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Chapitre 1

Introduction et résumé étendu

Ce chapitre est un résumé en francais du mémoire de thése. Pour chaque
point, plus d’informations se trouvent dans le corps du mémoire (en anglais),
qui constitue la deuxiéme partie de ce document.

1.1 Motivations et introduction

Motivations

De grands systémes existent oll une solution optimum doit étre trouvée,
par exemple le trafic routier. Une voie prometteuse pour résoudre ces pro-
blémes est le calcul distribué, oul la connaissance du systéme est éparpillée
dans tout le systéme.

Les systémes multi-agent (SMA) sont un modéle approprié pour résoudre
ces problémes. Un agent est une entité autonome qui évolue dans un envi-
ronnement ; elle le percoit et agit sur lui. Chaque agent a un comportement
et un but propres. Dans certains cas, des comportements simples d’agents
peuvent générer des comportements globaux trés efficaces, concept désigné
sous le nom d’émergence. Un tel exemple est 'organisation des fourmis.

Actuellement, il n’y a pas de théorie générale ou efficace pour ces sys-
témes d’auto-organisation. De plus, beaucoup de paramétres influencent 1’ef-
ficacité d’un tel systéme. Une approche classique pour comprendre les régles
qui régissent ces systémes est de faire beaucoup d’expérimentations et d’en
interpréter les résultats.

Cependant, les simulations prennent du temps pour étre implantées et
exécutées. Leur exécution sur des machines paralléles permet de réduire leur
temps d’exécution, mais la programmation paralléle est plus difficile et rend
plus longue encore leur implantation. Cette difficulté devient plus accrue
dans les SMA, ou chaque agent a son propre comportement et se déplace
dans ’environnement ; les calculs sont donc irréguliers et non localisés.

Actuellement, il n’y a pas d’outils génériques et faciles pour simuler de tels
systémes. Dans ce contexte, la contribution de cette thése s’articule autour
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16 CHAPITRE 1. INTRODUCTION ET RESUME ETENDU

des trois axes suivants :

1. Fournir un modéle de simulation de SMA situés, aptes a la parallélisa-
tion;

2. Faire un travail algorithmique dans les SMA, notamment dans 1'im-
plantation et I’analyse des algorithmes de vision et de propagation par
vagues, ainsi que dans la totale reproductibilité de simulations aléa-
toires;

3. Fournir une implantation qui valide le modéle et qui permet de déve-
lopper rapidement des simulations rapides a l’exécution.

Famille des langages ParCeL

Notre contribution n’est pas singuliére. Elle est une continuation des
travaux menés dans notre équipe depuis 1989. L’intérét des langages ParCeL
(Parallel Cellular Language) est d’offrir des outils paralléles permettant d’écrire
facilement des applications de calcul distribué sur des machines paralléles
modernes. Le modéle (avec son implantation) que nous présentons dans cette
thése est le cinquiéme dans cette catégorie (ParCeL-5).

Notre modéle de programmation

Dans notre modéle discret, I’environnement est bi-dimensionnel rectan-
gulaire. Chaque entité de simulation occupe une case. Il y a trois types
d’entités : obstacles, ressources et agents. Les obstacles empéchent les agents
d’entrer dans certaines cases. Les ressources ont comme réle principal d’at-
tirer les agents. Pour cela, elles peuvent propager des champs de potentiel,
percus par les agents. Ces champs de potentiels contournent les obstacles
et peuvent évoluer pendant la simulation. Les ressources peuvent également
contenir des objets qui peuvent étre transportés par les agents.

Les agents sont les entités mobiles de la simulation. Les agents ont un
comportement propre et une mémoire propre associée. Ils peuvent naitre
et disparaitre dynamiquement, pendant la simulation. A part la perception
des potentiels introduite plus haut, ils peuvent également étre influencés par
la vision, qui leur permet ou non d’obtenir des informations sur une case
distante. Pour la flexibilité du modéle, les agents peuvent avoir aussi une
perception globale de ’environnement.

La simulation est basée sur des cycles. Pendant chaque cycle, le compor-
tement de chaque agent est exécuté et son action est accomplie (si elle est
possible). Des exemples d’actions sont le mouvement et la prise et la dépose
d’objets.

Plusieurs types de statistiques sur la simulation peuvent étre sauvegar-
dées dans des fichiers pour une analyse post-mortem.
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Caractéristiques et hypothéses de notre outil

Nous fournissons également un outil, sous la forme d’une bibliothéque,
basé sur ce modéle de simulation, qui implante la plupart des spécifications
du modeéle. Additionnellement, la bibliothéque est paralléle, mais cela est
quasi-entiérement caché a 'utilisateur.

Pour notre outil nous avons di prendre des hypothéses simplificatrices.
Par exemple, le potentiel décroit linéairement avec la distance & la ressource
et la vision est empéchée seulement par les obstacles. Ces hypothéses ne sont
pas toujours réelles, mais elles sont suffisamment bonnes pour ces simulations
et suffisamment simples pour avoir de bonnes performances en exécution.

