct sessiongor eah

subject and useddi erent slice prescriptionsfor the di erent modalities, a reference
spacehad to be chosento coregisterall theseimagestogether. We usedthe mean
T2-weighted image (i.e. obtained without di usion sensitization or b=0 s.mm 2)

further correctedfor EPI geometricdistorsions(seebelow) asreferenceimage. We
note umean T2 this referenceimage. This choice minimized the deformationsand

interpolations of the di usion-w eighted imagesacquiredwithin the samerun using
a similar sequence Eac type of imagereceiwed speci ¢ processingdetailed in the

following paragraphsand the extracted useful information was nally coregistered
to the umen T2 referenceimage. Figure 7.1 summarizesthe overall processing
pipeline usedin this study.

Anatomical image.

High resolution anatomical imagesacquiredin both sessionsallowed preciseinter-
sessioncoregistration using SPM2 algorithm. We note M 1 the estimated transfor-
mation mapping anatomicalimagefrom sessionXo anatomicalimagefrom session2.
The latter was further coregisteredwith the umean T2 referenceimage by trans-
formation M 2. Besides structural information was extracted from both anatomical
scans.Using the methods descriked in chapter 3, models of GM/WM interfacesre-
quired to segmen the retinotopic areas(seechapter 5) were obtained from sessionl

196



Figure 7.1: The image processingspipeline. Seetext for details.
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anatomical image. A segmetation of sessionZzanatomical image was performedto
obtain a white matter tissuemaskin which the connectivity mapping computations
were constrained.

Visual areas functional de nition.

Functional imagesfor the retinotopic and hMT+ mapping were rst realignedwith
the INRIalign toolbox [76] and coregisteredwith the anatomicalimagewith SPM2,
then smoothed through the cortical surfacebasedsmoothing method descriked in
chapter 3, with a 3mm equivalert Gaussian lter FWHM. A high-passand a low-
pass Itering were also performed on the time-coursesto respectively remove low-
frequencysignal drifts and high frequencynoise. Subsetsof connectedvoxels were
extracted for ead areausingthe method descriked in chapter 5 and further usedas
ROIls in the connectivity analysis. Howewer, di usion anisotropy is relatively low in
grey matter voxels[174, such asin the visual cortex [243, thus considerablylimiting
the directional information provided by DTI to ewvaluate the anatomical connectivity
betweengrey matter regions. We therefore de ned white matter ROIs, considering
the white matter voxelsclosestto the cortical ROIs. Speci cally, the hMT+ volumic
ROIs weremanually drawn basedon the activation maps, selectingthe white matter
voxels closestto suprathresholdcortical voxelsin the expectedlocation of hMT+;
the retinotopic areasvolumic ROIs were automatically computedfrom their iderti-
cation onthe GM/WM interface by projecting the respective surface-basedabels
alongthe surfacenormal inside the white matter voxels. Each ROI voxelssubsetwas
then coregisteredto the umean T2 referenceimageby the transformationM1 M2
and further masked to solely lie within the white-matter mask extracted from the
high resolution anatomical image. Possibleintersectionsbetweenead pair of ROIs
were alsoremoved from the analysis.

Diusion weighted images.

T2 image: the 8 T2-weighted images were motion corrected using INRIAlign

beforebeing averaged. The resulting mean T2 imagewasthen processedo correct
geometric EPI distorsions caused by magnetic susceptibility inhomogeneities,
i.e. magnetic eld inhomogeneitiesparticularly found at the interfaces between
di erent tissues[117]. Basedon the phasemap acquired during session2j.e. an
image mapping the spatial distribution of eld inhomogeneitieswe usedthe SPM
interfaced toolbox "Fieldmap" to compute and apply a voxel displacemeh map
accourning for these susceptibility artefacts. As mertioned above, the resulting
umean T2 imagesened as referenceimagefor connectivity maps computation.
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Diusion-w eighted images (DWI): DWI data were rst preprocessedto
minimize the distorsions induced by eddy-currents and related to the large
di usion-sensitizing gradierts. We used the algorithm proposed by [145 and
implemerted within the BrainVisa padkage. Brie y, this method usesa 2D image
registration technique to realign ead DWI slice with its correspnding standard
T2-weighted slice. A scalefactor, a translation and a shearingare the parameters
for the sliceand imagedependen a ne transformation searded. The mutual infor-
mation is usedas a similarity measureto estimate the transformation parameters.
We then applied to the resulting imagesthe EPI geometric distorsions correction
algorithm usedfor the meanT2 image.

Diusion Tensor Image computation: once the DWI are coregistered
with our referenceimage, we can estimate the di usion tensorimage (DTI), i.e. a
eld of 3x3real symmetric positive-de nite tensorsalongthe imagedomainV. This
is done using the Stejskal-Tanner equation [206 for anisotropic di usion, which
relatesthe magnetic resonancesignal attenuation to the di usion tensor D(v) and
the sequenceparameters:

Sc(V) = So(v)exp( bg D(V)g)  8v2 V;k= 1;::;M

.....

M = 12and b= 100G:mm 2.

The classicaltechnique usually applied to computethe di usion tensor eld D from
DWI relieson a least squareestimations of its coe cien ts at ead voxel v. It boils
down to seartiing the optimal D 2 S*, the setof 3x3real symmetric positive-de nite
matrices, minimizing the objective functional:

E(So; =5 Sm) = s (}In >y o Dak)
k=1 b SO

where :R! Risthe classicalsquaredresidual (x) = x2. Although computation-
ally e cien t, this approad cannot strictly ensurethe expected positive de niteness
of eath di usion tensor. Alternativ e algorithms have beenproposedto overcomethis
drawbad, e.g. [243 145 225. Here, we useda non-linear robust gradiert method
proposedin [135 which naturally ewlvesin S, therefore systematically leading to
symmetric and positive de nite solutionsfor D. The Huber's M-estimator was cho-
senfor the function with the tuning constart k = 1:2107,which allows to achieve
an asymptotic e ciency of 95% on the standard normal distribution:

(
(x) =

X2 for jxj k
k(ixj %) for jxj>k
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We have obsened particularly signi cant di erences betweenthe two estimation
methods in highly anisotropic regions,sud asthe corpuscallosum,wherethe least
square method could lead to nonpositive tensors. In sud cases,the nonpositive
eigervaluesare arti cially setto a very small non-null value, leading to unreliable,
highly planar (with a null eigervalue) or linear (with a single positive eigervalue)
anisotropictensorsand possiblyto numericalinstabilities in subsequentensorbased
computations. This situation, naturally, never occurs with the intrinsic gradiert
desceh method as the solution necessarilybelongsto S*. Figure 7.2 illustrates
these di erences with a closeup of an axial slice cortaining the splenium of the
corpuscallosum.

