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abus�ee; Christophe, mâ�tre incontest�e de l'imagerie de di�usion, ceinture noire du

d�epannage informatique et tr �esor de gentillesse et d'enthousiasme; Manu, triomphal

combattant des viscosit�es des ombres et catalyseur des algorithmes r�ecalcitrants; Max,

enthousiaste relecteur de cette th�ese(pourrais-je un jour te renvoyer la balle?); l' �epicurien

Fran�cou•e, pilier de la bonne ambiance du projet et mâ�tre yogi en devenir; Sylvaing-le
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Abstract

The evolution of cerebral imaging technologiescombined with speci�c image processing

algorithms contribute to improving our knowledgeof the brain functioning, in particular

regarding visual perception. This thesis contributes to current understanding implied in

visual motion perception in humans, based on complementary information brought by

di�eren t Magnetic ResonanceImaging (MRI) modalities.

The �rst part of this work focuseson functional MRI (fMRI) identi�cation of low-level

visual areas. We detail the fMRI retinotopic mapping procedurewe developed, from the

stimulus designto the �nal anatomo-functional analysis. A speci�c functional localization

of the hMT/V5+ complex is alsoobtained with a block design. Thesemethods, optimized

according to some stimulation parameters, allow the extraction of individually de�ned

and homogeneousRegionsOf Interest (ROI).

In the secondpart, we characterize functionally these previously identi�ed low-level

visual areas. Basedon the recent fMR-Adaptation paradigm, which allows to investigate

the sensitivity of a cortical region to quantitativ e variations of a given feature, we

demonstrate a functional di�eren tiation acrossareasregarding their relative sensitivity to

visual direction of motion.

Lastly, we combine fMRI and Di�usion Tensor MRI (DTI) to study the anatomical

connectivity within the low-level visual cortex. Based on state of the art white matter

�b ers mapping algorithms, this characterization gives insights on the network of areas

implied, among others, in visual motion processing.

Key words: visual cortex, fMRI, retinotopy, motion perception, direction selectivity, adap-

tation, DTI, anatomical connectivity.
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R�esum�e

L' �evolution des technologiesd'imagerie c�er�ebrale alli �eeaux d�eveloppement d'algorithmes

sp�eci�ques de traitement d'images permettent d'am�eliorer nos connaissancessur le

fonctionnement du cerveau, en particulier s'agissant de la perception visuelle. L'ob jectif

de ce travail de th�eseest de contribuer �a la compr�ehensiondesaires corticales impliqu�ees

dans la perception visuelle du mouvement chez l'homme, en analysant l'information des

signaux de di� �erentes modalit �es compl�ementaires d'Imagerie par ResonanceMagn�etique

(IRM).

Une premi�ere partie concerne l'identi�cation individuelle des aires visuelles de bas-

niveau. Nous d�etaillons la m�ethode de cartographie r�etinotopique par IRM fonctionnelle

(IRMf ) que nous avons developp�ee, depuis la conception des stimuli visuels �a l'analyse

anatomo-fonctionnelle �nale. Par ailleurs, une localisation fonctionnelle du complexe

hMT/V5+ est obtenue par un paradigme en bloc. Ces m�ethodes, optimis�ees suivant

certains param�etres de la stimulation, permettent d'extraire pour tout individu des

R�egionsd'In t�er̂et homog�enes.

Dans un deuxi�eme temps, nous proposons une caract�erisation fonctionnelle des

di� �erentes aires visuelles primaires. En se fondant sur le paradigme r�ecent d'IRM

d'adaptation qui permet d'�etudier la sensibilit�e d'une r�egion c�er�ebrale �a des variations

quantitativ es d'un param�etre de la stimulation, nous d�emontrons une di� �erenciation de

la sensibilit�e �a la direction du mouvement dans les aires etudi�ees.

En�n, nous d�ecrivons une exp�erience combinant les modalit �es d'IRMf et d'IRM de

di�usion (IRMd) dans le but d'�etudier la connectivit�e anatomique au seindu cortex visuel

primaire. Cette caract�erisation, �etablie en s'appuyant sur desalgorithmes r�ecents de car-

tographie des�bres de mati�ereblanche, donnedesindicessur le r�eseaud'aires notamment

impliqu�eesdans le traitement du mouvement visuel.

Mots cl�es: cortex visuel, IRMf, r�etinotopie, perception du mouvement, selectivit�e �a la

direction, adaptation, IRMd, connectivit�e anatomique.
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In tro duction et contributions

Con texte

Comprendre les processuscomplexesr�ealis�es par notre cerveau a�n d'in t�eragir avec le

monde est assur�ement l'un des plus grands d�e�s scienti�ques de la recherche contempo-

raine. Au-del�a d'apporter desd�ebuts de r�eponses�a desquestionsphilosophiquestelles que

la relation entre notre perception individuelle et le monde "r �eel", cette quête peut avoir

de nombreusesretomb�eesdans le domaine de la sant�e, sugg�erer de nouvellesarchitectures

d'ordinateurs, des interfaceshomme-machine ou desalgorithmes biologiquement inspir�es,

etc... Cela concernetout particuli �erement le syst�emevisuel, la vision �etant ind�eniablement

notre sensle plus sollicit �e dans la vie courante.

Jusqu'au milieu du vingti �eme si�ecle, la th�eorie dominante sur le syst�eme visuelle ne fai-

sait �etat que d'une aire visuelle unique. De nombreusesaires visuellesont �et�e d�ecouvertes

depuischezdi� �erents mammif�eres,enparticulier l'homme. Quatre crit �eresprincipaux sont

couramment utilis �espour identi�er cessubdivisions du cortex visuel: (i) l'architecture cel-

lulaire locale du cortex (ii) les motifs de connectionsentre les di� �erentes zonescorticales,

(iii) lespropri�et�esfonctionnellesdesneuroneset (iv) l'organisation r�etinotopique. Lesdeux

derni�eresm�ethodesont pu être rapidement appliqu�ees�a l'homme grâceaux techniquesde

neuroimagerie. En revanche, la r�esolution spatiale limit �eede cestechniquesnon-invasives

restreint l'utilisation descrit �eresd'architecture anatomique in vivo. Par ailleurs, seuleune

minorit �e d'�etudesde neuroimageriedu syst�emevisuel combinent plusieurs de cescrit �eres

�a ce jour.

La technique d'imagerie par r�esonancemagn�etique (IRM) �gure commeun outil privil �egi�e

pour aborder cesquestions. L'IRM permet enparticulier d'obtenir desimagesanatomiques

de haute r�esolution, une mesureindirecte de l'activit �e neuronale via l'IRM fonctionnelle

(IRMf ) et l'organisation macroscopiquedes �bres de mati�ere blanche via l'IRM de dif-

fusion (IRMd). Dans cette th�ese,nous avons utilis �e ces trois modalit �es de l'IRM pour

a�ner la caract�erisation du cortex visuel de bas niveau, avec un accent particulier sur la

perception du mouvement.

19



Organisation de la th �ese

Cette th�eseest organis�ee en 6 chapitres apr�es cette intro duction g�en�erale. Le premier

chapitre rappelle les principales connaissancesactuelles concernant le syst�eme visuel

cortical et pr�esente les di� �erentes modalit �esd'IRM utilis �eesdans ce travail. Cette partie

reste relativement g�en�erale, un �etat de l'art plus pr�ecis ouvrant les chapitres suivants.

Dans le deuxi�eme chapitre, nous d�etaillons deux approches de traitement des images

anatomiquesque nousavonsemploy�ees.Nous pr�esentons ensuite lesprincipales m�ethodes

de traitement et d'analyse des images fonctionnelles, en intro duisant notamment une

nouvelle approche de lissagedes donn�eesfonctionnelles contrain t �a la surface corticale.

Le chapitre 5 traite de la cartographie de di� �erentes aires visuelles de bas niveau,

suivant le crit �ere de r�etinotopie d'une part et la sp�eci�cit �e fonctionnelle du complexe

human MT (not�e hMT+) d'autre part. Grâce �a un paradigme d'IRM d'adaptation,

nous d�emontrons dans le chapitre 6 la sp�eci�cit �e fonctionnelle de chacune des aires ainsi

identi� �eesdans le traitement de la direction du mouvement. Le dernier chapitre pr�esente

quant �a lui une �etude de la connectivit�e de mati�ere blanche entre les di� �erentes aires

visuelles en se fondant sur une m�ethode r�ecente d'analyse des images d'IRMd. Nous

terminons cette th�esepar une conclusion g�en�erale sur nos contributions puis sugg�erons

quelquesdirections futures de cetravail (cette partie est �egalement disponible en fran�cais).

Chapitre 2
Ce chapitre proposeun survol des connaissancesactuellessur le cerveau humain
(1�ere section) avant de d�etailler plus pr�ecis�ement l' �etat de l'art sur le syst�eme
visuel (2�eme section). Nous rappelons ensuite les principes fondamentaux de
l'IRM, en insistant sur les modalit �es d'IRMf et d'IRMd. La section 4 pr�esente
en�n le dispositif exp�erimental disponible au centre IRMf o�u nous avons conduit
nos exp�erienceset les param�etres sp�eci�ques aux di� �erentes s�equencespermet-
tant respectivement d'acqu�erir lesimagesanatomiques,fonctionnelleset dedi�usion.

Chapitre 3
La segmentation individuelle des di� �erents tissus du cerveau et l'extraction d'un
mod�ele g�eom�etrique de la surfacecorticale sont grandement pro�tables �a l'analyse
et �a la visualisation des images fonctionnelles et de di�usion. Nous d�etaillons
dans ce chapitre deux algorithmesque nous avons utilis �es: la plate-forme logicielle
BrainVISA, d�evelopp�ee au sein de l'Institut F�ed�eratif de Recherche n� 49 et une
approche compl�ementaire, avec le logiciel ABSOLUt recemment d�evelopp�e dans le
laboratoire Odyss�ee. Cesdeux m�ethodes fournissent une segmentation pr�ecisedes
di� �erents tissusdu cerveauet unereconstructiondessurfacesinterneset externesdu
cortex. Il est important de soulignerqu'au del�a du r�eglagede quelquesparam�etres,
aucune correction manuelle n'est requise. Nous justi�ons en�n notre choix en
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faveur de l'approche impl�ement�ee dans le logiciel ABSOLUt en nous fondant sur
une comparaisonqualitativ e de sesr�esultats avec ceux de BrainVISA.

Chapitre 4
Une exp�erienceclassiqueen IRMf conduit �a l'obtention d'un jeu de donn�ees4D, i.e.
une ou plusieurs s�eries temporelles d'images 3D. Des traitements sp�eci�ques sont
alors requis pour compensercertains artefacts li�es �a l'acquisition des imageset en
extraire l'information d'int�er̂et. Cette information peut correspondre �a la d�etection
de zonesd'activation ou encore �a l'estimation de la forme locale de la r�eponse
BOLD dans certaines r�egionsdu cerveau. La premi�ere section se penche sur les
pr�etraitements couramment appliqu�esaux donn�eesd'IRMf. Nousy introduisonsen
particulier unenouvelleapprocheau probl�emedu lissagedesdonn�eesIRMf contraint
�a la surface corticale. Cette technique, reposant sur la m�ethode des ensembles
de niveaux (level sets), o�re des avantages �a la fois pratiques et th�eoriquespar
rapport �a la technique classiquede �ltrage 3D isotrope mais aussipar rapport aux
approchesde r�egularisationfond�eessur un maillageexplicite de la surfacecorticale.
La secondesection donne une synth�esedes principales approches d'analyse statis-
tique des donn�eesd'IRMf, en insistant plus particuli �erement sur deux m�ethodes:
la m�ethode standard impl�ement�ee dans le logiciel SPM du Functional Imaging
Laboratory �a Londres,et unem�ethode d'estimation non-param�etrique de la r�eponse
BOLD d�evelopp�eeau seinde l'Institut F�ed�eratif de Recherche n� 49.

Chapitre 5
Ce chapitre est d�edi�e �a l'identi�cation de di� �erentes aires du cortex visuel. Il est
divis�e en deux sectionsdistinctes, suivant le crit �ere employ�e pour r�ev�eler cesaires.
La premi�ere section est ainsi une description de la m�ethode de cartographie des
aires r�etinotopiques par IRMf. Apr�es un �etat de l'art des di� �erentes approches
d�ecrites dans la litt �erature, nous d�etaillons notre proc�edure depuis la g�en�eration
desstimuli visuels jusqu'�a l'analyse anatomo-fonctionnelle�nale. Nous pr�esentons
di� �erentes con�gurations de stimuli envisag�eespour optimiser la dur�eed'acquisition
et la qualit�e descartesdu champsvisuel correspondantes, puis nouscomparonsnos
r�esultatsavecceuxrapport�esdansla litt �erature. Nousd�etaillons en�n la proc�edure
retenue pour segmenter di� �erentes aires visuelles retinotopiques et extraire des
regionsd'int�er̂et tri-dimensionnellespour chacuned'entre elles. La secondesection
de ce chapitre est d�edi�ee �a la m�ethode de cartographie fonctionnelle du complexe
hMT+. �A l'instar de la m�ethode de r�etinotopie, di� �erentes con�gurations de stimuli
sont test�eesa�n d'optimiser la proc�edure. Les r�esultats obtenus sont �nalement
confront�es�a ceux d�ecrits dans la litt �erature.
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Chapitre 6
Partant de l'identi�cation pr�ecise de di� �erentes aires visuelles de bas niveau
d�ecrite pr�ec�edemment, ce chapitre pr�esente une caract�erisation de leur sp�eci�cit �e
fonctionnellerespective par rapport �a la direction du mouvement. Cette exp�erience
reposesur le paradigmed'IRMf d'adaptation. Ce chapitre s'ouvrepar une revuede
ce r�ecent paradigme,en insistant sur sesapplications �a l' �etude du syst�emevisuel.
Nous d�etaillons ensuite notre exp�erienced'IRMf d'adapation �ev�enementielle. Une
estimation robuste de la r�eponse h�emodynamique permet d'�evaluer pour chaque
aire la s�electivit�e �a la direction du mouvement et d'en d�eduire les proportions
respectivesde deux sous-populations neuronalessensibles�a cet attribut visuel. Le
complexehMT+, directement suivi par l'aire V3A, apparaissent comme les plus
s�electifs �a la direction. Une forte s�electivit�e �a la direction est �egalement trouv�ee
dans les aires V1 et V4v, con�rmant ainsi les observations d'une r�ecente �etude
d'IRMf men�ee chez le macaque. En outre, ces r�esultats valident la capacit�e du
paradigme d'adaptation �a pr�eciser la s�egr�egation fonctionnelle des aires visuelles
primaires, tout en soulignant l'aspect dynamiquede la s�electivit�e fonctionnelle des
neurones.

Chapitre 7
Nous proposons de ra�ner notre connaissancedu cortex visuel humain en
�etudiant un autre aspect fondamental de l'organisation du cerveau: la connectivit�e
anatomique. Nous commen�conspar un �etat de l'art desm�ethodesde cartographie
de la connectivit�e anatomique�a partir desimagesdu tenseurde di�usion (DTI), en
mettant l'accent sur leurs applicationsau cortex visuel. Notre approche, combinant
cartographiedesaires visuelleset une m�ethode g�eom�etrique d'analysedesdonn�ees
de DTI r�ecemment d�evelopp�eeau laboratoire est ensuitepr�esent�ee. Une châ�ne de
traitement compl�ete permet l'analyse conjointe des informations compl�ementaires
apport�eespar chacune des modalit �es d'IRM dans un espacede r�ef�erence. Apr�es
une premi�erevalidation de notre approche sur lesradiations optiques,une topologie
des connectionsinterhemisph�eriquesentre aires visuellesau sein du splenium est
miseen �evidence.Une �evaluation de la connectivit�e entre le complexehMT+ et les
di� �erentes airesr�etinotopiquesest �egalement expos�ee. Cesr�esultats,ainsi que leurs
implications th�eoriqueset m�ethodologiques,sont discut�esdansunederni�eresection.

Nous concluons cette th�ese en rappelant nos contributions principales avant
de sugg�erer quelquesdirections futures de ce travail.
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Con tributions

Les contributions de cette th�esesont �a la fois m�ethodologiqueset exp�erimentales.
D'un point de vue m�ethodologique, ce travail propose de nouvelles approches �a
l'analyse des donn�eesd'IRM et constitue une validation de di� �erents algorithmes
r�ecemment d�evelopp�esdansce domaine:

� Nous introduisons au chapitre 3 une nouvelle approche pour le lissagedes
donn�eesIRMf contraint �a la surfacedu cortex. Cette d�emarche s'appuiesur la
m�ethodedesensemblesdeniveauxpour lisserdirectement l'image fonctionnelle
le long de la direction parall�ele �a la surfacecorticale. Cette nouvelle technique
est compar�ee�a la m�ethode classiquede �ltrage 3D isotrope ainsi qu'�a une ap-
procheder�egularisationdesdonn�eesfonctionnellesprojet�eessur un mod�eleex-
plicite (maillage) de la surfacecorticale. Comparativement au classique�ltrage
isotrope, lesm�ethodesincorporant l'information de la g�eom�etrie propre au cor-
tex de l'individu sont naturellement moins sujettes �a un ind�esirablem�elange
d'informations provenant de tissus h�et�erog�enes. En outre, la m�ethode de lis-
sagedesdonn�eesfonctionnellesfond�eesur lesensemblesdeniveauxpr�esente les
avantagessuivants par rapport aux m�ethodesreposant sur une repr�esentation
explicite dela surfacecorticale: (i) tout d'abord, aucuneprojection desdonn�ees
fonctionnellessur la surfacecorticale n'est requise,ce qui �evite le choix sou-
vent arbitraire de la m�ethode de projection; (ii) en cons�equence,le choix de la
technique de projection utilis �eepour visualiser les r�esultats �naux d'une anal-
ysepeut alors être e�ectu�e a posteriori, ce qui conf�ere davantage de souplesse
�a la châ�ne globale des traitements; (iii) en�n, l'implantation de la m�ethode
de lissagefond�ee sur les ensembles de niveaux conduit �a un traitement plus
e�cace des donn�eesdu point du vue computationnel. Le seul inconv�enient
de la m�ethode par ensemble de niveaux provient de la n�ecessit�e de disposer
d'une repr�esentation implicite (i.e. sousforme d'un ensemble de niveaux) de la
surfacecorticale. Toutefois,cette �etape est ex�ecut�eee�cacement par un algo-
rithme de la librairie ABSOLUt. Nous illustrons les r�esultats obtenus avec les
di� �erentes approchessur deux jeux de donn�eesr�eellesd'exp�eriencesIRMf por-
tant sur desmacaqueset sur deshumains. Cette contribution m�ethodologique
a �et�e pr�esent�ee�a la conf�erenceHuman Brain Mapping en 2004[251].

� L'optimisation de param�etres fondamentaux des stimuli utilis �es pour les
exp�eriencesde r�etinotopie d'une part et d'identi�cation fonctionnelledu com-
plexehMT+ d'autre part estd�ecritedansle chapitre 5. Grâce�a cesproc�edures,
l'identi�cation �able de nombreusesaires visuellesde bas niveau est obtenue
en environ 30 minutes avecun scannerIRM �a 3 Tesla,en incluant l'acquisition
d'une imageanatomiquedehaute r�esolution. De plus, nousavonsimplant�eune
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m�ethode d'extraction de r�egionsd'int�er̂et tri-dimensionnellescorrespondant �a
chaqueaire visuelle r�etinotopique.
La proc�edure de cartographie des aires r�etinotopiques a �et�e pr�esent�ee �a la
conf�erenceHuman Brain Mapping en 2003[252].

� La validation de nouveauxalgorithmessur desjeux de donn�eesexp�erimentales
constitue une �etape n�ecessaireen vue de leur int�egration �a la complexechâ�ne
de traitement desimagesIRM. Le pr�esent travail apporte quelques�eclairages
en ce sens. Nous comparonstout d'abord dans le chapitre 3 deux outils de
segmentation r�ecents et discutons leurs avantageset inconv�enients respectifs.
Par ailleurs, les r�esultats de l'exp�eriencepr�esent�ee au chapitre 6 constituent
une validation suppl�ementaire du paradigme d'IRMf d'adaptation. De plus,
ce mêmechapitre illustre la sensibilit�e accruequ'il est possibled'obtenir avec
desapprochesalternatives au mod�ele lin�eaire g�en�eralis�e classiquement utilis �e
pour l'analyse des donn�eesIRMf. C'est en particulier le cas de la m�ethode
d'estimation non-param�etrique de la r�eponseh�emodynamiqueque nousavons
adopt�eedans cette �etude. En�n, les implications m�ethodologiquesde l' �etude
de la connectivit�e anatomique�a partir d'imagesDTI, d�etaill�eedansle chapitre
7, sont de deux ordres. D'une part, cette �etude prouve qu'il est possible
de combiner les informations provenant de di� �erentes modalit �esd'IRM, dans
notre cas l'information des imagesanatomique, fonctionnelle et de di�usion.
D'autre part, cette exp�erienceest une premi�ere validation de la technique de
r�esolution par Fast Marching du probl�emede cartographiede la connectivit�e
anatomique fond�ee sur une mod�elisation Riemanniennedes imagesDTI. Ce
cadre m�ethodologique est en cours de soumission�a la conf�erenceComputer
Vision and Pattern Recognition(CVPR), tandis quelesr�esultatspr�eliminaires
sur le cortex visuel ont �et�e pr�esent�es�a la conf�erenceHuman Brain Mapping en
2005[250].

D'un point de vue plus exp�erimental, cette th�eseapporte de nouveaux�eclairagessur
l'organisation fonctionnelleet anatomiquedu cortex visuel de basniveau:

� l'exp�erienced�ecrite au chapitre 6 conduit �a une estimation de la s�electivit�e �a
la direction du mouvement dans di� �erentes aires visuellesde bas niveau. Les
r�esultats con�rment que cette s�electivit�e d�epend de l'aire consid�er�ee. Ainsi, le
complexehMT+ et l'aire V3A sont lesplus s�electifs,suivisdeV1, V3, V4v puis
V2. Cet ordre�etaiel'id �eedetraitement hierarchiquedel'information au seindu
cortex visuel. De plus, lesmesuresobtenuessont plus pr�ecisesquelesr�esultats
pr�ec�edents, bien que le paradigme d'adaptation utilis �e soit relativement peu
contraignant. Les indices de s�electivit�e observ�es dans l'aire V1 et hMT+
sont singuli�erement comparables�a ceux rapport�es dans une exp�eriencesim-
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ilaire e�ectu�eesur le macaque. Cette observation peut constituer une preuve
suppl�ementaire del'homologiedeceszonescorticalesdanslesdeuxesp�eces.En-
�n, les s�electivit�es �a la direction particuli �erement importantes observ�eesdans
lesairesV1 et V4v ravivent la notion d'une s�el�ectivit �e fonctionnelled�ependante
du contexte. Ce travail est en coursde soumission�a la revueJournal of Vision.

� L'exp�erience combinant les donn�ees d'IRMf et d'IRMd expos�ee dans le
dernier chapitre permet de reconstruirelesradiations optiquesreliant le Corps
Genouill�e Lat�eral �a l'aire V1. De plus, nos r�esultats con�rment la topologie
des connectionsoccipito-callosalesdans le splenium. Nous pr�esentons en�n
la premi�ere caract�erisation de la connectivit�e anatomique entre le complexe
hMT+ et les aires r�etinotopiquesoccipitales. V1 r�ev�ele syst�ematiquement les
plus forts indicesde connectivit�e, ce qui est coh�erent avec les donn�eesrecueil-
lies chez l'animal. D'autre part, les plus faibles indices de connectivit�e avec
hMT+ se trouvent invariablement dans l'aire V4, ce qui est coh�erent avec
l'id �eede s�egr�egation de voiesparall�elesventrales et dorsalesde traitement de
l'information visuelle. Cette partie est en coursde soumission�a NeuroImage.

Autres contributions

Dans un soucisde coh�erence,certainescontributions r�ealis�eesdurant ce travail de
th�esene sont pas inclusesdans le pr�esent manuscrit. Nous les mentionnons rapide-
ment ci-dessous.

� La proc�edure de cartographie r�etinotopique est actuellement appliqu�ee par
l' �equipe DyVA1, INCM, CNRS, Marseille pour �etudier l'organisation corti-
cale aupr�esde patients sou�rant de dysfonctionnements de la r�etine. Ceux-ci
incluent des pathologiestelles que les scotomesvisuels ou la d�eg�en�erescence
maculaire li�ee�a l' âge(DMLA). Deux s�eriesd'exp�eriencesont d�ej�a �et�e men�ees
sur 8 sujets sains. Les cartesr�etinotopiquesde cessujets ont �et�e dansun pre-
mier temps acquiseset reconstruitessuivant la m�ethode d�ecrite au chapitre 5.
Dans un secondtemps, un paradigmeen blocs alternant entre un fond gris et
un damier couvrant le champsvisuel complet et papillotant a �et�e pre�sent�e aux
mêmessujets. Danslesdeuxtypesd'exp�erience,desconditionsavec4 scotomes
circulairesperi-fov�eauxdedi� �erentes tailles et plac�es�a di� �erentesexcentricit �es
ont �et�e ajout�ees.Lesprojections corticalesdesdi� �erents scotomesont pu être
identi� �eeset leurs relations con�rm �eesquantitativ ement, en comparant lespo-
sitions corticaleset les surfacesdeszonescorticalesinactiv�eesavec les valeurs
connuesde rayon, excentricit �e et surfacedesscotomesdans le champ visuel.
Au del�a du transfert de la technique compl�ete de cartographie r�etinotopique,

1www.incm.cnrs-mrs.fr/en equipedyva.php
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j'ai con�cu les stimuli ainsi que les programmesd'analyse des donn�eesissues
du paradigme en bloc. Ce travail a donn�e lieu �a deux pr�esentations �a des
conf�erencesd'ophtalmologie en mai 2005, l'une �a la conf�erenceARVO (Asso-
ciation for Research in Vision and Ophtalmology) [103] et l'autre au Congr�es
Annuel de la Soci�et�e Fran�caised'Ophtalmologie [102]. Suite �a cette premi�ere
phasede validation, une�etudede la repr�esentation corticale aupr�esde patients
atteints depathologier�etinienneestactuellement men�eepar Dr. Louis Ho�art,
ophtalmologuea l'h ôpital de la Timone �a Marseille et �etudiant en th�esedans
l' �equipe DyVA.

� J'ai contribu �e �a une exp�erienced'IRMf men�eechezle macaqueet conduite par
le ProfesseurGuy A. Orban et Mr. Koen Nelissenau laboratoire de neuro-
psycho-physiologiede l'univ ersit�e catholique de Louvain2. L' �etude porte sur
le traitement de la vitessedu mouvement visuel dans le cortex du macaque.
Cette exp�eriencefut une initiation �a l'exp�erimenation animale ainsi qu'aux
contraintes sp�eci�ques li�ees�a l'environnement hospitalier. Certainesdonn�ees
de cette exp�eriencesont utilis �eesdansle chapitre 4 pour valider notre m�ethode
de lissagedesdonn�eesIRMf contraint �a la surfacecorticale.

� J'ai con�cu un programmeparam�etrique permettant de g�en�erer les stimuli vi-
suelsd'une exp�erienceIRMf portant sur la perception du mouvement trans-
parent. Cette exp�eriencea �et�e r�ealis�ee dans le cadre du r�eseaude recherche
"Perception for Recognition and Action" 3. L'analyse des donn�eesfonction-
nellesest en coursde r�ealisation.

� En�n, mon travail de th�eseinclue une part importante de d�eveloppement logi-
ciel. J'ai �ecrit denombreux scriptsMatlab et shellspour automatiserla plupart
des�etapesde traitements d'imagesutilis �eesdanscette th�ese.La plupart com-
prend une interface fond�eesur le logiciel SPM pour permettre une interaction
ais�ee avec l'utilisateur. Certainesde cesm�ethodesont �et�e transf�er�eesaupr�es
de l' �equipe DyVA, au Centre IRMf de Marseille et au laboratoire de neuro-
psycho-physiologiede Louvain.

2http://134.58.34.1/index.php
3http://pra.psy .gla.ac.uk/
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Chapter 1

In tro duction and contributions

1.1 Con text

Understanding the complex processestaking place in our brain to interact in the
world is undoubtly one of the greatestscienti�c challengeof current research. Be-
yond bringing possibleanswersto someold agephilosophicalquestions,for instance
regarding the relation between individual perception and the "actual" world, this
quest may provide several outcomesin healthcare,be an inspiration sourcefor en-
hancedcomputerhardwarearchitecture, computer-humaninterfacesandbiologically
inspired algorithms,etc. It is in particular the casewith the visual systemsincevi-
sion is probably the most called-upon sensein our daily life.
Until the middle of the twentieth century, the main theory of the visual perception
and the brain considereda single visual cortical area. Sincethen however, various
visual areashave been discovered in mammalians, including humans. Four main
criteria are now commonly used to identi�ed thesesubdivisions of the visual cor-
tex: (i) local anatomical architecture of cortical cells, (ii) white matter connectivity
patterns acrosscortical zones,(iii) global functional properties of neuronsand (iv)
retinotopic organization. The last two methods were rapidly applied to humans
thanks to neuroimagingtechniques. On the other hand, the low spatial resolution
relative to cellsdimensionsactually reachedby thesenon-invasive techniqueslimited
the useof the anatomical architecture criteria in vivo. Besides,to date only a small
proportion of visual neuroimagingexperiments usemore than oneof thesecriteria.
The exciting -and relaxing, sinceit is not rare that subjects fall asleepwhile lying
insidethe tunnel!- techniqueof Magnetic ResonanceImaging (MRI) is a particularly
promising tool to tackle theseissues.It indeedo�ers the possibility, amongothers,
to obtain high resolutionanatomical imagesand, at reasonablespatial resolution, in-
direct measurements of neural activit y through functional MRI (fMRI) and of white
matter connectionsthrough di�usion weighted MRI (DWI).
In this thesis, we use these three di�eren t modalities of MRI to characterize the
human low-level visual cortex, with a particular emphasison motion direction per-
ception.
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1.2 Thesis outline

This thesis is organizedin 6 chapters (following this introduction). The �rst one is
an introduction to current knowledgeabout the cortical visual systemand the MRI
modalities we used. In the secondchapter, we detail the approacheswe applied to
the anatomical imageprocessing.We then describe di�eren t processingmethods to
analyze BOLD signal images,including a new surface-basedapproach to perform
the spatial smoothing of fMRI data. Chapter 5 deals with visual areasmapping,
for which we developed a complete retinotopic mapping experiment as well as a
speci�c functional identi�cation of the hMT+ complex. Basedon the identi�cation
of these areas,we demonstrate, with an fMRI adaptation paradigm, a functional
characterization of motion direction selectivity for each area (chapter 6). The last
chapter presents a study of white matter connectivity acrossthe samevisual areas,
using a recently developed framework to analyze Di�usion Tensor Images(DTI),
a particular model of DWI. We �nally closethis thesis with a generalconclusion
about our contributions and future work.

Chapter 2
We give in this chapter an overview of the human brain (section1) beforedetailing
more speci�cally current knowledge on the visual system (section2). We then
recall the basic principles underlying the Magnetic ResonanceImaging technique,
emphasizingon the modalities of fMRI and DWI we usedin this thesis. We �nally
present the experimental setup available at the Centre IRMf de Marseille wherewe
recordedour data and give the parametersof the di�eren t scannersequenceswe
usedfor our anatomical, functional and di�usion-w eighted images.

Chapter 3
The segmentation of the individual brain tissuesand the extraction of a geometrical
model of the cortical surfaceare of great interest for the analysis and display of
functional and di�usion weighted images.We detail in this chapter two algorithms
we used: the BrainVISA software, developed within the Institute F�ed�eratif de
Recherche n� 49, and a complementary approach, ABSOLUt, recently developed
at the Odyss�ee Laboratory. The two methods allow an accurate segmentation of
the di�eren t brain tissuesand a reconstruction of the inner and outer grey matter
surfaces. Importantly, beyond a few parameters tuning, no manual editing is
required. We then justify our choice in favor of the ABSOLUt software approach
basedon a comparisonof their respective outcomes.

Chapter 4
A typical fMRI experiment results in a 4D dataset. Speci�c processingis then
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required to correct for some acquisition artifacts and extract the information of
interest. This information can be the detection of activation loci or the estimation
of the local BOLD responseshape in speci�c zones.The �rst sectiondealswith the
preprocessingusually applied to fMRI datasets. In particular, we introduce a new
approach to addressthe problem of fMRI data smoothing alongthe cortical surface.
This method, based on the level set framework, o�ers theoretical and practical
advantagesover the typical 3D-isotropic smoothing technique aswell asmesh-based
approachesproposedso far. In the secondsection,we review the main approaches
proposedfor the statistical analysisof fMRI data, with a particular emphasison two
methods we used: the standard SPM framework and a non-parametric estimation
method of the BOLD response.

Chapter 5
This chapter is divided into two parts, each corresponding to a speci�c criterium
we used to delineate distinct low-level visual areas. In the �rst part, we describe
the fMRI retinotopic mapping procedure we employed to segment the early
occipital retinotopic areas. After a review of the di�eren t approaches described
in the literature, we detail our procedure, from the stimuli generationto the �nal
anatomo-functional analysis. We describe di�eren t stimulus con�gurations we
tried to optimize the acquisition processas well as the resulting maps quality and
then compareour results with the literature. We �nally detail the procedure to
segment the visual areasand extract 3D RegionsOf Interest for each retinotopic
area identi�ed. In the secondpart, we present the functional mapping we usedto
localize the hMT+ complex. Similarly to the retinotopic mapping experiment, we
varied somestimulus parameters to optimize the procedure. We �nally confront
our results with the literature.

Chapter 6
Based on the precise identi�cation of the low-level visual areas, we give in this
chapter a characterization of their respective functional selectivity to motion
direction we obtain with an fMR-adaptation paradigm. We start by a review
of fMR-adaptation literature, with an emphasison its applications to the visual
system. We then detail our event-related fMR-adaptation experiment. A robust
estimation of the hemodynamic responsefunction allows to estimate the direction
tuning and corresponding proportions of two functional sub-populations with
respect to this feature. The human MT complex (hMT+), directly followed by
V3A, appears to be the more direction selective. We also �nd high direction
selectivity in areasV1 and V4v, thus con�rming similar observations reported in
a macaquefMRI study. In addition, these results validate the fMR-adaptation
paradigm abilit y to assessthe functional segregationof early visual areas, while
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stressing the necessity to take into account dynamic aspects of the functional
selectivity to low-level features.

Chapter 7
Finally, we proposeto re�ne our knowledgeof the human visual cortex by studying
another fundamental aspect of the brain: the anatomical connectivity. We �rst
review the state of the art in DTI connectivity mapping approaches and their
applicationsto the visual cortex. We then present our approach which combinesthe
functional and retinotopic identi�cation of the visual areaswith a recently developed
geometrical framework to analyze DTI data. A complete processingpipeline is
developed to allow the analysis of the complementary information brought by
each MRI modality in a common referenceframe. After a �rst validation of our
approach on the well-known optic radiations, we characterizethe possibletopology
of interhemispheric connections of the low-level visual cortex areas within the
splenium. An evaluation of the connectivity betweenthe hMT+ complex and the
di�eren t retinotopic areas is also given. We �nally discussour results and their
theoretical and methodological implications.

We conclude this thesis by recalling our main contributions before suggesting
various future directions emergingfrom this work.

1.3 Con tributions

The contributions of the current thesisare both methodologicaland experimental.
From a methodologicalpoint of view, our work o�ers new approachesto MRI data
analysisand provides a validation of various state of the art algorithms developed
in the �eld:

� We introduce in chapter 3 a new cortical surface basedapproach for fMRI
data smoothing. This method takes advantage of the level set framework to
directly smooth the functional imagesalong a direction parallel to the cortical
surface. We compare this method with the classical3D-isotropic technique
and with a mesh-basedsmoothing approach similar to that already proposed
in the literature. Naturally, cortical surfacebasedmethods are lessprone to
undesiredmixing of voxel information than the classical3D-isotropic �ltering.
Moreover, the level set method appearsmore adapted to fMRI data smooth-
ing than the mesh-basedapproachesin many respects: (i) �rst and foremost,
a projection to assignthe functional data onto the cortical surfaceis not re-
quired, avoiding a somewhatarbitrary choice; (ii) consequently, the choice of
a projection method to visualizethe results of the data analysiscan be donea
posteriori, which is more 
exible; (iii) the implementation is computationally
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moree�cien t than the mesh-basedapproaches. The only drawback of our level
set approach over mesh-basedapproaches is the necessity to compute a level
set function representing the cortical surface. However, this step is e�cien tly
performedby a dedicatedalgorithm implemented in the ABSOLUt library. We
illustrate the di�eren t approacheson a macaquemonkey and a human dataset.
This methodologicalcontribution waspresented at the Human Brain Mapping
(HBM) conferencein 2004[251].

� The optimization of fundamental stimuli parametersfor the retinotopic map-
ping procedureand the functional identi�cation of hMT+ are described and
discussedin chapter 5. The retinotopic mapping procedurewas presented at
the HBM conferencein 2003[252]. Using theseprocedures,the reliable identi-
�cation of various low-level visual areascan be achieved in approximately 30
minutes of scansat 3T, including the obtention of a high resolution anatomi-
cal image. Additionally , we implemented a method to extract 3D RegionsOf
Interest corresponding to each retinotopic visual area.

� The validation of newly introducedalgorithms on real experimental data is a
necessarystep to optimize the MRI processingpipelines. We �rst compare
in chapter 3 two state of the art anatomical image segmentation tools and
discussedtheir respective advantagesand drawbacks. Second,the results we
obtain in the fMR-adaptation study presented in chapter 6 constitute a further
validation of this experimental paradigm. Besides,this chapter illustrates the
improved sensitivity of alternative statistical approachesto the classicalGLM
analysisof fMRI data, such as the non-parametricHRF estimation framework
weapplied. Finally, the methodologicalimplications of the DTI-basedanatom-
ical connectivity experiment detailed in chapter 7 is twofold. First it provesthe
feasibility to combine the di�eren t information provided by anatomical, func-
tional and di�usion-w eighted MR images.Second,it givesa �rst validation of
the Fast Marching implementation of the Riemaniannapproach to DTI connec-
tivit y mapping. The methodological framework is currently submitted to the
Computer Vision and Pattern Recognition (CVPR) conference,and prelimi-
nary resultsof the experimental validation on the visual cortex werepresented
at the HBM conferencein 2005[250].

From a more experimental point of view, our thesis brings new insights regarding
the functional and anatomical organization of the low level visual cortex:

� The experiment reported in chapter 6 givesan estimationof direction selectivity
in various low-level visual areas. It con�rms that motion direction selectivity
is area speci�c in low-level visual cortex. Furthermore, we obtain �ner mea-
surements of this particular feature with a minimally constraining adaptation
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paradigm. Our results suggesta global hierarchy among the di�eren t visual
areas. hMT+ and V3A are the most direction selective, followed by V1, V3,
V4v and V2. This ordering supports the notion of hierarchical processingin
the visual cortex. The direction indices we observed in V1 and hMT+ are
interestingly similar to thosereported in a recent macaqueexperiment, which
might be another evidenceof the homologiesbetween the two species. Ad-
ditionally, the unexpectedly high direction selectivity we observed in V1 and
V4v revives the notion of context-dependent neuronal tuning. This work is
currently submitted to Journal of Vision.

� The combined DTI-fMRI experiment we exposein the last chapter allows to
reconstructthe optic radiations linking the LGN and V1. It con�rms the topol-
ogy of occipito-callosal connectionsin the splenium. We also report the �rst
preliminary characterization of the anatomical connectivity between hMT+
and the occipital retinotopic areas. As expected from animal studies, V1 ex-
hibits the highest connectivity index values. On the other hand, V4 system-
atically shows the lowest connectivity index valueswith hMT+. This result is
consistent with the view of segregatedventral and dorsal processingstreams.
This part is currently submitted to NeuroImage.

1.4 Other contributions

For sake of coherenceand conciseness,somecontributions made during this PhD
could not be included in this manuscript. They are shortly mentioned below.

� The retinotopic mapping procedureis currently applied by the DyVA team1,
INCM, CNRS,Marseille to study the cortical organizationin patients su�ering
from retinal diseases.This includespathologiessuch asvisual scotomasor age-
related macular degeneration. Two sets of experiments were already ran on
8 healthy subjects. Retinotopic mapswere �rst reconstructedusing the map-
ping technique described in chapter 5. Second,a block paradigm consistingof
a grey background alternating with a full�eld, 
ic kering checkerboard wasused
to stimulate the completecentral visual �eld. In both experiments, conditions
with 4 peri-fovealscotomasof di�eren t sizesand centered at di�eren t eccentric-
ities were interleaved. The cortical projections of each arti�cial scotomawere
identi�ed and con�rmed their relations by quantitativ e analysis: the measured
cortical positionsand surfacesof the inactivated cortical zoneswerecompared
with the known valuesof radius, eccentricit y and surfaceof scotomasin the
visual �eld.
Beyond the transfer of the whole retinotopic mapping technique, I designed

1www.incm.cnrs-mrs.fr/en equipedyva.php
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the stimuli and the analysisprograms for the block designexperiment. This
work led to 2 presentations at ophtalmology conferencesin may 2005,oneat the
ARVO conference(Association for Research in Vision and Ophtalmology) [103]
and the other at the Congr�esAnnuel de la Soci�et�e Fran�caised'Ophtalmologie
(French Ophtalmology Society Annual Conference)[102]. Following this �rst
validation step, the mapping of the cortical representation in patients present-
ing retinal pathologyis currently understudy by LouisHo�art, ophthalmologist
at la Timone hospital in Marseille and PhD student at the DyVA team.

� I contributed to perform a macaquemonkey fMRI experiment conductedby
ProfessorGuy A. Orban and Mr Koen Nelissenat the Laboratorium voor
Neuro- en Psychofysiologie2, K.U.Leuven. The goal of this experiment was to
study visual motion velocity processingin the macaquemonkey brain. This
was an interesting opportunit y to be introduced to animal experiments and
speci�c constraints related to the work in an hospital environment. Note that
somedatasetsrelated to this experiment are usedin chapter 4 to validate our
cortical surfacebasedfMRI smoothing method.

� I designedthe parametric program to generatethe visual stimuli used in an
fMRI experiment related to motion transparencyperception. This experiment
was performed within the Perception for Recognition and Action3 Research
Training Network. The functional data analysisis currently under study.

� Last but not least, my PhD work includes software development. I wrote
Matlab and shell scripts to automate several image processingtools used in
this thesis. Most of them include an SPM based interface to allow a user-
friendly interaction with the user. I transferedparts of thesemethods to the
DyVA team, the Centre IRMf de Marseille and the Laboratorium voor Neuro-
en Psychofysiologie.

2http://134.58.34.1/index.php
3http://pra.psy .gla.ac.uk/
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The human brain is reputable of being the most complexphysical object in the
world. Its complexity arisesassoon asoneconsidersits anatomicalorganizationand
is further emphasizedby its rich functional organization. However, brain imaging
techniques, in particular Magnetic ResonanceImaging (MRI), allow to get various
complementary information about this organ.
We start this chapter by a quick tour from the nervous systemto the subdivisions
of the human brain. We more speci�cally insist on two brain tissueswe particularly
targeted in this work: grey matter and white matter. The main part of the grey
matter is found in the cerebralcortex, wheremost neural processingtake place,and
the white matter relays information acrossdi�eren t brain locations. We then ac-
count the main facts about the human visual systemorganization,with a particular
emphasison imaging contributions. Section 3 introducesthe MRI technique and
how it can be used to infer neuronal activit y (fMRI) and anatomical connectivity
(Di�usion MRI). We �nally detail the experimental setup and imaging sequences
usedin this thesis.

2.1 A quic k tour in the anatom y of the human brain

The nervous system is the master piece of the organism to retrieve, convey and
processinformation brought from the inside and the outside of the body. It also
managesthe vast majorit y of functions to react to our environment. The paragraphs
below aim at giving a rough description of the brain anatomy. For a far more
completeand detailedview of the brain structures,variousatlasesand booksarenow
available. For instance,werefer the interestedreaderto the excellent Duvernoy atlas
[58] or, for thosekeenon web pages,the on-line atlas of Prof. Dominic Hasboun1.

2.1.1 The central nerv ous system

We begin our journey in the nervous system by dividing it into two major parts
which in turn can be divided into two sub-parts:

� the Peripheral NervousSystem. It comprises(i) the SomaticNervousSystem,
whosenerves carry the information from and to the sensoryorgansand the
musclesand (ii) the Automatic Nervous system, involved in the regulation
of vital functions such as breathing, blood circulation, digestion or hormones
secretion;

� the Central NervousSystem. The CNS is composedof the spinal chord located
within the vertebral columnand the brain housedby the skull. The CNSnerves
lie inside the cerebrospinal
uid (CSF).