Plan du mémoire de thése

Les deux sections suivantes présentent les principes des SMA et du paral-
lélisme. La partie bibliographique finit avec une section sur des simulateurs
paralléles de SMA. Ensuite, le travail principal de notre thése commence
avec la définition du modéle de simulation de SMA. Deux autres sections
algorithmiques présentent la conception des algorithmes de vision et de pro-
pagation du potentiel. Deux autres sections sont dédiées a la bibliothéque
dans son ensemble : ses caractéristiques et ses domaines d’application. Les
classiques bilan et perspectives finissent ce résumé. Le manuel de référence
de la bibliothéque peut étre trouvé dans la thése.

1.2 Principes des systémes multi-agent

Intéréts du paradigme multi-agent

Plusieurs chercheurs considérent que le paradigme multi-agent est un
pas en avant dans la programmation. Pour Gasser [40], par exemple, la puis-
sance des agents consiste dans leur autonomie et dans leur comportement
dirigé vers un but. Sipper [75] voit le futur dans la « programmation cel-
lulaire » (caractéristique aux agents) guidée par trois principes : simplicité,
parallélisme massif et localité. Jennings [54] considére ce paradigme pour
sa robustesse, son extensibilité et sa généralisation, mais évoque deux points
difficiles : I'interaction imprévisible des agents et la difficulté de prédiction du
comportement global du systéme. Finalement, Ferber [33, 32] cite plusieurs
domaines d’application appropriés aux SMA, comme 'intelligence artificielle
distribuée et la simulation de populations réelles (populations de fourmis par
exemple).

Introduction au concept d’agent

Le concept d’agent a actuellement un sens trés large. Cette diversité vient
du fait qu’un agent est défini comme une entité autonome qui se trouve
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dans un environnement, qui communique avec lui par ses percepts et ses ac-
tions, qui a un comportement propre et qui peut communiquer avec d’autres
agents [32]. Dans ce contexte, un agent peut étre aussi un programme infor-
matique qui voyage d’ordinateur en ordinateur, que I’équivalent d’un objet
de la programmation orienté objet ou bien I’entité simulant un étre vivant
(un oiseau par exemple).

Un type particulier de SMA est le SMA situé, ol ’environnement posséde
une métrique et des contraintes topologiques existent, comme l'interdiction
pour un agent d’entrer dans un mur (cohérence du systéme) ou l'interdiction
d’avoir deux agents dans une méme place en méme temps (simultanéité).

Applications des systémes multi-agent

Ferber [32] fait I’état de 'art des architectures, des environnements et
des applications des SMA. Dans 'industrie, les SMA sont utilisés dans des
centres de production d’énergie [85], la médecine et la reconnaissance de
formes [32]. En recherche, ils sont utilisés pour simuler des équipes spor-
tives [78], particuliérement le championnat RoboCup!.

Modélisation des systémes multi-agent

Nous décrivons briévement dans cette section la modélisation des com-
posants intervenant dans les SMA.

L’environnement est généralement discret et bi-dimensionnel (2D). Il
peut étre borné, comme dans Pengi [4, 30], ou torique, comme dans BioLand [86].
Notre modéle permet la simulation des deux types.

Dans notre modéle le temps aussi est discret, basé sur des cycles de si-
mulation. Pour prendre en compte la simultanéité des actions, un cycle est
divisé en plusieurs sous-cycles. Par exemple, PIOMAS [15] utilise 2 sous-cycles
et BioLand utilise 7 sous-cycles. Notre outil utilise 5 sous-cycles : (1) per-
ception et décision, (2) résolution des conflits, (3) action, (4) exécution de la
fonction utilisateur et (5) mise & jour des percepts et de I’environnement.

Les actions faites par les agents peuvent étre exactes, comme dans notre
modele et dans Pengi, ou inexactes, comme dans PIOMAS. Certaines actions,
comme le mouvement, peuvent engendrer des conflits spatiaux. Dans notre
modeéle, ces conflits sont automatiquement résolus par le simulateur. D’autres
actions possibles sont de prendre des objets, de déposer des objets et de pous-
ser des objets. L’implantation actuelle de notre modéle permet de prendre
et de déposer des objets.

Dans notre modéle les agents peuvent étre créés et détruits dynamique-
ment, mais la génétique des agents n’est pas prise en compte.

Plusieurs percepts d’agents existent dans la littérature [31]. Nous en pré-
sentons deux, qui sont aussi implantés dans notre bibliothéque : ’odorat et

'RoboCup, site Web : wuw.robocup.org.
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la vision.

L’odorat permet aux agents de sentir I’« odeur » (qu’on appellera poten-
tiel) des cases voisines. Chaque source d’odeur propage dans I’environnement
un champ de potentiel, qui permet aux agents de trouver leur chemin vers la
ressource. Une caractéristique importante des champs de potentiel est qu’ils
contournent les obstacles. Un modéle de propagation de potentiel est la pro-
pagation par vagues [31, 30, 59, 86]. Il consiste & propager le potentiel de la
ressource de plus en plus loin en décroissant la valeur de potentiel, comme
les vagues. Plusieurs fonctions peuvent étre utilisées pour la décroissance du
potentiel. BioLand utilise une fonction inversement proportionnelle avec le
carré de la distance. Notre modéle utilise une fonctions linéaire. Egalement,
lorsqu’une case est influencée par plusieurs ressources, une fonction de com-
binaison est utilisée, par exemple add, comme dans BioLand, ou maximum,
comme dans notre bibliothéque, chacune avec des avantages et des inconvé-
nients.