Least square method Riemannian method

Figure 7.2: Estimation of Diusion Tensors: comparison between classical least square
(left) and gradient descen in S*, the set of symmetric positive de nite 3x3 matrices
(right). (Blue: low anisotropy; Red: high anisotropy). Notice the dicult y to represen
tensorsin the middle of the corpus callosum with the least square approad, suggesting
degeneratecigar-shaped tensorsin this region.

7.2.3 Connectivit y maps and b er tracts computation
The Riemannian geometry framew ork applied to DTI

We usedan approad basedon a Riemannian geometricframework to compute (i)
a distancefunction to a given point of interest (or sed point) Xq, (ii) the putative
b er path linking any voxel of a given brain regionV to Xxq and (iii) a connectivity
map, i.e. a con dence measureasseiated with eat b er. In this geometrical
formulation of DTI connectivity mapping, the DTI is modeled as a Riemannian
manifold M whosemetric is directly related to the di usion tensor D modeling the
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local di usion properties of water molecules.As shown in [133 157, the metric G
of M isgivenby G = D 1. From this metric, a distancefunction u(xo; x) betweena
given seedpoint X and any other location x of the brain maskV can be evaluated
asthe solution of the following initial value problem:

kr u(xo;X)kg = 1 8x 2 V nfxeg

U(Xo;Xo) = 0 (-4

This is the well-known Eikonal equation on the Riemannian manifold (M; D). The
solution u at any voxel x 2 V can be interpreted as the minimum time t 0 to
read Xq starting from x on the manifold M . Consideringthe low anisotropy in the
grey matter tissue, we considerfor V the set of white matter voxels obtained from
a segmeination of the anatomicalimage (seemethods).

The gealesicsof M, which can be derived from a cortinuousgradiert desceh over u
alongthe direction givenby r u, are consideredas putativ e white matter bundles
linking any voxel x 2 V to xo. As sud, a gealesic connectingany voxel x 2 V
to the seedvoxel x, always exists. If an actual white matter b er connectsx and
Xo, the assaiated gealesic coincideswith the b er. Howeer, for any x 2 V, the
asseiated gealesicdoesnot necessarilycoincidewith an actual white matter b er.
It is indeedhighly unlikely from an anatomical point of view that a given brain locus
could be directly connectedto every other brain location. To overcomethis issue,
connectivity measureslongead gealesiccanbe estimated,enablingto discriminate
likely and unlikely white matter connections.In this study, we consideredfor eadh
estimated gealesicstatistics of the following local con dence measure:

C(x) = kr u(x)ke

We claim that C is a natural local measureof connectivity since, as we will see
shortly, it can also be interpreted as the solution of an optimal cortrol problem
and measureghe local "speed" of water moleculespropagationin the white matter
tissue. From this local connectivity index, we compute its rst and secondorder
statistics along the gealesic:

(x) = E[C(x)]  and (x) = P E[C(x)?] E[C(X)]?

An ideal b erlinking x to xq will typically have a large meanvalue (x) and asmall
standard deviation (x). This connectivity measureprovidesa meansto distinguish
likely and unlikely b ers. Sinceead voxel x in V canbe assigneda gealesicreading
Xo, We have a couple( (x); (x)) at ead voxel. In the remainder, we note -map
and -map the respective imagesof and values.

Numerical resolution metho ds

Regarding the numerical resolution of equation (7.1) and the computation of
gealesicsand connectivity measures,we usedtwo di erent methods respectively
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based on the level set framework and a cortrol theory formulation. If both
interpretations are mathematically equivalert, they focuson di erent aspectsof the
problem. In the level set (or dynamic) approad, the emphasisis on the description
of the manifold geometry while in the optimal cortrol point of view (or static)
approad, the emphasisis on the optimal dynamics, which coincideswith the in-
trinsic gradiert of the distancefunction. We give belowv an overviewof both methods.

Levelset methal

We rst usedthe level set method descrited in [133 134 and implemerted in C++
by Christophe Lenglet at the OdysseelLaboratory. As showvn e.g. in [164 197,
equation (7.1) can be reformulated in the level set perspective. This is achieved by
introducing a new function  sud that the ewlving function u; is a level set of

u=Ffx2V:iux)=tg=1fx2V: (x;t)= 0g

Then, it can be shown [164 that nding u satisfying equation (7.1) is equivalert to
solving the Partial Di erential Equation (PDE):

(+kr ke=0 8t>0
(x;0) = o(x)

Wherekr ks =" D G ™D ).

Starting from Xq, the rate at which the front propagatesis given by the local

di usion tensor D. The larger the local tensor eigervaluesare, the faster the local

front propagationwill be in the asseiated eigervector directions. Hence,ewlution

Is fastestalong white matter paths. The front arrival time at eat voxel generates
the distance function to x,. Geadesicsare then obtained by badk-propagating
along the function u gradiert eld from any voxel x 2 V towards the origin Xo.

The related connectivity measures (x) and (x) are nally estimated during the

computation of this optimal pathway linking x to X, by integration of the local

criterion C alongthe ertire geaesic.

(7.2)

Fast Marc hing Tractograph y metho d

Facingtwo major limitations of the level set approad, namely the high algorithmic
complexity leading to relatively long computational time and, more importantly,
numerical di culties to properly deal with the white matter mask boundaries,
we then useda very recerily proposedformulation of the problem. By recasting
problem (7.1) into the optimal cortrol theory framework and numerically solving
it with Fast Marching Method (FMM), its authors could propose a considerable
computational improvemert to ewaluate the quartities of interest. The theoretical
issuesas well as the C++ implemertation were deweloped in a collaboration
betweenthe Odysseelaboratory and the UCLA vision Laboratory. We refer the
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readerto [17€ for an indepth study of the approad and its cortributions.