1http://www.c hups.jussieu.fr/ext/neuranat/index.h tml
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Figure 2.1: Subdivisions of the nervous system and close up on the brain. From

http://mywebpages.comcast.net/epollak/PSY255 pix/PSY255 pix.htm

Figure 2.1 illustrates the subdivisions of the nervous system with an emphasison
the brain represented in a mid-sagittal section. This virtual plane, corresponding
to the body's median plane, splits the brain into two roughly symmetrical parts,
called the two hemispheres.Each hemispherecommunicateswith the other through
a largebundle of nerve �b ers, the corpuscallosum,and a smaller �b er bundle called
the anterior commissure.

Pursuing our dissectiononestep further within the brain yields to distinguish three
parts:

1. the rhombencephalonor hindbrain comprisesthe cerebellum, the ponsand the
medulla oblongata;

2. the mesencephalonor mid-brain madeof the tectum, the tegmentum and the
cerebralaqueduct;

3. the prosencephalon,or forebrain, composedof two main units, one known as
the diencephaloncontaining the thalamus and hypothalamus and the other
called the telencephalonholding the basalganglia and the cerebralcortex.

We now focusour descriptionon parts of the prosencephalonwhich wasparticularly
studied in this thesis. Beforedescribingthe main facts about grey and white matter
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Figure 2.2: Schematic structure of a neuron. Adapted from www.infovisual.info

tissues,we temporally have to interrupt our dissection-like description to introduce
the main structural element of the brain: the neuron.

2.1.2 The neuron

The nervous system comprises100 billion (1011) neurons. One important char-
acteristic of neurons is that they have excitable membranes which allow them to
generateand propagateelectrical signals. The primary role of neuronsis to process
and transmit this neural information. If neuronsexhibit a high diversity both in
shape and size (there are over 200 di�eren t kinds of neurons), they nonetheless
share a common structure, as illustrated in �gure 2.2. Like all the cells in the
human body, every neuron has a cell body, i.e. a membrane that surrounds its
cytoplasm and a nucleusthat contains its genes.This part is also called the soma.
What distinguishesthe neuronsfrom other cells is their extensions,which they use
to send and receive information. The dendrites are the extensionsthat conduct
the electrical stimulation received from other cells to the soma. On the other
hand, the axon carriesnerve signalsaway from the neuron. Each neuron hasmany
dendrites but only one axon, although it usually undergoes extensive branching
called terminal arborisation. Such a structure enablescommunication with many
target cells,mostly neuronsbut alsoother cells like muscles.Neuronscommunicate
with one another through synapses,term derived from the Greek "syn" (together)
and "haptein" (join). Hencea synapseis found wherean axon terminal of one cell
impinges upon a dendrite or the soma of another, or less commonly to another
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axon. Each neuron has on average1,000 synaptic connectionsto other neurons,
which yields to a number of 100 trillion (1014) connections (synapses)between
neuronsin the brain. The vast majorit y of the synapsesfound in the human brain
are chemical synapses,i.e. the information transfer from the axon terminal to the
next neuron is supplied by speci�c moleculesknown as neurotransmitters.

From a macroscopical point of view, aggregatesof neuron's soma and den-
drites form the grey matter wherethe main information processingis thought to be
performedwhile the neuron'saxonsbehave as the wiring network within the brain,
which constitutes the white matter.

2.1.3 Structure and organization of the grey matter

Grey matter forms the super�cial part of the brain, somenuclei within the brain and
the deepparts of the spinal cord. It is so-calledbecause,in post-mortem sections,
it hasa grey color due to all the grey nuclei in the cells that make it up. In fact, in
the living body, grey matter is pink. Grey matter is thus mainly composedof the
bodiesof the neurons.But it alsocomprisesthe nonmyelinated sectionsof processes
(axonsand dendrites), including processesjust emergingfrom the neurons,and cells
which are thought to mainly support and protect the neuronsin various ways.

The cerebral cortex

With 75% of the 1011 neuronsfound in the brain, the cerebral cortex is the most
important grey matter part. From a macroscopicalpoint of view, the cortex is
roughly a sheetof tissuethat makesup the outer layer of the brain. This is actually
the origin of the Latin word cortex, which meansouter layer or bark. Along the
evolution, the surfaceof the cerebralcortex becomesmore and more folded to allow
an increaseof its surfacein the limited volume of the skull. This folding process
createsgrooveson the surfaceof the brain called sulci and bumps or ridges called
gyri. The two hemispheresof the brain areseparatedby a prominent central �ssure.
Each hemisphereis then madeup of six lobes. The frontal lobe, located anterior to
the central sulcus, the parietal lobe found dorsally to the samecentral sulcus, the
temporal lobe on the most lateral part of the cortex and the occipital lobe which
occupiesthe most occipital part of the cortex (�gure 2.3). In addition, neurologists
consideran internal lobe, called the limbic system,which lies along the medial part
of the cortex and the insular cortex buried within the lateral sulcus(also known as
Sylvian �ssure).

The thicknessof the cerebral cortex varies from 2.5 to 6 mm. Neuroanatomists
have observed that the cortical neurons appear to be organized in various layers
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Figure 2.3: Cortical lobes. From www.bioon.com/book/biology/whole/image/1/1-8.tif.jp g

(usually six) tangentially to the cortical surface. Theselayers can be distinguished
histologically, functionally and through the connectivity pattern they exhibit with
each other.
Neuroanatomists also noticed that the neurons distribution and size are not
homogeneousacrossthe cortex. This led someof them to proposea parcellation
of the cortex into distinct zones,i.e. cortical "areas" with coherent cells structure.
The most famousonesare the cytoarchitectonic maps of Brodmann [17] basedon
microscopicalstudiesof local cellular and laminar structure (�gure 2.4).
Despite this general laminar architecture parallel to the cortical surface,a neuron
may be part of di�eren t layers through its dendrites. This communication in
a direction orthogonal to the cortical surface suggestedthe concept of cortical
columns. Physiologicalstudiescon�rmed this columnar organization, showing that
neuronsin a vertical sectionof the cortex often sharesimilar functional properties.
We will illustrate this notion below in the visual system.

Other grey matter nuclei

The cortex is not the only grey matter part of the brain. The basal ganglia, such
as the putamen and the caudatenucleus,are aswell composedof grey matter. It is
also the casefor the thalamus. The latter comprisesmany di�eren t pairs of nuclei,
most of which project to the cortex. Someare sensoryrelay nuclei, i.e. nuclei
that receive signalsfrom sensoryreceptors,processthem, and then transmit them
to the appropriate areasof sensorycortex. For example, the Lateral Geniculate
Nuclei (LGN), the Medial Geniculate Nuclei (MGN), and the Ventral Posterior
Nuclei (VPN) areimportant relay stationsin the visual, auditory, andsomatosensory
systems,respectively.
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Figure 2.4: Brodmann areasand cortical layers cytoarchitecture. Notice the great di�er-

entiation in cortical layers thickness,for instance the predominanceof the input layers I I

and IV in the primary visual cortex or of the output layers I I I and V in the primary motor

cortex. From www.unige.ch/cyberdocuments/theses2003/RivaraC-B
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2.1.4 White matter connections

White matter is composedof axonal nerve �b ers,coveredby a myelin sheathgiving
its distinctive color. It is found in the inner layer of the cortex, the optic nerves,
the central and lower areasof the brain (notably the brainstem) and surrounding
the central shaft of grey matter in the spinal cord. The white matter axonscan be
distributed di�usely or concentrated in bundles, also referred to as tracts or �b er
pathways.
Three main typesof neural tracts are found in the white matter:

� The Pro jection tracts establishconnectionsbetweenthe cerebralcortex and
subcortical structures. Two types of projection tracts can be distinguished:
ascendingtracts and descendingtracts. Ascendingtracts carry sensoryinfor-
mation from di�eren t parts of the body to the cerebral cortex. All sensory
information, except olfactory, end up in the primary sensorycortex by the
meansof the thalamo-cortical �b ers. The thalamus receives the somesthetic,
gustatory, visual and auditory stimuli through theseascendingpathways. De-
scendingtracts carry motor commandsfrom the motor cortex down to the
musclesand glands through the lower brain structures and the spinal cord.
They reach structures like the thalamus, the red nucleus, the medulla and
serve musclesof the torso, extremities, facial and neck region.

� The Association tracts are the communication paths betweendi�eren t corti-
cal areaswithin a given hemisphere.They can be divided into two categories:
short and long association tracts. Short association tracts build up connec-
tions betweenregionsof a given lobe. The smallestlink adjacent cortical zones
separatedby a sulcus,hencetheir name of U-shaped �b ers (seefor instance
the short arcuate bundles,identi�ed with the label 1 on bottom part of �gure
2.5). Long association �b ers establish connectionsbetweendi�eren t cerebral
lobesand often form a bundle macroscopicallyvisible.

� The Commisural tracts are bundles of axons connecting a region in one
hemisphereto another regionof the oppositehemisphere.The corpuscallosum
(�gure 2.5 top) is the most important of the commissuraltracts and can be
broken down into four parts: The rostrum (anterior most part) and the genu
(anterior curvature) are madeup of �b ersconnectingthe anterior and ventral
parts of the frontal lobes. The corpus (large middle portion) links posterior
portions of the frontal lobesaswell asthe parietal lobes. Finally, the splenium
(caudalcurvature) enablescommunicationsbetweenthe temporal and occipital
lobes.
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Figure 2.5: Various white matter bundles seen from above after partial re-

moval of the cerebral hemispheres (top) and in a sagittal slice (bottom). From

http://www.vh.or g/adult/pr ovider/anatomy/Br ainAnatomy/Br ainAnatomy.html
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2.2 The visual system

In this section, we start by a brief description of the path conveying the visual
information from the eyesto the visual primary visual cortex. We then present the
organization of the visual cortex. For more precisedescriptions, seefor instance
[166, 24, 119].

2.2.1 From the eyes to the cortex

In primates (in particular in humans), the visual systemincludesmany anatomical
elements, from the eyes to the cortex. A human eye is approximately 2.5 cm long
and weighs 7 grams. Six bands of musclesallow the control of its displacements
to probe the environment. Light goessuccessively through the cornea,the aqueous
humor, and the pupil, whosesizeis controlled by a muscle,the iris (giving the eye
its external color). Next it passesthrough the lens, whoseshape is controlled by
the ciliary muscles,beforeentering the vitreous humor. It �nally strikesthe retina,
which is coveredwith over 125million photosensitive receptorsof two families:

� the cones make a population of around 8 millions cells. Mainly concentrated
in the center of the retina, also known as the fovea, the conesare responsible
for chromatic and normal lighting condition vision (or photopic);

� the ro ds, which are estimated at around 120 millions. Rods are found ev-
erywhereexcept in the fovea. They deal with black and white perceptionand
low-lighting conditions (or scotopic).

Thesephotosensitive receptorstranslate lighting information into electrical informa-
tion, transmitted to the optical nervesvia the ganglioncells. The two optical nerves
cross,forming the optic chiasm, after which information is transmitted separately
for each visual hemi�eld (separatedvertically with respect to the headposition): the
information from photons striking the left (respectively right) parts of both retina
and corresponding to the right (left) visual �eld is brought together to form the left
(right) optical tractus. Nonetheless,visual signalsfrom the two eyesremain segre-
gated in the LGN (and even latter in areaV1).
The vast majorit y of the optical tracts �b ersget projected to a part of the thalamic
sensoryrelay system, the Lateral Geniculate Nucleus (LGN). The LGN approxi-
mately count 1 million cells,corresponding to the number of optical �b ers. Finally,
the LGN axonsform the optic radiations which vanish in the primary visual cortex,
centered around the calcarine�ssure (�gure 2.6).
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Figure 2.6: The path of the visual information from the eyesto the primary visual cortex.

This �gure is borrowed from:

http://homep age.psy.utexas.edu/homepage/Class/Psy308/Salinas/Vision/Vision.html

2.2.2 The visual cortex

From a single to multiple visual areas

Until the middle of the twentieth century, the major theory about the visual cortex
considereda single area located at the occipital pole [105, 256]. As we mentioned
above, this part of the cortex receives its major inputs from the LGN. Besides,
patients who underwent damageto this zonesu�ered from severeblindness.Finally,
the cytoarchitecture found therewaseasilydistinguishablefrom surroundingcortical
tissue(from which camethe name"striate cortex"). Around this singlevisual area,
a large expanseof the cortical surfaceextending to the parietal and temporal lobes
was called the association cortex. Its function could be to associate distinct visual
signals together or with complementary information from other sensorysystems.
However, an electrophysiology study performedby Hubel and Wiesel in 1965[110]
demonstrated someareas in the cat association cortex where neurons responded
only to visual stimulations. Several studiesfurther con�rmed this �nding, revealing
various purely visual areasin the macaqueand the owl monkey. To date, over 30
areascould be di�eren tiated in the macaquemonkey basedon four main criteria
[68]: (i) local cortical cellsarchitecture, (ii) connectivity patterns acrossareas,(iii)
global functional selectivity and (iv) retinotopy. In humans, the last two criteria

45



weresuccessfullyusedto unveil several areas.We make below a list of current areas
reported in the literature, grouping them with their anatomical location. Note that
there is no systematic consensusacrossareasde�nition and labeling, emphasizing
the technical as well as theoretical di�culties of such a task [254, 238].

Early posterior occipital areas

The purely humanvisual areasarefound mostly in the occipital lobe. All theseareas
exhibit a distinctive retinotopic map, although their low eccentricit y representations
are di�cult to separateat the spatial resolution currently obtained with fMRI.

� V1, also known as striate cortex, primary visual area or Brodmann area 17,
is viewed as the entry of the visual cortex. As already mentioned above, it
receivesmost outputs of the LGN. V1 contains a complete(mirror) represen-
tation of the contralateral hemi�eld. Beyond this retinotopy, neurons in V1
areorganizedinto sub-regions,each specializedin the analysisof a given visual
feature. Hence,cortical columnspredominantly responding to the information
comingfrom a singleeyeand calledocular dominancecolumnshavebeenshown
in human V1 using fMRI [150, 28] (�gure 2.7-A). Within thesepopulations, it
hasbeenshown in animals study that neuronsare further functional selective
to local contrast orientation (such asan object border) or direction of motion.
V1 regionsalsocontain neuronsthat are selective for color. Theseregionsare
called blobs due to their blotchy appearancewhen the brain is stained with
CytochromeOxidase(CO staining). The inter-blob regionscontain orientation
columns. Such an organization,which is repeatedthroughout V1 in an orderly
manner, is referredto ashypercolumn. Figure 2.7-B) shows a model of V1 hy-
percolumn. Human V1 BOLD responseto contrast variations hasbeenshown
to be limited for a low contrast (below 6%) and to increasemonotonically with
contrast increase[217]. It was shown to contain cells functionally selective to
orientation [217], direction [113], color [61].

� V2, alsocalled prestriate area, is subdivided into two parts: V2v (for ventral)
and V2d (for dorsal). They respectively represent the upper and lower con-
tralateral quarter�eld. In non-human primates, area V2 mainly receives its
inputs from V1. The neuronsorganization of V2 is described by the stripped
pattern that it exhibits after CO-staining. V2 is madeup of pale stripes,thin
stripes, and thick stripes. Neurons within the pale stripes of V2 receive in-
put from the V1 inter-blob regions,and exhibit orientation selectivity but not
motion selectivity. Neuronswithin the thin stripes of V2 receive input from
the color blobs in V1, and exhibit color selectivity but not form or motion
selectivity. Neuronswithin the thick stripesof V2 receive input from layer 4B
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A B

Figure 2.7: Examples of the functional neuronal organization in V1. A) Human V1

ocular dominance columns demonstrated with fMRI (Reproduced from [28]). B) Hy-

percolumn model with ocular dominance, orientation and color selective columns (from

http://w eb.psych.ualberta.ca/ iwinship/vision).

of V1 (which contains many motion selective neurons),and exhibit orientation
and somemotion selectivity.

� V3, like V2, is subdivided into two parts: V3v ventrally (sometimesalsocalled
VP, in referenceto the Ventral Posterior area in monkeys), representing the
upper quadrant and V3d dorsally, representing the lower quadrant. V3 neurons
exhibit a high selectivity to low contrast and reach a saturation level at about
6%[218]. The functional selectivity of human V3 nonethelessappearsdi�eren t
from monkeys: in macaque,V3 is moderately motion and direction selective,
which hasnot beenobserved in humans[161, 224].

Dorsal areas

A set of areashas been found dorsally to area V3d. Various reports suggestthe
involvement of this region in motion and depth perception.

� V3A, for V3 Accessory, is found at the posterior section of the intraparietal
sulcus, posteriorly to V3d. V3A presents a complete representation of the
contralateral hemi�eld and a foveal representation distinct to the con
uent
V1-V2-V3 central representations. V3A neurons seemto exhibit a similar
contrast responsethan area V3 [224], i.e. a high sensitivity to low contrast.
Human V3A alsopresents a strong responsivity to visual motion, contrarily to
macaqueV3 [224, 234].

� V3B is located dorsally to V3d and laterally to V3A. At current imaging reso-
lution, V3B foveal representation appearscon
uent with that of V3A. Recent
�eld map measurements suggesta complete representation of the contralat-
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eral hemi�eld [177] and not only a quarter�eld mentioned in the �rst reports
[202, 57].

� KO, for Kinetic Occipital, wasdiscoveredby the group of Orban [233] through
its markedresponsivenessto moving boundaries(kinetic contours). It is located
anterior and lateral to V3 and V3A and posterior to hMT/V5+. It has been
suggestedthat KO could partially or totally overlap with V3B [202, 254].

� V7 is located anteriorly and dorsally to V3A and represents the completecon-
tralateral hemi�eld [177]. However, the eccentricit y and polar anglemapsseem
to run in parallel [227]. V7 neuronsreceptive �elds di�er from those of V3A
and V3B, either in sizeor in their spatial distribution [177].

Ventral areas

Several evidencesdemonstratethe strong responsivenessto color stimuli in the ven-
tral occipital cortical surface[148, 95, 15]. There is however no consensusabout
the retinotopic organization of the visual cortex located ventrally to V3v. Di�eren t
viewsare currently disputed. The group of Tootell describe an upper quadrant rep-
resentation adjacent to V3v they label V4v. Moving further ventrally , they consider
a complete hemi�eld representation, named V8, running perpendicular to that of
V4v [95]. The group of Wandell describe a complete hemi�eld representation ad-
jacent to V3v, labeled hV4 followed laterally by two hemi�eld maps of the central
5 degreeslabeled V0-1 and VO-2 [15]. McKeefry and Zeki refer to a V4 complex
with a completehemi�eld namedV4 and at least an upper quadrant namedV4� .
Tyler and colleagueshave yet another view, with a region similar to hV4 and an
upper quarter�eld found medially to it namedVMO (VentroMedial Occipital), and
a subsequent upper quadrant representation labeledVentral Occipital Foveal (VOF)
referring to its mostly foveal representation. Subsequent measurements are needed
to clarify this issueand clearly attribute the respective functional role of the delin-
eation obtained.

Lateral areas

� The human MT/V5 complex, or hMT/V5+, is easily de�ned by its strong
functional selectivity to motion stimuli [257, 218, 233, 202]. It is typically
found at the junction of the ascendinglimb of the inferior temporal sulcus
(ALITS) and the lateral occipital sulcus(LO) [241, 56]. This zoneis referred
to asa complexsinceit is thought to comprisehuman equivalent to macaque's
MT, MST, FST and perhapsadjacent areas. Somee�orts have beenmadeto
segment hMT/V5+ into distinct components [55, 112]. In monkeys, MT/V5
and surrounding areas have been extensively studied (for a review, seefor
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instance[11]). The main hallmarks regarding MT/V5 is its organization into
direction columns[2], comparableto orientation columnsin V1 and the strong
myelinated inputs it receives from V1. Regarding hMT/V5+ cells, it was
shown among others to have a high selectivity to low contrast but a limited
responsivity to equiluminant motion stimuli [218], suggestinga magnocellular
dominatedarea(seebelow). Furthermore, it wasdemonstratedthat hMT/V5+
contains pattern motion cells [114]. hMT+ responds both to �rst and second
order motion [202] and is more generally involved in many aspects of visual
perception implying motion [208, 161, 255].

� The Lateral Occipital zoneis, as indicated by its name,a regionon the lateral
occipital lobe, more speci�cally closeto the Lateral Occipital Sulcus (LOS),
adjacent to the early retinotopic areasand extending up to hMT+ laterally.
The moredorsalportion wasshown to be involved in motion and attention task
[208, 224, 42], while the ventral part is highly responsive to objects recognition
[91]. To date, the retinotopic organizationin the Lateral Occipital zoneappears
elusive, although somemeasurements of eccentricit y representations were re-
ported [222, 227]. Varioussubdivisionsand labeling have beenproposedin the
Lateral Occipital region. For instance, the group of Malach proposedat least
two subregions: LO (Lateral Occipital) located dorsally and pFus (posterior
fusiform) more ventrally along the fusiform gyrus [91]. The group of Orban
refersto LOS and distinguishesa motion-sensitive part, a shape-sensitive part
and a mixed part including areaKO [163].

Various subsequent visual areaswere functionally identi�ed in the human cortex
further away from areasand zoneswe have just presented above. Theseareaswere
mostly de�ned by their functional selectivity to features including motion [209],
biologicalmotion [92, 229], faces[120], places[64], letters [101], etc...The retinotopic
organization in theseareasis still unclearand may not follow the sameprinciples as
in the early posterior areas[227].

Parallel pro cessing path ways

From the above list of areas, it is presumedthat the visual information is not
processedas a block in a single stream of information. In fact, di�eren t visual
features,such as motion or color, are separatedand processedin parallel systems.
This separationis found asearly as in the LGN, wheretwo2 main typesof cellsare
found in segregatedlayers: magnoand parvo. Magno and parvo cellsdi�er in many
respects:

2Note that a minoritary third LGN neurons type, known as konio cells, has been reported; konio cells

function is lessunderstood but supposedto play a minor role in visual information processing.
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- magno cells have a higher temporal but lower spatial resolution (with larger
receptive �elds) than parvo cells,
- magnocellsexhibit a lack of color sensitivity contrarily to parvo cells,
- a high sensitivity at low contrast accompaniedwith a rapid saturation is found in
magnocellswhile parvo cells responseincreasesgradually with luminancecontrast.

A comparable segregation is found within the visual cortex, which is classi-
cally subdivided into:

� a ventral or occipito-temporal pathway involved in color, patterns and shape
processing;it answers the "What?" question,

� a dorsal or occipito-parietal pathway involved in spatial relation and objects
motion processing;it answers the "Where?" question.

This sketchy subdivision of the visual cortex, primarily demonstratedwith monkeys
lesionstudies[228], seemsto hold in humansassuggestedby several patients studies
[69]. However, this view was further re�ned by the british psychologistsMilner and
Goodale[152] whodistinguishboth pathwaysregardingthe cognitivetask they serve:

� the dorsal stream is implied in visual guidanceof actions toward objects,

� the ventral streamis responsiblefor the analysisof visual inputs to allow object
recognition and consciousvisual perception.

Note also that such a segregationis not perfectly respected and various communi-
cations are establishedbetween both pathways, allowing interactions between the
respective visual featuresthey process(see�gure 2.8).

Hierarc hical organization

Another general and important principle in the visual brain is its hierarchical
organization. According to this principle, the di�eren t areasof a given pathway can
be hierarchically ordered, from low-level areasprocessingsimple visual attributes
such as the orientation of an edge or local motion direction to high-level areas
dealing with more complex information such as object identi�cation or complex
motion. This hierarchy principle hasemergedfrom di�eren t observations along the
visual pathways: (i) the increasingreceptive �eld size(i.e. the portion of the visual
�eld "p erceived" by a cell), (ii) an increasedcomplexity in neuronsreceptive �eld
properties, (iii) a progressive lost of retinotopy.
In this model, information is processedin a "b ottom-up" fashion from low-order
to higher order areas. The result of the computation performed at level n is
transmitted to level n + 1 through feedforward connections.
Onceagain, the hierarchy principle doesnot account perfectly for the actual visual
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Figure 2.8: Parallel pathways and hierarchical processingin the monkey visual cortex.

Modi�ed from http://lb c.nimh.nih.gov/people/ungerleider/science.jpg
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information processingin the brain. For instance,feedback connectionsfrom higher
to lower order visual areas allow "top-down" information 
o w involved, among
others, in attentional modulations.

The recent non invasive exploration of the human visual cortex has already
provided extensive information and insight about its anatomical and functional
organization. This research waspossiblethanks to the discovery and improvements
of neuroimagingtechniques,amongwhich MRI hasplayed an important role.
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2.3 Magnetic Resonance Imaging

First demonstrated on small test tube samplesin the beginning of the 70's by
Paul Lauterbur [129], MRI allows to acquire non-invasively 3D images at high
spatial resolution. Various modalities can be obtained with the samedevice: de-
tailed anatomy (structural MRI), functional activit y (fMRI), water-moleculesdi�u-
sion (DWI), blood 
o w measurements (perfusion imaging), distribution of various
metabolites (MR Spectroscopy Imaging), blood vessels(MR Angiography).
The �rst part of this section brie
y exposesthe basic principles of MR imaging,
beforegiving the outlines of functional and di�usion-w eighted MRI.

2.3.1 MRI principles

Magnetic ResonanceImaging has its foundations on rich and complex theories
including electromagnetismand quantum physics, however it can be understood
with relatively simplephysical models. The underlying mathematical model implies
Bloch equation which describes the relation between nuclear magnetization and
magnetic �eld.

Ph ysical mo del

An atom is madeof electrons,holding a negative chargeand rotating around a nu-
cleus. The latter is subdivided in nucleons,speci�cally protons charged positively
and neutronswith no charge. We distinguish three typesof motion in an atom: the
electronsboth rotating around their own axis and in orbits around the nucleus,and
the nucleusrotating around itself. MRI is basedon the latter motion. Somenuclei
have the property to align in a magnetic�eld if their massnumber is odd, i.e. if the
sumof protons and neutronsis odd. This is namedangularmoment or spin. Among
others, 1H atoms, which represent 99.89%of naturally found hydrogensatoms and
are widely represented in biological system,have a spin. On the other hand, carbon
atomsmainly found under the 12C con�guration are not prone to Nuclear Magnetic
Resonance(NMR). Hence,MRI techniquesare mainly considering1H atoms.
Spin nuclei being positively charged, their motion inducesa magnetic �eld. Con-
versely, the resulting magnetic moment can be oriented by the application of a
magnetic �eld. This reciprocity is largely usedin MRI. From a macroscopicalpoint
of view, no resulting �eld can be observed directly sinceeach spin has its own, in-
dependent, random orientation (�gure 2.9-a). However, when placedin an exterior
magnetic �eld

�!
B0, the spin directions align parallel to this �eld (�gure 2.9-b). More

precisely, a spin rotates within a conearound
�!
B0: this is the spin precession. The

spin rotation frequency, or Larmor frequency, is related to
�!
B0 through its gyromag-
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�!
B0

a) Random spins directions b) Spins aligned to
�!
B0

Figure 2.9: Random directions of spins in the absenceof an external magnetic �eld (a) and

aligned spins in the presenceof an external magnetic �eld
�!
B0 (b). Note that the actual

spin rotation around
�!
B0 occurs within a conearound

�!
B0.

netic ratio 
 :

! 0 = 
 k
�!
B0k (2.1)


 dependson the atomical nucleustype. We have 
 = 4257:43H z=G3 for 1H atoms,
implying a rotation frequencyof f 1H = 63:86 MHz in a 1:5 T magnetic �eld.
Given this type of rotation velocity, we can considerthe spin induced�eld direction
to be aligned with the conesymmetry axis, i.e. parallel to

�!
B0. Someare aligned

in the same direction (parallel or spin up), while the other are in the opposite
direction (antiparallel or spin down).

From a quantum physics point of view, the di�erence between both spin states
is viewed as a di�erence in the energy level. Little energy is required to switch
from the lower to the higher energystate. In the presenceof an external magnetic
�eld, the di�erence betweenthe two populations is increasedby an increaseof the
magnetic �eld strength. Applying Boltzmann relation, one can estimate that at
the ambient temperature within a 1.5 T �eld, there is a di�erence of 10 in favor of
low energyprotons amonga total of 1 million protons. Although very small at �rst
sight, this di�erence becomessigni�cant consideringthe huge amount of protons
in a relatively tiny volume. For instance,a single gram of water contains 6; 7:1022

protons! This imbalancebetween low and high energyprotons results in a global
magnetic �eld oriented in

�!
B0 direction, called the net magnetization vector

�!
M . As

shown on �gure 2.10,
�!
M can be splitted into two parts:

- a longitudinal component
� !
M z, i.e. parallel to

�!
B0;

- a transversecomponent
� � !
M xy , orthogonal to

�!
B0. At equilibrium after a su�cien t

exposition time to
�!
B0, this component is null. All the individual spins are indeed

precessing,but they are all out of phasewith each other.

3G, for Gauss, is the magnetic �eld strength measureunit. For instance, the earth magnetic �eld equals

0.5G. More currently used in MRI is the Tesla (T), with the relation: 1 T = 10.000G.
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Figure 2.10: The net magnetization vector
�!
M , decomposedinto a longitudinal component

� !
M z and a transversecomponent

� � !
M xy .

Excitation phase

By applying a transient oscillating electromagnetic�eld, or electromagneticradio-
frequency(RF), with a frequencyequal to the Larmor frequencyof target nuclei,
the di�erence betweenboth energyspinscanbe temporally altered. This is a typical
resonance mechanism (giving the "R" of MRI). The RF pulse duration is related
with a 
ip angle of

�!
M . A 90 degreespulse suppressesthe longitudinal component

(�gure 2.11) while a 180degreespulse,or "in versionpulse", completely inverts the
longitudinal component through an excessof antiparallel spins.
Resonancemay further induce a seconde�ect so the spins magnetic moments may
get synchronized, or in phase,i.e. they may be found at the samelocation on the
precessiontra jectory, henceincreasingthe transversalcomponent of

�!
M . A receiver

coil, which may be the sameas that usedto apply the RF pulse, allows to record
the small voltage induced by the magnetization rotation in the transverseplane.

Relaxation phase

When the RF is switched o�, the spinsbegin to give o� their energy, hencegetting
back to the equilibrium state. It results in two processes: an increaseof the
longitudinal component to its value beforethe RF pulseand a progressive decay of
the transversemagnetization to zero.

Spin lattice relaxation (T1)
The spin lattice relaxation is basedon the energy exchangebetween protons and
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Figure 2.11: Excitation phase: the energygivenby the RF pulse
ips the net magnetization

vector
�!
M of an angle � (here � = 90� ).

surrounding molecules. This energydissipation is characterizedby the restoration
of the longitudinal component to its equilibrium value. This recovery processis
modeledby an exponential function characterizedby a time constant T1, the period
for the longitudinal magnetization to recover 63% of its equilibrium value (�gure
2.12). For a 90-degreeexcitation pulse,we have:

M z = M (1 � e
t

T1 )

The recovery processis consideredas �nished after 5 T1 periods.

T1 Time

63%

100%

Figure 2.12: Spin lattice relaxation describes the longitudinal component recovery as a

function of time and is characterized by the T1 constant.
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Spin-spin relaxation (T2)
Spin-spin relaxation refers to the lossof net magnetization in the transverseplane
related to protons dephasing.Spinsdo not only give up their energyto surrounding
lattice moleculesbut also to other neighboring nonexcited spins. This processis
alsomodeledby an exponential function characterizedby another time constant T2,
which corresponds to the period for the transversal component to loose63% of its
value just after the RF pulse:

M xy = M 0e� t
T 2

This dephasingis actually further increasedby local magnetic�eld inhomogeneities,
sincethe Larmor frequencywill also be nonuniform throughout the region. A time
constant slightly di�eren t to T2, T2� , is thereforeused. The transversecomponent
inducesa current in a coil, known asFreeInduction Decay (FID). The T2 � constant
can be evaluated through the convex envelop of the FID curve (�gure 2.13).

T2
37%

Signal

Time

Figure 2.13: Spin-spin relaxation describes the exponential decreaseof the transversal

component as a function of time and is characterized by the T2 constant.

The di�eren t biological tissuesare characterizedby respective T1 and T2 values,as
shown in table 2.1. The intensities of MR imagescomesfrom thesevalues.

Tissue T1 (ms) T2 (ms)

CSF 800-20000 110-2000

Grey matter 1090-2150 61-109

White matter 760-1080 61-100

Fat 200-750 53-94

Table 2.1: T1 and T2 in various brain tissues.
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Figure 2.14: A highly simpli�ed MRI pulse sequencetiming diagram.

Image construction through pulse sequence

A pulsesequenceis a seriesof RF pulsesand/or magnetic �eld gradients applied to
a sampleto produce a speci�c form of MR signal. It is indeed possibleto encode
and thus recover the MR signal from speci�c regionsin the volume of interest by
meansof RF and linear gradients applied along the 3 spatial directions.
Figure 2.14illustrates a basicpulsesequence.A �rst gradient Gz in the

�!
B0 magnetic

�eld direction results in a linear intensity varition of the magnetic �eld that can
be used to select a slice. In this case,a slice is a plane orthogonal to

�!
B0 with a

typical thicknessof 1-10mm. Basedon relashionship(2.1), the spinsof a given slice
are hencecharacterizedby a speci�c Larmor frequency. After the RF pulse at the
frequencyrelated to the target slice, two transient gradients are applied to encode
the x and y dimensionsin the slice plane. A �rst gradient Gy in the y direction
induces a phaseshift related to the position along the y axis: this is the phase
encoding. A secondgradient Gx in the remaining x direction is applied, leading to
a precessionfrequencyvariation along the x axis: this is the frequencyencoding.
This processusactually performs an acquisition of the plane data in the frequency
space(or k-space). An inverseFourier transform �nally maps thesedata in the 3D
space.
A pulsesequenceis �rst characterizedby the delay betweentwo similar RF pulses,
called the Repetition Time (TR). The other parametersof interest depend on the
actual sequence.Indeed, di�eren t pulse sequenceswere developed to measurethe
relaxation times. For instance, Gradient Echo simply repeats the Free Induction
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Decay described above and allows to sampleT2� . Most sequencesoften comprise
additional RF pulses following the slice selection one, to partially refocus the
transversemagnetization and producean echo, leading to a more reliable measure.
Spin-Echo is thus the application of a 90 degreepulsefollowed by a 180degreepulse
after a time TE/2. This secondpulse,which refocusesthe transversemagnetization
and results in an echo at time TE (Echo Time), removeslocal �eld inhomogeneities
dephasing,henceallowing to directly measurethe T2 decay. On the other hand,
Inversion Recovery, which relies on a 180 degreepulse followed after a time TI
(Inversion Time) by a 90 degreepulse, enhancesthe T1 weighting. The choice of
the speci�c pulsesequenceparameters(TR, TE, TI,...) �nally determinesthe image
contrast. Two distinct tissues may for instance have similar T1 values but dis-
tinct T2 values,sothe choiceof the sequencedependson the information of interest.

The straightforward application of a given pulse sequenceallows to get a
static imagecontrasting di�eren t tissues.However, basedon the sameprinciples, it
is possibleto indirectly imagedynamic processessuch asoxygen 
o w or the motion
of water molecules.

2.3.2 Functional MRI: the B.O.L.D. signal

Although the brain represents 2% of the total body mass,it receives12-15%of the
blood outgoingfrom the heart andconsumes20%of the oxygenbreathed. Functional
imaging techniques, and in particular BOLD fMRI, build on this high metabolic
demandto derive an indirect measureof neuronalactivit y.

Hemo dynamic coupling

Neuronal activit y requires energy, supplied by an increase of the energetic
metabolism. Oxygen and glucoseconsumption is indeed locally increasedduring
a neuronal activation. However, the brain is not able to store oxygen, which is ac-
tually brought by the blood (�gure 2.15). The �rst evidenceof a coupling between
cerebral blood 
o w (CBF) and neuronal activit y was obtained by Roy and Sher-
rington who, in the end of the 19th century, reported a local changeof the cortical
tissuecolor correlatedwith stimulation [183]. The brain color changesobserved was
related to blood oxygenation. A century later, such e�ects could be con�rmed in
vivo by Positron EmissionTopography [181] using radioactive oxygen H2O15.

Magnetic prop erties of hemoglobin and BOLD signal

The intensity changeswe might be able to observe in the MR imagesis basedon
magneticpropertiesof hemoglobinwhich changewith its oxygenation,as�rst shown
by [170]. Hemoglobincan indeedbe found under two con�gurations: oxyhemoglobin
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Resting Activ ated

Figure 2.15: Oxygen extraction is increasedduring neuronal activation, thereby increas-

ing the level of deoxyhaemoglobin (Hb) in the blood. The latter is nonethelessover-

compensatedby a local increasein the blood 
o w, leading to a net reduction of the ratio

Hb/HbO 2 that can be measuredwith MRI. (From [180])

(HbO2), which carries4 oxygenmoleculesand is diamagnetic,and deoxyhemoglobin
(Hb), depleted of oxygen and paramagnetic. Therefore, oxyhemoglobin has no
e�ect on the local magnetic �eld while deoxyhemoglobinlocally addsmagnetic �eld
gradients, increasing the T2� value4. Hence, voxels with high Hb concentration
yield to a lower signal than tissue with high HbO2 concentration. In 1990,Ogawa
et al. [158, 159] �rst mapped T2� variations related to cortical blood oxygenation
changesat the level of capilaries and venules surrounding activated brain areas.
This signal is referredto as BOLD, for Blood Oxygen Level Dependent.
But why do we actually measurethe contrary, i.e. a signal increaseduring local
neural activation? In fact, an activation inducesa signi�cant increasein CBF that
occurswithout an increaseof similar magnitude in oxygenextraction. For instance,
assumethat during "rest" neuronalactivit y, if arterials supply 100%of oxygenated
blood, 40% are locally consumed. Blood returning to veins is therefore made of
40%of deoxygenatedblood and 60%of oxygenatedblood. During a neural activit y,
blood supply increasesmore than needed,leading to modi�ed proportions in the
arterials close to 37-63%. This results in a corresponding local reduction in the
ratio Hb/HbO 2, leading to a signal increase.
Various models basedon di�eren t hypotheseshave been proposedto explain this
oversupply of oxygenatedblood as comparedto oxygen extraction, seee.g. [19].

4A similar e�ect can be obtained with paramagnetic contrast agent such as Gadolinium or MION used

in animal experiments. Note however that the signal is then negatively correlated with neural activit y.
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There is thus no simple relation between neural activit y and the BOLD sig-
nal since the signal magnitude not only depends on these magnetic properties,
but also on the current blood volume and the local vascular geometry. Various
models of the hemodynamic coupling have beenproposedso far (e.g. [6]), but the
preciseunderlying mechanismis still unknown. Nonetheless,the work of Logothetis
et al. [138] combining electrophysiological recordings and fMRI suggestsa high
correlation between local �eld potentials (thought to re
ect more cortical inputs
and local intracortical processingthan spiking activit y) and the BOLD signal.

Hemo dynamic Resp onse Function

From a temporal point of view, electrical and synaptical activit y to a transient
cognitive processgenerally lasts a few milliseconds,while the vascularchangesdu-
ration are a few seconds.The time courseof human BOLD responseto a similar
brief neuronal process,seenas a temporal impulse responsefunction, is called the
hemodynamic response function (HRF). The amplitude and preciseshape of the
HRF varies signi�cantly not only acrosssubjects but also acrossbrain locations,
experimental tasks or scanningsessionsin a given subject. Someexamplesof this
HRF variabilit y is shown in �gure 2.16. Nonetheless,the rough shape systemati-
cally comprisesa �rst delay of the response(� 2 s), followed by a ramp of 3-8 s
beforeslowly returning to baseline. In somecases,an initial dip of 1-2 s and/or a
signalundershoot up to 20 s beforethe return to the baselinecanbe observed. Note
that negative BOLD signals,signi�cantly anticorrelated to the positive BOLD have
alsobe reported (in particular in the visual cortex) and the underlying physiological
and neural substratesare currently under study [204, 199]. Apart from this high
variabilit y of the HRF shape, the responseto longer stimuli (> 8 s) can hardly be
predicted from a linear prediction basedon the HRF.

Echo Planar Imaging

As a complete image acquisition with the sequencesmentioned above is relatively
long (a few minutes) with respect to the physiologicalevents of interest in fMRI (a
few seconds),faster acquisition techniqueshave beendeveloped. Echo Planar Imag-
ing (EPI) is the most famousone. EPI relieson rapidly oscillating gradients to allow
a completesliceacquisition from the signalgeneratedby a singleRF pulse. This re-
sults in a dramatic reducedacquisition time (30-100msper slice),nonethelessat the
expenseof a lower spatial resolution. Alternativ e sequences,amongothers SMASH
or SENSE,havebeenmorerecently proposedto allow parallel acquisitionswith mul-
tiple coils. Such imaging improvements will certainly bring important improvements
in the near future.
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Figure 2.16: Variabilit y of the Hemodynamic ResponseFunction acrossdays (a) and scans

(b) within subject and acrosssubjects (c). The BOLD signal from central sulcus is sinc

interpolated and normalized to maximum. Modi�ed from [1].

Measuring the BOLD signal: activ ation detection paradigms

It is not possibleto localize an activation with a single BOLD image. In fact, the
signal of interest is the variation of the BOLD intensity. Besidesthere is no prior
absolutesignal level that can be usedasbaseline.A typical fMRI experiment hence
consistsof several runs (or sessions)consisting of alternating periods of (various)
stimulus and control tasks. A run usually lasts 5 mns. Throughout each run,
BOLD sensitive imagesare acquired at a speci�c temporal frequency, leading to a
time seriesof images.Using EPI sequences,the typical functional imagessampling
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period is around 3 secondsfor a completevolume. However, the acquisition can be
restricted to a particular brain region of interest, such as the occipital pole, thus
increasing the sampling period. Regarding spatial localization, the typical voxel
sizespansa few mm3.
Di�eren t paradigms,called experimental designs,have beenintroducedto organize
the sequenceof tasks the subject undergoes during the scanningsession.A given
experiment can generally be labeled within one of the following experimental
designsfamilies:

- Blo ck design : each experimental condition is submitted to the subject in
relatively long presentation periods, or epochs, of typically 20 s. A run is a
successionof alternated conditions presented in a random fashion. This kind of
design is consideredas optimal for activation detection purpose [136], since it is
not much dependent on the BOLD responsemodel choice. On the other hand, it
is relatively time consumingsinceit precludesthe useof more than a few di�eren t
conditions in a singlerun.

- Event-related design : a run is in this case a series of brief events of the
di�eren t experimental conditions. With an optimal events distribution, this kind of
designis optimal for HRF shape characterization [136]. Besides,they are lessprone
to subjects fatigue. On the other hand, their detection power is relatively weak.
Note that most fMR-adaptation experiments (seechapter 6) can be included in this
category.

- Perio dic or Fourier design : this design is particularly useful for periodic
parametric stimulations such as used in retinotopic mapping experiments (see
chapter 5). A given stimulus parameter is varied periodically, so that neurons
selective to a given parameter value (or rangeof values)are activated periodically.
The time seriesanalysisconsistsof a Fourier transform at the stimulation frequency.
The signalsof interest are then the amplitude, indicating the local selectivity of the
underlying neuronal population and the phase,related to a given parameter value
of the stimulation.

We have stressed that the BOLD signal used in human fMRI is a complex
phenomenonstill not completely understood and requiring speci�c paradigms.
However, the major advantage of this imaging method is its abilit y to noninvasively
allow high spatial resolution cortical activit y measures.Hence,fMRI is more and
moreusedthe neuroscience,with an exponential increaseof study sinceits discovery
in the 1990's.
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2.3.3 Di�usion MRI

Di�usion MRI is the uniquenon-invasive techniquethat allowsto probeand quantify
the di�usion of water moleculesin the body. By modeling the local anisotropy of
this di�usion process,it becomespossibleto indirectly infer local tissuearchitecture
such as white matter �b ers.

Ph ysical principles

Above the absolute zero temperature, molecules freely moving in an isotropic
medium are prone to many shocks one against another, implying many random
changesof their motion direction. This phenomenoncan be modeledasa Brownian
motion, which from a macroscopicalscalecan be seenas a di�usion process. In
an isotropic medium, the probability of a moleculeto move a distance r during a
time � follows a Gaussianlaw N (0; �) with � = 6D� . The constant D, known
as di�usion coe�cien t, measuresthe moleculesmobilit y in the isotropic caseand
dependson the molecule-type and the medium properties. For example,at normal
brain temperature, 68%of the water moleculesdi�use in 50msin a sphereof 17 � m
diameter.
In anisotropicbiological tissues,water moleculesmobilit y is constrainedby obstacles
formed by surrounding structures, such as the axonal membranesin the brain. In
this case,the scalardi�usion coe�cien t D canbe replacedby a multilinear operator.
The most popular of them is the rank-2 di�usion tensor proposedby Basseret al.
[8]:

D =

0

B
@

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

1

C
A

where D is a real symmetric and de�nite-p ositive matrix, therefore related to a
quadratic form modeling intrinsic di�usion properties of the tissue. The di�usion
coe�cien t d related to any direction �!g 2 R3 is given by:

d = �!g > D�!g

It then follows that the probability to �nd a moleculeinitially at position x0 at x
after a delay � is given by:

P(xjx0; � ) =
1

p
(4� � )3jD j

exp
�

�
(x � x0)> D � 1(x � x0)

4�

�

The problem of Di�usion Tensor Imaging (DTI) is to estimate the 6 independent
parametersof D. This can be achieved with a minimum of 6 di�usion-w eighted
images,each measuringa T2 signal attenuation related to the di�usion coe�cien t
in a speci�c direction �!gi , plus one unweighted T2 image. The di�usion-w eighted
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Figure 2.17: Stejskal-Tanner imaging sequence.

imagescan be obtained with appropriate imaging sequenceusingdi�usion gradients
in the direction �!gi of di�eren t amplitude and strengths.