La vision permet aux agents de voir des informations sur une case de l’en-
vironnement. Contrairement & ’odorat, le champ de vision peut étre grand,
contenant généralement toutes les cases & une distance inférieure & un cer-
tain nombre, appelé rayon de vision. Une case A est visible d’une case B si
la ligne continue du centre de A au centre de B ne rencontre aucune case
opaque. Dans notre modéle, les cases opaques sont les obstacles. Nous allons
présenter dans le chapitre de vision plusieurs algorithmes de tragage de lignes
utilisables dans la vision.

1.3 Principes du calcul paralléle

Nous allons présenter dans cette section seulement les concepts du pa-
rallélisme exploités dans cette thése, et non une description exhaustive du
parallélisme. Nous entendons par « parallélisme » 1'utilisation simultanée de
plusieurs processeurs afin de diminuer les temps d’exécution ou de traiter
dans le méme temps des problémes plus importants.

Mesure des performances

La mesure des performances des programmes, surtout des programmes
paralléles, est trés complexe, parce que beaucoup de paramétres influencent
les performances. Nous verrons dans les sections 7.10 et 8.8 les principales
mesures de performances de notre outil.

L’indicateur le plus connu pour quantifier les performances d'un pro-
gramme parallele est 1’accélération. L’accélération S est définie comme le
rapport entre le temps d’exécution séquentiel et le temps d’exécution pa-
rallele : S(P) = T(1)/T(P), ou P est le nombre de processeurs. Le temps
d’exécution peut étre le temps total passé (« temps horloge ») ou bien le
temps passé par le processeur (« temps processeur »). Le temps séquentiel
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peut étre principalement le temps du méme programme quand il est exécuté
sur un seul processeur (thread) ou bien le temps du meilleur programme
séquentiel.

Une accélération égale au nombre de processeurs est appelée accélération
idéale. 11 y a toutefois trois cas oll un programme peut dépasser cette accé-
lération : quand toutes les données finissent par tenir dans l’ensemble des
caches de tous les processeurs utilisés, quand le probléme est non détermi-
niste (& cause des multiples points de départ, la solution est trouvée beaucoup
plus rapidement) et quand la parallélisation a entrainée une modification de
I’algorithme de départ.

Sources de pertes de performances en parallélisme

Il existe deux sources principales de perte de performances en parallé-
lisme : la présence inévitable de fractions séquentielles et les surcoiits des
opérations de parallélisation.

L’influence des parties séquentielles sur les performances est donnée par
deux lois. La premiére, la loi d’Amdahl [6], limite 1’accélération d’un pro-
gramme paralléle & .

fa+ A

ou fa est la fraction séquentielle — la fraction du temps d’exécution qui ne
peut pas étre parallélisée — et P est le nombre de processeurs.

Smax(P)

La deuxiéme loi, la loi de Gustafson-Barsis [46], s’applique pour les pro-
grammes dont la partie séquentielle a une durée constante méme quand la
taille du probléme augmente, ainsi que le temps d’exécution total. Dans ce
cas, la fraction séquentielle fgB = Tyeq/Ttotal €St une fonction décroissante de
la taille du probléme W, cette loi étudiant alors I’évolution de ’accélération
lorsqu’on traite des problemes de plus en plus gros sur de plus en plus de pro-
cesseurs, en gardant un temps d’exécution constant : T'(P, W) = T'(1, W)).
On aboutit & une limite d’accélération bien meilleure que celle d’Amdahl :

Smax(P) = fGB + (1 - fGB)P

Il faut remarquer que ces deux lois ne sont pas incompatibles, mais
s’appliquent & des comportements différents du méme programme : la loi
d’Amdahl suppose la fraction séquentielle constante et varie le nombre P de
processeurs a taille de données W constante, ce qui donne des temps d’exé-
cution T' différents, tandis que la loi de Gustafson-Barsis suppose la fraction
séquentielle décroissante en fonction de la taille du probléme et varie P et W
tel que T reste constant. Dans tous les cas, il existe une fraction séquentielle
qui limite ’accélération.

L’utilisation du parallélisme ajoute des surcharges d’exécution qui ré-
duisent les performances paralléles. Elles peuvent étre dues aux limites du
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matériel, comme la création de téches, la contention de mémoire et les dé-
lais de communication et de synchronisation. Elles peuvent également étre
dues au logiciel, comme le déséquilibrage de charge ou le cofit de ’équili-
brage, et le surtravail. Le surtravail dans un programme apparait quand,
pour étre exécuté en paralléle, du travail additionnel est donné aux proces-
seurs par rapport & la version séquentielle ; un tel exemple est notre méthode
iterative-fixe de propagation par vagues (section 8.8.3).

Finalement, un autre facteur qui influence les performances paralléles est
la granularité, définie comme la taille moyenne des sous-tdches des proces-
seurs [5] ou le rapport entre le nombre de taches et le nombre de proces-
seurs [37].