Briey, in this formulation, the problem comesdown to estimating the optimal

vector eld f (optimal dynamics) correspnding to the eld of the gedesics
velocity in M (which also coincideswith r u). This is adieved using a Fast
Marching basedalgorithm. Starting the front from an initial seedposition xg, the

Fast Marching Method (FMM) systematically marchesthe front outwards one grid

point at atime, by always locating the proper grid points con guration (the optimal

simplex) yielding the smallestupdate value of the distance function u, a principle

namedcausality. FMM thus constructsthe optimal dynamicsf by propagatingthe

information "one way", requiring one single passover the domainV. The distance
function u is now a byproduct of the algorithm, no longer necessaryfor subsequen
computations. Besides,the connectivity statitics maps and are computed "on

the y". Indeed,basedon the optimal simplex, oneonly needsto computethe local

value for C and C? and then build on previousvaluesto derive and asseiated
to the gealesiclinking X, to the current voxel. If neededfor visualization purposes
for instance,the gealesicpaths can be straightforwardly reconstructedby following

the optimal dynamicsf .

The Fast Marching Tractography (FMT) approad detailed above o ers many
advantagesover existing work, including the level set method we rst used:

- the method is e cien t sinceit computessimultaneouslythe optimal dynamicsand
the statistics of our local connectivity measure;besidesthe explicit computation of
the gealesicsis not mandatory to get the connectivity measuremaps,

- the computation time is dramatically improved, from 20 minutes to get the dis-
tance function with the level set formulation to 7 secondswith the FM algorithm,
- the method naturally handlesthe constrained computation within highly convo-
luted regionssud asin the occipital cortex white matter ( gure 7.3),

- the algorithm exhibits a higher robustnesswith respect to noiseover the level set
implemertation, asvalidated by numerical experimerts on syrnthetic datasets.

The results we presen belov were systematically obtained with the FMT al-

gorithm. Notice howewer that the level set method led to qualitatively similar

results, although the computation time was by far higher and the numerical issues
mertioned above could lead to anatomically impossiblefront propagation ( gure

7.3), requiring iterative manual modi cations of the white matter mask.

7.2.4 Seed voxels placement

A crucial aspect for any b er tracking method is the location of the initial seed.
The seeddor the FMT algorithm were selecteddepending on the consideredtracts.
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DTI axial slice White matter segmemation

Level set algorithm FM algorithm

Figure 7.3: Distance function computed from DTl data (a) to an occipital seedvoxel, the
blue crossin (b) in a white matter mask (red line in (b)). Yellow lines depict distance
function isovaluesin the range [0;1500], computed through the level set (c) or the Fast
Marching (d) algorithms. Front diusion of the level set method does not necessarily
respect the white matter mask topology, leading to anatomically impossible connections
through CSF voxels (c). This numerical problem is avoided in the Fast Marching method
which naturally respectsthe masktopology (d).

LGN sed voxelsidenti ¢ ation

Lacking a precisefunctional localization of the LGN, we rst identied LGN seeds
voxelswith a classicalstreamlinetechnique. To do so, we manually selectedin eat

hemispherea rough thalamus sub-region which obviously included the expected
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LGN location. More speci cally, basedon both anatomical and di usion tensor
image prior information, the initial region was idernti ed anterior to the lateral
verricles and only voxels with a relatively high anisotropy (FA  0.15) were kept.
Diusion tracts starting from ead selectedvoxel were estimated with a classical
streamline tractography technique [13(J and further automatically Itered to keep
the b ersheadingto the ipsilateral retinotopically idertied areaV1. Only b ers
reating a 3 voxels wide band around the functionally de ned V1 regionwere kept.
This approad is very similar to that of Conturo and colleagueq40Q), although we
did not oversamplethe DTI data, thus getting less b ers than the latter work.
The starting voxels of the remaining b erswere nally labeledasthe LGN voxels.
We typically found a region of 5 connectedvoxels in eah hemisphere,consistert
with the reported LGN size both in previous anatomical [10§ and fMRI studies
[27]. Beyond yielding an anatomical connectivity baseddelineation of the LGN,
the reproduction of the well-known visual pathway aswell asthe likely extert and
location of the LGN ROlIs validates our di usion-w eighted imagesquality aswell as
our image processingpipeline.

Other tracts

For connectivity mapping starting from the functionally identi ed visual areas,we
simply usedthe white-matter ROIs de ned with the procedurepreviously detailed.

7.3 Results

We rst validated our protocol and connectivity mappingtechnique onthe previously
characterized optic radiation tracts before investigating callosal connectivity and
intra-cortical connectivity acrossthe functionally identi ed visual areas.

7.3.1 Optic radiations

As onecannoticefrom the above literature overview, the optic radiations were often
reconstructedin di usion tractography studies. We therefore decidedto validate
our b er tracking approat by considering this well characterized b er bundle,
which links the Lateral GeniculateNucleus(LGN) to areaV1 in the occipital cortex.

Starting from ead previously identied LGN voxels (see methods), we com-
puted the connectivity index maps with the FMT technique. As we were not
concerned here with inter-hemispheric connections, the FMT computation was
restricted to the ipsi-lateral hemisphereof the seedvoxel. Figure 7.4 shows two

-maps, one per hemisphere,in two subjects. As ead map is restricted to its
respective hemisphere we mergedthem in a singleimage and overlaid the result on
an axial slice of subjects' anatomicalimage. The seedvoxel of eadr -map is shovn
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Figure 7.4: Connectivity -maps obtained in two subjects with the FMT technique esti-
mated from one LGN seedvoxel (in black) for eadr hemisphere. The highest connectivity
index valuesare found along the putativ e optic radiations paths, with the maximum value
within area V1.

in bladk. The highest connectivity index values(dark red) are systematically found
within the typical path of the optic radiations. Besides,highest valueswere found
in the retinotopically identied V1 region. Theseresults were found for ead seed
voxel in all subjects.

Finally, for ead connectivity maps, the voxel with maximum connectivity
mapping index (which lay in area V1) was identied and the gedesic linking

that voxel and the seedpoint was traced. Figure 7.5 shows the reconstructed
b er bundles obtained with both methods. Although the thalamo-occipital b ers
estimated with streamline and gealesic methods qualitatively match and are
consistenn with known anatomy, we noted somedi erences between reconstructed
tracts.