Imaging sequence

To measurewater moleculesdi�usion in a given direction g (for sake of clarity,
we note g = �!g in the remainder), the Stejskal-Tanner imaging sequence[206] is
used (�gure 2.17). This sequenceusestwo gradient pulsesGg in the direction g,
beforeand after a 180 degreesrefocusing pulse controlling the di�usion weighting.
More speci�cally, a �rst 90 degreesRF is applied to 
ip the magnetization in the
transverseplane. The �rst gradient pulse then causesa phaseshift for all these
spins. Finally, the 180degreespulsecombinedwith the secondgradient pulsecancels
this phaseshift only for static spins. On the other hand, spins under Brownian
motion during the time period � separatingthe two pulsesundergodi�eren t phase
shifts by the two gradient pulses,resulting in an increasedT2 signal attenuation.
Figure 2.18shows examplesof di�usion-w eighted imagesacquiredwith two di�eren t
directions, illustrating the direction speci�c attenuation related to white matter
�b ersorientation.
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Figure 2.18: Axial slice of di�usion-w eighted images (DWI) with two di�eren t di�usion

gradient directions (red arrows). MR signal attenuation is found in regionshaving �b ers

mostly aligned with di�usion gradient direction (yellow arrows).

Signal attenuation observed can be modeledby the following equation [206]:

S(g) = S0e(� bg> D g) (2.2)

whereb is the di�usion weighting factor depending on scannerparametersand pro-
posedby Le Bihan et al. [131]:

b= 
 2� 2

�
� �

�
3

�
jGg j2

with jGg j2 the magnitude of the pulse, � its duration and � the time separating
two pulses(see�gure 2.17).
Hence, signal attenuation, i.e. signal sensitivity to water moleculesdi�usion, is
strongerif the di�usion coe�cien t d = g> Dg is important. Note alsothe importance
of the b factor that has to be appropriately tuned comparedto d to avoid either
a very low signal attenuation if b is too small or a poor SNR if b is too high. A
typical value �lling this trade-o� is b= 1000s:mm� 2.

For each slice, images are collected with one or more b and at least 6 inde-
pendent gradient directions S(gi ) and 1 unweighted T2 image (S0). The di�usion
tensor D can then be estimatedat each voxel using the S(gi ) and S0. The classical
method to derive the tensors usesleast square technique, but various alternative
methods have been proposed. We will come back to this particular point in
chapter 7. We �nally end-up with a di�usion tensor image, i.e. a 3D imagewith 6
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parametersdescribingthe local tensor D. From the eigenvalue decomposition of D,
onecanvisualizethe di�usion in each voxel by a di�usion ellipsoid: the directionsof
the main axesare given by the eigenvectorsof D and their lengthsare proportional
to the respective eigenvalues. If all the eigenvaluesare of the samemagnitude, the
ellipsoid will be spherical,while if one of the eigenvaluesis much greater than the
others, it will have the form of a cigar. Figure 2.19 illustrates the corresponding
ellipsoids�eld in an axial slice. The blue (respectively red) color refersto elongated
anisotropic (resp. sphericalisotropic) ellipsoids.

Figure 2.19: Axial sliceof a Di�usion Tensorimage. At each voxel, an ellipsoid represents

the estimated di�usion tensor.

Note that to better describe the complexity of water motion, higher order models
have beenproposed[74, 226, 165, 21,48]. The ideais to considera discretespherical
function modeling the di�usion coe�cien t in N directions (N typically between
50 and 300) and measurethe MR signal attenuation along each direction at each
voxel. This obviously requires longer acquisition times, as N gradient directions
have to be sampled.
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2.4 Exp erimen tal setup

This section describes the experimental environment and scanningsequencesused
in this work.

2.4.1 The sub ject

No constraints areapplied to the subjects we recruited for our di�eren t experiments,
except those induced by the MR scanner:a completeabsenceof metal parts in the
body, including vascular clips, neuronal implants, pace-makers, etc...This also ex-
cludesglasses,but lensescould replacethem if any correction is needed.
As a rule of thumb, the idea for any global non-pathologicstudy is to usehealthy
right and left-handedmen and women. This is the guidelinewe followed in order to
obtain the results we present in this document.
All subjects gave written informed consent and were retributed for their partic-
ipation. The di�eren t experiments were approved by the local ethic committee
(CCPPRB Marseille 02/56).

2.4.2 The scanner and the stim ulation device

The MRI scannerwe usedis locatedat la Timone fMRI center5 in Marseille,France.
It is a BRUCKER MEDSPEC 30/80 AVANCE, with a 3T magnetand a body coil.
A picture of the scanneris shown in �gure 2.20.

The subject lies inside the coil, with an antenna around his head. The visual

Figure 2.20: The 3T MR scannerof la Timone, Marseille and the bird-cageantenna. From

http://irmfmrs.free.fr/

stimuli used in the fMRI experiments are displayed at 72Hz by a SONY video-
projector, placedin a custom-designedFaraday cageinside the scannerroom, onto
a large adjustablemirror then onto a translucent screeninside the bore at the back
of subject's head and �nally re
ected by a custom designedmirror placed at 5cm

5http://irmfmrs.free.fr
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above subject's eyes(see�gure 2.21). The video projection was synchronized with
the acquisition through a trigger sent by the scannerat the beginningof each scan.
A customdesignedkeyboard wasusedwhensubjects wereinstructed to report some
special events, such as the �xation control and attentional tasks usedin our fMRI
experiments. Both the stimuluspresentation andsubject's behavioral responseswere
controlled by a PC positionedoutsidethe scannerroom thanks to speci�c LabView6

programsdeveloped by Dr Bruno Nazarian, research engineerat the centre IRMf.

MirrorMirror

PC

Video

Projector

Faraday
Cage

MRI Scanner

Figure 2.21: The visual stimuli projection system of our experimental setup

2.4.3 Visual stim uli

Stimuli weregeneratedunder Matlab 6.1 using the ImageProcessingToolbox (Mat-
lab, The Mathworks), providing an avi �le with eighteen 300x300pixels framesper
secondand lasting 5mn04sec.The video presentation setup leadsto a display sub-
tending a visual angleof 20.9� x20.9� . This sizeis for the moment limited by the size
of the coil and the visual stimulation setup. During the �rst 5 and last 2 scans,a
mid-grey level imagewith the 0.5� red �xation crosswasshown to the subjects. The
�rst volumesare classicallydiscardedfrom the analysis(typically corresponding to
10 seconds)to allow the magnetization to stabilize to a steady state. The stimula-
tion of interest thereforestarts after a few volumeshave beenacquired. The last 2
scanswereacquiredto allow slice-timing corrections(seesection4.1).

6Labview web site: www.ni.com/lab view
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2.4.4 MR data acquisition

High resolution anatomical images

The acquisition of the cerebral anatomy of a given subject was done through a
3D-gradient echo sequencewith inversion-recovery. The technical characteristicsof
the latter are the following:
- Echo-Time (TE): 5ms
- Repetition-Time (RT): 25msec
- Inversion-Time(IT): 800ms
- Field of view: 256x192x192mm3

- Acquisition matrix: 256x192x104(for a resolution of 1x1x1.5mm3)
- Reconstructionmatrix: 256x256x128(for a resolution of 1x0.75x1.22mm3)

This leads to a 15 minutes sequenceto get a high resolution anatomical im-
age.

Functional images

The functional imageswereacquiredwith a fast-imagingEcho-Planarsequencewith
the custom bird-cagehead coil. In order to reducethe repetition time (RT) -and
thus the time neededto acquireeach functional image-while still preservinga high
spatial resolution, we have restricted our functional scansto the occipital region of
the brain rather than the complete head, since we are interested in the low-level
visual cortex areaslocated in this region. We �rst started with 18 3mm thick slices
with an inplane resolution of 3mmx3mm, oriented approximately perpendicular to
the calcarine sulcus. The corresponding TR was 1.5s (18 � 83:33ms). Thanks to
acquisition sequencere�nements performedby our colleaguesat the Centre IRMf de
Marseille, we then switched to either a 2x2x2mm3 or a 2x2x3mm3 voxel resolution
sequence,using 20 slicesto cover a su�cien t portion of the brain. The 2mm slice
thicknesswas su�cien t for the retinotopic mapping experiment whereaswe used
the 3mm slice thicknesssequencewhen we consideredthe hMT+ area, i.e. in the
functional localization of the latter (seechapter 5) and for the adaptation experiment
(seechapter 6). Both sequencesrequire 103msto acquirea singleslice, leading to a
RT of 2060msfor 20 slices.This RT wasslightly increasedto 2111msarti�cially for
each imagein order to get a good synchronization betweenthe presentation device
(refreshing at 72Hz and showing 18 di�eren t imagesper second)and the volumes
acquisition. Indeed,within a TR of 2111ms,we canpresent 18� 2:111� 38di�eren t
images(whereas18*2.060doesnot leadto an integernumber of images).Acquisition
of the multiple slicesis interleaved,meaningthat evenslicesareacquiredsequentially
beforeodd slices.
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Di�usion-w eigh ted images

In a �rst pilot experiment performed on 3 subjects, we tried di�eren t acquisition
parametersto obtain the best di�usion weighted images. We �xed TR=10000ms,
TE=86ms and the voxel size 2x2x2 mm3. 30 gradient directions were used, each
with 3 di�eren t b-values:400,1000and 1500s.mm� 2. The SNR waslow for b=1500
s.mm� 2. Besides,the estimatedtensors�elds weremerelydi�eren t usingboth b=400
s.mm� 2 and b=1000 s.mm� 2 or only the latter b value images. Finally, we used
12 di�usion directions, which is consistent with other studies [99] and allowed us
to increasethe number of repetitions to achieve a better SNR. In the subsequent
experiments, we usedb=1000 s.mm� 2 and 12 gradient directions repeated 6 (�rst
session)or 12 times (secondsession).
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The aim of this chapter is to describe the algorithms usedto extract a geometric
model of the cortex from an individual high resolution anatomical image. The
generalprocessis twofold: �rst, segment the tissuesof interest in the original image
and second,extract a bidimensional model of the cortical surface. After recalling
somegoalsof anatomicalanalysis,wegivean overviewof the algorithms usedat each
step and comparethe resulting bidimensionalmodelsobtained from two alternative
methods. We �nally describe the in
ating algorithm usedto unfold the latter model.

3.1 Motiv ation

As mentioned in chapter 2, the brain is composed of various anatomical struc-
tures and tissue types, the functions and relations of which are more and more
investigated in research and clinical studies. Identifying distinct tissuescan be a
preliminary step for various image processingsuch as voxel-basedmorphometry
or image coregistration, to constrain appropriate computations within a given
anatomically homogeneouspart of the brain. For instance, the anatomical con-
nectivity study we present in chapter 7 relies on such a segmentation, in order to
restrict the computation of the estimated �b ers within the white matter tissue.
A tissue classi�cation is also a prerequisite to extract geometric models of the
cerebralcortex. Thesemodelsof the cortical sheetare not only of great interest for
the visualization and interpretation of the brain activit y obtained from functional
imaging (shown in chapter 5), but they can also provide a frame to cortically
constrainedprocessing. Two examplesof surfacebasedcomputations are detailed
in our work: fMRI data smoothing following the cortical geometry (seeparagraph
4.1.5) and surfacebasedretinotopic areadelineation (paragraph 5.1.9).

Firstly, brain structures, such as the white matter tissue or the cortex, di�er
greatly in shape and sizeacrosssubjects, making impossiblethe useof a single�xed
model. A T1 anatomical imageis thereforeacquiredfor each subject to provide the
individual structural information. Furthermore, a manual structure identi�cation
for each subject is particularly inappropriate as awkward and potentially expert
dependent, urging the useof automatic and e�cien t algorithms. Basically, we could
seethe cortex asa strongly folded sheetof tissue. It is thus a 2D surfaceembedded
in 3D space. Ideally, �nding this surfacein the MR anatomical imagecomesdown
to determining the grey level value of the voxels corresponding to the cortex in the
brain. A similar approach could be devisedfor the white matter tissue viewed as
the high grey level valuevolumeincluded insidethe cortical surface.Actually, many
image distortions prevent us from applying these straightforward procedures: (i)
becauseof its relatively large size,the anatomical voxel often holds di�eren t tissues
that are averagedtogether, phenomenoncalledpartial volumee�ect; (ii) depending
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on the acquisition sequenceused, sometissuesdo not di�eren tiate clearly in the
image;(iii) heterogeneitiesin the coil also lead to a non-uniformity of the grey level
in the image(bias), changing the grey level of a given tissueacrossthe volume.

Numerous techniques based on di�eren t assumptionsand frameworks have been
proposedto perform anatomical image processing. Establishing a comprehensive
list of every available packagesis beyond the purposeof this work. Furthermore, an
exhaustive comparisonof the di�eren t packagesis still missingto date.
We detail below two methods we have particularly explored. They provide reli-
able results and successfulhighly automated computation. The �rst one, called
BrainVISA, is a free and open sourcesoftware suit, developed at the CEA-SHFJ,
Orsay, France1 and presented e.g. in [38] (seealso more speci�c referencesgiven
below). A recent comparisonperformed on three commonly used cortical surface
reconstruction softwares, namely INCsurf [207], Freesurfer2 [45] and BrainVISA,
concluded in favor of the latter [122]. The secondmethod, called ABSOLUt for
Automatic Brain Segmentation Odyss�eeLab. Utilities, wasvery recently developed
at the Odyss�eelaboratory by Jean-Philippe Ponsand Florent S�egonne[67, 175] and
generally leads to �ner results than BrainVISA with respect to cerebral anatomy
representation accuracyand topological properties of the reconstructedsurfaces.

3.2 Metho d overview

Our anatomicalprocessingcanbe split into two main sub-procedures.Firstly, start-
ing from the initial whole brain anatomical image, two binary images(or masks)
are computed, corresponding to subsetsof voxels from each hemisphere.Secondly,
each hemisphereis labeledwith respect to the Cerebro-SpinalFluid (CSF), the grey
matter and the white matter (noted GM and WM respectively), and the interfaces
betweenthe latter are then tessellated.
The approach usedto segment of interest and extract cortical surfacesmodels for
each hemispherereliesmainly on the BrainVISA software but various stepsare al-
ternatively processedusing the ABSOLUt software.

3.3 Hemisphere iden ti�cation

The �rst step of the hemisphereidenti�cation procedureis meant to correct for the
intensity biasmentioned above. It is then followed by a histogramanalysisto detect
the range of values for the di�eren t tissuesof interest, after what morphomathe-
matical operations are applied to the image to remove skin, bone, fat and other

1The BrainVISA package can be found at http://brain visa.info/index.h tml
2The Freesurfer package can be found at http://surfer.nmr.mgh.harv ard.edu
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non-brain tissuesand alsoto computea labeledimageof both hemispheresand the
cerebellum. To perform thesesteps,we usethe BrainVISA software.

3.3.1 Bias correction

If one observesa standard quality grey-level MR-anatomical brain image, it seems
that each tissueis represented homogeneously. However, taking a closerlook reveals
that it is not the case,aswementioned above: our visual systemis usedto correct for
this kind of luminancevariations. A computerprogramis not ableto compensatefor
theseinhomogeneities;there is thus the needto correct for this lack of uniformit y,
which is unfortunately not only linked to the scannerand the sequenceused (in
which casemeasuringit oncewith an appropriate phantom would be su�cien t to
describe it) but is alsosubject dependent.
To compute an intensity correction, the BrainVISA algorithm is basedon a model
of the observed intensity:

O(x) = I (x)F (x) + N (x)

where: I is the intrinsic intensity of the tissue,
F the spatial bias,
N the acquisition noise,
O the observed intensity.

A B

Figure 3.1: Bias correction of the anatomical image. Axial slice of an anatomical image

before(A) and after (B) the bias correction. The latter provides a more uniform grey-level

value for each tissue. The colormap used here, identical for both images, illustrates the

intensity uniformization induced by the bias correction.

The aim is to best estimate the spatial bias F , supposedto be spatially smooth
which is reasonablewith regardto the MR acquisition process.The algorithm relies
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on the minimization of the following energyU:

U(F ) = kSS(O) + kRR(F ) + kM M (O)

where S(O) is the resulting image entropy, R(F ) a function measuringthe spatial
smoothnessof the correction�eld F and M (O) a measureof the discrepancybetween
the original image global mean and the corrected image global mean. This latter
term prevents the algorithm to converge to a uniform grey level image. The con-
stants kS, kR and kM weight each criterion of the energy. The optimization method
implemented relieson a stochastic scheme. For a more detailed presentation of this
method, seeMangin 2000[142].
In order to judge the quality of the result after convergence,one comparesvisu-
ally the two images(original input imageand the bias correctedoutput image)and
especially checks for the homogeneity of the white matter grey level (see�gure 3.1).

3.3.2 Grey level histogram analysis

Relying on the bias corrected image, the next step is to automatically compute a
rough grey level evaluation of the di�eren t tissuesof interest, here to distinguish
mainly three classes:GM, WM and the other brain tissues(including CSF). As
mentioned above, the latter values di�er strongly acrossscanners,MR sequences
and subjects.
The algorithm implemented in BrainVISA performsa grey level histogramanalysis

basedon the scale-spacetheory (seefor instance Koenderink 84,[123], Witkin 83
[244]) and relieson the two following invariant properties of T1 MR images:

� there are three peaksin this histogram: one for the background, one for the
grey matter and one for the white matter, the order being always the latter;

� thesepeaksaccount for the largest amount of voxels.

We give an overview of the algorithm, detailed in [143]. Each tissue classshould
producea speci�c mode in the imagegrey level histogram, and the modesorder is
constant acrossimages.However, the detectionof thesemodesis not alwaysstraight-
forward: as two neighboring modes,e.g. GM and WM modes,can be mixed, grey
level histogram and �rst derivative extrema analysis are not su�cien t. Starting
from the study of scale-spaceimagesderived from a mixture of two Gaussiandis-
tributions, onenoticesa structure linking the tra jectoriesof the order i derivatives
extrema to thoseof the order i + 1 derivatives. This structure is always present in-
dependently of the Gaussianparameters,taking a large enoughorder of derivatives
dependingupon the case.With MR images,the �rst two derivativesof the histogram
are empirically su�cien t for the two modes of interest (GM and WM). Assuming
the modes to be relatively symmetric, the meansare given by the minima of the
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Figure 3.2: Histogram analysisbasedon the scalespacetheory. The grey levelsare shown

horizontally and the scalesvertically (on a log-scale). The red curve is the grey level

histogram of the image, the tra jectories of the minima (m) and the maxima (M) of the

�rst two derivativesare shown in dark blue, green,light blue and purple respectively. The

diamonds are the results of the analysis used to identify the CSF, GM and WM tissues

modes(mean and variance). Figure borrowed from http://brain visa.info.

secondorder derivativesand the standard deviations correspond to the maxima of
the closest�rst derivatives. The algorithm thus usesthat information to group the
tra jectories using the notion of cascadesand, after an automatic characterization
of the sequenceusedto acquire the image(InversionRecovery sequencesshow very
distinct histograms for instance), the algorithm estimatesthe CSF, GM and WM
modes. Figure 3.2 illustrates the result of the scalespaceanalysisof the grey-level
histogram for a given anatomical image.

3.3.3 Skull stripping

A �rst binary image of the brain is computed by thresholding the original image
with the values found in the previous step; this new mask stands for the voxels
corresponding to the white and grey matter (mask=1) and removesthe other tissues
voxels (mask=0). This is however insu�cien t, many other elements being kept (the
eyes,meninx,...). A parameterizederosionprocessis simulated in order to whittle
down this binary image. This erosiongivesrise to di�eren t connectedcomponents,
from which the largestoneis kept asa brain seed.A dilation processis then applied
to this seedto recover the brain. Figure 3.3 illustrates thesedi�eren t steps,referred
as skull stripping.
As for the bias correction, the resulting maskshouldbe checked visually against the
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original image. For our retinotopic mapping studiesfor instance,we focusedon the
occipital lobes (at the back of the brain) where the low-level cortical visual areas
are located.

3.3.4 Brain mask segmentation

Our work mainly focuseson the low-level visual areasmostly located on the medial
parts of the occipital cortex. The latter are facing each other very closely, which
makes impossiblethe visualization on a single model of the whole cortical surface.
A separationof both hemispheresis therefore required to allow an optimal display
of the medial surfaces.The cerebellum is also included in the mask after the skull
stripping. An algorithm basedon Chamfer distancesand a Voronoi graph compu-
tation allows to classify the mask into three distinct parts: the cerebellum, the left
hemisphereand the right hemisphere.The �nal result is shown in �gure 3.4.

3.4 Cortical surfaces extraction

The cortical surfaceof a given hemisphereis modeled using the GM/WM and the
GM/CSF (CerebroSpinal Fluid) interfaces.To perform the tissueclassi�cation and
the cortical surfacesextraction, we have two alternative approaches,both starting
from the above hemisphereseparation. We useeither the BrainVISA or the ABSO-
LUt software algorithms, which are respectively described and �nally comparedin
the following paragraphs. Note that, beforeABSOLUt software was developed, we
tried another algorithm alsodesignedat the laboratory and described in [85], which
can be seenas a special caseof the ABSOLUt method and therefore led to lower
quality results. Moreover, this method did not allow a tissueclassi�cation.

3.4.1 Algorithm 1: BrainVISA

Tissue classi�cation

Although not explicitly performed during the surfacesextraction (seebelow), the
BrainVISA package also implements an algorithm dedicated to the GM and WM
tissues labeling within the mask of each hemisphere. The method relies on the
histogram analysispresented in paragraph 3.3.2, further re�ned with a Markovian
regularization favoring a voxel to have the samelabel as its neighbors.

Cortical surfaces extraction

The approach implemented in BrainVISA is basedon a combination of the Homo-
topic DeformableRegion (HDR) method and mathematical morphology tools. We
give the main stepsof the method which is fully described in [144].
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Figure 3.3: Illustration of the di�eren t steps for the brain mask computation. A: bias

corrected anatomical image. B: thresholded image; the thresholds were automatically

chosenbasedon the histogram analysis result. C: result after the �rst erosion on B. D:

the largest connectedcomponent in C. E: �nal brain mask after dilation.
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Figure 3.4: Brain mask segmentation, separating both hemispheresand the cerebellum

The following cortical surfacesdetection is applied separately to both previously
computed masksof each hemisphere. An initial empty parallelepipedic bounding
box (hence homotopic to a sphere) of the hemispheremask, noted O0, is �rst
deformedto the hemispheremaskborder with a homotopically preservingdeforma-
tion. This is performedin two steps:

� O0 is iterativ ely dilated conditionally to the complement of the mask in O0

inside, leading to O; O standsfor a sphericaltopology outer part of the mask.

� O0 outside is iterativ ely dilated conditionally to O, subject to the constraint
that no connectionbetweenthe inside and outside of O is allowed.

At the end of thesesteps, O corresponds to the estimated subsetof voxels repre-
senting the thin layer outside the GM (the brain hull). Note that the conditional
dilations are performed in a pyramid multiscale fashion, allowing faster computa-
tion.
The model O is then homotopically dilated conditionally to its original inside to-
ward the GM/WM interface. The deformation comesdown to adding to O each
voxel that decreasesthe two terms energyE(O) = Ed(O) + Er (O) where:

� Ed is a data driven term, i.e. a sum of potentials for each voxel basedon a
K-meansclassi�cation of GM or WM voxels with respect to their grey levels

� Er is a regularizationterm basedon Ising models,i.e. minimizing the GM/WM
interface length.

81



As the evolution of O is homotopically constrained, the GM/WM interface is
thereforeconstrainedto have a sphericaltopology. A topology-consistent marching
cube algorithm is �nally usedto computea meshof the GM/WM (which holds the
spherical topology) and the GM/CSF interface (which is a priori not topologically
spherical). Finally, a decimation is applied to the meshes,including a smoothing
to avoid artifacts due to the underlying discretization. The decimation strength
dependson the trade-o� betweenthe �nal expectedquality of the meshwith respect
to the segmentation and the meshsize.

3.4.2 Algorithm 2: ABSOLUt

In this approach, a statistical classi�cation method is used to provide a good ini-
tialization of deformablemodels that further evolve to the estimatedGM/CSF and
GM/WM interfaces. Constraints on the evolution guarantee topological proper-
ties of both meshessuch as spherical topology, absenceof self-intersections and
mutual intersections. These two steps are performed on a masked version of the
original anatomical image for each hemisphere. Note that we use dilated versions
of the hemispheresmaskscomputed with BrainVISA to include CSF voxels that
are mandatory for a reliable tissueclassi�cation with the default implementation; a
typical value for the dilation radius is 2 voxels.

Tissue classi�cation

The tissue segmentation relies on a hidden Markov Random Field classi�cation,
coupled with an automatic estimation of the tissue distribution parameters and
of the bias �eld with the expectation-maximization (EM) algorithm. Similarly to
BrainVISA's tissue segmentation method, the tissue distribution is modeled by a
Markov RandomField (MRF) encouragingneighboring voxelsto havethe sameclass
labels, while the observed intensity of each tissue classis modeled by a Gaussian
distribution. The labels L of the voxels are estimated from the observed intensities
I with a maximum a posteriori (MAP) criterion:

L̂ = argmax
L

P(LjI ) = argmax
L

P(I jL) P(L):

The parametersof the tissue statistical model are the mean and the standard de-
viation of each tissue class,and a bias �eld accounting for the inhomogeneitiesin
the imagegrey-level values. This bias is taken as a�ne with respect to intensities,
smooth and non-parametricover space.
A rough initial estimate of CSF, GM and WM meangrey-levels is provided by the
user, for instanceusing BrainVISA's automatic histogram analysis (seeparagraph
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3.3.2). Then, iterativ ely, classlabelsare estimatedby MAP and the tissueparame-
ters and the bias �eld are then updated with the EM algorithm.
The di�eren t outputs of this step are:

� a labeling of imagevoxels,

� the meanand the standard deviation of each tissueclass,

� a bias-correctedimage.

Note that a bias-correctedimage is onceagain computed in this approach, which
is redundant with the bias �eld computation previously performed in BrainVISA
during the hemispheresegmentation procedure. However, this bias correction step
is intrinsic to the ABSOLUt software. The latter lacks an automatic hemisphere
separationalgorithm that must be performedwith BrainVISA's method.

3.4.3 Cortical surfaces extraction

The hiddenMarkov RandomField classi�cation is powerful for automatic parameter
estimation but it is not sub-voxel accurate and disregardstopology. Extracting
an isosurfaceof the labeling would give a very coarsereconstruction with a lot
of topological defects. Hence, the labeled image of the previous step is fed into
a deformablemodel segmentation task with a topology preservingnestedlevel set
method basedon [97] and re�ned asdescribed in [175], section3.2. More speci�cally,
in order to obtain a closeand topologically consistent initialization, a setof topology
preservingnestedlevel setsare �t to the labeling beforestarting a surfaceevolution.
Later in the algorithm, the labels are no more taken into account, and the surfaces
are homotopically evolved accordingto the intensities of the bias-correctedimage.
Since the image inhomogeneitieshave been removed in the latter, the boundaries
between the di�eren t tissuescan be found robustly with a Bayesian region-based
evolution. Finally, the meshescan be computedby a topology-consistent marching
cube algorithm.

3.4.4 Algorithms comparison

As we consideredtwo alternative approaches for the �nal steps of the anatomical
image processing,it is natural to comparetheir respective outcome, especially for
the GM/WM interfacewe are mostly interestedin.
We have carried out various qualitativ e comparisonson our normal human brain
dataset imagesand also on macaquemonkey brain MR imagesfrom ProfessorOr-
ban's group, K.U. Leuven, Belgium. Note that thesecomparisonsare always done
on meshesof comparablesize,a parameterthat can roughly be tuned in both meth-
ods. The sheet-like parts of the GM/WM interfaceat the extremities of the gyri are
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better recoveredby the ABSOLUt method, which alsoavoidsmis-reconstructionlike
splittings of connectedparts or unexpectedconnectionsthrough CSF or ventricles,
asillustrated in �gures 3.5. Another interesting featureof the ABSOLUt software is
the implicit representation, i.e. through levelset functions, of the surfacesproduced
as output. Such a representation is of particular interest for computationally e�-
cient cortical surfacebasedprocessing,such as the smoothing of fMRI data along
the cortical geometry described in paragraph 4.1.5. Finally, the GM/CSF surface
spherical topology as well as absenceof intersectionsbetweeninner and outer cor-
tex surfacesare guaranteed by the ABSOLUt method, which is not the casewith
BrainVISA procedures.
Globally, weusethe ABSOLUt softwarefor the WM/GM interfaceextraction which,
for a given meshsize,provides a �ner estimate of the cortical surfacesthan Brain-
VISA while guaranteeing better topological properties.

3.5 Cortical surface in
ating

The cortical surfacehas complex geometry, mainly through its highly folded con-
�guration, making the results visualization particularly awkward inside the sulci.
Two di�eren t techniques,basedon unfolding the cortical surface,are usually used
to facilitate the visualization: 
attening and in
ating. Figure 3.6 illustrates both
approaches. In both cases,distancesand/or angular distortions are unavoidable.
The 
attening allows larger cortical surfaceportion visualization in a single view,
but at the costsof losing spatial relationship at points wherethe surfaceis cut and
operator dependent surfacepositioning of the latter.

In our studies, we used the secondmethod, in
ating the cortical surfaceof each
cerebral hemisphere. The algorithm we used was implemented by Dr Olivier
Coulon3 and is available in the BrainVISA Package. It relies on an energy mini-
mization allowing to compute an in
ating force at each vertex of the mesh. This
force is madeof three components:

� a strictly speaking in
ating component, along the current vertex normal,

� an \elastic" component, trying to maintain the distancesbetweenneighboring
nodes,

� a smoothing component, moving each node toward its neighboring vertices.

3Olivier Coulon is currently at the Laboratoire des Sciencesde l' Information et des Systmes, CNRS,

Marseille, France.
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Figure 3.5: Comparison of BrainVISA and ABSOLUt GM/WM surfaceextraction. The

red and greencurves represent the intersection of the GM/WM interface meshextracted

with BrainVISA and ABSOLUt respectively and image slicesof the original anatomical

image. To ful�ll an unbiased comparison with respect to the surfacemodels resolutions,

both mesheshave a similar size,with 100822and 99511nodesrespectively (1.3% relative

di�erence). The meshesare mostly identical, though someimportant di�erences plead in

favor of the ABSOLUt procedure: the blue arrows emphasize�ner segmentations of sheet-

like parts of the thinnest gyri (1) while avoiding the splitting of a connex white matter

regions(2) and crossingsthrough the ventricules or the CSF (3).
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Figure 3.6: Representations of the �ducial cortical surface (left) either in
ated (middle)

or 
attened (right). The sulci are represented in red, the light in green. Adapted from

[71].

i=0 i=4 i=15

i=50 i=200 i=500

Figure 3.7: Di�eren t stagesof the in
ating algorithm on a given left cortical hemisphere,

i indicates the iteration step.

The in
ating is the result of a trade-o� betweenthesethree components. Interme-
diate imagescan be saved during the energy minimization, thus allowing an easy
tracking of the sulci and gyri along the process. The global result is satisfying,
although perfectiblenotably whenthe curvature is locally large. Figure 3.7 presents
someviews of a left cortical surfaceat di�eren t stagesof the in
ating process.
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3.6 Volumetric data pro jection

There are various ways to project volumetric information from a 3D image to a
2D surface. A typical application of such a projection is to overlay the statistical
signi�cance map coming from the functional imagesanalysison the cortical surface
model. In the Anatomist software, which is the visualization software provided in
the BrainVISA package,various projections methods are proposed.Thesemethods
can be separatedin two consecutive steps: �rst the geometricalsampling, i.e. how
the information to represent on each meshvertex is searched in the 3D volume,and
secondthe merging mode of thesevalues, i.e. how to compute a single value per
vertex when each vertex is related to multiple voxels by the geometricalsampling
method chosen.
The geometricalsamplingat each vertex can be donein the following ways:
- Point to vertex: only the information coming from the voxel encompassingthe
meshvertex is used.
- Point to vertex with depth o�set: only onevoxel information is taken into account,
but its position is shifted along the local normal to the mesh;the shift length and
the shift direction, either inside or outside the mesh,can be tuned.
- Segment to vertex: information is taken along the normal line, both inside and
outsidethe mesh,with a segment length and samplingstep speci�ed by appropriate
parameters.
- Inside/outside segment to vertex: similar to the segment to point method but only
onesideof the meshis considered.
- Sphereto vertex: voxels information is taken from voxelswithin a spherecentered
at the current vertex; the sphereradius and samplingstep can be tuned.
When the geometrical sampling method chosen implies multiple voxels for each
vertex, di�eren t merging techniques can be applied to assign a single value per
vertex. The most obvious way is to take the meanof the voxel valuesencountered
at each samplingstep. A more suitable mixing implemented in Anatomist discards
the 3D image minimum value in the mean computation to avoid a blurring of the
mapped valueswith, for instance,under thresholdvoxels. Finally, the maximum (or
minimum) value of all the voxels within the sampledlocation can alsobe chosen.
Changingthe geometricalsamplingand/or the mergingmethods can have dramatic
e�ects on the �nal result. The choice should therefore depend on the 3D data
considered.To overlay our statistical T mapsor the retinotopic angular maps (see
chapter 4), we employed the segment to vertex geometrical sampling, taking into
account the voxelscrossedalongthe local outer normal to the GM/WM interfaceat
a distanceup to 2.5mm from the current vertex and with a spatial step of 0.5mm.
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Regarding the merging technique, we used the corrected mean for the retinotopic
angular mapsand the maximum for the statistical T-maps.
Somere�nements might beenvisagedto assign3D valuesto a 2D surface,for instance
taking into account the GM/CSF interface in the segment to vertex approach to
restrict the integration segment in the sub-volume de�ned by the inner and outer
cortical surfaces. However, regarding the large functional voxel size (2mm3) with
respect to the cortical thickness(ranging between1 and 4.5mm,with a meanof 2.5
[70]) and the currently imperfectcoregistrationbetweenanatomicaland EPI images,
we speculatea �ner approach should not improve dramatically our functional maps
overlays.

***

Wehavepresented in this chapter variousalgorithms mainly basedon imageprocess-
ing and computational geometry methods usedto generatee�cien t segmentations
of brain tissuesand extractions of the cortical surfacemodels. The overall process
takesfrom 30 minutes to 1 hour for a given subject, including somemanual editing
of the masks whenever necessary. The results of this analysis of the anatomical
information are further usedto visualize fMRI activations over the cortical surface
(chapter 5) but alsoasa basefor anatomically constrainedcomputationssuch ascor-
tical surfacebasedfMRI data smoothing (section4.1.5)or DTI based�b er tracking
restricted to the white matter tissue(chapter 7).
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Chapter 4

Functional data analysis
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The indirect measurement of brain activations can be performed with BOLD
signal images.A typical fMRI experiment consistsin acquiring a set of consecutive
imageswhile the subject undergoesa stimulation and/or performsa cognitive task.
At each voxel in the functional volume, we thereforerecord a time seriesof BOLD
signal variations. In the following, the functional serieswill be viewed as 4D data
(3 spatial dimensions+ time). Each volumeacquiredwithin a given repetition time
(RT) is seenas an image,and a set of volumesacquired in a row is called a run or
a session.
A fMRI data analysistypically comprisesthe following steps:

� the pre-processing,which aims at correcting possibledefectsin the acquisition
(head motion, acquisitionsgapsbetweenslices,...) and performs somespatial
and temporal �ltering of the data,

� the statistical analysis: it allows to assessthe volume'selements whoseactivit y
are correlatedwith the experimental paradigm,

� results interpretation: confront quantitativ e statistical results to, amongoth-
ers,qualitativ e stimulus or task criteria.

Following this typical analysisprocess,we �rst describe variouspreprocessingmeth-
ods common to most fMRI studies. We exposea methodological contribution re-
garding anatomically constrainedspatial �ltering of fMRI data. The secondsection
deals with the statistical analysis. After a brief overview of the main approaches
proposedin the literature, we detail a few of them, emphasizingon the methods
we usedto analyzeour own experiment datasets.Although a speci�c sectionis not
dedicatedto the results interpretation, this topic is addressedin the description of
each method.

4.1 Prepro cessing

To begin the functional data analysis, it is preferable to apply di�eren t prepro-
cessingsteps; indeed,sinceonly the BOLD signal is of interest to brain activation
characterization, any other signal is thus consideredas noiseand should, as much
as possible,be removed.

It is �rst necessaryto discard the �rst images from the temporal series. We
indeedalways take a few images(typically 5 RT in our case,i.e. about 10 seconds)
during the MR signal stabilization phase;the latter, depending on the scannerand
the sequenceused, is known to give rise to many artifacts in the images,which
are mostly abnormal high level values in the signal. Naturally, no stimulation are
presented during these few scans. We can then apply the following preprocessing
stepsto the remaining images.
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4.1.1 Motion correction

The subject's headmotion during a scanningsessionis unavoidableand may induce
artifacts, leading to a mislocalization or a lossof activation or, worst, to falsepos-
itiv es, i.e. to voxels consideredactivated by the stimulation or task wherethey are
actually not. All subsequent analysisor processingon seriescomprisingmotion can
be invalid as the signal and the voxels cannot be properly identi�ed.
The imagesrealignment, i.e. an estimation followed by a correction of subject's
headmotion, can be performedusing the standard realign tool implemented in the
SPM1 software. A referenceimageI R is designatedby the userand the other images
are registeredto it using a rigid transformation T. A 3D rigid displacement can be
described by 6 parameters:3 for the translations in each direction of the 3D space
and 3 for the rotations around each axis x, y and z (called pitch, roll and yaw re-
spectively). The error E betweenthe referenceimageI R and the imageI i to realign
is the sum of the squaresof the intensity di�erences at each voxel x:

E 2 =
X

x

(I R(x) � I i (T(x))) 2

E is minimized with respect to T using a classicalleast squarestechnique. At the
end of this step, we can visualize the correctionsattached to each 3D image, and
thus have an estimation of subject's motion (see�gure 4.1).
Following the work of Freire and Mangin [75] to more appropriately estimatehead

motion without creating spuriousactivations in fMRI time series,we actually used
a di�eren t tool implemented in the INRIAlign software2. This toolbox, interfaced
with the SPM software, implements various similarit y measuresto avoid the di�er-
enceof squaresdrawbacks, as proposedin SPM99 realign technique. We usedthe
default algorithm relying on the Geman-McClurerobust estimator which leads to
the most reliable results in their validation study. See[76] for more details.
Note that many other motion correction softwareshave beenproposedin the liter-
ature. A very recent study [156] comparedthe most popular amongthem, namely
AFNI, AIR, BrainVoyager,FSL, and SPM2,on phantom aswell ason typical human
studiesdata. Their conclusionis threefold: (i) although slight di�erences could be
observed, no single software outperformed the others (ii) the parameter tuning for
each method hasvery little impact on the �nal results (iii) they nonethelesswarmly
recommendthe inclusion of the motion correction step in fMRI data analysis.
The global estimatedmotion wasgenerallyinferior to 1mm in each translation direc-
tion and to 1 degreearound each rotation axis. In caseof more important motion,

1We will often refer to the SPM software in the remainder of the thesis. It refers to a set of methods

implemented in a popular software classically used for fMRI signal processing. The core of the SPM

approach will be detailed in the next section.
2 INRIAlign, developed in the �Epidaure Team, INRIA Sophia-Antip olis, France, is available at

http://www-sop.inria.fr/epidaure/soft ware/INRIAlign/
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Figure 4.1: Typical output �le produced by a motion correction of the fMRI time series.

The upper graph shows the estimated valuesof the 3 coordinates of translation directions

for each image with respect to the �rst, the lower one shows the 3 estimated coordinates

valuesof the rotation motion computed. We notice that the motion is larger betweeneach

sessionof 144images,corresponding to a singlerun, which seemsconsistent with a motion

of the subject waiting betweentwo runs. Note that this wasnot speci�ed to the algorithm

during the motion correction: the estimation seemsreliable.

subject could be removed from the analysis.

4.1.2 Anatomical/F unctional image alignmen t

As we use information from the anatomical image to constraint computations on
functional imagessuch as cortical constrained�ltering (seeparagraph 4.1.5) or for
the segmentation of retinotopic areasover the cortical surface(seeparagraph5.1.9),
the alignment between functional and anatomical scansis crucial. There are two
main sourcesfor disalignement:
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� the subject moved the headbetweenthe anatomical and the functional scans.
Such a coregistration issue should be well corrected by a rigid deformation
computation (rotation and translation).

� as it is often reported in high �eld Echo Planar Images(EPIs), there could be
distortions in the functional imagesthat might not be appropriately handled
by a rigid deformation alone.

We addressedthis coregistration issue using a non-rigid deformation algorithm,
estimating a deformation �eld to be applied to the functional images. We useda
software developed in the laboratory, MATCH, which is fully detailed in [26, 25].
Brie
y , a densedeformation �eld is computed by composing small displacements
minimizing a local correlation criterion. Such a local similarit y measureallows
to cope with nonstatic behaviors in the intensity pro�les of imagescoming from
di�eren t modalities. The estimated deformation �eld is �nally regularized by a
low-pass�ltering.
Considering the coronal acquisition sequenceused for our functional studies, the
estimated densedeformation �eld was negligible with respect to voxel size, we
thereforedecidednot to apply the non-rigid correction �eld. The coregistrationwas
nonethelessperformed by the classicalSPM routine and the result was systemati-
cally assessedvisually using SPM's chek reg function.

A complementary solution is to rely on a speci�c measurement of the known
Echo Planar Imaging (EPI) geometric distortions causedby magnetic �eld inho-
mogeneity [117]. This can be achieved by acquiring a phasemap, i.e. an image
mapping the spatial distribution of �eld inhomogeneities. A speci�c method is
for instance proposed in a SPM interfaced toolbox3. However, the phase maps
acquisition was only recently available at the centre IRMf de Marseille where we
performed our experiments, so that we could only apply such a correction to the
experiment described in 7.

4.1.3 Correction of the in ter-slice gap or slic e-timing

A volume is madeof di�eren t slicesthat are not acquiredat the sametime during
the scanningprocess. Thus, in the caseof the interlaced sequencesas usedin our
experiments, a time discrepancyof the magnitude of half the RT can be present
between two spatially adjacent slicesof the samevolume. A temporal analysisof
the raw imagesshould take into account thesedi�erences. A simple solution is to

3The Fieldmap toolbox can be freely downloaded at: www.�l.ion.ucl.ac.uk/spm/to olbox/�eldmap

93



correct for this discrepancyto be able to apply the samestatistical analysisto each
sliceand considerthem as acquiredat the samepoint in time.
This pre-processingis performedby the Slice-Timing method of the SPM software,
which moves slicesin time to get a volume consideredto be acquired at the same
time. This correction relies on a temporal interpolation of the time seriesat each
slice using an interpolation with a sinc function. The algorithm then realignseach
sliceby changing the phaseof the signal taken in the Fourier space.Note that this
method assumesthere is no information of interestbeyond the Nyquist frequency, i.e.
the sampling frequencydivided by two. The output of the algorithm is a temporal
seriesof imageswhere each slice would have been acquired at the samereference
time point within the RT.

4.1.4 Isotropic spatial smoothing

Although surprisingat �rst, a spatial smoothing is commonlyappliedto fMRI images
[79]. The main reasonis to increasethe signal to noise ratio (SNR), by reducing
the e�ect of spatially uncorrelatednoise. This smoothing also increasesthe validit y
of the assumptionsusedduring the statistical analysisdone by the SPM software,
i.e. the residualsof the regressionmodel can be treated asa Gaussianrandom �eld
(seeparagraph4.2.3below). Lastly, this alsohelpsinsuring a better spatial overlap
betweenactivations acrossdi�eren t subjects in multi-subjects analysis.
The Gaussiankernel we typically usehasa Full Width at Half Maximum (FWHM)
equal to 1.5 times the voxel size. The FWHM is linked to the standard deviation �
of the Gaussiankernel by the formula:

F WH M = �
p

8ln(2)

In our visual area mapping experiments, this smoothing step highly increasesthe
quality of the resulting maps. However, such a 3D-smoothing is not optimal asit does
not take into account the geometryof the cortical surface,thus mixing voxels from
di�eren t tissuesor remotecortical locations. Wehavethereforeimplemented another
approach enablingan anisotropic smoothing along the cortical surface,presented in
the following paragraph.