Complexité de la programmation paralléle

La programmation paralléle est souvent plus difficile que la programma-
tion séquentielle. Les conditions d’accés concurrent aux données, la décom-
position des taches, la portabilité et le débogage sont quelques-unes de ces
difficultés. De plus, pour augmenter fortement ses performances en exécution,
une conception plus appropriée et plus complexe d’un algorithme paralléle
doit étre faite, comme montré par nos expériences [83].

Cependant, la balance entre le temps d’exécution et le temps de dévelop-
pement peut étre équilibrée. Et, comme Skillicorn [76, page 131] le remar-
quait, dans la recherche, beaucoup de logiciels sont destinés & une utilisation
& court terme, générant des problémes nouveaux a essayer. Pour ce type de
logiciels, le temps de développement est aussi important que le temps d’exé-
cution. Cette idée a influencé la conception de notre modéle, car la simplicité
de programmation est son but premier. Par exemple, le parallélisme de la
bibliothéque est transparent a l'utilisateur (chapitre 9).

Architectures paralléles

Lors de I'implantation d’une application paralléle, plusieurs architectures
paralléles doivent étre prises en compte. Flynn [35], par exemple, a classifié
les ordinateurs en quatre catégories :

1. SISD (Single Instruction Single Data) machines, qui exécutent une ins-
truction sur une donnée en méme temps, par exemple une machine
mono-processeur. Il est intéressant de citer un article plus récent (1996)
de Flynn [36], ou, face aux caractéristiques paralléles des processeurs
modernes (pipelinés et superscalaires), il reformule sa définition en
« une opération est exécutée par transition d’état ».

2. SIMD (Single Instruction Multiple Data) machines, qui exécutent une
instruction sur plusieurs données en méme temps, par exemple les ma-
chines vectorielles.
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3. MISD (Multiple Instruction Single Data) machines, qui exécutent plu-
steurs instructions sur une donnée en méme temps. Ces machines
n’existent pas réellement en forme pure, mais une analogie peut étre
faite avec le pipeline des processeurs.

4. MIMD (Multiple Instruction Multiple Data), qui exécutent plusieurs ins-
tructions sur plusieurs données en méme temps.

A leur tour, les machines MIMD peuvent étre divisées en trois catégo-
ries : multicomputers (machines & mémoire distribuée), multi-processeurs
(machines & mémoire partagée) et machines & mémoire partagée distribuée
(partagée mais physiquement distribuée). Comme nous le présenterons plus
loin, nous serons intéressés par les machines supportant le paradigme de
programmation a mémoire partagée.

Un élément essentiel d’une architecture est sa mémoire cache, une mé-
moire rapide s’interposant entre les registres du processeur et la mémoire.
Son role est d’avoir des copies de lignes de mémoire fréquemment utilisées.
L’intérét du cache vient des deux principes suivants, rencontrés dans la quasi-
totalité des programmes [48, page 38| :

1. Localité temporelle : une méme donnée est accédée plusieurs fois dans
une courte période de temps, ce qui exploite la vitesse supérieure des
caches.

2. Localité spatiale : des données proches d’une donnée déja accédée sont
a leur tour accédées, ce qui exploite le fait que les caches mémorisent
des lignes entiéres de mémoire.

Hill et al. [49] remarquent un autre intérét des caches dans les pro-
grammes paralléles : la localité processeur. Un programme a une bonne loca-
lité processeur si pour de courtes périodes de temps les accés & une donnée
sont faites par un méme processeur (plutdt que par plusieurs processeurs).

Connaitre l'organisation du cache est essentiel pour obtenir de bonnes
performances. Plusieurs techniques permettent de ’exploiter au mieux, comme
lordre de rangement et d’accés aux données, le maintient de la cohérence
des caches [77] et I'évitement du faux partage |48, pages 669-670], [49].

Stratégies de programmation paralléle

Germain-Renaud et Sansonnet [43, chapitre 1| présentent les trois sources
de parallélisme dans les programmes :

1. Parallélisme de données, ol un méme traitement peut étre appliqué
concurremment sur plusieurs données.

2. Parallélisme de flux, ou chaque donnée subit plusieurs traitements suc-
cessifs et plusieurs données en des étapes différentes du programme
peuvent étre traitées concurremment.

3. Parallélisme de controle, ou plusieurs taches différentes sont exécutées
concurremment.
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Notre bibliothéque utilise la premiére et la troisiéme source.

Skillicorn [76] présente six modéles de programmation paralléle, en fonc-
tion de leur abstraction au parallélisme offerte & I'utilisateur. Elle commence
par une programmation est totalement transparente et finit par une pro-
grammation ol tout est explicite, comme la décomposition des données et
la communication entre les processeurs. Notre bibliothéque se situe parmi
les premiers niveaux, car le parallélisme de notre bibliothéque est quasiment
transparent a l’utilisateur.

Plusieurs paradigmes de programmation existent, comme ’envoi de mes-
sages et la mémoire partagée. Dans notre modéle ou les agents et les res-
sources peuvent influencer tout ’environnement, nous avons choisi la pro-
grammation & mémoire partagée. Nous avons également utilisé un style de
programmation SPMD (Single Program Multiple Data) |5, pages 609-610] avec
un modéle de programmation BSP (Bulk Synchronous Parallelism). Ce choix
a été aussi influencé par nos expériences antérieures de développement de
systémes multi-agent [57].