As can be seenin gure 7.5, most b ers estimated by streamline propagation fail
to reath the V1 white matter ROI, unexpectedly headingin a ventral direction
a few millimeters before reading the V1 region. We attribute this unexpected
trajectory ending to an improbable connectionwith another b er bundle crossing
the thalamo-occipital track. This obsenation led us to use a relaxed constrairt
to Iter the b erspassingcloselyto V1, as merioned in the above description of
the LGN seedvoxel identi cation procedure. Note that [4( alsouseda 1cm band
within the white matter, laterally locatedto the activated occipital cortex to lIter

their thalamo-occipital b ers (see[40], gure 3). Besides,other DTI tractography
works shawing this bundle do not exhibit an actual connectionwith a accurately
de ned V1 ROI, letting openthe questionof the b erstermination location.
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On the other hand, FMT estimatedtracts systematicallyreat our white matter V1
region, which illustrates an important advantage of the geometricfront propagation
method over local approades. However, FMT b erstend to convergerapidly after
leaving the seedvoxels, which denotesthe lesslocal characteristic of the method
(seediscussion).

Figure 7.5: Optic radiation tracts estimated with a classicalstreamline method (blue) and
with the FMT technique (red). The LGN seedsvoxels (green), Left V1 (yellow), right V1
(purple) and an axial slice of the DTI are also represenied.
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7.3.2 Callosal connections

For ead hemispherethe low-level visual areasrepresemn and analyzeonly onehalf of
the visual eld, i.e. their respective cortralateral hemi eld. Nonethelesshomologue
areasof both sides,sud as left and right V1, have beenshownn to be connected,
at least for the vertical meridian represemations, through the splenium, a portion

of the corpus callosum [37]. Following [54], we studied the FMT estimated con-
nectivity maps of our functionally de ned areas. We were interestedin looking at

the capability of our FMT method to replicate the broad connectiontopology that

Dougherty and colleagueseported in the region of the splenium.

We analyzedconnectivity mapsin the spleniumvoxels, starting from our retinotopi-

cally (or functionally for h(MT+) de ned ROIs. Each ROI was consideredseparatly

seedvoxel x;, the correspnding -map and -map were computed with the FMT
method. We therefore have the mean and sigmavaluesfor ead optimal path ;
linking x; to yj. We then Iter thesemapsto remove the highest variance paths
and compute a singlemean -map in the splenium. Speci cally, for ead splenium
voxel y;,, we have n putative paths ;j,. We discard a given proportion p of these
n connectivity paths, removing paths with highestvariance . The mean connec-
tivit y indicesof the remaining putative b ersare then averaged,leadingto a single
meanvalue at voxel yj,. The procedureis repeatedfor eat y;;j = 1;::;;m. The
resulting map is interpreted as the mean connectivity betweenarea X and the
splenium.

Figure 7.6 shows the resulting mean -mapsfor visual areashMT+, V1, V3A and
V4 respectively taken asstarting ROIs in a mid-sagittal sectionof the brain for eat
subject. p wasarbitrarily setto 10%. We do not represen herethe mean -mapsfor
areasV2v, V2d, V3v and V3d, asthey do not signi cantly di er from their clothest
neighboring areason the cortical surface,i.e. V1v, V1d, V4 and V3A respectively
(seediscussionbelow).

Connectivity values are ordered similarly for ead areas,with a smooth gradiernt
from lowest valuesin the posterio/dorsal portion of the spleniumto highestvalues
in its antero/venral portion. Comparing the di erent origin areas, lowest values
were systematically found for hMT+. RegardingareasV1, V3A and V4, valuesare
not consistern enoughacrosssubjects to infer a systematictopology in the occipito-
callosal connections. Howewer, V3A connectivity is higher than for V4 in 4 out of
6 hemispheressuggestinga stronger callosalconnectivity for dorsal with respect to
venral areas.Finally, we obsened a systematicasymmetry betweenthe mapsasso-
ciated to eatr hemisphere.The highest valueswere found for putative connections
originating from the left hemisphere.Figure 7.7 represefs the most probable b ers
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Figure 7.6: Mean connectivity indices from distinct visual areasto the splenium vox-
els. The mean connectivity values shov a smooth gradient from posterio/dorsal to an-
tero/v entral splenium portions. Lowest connectivity valuesin the splenium are systemat-
ically found for hMT+.

linking eadh hMT+ voxel from both hemispherego the splenium. We employed a
similar method to that usedto obtain the optic radiations b ers. More speci cally,
for each hMT+ voxel consideredas a seed,we computed the related connectivity
index maps. We then identied the splenium voxel with highest connectivity in-
dex and constructedthe related gealesic. The estimated b er tracts from the two
hemisphereshawv a great spatial agreemen

7.3.3 hMT+ intra-hemispheric connectivit y

Using a similar approad, we nally studied the FMT-connectivity of the human
MT complex with the ipsilateral occipital retinotopic areas. The most probable
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Figure 7.7: Independertly estimated most probable b erslinking left and right hMT+ (in
green)to the splenium (in blue) from two subjects (left CL and right JP).

we computethe and mapswith the FMT method. For ead X;, we then idertify
a given proportion p of paths with the highest valuesamongthe m paths linking
computed and assignedto voxel x;. We end up with a mean connectivity value at
eath hMT+ voxel and for ead retinotopically de ned target ROI.

Figure 7.8 shavs a box plot of the mean connectivity values distribution for the
di erent seedvoxels of hMT+ acrossareas. The boxes edgesdepict the values of
the rst quartile, the medianand the third quartile. Valuesoutsidethis box are also
showvn to completely represem the distribution dispersion.

V1 and V2 systematically shaved the highestconnectivity values,suggestinghighly
probable connectionswith hMT+. V1 and V2 can hardly be distinguished, which
can be attributed to their very closeanatomical locations given our voxel size (see
discussion).On the other hand, V4 systematically shoved the lowest connectitivity
values, suggestinga weak direct anatomical connection with hMT+. It is more
di cult to clearly distinguish the remaining areasV3v, V3d and V3A.

Similarly to the spleniumdata analysis,we clearly found higher connectivity values
for the left hemisphereas comparedto the right, regardlessof the areaconsidered
(seethe valuesrangeon the vertical axes).

7.4 Discussion

We have combined informations from 3 di erent MR modalities to study connectivity
within the humanlow-level visual brain. To date, only a few studiesusedfunctionally
de ned ROlIs to characterizewhite matter connectivity in this part of the brain. We
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Figure 7.8: Occipital-nMT+ connectivity

have shawvn that it is possibleto determine various connectivity patterns with our
Riemanniangeometricapproad. We shall rst discussthe resultsregardingcurrert
knowledgeon the human visual brain connectivity and then addressmethodological
issuesregarding DTI basedtractography.