4.1.5 Cortical surface constrained smoothing

As mentioned above, the typical spatial smoothing applied to fMRI data is usually
3D-isotropic, thus mixing voxels from di�eren t anatomical tissues(e.g. grey matter,
white matter and CSF). This leadsto undesirableaveragingof signalsat neighboring
voxels, potentially a�ecting the analysissensitivity. Furthermore, due to the highly
convoluted geometryof the cortex, the "tissue-blindness"of this smoothing yields a
mixing of signalsacrosssulci at voxelscloseto each other in the volumebut distant
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on the cortical surface,reducing further the spatial discrimination power. Taking
into account the cortical geometry in the smoothing processseemsto be a natural
way to avoid thesedrawbacks, as illustrated in �gure 4.2.

Original activation 3D isotropic smoothing Surfaceconstrained smoothing

Figure 4.2: Synthetic illustration of the advantage of cortical surface based smoothing

methods. Left: original activation; Middle: 3mm 3D isotropic smoothing, leading to false

activation on the opposite bank of the sulcus;Right: 3mm Laplace-Beltrami smoothing.

We implemented and compared two algorithms for surface-basedsmoothing, one
basedon an explicit meshschemeand the other on the level set framework. Both
implementations solve the sameproblem: minimizing the variations of the scalar
valuesu0 de�ned along the cortical surfaceS � R 3; in other words it consistsin
�nding u that minimizes the energyE:

E =
Z

S
kr uk2dx (4.1)

As shown in [3, 30] for the mesh based approach and by [149] for the level set
basedapproach, 4.1 is formally equivalent to solving the partial di�eren tial equation
(PDE): (

@
@t u(x; t) = � Su(x; t)

u(x; 0) = u0(x)
(4.2)

where � Su(x; t) is the Laplace-Beltrami operator. The equivalent Gaussiankernel
FWHM is easily linked to the equation running time T:

F WH M = 4
p

Tln(2)

Note that such a formulation could easily lead to a scale-spacestudy of the
smoothing in
uence over the data. The smoothing processis naturally bounded,
sincerunning equation 4.2 for a su�cien tly long time � leadsto a constant solution
u� = u(1; :::; 1)
The cortical surfacemodels,either represented asa meshor a level set function, are
obtained with the anatomical imageanalysismethods described in chapter 3. Note
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that an e�cien t algorithm implemented in the ABSOLUt packageallows to switch
from onerepresentation to the other. Depending on the representation chosen,two
alternative and non-equivalent approachesare performed.

The mesh-based approac h

The mesh-basedapproach, illustrated in �gure 4.3-A) starts with a projection of the
cortical voxels valuesfrom the functional imageonto the GM/WM interface mesh.
More speci�cally, we assignat each vertex of the meshthe scalarvalue of the voxel
located at a distanced along the local outer normal to the surface. To insure the
voxel chosenlies within the grey-matter tissue,possiblevaluesfor d rangebetween
0 and 3.5mm. We typically took d = 1:5mm. The PDE described in equation 4.2 is
then ran on the assignedscalar values, leading to a smoothed scalar �eld over the
mesh. Finally, a simple "back projection" replaceseach node smoothed value to its
original voxel in the 3D space.Getting back to the original image3D spaceenables
the direct use of the classicalvolumetric functional data analysis tools as SPM.
Note that, consideringthe projection step from the 3D volume to the 2D surface,
alternative techniques than the d mm-translated nearest neighbor projection can
be used,asdetailed previously in paragraph3.6; nonetheless,assigninginformation
from di�eren t voxels to a given node leadsto a non-invertible operation during the
back-projection to the 3D volume step. This method thus implies a compressionof
the information originally available in the cortical voxels. The procedureis repeated
for each volumein the time seriesand the analysisis then performedclassicallyover
the whole time series.Nonetheless,while visualizing the results one has to keepin
mind that only a subsetof voxelswasconcernedby the anisotropic smoothing. Ap-
plying the sameprojection on the surfaceto the results images(such asT-contrasts)
avoids any confusionbetweenresults coming from �ltered and not �ltered signals.

The lev el set approac h

The level set approach, illustrated in �gure 4.3-B, relieson level set representation
of the GM/WM interface, i.e. a 3D volume which intensities correspond to the
signedEuclideandistancefrom this surface.The PDE is then solved directly in the
functional volumes,in the vicinit y of the zerolevel (which correspondsby de�nition
to the GM/WM interface). The di�usion is thereforeencouragedin directions par-
allel to this boundary and discouragedotherwise. We repeat the procedurefor each
volume, after what the analysis can be performed classicallyover the whole time
series. Similarly to the meshbasedapproach, the analysisof the results has to be
performed consideringthat only a subsetof voxels was actually concernedby the
�ltering.

96



A) Mesh basedapproach B) Level Set basedapproach

Figure 4.3: The di�eren t stepsof the meshbased(A) and the level set based(B) smoothing

approaches. Starting from the GM/WM interface meshesand the original functional data

(A-a), the meshbasedapproach requiresa projection of the functional data on the explicit

cortical surfacerepresentations (A-b); the data are then smoothed on the meshgrid (A-c)

before being back-projected to the original image to be further analyzed (A-d). Based

either on GM/WM interface meshesor directly on the anatomical scan (B-a), the level

set basedapproach �rst requires the computation of an implicit level set representation

of the cortical surface(B-b). The Laplace-Beltrami anisotropic �ltering is then performed

directly in the image3D spacein the vicinit y of the GM/WM interface, favoring di�usion

in directions parallel to this boundary (B-c).
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Deriving global thresholds

Sinceonly a subsetof brain voxels is concernedby the smoothing procedure, it is
necessaryto take this restriction into account in subsequent statistical thresholding
which classically end the activation detection analysis. Based on the framework
of GaussianRandom Field Theory introduced by [248, 247], we derived a formula
to adapt the threshold value for a T-test (seebelow paragraph 4.2.3) performed
on cortical surfaceconstrainedsmoothed data. Transforming the T variable to a
Z variable using standard procedures,the corresponding z-map can be considered
as a GaussianRandom Field of dimension 2 on a surface A (the cortical sheet)
with a given smoothness.From the expectedEuler-Poincar�e characteristic � t of the
2D-�eld oncethresholdedat level t, we have:

E(� t ) = Aj� j
1
2 (2� )� 3

2 HD (t)e
� t 2

2

where� is the covariancematrix of the �eld (basically, its smoothness)and H D the
Hermite polynomial of degreeD. For a high value of t, the signi�cance value (or
p-value) of the z-map is related to the Euler-Poincar�e characteristic:

P(zmax � t) � P(� t 1) � 1 � e� E (� t ) � E(� t )

The smoothnessof the �eld can be expressedas:

Aj� j
1
2 = RESELS(4log(2))

whereRESELS is the number of resolution elements, a notion also introducedby
Worsley, and given for the cortical surfaceby:

RESELS =
A

F WH M 2

whereF WH M corresponds to the Full Width at Half Maximum of the smoothing
�lter we applied. Finally, we thus have:

P(z � t) �
A

F WH M 2
(4log(2))(2� ) � 3

2
e

� t 2

2

t

Note that Bonferroni correction or FalseDiscovery Rate technique can also be ap-
plied to correctly derive appropriate thresholds.
Computing such a correction now allows us to comparethe results of both methods
with the standard volumetric SPM-smoothing at equivalent p-value.

Metho ds comparison

We have performed comparisonson various datasets between the classical 3D-
isotropic smoothing and both methods of cortical surfacebasedanisotropicsmooth-
ing. Figure 4.4illustrates the resultson a datasetfrom a monkeyvisual speedmotion
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experiment. Thesedata are courtesyof Prof. Orban laboratory, KUL, Leuven. Fig-
ure 4.5 show someresults on the hMT+ complex localizer experiment described in
5.2. Globally, both anisotropic approaches lead to higher statistical values and
to spatially more coherent activation foci as comparedto the classical3D-isotropic
method. Theseresults con�rm the bene�ts of anatomical information introduction
in fMRI signal pre-processing,as already stressedin [3].
Besides,this work is to our knowledgethe �rst implementation of an fMRI smooth-
ing method basedon the level set framework. We �nd expecteddi�erences between
both anisotropic methods that can be attributed to the useof di�eren t numerical
schemesand, to a more important degree,to the fact that the mesh-basedapproach
is restricted to projected voxels only whereasthe level set basedapproach solves
equation 4.2 continuously within a band around the GM/WM interface. This is an
important argument that favors the level set basedapproach at di�eren t steps:

� the approach is independent of a method assigningfunctional data to the cor-
tical surface,

� consequently, the choice of a projection method to visualize the statistical
results on the cortical meshcan be madea posteriori,

� the implementation is more straightforward, avoiding intermediate surfacical
data �les and faster in terms of computation time.

Whenever a smoothing wasenvisagedto preprocessour data, we thereforesystemat-
ically usedthe level set basedanisotropic smoothing to pre-processour fMRI data.
The core program to resolve the PDE was implemented by Jean-Philippe Pons in
C++ within the ABSOLUt software library. We alsodeveloped a Matlab interface,
basedon SPM functions, to give ergonomicinteractions with the user. The input
cortical surfacecan be either in BrainVISA explicit meshformat (.tri or .meshex-
tension �les) or directly in the implicit level set format. In the latter case,the level
set image has obviously to be coregisteredwith functional data. If necessary, an
automatic resamplingof the level set imageis performedto �t the functional images
space. The desired �lter FWHM is then entered and the programs estimatesthe
appropriate running time T of the equation(more speci�cally an iteration time step
� t and a global iteration number n, with T = n� t).

4.1.6 Temp oral �ltering

Correction of the scanner trend

Instabilities of somescannerequipments give rise to a trend in the signal baseline.
Furthermore, aliasedphysiologically induced e�ects (cardiac, breathing,...) also in-
troduce low frequency components in the signal. These confoundscan easily be
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No spatial SPM isotropic mesh based lev el set based

smoothing approac h approac h approac h

Figure 4.4: Comparison of the di�eren t smoothing approacheson a monkey fMRI dataset. Each
column corresponds to a smoothing approach, namely from left to right: non-smoothed data,
SPM 3D-isotropic approach, mesh-basedapproach and �nally levelset based approach. In each
smoothing process,the FWHM of the Gaussiankernel was set to 3mm. The dataset belongsto
a macaquevision study, where the animal passively viewed textures either static or moving at
di�eren t velocity (1,2,8,16deg/secrespectively). The experimental paradigm consistsin randomly
alternated presentation of 35.31secepochs for each condition. The only task the monkey had to
perform was to maintain gazeat the �xation point located at the center of the display. 9 scansof
154 volumeseach where analyzed the classicalGLM. Thresholded T-test p-valuesof two di�eren t
contrasts between the conditions are shown on the reconstructions of the GM/WM interfacesfor
each hemisphere. We restricted the display to partial view of the occipital poles to focus on the
low-level visual system. The �rst two rows represent p-valuesof a contrast betweenlow velocities
conditions (1 and 2 deg/sec) and the static condition. The last two rows represent p-values of a
contrast betweenfast velocities conditions (8 and 16 deg/sec) and the static condition.
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SPM isotropic mesh based lev el set based

approac h approac h approac h

Figure 4.5: Comparison of the di�eren t smoothing approaches on a human fMRI data.

Data were smoothed by a 3mm Gaussian kernel FWHM by the classical 3D isotropic

method (left), the meshbasedapproach (middle) and the level set basedapproach (right).

The dataset comesfrom the hMT+ localizer experiment, detailed in section 5.2.

removed applying a high-pass�lter during the statistical analysisof the voxels time
series.The cutting period (the inverseof the cutting frequency)is chosento depend
on the interval of time separating two equivalent stimulations in a given session.
This interval is classicallycalled the Stimulus Onset Asynchrony (SOA). We typi-
cally used2.5 times this value (expressedin seconds)to remove every frequencies
lower than 1

2:5SOA .

Low pass �ltering

A temporal smoothing is classically performed on the data to consideras known
the residual time seriesautocorrelations. This procedure insuresbetter estimates
of the statistical model parametersusedin the analysisdone at the next step (see
section4.2). We usea simple Gaussiantemporal �ltering on the data that will be
taken into account in the statistical analysis.

We have given in the above paragraphs an overview of the main pre-processing
stepsthat can be envisagedin the context of fMRI signal analysis. The �nal chain
applied to a given dataset and the parameter tuning involved in each step can
have dramatic impact on the results [47, 128]. Selectingthe appropriate procedure
dependsstrongly on the underlying experimental paradigm and the assumptionsof
the analysis method used to assessthe data. We mention the assumptionsmade
in the analysis methods of the next section and precisethe speci�c preprocessing
chain performedfor our di�eren t experiments in their respective chapters.
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4.2 Statistical analysis of fMRI data

This sectionsummarizesthe main approachesthat havebeenproposedto analyzethe
pre-processedfMRI data. After a brief statement of the problem and a classi�cation
of the main methods that have been proposed to addressthis problem, we will
describe the GeneralLinear Model methodologywidely usedin fMRI literature. We
then present a non-parametricapproach we usedto analyzeour motion adaptation
experiment, andmention frequencydomainanalysisoften usedin periodic paradigms
as retinotopic mapping. We end this chapter with a rapid overview of the most
popular multiv ariates methods.

4.2.1 Problem statemen t

The goal of fMRI data analysis is to extract relevant information from the spatio-
temporal data recordedduring the experiment, linking the experimental protocol to
the presumedbrain activit y.
The statistical analysisof functional imagesis a complex task for various reasons.
First, the amount of 4D data to be analyzedcan restrict the choiceof analysistech-
nique. Indeed,a typical fMRI sessionrecordinggeneratesseveral hundredmegabytes
of data for each subject which may not becomputationally tractable by every method
in termsof memoryand computational time. Besides,the signalto noiseratio (SNR)
of the BOLD e�ect is low, as the signal of interest is mixed with various artifacts:
the respiratory and cardiac rhythms of the subject, subject motion which is only
partially correctedby pre-processingmethods, EPI spatial distortions createdby in-
homogeneitiesin the magnetic�eld, scannerartifacts such assignaldrift and thermal
noise. Last but not least, the link betweenthe neural responseand the BOLD e�ect
is still not well understood [138, 137], limiting the results interpretation.
Beyond these important technical reasons,a fundamental question raises: what is
the relevant information we want to extract? We generally wish to test between
di�eren t hypothesesrelated to the experimental protocol and to derive statistical
activation maps from them. The information of interest can then be the detec-
tion of responseto the experimental protocol, but also the delay or the amplitude
of the response. Another goal can be to build a more synthetic representation of
the dynamics of the dataset. Various analysismethods have beenproposedin the
literature which can be classi�ed given the questionsthey are able to address.

4.2.2 Classi�cation of metho ds

Figure 4.6 givesan overview of the main existing methods. Following [212, 121], we
will classifythe methods in two categories:hypothesis-driven and exploratory.
Hypothesisdrivenmethodsrely on an explicit modelingof the responseto the exper-
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Figure 4.6: Overview of the main fMRI analysismethods. The main classi�cation separates

univariate and multiv ariate approaches. The �gure is borrowed from [212].

imental paradigm. This leadsto an estimation of the model parametersfollowed by
statistical testson the latter to assessthe presenceof an activation and comparisons
betweendi�eren t experimental conditions. Most of thesemethods are univariate, in
the sensethat they considereach voxel asindependent. The main weaknessof these
approachesis the more or lessrestrictive assumptionsmadeon the responseshape
which may not �t actual responses.Their main advantage is the clear answer, with
an estimated probability of con�dence, they can give to particular questionssuch
as: "which voxel's activit y is strongly correlated with the stimulation?" or "what
voxelsaremoreactivated in condition A than in condition B?". The methodological
variations betweenhypothesis-driven methods can concernthe signal modeling, the
parameterestimation method employed or the framework on which statistical tests
rely.
On the other hand, exploratory methods work directly on the functional data, often
ignoring the experimental paradigm. The idea is to extract temporally and/or spa-
tially structured patterns from the dataset. Theseapproachesarecalledmultiv ariate
becausethey considerall voxelssimultaneously. They try to givea generalaccount of
the data content which is particularly interesting whenconsideringthe complexand
mixed sourcesof the data generation. Yet, the interpretation of the resulting pat-
terns is often di�cult. Exploratory methods can thereforebe employed to identify
someconfoundsthat could be removed but alsoto identify possibleresponseshapes
that can further be used in univariate approaches. The methodological variations
comefrom the way featuresare discriminated in the data: it can be the decorrela-
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tion betweenthe components (yielding to Principal Component Analysis -or PCA-
methods), the independence(Independent Component Analysis) or a distancein a
feature space(clustering approaches).
Note that this rough classi�cation is not exclusive, as somemethods such as the
Multiv ariate Linear Models [249] are just betweenboth categories.

4.2.3 The General Linear Mo del

The General Linear Model (GLM) is a standard statistical framework in data
analysis on which is basedthe most popular analysis software used in the fMRI
community: SPM4. Behind this acronym stands Statistical Parametric Mapping
which is a kind of image from which functional activations are detected. By
extension, the SPM methodology often refers to the processingchain o�ered by
the SPM software, including some pre-processingtools we already mentioned in
the previous section, SPM estimation and statistical inferencetools. For a more
comprehensive presentation of the methods implemented in SPM, one can refer to
[79]5. Here we give a description of the model speci�cation and the inferencesteps
we relied on to analyzesomeof our datasets.

Mo del speci�cation

The GLM is a voxel-basedmethod, i.e. it addresseseach voxel individually. In
the following description, we therefore consider a single voxel time course. The
observation at time t of a temporal signal Y = (y(t)) t= t1 :::t T is modeledas the linear
combination of C explicativevariablesf x i (t)gi =1 :::C , calledthe regressors, and a noise
term � (t):

y(t) = � 1x1(t) + � 2x2(t) + ::: + � CxC (t) + � (t) =
CX

i =1

� i x i (t) + � (t)

The (� c)c=1 :::C are supposedto be time independent, leading to:
8
><

>:

y(t1) = � 1x1(t1) + ::: + � CxC (t1) + � (t1)
...

y(tT ) = � 1x1(tT ) + ::: + � CxC (tT ) + � (tT )

which can be written in matrix form:

Y = X � + � with E(� ) = 0 and Var(� ) = � 2I
4SPM was developed at the Wellcome Department of Cognitiv e Neuroscience,Functional Imaging Lab-

oratory, London, UK and is freely available at: www.�l.ion.ucl.ac.uk/spm
5A comprehensive manual is freely available from the web page:

http://www.�l.ion.ucl.ac.uk/spm/do c/b ooks/hbf2

104



Assuming E(� ) = 0 comesdown to take a constant regressorx1(t) = 1 8t 2
f t1; :::; tT g or to considerthe signal Y centered.
The T � C matrix X is called the designmatrix and is formed of each regressor
in its column. The basic regressorcorresponds to a convolution of the time Pc of
a given condition c in the experimental paradigm with a canonical model of the
hemodynamic responsefunction (HRF) noted h:

xc(t) = h(t) � Pc(t)

The typical HRF usedin SPM is obtainedwith a di�erence of two Gammafunctions,
but other alternatives have been proposed. Such modeling is the consequenceof
the following assumptions:

� the responseis linear with respect to the stimulation; in other words, if a stim-
ulation leadsto a BOLD responsein a given voxel, then the samestimulation
repeatedover time will produceasa responsethe sum of the responseat each
stimulation,

� the response is time-invariant; a delay in the stimulation induces the same
delay in the response,

� the responseis causal;the output signal doesnot depend on future events.

The linearity of the BOLD response holds for stimulations su�cien tly separated
in time [84] and for block design experiments, but non linear e�ects were consis-
tently revealedin various event-related studies [236, 84]. Non linearity of stimulus
repetition is also the central assumptionof fMR-adaptation experiments as will be
presented in chapter 6.
Other regressorscanalsobe introducedasexplicative variables: �rst or secondtem-
poral derivativesof the HRF convoluted by the stimulation to model somevariations
in the responsesuch as the delay, headmotion estimates[82, 118] or low-frequency
signals that behave as high-pass�lters to model low-frequencyvariations (cardiac
and respiratory e�ects, signal drift). Figure 4.7 shows two examplesof designma-
trices usedeither in an event-related or in a block designexperiment.

Parameter estimation

The vector of parameters � = (� c)c=1 :::C can be estimated by the ordinary least
squaresmethod which comesdown to minimizing the residual sum-of-squares,i.e.
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Figure 4.7: Examplesof designmatrices usedin an event-related paradigm (left) or a block

design paradigm (right) with two sessionsin both case. In each matrix, the columns are

the model regressorsand the rows the temporal steps(i.e. the images).

the sum of the squaredi�erences betweenthe actual and �tted values,noted E:

E = �̂ > �̂
= (Y � X �̂ )T (Y � X �̂ )
= Y > Y � 2�̂ > X > Y + �̂ X > X �̂

A necessarycondition (and also su�cien t as we are consideringa quadratic posi-
tiv ede�nite form) for minimizing the error E leadsto the socallednormal equations:

@E
@�

= 0 , X > Y = (X > X )�̂

Thus, (X > X ) being invertible (i.e. if the matrix X is of full rank6), the least square
estimation of � is:

�̂ = (X > X )� 1X > Y

with the dispersionmatrix:

Var(�̂ ) = � �̂ = � 2(X > X )� 1

Note that the least squaresolution can have a geometric interpretation in which
estimating � comesdown to project Y into the sub-spacegeneratedby the model
regressors.
Under the assumptionof Gaussianity for the residualsand also assumingtheir in-
dependence,this estimation is the oneof maximum likelihood and also, in virtue of

6 In caseswhere the designmatrix is not of full rank, which should be avoided in general, pseudo-inverses

such as Moore-Penrosecan be used.
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Gauss-Markov theorem, the best linear un-biasedestimation of � . In other words,
this meansthat amongall estimatorsthat are linear combinations of the data with a
meanequalto the true valueof the parameters(E(�̂ ) = � ), its varianceis minimum.
It is however known that fMRI noiseis correlated,at least temporally, making the
independenceassumptionincorrect. In caseof colorednoise:

� � N (0; �) with � = � 2V

we can get the following estimations:

�̂ = (X > V � 1X )� 1X > V � 1Y
� �̂ = � 2(X > X )� 1X > VX (X > X )� 1

This estimator is onceagain the best linear un-biasedestimation of � . However, it
is necessaryto have a preciseestimation of � or V, which is in generalunlikely. Two
main solutionscan be envisaged:whitening the noiseor imposea known covariance
matrix. Both can be seenas a temporal �ltering of the data achieved through a
convolution matrix K :

K Y = K X � + K �

which give the following parameterestimation:

�̂ = (X > K > K X )� 1X > K > K Y
Var(�̂ ) = � 2(X > K > K X )� 1X > K > K VK > K X (X > K > K X )� 1

Whitening the noiseconsistsin choosingK = V � 1
2 , which alsorequiresan estimation

of the covariancematrix V. This can be doneby imposinga certain structure to V,
such as an auto-regressive model as proposedin [81, 246].
The alternative solution, called precoloringand implemented in SPM, is to impose
a known correlation structure by applying a low-pass�lter K so that:

Var(K � ) = � 2K VK > � � 2K K >

In other words, a "strong" enough�lter is applied in order to neglect the intrinsic
data correlations.
As argued in [81], both techniques are biased but the precoloring appears more
robust for a moderate lossof e�ciency .

Statistical inference

Basedon the parameterestimation, we can now derive two kinds of statistical maps
to test our hypotheses:T mapsand F maps. We de�ne contrasts 
 , which are linear
combination of the estimates�̂ related to a null hypothesiswe wish to test:

H0 : 
 > �̂ = 0
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It allows to test if the e�ects linked to a given subsetA of experimental conditions
led to greateror smallere�ects than anothersubsetof conditionsB. The signi�cance
of the estimatedresponseto the contrast 
 is given by:


 > �̂

Var(
 > �̂ )
=


 �̂
p


 > � � 

� td

wheretd is the Student distribution with d degreesof freedom,d being derived from
the designmatrix X by standardmethodsdetailedin [245]. Weindeed�nd a Student
distribution for the left handedterm of the above equationunder the null hypothesis
and assumingthe Gaussianity of the residual � . Note that the Student test is signed
which allows to answer if an e�ect is smaller or greater than another. When the t
scoresare computed over all the voxels, we get a statistical t map. The t map can
alsobe converted to a normal variable z map through standard procedures.
To assessif a given regressorsubset "explains" well the observed signal, one can
considera set of contrasts � = f 
 1; :::
 gg and derive a statistical scoreto assessthe
squarenorm of � � with respect to its dispersion:

� �̂ > � �̂

� > ^� � �

d2

d1
� Fd1 ;d2

where Fd1 ;d2 is the Fisher distribution with d1 and d2 degreesof freedom of the
numerator and the denominator respectively. The computation of the F scores
over the brain leadsto a statistical F map that can test for a subspacespannedby
contrasts of the designmatrix.
Note that in both kind of maps, the covariancematrix � � is implied, emphasizing
the importance of its estimation.

The inference �nally consists in rejecting the null hypothesis given the statis-
tical map. Knowing the distributions under the null hypothesis H 0, one can
analytically derive the related threshold for a given signi�cance value (or P-value).
A voxel showing a higher statistical value than the threshold rejects the null
hypothesisand is thereforedeclaredas responding to the experimental paradigm.

Map-wise threshold

The inferencedescribed above leadsto a voxel-basedthreshold, which doesnot take
into account the global map. A �rst solution to control the number of falsepositive
voxels in the wholemap is the Bonferroni correction: assumingthe independenceof
the N voxels considered,the probability q that any voxel in the map has a z score
above the threshold tq under the null hypothesisis related to the sameprobability
for a given voxel, p, by:

q = pN
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This method is particularly straightforward to apply, but the independencehypoth-
esissimply ignoresthe spatial correlationswithin the data, speci�cally the fact that
the activations we seekare more likely to be a subsetof clusteredvoxels than just
isolatedones.The GaussianRandomField Theory wasthereforeintroducedto take
into account thesespatial correlationsand derive more appropriate thresholds. The
general idea was already presented above in paragraph 4.1.5 (although in general,
the map shouldbeconsideredasa 3D GaussianRandomField, implying slight mod-
i�cations in the above formula). Note that this approach givesanother justi�cation
for the spatial smoothing of the data, which makesthe stationary Gaussianrandom
�eld hypothesismore credible.

Alternativ e univ ariate approac hes

Variousalternativeshavebeenproposedto improvesomeaspectsof the GLM frame-
work in the perspective of univariate fMRI analysis. For instance, [80] have intro-
ducednon-linear terms in the GLM to model non-linearitiesof the BOLD response
such asobserved in rapid event-related paradigms;other frameworks have alsobeen
introducedto addressthe parameterestimation, such asBayesianinferenceor Max-
imum Likelihood estimators. Making a detailed account of all thesecontributions is
far beyond our purposeand we refer the readerto [212, 121] for morecomprehensive
reviews.
In the next two paragraphs,we will focus on two univariate approaches that are
of particular interest for the analysisof our experiments data. We �rst describe a
method allowing non parametric estimation of the BOLD responseusedto analyze
our motion direction adaptation experiment dataset (chapter 6). We then quickly
mention frequency domain basedanalysis that is used in most fMRI retinotopic
mapping procedures.

4.2.4 Non-parametric HRF estimation

Parametric approachessuch asthe GLM may introducea biason the Hemodynamic
ResponseFunction (HRF) modeling. However, getting a precisemodeling of this
signal can be of interest for various purposes:

� compareits shape variations (regarding for instance the amplitude, delay or
width) betweenexperimental conditions in a given voxel or brain region,

� investigatethe spatial variabilit y acrossbrain regions,

� retrieve a �ner characterization of the BOLD signal, including its link with
neuronalactivit y,

� ultimately allow a better understandingof cerebralactivations.
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Non-parametricmodelsof the HRF could be achieved by consideringeach voxel (or
brain region) as a systemcharacterizedby a Finite Impulse Response.The general
idea is to introduce physiologically motivated temporal priors in the response
model and, based on the Bayesian framework, to accurately estimate the HRF
given thesepriors and the observed data. The �rst methods described in [88, 146]
could only be used to estimate one HRF in response to a single condition of a
periodic or synchronousevent-related paradigm. Besides,thesemethods could only
considereach sessionseparately. A generalizationof this approach was achieved in
[35, 34, 147] and further implemented by Dr Philippe Ciuciu in a MATLAB toolbox
interfaced with the SPM software: the HRF toolbox7. We give below an overview
of the di�eren t steps and underlying assumptionsof this method. It was applied
to the analysis of our motion direction adaptation experiment data described in
chapter 6.

In the following, we consider the observed signal yv at a given brain voxel v.
To lighten the notations, we drop the v index, so that yv = y. For a given session
s 2 f 1; :::;Sg, the voxel time courseys = (ys(n))n=1 ;:::;N is modeledas follows:

ys = h � X s + Psls + � s (4.3)

where:

- h � X s =
CX

c=1

hc � xc
s, with xc

s the binary vector with 1 at condition c onsetsand

0 elsewhereand hc the unknown HRF time coursecharacterizing the voxel BOLD
responseto condition c. Note that it is implicitly assumedhere that the di�eren t
conditions HRFs add linearly. The method allows an interesting feature regarding
asynchronousparadigms,in which stimulus onsetscan occur at any time during the
session:the HRFs can be estimated on a �ner temporal grid than that induced by
the scannersamplingperiod (i.e. the Repetition Time or TR) without oversampling
the original data. Let � t � TR be the sampling period of this re�ned temporal
grid, we have:

hc � xc
s(tn ) =

KX

k=0

hc(k� t)xc
s(tn � k� t)

Such a temporal re�nement procedure allows to estimate the HRF model with
a precise temporal resolution, taking advantage of the asynchrony between the
experimental paradigm and the scanningrate.
- Psls is a nuisance term modeling the known low frequency 
uctuations of the
fMRI signal. Ps is a N � Qi matrix which consistsof Qi functions taken from
an orthonormal basis modeling low frequencies(e.g. low order polynomial or
1-dimensiondiscretecosinetransform). ls 2 RQ i is the weighting coe�cien ts of the

7The HRF toolbox can be freely downloaded at www.madic.org/do wnload/HRFTBx
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basisfunctionsnsthat has to be estimatedby the method.
- � s is the residualerror, assumedto follow a N (0; � i ) distribution, further indepen-
dent of h.

The model described in 4.3 is applied to each sessionof the experiment with
the following hypothesisset:
1) The HRF time coursehc for each condition c 2 f 1; :::;Cg is assumedto remain
constant acrosssessions.
2) The noise 
uctuations acrosssessionsare assumedto be mainly due to physio-
logical variations, which leads to model the low frequencyconfoundsin a session
speci�c way while the residualvariance� 2

i is taken constant acrosssessions.Despite
the known temporal correlation of fMRI time series,the authors arguethat various
noisecorrelation structures have little impact on the estimation performances.
3) Finally, based on physiologically plausible assumptions, each HRF temporal
structure is constrainedby the following priors: (a) its amplitude is closeto zeroat
the �rst and end points. Note however that this constrainedcan be relaxed.
(b) its variations are smoothed. This is achieved by the introduction of hyperpa-
rameters� which allow to minimize the discreteapproximation of khc" k.
(c) the di�eren t HRFs be estimatedshow a prior statistical independence.

The estimation is achieved by a two step procedure:
- estimatethe drift parametersl = (ls)(s=1 ;:::;S) and the hyperparametersof the prior
model � . This step is performedby computing the Maximum-Likelihood estimator
with an Expectation Conditional Maximization (ECM), a variant of the classical
Expectation Maximization (EM) algorithm.
- compute the Maximum A Posteriori (MAP) of p(hjy; l ; � ) basedon Bayesrule.

This results in estimations of each HRF with relative error bars at each time
point. Theseestimatesare a trade-o� betweenthe information brought by the raw
data and the prior constraints. The authors have demonstratedthe robustnessof
the estimatedHRFs with respect to various featureson realistic simulations aswell
as real fMRI datasets. This includesdeparture from the hypothesisof equal noise
varianceacrosssessions,relevanceof the temporal re�nement procedure,validit y of
the HRF estimateserror bars. They nonethelessprecisethe limits of their method
regarding low signal to noise ratios or the selection of high dimension nuisance
model (which should typically be: Qi � 5).

A useful feature of this method is the possibility to perform region-basedHRF
estimation. Consideringeach ROI as functionally homogeneous,the procedureuses
all the available time serieswithin the ROI to characterize the shape of the HRF
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for each condition. The more straightforward approach is to estimate the HRFs
from the ROI mean signal. Nonetheless,to avoid inaccurate estimation in case
of inhomogeneousROI (for instance due to partial volume e�ects), a preliminary
outliers detection step can also be used to remove outlier voxels from the ROI.
It is achieved using the least trimmed squares(LTS) method. Note that a rough
estimation of the outliers proportion has to be given as input to the algorithm.
Finally, statistics can be computed over the estimated HRFs. This includes a
rough activation detection, assessingif the estimated response is signi�cantly
di�eren t from a null time course,and, more interestingly, a comparisonbetween
two estimated HRFs. The latter allows to observe signi�cant di�erences in the
HRFs elicited by di�eren t experimental conditions, suggestingdi�erences in the
underlying neural processing.Such an application of this method is demonstrated
in chapter 6.

4.2.5 Frequency domain analysis

Another univariate method that can be used is frequencydomain analysis. This
approach allows to easilyseparatethe di�eren t frequenciesof the signal time course
leading to lessbiasedhypothesis testing due to the approximate independenceof
the Fourier coe�cien ts. Although their useof has beenlimited as they are mainly
restricted to periodic paradigms, this approach has shown to be useful for speci�c
purposes.First, it is particularly appropriate whena selectedfeature in the stimulus
is varied periodically. Basedon the Fourier transform of the voxel time course,we
analyzethe component corresponding to the stimulus frequency. The amplitude is
linked to the voxel neuronssensitivity to the feature while the phaseindicates their
preferredvalue for this feature. This procedureis classicallyusedto analyzeretino-
topic mapping data [239], but has also beenusedto study functional sensibility to
color [63], spatial frequency[216] or orientation [217]. Note however that a classical
GLM approach can equivalently be usedto analyzeperiodic stimulations, aswe will
show in section5.1.
Note that frequencydomain analysiscan alsobe usedto detect physiologicalcoun-
fonds as shown in [98].

4.2.6 Multiv ariate analysis metho ds

We give in the following paragraphsa brief overview of the main multiv ariate meth-
ods that have beenproposedfor an exploratory analysisof fMRI data. As opposed
to univariate methods such asthosepresented above, thesemethods considerall the
voxels simultaneously and generally do not rely on a speci�c model of the signal.
If they do not lead to statistical inference,theseapproachescan help in designing
appropriate regressorsto build a model of the signal. Another important applica-
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tion is alsofunctional connectivity studies[78, 96] which aim at �nding correlations
betweenthe temporal signalsof spatially remote voxels. Multiv ariate methods are
indeedparticularly sensitive to temporal correlation betweensignalsand wheresuc-
cessfullyapplied to functional connectivity [5, 171]. Finally, they can be used to
identify counfondsin the raw data.

Principal Comp onents Analysis (PCA)

The Principal Component Analysismethod relieson a SingularValueDecomposition
(SVD) of the data matrix. The fMRI spatio-temporal signalsare represented as a
N � T matrix Y, N being the number of voxels consideredand T the number of
points in the time series.Applying the SVD technique, we get:

Y = U� V >

with:

- U a N � N orthogonal matrix of singular imageswhich diagonalizesYY > ,

- V a T � T orthogonal matrix of singular time series which diagonalizesY > Y,

- � a N � T a diagonalmatrix of the corresponding singular values(� i )(i =1 ;:::;k ) .

Further constraining the ordering of � i to be decreasing,the decomposition is
unique (up to a sign changebetween U and V). Each component, orthogonal to
the others, models a portion of the variabilit y that can be observed in the data,

with � j =
kX

i =1

� i the percent of total variancecarried by the j -th component.

Applying a PCA to the raw data therefore separatesdi�eren t variations of the
signals which can detect, without specifying any hypothesis on the paradigm, a
temporal signal present in the data such as low frequencyconfounds. The GLM
residualscan also be analyzedthrough a PCA to reveal variations modes that do
not ful�ll the Gaussiandistribution hypothesiswhich are not modeledin the design
matrix.
Various re�nements have beenproposedto project the data in a spaceof interest,
such as introducing the designmatrix X and performing the SVD of X > Y. These
variations around the PCA are performed by applying distinct normalizations of
the matrices X or Y.

Indep enden t Comp onents Analysis (ICA)

Unlike the PCA which leads to orthogonal components both spatially and tem-
porally, one may be interested in extracting statistically independent components
from the data. This is the purpose of Independent Components Analysis (ICA)
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techniques. However, such a decomposition has to be done separatelyfor the spa-
tial and the temporal domains. Consideringspatial ICA for instance,the idea is to
model our N � T matrix Y (the dataset) as the superposition of M independent
sourcesS plus a residual noiseterm � :

Y = AS + �

where A, called the mixing matrix, models the superposition of the sources. The
problem is now to estimate the unmixing matrix B , S and K such that:

S = B(X � � ) (4.4)

B can be viewed as a generalizedinverseof A. Solving equation 4.4 supposesto
de�ne an independencecriterion for the sourcesand to choosethe rank of the gen-
erative model K , which can appear to be arbitrary. Finally, the estimated source
terms in S can be interpreted as independent activation mapsstanding for di�eren t
e�ects present in the dataset [20].
To give an illustration, we have applied a spatial ACI technique to a retinotopic
mapping datasetusing the SICA toolbox developed at the U494INSERM team lab-
oratory, Paris, France. Figure 4.8 shows the two �rst spatial components extracted
by the algorithm, without giving any prior about the experimental paradigm. It
illustrates the possibleadvantagesof the method to separatecomponents consistent
with the stimulation from confoundssuch as non-correctedheadmotion or physio-
logical noise,as shown in [172].

Clustering analysis

Clustering approachesallow to group a collectionof objects into subsets(or clusters)
basedon a similarit y measurebetween these objects. In the fMRI data analysis
context, the time coursesof voxels can be consideredas a set of N features (our
objects) belongingto a given feature spaceF .
Someclustering methods rely on parametric models of the featuresdistribution in
F : classifying the data into di�eren t subsetscomesdown to identifying the main
modesof this distribution.
An important issue is the de�nition of the feature space F ; this is related to
the choice of the metric used to quantify the similarit y between time courses.
The Euclidean distance on the raw time courseshas naturally been considered,
but alternatives such as the Mahalanobis metric can also be used. Someauthors
proposedto apply clusteringmethods to variousfeaturesextracted from the dataset:
the cross-correlationcoe�cien ts between the time coursesand an ideal response
to the paradigm [87], or t-maps, �nite impulse response �lter model [86]. Using
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Figure 4.8: Illustration of the spatial ICA method on a retinotopic mapping dataset,

as detailed in 5.1. Without any information regarding the experimental paradigm, the

two �rst components extracted show a spectrum picked at the stimulation fundamental

frequency (1/38 Hz)
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these features can have several advantages: �rst it reducesthe dimensionality of
the time courseto classify, thus improving the computational e�ciency . This also
introducessomeknowledgeabout the paradigm in the analysis,leading to an easier
interpretation of the �nal clusters. Finally, it allows to perform a meta-analysis
that can separateactivated voxels into di�eren t clusters[86].
Another problematic aspect of clustering is to choosethe number of clusterswhich
leadsto a bias/variancetrade-o�. The main clustering algorithms, such asK-means
or fuzzy C-meanshave beenusedto compute the �nal solution, yielding to similar
results.
Another clustering method applied to fMRI in [29] is self-organizingmaps, which
are designedto map the input vectors onto a 1, 2 or 3D maps. This method
has however received lessattention since it is quite technical and relies on several
non-interpretable parameters.

We have presented in this chapter the main methods we considered to pre-
processand analyze our datasets. The speci�c processingchain we used for the
experiments described in the remainder of the thesis will be detailed in their
respective chapters.
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Chapter 5

Visual areas mapping
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The generalcortical architecture is globally consistent acrosssubjects of a given
species,that is the sametype of area and the sameamount are found in any non-
pathologicalindividual. However, the strong physiognomicalvariations of the cortex
folds implies an important anatomical variabilit y acrossindividuals. Furthermore,
studiesof the cortical plasticity suggestthat the anatomy-function correspondence
can vary acrosstime for a given subject. An individual identi�cation of distinct
areascan thereforebe consideredasa prerequisiteto any study of the human visual
cortex. This givesmore information about the visual systemorganization over the
cortical sheet,which canbecomparedto other speciesin an evolutionary perspective
or betweendi�eren t populations to investigatepathologiesor developmental mech-
anisms. Moreover, an objective areadelineation can be usedto de�ne independent
Regionsof Interest (ROIs) that will be further characterizedin subsequent experi-
ments.
This chapter is divided into two parts, each onecorresponding to a speci�c criterium
we usedto delineatelow level visual areas. In the �rst part, we describe the fMRI
retinotopic mapping procedureemployed to delineatethe early occipital retinotopic
areas. In the secondpart, we present the functional mapping usedto identify the
hMT+ complex.

5.1 Retinotopic areas mapping

5.1.1 The cortical retinotopic organization

From the retina to the low level visual cortex, a perceptual element such as a
retinal ganglion cell or a cortical neuron is only sensitive to a restricted por-
tion of the visual �eld called its receptive �eld. Coarsely, the receptive �eld is
\what the perceptual element sees". More precisely, the visual receptive �eld of
a cell generally corresponds to a small portion of surface in the �xation plane
which, when a stimulation enters it, modi�es the response of the cell. In our
experiments, this �xation plane is the screenthe subjects look at; the terms classi-
cally usedto refer to di�eren t portions of the visual �eld are illustrated in �gure 5.1.

Let us now state three fundamental properties of the visual areas that de�ne
their retinotopic organization:

1) The neurons from di�eren t layers of a given cortical column share the
samereceptive �eld [109, 111].

2) Two points close to each other in the visual �eld project closely on the
retina. After various stepsand following di�eren t paths, thesecloseretinal stimuli
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Figure 5.1: The visual �eld is split along the vertical meridian into two hemi�elds, each

again split into two quarter�elds along the horizontal meridian. The latter further splits

the vertical meridian into its lower and upper parts.

will be analyzed,insidea given area,in neighboring regionsof the cortex. Although
the precisedistancesand anglesare not preserved, the local topology is preserved
from the visual �eld to the cortical surfaceof retinotopic areas.Figure 5.2 illustrates
this property, showing the representation of the visual �eld in macaquemonkey
areaV1.

Figure 5.2: Retinotopy in macaquevisual cortex: a 
ic kering stimulus (left) and its retino-

topic representation in a 
attened view of layer 4C of area V1 (right), revealedthrough a
14C-2-deoxy-d-glucose(DG) autoradiography procedure. Reproduced from Tootell et al.

[220]

.

For instance,the primary visual cortex in humans(V1), anatomically found in the
occipital lobe around the calcarinesulcus,presents a retinotopic organization. The
latter is approximately polar:
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- when onemovesalong the cortical surfacefrom a posterior to an anterior position
in V1, the representation in the visual �eld movessmoothly from the center (fovea)
to the surround. We say we vary the eccentricity .
- similarly, a displacement from the inferior limb of the calcarine to the superior
limb results in a smooth variation of the representation from the superior vertical
meridian of the visual �eld to the inferior part of this vertical meridian. We say we
vary the polar angle.
This type of representation is found in various visual areas, implying that the
visual cortex contains several maps of the visual �eld. The correspondencewith
polar coordinateshasnaturally led to de�ne polar-codedstimuli aswewill seebelow.

3) Two adjacent areas on the cortical surface (such as V1 and V2) di�er
with respect to their representation of the visual �eld. This is a crucial point for
the di�eren tiation of areas we are looking for. Indeed, some areas present a so
called reverse or mirr or representation, the visual �eld being projected on the
cortical surfaceas if it was seenthrough a mirror, whereasothers have a normal
representation, consistent with the visual �eld spatial order. The representations
change chiralit y1 for two adjacent areas, a useful information we will take into
account to detect the borders between them. We illustrate this property in the
sketch of �gure 5.3.

Figure 5.3: Schematic illustration of the retinotopic properties of the visual system in

primates: continuit y between the visual �eld and the cortical surface, inversion of the

chiralit y betweentwo adjacent areas.