Sur les machines & mémoire partagée plusieurs méthodes de programma-
tion paralléle existent, comme le multi-processus, le multi-threading explicite
et le multi-threading implicite. Nous avons choisi la parallélisation explicite
par threads, car elle est de nos jours portable, performante et simple & mettre
en ceuvre.

Nombres aléatoires paralléles déterministes

Les nombre aléatoires sont nécessaires dans notre modeéle pour fournir
la diversité des simulations. Deux aspects de la suite de nombres utilisés
sont importants : son caractére aléatoire et sa reproductibilité. Knuth [58],
Anderson [7] et Foster [37, pages 329-335] fournissent une analyse détaillée
sur la génération séquentielle et paralléle des nombres aléatoires et sur leur
reproductibilité. En paralléle, la reproductibilité devient difficile. L’approche
classique est d’utiliser une fonction mathématique qui, & partir d’'un nombre
donné, appelé racine, génére une séquence de nombres quasi-aléatoires.

Notre bibliothéque utilise une racine donnée par 'utilisateur et fournit
une simulation aléatoire et totalement reproductible, en recalant le généra-
teur a chaque appel.

1.4 Exemples d’implantations de systémes multi-
agent

Nous présentons dans cette section les simulateurs multi-agent qui se rap-
prochent le plus du but de notre modéle. Quelques idées sur I’environnement
de développement de tels simulateurs seront aussi introduites.



24 CHAPITRE 1. INTRODUCTION ET RESUME ETENDU

Pengi, un simulateur séquentiel simple

Pengi, de Agre et Chapman [4, 3], consiste en un environnement rectan-
gulaire ol se trouvent des blocs de glace, des « blocs magiques », des abeilles
et un pingouin. Le pingouin a un comportement donné par 'utilisateur, alors
que les abeilles ont un comportement déja écrit et tendent généralement &
se rapprocher du pingouin. Le but des abeilles est de tuer le pingouin, soit
en se rapprochant de lui et le piquant, soit en jetant sur lui un bloc de glace.
Le but du pingouin est de collecter tous les « blocs magiques ». Il peut aussi
jeter des blocs de glaces vers les abeilles, pour les tuer.

Les agents (pingouin ou abeilles) se déplacent d’une case. Ils ont un seul
percept : la vision. Les conflits spatiaux entre les agents sont laissés a la
charge de l'utilisateur.

Drogoul, Ferber et Jacopin [30] ont écrit une version amélioré de Pengi.
Les auteurs ont ajouté de l'intelligence et de ’apprentissage au niveau des
agents, ainsi qu'un autre percept : 'odeur. Pour la propagation des odeurs
ils ont utilisé un algorithme comme le nétre, de propagation par vagues.

Comparée & ces simulateurs, notre bibliothéque ne fournit pas & ce jour
d’action consistant & pousser des objets. Cependant, elle offre d’autres fonc-
tionnalités et plus de généricité que le simulateur Pengi.

PIOMAS, un simulateur paralléle utilisant des incertitudes

La spécificité du simulateur PIOMAS [14, 16, 15| est qu'’il prend en compte
les incertitudes et les erreurs, autant dans les perceptions que dans les actions
des agents. Il utilise pour cela des matrices de probabilités obtenues suite a
des expériences réelles avec un robot NOMAD 200.

L’environnement contient des objets statiques (murs) et des objets mo-
biles (portes, agents). Le systéme maintient la cohérence du systéme et gére
la simultanéité des actions. La simulation est divisée en cycles, chacun conte-
nant quatre sous-cycles, ce qui lui permet de résoudre les conflits spatiaux
entre les agents.

Le simulateur est implanté en ParCeL-3 [82], un langage cellulaire paral-
léle orienté vers les applications multi-agent, mais trés générique et relative-
ment complexe. ParCeL-3 s’appuie sur le paradigme multi-threading et a été
développé a Supélec.

La résolution des conflits spatiaux découlant de la simultanéité des ac-
tions a été résolue par une parallélisation basée sur les conflits et un équili-
brage de charge dynamique utilisant deux work-pools [60] en cascade. L’ac-
célération sur deux machines paralléles différentes, dont un SGI Origin 2000
d’architecture DSM, est de 2 sur 4 processeurs.

Ce simulateur est approprié pour des simulations fines, avec un petit
nombre d’agents, contrairement & notre modeéle et & notre bibliothéque.
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BioLand, un simulateur massivement paralléle

Le simulateur BioLand fournit beaucoup de fonctionnalités, comme des
réseaux de neurones et des informations génétiques utilisables dans le com-
portement des agents, et peut simuler un trés grand nombre d’agents sur des
machines paralléles.

Les agents ont deux percepts, I’odeur et I'ouie, et plusieurs actions, prin-
cipalement se déplacer, manger, se reproduire et émettre des sons. Tous les
objets de simulation produisent un gradient d’odeur, percu par les différents
types d’agents.