7.4.1 Visual cortex connectivit y

Thalamo-axcipital br esWe rst reproducedtracking of the thalamo-occipital b ers
bundle connectingthe LGN and V1. This b er bundle was identi ed in various
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DTI tractography work, either with a deterministic streamline [40, 23] or a Fast
Marching Tractography [33, 31] method. Although our methodology to idertify the
LGN seedvoxels might appear biasedasiit is already basedon DTI information,
we stressthat the estimated LGN location and extert consistelly ts previous
reports and known anatony. Furthermore, this method is not prone to operator
dependent seedselection. The successfulidenti cation of the well-characterized
thalamo-occipital connection therefore validated our Riemannian FMT method.
Theseresults alsoillustrate the lower local sensitivity than in the caseof a classical
streamlineapproad, sincespatially closeseeddeadto relatively similar connectivity
maps, henceto close b ers tracks (gure 7.5). This can be an advantage over
classicalstreamline approades as it is lessprone to noise, but might also mask
local topology acrossspatially close b ers, sud as those shavn by Conturo et al.
in the thalamo-occipital b er bundle [4Q].

Splenium bers

We investigatedthe topology of callosal b erswith respect to their origin in the low
level visual cortex. We could reproduce with our FMT method the antero-ventral

localization of b ers linking occipital retinotopic areasto the corpus callosum
(gure 7.6), asfound by Dougherty et al. [54] using a classicalstreamlineapproad.

Our results also suggesthigher connectivity values for V3A when compared to

V4, which is consisten with [54]. We could not howewer identify the precise
topological organization of connectionswithin the spleniumthey obsened, neither
with our FMT approad nor with a streamline technique similar to the one they
used. A lower quality in our di usion-w eighted imagesmay be responsible for this

discrepancy

We found the lowest connectivity valuesin the spleniumfor hMT+ whencompared
to occipital retinotopic areas (gure 7.6). This result should be related to a
clinical study demonstrating that visual motion perception, strongly correlated
with hMT+ activity, is not a ected by posterior callosal destruction [36]. On the

other hand, a weaker activation during bilateral visual eld stimulation was found
in the patient left hemispherecalcarine region comparedto 20 normal subjects,
correlated with se\erely impaired reading and colour naming performances. These
ndings suggestedother, probably parallel, pathways conveying interhemispheric
visual motion information. Possible candidates proposedby the authors for the

alternative routesinclude anterior part of the corpuscallosum,anterior commissure
and subcortical (via the superior colliculus, the intecollicular commissureand the

pulvinar) connections. Future work will shortly assesghesealternative interhemi-
sphericconnectionsfor hMT+.

hMT+ and occipital areas connectivity
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We studied the connectivity betweenhMT+ and various low-level retinotopic areas.
To the best of our knowledge, this is the rst DTI connectivity study considering
this cornerstoneof the visual motion pathway. V1 systematically shovedthe highest
connectivity index valueswith hMT+ (gure 7.8), consisterh with the known highly
myelinated white matter b er bundles linking both areas[233. Besides,lowest
connectivity values between the retinotopic areasand hMT+ were systematically
found for area V4. This result should be related to the previous chapter of the
current thesis and with the work of Tolias and colleaguesn macaques214 213.
This connectivity mapping result may suggestthat acquireddirection selectivity in
areaV4 might rather be mediated by V1 than by direct connectionswith hMT+,

further supporting the famousdistinction betweenvenral and dorsal streams[22§.
This issueshould be addressedn future work, e.g. reproducing the study of [213
after hMT+ resection or by using cortical cooling techniques in macaque MT
region.

We also found similar hMT+ connectivity valuesfor V3d and V3v, despite their
relatively important distance along the cortical sheet. This obsenation could be
an other evidenceto considerV3d and V3v asthe two quarter elds represemation
of a single area V3, as also demonstratedwith anatomical connectivity studiesin
various speciesof monkeys[140Q 141].

Anatomical geometry and sampling constraints

As mertioned above, we could hardly distinguish meanconnectivity mapsfor areas
V1 and V2. Although surprisingat rst sight, this result canactually nd a simple
explanation when consideringtogether the anatomical layout of theseareasand the
current spatial resolution of DTI. AreasV1d and V2d (and similarly V1v and V2v)
respectively lie on the opposite banks of the samegyrust. The white matter tissue
separating the latter is therefore relatively thin, especially with 2mm isotropic
voxels. Thus we cannot expect to easily distinguish the connectivity mapsobtained
with two opposite voxels in this gyrus. Improvemern of the spatial resolution
appearsas the only way to solwe this problem. Although still to be consideredfor
the areascouplesV3d/V3A dorsally and V3v/V4 vertrally, this gyral proximity is
lesspronouncedsincetheseareasbordersappear lessconstrainedby the sulco-gyral
pattern than for V1 and V2 borders.

Hemisphee asymmetry

Our results suggested signi cant asymmetryin our connectivity mapsbetweenthe
two hemispheres.The left hemisphereexhibits higher connectivity valuesthan its
right courterpart. A similar result was also reported in [54], where more occipito-

!Note that Van Essenproposedan interesting mechanical tension-basedtheory to explain this particular
folding pattern [231].
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callosal b erscould be reconstructedin the left than in the right hemisphereby the
employed streamline algorithm. The authors suggesteda bias in the hemispheres
respective size may accourt for this dierence. Note that sud an asymmetry
between both hemisphereswas also reported in the motor system[94] and could
possibly be attributed to handedness.We suggestan alternative hypothesis,based
on a perhaps more straightforward brain obsenation: hemispheric functional
specialization. Undoubtly, the hemispheresare functionally asymetric and this
sould imply a di erent, asymetrical wiring within ead hemisphere. This may in
particular be the casein the occipital cortex, the right lobe possiblypresering more
b er crossingghan its left courterpart. As aconsequenceahe local di usion tensors
would not be equivalertly anisotropic in both sides,leadingto moredicult b er
tracking for streamlinemethods or lower connectivity valuesfor our FMT algorithm.

As future directions, besidesthose mertioned above, we consider the work of
Behrensand Johansen-Bergasa particularly promising application of DTI informa-
tion to study the visual cortex. Basedon remote cortical connectivity patterns, they
could successfullysegmen the thalamus into anatomically consistet subregions
[9]. A similar approad may be applied to uncover the di erent compartmerts of
regionssuch ashMT+ or the Lateral Occipital Cortex. Cortico-cortical connectiv-
ity information may also be of great interest to clarify cutting-edge visual areas
identi cation issues,both dorsally (V7, KO, ...) and ventrally (V4v-V8 vs. hVv4
models, newly reported Vertral Occipital maps).