1 In geometry, a �gure is chiral (and said to have chiralit y) if it is not identical to its mirror image, or

more speci�cally can't be mapped to its mirror imagesby rotations and translations alone, i.e. both �gures

are related lik e our left and right hands.
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Previous work

The �rst studies of human cortical retinotopy were basedon patients having focal
occipital lesions [104, 105, 107, 106]. Non-human primates visual cortex was
extensively studied over recent decadesby invasive studies, mainly electrophysi-
ology [46, 253, 230], resulting in a far more detailed understanding of retinotopic
organization. More recently, the �rst human functional imaging studies appeared
using TEP [73] and fMRI [190].
The periodic fMRI retinotopic mapping paradigm was introduced in [60], in which
the authors used two expanding rings to measurethe eccentricit y map within the
calcarine sulcus. The stimulation was subsequently completed with a rotating
wedgeto establishthe polar anglecoordinates[50, 192, 49]. This generalprocedure
has since then been used in numerous studies, with some variations regarding
various parameterssuch as:
- the number of simultaneousrings or wedgesin the display [62, 233],
- the stimulus pattern which is often a black and white [192] or colored [222, 239]
checkerboard, but alsoa moving dots pattern [112] or a video [196, 187],
- the stimulus pattern 
ic ker frequency,
- the amount of completecycles,the cycle duration, the number of averagedruns,
- the task performed by the subject, which can be a passive-viewing, central or
peripheral attentional task.
We will comeback to someof thesedi�erences below while comparing our choices
to the literature.

Alternativ e approaches to retinotopic mapping have been proposed to reveal
cortical visual �eld maps with fMRI. Somegroups have used block designswith
static stimulations of a limited spatial positions amount, such as a few eccentricit y
bands [95, 100] or the horizontal and vertical meridians only [101, 72]. These
approaches naturally cannot give a detailed account of the visuotopic maps and
may be prone to a poor spatial localization as mentioned in [238]. [83] evaluated
the binary m-sequenceparadigm for a retinotopic stimulus presentation which leads
to comparable maps than those obtained with periodic paradigms but without
lowering the acquisition duration. Two di�eren t groups recently investigated the
feasibility of mapping a precise sub-region of the visual �eld using randomized
block designs with spatially restricted localizers [127] or a multifo cal mapping
stimulation technique [235]; theseapproacheshave the advantage to be faster and
more precise than the classical procedure when only a task-relevant subsetsof
positions is mandatory.

From previous studies of the cortical retinotopy in humans, we can infer the
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retinotopic structure classicallyfound in the human occipital cortex. First, as the
two hemi�elds (the vertical separationof the visual �eld) split at the level of the
optical chiasm,each hemisphereis only concernedwith the visual information of its
oppositehemi�eld. Second,asfound in animal studies,someareasaresplit into two
parts at the representation of the horizontal meridian. Hencethe limits between
adjacent areas correspond to horizontal or vertical meridians. More speci�cally,
most studiesagreein the visual �eld representation and labeling as follows:
- V1-alsocalledthe \striate" cortex with respect to its markedly laminated anatomy
and its 11 layers(rather than the customary6 in other areas)and by opposition with
the next \extrastriate" areas-hasa completecontralateral hemi�eld representation,
covering the calcarine sulcus. The horizontal meridian lies in the fundus of the
latter and the representation smoothly changesto the superior vertical meridian in
the ventral lip of the calcarinesulcusand to the lower vertical meridian in the dorsal
lip of the calcarinesulcusrespectively. Thesevertical meridians de�ne the borders
of V1 with the two distinct parts of V2. The representation in V1 is quali�ed of
mirr or, as the visual �eld is projected on the cortical surfaceas if seenthrough a
mirror (seesection5.1.1).
- V2 is divided into two distinct quarter-�eld representations, the upper contralat-
eral quadrant being located ventrally to V1 (V2v for V2 ventral) and the lower
contralateral quadrant dorsally (V2d for V2dorsal). Unlike V1, the representation
in V2 is non-mirror. In other words, the polar angle gradient along the surfaceis
reversedwith respect to V1. The borders of V2v and V2d with respectively V3v
and V3d are de�ned along the horizontal meridian representations.
- V3, akin to V2, is split into two quadrants. V3d follows V2d as one moves
dorsally and shows another lower quarter-�eld representation; V3v, also called VP
for Ventral-Posterior becauseit was suspected to be distinct from V3d in monkeys
studies, follows ventrally V2v and shows an upper visual �eld quadrant. We chose
to call this portion of the cortex V3v instead of VP, as this separationbetweenthe
two aim at being lessand lesssupported in the monkey literature and asno evidence
was presented to distinguish them in humans (for a more completediscussion,see
Zeki's paper about \improbable areas" [254]). The representation in both parts of
V3 is reversedwith respect to V2, thus mirror like V1.
- V3A, locateddorsally to V3d, shows a completecontralateral hemi�eld non-mirror
representation.
Figure 5.4 illustrates this description. Note however that beyond V3v ventrally
and V3A dorsally, there is still no consensusin the actual visual �eld maps and
consequently the areaslabeling. We will discusssomeof theseissueswhenanalyzing
our results in paragraph5.1.8. For now, we seehow the knowledgeabout the visual
�eld representation over the cortical sheetcanbe su�cien t to delineatethe low-level
visual areas.
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Figure 5.4: Polar angle retinotopy of the right hemisphere,i.e. the left visual hemi�eld.

The left-hand side of the �gure illustrates the spatial arrangement of di�eren t areasand

their retinotopy, the hemi-circle at the center corresponding to the color code employed

for each angle of the visual �eld (from Warnking [239]). The right-hand side of the �gure

shows results obtained from human fMRI on an unfolded cortical surfaceby Pr.Wandell's

team, V3v and V3d respectively corresponding to V3 and VP in the text and on the

left-hand side of the �gure.

Applications

fMRI retinotopic mapping is not only the main way to explore the organization of
the visual �eld maps in humans but has also beenapplied to study many aspects
of the early visual areas.This technique allowed quantitativ e estimation of parame-
ters to characterizefurther the visual mapssuch asthe cortical magni�cation factor
[60, 192, 62], the receptive �eld size [203] or the cortical surfacearea for each vi-
sual area [53]. It can naturally be used in children [39], o�ering opportunities to
developmental studies. Similarly, retinotopic mapping of patients allow to study
the cortical representation of retinal diseases[210, 7, 103] and the presenceor ab-
senceof a related cortical plasticity [201]. The method wasalsosuccessfullyapplied
to sub-cortical brain structures like the lateral geniculatenucleus [27, 189] or the
superior colliculus [188] and to other speciessuch as cat [160] and macaque[16],
serving as a useful referenceto study homologiesand di�erences along the evolu-
tion [221, 163, 195]. From a methodological point of view, fMRI retinotopic maps
can alsobe helpful to constraint the sourcelocalization in Electro-encephalography
(EEG) or Magneto-encephalography (MEG) studies[51]
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5.1.2 Exp erimen tal proto col

Taking into account the retinotopic properties of the visual cortex described above
and building on previously published work on the subject, we now de�ne our ex-
perimental paradigm and our stimuli. Let us recall that the aim is to uncover the
mapping of the visual �eld over the cortical surface.This can be achieved by stimu-
lating locally and periodically the visual �eld of the subject whosegazestays �xated
at the central point. The basic pattern of our stimuli is a radial checkerboard dis-
tributed in the radial and the polar dimensions,similar to those described in the
literature (e.g. [192, 239]). To take into account the cortical magni�cation, the size
of squaresis increasingwith the eccentricit y.

The stim uli

We �nally require two families of stimulus:
- The wedge is a 80 degreeswide conical sectorrotating around the central �xation
point. This stimulus moves in discrete 20 degreessteps in the visual �eld in a
circular clockwise or anti-clockwise fashion, thus leading to 18 di�eren t positions
for a complete360degreesrotation (see�gure 5.5).

Figure 5.5: The \w edge" stimulus seenin di�eren t positions. It encodes the polar angle

coordinate � of the visual �eld.

- The ring is an annulus centered at the �xation point, its sizevarying with respect
to the eccentricit y. Similarly to the wedge, it hastwo "directions of rotation": either
contraction or expansion;a completerotation is achieved in 18 distinct steps. When
the annulus reaches its maximal eccentricit y (respectively minimal), it is replaced
by an annulus at minimal (resp. maximal) eccentricit y, with an intermediate
position of coexistence(cf. the right image of �gure 5.6). This wrapping around
allows to have a closeto continuousmotion of the stimulus.

In terms of polar coordinates, the wedge stimulus encodes the polar angle compo-
nent whereasthe ring encodes the radial component. The completevisual �eld is
then completely covered, and these two families of stimuli carry complementary
information with respect to the simulation of the visual �eld.

124



Figure 5.6: The \ring" stimulus at di�eren t positions. It encodes the eccentricit y coordi-

nate � of the visual �eld.

For each position of the stimulus, we scana functional volume, yielding at the end
of each stimulation a temporal seriesof images(Yt )t=0 ;:::;T � 1.

The checkerboard pattern of these stimuli 
ic kers (at 9Hz in our setup, one
cycleconsistingof 1/18 secblack and 1/18 secwhite) in order to insure a sustained
neuronal response. Indeed, most of the receptive �elds cells in the retina and the
Lateral Geniculate Nucleus -the main inputs for the �rst visual cortical areas-
consistof two antagonistic regions,the best responseof the cellsbeingobtainedwith
a luminance local contrast between their center and surround. This checkerboard
pattern is superimposedon a mid grey-level equiluminant background to let the
cellswhosereceptive �elds do not fall on the checkerboard at rest.
Let us recall that the display sizeof our videosand the experimental setup provide
a 20.9x20.9degreesdisplay. The extent of the diameter reached by the stimuli
circular aperture is 19.5 degrees,giving a maximum radial opening in the visual
�eld of 19.5/2=9.75 degrees.
The stimuli we usedwere programmedin Matlab to generatea video sequencein
avi format. A number of parameterswereadjustable.

Stim ulus optimization

Our main goal is to designan experimental setupallowing a fast and reliable retino-
topic mapping to accurately delineate the visual areas. We varied three di�eren t
parametersof our stimulus: the number of sectorsin the wedge,the number and
the duration of completerotations (or cycles). The results, presented in [252], are
described below in paragraph5.1.6.

5.1.3 Functional images prepro cessing

Our retinotopic mapping functional datasets are systematically preprocessedas
follows:
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- The motion correction step is run �rst, taking as referencefunctional image the
closestto the anatomical scanin the acquisition order.
- We then apply the rigid coregistrationstep betweenthe anatomical imageand the
functional scans.
- The data are then smoothed usingeither the classical3D isotropic Gaussiankernel
or the cortical surfacebasedmethod2 described in paragraph 4.1.5. In both cases,
the �lter FWHM is set to 1.5 the inplane voxel size.
- Finally, a temporal �ltering is applied to the data. A high-pass�lter is used
to remove low-frequency confounds and a low-pass �lter to roughly control the
temporal auto-correlations.

5.1.4 Statistical analysis

This stage aims at establishing which functional voxels are correlated to our
stimulation. The method used is based on the General Linear Model (GLM)
framework (seeparagraph4.2.3) and can be quali�ed as:
- univariate: the analysisis performedindependently for each voxel (as opposedto
multiv ariate analysiswhich considersall voxels simultaneously),
- di�eren tial: the inferenceanswers to a binary question (a voxel is quali�ed either
as activated or not activated),
- parametric: someassumptionsare madeabout the linearity of the responsewith
regard to the stimulation and about the structure of imagenoise.

We describe in this section the model speci�cation followed by the de�nition
and estimation of statistical tests used to reveal the activated voxels. Practically,
our analysisis performedwith the SPM99software.

Speci�cation of a linear statistical mo del

As mentioned above, a frequency analysis is classically used to analyze periodic
paradigms such as the retinotopic mapping. However, we show below how this
kind of paradigm can be viewed asa particular caseof a linear model and therefore
tackled with classicalGLM analysis.

In the following description, we consider a given voxel v and a given session
(e.g. clockwisewedge) of length T. Basedon the retinotopic properties (paragraph
5.1.1) and our stimulus paradigm (paragraph 5.1.2), the voxel v should only show
a correlated signal, if any, when the stimulus position overlaps the receptive �elds
of the neurons within this voxel. As our stimuli are moving periodically and as

2We have been systematically using the cortical surface basedapproach since it was validated.
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far as the response is linear (which is reasonableif two consecutive stimulations
are su�cien tly separatedin time), the observed signal time course(Yv(t)) t=0 ;:::;T � 1

should also be periodic, with a frequency equal to the stimulation frequency,
denoted f 0. It is therefore natural to study the discrete Fourier transform of our
time series:

Yv(t) =
T � 1X

f =0

cv(f )e
2i� f t

T 8t 2 f 0; � � � ; T � 1g (5.1)

wherecv(k) = 1
T

T � 1X

t=0

Yv(t)e� 2i� k t
T 8 k 2 f 0; � � � ; T � 1g

A simple relation links the stimulus frequency k0 to ! 0, the stimulus pulsa-
tion3:

! 0 =
2k0�

T

We are interested in the part of the signal at the frequencyk0. According to the
discreteFourier transform properties, equation (5.1) can be written:

8t 2 f 0; � � � ; T � 1g; Yv(t) = � v;0 + cv(k0)e
2i� k 0 t

T + cv(T � k0)e
2i� ( T � k 0 ) t

T + � v(t)

where � v;0 is the mean of the temporal signal and � v(t) the signal components at
frequenciesdi�eren t from k0.
We have the following properties:

Yv(t) 2 R =) cv(T � k0) = cv(k0)

t 2 N =) e
2i� T t

T = e2i� t = 1

so that 8t 2 f 0; � � � ; T � 1g:

Yv(t) = � v;0 + cv(k0)e
2i� k 0 t

T + cv(k0)e
2i� ( � k 0 ) t

T + � v(t)

= � v;0 + 2Re(cv(k0)e
2i� k 0 t

T ) + � v(t)
= � v;0 + 2Re(cv(k0)) cos( 2� k0

T t) � 2Im(cv(k0)) sin(2� k0
T t) + � v(t)

= � v;0 + 2Re(cv(k0)) cos(! 0t) + 2Im(cv(k0)) sin(! 0t) + � v(t)
= � v;0 + � v;1 cos(! 0t) + � v;2 sin(! 0t) + � v(t)

Detailing the formulas, it yields:

8
><

>:

Yv(0) = � v;0 + � v;1cos(! 0 � 0) + � v;2sin(! 0 � 0) + � v(0)
...

Yv(T � 1) = � v;0 + � v;1cos(! 0 � (T � 1)) + � v;2sin(! 0 � (T � 1)) + � v(T � 1)

3The pulsation ! 0 , expressedin radian per second, is link ed to the stimulation period T0 , expressedin

seconds,by the simple relation: ! 0 = 2�
T0
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We thereforede�ne two temporal regressors:

X 1 =

0

B
B
B
B
@

cos(! 0 � 0)
cos(! 0 � 1)

...
cos(! 0 � (T � 1))

1

C
C
C
C
A

and X 2 =

0

B
B
B
B
@

sin(! 0 � 0)
sin(! 0 � 1)

...
sin(! 0 � (T � 1))

1

C
C
C
C
A

(5.2)

so that:

Yv = � v;0X 0 + � v;1X 1 + � v;2X 2 + Ev (5.3)

where: - X 0 is the temporally constant regressor,i.e. a unity vector of dimensionT
(all coordinatesequal to 1)

- Ev 2 RT is the residual error, i.e the part of the signal not explainedby our
model, corresponding to all frequenciesdi�eren t from k0.

Equation (5.3) can be written in matrix form:

Yv = X Bv + Ev (5.4)

The (� v(t)) t=0 ;:::;T � 1 are supposedto be independently and identically distributed
(iid ), following a N (0; � ) law. This assumptionis justi�ed thanks to the high-pass
temporal �lter applied during the preprocessingstep, which removes temporal
autocorrelations.
The constant regressordoes not play any special role in the remainder, it is just
a way to center each sessionsignal. The vectors X 1 and X 2 are decorrelated,as
Cov(X 1; X 2) = 0. Furthermore, the regressorsare decorrelatedfrom one session
to the other as they are not applied to the samedata. Consequently, our design
matrix X is of full rank.
We can get a graphical description of our model via SPM, as shown in �gure 5.7,
in particular with the correlationsbetweenthe di�eren t model regressorsX i .

Lastly, within this model we will look closelyat two parameters:
- k2cv(k0)k2 = � 2

v;1 + � 2
v;2 coding the strength of the frequencyk0 in the voxel time

course,
- � = arctan

�
� v ;2

� v ;1

�
which is an estimator of the fMRI signal phase.

The same model is applied to each stimulus, so that for each subject we de-
�ne 4 models (formally similar) with 2 regressorseach (ignoring the constant
regressors).
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Figure 5.7: Graphical description of the statistical model usedin retinotopic data analysis.

The upper graph represents the SPM design matrix, in which each column corresponds

to the values of a given regressoracrossscans. The four right columns are the constant

regressors. The lower graphic shows the orthogonality of the design matrix, i.e. the

correlation between the regressorsof our model. They all appear to be decorrelated as

expected (represented by the white color), implying that our designmatrix is of full rank.
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The regressorscoe�cien ts � v;i estimation is performedwith the classicalleast-square
technique,asdetailed in paragraph4.2.3. Let us recall that under the assumptionof
Gaussianity for the residualsand alsoassumingtheir independence,this estimation
is the one of maximum likelihood and also the best linear un-biasedestimation of
our regressors.

Statistical tests

The next step consistsin producing statistical tests on the parameters� v;i in order
to decidewhether a given voxel signal variations is explainedor not by our model.
It naturally leadsto an F-test on thesecoe�cien ts. We will deducefrom this test a
mask of the voxels consideredas activated in the �nal step.
In our study, we de�ned two slightly di�eren t tests that can be applied to every
voxel: the global test canbe usedwhenwe acquireboth polar angleand eccentricit y
maps, whereasthe speci�c test is applied to a single stimulation type. To lighten
the notations, we drop the v index in the remainder.

Global test
The �rst test, allows to answer the question: \is our setof regressorsaccounting well
for the signal variations at the voxel considered?". It is called \e�ect of interest"
in the SPM language.The constant regressorsbeing excluded,we test for the null
hypothesis:

(H0) : � s
1 = 0 and � s

2 = 0 8s 2 S = f wc;wa; re;r cg

where wc, wa and re, r c are respectively notations for wedge clockwise or anti-
clockwiseand ring expansion or contraction. The null hypothesis(H 0) is equivalent
to the nullit y of kcv(k0)k, implying that no signal contains any signi�cant energyat
the fundamental frequencyof the stimulus.
The alternative hypothesisis:

(H0) : 9 (i; s) 2 f 1; 2g � S = � s
i 6= 0

meaningthat our model \explains" at least a signi�cant part of the signal, or from
a frequential point of view, that a signi�cant part of the signal contains energyat
the stimulation fundamental frequency.

To be able to perform a statistical test, we need an additional assumption on
the � s

i : they are supposedto follow a Gaussianlaw N (0; �
0
). They are thereforeall

independent (as they comefrom Fourier decompositions) and Gaussian.Then:

2X

i =1

X

s2 S

(� s
i )2  (�

0
)2� 2(8)
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.
The global model residuals variance is estimated with the sum of the residuals
divided by their degreesof freedom. By assumption, � t  N (0; � ) and are
independent, we then have:

1
T � q

T � 1X

t=0

� 2
t =

E> E
T � q

 � 2 � 2
T � q

T � q

whereT � q is the number of degreesof freedomremaining in � . Here, q = 12 (the
eight � s

i plus the four constant regressors).
The respective variancesof the residualsand the � s

i are identical (� = �
0
), as they

correspond to the global varianceof the signal Yv. Moreover, the residualsand the
� are independent thanks to the Fourier decomposition of the signal (equation 5.1).

The statistical test thus relieson:

F̂ =

1
8

2X

i =1

X

s2 S

(� s
i )2

ET E
T � 12

 F (8; T � 12)

where F (x; y) is the Fisher law with x and y degreesof freedom. This ratio is
estimated and then comparedto the p-value f of the corresponding Fisher law4 at
each voxel. We typically take p = 10e� 3. Any voxel verifying F̂ > f (unilateral
right test) doesnot follow (H0), so its signal is partly explainedby our model. Such
a voxel will be part of the \e�ect of interest" mask.

Speci�c tests
The other contrast we de�ned can be consideredas more speci�c in the sensethat
it is linked to only one family of stimulus (wedge or ring ). It allows to test one of
the two assumptions:

(H w
1 ) : � wc

1 = 0 and � wc
2 = 0 and � wa

1 = 0 and � wa
2 = 0

or

(H r
1) : � r e

1 = 0 and � r e
2 = 0 and � r c

2 = 0 and � r c
2 = 0

The corresponding statistical tests are derived as before, leading to a F (4; T � 6)
law. Speci�c \w edge" and \ring" masks can thus be derived. This speci�c test

4 It shall be noted that the way SPM computes the degreesof freedom is slightly more complicated

becauseit takesinto account the high-passand low pass�ltering applied by SPM; this leads to non integer

values for these degreesof freedom, but the used here is su�cien t, the threshold values computed being

very close to the theoretical values.
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allows to check if the respective model of each type of stimulus explains well the
observed signal, or can also be usedwhen only one stimulus type is used. Figure
5.8 presents typical F̂ valuesof a speci�c test for the wedgestimulus.

Figure 5.8: An axial slice of the values of the statistics F̂ for the wedge stimulus. The

values under the theoretical p-value computed for p = 0:001 are discarded. The colored

voxels are those consideredas activated and kept in the analysis.

Globally, even when we acquireboth polar angleand eccentricit y data, we prefer to
analyzeour results with each speci�c maskseparately, as the two families of stimuli
can be viewed as independent. We however consideredthe global mask as neurons
activated by one family of stimulus (e.g. the "wedge") should also be activated by
the other (e.g. the "ring"), the portion of the visual �eld globally covered by both
stimuli being strictly identical. The di�erence in the �nal activated voxel masks
derived either from a global or two speci�c tests has shown to be negligible in
practice.

We wrote a series of scripts ("batches" in the SPM99 vocabulary) to auto-
mate this computing stepsusing SPM99, sincede�ning the model by hand is time
consumingand repetitiv e when analyzing many datasets. Those scripts de�ne the
model and the contrasts leading to our F-test, then call the appropriate SPM99
function used for the regressionstep and the statistics estimation. Note that the
temporal �ltering parametersare also driven with this script and applied before
the model parametersestimation. Various parameterscan be easily changedto �t,
amongothers, with the session'sduration, the stimulus fundamental frequency, the
TR duration, etc.
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5.1.5 Angular values computation

The last step in the analysisof retinotopic data consistsin recovering the phaseof
the signal for each voxel included in the statistical mask computedpreviously. The
latter is linked to the stimulus position that induced the voxel's response.
According to our paradigm and the construction of our model, this would be
relatively straightforward without the hemodynamic �ltering. Indeed, as seen
previously, � = arctan( � 2

� 1
) is an estimator of the signal phase,corresponding to a

unique stimulus position in the visual �eld. But the responsewe are facedwith is
�ltered and delayed by the hemodynamic response,making the underlying position
estimation more di�cult. Taking advantage of the two directions of rotation
for each family of stimulus nonethelessallows to estimate, for each voxel, this
hemodynamic delay.

Let us consider a given supra-threshold voxel v, and de�ne the following no-
tations:
- � + (respectively � � ) is the angle coding for the position of the stimulus rotating
positively (resp. negatively) in the visual �eld.
- � + (resp. � � ) is the periodic signal estimated phasefor the stimulus in positive
(resp. negative) rotation.
- � + (resp. � � ) is the \expected" signal phase, i.e. the delay of the neuronal
response(close to zero at our temporal scale), linked with the position � + (resp.
� � ) of the stimulus by the relation � + = � + ! 0 (resp. � � = � � ! 0) where ! 0 is the
stimulus pulsation. We have the relation � + = 2� � � � .
- th is a delay in the recordedBOLD response,i.e. the hemodynamic delay at the
voxel v plus the acquisition delay linked to the corresponding slice in the volume.
We assumethat this delay is identical for the two directions of rotations of the same
stimulus, which appearsto be reasonable5. Similarly, this delay could alsocomprise
somephysiologicalaspectsas lateral propagation e�ects which could reasonablybe
assumedto be identical in both directions of rotation.

5Note that this assumption is valid concerning the slice acquisition delay becauseour stimulus time

course is precisely synchronized with the volume's acquisition, making each slice acquired with the same

delay with respect to the stimulus change of position in both directions of rotation.
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�

� � = � � ! 0th

� + = � + ! 0th

signal phase: � �

signal phase: � +

Figure 5.9: Description of the stimulus positions in the visual �eld linked to the periodic

signal measuredphases.This sketch refersto the wedgestimulus. The red and greencolor

correspond to a positive and negative rotation respectively. � is the angle corresponding

to the stimulus position in the visual �eld inducing a simulation of the neurons included

in the voxel considered,th is mainly due to the hemodynamic delay of this voxel, ! 0 the

stimulus pulsation. The conjunction of the estimated phasesin the periodical signals, � +

and � � , allows to evaluate the valuesof � and th .

We thus have :
� + = � + + th

= � +

! 0
+ th

� � = � � + th

= 2� � � + + th

= 2� � � +
! 0

+ th

We canremove the term 2� , uselesshereasour resultswill in �ne be de�ned modulo
2� . It leadsto:

th =
� + + � �

2
(5.5)

� + =
! 0(� + � � � )

2
(5.6)

The hemodynamic delay is de�ned modulo � by equation (5.5), but the ambiguity
is removed by the fact that the stimulus frequencyis chosenlow enoughto allow
the hemodynamic delay value to be, expressedin terms of stimulus position angle,
between0 and � (modulo 2� ).
At the end of this step, we are thus able to evaluate at each voxel concernedby our
stimulus the value of the angle(thus the underlying position) of the stimulus giving
rise to its activit y.

As for the statistical model de�nition and the estimation of parameters, this
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phaseestimation step wasautomatedusinga Matlab program. It leanson the SPM
interface to selectthe images(i.e. the � imagesand the F-valuesimage).

5.1.6 Angle maps analysis

We can now analyzethe angular maps obtained through the functional processing
and the statistical analysisdescribedabove. In the following paragraphs,after a �rst
rapid veri�cation of the results,we discussthe qualitativ e aspectsof our visual �eld
mapsand compareour results to the literature. We alsostudy the polar anglemaps
we obtainedwhile varying somestimulus parameters,leadingto an optimal stimula-
tion paradigm. Finally, we addressboth the intra- and inter-subject reproducibilit y
of our approach.

First veri�cation

The �rst point to addressis whether the angle values found are properly located
according to anatomo-functional a priori knowledge. As mentioned in paragraph
5.1.1,the eccentricit y mapsaround the calcarine�ssure should show increasingval-
ues from the occipital pole to more anterior brain regions,while polar angle maps
shouldreveal the visual �eld splitting, each hemi�eld projecting on the contralateral
hemisphere. We also check for both angular maps smoothnessalong the cortical
surface.This rough veri�cation can be performedon 2D slicesshowing the angular
mapsoverlaid on the subject anatomical image,as illustrated in �gure 5.10.

A more appropriate way to assessthe results is to render the eccentricit y and the
polar angle maps on the subject's cortical surfaces,using the construction of cor-
tical geometry models with methods detailed in chapter 3. From these surfacical
maps,we can alsoaddresssomedebatedissuesregardingthe organizationof human
occipital visual �eld maps.

Eccen tricit y maps

General results The ring stimulus is used to get the phase-encoded eccentricit y
map, mapping the cortical responsesto a ring located at various eccentricities. Our
stimulus extendsradially up to a maximum of 9.75degreesof visual angle.
As a generalqualitativ e result, we �nd, for every subject tested, the classicalpattern
in which a large foveal representation lies at the occipital polesaround the calcarine
�ssure and aseccentricit y increases,the corresponding representations appear more
anterior and medial.
In [237], Wade and colleaguesreported an isolated foveal representation ventrally
and anteriorly to the V1/V2v/V3v areas. We con�rm the presenceof this foveal
representation in our maps for every hemispheresanalyzed. In the dorsal surface,
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Figure 5.10: Eccentricit y (left) and polar angle (right) maps obtained for a given subject,

overlaid on an axial slice of the anatomical image. Both maps appear reasonablysmooth

along the cortical surfaceof the occipital lobe. Furthermore, well-known global properties

of human retinotopic mapsare veri�ed: the anglescorresponding to low eccentricit y values

(foveal) are close to the occipital lobe, and we move further anteriorly as the eccentric-

it y increases;in the polar angle map, each visual hemi�eld projects respectively to the

contralateral hemisphere.
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Figure 5.11: Example of the eccentricit y map in a medial view of the left occipital lobe of

subject JK. The left �gure shows the original surfaceand the right one an in
ated view.

We can clearly seethe isolated ventral foveal activation reported by Wade et al. (lower

arrow) [237], located ventrally beyond the V1-V2v-V3v con
uent foveal region. The areas

borders are de�ned using the subject's polar angle map (see below). The upper arrow

designate a dorsal foveal representation lying clearly beyond V3d. The color gradient

going to blue at the border of the map doesnot correspond to an angular representation

but is actually an OpenGL interpolation that cannot be removedunder the current version

of the Anatomist visualization software.

extendingfrom the posterior portion of the intraparietal sulcus,the samegroup also
reported two distinct foveal representations [177]. We can observe a clear foveal
activation in somesubjects but can not reliably distinguish two distinct represen-
tations. Figure 5.11 shows an eccentricit y map overlaid on the subject's left hemi-
sphere,whereboth a ventral and a dorsalactivations to low eccentricities are found.

Foveal sensitivit y The eccentricit y maps on the cortical surfaceare smooth and
qualitativ ely match what we expected to seefrom other studies. However, the ex-
treme occipital pole is not fully covered of angular values,whereaswe can expect
herea foveal representation. We wonderedif the periodic stimulation paradigmused
wassensitive enoughto foveal stimulus position. To answer this question,we tested
in onesubject a classicalblock designto contrast a 5 degreeseccentricit y stimulation
with a uniform grey �eld �xation (see�gure 5.12). Each condition waspresented 10
times, each block lasting 8 TR (or 16,888s).
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Figure 5.12: The block design used to map the foveal representations in the occipital

cortex. Between two foveal stimulation blocks, the baselinecondition is a uniform mid-

grey �eld with the red �xation cross.

The analysiswasperformedclassicallywith a linear regressionof the box car function
representing the stimulation (1 during foveal presentation, 0 otherwise) convoluted
with a classicalhemodynamic responsemodel from SPM. No spatial smoothing was
performed on the data, to prevent any blurring e�ect. We show in �gure 5.13 the
comparisonbetweenthe t-map drawn from this block designexperiment thresholded
at p < 0:001uncorrectedand the angularvaluescomputedfrom 4 cycles(contracting
and expanding)of the ring stimulus. Wecompareddirectly the resultsin slicesof the
3D volume to avoid any mismatch that could arisefrom the cortical surfaceextrac-
tion or the projection of the functional data onto it. The comparisonis presented
here for a single axial slice, but the result is qualitativ ely equivalent for any slice
of the volume: there is a strong overlap betweenany value in the eccentricit y map
coding for a foveal ring position and supra-thresholdt-valuesfrom the block design
foveal stimulation. This is in particular the casein the ventral foveal representation,
locatedventrally beyond areaV3v, asalreadymentioned above. At the very pole of
the occipital lobe, we do not �nd any signi�cant t-value with our block paradigm,
consistent with our eccentricit y maps. This lack of signal at this preciseanatomical
location is also found in most �gures of the literature showing eccentricit y maps,
though this point is generallynot addressed.It is nonethelessquickly discussedin a
footnote in [192]. One reasoncould be small eye movements can a�ect the signal to
noiseratio in the macula,wherethe receptive �elds sizeis smallest. Another source
for this missingsignalmay be attributed to echo-planargeometricdistortions induc-
ing a compressionin the occipital pole. For technical reasons,we could not record
the appropriate �eld mapsto estimateand correct thesedistortions. Finally, a lack
of power in the measurements and the di�eren t analysisprocessescould alsoexplain
this missing\center of gaze" representation.
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(A) Block foveal (B) Ring (4 cycles)

Figure 5.13: Comparison between (A) the t-map, contrasting foveal stimulation blocks

versusuniform grey �eld �xation blocks (3.2 is the t-value for p=0.001 uncorrected) and

(B) the eccentricit y map derived from the 4 cyclesring stimulus, in an axial slice. The t

valuesabove the statistical threshold in (A) systematically match the low angular values

in (B).

Polar angle maps

General results Stimulating a subject using the wedgestimulus allows to get his
polar anglemap, mapping the cortical activit y implied by a conelocatedat di�eren t
positionsaround the center of gaze.From previousneurophysiologicalstudies,it ap-
pearsthat the boundariesof early retinotopically organizedvisual areasare de�ned
by reversalsin the representation of the polar angle. This stimulus is thus su�cien t
to segment the �rst retinotopic visual areas.
As for the eccentricit y maps,the generalpattern of representation of the visual �eld
on the cortical surfaceis smooth, accordingly to the basic principles of the retino-
topy. Basedon the literature agreements, we can reliably identify areasV1, V2v,
V2d, V3v, V3d and V3A in every subject scanned. Figure 5.14 shows the polar
anglepatterns generallyfound in human fMRI retinotopic mapping reports overlaid
both an the original and an in
ated versionof the GM/WM interface.

W edge stim ulation optimization We tested di�eren t conditions for the wedge
stimulus in order to optimize our stimulation process.Following [239, 200], we tried
a bi�eld wedgestimulus instead of the uni�eld wedge,for two main reasons:
- the stimulus being symmetrical with respect to the �xation point, the subject
would be helped maintaining its gazein the center of the display,
- the stimulation could run up to twice quicker.
The main drawback of n-wedgesstimulus (n � 2 being the number of simultaneous
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Figure 5.14: Polar angle map overlaid on subject's left hemisphereeither folded (left) or

in
ated (right). We �nd the general angular values pattern all investigators are agreed

upon in the literature for areasV1, V2v, V2d, V3v, V3d and V3A. The boundariesbetween

the above mentioned areasare manually drawn.

sectors) stems from the more di�cult signal phase interpretation than in the
uni�eld wedge case. Indeed, with multiple wedgesstimuli, the analysis globally
remains the same,but the results show a phaseambiguity: a given value of the
BOLD responsephasecorresponds to n locations in the visual �eld. When n = 2,
the prior knowledge about the hemisphere/hemi�eld specialization implies this
ambiguity only appears for the vertical positions, other positions being uniquely
de�ned in each hemi�eld, thus in each hemisphere. The vertical position can
then be disambiguated taking into account the expected local smoothnessof the
maps. An alternative was proposedin [200] in which the authors proposedto split
vertically the bi�eld wedgestimulus while it spansthe vertical meridian to avoid
this phaseambiguity (seetheir �gure 1). For n � 3, the phaseambiguity becomes
more problematic and a priori knowledgemay not be su�cien t to resolve the latter.
We tested a bi�eld wedgestimulation in comparisonto the classicaluni�eld wedge,
also varying the spatial extent of the sectors (see �gure 5.15) and the rotation
velocity for the bi�eld stimulus.

Di�eren t velocities
We �rst comparedon 3 subjects the �nal maps obtained with (i) the classical80
degreeuni�eld wedge, (ii) a 40 degreebi�eld wedgeand (iii) a 80 degreebi�eld
wedge,as illustrated in �gure 5.15.
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\Uni�eld" Wedge \bi�eld" 80� Wedge \bi�eld" 40� Wedge

Figure 5.15: The di�eren t wedgestimuli tested.

In the 6 hemisphereswe analyzed, we observed a lower signal in both bi�eld
wedges conditions, leading to less supra-threshold voxels (see table 5.1) and
therefore lesscomprehensive maps than the uni�eld wedgeas illustrated in �gure
5.16.

Subject Uni�eld 80� Bi�eld 40� Bi�eld 80�

CG 31106 19287 20195

GR 50473 23282 21711

SR 49154 25774 24683

Table 5.1: Number of supra-threshold voxels (p=10e� 3 uncorrected) for di�eren t stimulus

pattern rotating at di�eren t velocities, the bi�eld wedgesstimuli rotating twice quicker

than the uni�eld wedge.

\Uni�eld" Wedge \bi�eld" 80� Wedge \bi�eld" 40� Wedge

Figure 5.16: Comparison of polar angle maps projected on the in
ated left hemisphere

with respect to di�eren t stimulations (subject CG). The uni�eld stimulus clearly leadsto

more signal, thus angular values, than the bi�eld, rotating at twice the uni�eld wedge

velocity.
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Theseresults might appear in contradiction with the study of Slotnick and Yantis
[200] at �rst sight, but having a closerlook at their �gure 3 suggestsa comparable
signal losswith the bi�eld wedgeas comparedto the uni�eld wedge. The rotation
velocity, which for the bi�eld wedgeswas twice that of the uni�eld wedge,might
account for this important signal loss. Indeed, if the stimulation frequencyis too
high, the low pass�lter of the hemodynamic responsea�ects thesehigh frequencies,
including the fundamental stimulation frequency, in many voxels. Moreover, the
higher quality achieved with the 40 degreebi�eld wedgethan with the 80 degree
alsoprobably comesfrom the hemodynamic responselow-pass�lter, preventing the
signal to return to its baselinebetweentwo consecutive stimulations with the larger
wedge. This phenomenonis supposedto occur twice as much with the 80 degree
wedgethan with the 40 degree.

Same velocit y
To strictly isolate the bi�eld versusthe uni�eld wedgecomparison,we performeda
subsequent experiment on 3 di�eren t subjects, using the samerotation velocity for
each stimulus. Maps qualitativ ely look much closerto each other in this comparison
than in the previous one. However, the amount of supra-thresholdvoxels is still
higher for the uni�eld stimulus (see table 5.2). Figure 5.17 shows a qualitativ e
comparisonon a representativ e hemisphere.

Subject Uni�eld 80� Bi�eld 40� Bi�eld 80�

LQ 60902 46151 42570

CV 45197 37310 34494

IH 64413 51070 42671

Table 5.2: Number of supra-threshold voxels (p=10e� 3 uncorrected) for di�eren t stimulus

pattern rotating at the samevelocity.

Eye movements could be a reasonresponsible for this di�erence between uni�eld
and bi�eld wedge maps. Eye movements are indeed twice more likely to lead
to unexpected stimulation with the bi�eld than with the uni�eld stimulus. The
resulting signal is thus more likely to be inconsistent with respect to the stimulus
frequencyand consequently consideredas noise. However, as we were not yet able
to measureeye movements during the experiments, we could not quantitativ ely
con�rm this assumption.

As a result of these multiple comparisons with the wedge stimulus, the uni-
�eld wedgewith a rotation frequencyof 1/38 Hz was kept for its higher accuracy.
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\Uni�eld" Wedge \bi�eld" 80� Wedge \bi�eld" 40� Wedge

Figure 5.17: Comparisonof polar anglemapsprojected on an in
ated left hemispherewith

respect to di�eren t stimulations. The uni�eld stimulus leadsto more activations than the

bi�eld, even if rotating at the samevelocity (subject LQ).

5.1.7 Mapping repro ducibilit y

Beyond the confrontation of our mapswith the results from other labs, oneway to
assessthe robustnessof our retinotopic mapping procedure is to study its repro-
ducibilit y for di�eren t subjects (inter-subjects reproducibilit y) but also for a single
subject in di�eren t scanningsessions(intra-subject reproducibilit y).

In ter-sub jects repro ducibilit y

As already discussedin paragraph 5.1.6, our maps show a high agreement across
subjects, aswe globally �nd the samepatterns of angular valuesrepresentations, at
least in the systematically mapped cortical region comprising V1, V2v, V2d, V3v,
V3d and V3A.

In tra-sub ject repro ducibilit y

In tra-session The stimulus optimization previously detailed allows us to check
for the reproducibilit y of the polar angle map in a given subject within the same
scanningsession.Figures 5.16 and 5.17 illustrate this intra-sessionreproducibilit y
of a given subject, using di�eren t stimulus parameters. The red crossesare linked
for each image,showing the high quality alignment of areaborders (here the lower
boundary of V1) found in each map. The di�erences in the maps result mainly in
a lack of signi�cant signal at somevoxels. This is to be mainly linked with the
changesin stimulation as discussedin the previousparagraph.
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Figure 5.18: Intra-subject inter-sessionsreproducibilit y (subject LQ). The data from ses-

sion2 wererealignedin session1 coordinate systemusing the anatomical imagescoregistra-

tion transformation. The mapsarequalitativ ely identical, showing the high reproducibilit y

of the whole procedure. Speci�cally , the areasborders basedon the polar anglemap from

session1, depicted by the black lines in the top images,�t accurately the polar anglemap

derived from session2 data.
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In ter-session The reproducibilit y of the mapsderivedfrom a givensubject through
di�eren t scanningsessionswas also assessedfor two di�eren t subjects. The results
for one of them are shown in �gure 5.18. The di�eren t maps are computed inde-
pendently for each session.The realignment betweendi�eren t structural T1 images
acquiredat each sessionis doneusing the standard SPM2 coregistrationalgorithm,
registering each sessionanatomical scan on that of an arbitrary chosenreference
session. The transformations estimated are then applied to the respective func-
tional imagesand the preprocessingand analysisare applied independently to each
functional dataset. Resulting independent phasemaps are �nally displayed on the
in
ated meshof the GM/WM interfaceextracted from the referencesessionanatom-
ical scan. Both eccentricities and polar anglemapsshow a strong overlappingaswell
as the areassegmentation that can be obtained from thesemaps. This inter-session
reproducibilit y was found in both hemispheresof the two subjects analyzed. These
results prove the high intra-subject and inter-sessionreproducibilit y of the whole
procedureimplemented.

5.1.8 Mapping e�ciency

Following the validation of our method, we now compareour approach with the
literature, �rst in terms of the overall experiment duration and secondregarding
cutting edgeissuesabout the cortical visual �eld representations.

Exp erimen t duration

Our initial goal was to accurately identify the low-level retinotopic areas within
a minimum scanning duration. The experimental and image analysis procedure
we have designedallows to preciselymap the occipital visual �eld representations
consensuallyreported in the literature basedon a 15 minutes functional scanning
experiment. This rapid method comparesfavorably to the di�eren t proceduresre-
ported in the literature, assummarizedin table 5.3. Note that although Slotnik and
Yantis claim a very low duration of just over 4min, they do not perform eccentric-
it y mapsmeasurements and only usea single rotation direction for the polar angle
stimulus. The latter point, alsoexplicitly noti�ed in [49, 62, 39], implies the useof
a constant hemodynamic responsedelay over the voxels, which might signi�cantly
bias the resulting phasemap. Consideringsimilar limitations, our procedureis ac-
tually comparableto that of Slotnik and Yantis as we require 5mn30sto acquire a
completeset of the wedgerotating in a singledirection and globally faster than the
other groups. As we already mentioned above, this rapid acquisition might explain
the lower signal obtained dorsally and ventrally .
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Reference #Cycles Averaging Eccentricit y Polar Angle

/run mapping mapping

Serenoet al. [192] n.s. n.s. n.s. n.s.

DeYoe et al. [49] n.s. 2-4 n.s. n.s.

Engel et al. [62] 4-6 n.s. n.s. n.s.

Tootell et al. [222, 95] n.s. 4-12 4-12x8mn32s 4-12x8mn32s

� 20mn-1hr � 20mn-1hr

Smith et al. [203] 4 2 4x216sec� 14mn 4x216sec� 14mn

Wade et al. [237] 6-8 2-4 n.s. n.s.

Warnking et al. [240] 14 none 2x7mn16� 14mn30s 2x7mn16� 14mn30s

Dumoulin et al. [57] 10 3-4 3-4x6.5mn� 22mn 3-4x6.5mn� 22mn

Slotnik et al. [200] 6 none none 4mn30

Conner et al. [39] 8 2 2x8mn32� 17mn 2x8mn32� 17mn

Brewer et al. [15] 25 n.s. 25x24sec� 10mn 25x24sec� 10mn

Our method 4-8 none 2x2mn32s� 5mn 2x5mn04s� 10mn

Table 5.3: Comparisonof the retinotopic mapping methods reported in the literature with

respect to the number of completecyclesby run, the number of identical runs averagedand

the functional imagesacquisition duration for each phasemap type. "n.s."=non speci�ed

Bey ond the \great agreemen t zone"

Beyond V3A dorsally and V3v ventrally , maps and conclusionsare getting less
consensualin the human fMRI retinotopic mapping literature.

Dorsal maps
In the dorsal occipital region, another quarter�eld representation labeled V3B was
reported by Smith et al. [202]. Regarding its location, it was suggestedto be
similar to area KO previously identi�ed by Van Oostendeet al. [233] on the basis
of strong responsesto kinetic boundaries. A completehemi�eld representation was
afterwards reported by Wandell's group in [177] at the same location (following
Smith and colleagues,they labeled it V3B). Tootell's group also reported in [217]
and [216] another area abutting dorsally the V3A/V3B region, labeled V7 and
supporting an upper quarter-�eld representation. Yet, Presset al. later reported in
[177] a completehemi�eld representation in this areaV7.
Our results in this portion of the cortical surfaceare lessreproducible from subject
to subject and often lack signal, probably becausewe reach the accuracy of our
method which performs retinotopic map acquisitions too fast to provide enough
signal (only 8 complete cycles for each rotation direction of the wedge, without
any additional averaging of runs). These issuesshould be resolved with a more
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Figure 5.19: Concurrent scenarii for the ventral occipital visual �eld maps beyond V3v.