Le simulateur a été écrit dans le langage C* sur une machine CM-2 avec
16k processeurs (une machine SIMD massivement paralléle). Des populations
de dizaines de milliers d’agents ont pu étre simulées.

BioLand offre donc un modéle de simulation trés riche en fonctionnali-
tés. Cependant, la vision et les conflits entre les agents ne sont pas pris en
compte. Enfin, il ne fonctionne que sur des machines SIMD, qui ne sont plus
couramment utilisées aujourd’hui.

Environnement de développement de systémes multi-agent

Plusieurs approches sont possibles pour réaliser un environnement de dé-
veloppement de développement de SMA : langage spécifique, extension d’un
langage existant par de nouveaux mots clés, bibliothéque etc. Ferber [32] pré-
sente par exemple plusieurs langages spécifiques aux SMA. Pour notre part,
nous avons choisi de réaliser une bibliothéque en langage C, afin d’obtenir un
outil rapide, portable et trés générique, vu la grande souplesse du langage C.

1.5 Définition d’un modéle de simulation de sys-
témes multi-agent

Cette section présente le modéle que nous avons concu pour la simulation
de systémes multi-agent situés.

Composants du modéle

Dans notre modéle quatre composants apparaissent (figure 6.1, page 110) :

1. L’environnement : le monde ou les entités évoluent. Il est discrétisé et
peut étre torique ou borné. Les cases peuvent contenir des obstacles,
qui empéchent les agents d’y entrer.

2. Les ressources : entités qui attirent les agents. Elles propagent un
champ de potentiel percu par les agents. Le potentiel d’une ressource et
le champ qui en découle peuvent évoluer pendant une simulation. Les
ressources peuvent également contenir des objets, qui peuvent é&tre pris,
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transportés et déposés dans d’autres endroits par les agents. Plusieurs
types de ressources peuvent étre définis.

3. Les agents : entités mobiles avec mémoire et comportement propres.
Le comportement de chaque agent génére une action, basée sur les
perceptions et la mémoire de ’agent. Pendant la simulation, la mémoire
des agents peut évoluer en contenu et en taille. Un agent ne connait
pas les actions des autres agents, donc, en essayant d’entrer dans une
méme case, ils peuvent entrer en conflit. Ces conflits spatiaux sont
automatiquement résolus par ’arbitre.

4. L’arbitre : entité virtuelle qui maintient la cohérence du systéme. Son
role principal est de résoudre les conflits spatiaux entre les agents. Pour
chaque conflit, il laisse un seul agent accomplir son action et bloque
les autres. Plusieurs stratégies pour le choix du gagnant sont possibles.
Dans notre bibliothéque le choix est fait aléatoirement sur une échelle
& trois niveaux : d’abord parmi les agents nouvellement créés, ensuite
parmi les agents & priorité supérieure et finalement parmi les autres
agents.

Comportement des agents

Nous présentons le comportement des agents dans une section & part car
il ne dépend pas des autres caractéristiques déja mentionnées.

Dans un modéle purement multi-agent, les perceptions et les actions d'un
agent sont locales a sa position. Cependant, pour une flexibilité accrue, nous
laissons la possibilité d’utiliser aussi des caractéristiques globales, mais elles
sont bien différenciées des caractéristiques locales lors de 'utilisation.

Deux exemples de perceptions sont la vision et la perception du potentiel,
qui sont également implantées dans notre bibliotheque. La vision permet a
un agent d’obtenir des informations sur une case distante. La perception du
potentiel permet & ’agent de retrouver, en suivant un potentiel croissant,
un chemin vers la ressource qui I’émet. Les agents n’ont pas tous les mémes
percepts.

Quelques exemples d’actions sont le mouvement, la prise et le dépot
d’objets. Les actions sont prédéterminées et déterministes, par exemple les
agents iront dans une case si ce mouvement est possible et voulu, et ils ne
pourront pas arriver accidentellement dans une case (en « glissant » par
exemple).

Les agents peuvent étre nés et détruits dynamiquement, tout au long de
la simulation. Ils peuvent étre créés dans une case spécifique ou une case
au hasard, soit dans une certaine région de ’environnement, soit dans tout
I’environnement. La création est contrdlée par ’arbitre.
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Moteur d’exécution

Dans notre modeéle les agents agissent de facon synchrone (pendant chaque
cycle de simulation, tous les agents sont activés une seule fois) et simultané-
ment (il n’y a pas de priorité d’exécution d’un agent sur un autre). Ces deux
caractéristiques peuvent générer des conflits spatiaux.

A Dexception des étapes d’initialisation et de fin de la simulation, le
moteur d’exécution est discretisé et basé sur des cycles de simulation. Chaque
cycle contient 5 sous-cycles, qui permettent la synchronicité et la simultanéité
des activations des agents et permettent également la résolution des conflits :

1. activation du comportement de chaque agent, ou ils planifient une ou
plusieurs actions, comme le mouvement et la création d’autres agents;

2. résolution des conflits spatiaux par 1’arbitre ;

3. exécution des actions des agents non conflictuels ou vainqueurs des
conflits ;

4. exécution de la fonction utilisateur (en séquentiel), qui permet & I'utili-
sateur de reprendre la main & la fin de chaque cycle; ici il peut arréter
la simulation ou sauvegarder diverses informations pour une analyse
ultérieure ;

5. mise & jour de 'environnement, notamment des champs de potentiel
des ressources, si ces potentiels ont évolué.