Theseissueswill certainly be successfullyaddressedn the nearfuture, provided nec-
essarymethodological advancesregarding both data acquisition and tractography
algorithms.

7.4.2 Metho dological issues

Riemannian DTl connectivity: validity and limitations

The current study provides a validation of the Riemannian approad to estimate
DTI basedconnectivity mapping in the visual system. With its other application
to the human motor system[133, this Riemannian geometrical approad, using
the full tensor information, appears very useful to study anatomical connectivity
in various cognitive systems. Geometrical tractography methods, sud as the
current RiemannianFMT usedin our study, have three main advantagesover other
tractography approadies. First they provide a connectivity measurebetween any
pair of points within the white matter. This information can be used to build
connectivity matricesover the whole brain or to rank putativ e connectionspathways
in the white matter. Then, geometricalapproadescan deal with locally isotropic
tensorsoccuring at b erskissingor crossing. This is not the casewith deterministic
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or probabilistic approadies where a FA threshold condition is often necessaryto

avoid unreliable b ers. Finally, thesemethods are lesssensitive to acquisition noise,
sincethey take advantage of the complete tensor information and of the lesslocal
behavior of the algorithm by comparisonwith streamline or stochastic approades.
Although previous implemertations turned out to be computationally intensive
[133, the recerly dewelopped FM method allows a very fast estimation of connec-
tivit y maps and gealesic path construction, as well as an improved robustnessto

noise. Besides,this approad naturally dealswith the convoluted geometry of the
white matter mask, avoiding anatomically impossibletracts passingthrough CSF
voxels (gure 7.3).

There are howewer limitations both due DTI by itself and to the geometrical
connectivity mapping framework. First and foremost, the relatively poor spatial
resolution of DTI (typically a few mm?3) when comparedto actual white matter
b ers diameter (between 0.2 and 20 m) has important implications. (i) Only
white matter "highways" may be properly recovered, which hardly represem every
cortico-cortical connections;false negative connectionsare thus unavoidable. Im-

provemerns in image acquisition protocols, sut as parallel imaging, may overcome
this limitation, but a precisephysical lower bound is still to be estimated. (i) The
tensor model cannot handle properly b ers crossingsor kissingsthat may occur
within a voxel. Emerging approades using higher order models based on High
Angular Resolution Di usion Imaging (HARDI) [74, 226 165 21, 48] may provide
an answer to this issue.

An intrinsic problem of the geometrical connectivity mapping approad used
here comesfrom the absenceof absolute threshold to con dently estimate b er
tracts from the connectivity maps [16§. Depending on the threshold choice
(the p proportion, arbitrarily set to 10% here), false positive or false negative
connectionsmay arise. Combination of complememary connectivity indices asso-
ciated with ead gealesicsmay prove to minimize this limitation. Furthermore,
most tractography methods to date, including ours, are not symmetrical in the
sensethat putative paths reading a position y while starting from x may not
necessarilycoincide with those linking x when starting from y. Tracking within

GM, although theoretically possiblewith geometrical approades like the one we
employed, still leadsto dicult interpretations of the reconstructed connectivity
maps and related tracts as the di usion signal is poor in the cortical tissue. Last
but not least, a direct validation of DTl basedmethods is still missing. Although

reconstructed tracts sudr as the optic radiations in the current study or the
motor pathway found in [132 are consisten with known anatomy, a quartitativ e
validation could indicate the advantagesand weaknessesf DTI basedtractography
methods. Ultimately, an animal study comparing the dierent tractography
approadies with invasiwely identied connectionswould be of great interest to
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demonstratetheir respective advantagesand current DTl basedtractography limits.

Combinal fMRI and DTI

The fMRI areasiderti cation con dently constrainedour analysisinto known brain
regions. We thus avoided possible operator-dependert bias in seedplacemen or
rough anatomically basedinference. No obvious false-positive connectionswere
found in our study.

7.5 Conclusion

We combined anatomical, functional and di usion-w eighted imagesinformation and
a newly introduced Riemannian DTl analysis framework to study the anatomical
connectivity in the low-level visual brain. We could successfullyreconstruct the
well-known optic radiations connectingthe LGN and V1 with our fast connectivity
mapping method. We also shoved a plausible topology of occipito-callosal con-
nectionsin the splenium, consistenn with previousworks. Finally, we assessedhe
anatomical connectivity betweenhMT+ and occipital retinotopic areas,supporting
the view of parallel vertral and dorsal processingstreams. With both imageacquisi-
tion and methodologicalimprovemerts, di usion MRI should provide a new means
to uncover the architecture of the visual systemand further relateit to its functional
characterization.
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Chapter 8

Conclusion and perspectiv es

8.1 Summary of our contributions

We introduced a new approad to the cortical surface-basedsmaothing of fMRI

data. We demonstratedits advantagesover (i) classical3D isotropic methods which

ignore the complex cortical surfacegeometryand (ii) mesh-basedmplemertations

which require a preliminary projection of the functional data on the cortex model.

A Matlab interface was implemerted for the smaothing program and to allow the

automatic computation of a level set represemation of the cortical surfacemeshes.
The core programs were implemerted in C++ by Jean-Philippe Pons during his
PhD at the OdysseeLaboratory.

We deweloped a complete procedure of retinotopic mapping allowing the identi-

cation of various low-level visual areason a subject basis. We tested di erent

stimuli parametersto optimize the resulting angular maps, yielding to reliable
visual eld mapsacquiredin 20 minutes. Programsto automate the di erent steps
of the analysis were implemerted in Matlab, including anatomical and functional

imagesprocessing.Manual segmeration is nonethelesgequiredfor the visual areas
delineation basedon the angular maps, since the Visual Field Sign computation
ends with unsatisfactory results, even after various attempts of post-processing
corrections. The complete method is routinely usedin the laboratory and at the
certre IRMf dela Timone. It wasalsotransferedto the DyVA team and is currently

used for the study of the cortical organization in patients su ering from retinal

diseases.

A functional identi cation procedure of the human MT complex (hMT+)
was alsodeweloped. We identi ed the optimal stimulus parametersamongdi erent
stimulus patterns and cortrasts betweenconditions to obtain reliable activations in
the expectedzone.