The hV4 model proposedby Wandell's group assignsa complete hemi�eld representation

parallel to V3v upper vertical meridian representation. On the other hand, the V8 model

proposed by Tootell's group suggestsa parallel quarter�eld representation labeled V4v

followed by perpendicular complete hemi�eld representation labeled V8. The valuesfrom

the white circlesshow the expectedpolar angleand eccentricit y valuescloseto V3v ventral

border by both models. Figures are adapted and modi�ed from [15].

sensitive data acquisition (for instanceusing a surfacecoil), with more cyclesin the
stimulus presentation or an averagingof signalsacrossdi�eren t acquisition sessions
and maybe with further improvements in the data processing.

Ventral maps
Moving ventrally beyond V3v, we also �nd someretinotopic signal, but the visual

�eld representation and the labeling is onceagainnot in agreement here. Hadjikhani
et al. reported in [95] a quarter�eld representation, labeled V4v, followed by a
completerepresentation they called V8 (supposedto be a color sensitive area). But
the authors only show onedatasetwith a V8 fovea,whereaslater publications from
this group (see for instance [222]) show retinotopic maps not always consistent
with this interpretation. On the other hand, Brewer et al. recently reported in [15]
three completehemi�eld representations located ventrally to the vertical meridian
representation of area V3v. Figure 5.19 summarizesthe concurrent labeling in the
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ventral occipital cortex.
According to our data, our conclusionsare closer to those from Wandell's group,
as shown in �gure 5.20. In particular, the V8 assumptionseemsinvalidated by the
absenceof foveal representation for each polar anglevaluesin this portion of cortex
beyond V3v. But similarly to the dorsal occipital region, more reliable signal is
required in this ventral region of the occipital cortex to draw a solid conclusion
and to con�rm or in�rm the VO model further suggestedby Wandell's group.
For instance, �ner measurements should be obtained using more speci�c stimuli
patterns such aschromatic contrast, ashigh selectivity to color stimuli wasreported
in this part of the visual cortex [148, 237].

Figure 5.20: Example of hV4 polar angleand eccentricit y maps(subject LQ). Theseresults

are consistent with a complete hemi�eld representation beyond V3v.
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5.1.9 Area delineation

Beyond the characterization of the visual �eld representations over the cortical
surface,the retinotopic mapping allows to delineate the di�eren t retinotopic areas
revealed. One can then extract the subset of cortical voxels corresponding to
each area identi�ed, thereby building coherent Regions Of Interest (ROIs) that
can be used in subsequent analysis. We �rst present below the Visual Field Sign
method tested on our data and then quickly describe a manual procedurewe can
alternatively useto properly delineatethe visual areas.

Visual Field Sign maps

In [193], Serenoet al. introducedan automatic method combining the eccentricit y
and polar angle maps to construct the Visual Field Sign (VFS) map, allowing a
direct delineation of the retinotopic cortical areasfrom electro-physiological data.
The technique was then applied to fMRI retinotopic maps in [192] and [239], and
further implemented in a volumetric fashion in Dumoulin et al. [57].

The Visual Field Sign is built to indicate the orientation of the representa-
tion of the visual �eld, either mirror or non-mirror, on the cortical surface. It is
given by:

VF S = sign(det(@ ))

where  : (x; y) 2 R2 7! (�; � ) 2 R+ � [� � ; � [ is the function mapping, for each
point (x; y) on the cortical surface,its preferredposition (�; � ) in the visual �eld, as
illustrated in �gure 5.21.
The VFS computation thereforeinvolvesthe local gradients of the eccentricit y (noted
�!
r � ) and the polar angle(noted

�!
r � ) maps, leading to the equivalent formulation:

VF S = sign(det(
�!
r � ;

�!
r � ;

�!
N ))

where
�!
N is the exterior normal to the cortical surface.According to the retinotopic

properties of the visual cortex, this sign will changebetweentwo neighboring areas,
allowing us to easily delineatethem.
The gradient directions of both functions

�!
r � and

�!
r � (de�ned on the cortical

surface) are estimated at each vertex of the underlying mesh with a least square
method, using the current vertex neighborhood information. Formally, we look for
the vector V̂ verifying:

V̂ = M in k� F � V � X k
V
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Figure 5.21: Schematic representation of the  function, linking points de�ned on the

cortical surfaceto the corresponding preferred position - supposedto be the center of an

ideal voxel's receptive �eld - in the visual �eld.

Where: - F is the function � or � , � F a local variation of F ,
- � X is a local variation of the cortical surfacecoordinates.

By de�nition of the gradient:

dF = r F dX
) dFT = dX T r F T

) r F T =
�
dX dX T

� � 1
dX dFT

This computation is done at each vertex of the mesh, directly on the cortical
surface,modeling it locally asa planeorthogonal to the normal

�!
N . We perform this

computation on the in
ated surface,avoiding problemswith locally high curvature
values (where the local plane approximation of the surface would not be valid
anymore).

The �rst problem we encountered with this computation was many gradients
close to zero. The cortical mesh is much more precisethan the original volume
of the functional data. Consequently, the original angular maps are oversampled
on the mesh,often giving rise to closeto null variations between two neighboring
vertices. To solve this problem, we considereda higher order neighborhood. For
instance,the 2nd order neighborhood of a vertice v is madeof the neighbors of the
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neighbors of v, without its �rst order neighborhood and v itself. Depending on the
degreeof the meshprecision (increasing the latter globally decreasesthe distance
betweenneighboring vertices), it wasfound to be usefulto usea third or evenhigher
order neighborhood to have a more reliable estimation of these gradients. This
indeed solves the problem that leadsto null gradients at many vertices. However,
an important issueremained: the VFS map obtained wasstill noisy with respect to
the ideal delineation expected (see�gure 5.22-B). Two techniques were envisaged
to improve the VFS maps. We �rst tried to smooth the ring and wedge phase
maps de�ned over the cortical surface using an appropriate surface-constrained
smoothing method developed by Rachid Deriche et al. in the laboratory [205]. It
is actually the samealgorithm employed in the mesh basedsmoothing approach
described in 4.1.5. The local gradients estimation followed by the VFS computation
are then performed classically. Although this technique removes most unexpected
VFS reversal while preserving the seeked borders, it actually does not enhance
su�cien tly the results to allow a straightforward area segmentation (see �gure
5.22-C). In a secondattempt, we performed a �ltering directly on both surfacical
gradient �elds

�!
r � and

�!
r � . Each original vector �eld is independently smoothed

with an appropriate method alsodevelopedby LuceroLopezand colleagues.Details
about this method can be found in [139, 198]. This 3D vector �eld smoothing step
is followed by the classicalVFS computation. The resulting VFS maps are once
again far lessnoisy than the classicalonesand alsobetter than that obtained with
the phasemapssurfacicalsmoothing, especially preservingbetter the stripesshape
of V2 and V3 (see �gure 5.22-D). Nonetheless,the �nal maps are not accurate
enoughto allow a fully automatic identi�cation of the occipital retinotopic areas.

A closer look at the data over the cortical surfacereveals that our angular maps
were not as regular as they are supposedto be with respect to electrophysiological
data, explaining the problemswe encounter with this VFS computation. Besides,
personalcommunications with other laboratories applying the retinotopic mapping
techniques and trying the VFS lead us to the conclusionthat this method is not
robust enoughfor fast retinotopic map acquisition. Let us recall that our technique
allows the acquisitionof thesemaps(eccentricit y and polar angle)within 15minutes
of functional scans, which is signi�cantly less than what is usually reported in
the literature. Last but not least, a closer inspection of the results shown in the
literature using the VFS computation often revealsthe samenoisinessin their VFS
maps, (e.g. �gure 3 in [192], �gures 7 and 8 in [57]). This review led us to look for
an alternative way to segment our retinotopic areas.
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A) Polar angle map B) original VFS map

C) VFS map after 1D smoothing D) VFS map after 3D smoothing

Figure 5.22: Visual Field Sign maps (see text). A) Polar angle map overlaid on the

in
ated left occipital cortex. The areas boundaries were drawn by hand, based on the

angular variations pattern. The VFS results basedon B) the original polar angle and ec-

centricit y maps,C) the surface-basedsmoothing of the angular maps(equivalent Gaussian

kernel with � =3mm) and D) the surface-basedangular gradients �eld smoothed along

the cortical geometry. Yellow (blue) indicates a locally mirror (non-mirror) visual �eld

representation.
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Man ual area delineation

In order to get a correct delineation of our visual retinotopic areas,we can use a
manual areade�nition, mainly basedon the polar anglemap of the subject. As we
already mentioned above, this map givesthe information of angle reversionneeded
to properly delineatethe �rst retinotopic areas.
This method allows us to correct for the noisefound in our VFS maps -which can
nonethelessbe usedas a starting point. Most importantly, it can also be used to
completely delineate the retinotopic areassolely basedon the polar angle values,
allowing faster functional scanningsessionto identify low-level visual areas.
We adapted the SUMA6 software to our needs,allowing to draw directly on the
in
ated cortical surfaceand to save the 3D vertices coordinates from the original
(non in
ated) surface.This adaptation mainly involved data format and coordinate
systemconversionsbetweenthe di�eren t softwareswe used. Figure 5.23 illustrates
the delineation obtained with this procedure.

Figure 5.23: The subject's polar anglemap projected on a meshof the GM/WM interface

(left) allows to delineate various occipital retinotopic areasas shown on the original mesh

(top-righ t) and on the in
ated surface(bottom-righ t).

Using the manual area delineation procedure, we are able to delineate low-level
retinotopic areasof any given subject basedon 15 minutes functional scansplus
the anatomical image acquisition time. However, our approach is time consuming

6SUrfaceMApping software, developed by Saadand Cox at the NIMH, NIH; documentation and binaries

are freely available at http://afni.nimh.nih.go v/sscc/sta�/ziad/SUMA/SUMA doc.htm
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and manual editing is somewhatlessreproducible than a completely automatic de-
lineation. We might further try other approaches like [53], using a model for each
phasemap and warping thesemodels onto the actual measurements, or in [57], al-
lowing a volumetric visual �eld sign computation (even if the resulting VFS maps
of the latter technique are not as accurateas ideally expected).

Volumetric de�nition of ROIs

The visual area segmentation technique described above can be usedto derive vo-
lumic RegionsOf Interest (ROIs) from surface-basedde�ned regions, for instance
the subsetof voxels representing V1. Starting from the surfacicalarea labeling, we
perform a \back-projection" consistingin the attribution, for each labeledvertex, of
a subsetof voxels in the original volume,accordingto the projection technique used
to map the functional valueson the cortical surface.We typically usean integration
(averaging) of the values at di�eren t voxels from the vertex considered(lying on
the GM/WM interface) to a certain distancealong the local normal to the surface;
this distanceis supposedto match the cortex thickness,typically 3mm. TheseROIs
can then be used for any further experiment characterizing more precisely these
retinotopic visual areas.

5.1.10 Conclusion

The retinotopic mapswe obtained are globally in agreement with the related litera-
ture and our resultscon�rm somecutting edgequestions,asthe presenceof a ventral
fovea representation beyond area V3v. Our generalprocedureis also currently ap-
plied by the INCM team in Marseillein a clinical study of the cortical organizationin
patients su�ering from retinal diseasessuch asvisual scotomas.Preliminary results
were presented at two ophtalmology conferences[103, 102]. Beyond this mapping
aspects, we can derive within 10 minutes of functional scanssurfacic or volumic
ROIs that can be used in other experiments exploring the human cortical visual
system. As our acquisitionsare fast, complementary MRI scanssuch as functional
or di�usion tensor imagescan be acquiredwithin the samescanningsession.
Various aspects may nonethelessbe addressedin future work. First, using com-
plementary stimuli patterns, we can expect to clarify visual �eld representations
beyond what we have called "the great agreement zone". Second,the scanduration
required to get retinotopic maps might be further lowered not only with technical
imaging advancesbut also with judicious stimulation tricks. For instance, it might
be possibleto simultaneouslymap the polar angleand eccentricit y coordinatesusing
two distinct frequencies,each speci�c to one dimension. Finally, a fully and reli-
ableautomatic method to delineatethe di�eren t visual �eld mapswould be of great
interest to facilitate this tedious and expert-dependent task.
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5.2 Functional mapping of hMT+

This section is dedicatedto the functional mapping of area hMT+. We �rst recall
the main contributions in the neuroimagingliterature to identify this portion of the
visual cortex beforedescribingour choicesand experimental results.

5.2.1 The hMT+ complex

The functional specialization of human cerebralcortex has �rst beendemonstrated
with neuroimaging by Zeki and colleagues[257]. Using PET, they reported two
extrastriate regions,onein the ventral lingual and fusiform gyrus specially activated
by color stimuli, the other in the temporo-parieto-occipital junction activated by
motion stimuli. The latter is classicallyreferred to as hMT/V5+ (i.e. the human
MT/V5 complex,we will refer to as hMT+ in the remainder), becauseit was orig-
inally thought to be the human equivalent to macaque'sMT, MST and adjacent
areas. Several other evidenceslater supported and precisedthis broad homology.
Using both PET and fMRI, [241] reported the consistent localization of hMT+ at
the junction of the ascendinglimb of the inferior temporal sulcus(ALITS) and the
lateral occipital sulcus(LO). This localization wasfurther re�ned in [56]. These�nd-
ings had to be linked with anatomical studieswhich showed the particularly dense
myelination of this region in humans[37, 223, 4], which is characteristic of macaque
MT/V5 area[232]. Moreover, various studiesimproved the functional characteriza-
tion of hMT+. Tootell and colleaguesprecisedits functional selectivity, showing its
responseto various moving patterns and also incoherent 
ic ker, its high sensitivity
to low contrasts and its lower activit y elicited by isoluminant color stimuli [218].
They alsosuggestedin [219], later followed by others [43], the implication of hMT+
in the Motion After-E�ect (MAE) 7. This result was actually in�rmed by Huk and
colleagueswho later showed that the activation was only due to attentional e�ects
[113]. The latter group demonstratedthe presenceof pattern motion cells in this
complex[114].
Somee�orts were�nally madeto distinguish subregionswithin the hMT+ complex,
basedon putativ ehomologieswith non-human(especially macaque)motion sensitive
areas. [55] subdivided hMT+ into areaMT responding to contralateral visual �eld
only, areaMSTd showing ipsilateral peripheral selectivity and areaMSTl basedon
non-visually driven pursuit eye movement. Theseresults were partially con�rmed
by [112] who distinguished the putativ e MT homologuerelying on its retinotopic
property and the putativ e MST homologuebasedon its functional selectivity to

7The Motion After-E�ect refers to a famous optical illusion which involves the apparent motion of a

stationary stimulus in the opposite direction to a previously observed one. It is also called the waterfall

illusion as staring for a few tens of secondsto a waterfall before looking at a �xed object aside producesa

MAE.
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peripheral and ipsilateral stimuli. However, such temptative subdivisions of this
motion selective region require many speci�c scansand needa more precisechar-
acterization, explaining the referenceto the hMT+ complex in most neuroimaging
literature.

5.2.2 hMT+ localizer: previous work

We present an overview of the di�eren t stimulation paradigms used in fMRI
to functionally identify the hMT+ region. This review does not pretend to be
exhaustive but rather accounts for the main approachesproposedso far.
In most fMRI experiments to localize hMT+, subjects undergo a passive viewing
task with blocks of either a motion condition or a control condition. Beyond
this generaland rather natural principle, the methods di�er between groups with
respect to di�eren t parameters:

� the stimulus pattern: random black and white checkerboard (alsocalleda ran-
dom texture pattern or RTP), randomdots pattern (RDP), sinusoidalgratings,
concentric rings,

� the type of motion presented: simple translation (vertical or in any direction),
expansion/contraction (alternating or not), incoherent motion (
ic ker),

� the control condition: a static or a 
ic kering presentation of the stimulus pat-
tern.

Other lesscrucial parametersmay alsodi�er acrossstudies. For instance,the block
duration and number of blocks usedshould impact the �nal t-maps observed, which
is obviously linked to the amount of signal available. Stimulus size has shown to
have little e�ect on hMT+ activations [209], although increasingthe stimulus extent
should naturally lead to larger activation focus since MT has a crude retinotopy.
When a 
ic ker condition is included, it seemsthat the 
ic kering rate doesnot have
much in
uence on the �nal results in area hMT+ [209]. Similarly, [14] reported a
weak di�erence in hMT+ activations to di�eren t velocities they tested (5 and 20
deg.s� 1).
Table 5.4 summarizesthe di�eren t combinations employed in somerepresentativ e
studiesregarding the main stimulation parameters.

5.2.3 hMT+ optimal mapping

Stim uli

As variousstimuli are described in the literature to reveal the hMT+ complexusing
neuroimaging, it was not obvious to decide which stimulus con�guration would
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Reference Pattern Coherent motion Flicker

Tootell et al. 1995[218] random dots expansionor contraction

squares/rectangles translation 2-3 Hz

sinusoidal grating translation

Van Oostendeet al. 1997[233] random checkerboard translation 30 Hz

Smith et al. 1998[202] concentric rings 1.2 Hz -

with various patterns expansion/contraction

Sunaert et al. 1999[209] random checkerboard translation 6 or 15 Hz

Dumoulin et al. 2000[56] random checkerboard - 2 Hz

Braddick et al. 2001[14] random checkerboard vertical translation 50 Hz

Huk et al. 2002[114] random dots 1Hz alternating -

expansion/contraction

Table 5.4: Overview of the main stimulation con�guration usedin the literature to reveal

the hMT+ complex.

optimally drive hMT+ activations. We tested the in
uence of two parameters: the
control condition and the stimulus pattern.

Con trol condition
We tried a contrast betweencoherent motion (COH) and non-coherent motion, i.e.
a randomly 
ic kering pattern (FLI). Even if hMT+ was shown to be responsive to

ic ker [218, 233], we can expect a signi�cant di�erence with the coherent motion
condition asshown in [14]. The useof such a contrast is justi�ed by three theoretical
reasons:
- it should only drive \coherent motion" sensitive neurons,
- neuronsonly sensitive to high spatial frequencieswould thus be avoided,
- it could help discriminating local and global motion processingneurons.
We also presented blocks with a static image presentation (STA) of the same
pattern, which allowed us to comparethe di�eren t contrasts usedin the literature:
coherent minus incoherent motion (COH-FLI), coherent motion minus a static
stimulus (COH-STA) and incoherent motion minus a static stimulus (FLI-STA).

Stim ulus pattern
We tried two di�eren t kinds of stimulus pattern:
(1) a black and white RDP on a mid-grey background with a 10.28 dots.deg� 2

density, similar to [114]. For this stimulus, the coherent motion blocks consist in
inward and outward radial motion with a velocity of 7.53deg.s� 1, alternating every
500ms; this alternated motion prevents adaptation e�ects. In this radial motion,
dots leaving the mask were replacedthrough a radial wrap-around constrainedto
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keep the dots density constant. The 
ic ker condition is randomly drawn patterns
at 18Hz.
(2) a rectangular black and white checkerboard, similar to that used in Orban's
group [209]. The coherent motion condition is a global translation at 7.53 deg.s� 1

in a randomly selectedaxis changing every second;the translation direction along
the sameaxis is further reverted every 500ms. The 
ic ker condition is a randomly
drawn pattern at 18Hz.
Both stimuli werepresented within a circular aperture, as illustrated in �gure 5.24.

Dots pattern Texture pattern

Figure 5.24: The two kinds of pattern tried for our motion localizers. The circular aperture

diameter subtended19.5 degree.

Imaging

We tested both stimuli patterns (RDP and RTP) and the 3 conditions (COH, FLI
and STA) in 4 subjects. Both patterns were presented in separateruns. We used
a typical block design, in which each of the 3 modesof stimulation was presented
during blocks of 8 RT (16.888sec).A run started with 5 scanswith only the �xation
cross (MR signal stabilization), followed by 6 repetitions of each of the 3 block
typesshu�ed in a pseudo-randomfashionand endedwith 2 �xation crossscansto
allow slice-timing correction, henceleading to a total of 151scans(� 5mn20sec).
Each functional image spans 20 coronal slices 3mm thick and 2x2mm2 in plane
resolution, approximately orthogonal to the calcarinesulcuscovering the occipital
retinotopic areasand extendingventrally to con�dently include the expectedhMT+
location. A high resolution anatomical image was also acquired from which an
individual model of the cortical surfacewas extracted with methods described in
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chapter 3, enabling to smooth the functional imagesalong the cortical geometry
and to visualizethe activation maps.

Data analysis

The time courseswere slice-timing corrected, motion corrected, coregisteredto
the anatomical image and smoothed with our cortical surface based method
(FWHM=3mm). For more details about each preprocessingsteps, refer to sec-
tion 4.1. Each voxel time courseswere then analyzed under the classicalGLM
implemented through SPM99 custom designedbatches,each stimulation condition
being modeled by a box-car convolved with the standard HRF model, as detailed
in section 4.2. T-maps contrasting two conditions of stimulation were �nally
estimated and thresholdedat p=10� 3 uncorrected to reveal the voxels considered
as signi�cantly more activated in a condition comparedto another.

5.2.4 Results

hMT+ activations
Figures 5.25 to 5.28 show the estimated activations for the di�eren t contrasts and
pattern we tested in a lateral view of the GM/WM interface. This point of view was
particularly appropriate to show the expected location of area hMT+. We do not
show in
ated surfacesto avoid important areal changesthat occurredat the highly
folded location of hMT+ activations.
The COH-STA contrast systematically reveals an activation focus in the inferior
temporal sulcusof the 8 hemispheresanalyzed, either with the RDP or the RTP
stimuli. We note however that the RTP led to a smaller activation extent in one
hemisphereof subject GG (�gure 5.27).
The sameresult was found with the COH-FLI contrast, also leading to signi�cant
activations at the expected location in the 8 hemispheresconsidered,with also a
smalleractivation extent in onehemisphereof another subject for the RTP stimulus
(subject HR in �gure 5.25). Interestingly, within the expected location of hMT+,
the COH-FLI activation patch wassystematically included in that of the COH-STA
contrast and the p-values were systematically smaller in the former as compared
to that in the latter, independently of the pattern used. This result con�rms the
higher functional selectivity of the COH-FLI contrast with respect to the COH-STA
contrast. Furthermore, when the COH-FLI activation area was strictly smaller,
it was always located in the most dorsal part of the COH-STA activation patch.
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We relate this result with previous fMRI attempts to subdivide hMT+, [55, 112]
which distinguishedputativ e human homologuesof macaqueMT and MST located
in posterior-ventral and anterior-dorsal parts of hMT+ respectively. We therefore
hypothesizethat the subregionrevealedby the COH-FLI contrast canbe the human
homologueof macaqueMST. Further experiments to map complementary informa-
tion such asretinotopic organization, receptive �elds sizeor functional selectivity to
pursuit eye movements in hMT+ would be neededto con�rm this hypothesis.
The FLI-STA contrast elicited more erratic activations in the hMT+ region, with
only 3/8 hemispheresshowing a clearhMT+ activation with the RDP and 4/8 with
the RTP. This result suggeststhe sub-optimality of a comparisonbetweenincoher-
ent motion and a static condition to reveal the hMT complex. This is to be related
with the report in [56], who found no signi�cant responsesin 33% of the cases(5
subjects out of 15 in their study).
Wethusdiscouragethe useof an incoherent motion minusa static condition contrast
(FLI-STA) to reveal the human MT complex. On the other hand, choosingthe more
appropriate control condition to be comparedwith coherent motion is lessclear for
this identi�cation purpose. At this point, we cannot reliably label the sub-region
revealedby the COH-FLI contrast. We prefer to considerthe COH-STA contrast
and label the inferior temporal sulcusdi�eren tial activation as the hMT+ region.
Regardingthe stimulus pattern, our RDP led to higher p-valuesand larger activa-
tion patchesascomparedto the RTP. This might be due to the density of stimulus
elements bringing motion information which are lower in the RTP, in which only
the squarecornersand the edgesnon parallel to the motion direction carry motion
signal,with respect to our RDP stimulus, in which every dot providesa motion sig-
nal. Further experiments are nonethelessrequired to study the correlation between
motion signal energyand hMT+ activation.
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COH-ST A COH-FLI FLI-ST A

Figure 5.25: hMT+ localizer, for di�eren t stimulus pattern and contrasts (subject HR)
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COH-ST A COH-FLI FLI-ST A

Figure 5.26: hMT+ localizer, for di�eren t stimulus pattern and contrasts (subject GM)
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COH-ST A COH-FLI FLI-ST A

Figure 5.27: hMT+ localizer, for di�eren t stimulus pattern and contrasts (subject GG)
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COH-ST A COH-FLI FLI-ST A

Figure 5.28: hMT+ localizer, for di�eren t stimulus pattern and contrasts (subject LH)
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In tra-sub ject repro ducibilit y
We checked the intra-subject reproducibilit y of the hMT+ functional mapping by
analyzing data from the samesubject in distinct scanningsessions.The scansfrom
both sessionswerecoregisteredon a arbitrary de�ned referencesessionthrough the
high resolution anatomical imagesusing SPM2 coregistration algorithm. We glob-
ally found a good overlap acrosssessions,as illustrated qualitativ ely in �gure 5.29.

Session1 Session2

Figure 5.29: Intra-subject multi-sessionreproducibilit y of hMT+ mapping with the RDP

stimulus and COH-FLI contrast, p = 10� 3 uncorrected (subject EC).

Occipital cortex activ ations
Even if our main goal was to individually localize the hMT+ complex, we could

also observe somesigni�cant activations in the occipital cortex depending on the
contrast and pattern considered.
The COH-FLI contrast elicited no activation in the occipital cortex around the cal-
carine sulcusin every hemispherewe analyzed. On the other hand, this region was
signi�cantly more activated by 
ic ker than by a static stimulus (FLI-STA), as il-
lustrated in the �rst two columns of �gure 5.30. This preferencefor 
ic kering as
comparedto static stimuli is not surprising, as recent studies con�rmed that hu-
man V1 and surrounding extrastriate areascomprisedirection selective cells ([113]
and next chapter in this thesis). More interestingly, we also found that the 
ic ker
condition elicited a greater responsethan a coherent motion stimulation within the
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FLI-ST A FLI-COH

HR

GM

GG

LH

Figure 5.30: Relative activations in the occipital pole when contrasting FLI-STA or FLI-

COH for both stimuli patterns. Each subject's right hemisphereis presented in a row

corresponding to di�eren t contrasts betweenconditions and stimulus pattern.

occipital pole in various hemispheres(4/8 for the RDP, 5/8 for the RTP), as illus-
trated in both right rows of �gure 5.30. This result con�rms a previously reported
observation [14]. Such a relative activation in V1 suggeststhe involvement of more
cells stimulated by incoherent motion than the amount of cells stimulated on their
preferred direction by the coherent stimulus in area V1. This observation should
be linked to the receptive �eld size: direction selective neuronswith small receptive
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Figure 5.31: Dorsal and ventral activations revealedwith the RDP stimulus and COH-FLI

contrast and the corresponding polar angle maps (subject LH).

�elds shouldnot be disrupted by incoherent direction information that doesnot fall
inside their receptive �elds. On the other hand, direction selective cells with large
receptive �elds will respond lessto incoherent motion signals. Interestingly, recep-
tiv e �eld sizewasshown to be smallestin V1 ascomparedto other extrastriate areas
[203].
Further away from the occipital pole, we also systematically found a stronger re-
sponseto coherent motion than 
ic ker (COH-FLI) in regionslocated both dorsally
and ventrally . Basedon retinotopic angularmapsalsoacquiredin the samesubjects,
the dorsal locations seemto correspond to V3A-V3B and even more dorsal corti-
cal regionswhich could include V7 [177], while the ventral activations is extends
to ventral regionsbeyond putativ e hV4. Figure 5.31 shows these activated areas
and the corresponding polar angle maps observed on the in
ated hemisphereof a
representativ e subject.
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5.2.5 Conclusion

Basedon an analysisof the experiments described in the literature, we testeddi�er-
ent stimulus patterns and contrasts betweenconditions to decidethe most reliable
procedureto identify the hMT+ complex. We �nally decidedto usea random dot
pattern and a contrast betweencoherent motion and a static condition which sys-
tematically led to highly signi�cant and reproducible activations at the expected
cortical location.
Our data also opened di�eren t perspectives. First and foremost, the systematic
inclusion of the COH-FLI activation within the COH-STA activation suggestsa
possiblefunctional subdivision of the hMT+ complex. This assumptionshould be
con�rmed with complementary criteria such asprecisevisual �eld mapping or stud-
ies of anatomical connectivity. Addressingthese issuesis of particular interest to
study the possiblehomologieswith non-human primates and better characterizevi-
sual motion processingtaking place in this cortical region [163, 195]. Secondly, we
found distinct activation pro�les in the occipital cortex when comparing coherent
or incoherent motion with a stationary stimulation, consistent with previousreports
of similar subdivisions [209, 14]. This characterization of motion responsive regions
needsto be further investigated, for instance with a more continuous variation of
the motion stimulus coherenceand performing complementary parametric measure-
ments of functional selectivity as shown in the next chapter.

***

We described in this chapter two techniquesdeveloped to accuratelyidentify various
visual areasin any subject within 30 minutes of functional scans. The next two
chapters build on these individual mapping to further characterize the low-level
visual cortex, �rst functionally by revealingdistinct direction selectivity and second
structurally by studying the anatomical connectivity amongthem.
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fMR-adaptation of direction
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6.1 In tro duction

6.1.1 Problem statemen t

The low-level visual cortex has beenextensively studied using invasive techniques
in non-human primates. In each area, functional selectivity was characterizedwith
respect to various stimulus dimensionssuch as orientation or direction. Especially,
the tuning bandwidths of visual motion direction selective neuronsare known to
be area speci�c in monkeys, as shown in various electrophysiological and imaging
studies(e.g. [151, 52]). A similar knowledgeis missingin humans.
The major goal of our study is to estimate the motion direction selectivity of di�er-
ent human visual areaswith fMRI. A classicalsubtraction paradigm, comparingthe
BOLD signalsrecordedin responseto di�eren t stimulation conditions, is not su�-
cient to assessneuronalselectivity to a particular stimulus dimensionsuch asmotion
direction. Indeed, a single fMRI voxel contains several neuronal sub-populations,
with a priori the sameproportions of neuronspreferentially tuned for any direction.
The BOLD signals elicited by two di�eren t directions would therefore be equal,
leading to a null contrast betweenboth stimulation conditions. Fortunately, a fun-
damental property of neurons,neural adaptation, can be usedin fMRI asa tool for
inferring neural sensitivities.

6.1.2 fMR-adaptation: principle and previous work

The �ring rate of a stimulated neuron decreaseswhen the samestimulation is re-
peatedly presented: this is neural adaptation. Figure 6.1 illustrates this property in
a typical neuron found in macaqueMT.
This general feature can also be observed using fMRI, in which a sustainedpre-

sentation of the samestimulus leadsto a decreaseof the BOLD signal. The fMR-
adaptation paradigm takesadvantage of this property to allow inferencesabout the
functional selectivity of neuronal populations within a voxel [90]. The basic idea is
to proceedin two steps. First, the neural population is adapted using a repeated
presentation of a singlestimulus, leading to a signi�cant reduction of the fMRI sig-
nal. Second,a given stimulation parameter(e.g. the direction of motion) is changed
and two situations can appear: either the signal remainsat the sameadapted level,
suggestingthe neuronal invarianceto the stimulation change;or the signal recovers
a higher level, suggestingthe neuronssensitivity to the stimulus feature varied.
We review here somework that have usedfMR-adaptation paradigm in human or
macaquestudies, with an emphasison the experimental designsemployed. Table
6.1 summarizesthis overview. We distinguish 2 main subsetsof fMR-adaptation
paradigm: block and event-related.
The fMR-adaptation block designwas�rst introducedin [89] to study the visual per-
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Figure 6.1: Neural adaptation of a typical macaqueMT neuron. The upper part shows the

neuron responseto 256 repetitions of the samestimulus. The histogram gives the mean

over the di�eren t repetitions. Below is shown the stimulation time course. From [178].

ception of objects and facesunder various presentation conditions. Within a block,
a successionof n stimuli (e.g. imagesof objects) either identical or di�eren t with
respect to a given feature of interest (e.g. the object size) is presented. The degree
of dissimilarity betweenthe n stimuli is varied acrossthe blocks, from the block with
a single stimulus presented repeatedly to the block containing n di�eren t stimuli.
The analysisthen consistsin comparingthe meanfMRI signalover the block types.
The typical prediction is a lowest meansignal in the identical blocks and a highest
meansignal in the all di�eren t blocks. The block designadaptation paradigm was
applied to investigate the presenceof pattern-motion cells in hMT+ [114] or the
cortical specialization for inanimate objects and placesin the visual cortex [65]. A
similar paradigm to that of Grill-Spector and colleagueswas recently usedby [184]
to comparehuman's and macaque'sobject adaptation in shape-sensitive regions.
Event-related fMR-adaptation is more widely used,mainly becauseit is faster and
allowsan estimation of the hemodynamic responsefunction shape. In this paradigm,
a trial is generallya pair of stimuli separatedby a blank. Both stimuli in a trial are
either identical or distinct regarding a feature under study. The stimuli presenta-
tion duration and the Inter-Stimulus-Interval (alsocalled the blank period) between
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them are variable acrossstudies but are generally on the order of a few hundreds
millisecondseach. The BOLD responseto each trial type (either similar or di�er-
ent paired stimulations) are then comparedto assessthe in
uence of a stimulation
variation in a given cortical region. This paradigm wasapplied in variousstudiesto
characterizeobject priming sensitive regions[18], object shape processing[126], ori-
entation selectivity [13], attentional processes[154], faceperception[59], numerosity
[173], form analysis[125].
A few event-related fMR-adaptation experiments wereconducteddi�eren tly, reveal-
ing di�eren t assumptionsand interpretation of the underlying neural processes.In a
study often misleadingly referred to as a block designfMR-adaptation experiment,
Tootell and colleaguesinvestigatedorientation selectivity in human V1 [217]. They
presented black and white gratings with similar orientations within each 40 seconds
block and measuredthe signal increaseoccurring at each block transition. Rather
this experiment can be consideredas event-related since the signal of interest is
mainly the transients betweentwo blocks.
To prevent possiblestrategy changeswhen the subject becomesaware of the repeti-
tion paradigm, Naccache and Dehaenesuggestedthe useof subliminal presentation
of the �rst stimulus and demonstratedits e�ciency in a number representation study
[155].

Reference Purp ose Design

Buchner et al. 98 [18] Orientation priming E-R

Tootell et al. 98 [217] V1 orientation selectivity E-R

Grill-Sp ector et al. 99 [89] Object/F aceprocessingin LOC Block

Kourtzi et al. 00 [126] Object shape E-R

processingin LOC

Huk et al. 01 [113] Direction selectivity E-R

Huk et al. 02 [114] Pattern motion in hMT+ Block

Boynton et al. 03 [13] Orientation selectivity E-R

Murray et al. 04 [154] Attention in LOC E-R

Eger et al. 04 [59] Invariant faceperception E-R

Piazza et al. 04 [173] Numerosity E-R

Ewbank et al. 05 [65] Object and placesselectivity Block

Kourtzi et al. 05 [125] Form analysis E-R

Sawamura et al. 05 [184] Shape processing Block

Table 6.1: Overview of the human fMR-adaptation literature. E-R:=event-related.
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6.1.3 Direction selectivit y and fMR-adaptation

Single-unit electrophysiology experiments of short-term motion adaptation in
macaquearea MT have shown that the tuning of the adaptation is similar to the
tuning of the neuron to direction [179, 178]. fMR-adaptation data on visual motion
tuning would thereforehelp de�ne more accurately the functional properties of dif-
ferent visual areas.
Our study complements a recent work which investigated direction selectivity de-
�ned as the imbalance between opposite directions of motion ([113]). The new
aspects introducedin our work are the following: we usean event-related paradigm
to allow more than two opposite directions to be presented within a run, so that
estimatesof direction tuning and proportions of functional population types with
respect to this feature can be assessed.We alsoaddressthe attentional issueraised
by Huk and colleaguesin a di�eren t way. To control attention, Huk et al. used
a speed-discriminationtask which requireshighly-trained observers who also have
to perform extensive pilot experiments outside the scanner. This stringent control
is necessarybecausetheseauthors have shown that the increasedactivit y observed
during a Motion After-E�ect or MAE (e.g. [219]) arisesbecauseof attention to this
after-e�ect. This is actually a concernwhenusingblock designswheretest durations
are long enoughto elicit an MAE. We anticipated however that this problem would
be highly minimized by using an event-related paradigm with short test durations
which do not elicit MAEs. We therefore simpli�ed the attentional control task to
allow the inclusion in our study of non psychophysically-trained observers.

6.2 Exp erimen tal pro cedure

6.2.1 Sub jects

Four subjects (1 female,age28-40years)with normal or corrected-to-normalvisual
acuity participated in the study.

6.2.2 MRI data acquisition.

Subjects participated in two separate1 hour long scanningsessions:oneto identify
the retinotopic areasand hMT+, the other to measuremotion direction adapta-
tion. A scanningsessionstarted with a fast low-resolution anatomical localizer to
appropriately set the subsequent functional scanssliceslocation, followed by 8 func-
tional scansand endedwith a T1-weighted imageacquisition. Thesehigh resolution
anatomical scanswereusedas referencesto coregisterthe di�eren t sessions.
During each functional scan,151Echo Planar Imageswereacquiredover 5mn19sec
using our coronal sequence(seeparagraph 2.4.4). Each functional image spans20
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coronalslices3mm thick and 2x2mm2 in planeresolution,approximately orthogonal
to the calcarinesulcuscovering the occipital retinotopic areasand extending ven-
trally to hMT+. The �rst �v e images(10.555secs)weresystematicallydiscardedto
avoid magnetic saturation e�ects. The following 144 imagescorrespond to the vi-
sual stimulus per se. The last two imagesweretaken to allow slice-timing correction
preprocessing.

6.2.3 Visual stim uli.

Stimuli weregeneratedunder Matlab 6.1 using the ImageProcessingToolbox (Mat-
lab, The Mathworks), providing an avi �le with eighteen 300x300pixels framesper
secondand lasting 5mn04sec.The stimulation was presented through our classical
setup, leadingto a display subtendinga visual angleof 20.9� x20.9� . The stimuli are
all presented within a circular aperture of 19.5� in diameter. During the �rst 5 and
last 2 scans,a mid grey-level image with the 0.5� red �xation crosswas shown to
the subjects.

6.2.4 De�ning the visual areas.

Occipital areas

Low-level retinotopic areas were identi�ed and delineated using the method de-
scribed in the previous chapter. V2v and V2d (respectively V3v and V3d) were
mergedas one area V2 (respectively V3). Lacking the eccentricit y maps to accu-
rately separateV3A from V3B [202, 177], we consideredthe most medial hemi�eld
representation that abuts the dorsal border of V3d, consideringit as V3A.

hMT+

The human mid-temporal complex, hMT+, was revealed with the block design
method detailed in the previous chapter. The clusters were found either with the
COH-FLI contrast or with the COH-STA contrast and werealways within or closeto
the inferior temporal sulcus(cf.[56]). As alreadynoticed in our preliminary mapping
experiments, the (COH-FLI) contrast gave systematically a smaller cluster always
included in the (COH-STA) cluster. We also consideredthe cluster de�ned by the
(COH-FLI) contrast as the hMT+ ROI in our adaptation data analysis.

6.2.5 The adaptation stim ulus.

We useda black and white random dots pattern (RDP) on a mid-grey background
with a 10.28dots.deg� 2 density, which was similar to the hMT+ localizer stimulus
except for the contrast. In [211], adaptation was indeed reduced for large visual
stimuli while using a high contrast as comparedto a low contrast. We therefore
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Figure 6.2: Stimulation design diagram in the adaptation experiment. After a 25.33sec

adaptation epoch (direction chosenfor each run betweenrightward -as in the �gure-, left-

ward, downward or upward), 42 test trials lasting 780mseach were presented in a pseudo

random-fashion. A test trial consistedin either no changein the motion direction (� 0 con-

dition) or a motion direction change of 45 or 180 degrees(The � 45 and � 180 conditions

respectively). The Inter-Trials Intervals (ITI) betweentwo test trials consistedin a return

to the adaptation direction or top-up adaptation. The duration of each ITI was drawn

from a truncated gamma distribution, mean 5sec,sigma 1sec,min 4sec,max 8sec. The

random dot pattern was systematically redrawn at each condition transition, i.e. at each

test trial onset and each top-up adaptation onset. Subjects made a size discrimination

task at the �xation cross.
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reducedthe contrast to 20%,still centered around the mid-grey level. In each con-
dition, the RDP drifted coherently at 7.53deg.s� 1. The time courseof the stimulus
started with a 12RT (25.33sec)adaptationepoch in the randomly chosenadaptation
direction (either left, down, right or up, �xed for the whole run but randomly
changedacrossruns to avoid any directionality bias), followed by 42 test trials of
780mswherethe direction of motion waschangedby an angledelta with respect to
the adaptation direction (� X = 0, 45 or 180) (see�gure 6.2). A run thus contained
14 test trials for each delta value tested; the trials were presented in a pseudo
random fashion to equalizethe trials apparition order (two successive trials with
identical delta valueswere not allowed). Note that the �45 test condition evenly
led to a clockwise(+45 degrees)or counterclockwise(� 45 degrees)direction change
with respect to the adaptation direction. Between two test trials, the Inter-Trial
Intervals (ITI) consistedof a top-up adaptation in which the dots shifted back to the
adaptation direction. The ITI distribution follows a gamma law �(5 ; 1) truncated
for valuesoutside [4sec,8sec].This top-up adaptation allowed to keepthe adapta-
tion state relatively constant along the run. Note that we did not add any blank
betweenthe trials and the top-up adaptation ITI, in contrast to other event-related
adaptation paradigms. Nonetheless,the random dot pattern was redrawn at each
condition transition, namely at each test event onset and each top-up adaptation
onset. This resetting led to a brief visual transient that could result in a non-speci�c
alerting e�ect (seethe discussionbelow). Note that a similar stimulation wasusedat
the sametime in a recently publishedstudy investigatingorientation selectivity [66].

6.2.6 A tten tional measuremen ts.

To control subject's attention, a simple attentional task wasperformedduring each
functional scan(localizer and adaptation sessions).Subjects were instructed to �x-
ate a central red cross (0.5� ) and to click when the crosssize increasedto 0.77�

during 167msec. Concerning the localizers, attentional events followed a uniform
distribution between2 and 6 sec,mainly usedto help and check �xation. For the
adaptation experiment, wherethe attention is far more crucial for the results inter-
pretation, attentional events weresystematically placedwithin a test trial and also
during the adaptation block starting each run and the inter-trial adaptation periods,
globally following a uniform distribution between2 and 6 secs.More importantly,
we stressedthat this attentional task was always irrelevant with the random dots
pattern motion, either during the adaptation epoch, the inter-trial top-up adapta-
tion or the test trials. This attentional task could not in
uence the motion direction
perception,nor shouldit havemodi�ed dramatically the tuning propertiesof motion
direction sensitive neurons(seeDiscussion). Responseswereanalyzedo�-line. Over
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all the adaptation sessions,we observed a meanhit rate of 81.91%correct (ranging
from 60.61%to 97.53%correctacrosssubjectsand runs), thusreliably abovechance.
No signi�cant di�erences were found acrossthe analyzedsubjects (respective mean
acrossruns of 76.99%,84.12%and 83.99%).

6.3 fMRI data analysis.

6.3.1 Visual areas iden ti�cation exp erimen t

The functional imagesfor the retinotopic and hMT+ mapping were �rst realigned
with the INRIAlign toolbox and coregisteredwith the anatomical imagewith SPM2,
then smoothed through a method taking into account the cortical geometry, with a
3mm equivalent Gaussian�lter FWHM. A high-passand a low-pass�ltering were
alsoperformedon the time-coursesto respectively remove low-frequencysignaldrifts
and high frequencynoise. Finally, subsetsof connectedvoxels were extracted for
each area and further usedas ROIs for the adaptation experiment (seeparagraph
6.2.4).