Seuls les sous-cycles 1 et 4 doivent étre fournis par 1'utilisateur ; les autres
sont pris automatiquement en charge par le simulateur.

Informations dynamiques sur la simulation

Tout au long de la simulation, 1'utilisateur a accés a divers paramétres
de la simulation. Additionnellement, le modéle fournit trois types d’informa-
tions. Le premier type permet de mesurer 'efficacité des agents : il fournit
des informations succinctes sur ’évolution du systéme, comme le nombre
d’agents et le nombre de ressources non encore visitées par les agents. Le
deuxiéme type permet une analyse fine du systéme : il génére 1’évolution
détaillée du systéme, comme la position des agents et la charge en objets
de chaque ressource. Le troisiéme type permet de faire une sauvegarde com-
pléte du systéme et il peut également étre utilisé pour initialiser un nouveau
systéme.

Le modéle que nous proposons ne fait pas intervenir le parallélisme.
Comme nous le verrons plus loin, le parallélisme de notre implantation du
modeéle est caché a 'utilisateur. Toutefois, notre modéle a été congu pour
supporter une parallélisation.
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1.6 Conception d’un algorithme de vision

Introduction

La vision est le percept qui permet & un agent d’obtenir des informations
sur une case distante. Pour cela, il utilise d’abord le champ de visibilité de
la case ou il se trouve, qui lui dit si la case cherchée est visible ou non.
Ensuite, si la réponse est affirmative, il peut obtenir 'information cherchée
en appelant la fonction appropriée. Cet algorithme traite le calcul des champs
de visibilité.

Dans nos simulations, les seules entités opaques sont les obstacles, et ils
sont fixes pendant la simulation. Le calcul des champs de visibilité peut alors
se faire une seule fois, en début de simulation. Naturellement, la relation de
visibilité est symétrique : A voit B si et seulement si B voit également A.

Le champ de visibilité d’une case contient toutes les cases a une distance
inférieure & un nombre qu’on appellera rayon de vision. La forme du champ
dépend de la connectivité des cases : un losange dans une connectivité de 4
et un carré deux fois plus grand dans une connectivité de 8. Pour la mesure
des performances, nous serons amenés a connaitre le nombre de cases du
champ de vision. Pour une connectivité de 4 il est :

1=Ty
NSy =4 i+1=2r)+2r, +1
i=1

Pour une connectivité de 8 il est :

NSg = (2r, +1)2 = 4r2 4 4r, +1

L’algorithme de vision consiste a calculer le champ de visibilité de toutes
les cases de 'environnement. Comme ’environnement est en dimension 2 et
le champ de visibilité de chaque case est en dimension 2 aussi, la matrice
stockant les informations de visibilité est de dimension 4.

En absence d’obstacles, le champ de visibilité serait entiérement « vi-
sible ». En présence de ceux-ci, la visibilité entre deux cases est donnée par
les propriétés de la ligne droite continue entre les centres des deux cases.
Les deux cases sont visibles entre elles si et seulement si la ligne ne ren-
contre aucune case opaque. Au cas ou la ligne passe par le coin d’une case
opaque, nous avons choisi de considérer les deux cases comme invisibles I'une
de l'autre.

Les cases traversées par la ligne continue sont données par une ligne
spéciale, qu'on appelle ligne épaisse?. Plusieurs algorithmes de tracage de
lignes normales et épaisses sont donnés dans la littérature [17, 13, 38, 11, 8,
89]. Nous sommes particuliérement intéressés par l’algorithme de Bresenham

2Cette ligne est appelée ligne supercouverture par Eric Andres, de 'Université de Poi-
tiers, qui fait des recherches sur la modélisation analytique discréte d’objets géométriques.
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de tragage de lignes, car il est utilisé dans ’algorithme de lignes épaisses que
NnOous avons congu.

Algorithme de Bresenham de tragage de lignes

L’algorithme de Bresenham [17] a deux particularités importantes : il
n’utilise pas d’opérations avec des nombres flottants, ni de multiplication
ou division de nombres. L’évitement de ces opérations cotiteuses en temps
d’exécution nous a amenés a le choisir comme base pour notre algorithme.

Pour présenter I'idée de l'algorithme de Bresenham, nous considérons le
cas de tragage d’une ligne entre deux points, dans le premier octant (Az >
Ay). Le tragage de la ligne commence par le point avec la coordonnée z
la plus petite. A chaque étape, la coordonnée z du point & dessiner est
incrémentée et, en méme temps, un terme de controle (I’erreur) est mis a
jour. Plus précisément, la valeur de la pente de la droite est ajoutée au terme
de controle et, s’il dépasse la dimension d’une case, la coordonnée y du point
est aussi incrémentée et le terme de controle réajusté. Aprés ce calcul, le
point est dessiné (voir également les cas a et b de la figure 1.1).