Building on these visual areas identi cation procedure, we have characterized
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the low-level areas functional sensitivity to motion direction. Based on an
ewven-related fMR-adaptation paradigm conbined with a powerful non-parametric
hemadynamic responsefunction estimation method, we can estimate the direction
selectivity of ead areaand infer possiblesub-populations proportions with respect
to their tuning bandwidth type. We found the highest direction selectivity in
areashMT+ followed by V3A, con rming their involvemen in motion processing.
Unexpectedly high direction selectivity was alsoobsened in areasV1 and V4v and
a possibleexplanationin terms of cortext-dependen neural tuning was proposed.

Finally, we combined the retinotopic mapping method and the functional lo-
calization of the hMT+ with Diusion Tensor Imagesto study the anatomical
connectivity acrossthe low-level visual areas. A complete processingpipeline was
deweloped to analyzethe di erent information in a commonreferenceframe. Based
on a Riemaniann geometry connectivity mapping approad, we could reconstruct
the optic radiations linking the LGN and V1. The topology of connectionsbetween
the two hemispheresvisual areaswas studied in the splenium and conrmed a
previous report. We nally shawv the estimated anatomical connectivity between
hMT+ and the di erent occipital retinotopic areas,supporting the existenceof two
anatomically segregatedpathways.

8.2 Perspectives

Naturally, this work opensmore perspectivesthan it answers questions.

The retinotopic mapping procedure can be further improved in many respects.
First, the acquisition time may be loweredby the useof a simultaneouspolar angle
and eccettricit y stimulation, eat coordinate having its own frequency Although

already suggestedoy others (e.g. [239), this possiblestimulation improvemert has
not beentested sofar. Second,expandingthe range of patterns usedin the stimuli

as well as the type of task performed by the subjects may broadenthe scope of
retinotopic mapping. Beyond providing a higher signal in the regions currertly

disputed, it could help unveiling new retinotopic maps as already shovn by some
groups(e.g. [194). Third, the segmenation of the retinotopic areasis still manual
in our procedure. Warping a model of the typical pattern onto a at represemation

of the cortical surface, as proposed by [53], appears an appropriate solution to

automate this last step. We will addressthis issueshortly in a collaboration with

the DyVA team.

The fMR-adaptation experimert suggestsseweral future works. First, increas-
ing the number of motion direction could lead to tuning curves measuremets
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closerto thosetypically shaovn by electroptysiologists,henceyielding to ner func-
tional sub-population characterization. Howewer the non-linear relation between
neural activity and the BOLD signal certainly restricts the sampling resolution
along the stimulus dimension (here the direction of motion) that can ultimately
be obtained. It would nonethelessbe interesting to have an estimation of this
limitation. Second,a mathematical model of neuronal adaptation in the di erent
neural populations and visual areas would be of great interest to clarify the
possibleorigins of the BOLD signal obsened. Third, a similar approad conbining
our experimertal fMR-adaptation paradigm and appropriate fMRI data analysis
methods as the HRF toolbox can be straightforwardly applied to other stimulus
dimensionssud as motion velocity or color cortrasts. Sud experimerts would
bring a better characterization of functional selectivity in the human low-level
visual areas. Finally, the results of this experiment attracted our attention on the
important relations between (visual) perceptions and subject's state, including
attention (precisely!) and stimulation history but also perhaps more global state
parameters sud as the emotional state. Improving our understanding of these
complexinter-dependenciesappearsto usasan exciting direction for future researa.

Exploring non-invasively the white matter connectivity within the visual brain
has an enormouspotential. First it could clarify the de nition and labeling of
visual areascurrerntly under disputes or help in the segmeration of complex of
areassud as hMT+. Additionally, anatomical connectivity is a complemetary
information to allow comparisonsacrossspeciessud as macaqueand humansand
better understand the biological ewolution. Ultimately, di usion-w eighted imaging
may reveal the anatomical structure of the human visual system that will have
to be further related with its functional architecture. Howewer, we have stressed
someimportant limitations of inferencesbasedon DTI. More sophisticated water
di usion models basedon High Angular Resolution Di usion Imaging (HARDI)

and appropriate connectivity mapping methods constitute a promising direction to
overcomethese limitations. This issuewill be addressedshortly in the laboratory
on the occipital visual cortex using algorithms currertly under study [48].
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Conclusion et perspectiv es

Resumes des contributions

Nousavonsintroduit une nouvelle approche de lissagedesdonneesd'IRMf cortraint
a la surface corticale. Nous avons demortre ses avantages sur (i) la methode
classiquede lItrage 3D isotrope qui ignore la geonetrie complexe de la surface
corticale et (ii) des procedes de regularisation sur une represeiation explicite
de la surfacecorticale (i.e. un maillage) qui necessitet une projection prealable
des donneesfonctionnellessur un modele du cortex. Une interface Matlab a ete
dewveloppeepour ce programmede lissageainsi que pour calculer automatiquemen
une represemation implicite (i.e. par un ensenble de niveauxou level set), a partir
de maillages des surfacescorticales. Le programme de lissagea ete implante en
C++ par Jean-Philippe Ponsdurant satheseau laboratoire Odys=e.

Une procedure complete de cartographie par retinotopie permettant I'identi cation
individuelle de di erertes airesvisuellesde bas-niveau a ete deweloppee. Di erertes
con gurations desstimuli ont ete testeesen vue d'optimiser la qualite descartesdu
champsvisuel ainsi obtenues. Le paradigmeainsi retenu conduit a desresultats -
ablesen 20 minutes d'acquisitions fonctionnelles. Des programmesautomatisart les
di erertes etapesde I'analyse et incluant destraitements desdonneesanatomiques
et fonctionnellesont ete implantesen Matlab. Toutefois, etant donne que le calcul
du signe du champs visuel a conduit a desresultats insatisfaisars, et ce malgre
di erertes tentativ es de post-traitements desdonnees,une delineation manuelle se
fondart sur les cartes angulaires obtenues est neassaire. La methode complete
est desormaisutilisee en routine au laboratoire Odysse et au certre IRMf de la
Timone. De plus, elle a fait I'objet d'un transfert aupresde I'equipe DyVA et est
actuellemen utilisee pour etudier l'organisation corticale de patients sou rant de
pathologiesretiniennes.

Une procedure d'indenti cation fonctionnelle du complexe MT chez I'homme
(hMT+) a egalemenh ete deweloppee. A linstar de la cartographie retinotopique,
nous avons identi e la con guration de stimuli optimale parmi di erert motifs et
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cortrastes erntre conditions de stimulation an d'obtenir des activations robustes
dansla zonecorticale presunee. La chane de traitements desimagesa egalemenh
ete automatisee.