6.3.2 Adaptation exp erimen t

The datasetswere slice-timing corrected,realignedusing the SPM INRIAlign tool-
box and coregisteredwith the referenceanatomical scan. No spatial smoothing was
applied. Datasetswere then analyzedindependently for each ROI using the HRF
approach detailed in paragraph 4.2.4. We used the region-basedHRF estimation
method that considerseach ROI as functionally homogeneousand then usesall the
available time serieswithin the ROI to characterizethe shape of the HRF for each
trial type. A preliminary outlier detection step can be usedto remove outlier vox-
els. The underlying model is non-parametric in the sensethat no prior shape of the
HRF is assumedin advance,and this techniqueprovidesrobust HRF estimatessince
smoothnessconstraints are introducedwithin the Bayesianframework (for morede-
tails, see[35, 34, 147]). Importantly, the subtle though statistically signi�cant e�ects
we observed using this appropriate analysisframework weretotally absent when we
processedour data through a classicalGeneralLinear Model analysis.
To comparethe results acrossthe di�eren t conditions and ROIs considered,we de-
�ned an adaptation rebound index as the following ratio:

I X � Y =
hr f (� X ) � hr f (� Y )

hr f (� 0) � hr f (Adapted)
where (X ; Y) 2 f (180; 0); (45; 0); (180; 45)g

hr f (� X ) is the estimated HRF mean computed as the mean signal at three time
points centered at the peakof the estimatedHRF (mostly observed at t ' 6sec) for
� X (X =0, 45 or 180) test trials. In other words, if the HRF pick was observed
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at t = t0, then hr f (� X ) = (hr f (� X )( t0 � 1) + hr f (� X )( t0) + hr f (� X )( t0 + 1))=3.
The Adapted responsewas taken as the HRF meanestimatedduring the last 10sec
of the 25secadaptation epoch starting each run, i.e. when the signalwasmaximally
adapted. The numerator of I X � Y is the di�erence in the responsemeansto two
trial types(� X and � Y ). The denominator is the di�erence betweenthe estimated
responsemeanfor � 0 trials and the estimatedadaptedsignalbaseline,thereforerep-
resenting the subject and ROI speci�c responsitivit y. This normalization minimizes
possibledi�erences in the BOLD responsegain due to any confoundirrelevant with
the motion direction changessuch as the stimulus transient occurring at each test
trial onset. Provided the denominator is positive, which wassystematically the case
in our data, we have:
- I X � 0 (X 2 f 45; 180g)) approximately equal to zero indicates that no non-adapted
neuronsresponded to the direction change,whereasa high value indicates the re-
cruitment of an important proportion of non-adaptedneurons
- I 180� 45 approximatively equal to zeroindicatesno di�erences in the BOLD signals
elicited by � 180 and � 45 trials, suggestingidentical cellsproportion recruited by both
direction changes,whereashigh value indicates a strong di�erence in both elicited
signals,suggestinga di�erence in the proportion of non-adaptedcells recruited by
both direction conditions. We assumethat this di�erence is directly related to the
population of broadly tuned neurons,sincea similar proportion of narrowly tuned
neurons,though with distinct preferreddirection, is involved in the � 180 and in the
� 45 trials.
We thereforeconsideredthe following indices: (A) I 180� 0, i.e. comparing � 180 with
� 0, (B) I 45� 0, i.e. comparing � 45 with � 0 and (C) I 180� 45, i.e. comparing � 180

with � 45. We assumethat these comparisonsare related respectively to (A) the
global population of direction selective cells, irrespective of their directional tuning
bandwidth, (B) a population of relatively narrowly-tuned cells which have a di�er-
ential responseto a 45 degreechangein motion direction and (C) a population of
relatively broadly-tuned cellswhich have a large di�eren tial responseto a direction
changeof 180degreebut a small (or inexistent) di�eren tial responseto a 45 degree
change.Consequently, the ratios I 180 � 45

I 180 � 0
and I 45� 0

I 180 � 0
respectively give a rough estimate

of the proportion of broad-bandand narrow-band cellswithin the motion direction
selective population of each area.

6.4 Results

Out of four subjects scanned,three were kept in our �nal analysisas one was dis-
carded becauseof important head motion (> 3mm). We analyzedthe time course
of the BOLD signal during the motion adaptation stimulation separately in each
retinotopically or functionally de�ned ROI.
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6.4.1 BOLD signal adaptation

Each run started with a �rst 25.33s(12 TR) adaptation epoch, wheredots all move
coherently in the randomly chosenadaptation direction. This stimulation led to the
expectedsignal decreasein every subject and area considered,supposedto be cor-
related with neuronaladaptation. Figure 6.3 illustrates the meansignal decreasein
areahMT+ of subject S1during the adaptation epoch. Similar result weresystem-
atically observed, though with variousdegrees,in each areaand subject considered.

Figure 6.3: Time courseof the adaptation epoch (subject LQ) and �tted exponential decay.

The grey period corresponds to the adaptation epoch, in which the samemotion direction

is continuously presented. The black curve shows the averagedtime coursefrom hMT+

voxels and over 8 scansacquired within the samesession.The red curve is an exponential

�t of the adaptation time course.

6.4.2 Direction selectivit y

Following the adaptation block, the runs consistedof several test trials in which
the direction of motion was changedwith respect to the adaptation direction for a
duration of 780ms. The angle di�erence between adaptation and test direction is
noted � X , and we tested the values0 (direction unchanged),45 and 180 (opposite
directions) degrees. According to the adaptation paradigm, two situations can
appear at any voxel during a test trial:
(1) every neuron in the voxel is insensitive to the motion direction change,therefore
the voxel meanBOLD signal remainsadapted,
or
(2) a sub-population of neurons in the voxel is sensitive to the motion direction
change,the responsesof which induce a BOLD signal increase(or rebound).
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We also predict that the HRF rebound will increasewith the � X value. In-
deed, if a rebound occurs for � 45 trials, this suggeststhe presenceof narrowly
tuned neurons with preferred direction centered around the 45 degreesdirection
relatively to the adaptation direction. On the other hand, possiblebroadly tuned
neuronscentered at the relative 45 degreedirection should remain adapted, since
the direction di�erence between the adaptation and 45 degree test trial does
not impact signi�cantly their responsivity. In the caseof � 180 trials, a similar
proportion of narrowly tuned neuronsas in the � 45 condition should also respond,
speci�cally the narrowly tuned neurons with preferred direction centered around
the relative 180 degreesdirection. Additionally , the population of broadly tuned
neuronscentered around the relative 180 degreescondition that were not adapted
by the adaptation direction will also be activated by the relative 180 direction,
leading to an additional BOLD signal increase. Hence, the rebound observed for
� 180 trials shouldbe superior (or at leastof equalvalue if no broadly tuned neurons
are involved) as that of the � 45 trials.

We computed the responses to each � X value we tested through the HRF-
toolbox over all ROIs and all runs (seefMRI data analysis). Figure 6.4 shows the
estimated hemodynamic responsefunction (HRF) of each identi�ed areasfor one
representativ e subject (LQ).
First of all, the estimated curves are always ordered as expected, showing higher

reboundswith increasingdi�erence betweenthe adapting and the test directions. In
other words, aswe predicted, the bigger � X is, the larger the BOLD signal rebound
should be as more neurons respond to the stimulus changes. Every functionally
de�ned area studied showed this ordered rebound e�ect, although with varying
degrees.
To further precisethis observation, statistical T-test p-values shown in table 6.2
provide evidencefor (1) the signi�cance in the activation for each estimated curve,
i.e. a di�erence betweenthe latter and a null vector signal (�rst 3 columns)and (2)
a statistical di�erence in the estimated signalsbetweentwo test conditions (last 3
columns). The statistical testsareperformedon the subsetof 4 time points between
2 and 9 sec,thus centered around the maximum of the responsetypically found at
the fourth time point (t=6.333sec) and take into account the relative variancesat
each estimated time point. The di�erences betweeneach pair of estimated curves
were signi�cant (p< 0.0015) for all 3 subjects in areas hMT+, V1 and V2 and
relatively less consensualfor areasV3 (though p< 10� 4 for 2 subjects) and V3A
(p< 0.0075 for 2 subjects). V4v curves were statistically not di�eren t from one
another (p> 0.3) for 2 subjects, revealing a lessrobust signal than that found in the
other visual areas.
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Figure 6.4: Typical BOLD signal time coursesfor each condition and areaestimated using

the HRF toolbox (subject LQ). BOLD signalsincreasedwith increasingangular di�erence

betweenadaptation and test direction (� value), suggestingsub-populations recruitment

elicited by the direction change. Error bars correspond to � 1 SEM acrossrepeated trials

and voxels in each ROI.

6.4.3 Quan titativ e comparisons between areas

To further quantitativ ely characterizethe motion direction selectivity, we computed
a normalized adaptation rebound index (seeparagraph 6.3). The latter allows to
perform comparisonsin the BOLD signal responseselicited by changesin the direc-
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Area � 0 � 45 � 180 � 45 � � 0 � 180 � � 0 � 180 � � 45

HR

hMT+ < 10� 4 < 10� 4 < 10� 4 < 10� 4 < 10� 4 < 10� 4

V1 < 10� 4 < 10� 4 < 10� 4 0.0001 < 10� 4 < 10� 4

V2 < 10� 4 < 10� 4 < 10� 4 < 10� 4 < 10� 4 < 10� 4

V3 0.3614 0.0028 < 10� 4 0.8518 0.2893 < 10� 4

V3A 0.2810 0.0089 0.0004 0.6494 0.1614 0.0010

V4v 0.0450 0.2223 0.0518 0.4002 0.3782 0.3009

GM

hMT+ 0.0209 0.0009 0.0003 0.0012 < 10� 4 < 10� 4

V1 < 10� 4 < 10� 4 < 10� 4 < 10� 4 < 10� 4 < 10� 4

V2 < 10� 4 < 10� 4 0.0093 < 10� 4 < 10� 4 0.0001

V3 < 10� 4 < 10� 4 0.0001 < 10� 4 < 10� 4 < 10� 4

V3A 0.0015 < 10� 4 < 10� 4 < 10� 4 0.0013 < 10� 4

V4v < 10� 4 < 10� 4 < 10� 4 < 10� 4 < 10� 4 < 10� 4

GG

hMT+ 0.0005 0.0011 < 10� 4 0.0015 < 10� 4 < 10� 4

V1 < 10� 4 < 10� 4 < 10� 4 < 10� 4 0.0003 < 10� 4

V2 < 10� 4 < 10� 4 < 10� 4 < 10� 4 < 10� 4 < 10� 4

V3 < 10� 4 < 10� 4 < 10� 4 < 10� 4 < 10� 4 < 10� 4

V3A 0.0037 0.0050 0.0064 0.0075 0.0062 0.0021

V4v 0.5761 0.4312 0.0010 0.8939 0.9753 0.9986

Table 6.2: Statistical signi�cance (T-tests) for each estimated BOLD responsesand their

di�erences by pair. The �rst 3 columns show the p-values for each estimated responseto

be di�eren t from zero, the last 3 represent the p-valuesregarding the di�erences between

the estimated responses.

tion of motion acrossvisual areas.Figure 6.5showsthe meanover the three subjects
of the indiceswhen considering(A) I 180� 0, i.e. comparing � 180 with � 0, (B) I 45� 0,
i.e. comparing � 45 with � 0 and (C) I 180� 45, i.e. comparing � 180 with � 45. We
recall that theseindicesare related respectively to (see6.3):
(A) the global population of direction selective cells, irrespective of their directional
tuning bandwidth,
(B) a population of relatively narrowly-tuned cellswhich have a di�eren tial response
to a 45 degreechangein motion direction
(C) a population of relatively broadly-tuned cellswhich have a large di�eren tial re-
sponseto a direction changeof 180 degreebut a small (or inexistent) di�eren tial
responseto a 45 degreechange.
Furthermore, the ratios I 180 � 45

I 180 � 0
and I 45� 0

I 180 � 0
respectively give a rough estimate of the
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A) I 180� 0 B) I 45� 0

C) I 180� 45

Figure 6.5: Direction selectivity indicesaveragedacross3 subjects for each visual area. (A)

represents the I 180� 0 mean, which quanti�es the normalized di�erence between � 180 and

� 0 estimatedBOLD responses,presumablyproportionally related to the global population

of direction selectivecells; (B) represents I 45� 0 related to narrowly tuned direction selective

neurons;(C) represents I 180� 45, related to broadly tuned direction selective neurons. Error

bars correspond to � 1 SEM acrosssubjects.

proportion of broad-bandandnarrow-bandcellswithin the motion direction selective
population of each area. The estimatedsub-population proportions are presented in
�gure 6.6.

As shown in �gure 6.5, hMT+ clearly appears as the most direction selective
area, having the highest values for each index computed, speci�cally 0.85 for op-
posite directions (I 180� 0), 0.55 for a smaller angular di�erence (I 45� 0) and 0.30 for
rather high angular di�erence (i.e. strictly over 45 degree)(I 180� 45). Our result
clearly con�rms the important proportion of direction selective neuronsin this re-
gion of the human cortex. We can further derive an estimated proportion of 35%
(0.30/0.85) of broadly-tuned versus65%of narrowly-tuned neuronswithin the mo-
tion direction selective population in hMT+. V3A shows the secondmost important
di�erence betweenthe estimated responsesfor � 180 and � 0 (I 180� 0 = 0:6077),also
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suggestinga relatively important proportion of direction selective cells. The esti-
mated proportion of broadly-tuned neuronsis 45.4%(0.2756/0.6077)versus54.6%
(0.3321/0.6077)for narrowly-tuned neuronsin V3A. V1 alsoshows signi�cativ e pos-
itiv e valuesfor our three indices,implying the presenceof direction selective neurons
as well. However, the index I 180� 45, standing for the di�erence between � 180 and
� 45, is surprisingly high with respect to I 180� 0 with respective valuesof 0.1973and
0.3508,suggestingan unlikely important broadly-tuned cells proportion of 56.2%.
This result is discussedbelow in the discussion.The I 180� 0 valuesof areasV3, V4v
and V2, though lower, also suggestthe presenceof motion direction selective cells
but with various sub-population proportions. More speci�cally, V3 indicessuggest
a rather equal proportion of narrow and broad neurons(0.1307/0.2655=49.2%and
0.1348/0.2655=50.8%respectively) while V4v direction selective population seems
to bemorepredominantly broad with an estimatedproportion of broadly tuned cells
of 62.2%(0.1258/0.2021).Note that the HRF estimationsfor � 0 and � 45 had impor-
tant variancesin areaV4v, leading to lessreliable index valuesand sub-population
proportion estimations. This lack of robustnesswasalsomentioned in the macaque
monkey fMRI study of [214]. Nonetheless,the � 180 estimated responseis signi�-
cantly positive in the 3 subjects (p=.0518, p< 1e-4and p=0.001 respectively), clearly
arguing for direction selectivity in V4v. Finally, V2 shows the smallest I 180� 0 and
I 180� 45 index values,suggestinga lower proportion of motion selective cells in this
arearelative to the other areasconsidered.

6.4.4 Responses to stim ulus transien t

At each transition betweenadaptation and test direction, the random dot pattern
was reset, leading to a brief noticeable transient. Considering the � 0 estimated
BOLD responseallows to assessthe sensitivity of each areato such a transient only,
as every other stimulus parameter (especially the direction of motion) remained
constant. The �rst column of table 6.2. shows the p-value of the T-test comparing
the � 0 estimatedresponseand the null vector. We found highly signi�cant p-values
(< 10e� 4) for areasV1 and V2 in the three subjects. The sameobservation also
holds in V3 and hMT+, but on two subjects respectively, whereasit is lessclear in
V3A and V4v that the estimatedresponseto a stimulus transient statistically di�ers
from zero. Theseresults reveal the di�erences of responseto a stimulus transient
in the above areas,suggestinga veridical representation of the retinal stimulus in
V1, V2 and a cruder representation in higher level areassuch asV3A and V4v [13].
Note that thesedi�erences support the way we de�ned our index to quantitativ ely
comparethe areassensitivity to motion direction changes.

184



Figure 6.6: Estimated proportions of motion direction selective sub-populations computed

from indices ratios. Error bars correspond to � 1 SEM acrosssubjects.

6.5 Discussion

6.5.1 Motion direction selectivit y

Our study extends the work of [113]. Regarding hMT+ and V3A, we replicated
their results when comparing opposite test direction with respect to adaptation
direction (our � 180 condition). But we further added a test condition to a lower
angular di�erence of 45 degrees(our � 45 condition), a precise BOLD response
estimation for each test direction and area consideredand statistically relevant
comparisonsbetween them, therefore providing a �rmer characterization of the
motion direction selectivity.
hMT+, directly followed by V3A, are the two areasshowing highest indicesabout
their direction selectivity. This general result about the involvement of hMT+
and V3A in motion direction processingis consistent with various reports in the
neuroimaging literature [257, 219, 224, 202, 41], see[44] for a review. V3 is also
characterized by a signi�cant, though at least twice smaller than in hMT+ and
V3A, direction selectivity. These results support the di�erence for areasV3 and
V3A betweenhumans and macaques,as mentioned for instance in [234, 161, 224].
In macaque,V3 is moderately motion and direction selective, but V3A is not. In
humans,however, this relationship is reversed:V3A is much more motion selective
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than V3. We found the same characterization in the present fMR-adaptation
experiment. V2, though direction selective, appears last in our motion direction
selectivity hierarchy with the weakest valuesfor our three indices; this result is in
line with Huk and colleaguesstudy whereV2 appearslast with V1.
In V1 and V4v however, our results di�er from thosefrom Huk and colleagues.On
the onehand, relative to other areas,V4v is weakly direction sensitive in our study,
whereasit stands right after V3A in Huk et al. (their �gure 4D, p.167). We have
stressedabove that our V4v datasetswere not as robust as in the other areasbut
alsonote that the proportion of direction selective cellsshould not be that di�eren t
than in V1 according to single cell studies, namely about 25% ([186, 162, 93]
estimations are 35%, 27% and 23% respectively). Note also that human area V4
de�nition is still subject to controversy [222, 254, 15], which might explain the
di�erences observed betweenboth studies.
Regardingour V1 results, the estimated proportion of broad-band cells is at least
as large as the estimated proportion of narrow band cells, which stands in contra-
diction with single cells studies. A possibleexplanation to this mismatch could be
that proposed by Tolias and colleagueswho faced the same inconsistencywhen
comparing their macaque fMR-adaptation estimations with electro-physiological
data. To explain this discrepancy, they �rst hypothesizedin [214] that V1 and V4
direction selectivity could be increaseddue to feedback from higher areassuch as
MT, leading normally non-selective neurons to acquire direction selectivity after
adaptation. They very recently published in [213] results from an electrophysiology
study that clearly demonstratedthis hypothesisin macaqueV4, showing classically
nondirectional V4 neurons that developed direction selectivity after adaptation.
We suggestthat this high indiceswe observed in V1, as well as the high estimated
proportion of broad cells in V1 could result from a modulation of selectivity
inherited from adaptedneuronsin higher areas.
Furthermore, it was recently shown in [124], which presents a macaqueMT electro-
physiology study, that adaptation could changethe direction tuning of neurons,at
least for sub-populations with preferreddirection closeto the adaptation direction.
Similarly, considering object processing in the macaque Infero-Temporal (IT)
cortex, Sawamura and colleagues[185] demonstrateda di�erence betweenstimulus
selectivity of neuronaladaptation and stimulus selectivity of the neuron.
Taking into account these results from electrophysiological studies, the direction
tuning we can infer from our BOLD signal rebound estimations might not be
quantitativ ely linked to actual direction tuning curves of underlying neuronal
populations in classical (i.e. non adapted) conditions. We nonethelessclaim to
show a reliable hierarchy of low-level visual areas,mostly in agreement with the
literature. Our study extends the results of Huk and colleagues,and allows us to
give a more precisemotion direction selectivity hierarchy with hMT+ and V3A
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ahead,followed by V1 then V3, V4v and �nally V2.

6.5.2 Macaque/h uman homologies in V1 and MT

We note that our I 180� 0 index valuesshown in �gure 6.5and the directionality index
valuesfrom [214] are strikingly comparablein humansand macaquesareasMT and
V1 respectively. Even if both indices are calculated in a di�eren t manner, they
are both meant to quantify the BOLD signal rebound when presenting opposite
adaptation and test directions. We found 0.85 in hMT+ comparedto their 0.84
in macaqueMT, and 0.35 in V1 compared to their 0.33 in macaqueV1. This
similarit y may claim for the functional homologybetweenthe two speciesin these
areassystematically found in all primates. This similarit y is however not asmarked
in the remaining areas(V2: 0.17vs 0.35;V3: 0.26vs 0.37;V3A: 0.61vs 0.42;V4v:
0.20vs 1.0). Oneof the reasonmight be the specydi�erences in theseareas:various
evidencesindeedsuggestthat V3 and V3A di�er functionally betweenmacaqueand
humans[161]; similarly, the homologybetweenhuman V4v region and macaqueV4
is still a subject of controversy as recently revived in [15]. Note also the important
di�erence between the experimental procedure used in both studies: the animals
were anesthetizedin the study of Tolias and colleagues[214], while our human
subjects wereawake.

6.5.3 A tten tion, adaptation and direction tuning

The importance of controlling attention in fMRI experiments was clearly demon-
strated in [113], which led them to reconsiderpreviousMotion After-E�ect (MAE)
studies. The authors further emphasizedthe needto "employ the most similar tasks
possible" acrossblocks or trials. We therefore implemented a rather simple atten-
tional task at the central �xation cross,systematicallypresent at each trial but also
between trials (top-up adaptation), enabling us to control both the attention and
the �xation of the subject. However, in contrast to Huk et al., our attentional task
was not done on the motion signal itself, which was meant to minimize the atten-
tional e�ects on direction tuning, asshown in [154]. The latter study indeedsuggests
that paying attention to a given feature (in their study the orientation of objects)
increasesthe functional selectivity of the neural population involved in processing
for this feature(in their study in the LOC -Lateral Occipital Cortex-, a regionof the
human brain involved in object shape processing).Our attentional task wasthought
to minimize this selectivity changesas it is not linked with any motion estimation
judgment.
On the other hand, a �rst study [182] on V5/hMT+ further re�ned by [191] in the
retinotopic areashave shown that performing an attentional task at the central �x-
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ation impacts the peripheral visual �eld signals,leading to a signal decreasein the
peripheral visual �eld with increasingattentional load. Our task was a low load
task, thus minimizing this e�ect and our data nonethelessmostly show statistically
signi�cant di�erences between the three test conditions. However, how attention
modi�es the neuronal signalsand consequently the BOLD signal is still poorly un-
derstood [12] and is thought to be a combination of enhancement in the neuronal
response(gain) and a sharpening of the selectivity. We claim that the adaptation
index we computedminimizesthis attentional bias thanks to our normalization used
to get rid of the attentional task e�ects (seeparagraph6.3).
Our simple task at the �xation cross is therefore a trade-o� between attentional
control, central visual �eld �xation control, neural selectivity changesand BOLD
signal decreasein the peripheral visual �eld. We claim that our attentional control
as such leadsto a minimally biasedcharacterization of post-adaptation motion di-
rection selectivity in di�eren t low-level visual areas,leading to a reliable hierarchy
amongthe latter.

6.5.4 fMR-adaptation metho dology

fMR-adaptation is a relatively recent paradigm enabling the measurement of
functional neuronalpopulations properties. It is thereforestill necessaryto develop
and study the methodologicalaspectsof this tool.
Our study brings another proof of the e�ciency of event-related adaptation
paradigmsas a tool to examinethe functional selectivity of cortical areasto a spe-
cial feature, herethe direction of visual motion. Most fMR-adaptation studieshave
been performed on high-level processing(objects, face, numbers representation),
our results con�rm that low-level processingissuescan also be tackled with this
paradigm.
In addition, our paradigm is minimally constraining. We do not use surfacecoils
which increasethe installation time of the subject; our attentional task is easily
understood by the subjects and can reliably be performed; only a single, one
hour acquisition sessionper subject is neededfor the adaptation experiment, as
comparedto hours of scanningusually averagedin most adaptation studies. It is
thus a straightforward experimental setup leading to reliable measuresas proved
by our error bars, which could be an important point for a use of the adaptation
paradigm in a more constrained environment such as clinical. It is crucial to
stress the contribution of accurate and unconstrained analysis tools such as the
HRF toolbox which, combined with imaging technical improvements will help in
detecting and characterizing subtle signals while alleviating scanning setup and
durations.
Importantly, we want to addressa typical aspect of fMR-adaptation paradigms
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not discussedin the literature. To our knowledge,every event-related adaptation
paradigm published so far includes a short blank period between the adaptation
and the test stimuli. This appears rather counter-intuitiv e as this blank period
may imply a decreasein the adaptation signal, therefore inducing a bias in the
measuredrebounds. The only justi�cation for a blank period could come from
[13] who studied the e�ect of the Stimulus Onset Asynchrony on the adaptation
e�ect. However, their psychophysical results claim for � 2secSOA (their �gure 7)
rather than 1.125sec(the smallestthey tested); this result doesnot �t with SOA of
lessthan 1 secas mostly found in event-related fMR-adaptation studies. Another
possibleexplanation for this blank could be to set a stimulus transient at the onset
of the test trial in order to increasethe neuronsresponses.We decidedto avoid this
blank period in our paradigm, thus setting the test trials just after the adaptation
stimulation to keepneuronsadaptedall along the run exceptduring the test trials.
Doing so, we obtained reliable results leading to conclusionsmostly in line with
previous characterization of direction processingin human low-level visual areas.
We concludethat this blank period was empirical in the �rst studiesand remained
in the next ones,without justi�cation or discussion,although it actually does not
appear necessaryand is rather counter-intuitiv e.

6.6 Conclusion

Our study has shown that motion direction selectivity is area speci�c in low-level
visual cortex. We achieved �ner measurements of this particular featurewith a min-
imally constraining adaptation paradigm. The global hierarchy amongthe di�eren t
visual areasputs hMT+ and V3A as the most direction selective, followed by V1,
V3, V4v and V2. This ordering further supports the classicalVentral-Dorsal classi-
�cation. We interestingly found similar direction indicesin V1 and hMT+ asTolias
and colleagues[214] previouslyshowed in macaqueV1 and MT, which might further
support homologiesin both species.We also found in human V1 and V4 a compa-
rable adaptation inducedselectivity e�ect recently demonstratedin the macaqueby
the samegroup, reviving the notion of context-dependent neuronaltuning. Last but
not least,we have designeda relatively fast and unconstrainedadaptation paradigm
that could inspire further studiesto characterizenormal subjects and patients visual
areasresponsesto various visual features,nonethelesskeepingin mind the modula-
tion of selectivity induced by adaptation and attention.
To con�rm the functional segregationwe found, future work may imply high resolu-
tion anatomical studiesto identify the local cytoarchitectony underlying each area.
A mathematical model of neuronal adaptation in the di�eren t neural populations
and visual areasmay alsohelp to clarify the origin of the BOLD signal rebound ob-
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served and its possiblelink to directionally tuned sub-populations activit y. Finally,
revealing the underlying distributed connectivity network among the above areas
may alsobe achieved usingDi�usion weighted MRI. We addressthis questionin the
next chapter.
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Understanding the relationship betweenanatomical structure and function is a
key objective in neuroscience.In the last decades,neuroimagingadvanceshave been
providing ever morepromising meansto non-invasively addressthis fundamental is-
sue,thus opening the possibility to investigatein vivo normal and patients cerebral
architecture and activit y. This is especially true for MRI, which allows to combine
anatomical (structural MRI), functional (functional MRI) and white matter connec-
tivit y (di�usion MRI) information at a spatial resolution of a few millimeters. We
showed in chapters 5 and 6 how anatomical and functional imagescould be jointly
used to identify various visual areasand functionally characterize them. In this
chapter, we proposeto re�ne our knowledgeof the human visual cortex by studying
anatomical connectionsusing a recently developed framework to analyzeDi�usion
TensorImages.Usinga Riemanian-geometrybasedconnectivity mappingapproach,
we�rst identi�ed the optic radiations connectingthe LGN to areaV1. Wethen stud-
ied interhemisphericconnectivity, estimating the white matter connectivity between
low-level visual areasand the splenium. Finally, we investigated intrahemispheric
connectivity betweenhMT+ and occipital retinotopic areas.

7.1 DTI connectivit y mapping and the human visual brain:

state of the art

In this section,we �rst give an overviewof the di�eren t approachesusedto estimate
the anatomical connectivity of the human brain from DTI. We then review their
main applications to the human visual cortex.

7.1.1 DTI connectivit y mapping techniques

Di�usion TensorImaging (DTI) modelsthe probability density function of the three-
dimensionalwater moleculesmotion, at each voxel of a DT image,by a local Gaus-
sian processwhosecovariance matrix is given by the di�usion tensor [8]. Among
other applications including the characterization of local tissueanisotropy, DTI can
be usedto estimate the anatomical connectivity acrossremote brain regions. Var-
ious approaches have beenproposedto tackle this problem. They can be divided
into three main classes:local, stochastic and geometricapproaches.
Local approaches, basedon line propagation techniques, rely on the fact that the
eigenvector of the di�usion tensor associated with the major eigenvalue provides a
relatively accurateestimateof the orientation of �b er bundlesat each voxel. These
methodsmay bere�ned to incorporatesomenatural constraints such asregularity or
local uncertainty and to avoid being stopped in regionsof low anisotropy [153, 130].
All these e�orts aim to overcomethe intrinsic ambiguity of di�usion tensor data
arising from partial volume e�ects at locations of �b er merging,kissingor crossing.
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If they canprovide relatively accuratemodelsof the main white matter macroscopic
bundles,thesemethods are sensitive to noiseand partial volume e�ects and cannot
give a quantitativ e measureto evaluate the degreeof connectivity between brain
locations.
Stochastic tractography algorithms were introducedby modeling the uncertainty of
the local �b er orientation [10, 77]. Through uncertainty propagation, they provide
a powerful meansto evaluate the probability of connectionbetweenremote points
of the white matter. However, the intrinsic drawback of thesemethods is their com-
putational complexity sinceit is necessaryto resort to Markov Chain Monte Carlo
methodsor to evaluateprobability density functionsat enoughlocationsof the space
of interest.
Geometric methods use either Level Set methods [157, 134, 116], Fast Marching
methods [169] or iterativ e sweepingtechniques[115] to evolve a front on the basisof
the di�usion tensordirectional information. Although morenaturally ableto exploit
the whole tensor information in the connectivity estimation, theseapproaches are
usually proneto interpolation errorsat the boundary of the evolution domain,which
may lead to erroneousconnectionsin highly convoluted areas. Besides,this class
of methods su�ers from a high computational complexity like the stochastic algo-
rithms. Finally, most implementations work directly on the wholeDT image,which
can lead to anatomically impossibleconnectionsacrossnon white matter tissue.

7.1.2 Human visual cortex connectivit y: previous work

DTI based connectivity mapping of the human visual cortex has been adressed
by various groups with di�eren t protocols and methods. Using a classicalstream-
line tractography with smooth interpolation of the tensor �eld [153], [40] could
reconstruct various bundles including visual pathway �b ers. They showed �b ers
passingthrough the splenium, with a speci�c topology: anterior splenium �b ers
headto the parietal lobe while dorsal splenium �b ers progresstoward the occipital
cortex. However, although the distinction between thesetwo bundles is clear, the
�b ers they show fail to reach any preciselyde�ned target on the grey matter and
callosal-occipital �b ers seemto rapidly converge to a single path (see �gure 1 in
[40]). They could, more convincingly, show a topology within the geniculo-occipital
�b ers, wheremedial (respectively lateral) LGN �b ers terminate in a more superior
(resp. inferior) part of the occipital cortex. Using a similar streamlinetractography
algorithm, [22] have identi�ed in a single subject di�eren t visual �b er bundles
including occipito-frontal and occipito-temporal �b ers. In a subsequent study, [23]
have identi�ed di�eren t visual �b er bundles: (i) the optic tract from the chiasm
to the LGN; (ii) the optic radiations from the LGN to the occipital cortex, which
can be further divided into a ventro-temporal bundle ending in the lower lip of the
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calcarine sulcusand a dorsal bundle terminating in the upper lip of the calcarine
sulcus; (iii) a splenium bundle connecting both occipital poles; (iv) U-shaped
occipito-temporal �b ers;(v) the controversedInferior Longitudinal Fasciculus(ILF)
directly connecting the extrastriate occipital cortex and temporal lobes. Despite
these interesting �ndings, no functionally de�ned areaswere used and data were
mainly analyzedon a singlemeanDT imageobtained thru the averagingof di�eren t
subjects, hencediminishing the possibleinterpretations of their �ndings when one
considersthe strong anatomico-functionalvarianceacrosssubjects.
The group of Ciccarelli, Toosyand colleaguesusedthe Fast Marching Tractography
(FMT) technique [167] to investigate3 �b er bundles: the pyramidal tract, anterior
callosal �b ers and, more interestingly for our study, the optic radiations. They
�rst concentrated on methodological issues,demonstrating the inter-subject repro-
ducibilit y [33] as well as the inter-observer reproducibilit y [31] of the reconstructed
tracts. More recently, they applied this technique to study changesin the optic
radiation of patients a�ected by a speci�c optic nerve injury optic neuritis [32].
Note that the FMT method has been partly validated in a combined study on
macaquesand humans, showing a part of the cortico-spinal tract and the optic
radiations in both species[168]. Note however that the authors aknowledge the
currently limited spatial resolution in DTI which prevents reliable tractography in
macaquesand thereforea true validation.
As of today, only a few studies have combined fMRI and DTI to study the visual
cortex. In the above mentioned study, [40] usedfMRI activation maps to roughly
identify the LGN and the occipital visual cortex. [242] demonstrated that the
fractional anisotropy was lower in the activated occipital cortex than in the optic
radiations. This is consistent with the known relative isotropy of grey-matter voxels
as compared with white-matter voxels [174]. Using a probabilistic tractography
method, [215] completed this work, showing a correlation between the estimated
optic tracts meanFA valuesand the degreeof fMRI activit y within the visual cortex
but, like the former, they did not functionally identify the occipital visual areas
they were considering. To our knowledge,the most completeand precisestudy in
the literature was done by [54] at Stanford. They combined a classicalstreamline
tractography method with a functional identi�cation of occipital retinotopic areas
to recover occipital �b er tracts passingthrough the splenium. They demonstrated
a good spatial matching in the splenium of independently estimated �b ers starting
from left and right occipital poles. More speci�cally, they found a topology in these
tracts in which (i) dorsal (respectively ventral) cortical regions project dorsally
(resp. ventrally) into the splenium, in agreement with a macaqueautoradiography
study, (ii) a foveal-periphery gradient can be found in the anterior-posterior
direction of the splenium.
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In the present study, we used a Riemannian geometry based connectivity
mapping technique proposed in [133] and a recently introduced Fast Marching
implementation [176] to assessthe anatomical connectivity acrossindividually in-
denti�ed areasin the low level visual cortex. The method estimatesthe anatomical
connectionsof the white matter as geodesicsin R3 equipped with a Riemannian
metric derived from the di�usion tensor. Besidesits robustnessand e�ciency , this
approach naturally restricts the estimation within the white matter voxels and
further provides statistics of a local connectivity measurealong each estimated
�b er. We �rst validate this methodology by recovering typically known �b er
tracts before addressingnew issuesregarding intra-hemisphereconnectivity in the
occipital visual cortex.

7.2 Metho ds

7.2.1 MR data acquisition

Subjects participated in two separatescanningsessions. A scanning sessionsys-
tematically starts with a fast low-resolution anatomical localizer to appropriatly
set the subsequent scanssliceslocation, followed by the functional and/or di�usion
scans,then the phasemap acquisition is done before ending with a T1-weighted
image acquisition. Thesehigh resolution anatomical scanswere usedas references
to coregisterthe di�eren t sessions.
In the �rst session,the functional scans,later usedto identify the retinotopic areas
and the hMT+ complex, and di�usion weighted imageswere acquired. However,
due to an acquisition problem, the phasemap could not be reconstructed which
is particularly problematic consideringthe important geometric distorsions of the
echo-planar di�usion weighted images(seebelow). As soon as this problem was
solved, we acquired in a secondsessionnew di�usion weighted imagesand the cor-
responding phasemap for the samesubjects. As we were not acquiring functional
images,we took advantage of the saved time to increasethe number of repetitions
for each direction, thus increasingthe di�usion-w eighted imagessignalto noiseratio.
We alsoacquireda T1-weighted imageto coregisterdata from both sessions.

fMRI

During each functional scan,151Echo Planar Imageswereacquiredover 5 mn 19 s
using our coronal sequence(seeparagraph 2.4.4). Each functional image spans20
coronalslices3mm thick and 2x2mm2 in planeresolution,approximately orthogonal
to the calcarinesulcuscovering the occipital retinotopic areasand extendinganteri-
orly to con�dently include hMT+ region [56]. The �rst �v e images(10.555s) were
systematically discarded to avoid magnetic saturation e�ects. The 144 following
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imagescorrespond to the visual stimulus per se. The last two imageswere taken to
allow slice-timing correction preprocessing.

Di�usion Tensor Imaging

As mentioned in paragraph 2.4.4, we �rst tried di�eren t acquisition parametersto
obtain the best di�usion weighted images.We �nally used12di�usion directions for
b=1000s.mm� 2, which is consistent with other studies[99] andallowedusto increase
the number of repetitions to achieve a better SNR. Each gradient directions was
repeated6 (�rst session)or 12 times (secondsession).The other useful parameters
are TR=10000ms,TE=86ms and the voxel size2x2x2 mm3.

7.2.2 Pro cessing pip eline

Each dataset was analyzedon a subject basis to avoid undesiderablenormalizing
e�ects such as the strong smoothing implied by this procedure. [242] showed it was
possibleto obtain geometrically matched fMRI and DWI with appropriate acqui-
sition sequences,therefore avoiding various distorsions correction steps. However,
these imagesare not coregisteredwith the anatomical image and this procedure
supposesto acquire data with the samevolume prescriptions. In this study, as we
consideredcomplementary information from 3 di�eren t MRI modalities (anatomi-
cal, functional and di�usion-w eighted images),acquiredtwo distinct sessionsfor each
subject and useddi�eren t sliceprescriptionsfor the di�eren t modalities, a reference
spacehad to be chosento coregisterall theseimagestogether. We usedthe mean
T2-weighted image (i.e. obtained without di�usion sensitization or b=0 s.mm� 2)
further correctedfor EPI geometricdistorsions(seebelow) as referenceimage. We
note umean T2 this referenceimage. This choice minimized the deformationsand
interpolations of the di�usion-w eighted imagesacquiredwithin the samerun using
a similar sequence.Each type of imagereceived speci�c processingsdetailed in the
following paragraphsand the extracted useful information was �nally coregistered
to the umean T2 referenceimage. Figure 7.1 summarizesthe overall processing
pipeline usedin this study.

Anatomical image.

High resolution anatomical imagesacquired in both sessionsallowed preciseinter-
sessioncoregistration using SPM2 algorithm. We note M 1 the estimated transfor-
mation mappinganatomical imagefrom session1to anatomical imagefrom session2.
The latter was further coregisteredwith the umean T2 referenceimage by trans-
formation M 2. Besides,structural information wasextracted from both anatomical
scans.Using the methods described in chapter 3, modelsof GM/WM interfacesre-
quired to segment the retinotopic areas(seechapter 5) wereobtained from session1
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Figure 7.1: The image processingspipeline. Seetext for details.
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anatomical image. A segmentation of session2anatomical imagewas performedto
obtain a white matter tissuemask in which the connectivity mapping computations
wereconstrained.

Visual areas functional de�nition.

Functional imagesfor the retinotopic and hMT+ mapping were �rst realignedwith
the INRIalign toolbox [76] and coregisteredwith the anatomical imagewith SPM2,
then smoothed through the cortical surfacebasedsmoothing method described in
chapter 3, with a 3mm equivalent Gaussian�lter FWHM. A high-passand a low-
pass�ltering were also performed on the time-coursesto respectively remove low-
frequencysignal drifts and high frequencynoise. Subsetsof connectedvoxels were
extracted for each areausing the method described in chapter 5 and further usedas
ROIs in the connectivity analysis. However, di�usion anisotropy is relatively low in
greymatter voxels[174], such asin the visual cortex [242], thusconsiderablylimiting
the directional information provided by DTI to evaluate the anatomicalconnectivity
betweengrey matter regions. We thereforede�ned white matter ROIs, considering
the white matter voxelsclosestto the cortical ROIs. Speci�cally, the hMT+ volumic
ROIs weremanually drawn basedon the activation maps,selectingthe white matter
voxels closestto suprathresholdcortical voxels in the expected location of hMT+;
the retinotopic areasvolumic ROIs wereautomatically computedfrom their identi-
�cation on the GM/WM interfaceby projecting the respective surface-basedlabels
alongthe surfacenormal insidethe white matter voxels. Each ROI voxelssubsetwas
then coregisteredto the umean T2 referenceimageby the transformation M 1� M 2
and further masked to solely lie within the white-matter mask extracted from the
high resolution anatomical image. Possibleintersectionsbetweeneach pair of ROIs
werealso removed from the analysis.

Di�usion weigh ted images.

T2 image: the 8 T2-weighted images were motion corrected using INRIAlign
beforebeing averaged.The resulting meanT2 imagewas then processedto correct
geometric EPI distorsions caused by magnetic susceptibility inhomogeneities,
i.e. magnetic �eld inhomogeneitiesparticularly found at the interfaces between
di�eren t tissues[117]. Basedon the phasemap acquired during session2,i.e. an
image mapping the spatial distribution of �eld inhomogeneities,we usedthe SPM
interfaced toolbox "Fieldmap" to compute and apply a voxel displacement map
accounting for these susceptibility artefacts. As mentioned above, the resulting
umean T2 imageserved as referenceimagefor connectivity mapscomputation.
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Di�usion-w eighted images (D WI): DWI data were �rst preprocessed to
minimize the distorsions induced by eddy-currents and related to the large
di�usion-sensitizing gradients. We used the algorithm proposed by [145] and
implemented within the BrainVisa package. Brie
y , this method usesa 2D image
registration technique to realign each DWI slice with its corresponding standard
T2-weighted slice. A scalefactor, a translation and a shearingare the parameters
for the sliceand imagedependent a�ne transformation searched. The mutual infor-
mation is usedas a similarit y measureto estimate the transformation parameters.
We then applied to the resulting imagesthe EPI geometric distorsions correction
algorithm usedfor the meanT2 image.

Di�usion Tensor Image computation: once the DWI are coregistered
with our referenceimage, we can estimate the di�usion tensor image (DTI), i.e. a
�eld of 3x3 real symmetric positive-de�nite tensorsalongthe imagedomain V. This
is done using the Stejskal-Tanner equation [206] for anisotropic di�usion, which
relates the magnetic resonancesignal attenuation to the di�usion tensor D(v) and
the sequenceparameters:

Sk(v) = S0(v)exp(� bgT
k D(v)gk) 8v 2 V; k = 1; :::;M

where(gk)k=1 ;:::;M arethe M normalizednon-colineargradient directionscorrespond-
ing to each DWI (Sk)k=1 ;:::;M and b is the di�usion weighting factor. In our protocol,
M = 12 and b= 1000s:mm� 2.
The classicaltechnique usually applied to computethe di�usion tensor �eld D from
DWI relieson a least squareestimationsof its coe�cien ts at each voxel v. It boils
down to searching the optimal D 2 S+ , the setof 3x3realsymmetricpositive-de�nite
matrices,minimizing the objective functional:

E(S0; :::;SM ) =
MX

k=1

 (
1
b

ln
Sk

S0
+ gT

k Dgk)

where : R ! R is the classicalsquaredresidual (x) = x2. Although computation-
ally e�cien t, this approach cannot strictly ensurethe expectedpositive de�niteness
of each di�usion tensor. Alternativ ealgorithms havebeenproposedto overcomethis
drawback, e.g. [243, 145, 225]. Here, we useda non-linear robust gradient method
proposedin [135] which naturally evolvesin S+ , thereforesystematically leading to
symmetric and positive de�nite solutions for D. The Huber's M-estimator wascho-
senfor the  function with the tuning constant k = 1:2107,which allows to achieve
an asymptotic e�ciency of 95%on the standard normal distribution:

 (x) =

(
x2 for jxj � k

k(jxj � k
2) for jxj > k
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We have observed particularly signi�cant di�erences between the two estimation
methods in highly anisotropic regions,such as the corpuscallosum,wherethe least
squaremethod could lead to nonpositive tensors. In such cases,the nonpositive
eigenvaluesare arti�cially set to a very small non-null value, leading to unreliable,
highly planar (with a null eigenvalue) or linear (with a single positive eigenvalue)
anisotropictensorsand possiblyto numerical instabilities in subsequent tensorbased
computations. This situation, naturally, never occurs with the intrinsic gradient
descent method as the solution necessarilybelongsto S+ . Figure 7.2 illustrates
these di�erences with a closeup of an axial slice containing the splenium of the
corpuscallosum.

Least squaremethod Riemannian method

Figure 7.2: Estimation of Di�usion Tensors: comparison between classical least square

(left) and gradient descent in S+ , the set of symmetric positive de�nite 3x3 matrices

(right). (Blue: low anisotropy; Red: high anisotropy). Notice the di�cult y to represent

tensors in the middle of the corpus callosum with the least square approach, suggesting

degeneratecigar-shaped tensors in this region.