En sefondant sur cesproceduresd'identi cation de di erertes airesvisuelles,nous
avons ensuite caracterise la sensibilite fonctionnelle de celles-cipar rapport a la di-
rection du mouvemen. Une experienced'IRMf d'adaptation evenemetielle couplee
a une methode non-paranetrique d'estimation de la reponse hemadynamique ont
permis d'estimer la selectivite a la direction propre a chaqueaire et d'en inferer des
proportions relatives de sous-mpulations cellulairesselonleur pro| de selectivite.
Nous avons trouve une selectivite plus forte dans hMT+ suivi par l'aire V3A,
con rmant leur implication forte dans le traitement du mouvemen visuel. Une
selectivite singulieremen elewee a egalemenh ete obsenee dans les aires V1 et
V4v. Une explication plausible en terme de selectivite fonctionnelle dependart du
cortexte a ete proposee pour rendre compte de ce phenonene.

Enn, nous avons conmbine les procedures de cartographie des aires visuelles
avec desimagesdu tenseur de di usion pour etudier la connectivite anatomique
erire les di erertes aires visuelles de bas-nivvau. Une chane de traitement
complete a ete deweloppeea n d'analyserdansun mémereferertiel lesinformations
complemenaires fourniespar lesdi erertes modalitesd'IRM. En sefondart surune
approche de geomretrie Riemanniennede cartographiede la connectivite anatomique,
nousavonspu reconstruirelesradiations optiquesreliant le Corps Genouille Lateral
a l'aire V1. La topologie des connectionsertre les deux hemispleres des aires
visuellesa egalemen ete etudiee au niveau du splenium et con rme desresultats
publies recemmeh Enn, nous avons estime la connectivite anatomique ertre
hMT+ et lesdi erertes airesretinotopiques, corroborant I'existence de deux voies
paralleleslieesau traitement cortical de I'information visuelle.

Perspectiv es

Naturellemert, ce travail ouvre davantage de perspectives qu'il ne resoud de
guestions.

La procedure de cartographie retinotopique peut €tre amelioree en di erens
points. Tout d'abord, le temps d'acquisition pourrait €tre reduit en presemant si-
multanemern lesstimuli codant respectivement pour I'angle polaire et I'excertricit e,
chaque coordonnee ayant sa propre frequencefondamernale. Bien que deja
suggeree par dautres auteurs (par exemple [239), cette amelioration supposee
de la stimulation n'a jusqu'alors jamais ete testee directemert. Par ailleurs,
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accrdtre le type de motif utilise dans les stimuli ainsi que la tache realise par le
sujet durant I'experiencedevrait elargir le champ d'application de la cartographie
retinotopique. En plus de permettre I'enregistremen d'un meilleur signal dans
des regionsactuellemen debattues, de telles ameliorations pourraient rewveler de
nouvelles cartes retinotopiques, comme cela a deja pu &tre realise auparavant par
d'autres groupes (voir par exemple[194). Enn, la segmemation nale desaires
retinotopiques est une etape manuelle dans notre procedure. Deformerun modele
des cartes angulaires typiques sur les donnees experimertales projeteessur une
represemation plane de la surfacecorticale, comme propose recemmenh dans [53],
senble une approche prometteuse. Nous allons implanter une telle procedure a
court terme, en collaboration avec | equipe DyVA.

L'experience d'IRMf d'adaptation ouvre de nombreusesperspectives. Dans un
premier temps, il serait souhaitable d'accrdtre le nombre de directions di erertes
du mouvemert a n d'obtenir une mesureplus precisedescourbesde selectivite a cet
attribut. Cependart, lesrelations non-lineairesertre I'activit e neuronaleet le signal
BOLD limitent certainemer la resolution de I'edhantillonnage d'une selectivite a
une dimensiondu stimulus (ici la direction du mouvemer) que l'on peut obtenir
par cette methode. Il serait souhaitable d'avoir une estimation quartitativ e de
cette limitation. Deuxiememen il serait particulieremen interessah de dewelopper
un modele mathematique de l'adaptation neuronale dans les di erertes aires et
populations neuronales.Cela pourrait cortribuer a mieux cernerl'origine du signal
BOLD mesue dans les experiencesd'adaptation. Troisiememenm, une approche
similaire, i.e. conmbinant notre paradigme d'IRMf d'adaptation et des methodes
appropriees d'analyse des donnees IRMf comparablesa l'outii HRF utilise ici,
peut etre directemen appliqueea d'autres dimensionsde stimuli commela vitesse
du mouvemert ou la couleur. De telles experiencesconduiraiert a une meilleure
caracterisation de la selectivite fonctionnelle dans le cortex visuel de I'homme.
Enn, lesresultats de cette experienceont attir e notre attention sur les relations
importantes entre perception (visuelle) et I'etat gereral du sujet, que ce soit les
processusttentionnels sous-jacets, I'historique de la stimulation preseneeau sujet
mais peut-etre egalemen desparametres plus globaux commeson etat emotionnel.
Accradtre notre comprehensionde cesinter-dependancescomplexesnous apparat
commede passionnates directions de recherdhe pour l'avenir.

L'exploration non-invasive des bres de matiere blanche dans le systeme vi-
suel presette egalemen un potentiel consicerable. Tout d'abord, cela permettrait
de clari er la de nition et I'etiquetage d'aires visuellesactuellemen sujettes a de
vigoureux debats dans la comnunaute. Cette information cortribuerait aussi a
segmeter descomplexesd'aires tel que hMT+ en di erertes sous-structures. En
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outre, la connectivite anatomique fournit une information supplemenaire dans
l'optique d'etablir des analogiesertre especestelles que le macaqueou I'homme
et ainsi de mieux comprendre |'ewlution biologique. Finalemen, l'imagerie de
di usion pourrait reweler l'architecture anatomique du systeme visuel cortical
de 'nomme qui sera alors a relier a son architecture fonctionnelle. Nous avons
neanmoins souligre les limitations inherertes aux inferencesplausibles a partir
d'imagesdu tenseurde di usion. Desmodelesplus sophistiquesde la di usion des
moleculesd'eau, fondeessur desdonneesde di usion a haute resolution angulaire
assortiesde methodes de cartographie des connectivites approprieesrepreserent
une direction prometteuse pour depasserces limitations. Cette direction sera
prochainemen examinee dansle cortex visuel occipital gracea desalgorithmesen
coursde dewveloppemert au seindu laboratoire Odysse[48).
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