7.2.3 Connectivit y maps and �b er tracts computation

The Riemannian geometry framew ork applied to DTI

We usedan approach basedon a Riemanniangeometricframework to compute (i)
a distancefunction to a given point of interest (or seed point ) x0, (ii) the putativ e
�b er path linking any voxel of a given brain region V to x0 and (iii) a connectivity
map, i.e. a con�dence measureassociated with each �b er. In this geometrical
formulation of DTI connectivity mapping, the DTI is modeled as a Riemannian
manifold M whosemetric is directly related to the di�usion tensor D modeling the
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local di�usion properties of water molecules.As shown in [133, 157], the metric G
of M is given by G = D � 1. From this metric, a distancefunction u(x0; x) betweena
given seedpoint x0 and any other location x of the brain mask V can be evaluated
as the solution of the following initial value problem:

(
kr u(x0; x)kG = 1 8x 2 V n f x0g
u(x0; x0) = 0

(7.1)

This is the well-known Eikonal equation on the Riemannianmanifold (M ; D). The
solution u at any voxel x 2 V can be interpreted as the minimum time t � 0 to
reach x0 starting from x on the manifold M . Consideringthe low anisotropy in the
grey matter tissue,we considerfor V the set of white matter voxels obtained from
a segmentation of the anatomical image(seemethods).
The geodesicsof M , which canbe derived from a continuousgradient descent over u
along the direction given by �r u, are consideredas putativ e white matter bundles
linking any voxel x 2 V to x0. As such, a geodesic connecting any voxel x 2 V
to the seedvoxel x0 always exists. If an actual white matter �b er connectsx and
x0, the associated geodesiccoincideswith the �b er. However, for any x 2 V, the
associated geodesicdoesnot necessarilycoincidewith an actual white matter �b er.
It is indeedhighly unlikely from an anatomicalpoint of view that a givenbrain locus
could be directly connectedto every other brain location. To overcomethis issue,
connectivity measuresalongeach geodesiccanbeestimated,enablingto discriminate
likely and unlikely white matter connections. In this study, we consideredfor each
estimatedgeodesicstatistics of the following local con�dence measure:

C(x) = kr u(x)kE

We claim that C is a natural local measureof connectivity since, as we will see
shortly, it can also be interpreted as the solution of an optimal control problem
and measuresthe local "speed" of water moleculespropagation in the white matter
tissue. From this local connectivity index, we compute its �rst and secondorder
statistics along the geodesic:

� (x) = E[C(x)] and � (x) =
p

E[C(x)2] � E[C(x)]2

An ideal �b er linking x to x0 will typically have a largemeanvalue � (x) and a small
standard deviation � (x). This connectivity measureprovidesa meansto distinguish
likely and unlikely �b ers. Sinceeach voxel x in V canbeassigneda geodesicreaching
x0, we have a couple (� (x); � (x)) at each voxel. In the remainder, we note � -map
and � -map the respective imagesof � and � values.

Numerical resolution metho ds

Regarding the numerical resolution of equation (7.1) and the computation of
geodesicsand connectivity measures,we used two di�eren t methods respectively
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based on the level set framework and a control theory formulation. If both
interpretations are mathematically equivalent, they focuson di�eren t aspectsof the
problem. In the level set (or dynamic) approach, the emphasisis on the description
of the manifold geometry, while in the optimal control point of view (or static)
approach, the emphasisis on the optimal dynamics, which coincideswith the in-
trinsic gradient of the distancefunction. Wegivebelow an overviewof both methods.

Levelset method
We �rst usedthe level set method described in [133, 134] and implemented in C++
by Christophe Lenglet at the OdysseeLaboratory. As shown e.g. in [164, 197],
equation (7.1) can be reformulated in the level set perspective. This is achieved by
introducing a new function  such that the evolving function ut is a level set of  :

ut = f x 2 V : u(x) = tg = f x 2 V :  (x; t) = 0g

Then, it can be shown [164] that �nding u satisfying equation (7.1) is equivalent to
solving the Partial Di�eren tial Equation (PDE):

(
 t + kr  kG = 0 8t > 0
 (x; 0) =  0(x)

(7.2)

Where kr  kG =
p

D > G� 1D ).
Starting from x0, the rate at which the front propagates is given by the local
di�usion tensor D. The larger the local tensor eigenvaluesare, the faster the local
front propagation will be in the associated eigenvector directions. Hence,evolution
is fastest along white matter paths. The front arrival time at each voxel generates
the distance function to x0. Geodesics are then obtained by back-propagating
along the function u gradient �eld from any voxel x 2 V towards the origin x0.
The related connectivity measures� (x) and � (x) are �nally estimated during the
computation of this optimal pathway linking x to x0, by integration of the local
criterion C along the entire geodesic.

Fast Marc hing Tractograph y metho d
Facing two major limitations of the level set approach, namely the high algorithmic
complexity leading to relatively long computational time and, more importantly,
numerical di�culties to properly deal with the white matter mask boundaries,
we then used a very recently proposedformulation of the problem. By recasting
problem (7.1) into the optimal control theory framework and numerically solving
it with Fast Marching Method (FMM), its authors could propose a considerable
computational improvement to evaluate the quantities of interest. The theoretical
issues as well as the C++ implementation were developed in a collaboration
between the Odysseelaboratory and the UCLA vision Laboratory. We refer the
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readerto [176] for an indepth study of the approach and its contributions.
Brie
y , in this formulation, the problem comesdown to estimating the optimal
vector �eld f � (optimal dynamics) corresponding to the �eld of the geodesics
velocity in M (which also coincideswith �r u). This is achieved using a Fast
Marching basedalgorithm. Starting the front from an initial seedposition x0, the
Fast Marching Method (FMM) systematically marchesthe front outwards onegrid
point at a time, by always locating the proper grid points con�guration (the optimal
simplex) yielding the smallest update value of the distance function u, a principle
namedcausality. FMM thus constructsthe optimal dynamicsf � by propagatingthe
information "one way", requiring one singlepassover the domain V. The distance
function u is now a byproduct of the algorithm, no longer necessaryfor subsequent
computations. Besides,the connectivity statitics maps � and � are computed "on
the 
y". Indeed,basedon the optimal simplex, oneonly needsto computethe local
value for C and C2 and then build on previousvaluesto derive � and � associated
to the geodesiclinking x0 to the current voxel. If neededfor visualization purposes
for instance,the geodesicpaths can be straightforwardly reconstructedby following
the optimal dynamicsf � .

The Fast Marching Tractography (FMT) approach detailed above o�ers many
advantagesover existing work, including the level set method we �rst used:
- the method is e�cien t sinceit computessimultaneouslythe optimal dynamicsand
the statistics of our local connectivity measure;besides,the explicit computation of
the geodesicsis not mandatory to get the connectivity measuremaps,
- the computation time is dramatically improved, from 20 minutes to get the dis-
tance function with the level set formulation to 7 secondswith the FM algorithm,
- the method naturally handlesthe constrainedcomputation within highly convo-
luted regionssuch as in the occipital cortex white matter (�gure 7.3),
- the algorithm exhibits a higher robustnesswith respect to noiseover the level set
implementation, as validated by numerical experiments on synthetic datasets.

The results we present below were systematically obtained with the FMT al-
gorithm. Notice however that the level set method led to qualitativ ely similar
results, although the computation time was by far higher and the numerical issues
mentioned above could lead to anatomically impossible front propagation (�gure
7.3), requiring iterativ e manual modi�cations of the white matter mask.

7.2.4 Seed voxels placemen t

A crucial aspect for any �b er tracking method is the location of the initial seed.
The seedsfor the FMT algorithm wereselecteddependingon the consideredtracts.
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DTI axial slice White matter segmentation

Level set algorithm FM algorithm

Figure 7.3: Distance function computed from DTI data (a) to an occipital seedvoxel, the

blue cross in (b) in a white matter mask (red line in (b)). Yellow lines depict distance

function isovalues in the range [0;1500], computed through the level set (c) or the Fast

Marching (d) algorithms. Front di�usion of the level set method does not necessarily

respect the white matter mask topology, leading to anatomically impossibleconnections

through CSF voxels (c). This numerical problem is avoided in the Fast Marching method

which naturally respects the mask topology (d).

LGN seed voxelsidenti�c ation
Lacking a precisefunctional localization of the LGN, we �rst identi�ed LGN seeds
voxelswith a classicalstreamlinetechnique. To do so,we manually selectedin each
hemispherea rough thalamus sub-region which obviously included the expected
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LGN location. More speci�cally, basedon both anatomical and di�usion tensor
image prior information, the initial region was identi�ed anterior to the lateral
ventricles and only voxels with a relatively high anisotropy (FA � 0.15) were kept.
Di�usion tracts starting from each selectedvoxel were estimated with a classical
streamline tractography technique [130] and further automatically �ltered to keep
the �b ers heading to the ipsilateral retinotopically identi�ed area V1. Only �b ers
reaching a 3 voxels wide band around the functionally de�ned V1 region werekept.
This approach is very similar to that of Conturo and colleagues[40], although we
did not oversample the DTI data, thus getting less �b ers than the latter work.
The starting voxels of the remaining �b ers were �nally labeled as the LGN voxels.
We typically found a region of 5 connectedvoxels in each hemisphere,consistent
with the reported LGN size both in previous anatomical [108] and fMRI studies
[27]. Beyond yielding an anatomical connectivity baseddelineation of the LGN,
the reproduction of the well-known visual pathway as well as the likely extent and
location of the LGN ROIs validatesour di�usion-w eighted imagesquality aswell as
our imageprocessingpipeline.
Other tracts
For connectivity mapping starting from the functionally identi�ed visual areas,we
simply usedthe white-matter ROIs de�ned with the procedurepreviously detailed.

7.3 Results

We�rst validated our protocol andconnectivity mappingtechniqueon the previously
characterized optic radiation tracts before investigating callosal connectivity and
intra-cortical connectivity acrossthe functionally identi�ed visual areas.

7.3.1 Optic radiations

As onecannoticefrom the above literature overview, the optic radiations wereoften
reconstructed in di�usion tractography studies. We therefore decided to validate
our �b er tracking approach by considering this well characterized �b er bundle,
which links the Lateral GeniculateNucleus(LGN) to areaV1 in the occipital cortex.

Starting from each previously identi�ed LGN voxels (see methods), we com-
puted the connectivity index maps with the FMT technique. As we were not
concernedhere with inter-hemispheric connections, the FMT computation was
restricted to the ipsi-lateral hemisphereof the seedvoxel. Figure 7.4 shows two
� -maps, one per hemisphere,in two subjects. As each map is restricted to its
respective hemisphere,we mergedthem in a singleimageand overlaid the result on
an axial sliceof subjects' anatomical image. The seedvoxel of each � -map is shown
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Figure 7.4: Connectivity � -maps obtained in two subjects with the FMT technique esti-

mated from one LGN seedvoxel (in black) for each hemisphere.The highest connectivity

index valuesare found along the putativ e optic radiations paths, with the maximum value

within area V1.

in black. The highest connectivity index values(dark red) are systematically found
within the typical path of the optic radiations. Besides,highest valueswere found
in the retinotopically identi�ed V1 region. Theseresults were found for each seed
voxel in all subjects.

Finally, for each connectivity maps, the voxel with maximum connectivity
mapping index (which lay in area V1) was identi�ed and the geodesic linking
that voxel and the seed point was traced. Figure 7.5 shows the reconstructed
�b er bundles obtained with both methods. Although the thalamo-occipital �b ers
estimated with streamline and geodesic methods qualitativ ely match and are
consistent with known anatomy, we noted somedi�erences between reconstructed
tracts.
As can be seenin �gure 7.5, most �b ers estimated by streamline propagation fail
to reach the V1 white matter ROI, unexpectedly heading in a ventral direction
a few millimeters before reaching the V1 region. We attribute this unexpected
tra jectory ending to an improbable connectionwith another �b er bundle crossing
the thalamo-occipital track. This observation led us to use a relaxed constraint
to �lter the �b ers passingclosely to V1, as mentioned in the above description of
the LGN seedvoxel identi�cation procedure. Note that [40] also useda 1cm band
within the white matter, laterally located to the activated occipital cortex to �lter
their thalamo-occipital �b ers (see[40], �gure 3). Besides,other DTI tractography
works showing this bundle do not exhibit an actual connectionwith a accurately
de�ned V1 ROI, letting open the questionof the �b ers termination location.
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On the other hand, FMT estimatedtracts systematicallyreach our white matter V1
region,which illustrates an important advantage of the geometricfront propagation
method over local approaches. However, FMT �b ers tend to convergerapidly after
leaving the seedvoxels, which denotesthe less local characteristic of the method
(seediscussion).

Figure 7.5: Optic radiation tracts estimated with a classicalstreamline method (blue) and

with the FMT technique (red). The LGN seedsvoxels (green), Left V1 (yellow), right V1

(purple) and an axial slice of the DTI are also represented.
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7.3.2 Callosal connections

For each hemisphere,the low-level visual areasrepresent and analyzeonly onehalf of
the visual �eld, i.e. their respective contralateral hemi�eld. Nonetheless,homologue
areasof both sides,such as left and right V1, have been shown to be connected,
at least for the vertical meridian representations, through the splenium, a portion
of the corpus callosum [37]. Following [54], we studied the FMT estimated con-
nectivity maps of our functionally de�ned areas. We were interested in looking at
the capability of our FMT method to replicate the broad connectiontopology that
Dougherty and colleaguesreported in the region of the splenium.
We analyzedconnectivity mapsin the spleniumvoxels,starting from our retinotopi-
cally (or functionally for hMT+) de�ned ROIs. Each ROI wasconsideredseparatly.
We note X = (x i ) i =1 ;:::;n a speci�c n voxels seedROI (e.g. left hemisphereV1) and
Y = (yj ) j =1 ;:::;m the m splenium voxels identi�ed on a mid-saggital slice. For each
seedvoxel x i , the corresponding � -map and � -map were computed with the FMT
method. We therefore have the mean and sigma values for each optimal path 
 i;j

linking x i to yj . We then �lter these maps to remove the highest variance paths
and compute a singlemean � -map in the splenium. Speci�cally, for each splenium
voxel yj 0 , we have n putativ e paths 
 i;j 0 . We discard a given proportion p of these
n connectivity paths, removing paths with highest variance � . The mean connec-
tivit y indicesof the remaining putativ e �b ersare then averaged,leading to a single
meanvalue � at voxel yj 0 . The procedureis repeated for each yj ; j = 1; :::;m. The
resulting � map is interpreted as the mean connectivity between area X and the
splenium.
Figure 7.6 shows the resulting mean � -maps for visual areashMT+, V1, V3A and
V4 respectively taken asstarting ROIs in a mid-sagittal sectionof the brain for each
subject. p wasarbitrarily set to 10%. We do not represent herethe mean� -mapsfor
areasV2v, V2d, V3v and V3d, as they do not signi�cantly di�er from their clothest
neighboring areason the cortical surface,i.e. V1v, V1d, V4 and V3A respectively
(seediscussionbelow).
Connectivity values are ordered similarly for each areas,with a smooth gradient
from lowest valuesin the posterio/dorsal portion of the splenium to highest values
in its antero/v entral portion. Comparing the di�eren t origin areas, lowest values
weresystematically found for hMT+. RegardingareasV1, V3A and V4, valuesare
not consistent enoughacrosssubjects to infer a systematictopology in the occipito-
callosal connections. However, V3A connectivity is higher than for V4 in 4 out of
6 hemispheres,suggestinga strongercallosalconnectivity for dorsal with respect to
ventral areas.Finally, we observed a systematicasymmetrybetweenthe mapsasso-
ciated to each hemisphere.The highest valueswere found for putativ e connections
originating from the left hemisphere.Figure 7.7 represents the most probable�b ers
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Figure 7.6: Mean connectivity indices from distinct visual areas to the splenium vox-

els. The mean connectivity values show a smooth gradient from posterio/dorsal to an-

tero/v entral splenium portions. Lowest connectivity valuesin the splenium are systemat-

ically found for hMT+.

linking each hMT+ voxel from both hemispheresto the splenium. We employed a
similar method to that usedto obtain the optic radiations �b ers. More speci�cally,
for each hMT+ voxel consideredas a seed,we computed the related connectivity
index maps. We then identi�ed the splenium voxel with highest connectivity in-
dex and constructed the related geodesic. The estimated �b er tracts from the two
hemispheresshow a great spatial agreement.

7.3.3 hMT+ in tra-hemispheric connectivit y

Using a similar approach, we �nally studied the FMT-connectivit y of the human
MT complex with the ipsilateral occipital retinotopic areas. The most probable
connectionswereidenti�ed asfollows. Taking asseedseach hMT+ voxel (x i ) i =1 ;:::;n ,

209



Figure 7.7: Independently estimated most probable �b ers linking left and right hMT+ (in

green) to the splenium (in blue) from two subjects (left CL and right JP).

we computethe � and � mapswith the FMT method. For each x i , we then identify
a given proportion p of paths with the highest � valuesamongthe m paths linking
target ROI voxels(yj ) j =1 ;:::;m to x i . The mean� valueof the remainingpaths is then
computed and assignedto voxel x i . We end up with a mean connectivity value at
each hMT+ voxel and for each retinotopically de�ned target ROI.
Figure 7.8 shows a box plot of the mean connectivity values distribution for the
di�eren t seedvoxels of hMT+ acrossareas. The boxes edgesdepict the valuesof
the �rst quartile, the medianand the third quartile. Valuesoutsidethis box arealso
shown to completely represent the distribution dispersion.
V1 and V2 systematicallyshowed the highestconnectivity values,suggestinghighly
probable connectionswith hMT+. V1 and V2 can hardly be distinguished, which
can be attributed to their very closeanatomical locations given our voxel size(see
discussion).On the other hand, V4 systematically showed the lowest connectitivity
values, suggestinga weak direct anatomical connection with hMT+. It is more
di�cult to clearly distinguish the remaining areasV3v, V3d and V3A.
Similarly to the spleniumdata analysis,we clearly found higher connectivity values
for the left hemisphereas comparedto the right, regardlessof the area considered
(seethe valuesrangeon the vertical axes).

7.4 Discussion

Wehavecombined informations from 3 di�eren t MR modalities to study connectivity
within the humanlow-level visual brain. To date,only a fewstudiesusedfunctionally
de�ned ROIs to characterizewhite matter connectivity in this part of the brain. We
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Figure 7.8: Occipital-hMT+ connectivity

have shown that it is possibleto determine various connectivity patterns with our
Riemanniangeometricapproach. We shall �rst discussthe results regardingcurrent
knowledgeon the human visual brain connectivity and then addressmethodological
issuesregardingDTI basedtractography.

7.4.1 Visual cortex connectivit y

Thalamo-occipital �br es We �rst reproducedtracking of the thalamo-occipital �b ers
bundle connecting the LGN and V1. This �b er bundle was identi�ed in various
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DTI tractography work, either with a deterministic streamline [40, 23] or a Fast
Marching Tractography [33, 31] method. Although our methodology to identify the
LGN seedvoxels might appear biasedas it is already basedon DTI information,
we stress that the estimated LGN location and extent consistently �ts previous
reports and known anatomy. Furthermore, this method is not prone to operator
dependent seedselection. The successfulidenti�cation of the well-characterized
thalamo-occipital connection therefore validated our Riemannian FMT method.
Theseresults also illustrate the lower local sensitivity than in the caseof a classical
streamlineapproach, sincespatially closeseedsleadto relatively similar connectivity
maps, hence to close �b ers tracks (�gure 7.5). This can be an advantage over
classicalstreamline approaches as it is less prone to noise, but might also mask
local topology acrossspatially close�b ers, such as those shown by Conturo et al.
in the thalamo-occipital �b er bundle [40].

Splenium�b ers
We investigatedthe topology of callosal�b erswith respect to their origin in the low
level visual cortex. We could reproduce with our FMT method the antero-ventral
localization of �b ers linking occipital retinotopic areas to the corpus callosum
(�gure 7.6), as found by Dougherty et al. [54] using a classicalstreamlineapproach.
Our results also suggesthigher connectivity values for V3A when compared to
V4, which is consistent with [54]. We could not however identify the precise
topological organization of connectionswithin the splenium they observed, neither
with our FMT approach nor with a streamline technique similar to the one they
used. A lower quality in our di�usion-w eighted imagesmay be responsible for this
discrepancy.
We found the lowest connectivity valuesin the spleniumfor hMT+ when compared
to occipital retinotopic areas (�gure 7.6). This result should be related to a
clinical study demonstrating that visual motion perception, strongly correlated
with hMT+ activit y, is not a�ected by posterior callosal destruction [36]. On the
other hand, a weaker activation during bilateral visual �eld stimulation was found
in the patient left hemispherecalcarine region compared to 20 normal subjects,
correlated with severely impaired reading and colour naming performances.These
�ndings suggestedother, probably parallel, pathways conveying interhemispheric
visual motion information. Possiblecandidates proposed by the authors for the
alternative routes include anterior part of the corpuscallosum,anterior commissure
and subcortical (via the superior colliculus, the intecollicular commissureand the
pulvinar) connections. Future work will shortly assessthesealternative interhemi-
sphericconnectionsfor hMT+.

hMT+ and occipital areas connectivity
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We studied the connectivity betweenhMT+ and various low-level retinotopic areas.
To the best of our knowledge, this is the �rst DTI connectivity study considering
this cornerstoneof the visual motion pathway. V1 systematicallyshowedthe highest
connectivity index valueswith hMT+ (�gure 7.8), consistent with the known highly
myelinated white matter �b er bundles linking both areas [232]. Besides, lowest
connectivity values between the retinotopic areasand hMT+ were systematically
found for area V4. This result should be related to the previous chapter of the
current thesis and with the work of Tolias and colleaguesin macaques[214, 213].
This connectivity mapping result may suggestthat acquireddirection selectivity in
area V4 might rather be mediated by V1 than by direct connectionswith hMT+,
further supporting the famousdistinction betweenventral and dorsal streams[228].
This issueshould be addressedin future work, e.g. reproducing the study of [213]
after hMT+ resection or by using cortical cooling techniques in macaque MT
region.
We also found similar hMT+ connectivity values for V3d and V3v, despite their
relatively important distance along the cortical sheet. This observation could be
an other evidenceto considerV3d and V3v as the two quarter�elds representation
of a single area V3, as also demonstratedwith anatomical connectivity studies in
various speciesof monkeys[140, 141].

Anatomical geometry and samplingconstraints
As mentioned above, we could hardly distinguish meanconnectivity mapsfor areas
V1 and V2. Although surprising at �rst sight, this result can actually �nd a simple
explanation when consideringtogether the anatomical layout of theseareasand the
current spatial resolution of DTI. AreasV1d and V2d (and similarly V1v and V2v)
respectively lie on the opposite banks of the samegyrus1. The white matter tissue
separating the latter is therefore relatively thin, especially with 2mm isotropic
voxels. Thus we cannot expect to easilydistinguish the connectivity mapsobtained
with two opposite voxels in this gyrus. Improvement of the spatial resolution
appearsas the only way to solve this problem. Although still to be consideredfor
the areascouplesV3d/V3A dorsally and V3v/V4 ventrally , this gyral proximit y is
lesspronouncedsincetheseareasbordersappear lessconstrainedby the sulco-gyral
pattern than for V1 and V2 borders.

Hemisphere asymmetry
Our resultssuggesteda signi�cant asymmetry in our connectivity mapsbetweenthe
two hemispheres.The left hemisphereexhibits higher connectivity valuesthan its
right counterpart. A similar result was also reported in [54], where more occipito-

1Note that Van Essenproposedan interesting mechanical tension-basedtheory to explain this particular

folding pattern [231].
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callosal�b erscould be reconstructedin the left than in the right hemisphereby the
employed streamline algorithm. The authors suggesteda bias in the hemispheres
respective size may account for this di�erence. Note that such an asymmetry
between both hemisphereswas also reported in the motor system [94] and could
possibly be attributed to handedness.We suggestan alternative hypothesis,based
on a perhaps more straightforward brain observation: hemispheric functional
specialization. Undoubtly, the hemispheresare functionally asymetric and this
sould imply a di�eren t, asymetrical wiring within each hemisphere. This may in
particular be the casein the occipital cortex, the right lobe possiblypresenting more
�b er crossingsthan its left counterpart. As a consequence,the local di�usion tensors
would not be equivalently anisotropic in both sides,leading to more di�cult �b er
tracking for streamlinemethodsor lower connectivity valuesfor our FMT algorithm.

As future directions, besides those mentioned above, we consider the work of
Behrensand Johansen-Bergasa particularly promising application of DTI informa-
tion to study the visual cortex. Basedon remotecortical connectivity patterns, they
could successfullysegment the thalamus into anatomically consistent subregions
[9]. A similar approach may be applied to uncover the di�eren t compartments of
regionssuch as hMT+ or the Lateral Occipital Cortex. Cortico-cortical connectiv-
it y information may also be of great interest to clarify cutting-edge visual areas
identi�cation issues,both dorsally (V7, KO, ...) and ventrally (V4v-V8 vs. hV4
models,newly reported Ventral Occipital maps).
Theseissueswill certainly besuccessfullyaddressedin the nearfuture, provided nec-
essarymethodological advancesregarding both data acquisition and tractography
algorithms.

7.4.2 Metho dological issues

Riemannian DTI connectivity: validity and limitations
The current study provides a validation of the Riemannian approach to estimate
DTI basedconnectivity mapping in the visual system. With its other application
to the human motor system [132], this Riemannian geometrical approach, using
the full tensor information, appears very useful to study anatomical connectivity
in various cognitive systems. Geometrical tractography methods, such as the
current RiemannianFMT usedin our study, have three main advantagesover other
tractography approaches. First they provide a connectivity measurebetween any
pair of points within the white matter. This information can be used to build
connectivity matricesover the wholebrain or to rank putativ e connectionspathways
in the white matter. Then, geometricalapproachescan deal with locally isotropic
tensorsoccuring at �b erskissingor crossing.This is not the casewith deterministic
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or probabilistic approaches where a FA threshold condition is often necessaryto
avoid unreliable �b ers. Finally, thesemethods are lesssensitive to acquisition noise,
sincethey take advantage of the complete tensor information and of the lesslocal
behavior of the algorithm by comparisonwith streamlineor stochastic approaches.
Although previous implementations turned out to be computationally intensive
[133], the recently developped FM method allows a very fast estimation of connec-
tivit y maps and geodesicpath construction, as well as an improved robustnessto
noise. Besides,this approach naturally dealswith the convoluted geometry of the
white matter mask, avoiding anatomically impossibletracts passingthrough CSF
voxels (�gure 7.3).
There are however limitations both due DTI by itself and to the geometrical
connectivity mapping framework. First and foremost, the relatively poor spatial
resolution of DTI (typically a few mm3) when compared to actual white matter
�b ers diameter (between 0.2 and 20 � m) has important implications. (i) Only
white matter "highways" may be properly recovered, which hardly represent every
cortico-cortical connections;false negative connectionsare thus unavoidable. Im-
provements in imageacquisition protocols, such as parallel imaging, may overcome
this limitation, but a precisephysical lower bound is still to be estimated. (ii) The
tensor model cannot handle properly �b ers crossingsor kissings that may occur
within a voxel. Emerging approaches using higher order models based on High
Angular Resolution Di�usion Imaging (HARDI) [74, 226, 165, 21, 48] may provide
an answer to this issue.
An intrinsic problem of the geometrical connectivity mapping approach used
here comesfrom the absenceof absolute threshold to con�dently estimate �b er
tracts from the connectivity maps [168]. Depending on the threshold choice
(the p proportion, arbitrarily set to 10% here), false positive or false negative
connectionsmay arise. Combination of complementary connectivity indices asso-
ciated with each geodesicsmay prove to minimize this limitation. Furthermore,
most tractography methods to date, including ours, are not symmetrical in the
sensethat putativ e paths reaching a position y while starting from x may not
necessarilycoincide with those linking x when starting from y. Tracking within
GM, although theoretically possiblewith geometrical approaches like the one we
employed, still leads to di�cult interpretations of the reconstructed connectivity
maps and related tracts as the di�usion signal is poor in the cortical tissue. Last
but not least, a direct validation of DTI basedmethods is still missing. Although
reconstructed tracts such as the optic radiations in the current study or the
motor pathway found in [132] are consistent with known anatomy, a quantitativ e
validation could indicate the advantagesand weaknessesof DTI basedtractography
methods. Ultimately, an animal study comparing the di�eren t tractography
approaches with invasively identi�ed connections would be of great interest to
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demonstratetheir respective advantagesand current DTI basedtractography limits.

Combined fMRI and DTI
The fMRI areasidenti�cation con�dently constrainedour analysisinto known brain
regions. We thus avoided possibleoperator-dependent bias in seedplacement or
rough anatomically based inference. No obvious false-positive connectionswere
found in our study.

7.5 Conclusion

We combined anatomical, functional and di�usion-w eighted imagesinformation and
a newly introduced Riemannian DTI analysis framework to study the anatomical
connectivity in the low-level visual brain. We could successfullyreconstruct the
well-known optic radiations connectingthe LGN and V1 with our fast connectivity
mapping method. We also showed a plausible topology of occipito-callosal con-
nections in the splenium, consistent with previous works. Finally, we assessedthe
anatomical connectivity betweenhMT+ and occipital retinotopic areas,supporting
the view of parallel ventral and dorsalprocessingstreams.With both imageacquisi-
tion and methodological improvements, di�usion MRI should provide a new means
to uncover the architecture of the visual systemand further relate it to its functional
characterization.
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Chapter 8

Conclusion and perspectiv es

8.1 Summary of our contributions

We introduced a new approach to the cortical surface-basedsmoothing of fMRI
data. We demonstratedits advantagesover (i) classical3D isotropic methods which
ignore the complex cortical surfacegeometryand (ii) mesh-basedimplementations
which require a preliminary projection of the functional data on the cortex model.
A Matlab interface was implemented for the smoothing program and to allow the
automatic computation of a level set representation of the cortical surfacemeshes.
The core programs were implemented in C++ by Jean-Philippe Pons during his
PhD at the Odyss�eeLaboratory.

We developed a complete procedure of retinotopic mapping allowing the identi-
�cation of various low-level visual areas on a subject basis. We tested di�eren t
stimuli parameters to optimize the resulting angular maps, yielding to reliable
visual �eld mapsacquiredin 20 minutes. Programsto automate the di�eren t steps
of the analysis were implemented in Matlab, including anatomical and functional
imagesprocessing.Manual segmentation is nonethelessrequired for the visual areas
delineation basedon the angular maps, since the Visual Field Sign computation
ends with unsatisfactory results, even after various attempts of post-processing
corrections. The complete method is routinely used in the laboratory and at the
centre IRMf de la Timone. It wasalsotransferedto the DyVA team and is currently
used for the study of the cortical organization in patients su�ering from retinal
diseases.

A functional identi�cation procedure of the human MT complex (hMT+)
was alsodeveloped. We identi�ed the optimal stimulus parametersamongdi�eren t
stimulus patterns and contrasts betweenconditions to obtain reliable activations in
the expectedzone.

Building on these visual areas identi�cation procedure, we have characterized
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the low-level areas functional sensitivity to motion direction. Based on an
event-related fMR-adaptation paradigm combined with a powerful non-parametric
hemodynamic responsefunction estimation method, we can estimate the direction
selectivity of each areaand infer possiblesub-populations proportions with respect
to their tuning bandwidth type. We found the highest direction selectivity in
areashMT+ followed by V3A, con�rming their involvement in motion processing.
Unexpectedly high direction selectivity was alsoobserved in areasV1 and V4v and
a possibleexplanation in terms of context-dependent neural tuning was proposed.

Finally, we combined the retinotopic mapping method and the functional lo-
calization of the hMT+ with Di�usion Tensor Images to study the anatomical
connectivity acrossthe low-level visual areas. A completeprocessingpipeline was
developed to analyzethe di�eren t information in a commonreferenceframe. Based
on a Riemaniann geometry connectivity mapping approach, we could reconstruct
the optic radiations linking the LGN and V1. The topology of connectionsbetween
the two hemispheresvisual areas was studied in the splenium and con�rmed a
previous report. We �nally show the estimated anatomical connectivity between
hMT+ and the di�eren t occipital retinotopic areas,supporting the existenceof two
anatomically segregatedpathways.

8.2 Perspectiv es

Naturally, this work opensmore perspectivesthan it answersquestions.

The retinotopic mapping procedure can be further improved in many respects.
First, the acquisition time may be loweredby the useof a simultaneouspolar angle
and eccentricit y stimulation, each coordinate having its own frequency. Although
already suggestedby others (e.g. [239]), this possiblestimulation improvement has
not beentested so far. Second,expandingthe rangeof patterns usedin the stimuli
as well as the type of task performed by the subjects may broaden the scope of
retinotopic mapping. Beyond providing a higher signal in the regions currently
disputed, it could help unveiling new retinotopic maps as already shown by some
groups(e.g. [194]). Third, the segmentation of the retinotopic areasis still manual
in our procedure.Warping a model of the typical pattern onto a 
at representation
of the cortical surface, as proposed by [53], appears an appropriate solution to
automate this last step. We will addressthis issueshortly in a collaboration with
the DyVA team.

The fMR-adaptation experiment suggestsseveral future works. First, increas-
ing the number of motion direction could lead to tuning curves measurements
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closerto thosetypically shown by electrophysiologists,henceyielding to �ner func-
tional sub-population characterization. However the non-linear relation between
neural activit y and the BOLD signal certainly restricts the sampling resolution
along the stimulus dimension (here the direction of motion) that can ultimately
be obtained. It would nonethelessbe interesting to have an estimation of this
limitation. Second,a mathematical model of neuronal adaptation in the di�eren t
neural populations and visual areas would be of great interest to clarify the
possibleorigins of the BOLD signal observed. Third, a similar approach combining
our experimental fMR-adaptation paradigm and appropriate fMRI data analysis
methods as the HRF toolbox can be straightforwardly applied to other stimulus
dimensionssuch as motion velocity or color contrasts. Such experiments would
bring a better characterization of functional selectivity in the human low-level
visual areas. Finally, the results of this experiment attracted our attention on the
important relations between (visual) perceptions and subject's state, including
attention (precisely!) and stimulation history but also perhapsmore global state
parameters such as the emotional state. Improving our understanding of these
complexinter-dependenciesappearsto usasan exciting direction for future research.

Exploring non-invasively the white matter connectivity within the visual brain
has an enormouspotential. First it could clarify the de�nition and labeling of
visual areas currently under disputes or help in the segmentation of complex of
areassuch as hMT+. Additionally , anatomical connectivity is a complementary
information to allow comparisonsacrossspeciessuch as macaqueand humansand
better understand the biological evolution. Ultimately, di�usion-w eighted imaging
may reveal the anatomical structure of the human visual system that will have
to be further related with its functional architecture. However, we have stressed
someimportant limitations of inferencesbasedon DTI. More sophisticatedwater
di�usion models based on High Angular Resolution Di�usion Imaging (HARDI)
and appropriate connectivity mapping methods constitute a promising direction to
overcomethese limitations. This issuewill be addressedshortly in the laboratory
on the occipital visual cortex using algorithms currently under study [48].
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Conclusion et perspectiv es

R�esum�es des contributions

Nousavonsintroduit unenouvelleapproche de lissagedesdonn�eesd'IRMf contraint
�a la surface corticale. Nous avons d�emontr �e ses avantages sur (i) la m�ethode
classiquede �ltrage 3D isotrope qui ignore la g�eom�etrie complexe de la surface
corticale et (ii) des proc�ed�es de r�egularisation sur une repr�esentation explicite
de la surfacecorticale (i.e. un maillage) qui n�ecessitent une projection pr�ealable
des donn�eesfonctionnellessur un mod�ele du cortex. Une interface Matlab a �et�e
d�evelopp�eepour ce programmede lissageainsi que pour calculer automatiquement
une repr�esentation implicite (i.e. par un ensemble de niveaux ou level set), �a partir
de maillages des surfacescorticales. Le programme de lissagea �et�e implant�e en
C++ par Jean-Philippe Ponsdurant sa th�eseau laboratoire Odyss�ee.

Une proc�edurecompl�ete de cartographiepar r�etinotopie permettant l'identi�cation
individuelle de di� �erentes airesvisuellesde bas-niveaua �et�e d�evelopp�ee. Di� �erentes
con�gurations desstimuli ont �et�e test�eesen vue d'optimiser la qualit�e descartesdu
champsvisuel ainsi obtenues. Le paradigmeainsi retenu conduit �a desr�esultats �-
ablesen 20 minutes d'acquisitions fonctionnelles.Desprogrammesautomatisant les
di� �erentes �etapesde l'analyse et incluant destraitements desdonn�eesanatomiques
et fonctionnellesont �et�e implant�esen Matlab. Toutefois, �etant donn�e que le calcul
du signe du champs visuel a conduit �a des r�esultats insatisfaisants, et ce malgr�e
di� �erentes tentativ esde post-traitements desdonn�ees,une d�elin�eation manuelle se
fondant sur les cartes angulaires obtenues est n�ec�essaire. La m�ethode compl�ete
est d�esormaisutilis �ee en routine au laboratoire Odyss�ee et au centre IRMf de la
Timone. De plus, elle a fait l'objet d'un transfert aupr�es de l' �equipe DyVA et est
actuellement utilis �ee pour �etudier l'organisation corticale de patients sou�rant de
pathologiesr�etiniennes.

Une proc�edure d'indenti�cation fonctionnelle du complexe MT chez l'homme
(hMT+) a �egalement �et�e d�evelopp�ee. �A l'instar de la cartographie r�etinotopique,
nous avons identi� �e la con�guration de stimuli optimale parmi di� �erent motifs et
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contrastes entre conditions de stimulation a�n d'obtenir des activations robustes
dans la zonecorticale pr�esum�ee. La châ�ne de traitements des imagesa �egalement
�et�e automatis�ee.

En sefondant sur cesproc�eduresd'identi�cation de di� �erentes airesvisuelles,nous
avons ensuitecaract�eris�e la sensibilit�e fonctionnellede celles-cipar rapport �a la di-
rection du mouvement. Une exp�erienced'IRMf d'adaptation �evenementielle coupl�ee
�a une m�ethode non-param�etrique d'estimation de la r�eponseh�emodynamique ont
permis d'estimer la s�electivit�e �a la direction propre �a chaqueaire et d'en inf�erer des
proportions relatives de sous-populations cellulairesselon leur pro�l de s�electivit�e.
Nous avons trouv�e une s�electivit�e plus forte dans hMT+ suivi par l'aire V3A,
con�rmant leur implication forte dans le traitement du mouvement visuel. Une
s�electivit�e singuli�erement �elev�ee a �egalement �et�e observ�ee dans les aires V1 et
V4v. Une explication plausible en terme de s�electivit�e fonctionnelle d�ependant du
contexte a �et�e propos�eepour rendre compte de ce ph�enom�ene.

En�n, nous avons combin�e les proc�edures de cartographie des aires visuelles
avec des imagesdu tenseur de di�usion pour �etudier la connectivit�e anatomique
entre les di� �erentes aires visuelles de bas-niveau. Une châ�ne de traitement
compl�ete a �et�e d�evelopp�eea�n d'analyserdansun mêmer�ef�erentiel les informations
compl�ementaires fourniespar lesdi� �erentesmodalit �esd'IRM. En sefondant sur une
approchedeg�eom�etrie Riemanniennedecartographiedela connectivit�eanatomique,
nousavonspu reconstruirelesradiations optiquesreliant le CorpsGenouill�e Lat�eral
�a l'aire V1. La topologie des connectionsentre les deux h�emisph�eres des aires
visuellesa �egalement �et�e �etudi�ee au niveau du splenium et con�rme des r�esultats
publi�es r�ecemment. En�n, nous avons estim�e la connectivit�e anatomique entre
hMT+ et les di� �erentes aires r�etinotopiques,corroborant l'existencede deux voies
parallelesli�eesau traitement cortical de l'information visuelle.

Perspectiv es

Naturellement, ce travail ouvre davantage de perspectives qu'il ne r�esoud de
questions.

La proc�edure de cartographie r�etinotopique peut être am�elior�ee en di� �erents
points. Tout d'abord, le temps d'acquisition pourrait être r�eduit en pr�esentant si-
multan�ement lesstimuli codant respectivement pour l'angle polaire et l'excentricit �e,
chaque coordonn�ee ayant sa propre fr�equence fondamentale. Bien que d�ej�a
sugg�er�ee par d'autres auteurs (par exemple [239]), cette am�elioration suppos�ee
de la stimulation n'a jusqu'alors jamais �et�e test�ee directement. Par ailleurs,
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accrô�tre le type de motif utilis �e dans les stimuli ainsi que la t âche r�ealis�ee par le
sujet durant l'exp�eriencedevrait �elargir le champ d'application de la cartographie
r�etinotopique. En plus de permettre l'enregistrement d'un meilleur signal dans
des r�egionsactuellement d�ebattues, de telles am�eliorations pourraient r�ev�eler de
nouvelles cartes r�etinotopiques, commecela a d�ej�a pu être r�ealis�e auparavant par
d'autres groupes (voir par exemple[194]). En�n, la segmentation �nale des aires
r�etinotopiquesest une �etape manuelle dans notre proc�edure. D�eformer un mod�ele
des cartes angulaires typiques sur les donn�ees exp�erimentales projet�ees sur une
repr�esentation plane de la surfacecorticale, commepropos�e r�ecemment dans [53],
semble une approche prometteuse. Nous allons implanter une telle proc�edure �a
court terme, en collaboration avec l' �equipe DyVA.

L'exp�erience d'IRMf d'adaptation ouvre de nombreusesperspectives. Dans un
premier temps, il serait souhaitabled'accrô�tre le nombre de directions di� �erentes
du mouvement a�n d'obtenir unemesureplus pr�ecisedescourbesdes�electivit�e �a cet
attribut. Cependant, lesrelations non-lin�eairesentre l'activit �e neuronaleet le signal
BOLD limitent certainement la r�esolution de l' �echantillonnage d'une s�electivit�e �a
une dimension du stimulus (ici la direction du mouvement) que l'on peut obtenir
par cette m�ethode. Il serait souhaitable d'avoir une estimation quantitativ e de
cette limitation. Deuxi�emement, il serait particuli �erement int�eressant de d�evelopper
un mod�ele math�ematique de l'adaptation neuronale dans les di� �erentes aires et
populations neuronales.Cela pourrait contribuer �a mieux cerner l'origine du signal
BOLD mesur�e dans les exp�eriencesd'adaptation. Troisi�emement, une approche
similaire, i.e. combinant notre paradigme d'IRMf d'adaptation et des m�ethodes
appropri�ees d'analyse des donn�ees IRMf comparables �a l'outil HRF utilis �e ici,
peut être directement appliqu�ee�a d'autres dimensionsde stimuli commela vitesse
du mouvement ou la couleur. De telles exp�eriencesconduiraient �a une meilleure
caract�erisation de la s�electivit�e fonctionnelle dans le cortex visuel de l'homme.
En�n, les r�esultats de cette exp�erienceont attir �e notre attention sur les relations
importantes entre perception (visuelle) et l' �etat g�en�eral du sujet, que ce soit les
processusattentionnelssous-jacents, l'historique de la stimulation pr�esent�eeau sujet
mais peut-̂etre �egalement desparam�etresplus globaux commeson�etat �emotionnel.
Accrô�tre notre compr�ehensionde ces inter-d�ependancescomplexesnous apparâ�t
commede passionnantes directions de recherche pour l'avenir.

L'exploration non-invasive des �bres de mati�ere blanche dans le syst�eme vi-
suel pr�esente �egalement un potentiel consid�erable. Tout d'abord, cela permettrait
de clari�er la d�e�nition et l' �etiquetaged'aires visuellesactuellement sujettes �a de
vigoureux d�ebats dans la communaut�e. Cette information contribuerait aussi �a
segmenter des complexesd'aires tel que hMT+ en di� �erentes sous-structures. En
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outre, la connectivit�e anatomique fournit une information suppl�ementaire dans
l'optique d'�etablir des analogiesentre esp�ecestelles que le macaqueou l'homme
et ainsi de mieux comprendre l' �evolution biologique. Finalement, l'imagerie de
di�usion pourrait r�ev�eler l'architecture anatomique du syst�eme visuel cortical
de l'homme qui sera alors �a relier �a son architecture fonctionnelle. Nous avons
n�eanmoins soulign�e les limitations inh�erentes aux inf�erencesplausibles �a partir
d'imagesdu tenseurde di�usion. Desmod�elesplus sophistiqu�esde la di�usion des
mol�eculesd'eau, fond�eessur desdonn�eesde di�usion �a haute resolution angulaire
assortiesde m�ethodes de cartographie des connectivit�es appropri�eesrepr�esentent
une direction prometteuse pour d�epasserces limitations. Cette direction sera
prochainement examin�eedans le cortex visuel occipital grâce �a desalgorithmes en
coursde d�eveloppement au seindu laboratoire Odyss�ee[48].
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