Notre algorithme original de tracage de lignes épaisses

Pour obtenir la visibilité entre deux cases, nous avons congu un algo-
rithme original de tragage de lignes épaisses basé sur l’algorithme de Bre-
senham. Dans notre algorithme, & chaque étape le terme de contrdle est
sauvegardé avant d’étre recalculé, et nous utilisons les deux termes pour
trouver les cases traversées par la ligne continue. En effet, comme présenté
dans la figure 1.1, nous savons les cases & dessiner en fonction de la somme
entre ces deux termes. Trois cas apparaissent :

1. somme inférieure & la taille d’'une case : le point & droite du point
courant est alors dessiné.

2. somme égale & la taille d’'une case : la droite continue passe par un
coin, et nous dessinons alors les trois points voisins.

3. somme supérieure que la taille d’une case : le point au-dessus du point
courant est alors dessiné.

Optimisations de I’algorithme de vision

L’algorithme de vision consiste & tracer des lignes épaisses entre tous
les couples de points de ’environnement distants d’une longueur inférieure
ou égale au rayon de vision. Cet algorithme a plusieurs caractéristiques qui
permettent son optimisation :

— La symétrie : si une case A voit une case B, alors la case B voit aussi la

case A. En conséquence, il est possible de calculer, pour chaque case,
seulement une moitié de son champ de visibilité.
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Fic. 1.1 — Illustration d’une étape de l'algorithme de tragage de lignes
épaisses : la comparaison entre la somme des erreurs courante et précédente
et la taille d’une case génére trois cas (a, b et c).

— Connectivité : pour une connectivité de 4, le champ de visibilité est un
losange. Il est possible d’allouer de I'’espace mémoire seulement pour
le losange, avec une fonction bijective entre les cases du losange et la
meémoire (qui est linéaire).

— Type de propagation : les champs de visibilité peuvent étre calculés
statiquement, en début de simulation, ou dynamiquement, seulement
quand cela est nécessaire. Des approches mixtes peuvent également
étre imaginées.

Notre bibliothéque permet de calculer les champs de visibilité en exploi-

tant la symétrie ou non, ainsi que statiquement ou dynamiquement.

Parallélisation de I’algorithme de vision

Nous nous intéressons & la parallélisation de ’algorithme dans le cas
statique, quand les champs de visibilité sont calculés en début de simulation.
Pendant la simulation, les champs sont seulement lus, quand les agents en
ont besoin, donc aucun probléme de parallélisation n’apparait.

Nous considérons alors l’initialisation de ces champs. Calculer un champ
revient & lire les structures d’environnement, pour savoir ou sont les obs-
tacles, et écrire dans la matrice des champs. Comme ’écriture concerne
seulement la case dont le champ est calculé, aucun probléme de conflit
d’écriture n’apparait. Le calcul de champ de chaque case étant identique,
la parallélisation la plus naturelle est le partitionnement du domaine. Dans
notre bibliothéque, a chaque processeur est assigné un nombre identique de
lignes (partitionnement horizontale de ’environnement). En fait, le nombre
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de lignes des domaines peut différer de 1 si le nombre de lignes de ’environ-
nement n’est pas divisible par le nombre de processeurs.

Modéles de temps et de mémoire

Plusieurs paramétres influencent les performances de 1'algorithme de vi-
sion : le nombre de cases de I’environnement N, sa topologie (environnement
torique ou borné), la connectivité des cases (4 ou 8), le rayon de vision 7,
le nombre d’obstacles et le nombre de processeurs.

L’espace nécessaire a 1’algorithme de vision est ’espace occupé par la
matrice de visibilité. Comme décrit précédemment, cette matrice contient le
champ de visibilité de chaque case. L’espace mémoire est alors :

mem(N,r,) = N(2r, + 1)?

quelle que soit la connectivité, si on n’optimise pas ’occupation mémoire
dans le cas de la connectivité de 4, en losange.
Le temps d’exécution de chaque processeur est donné par :

1
time = FN(% + 1)t gtem

Ol epem est le temps nécessaire pour calculer la visibilité entre deux cases.
Les optimisations présentées ci-dessus peuvent réduire d’un facteur constant
autant l’espace mémoire que le temps d’exécution.

Performances de I’algorithme de vision

Pour nos expérimentations nous avons utilisé deux systémes. L’un des
systémes est un serveur Sun Workgroup 450, une machine SMP, avec 4 pro-
cesseurs, sous GNU/Linux. L’autre systéme est un supercalculateur SGI Ori-
gin 2000 [34], une machine DSM, avec 64 processeurs, sous Irix.

L’algorithme de vision a trois parties : une allocation séquentielle, une
allocation paralléle et l'opération de calcul. Les paramétres qui influencent
le temps d’exécution ont déja été présentés ci-dessus.

Les nombreuses mesures de performance que nous avons effectuées nous
ont amenés aux conclusions suivantes. L’allocation séquentielle a un temps
d’exécution négligeable, méme en considérant ses conséquences données par
la loi d’Amdahl. En paralléle, les nombreuses allocations mémoire, méme de
petite taille, peuvent représenter un goulot d’étranglement. Aprés avoir ré-
duit les nombreuses allocations a seulement deux allocations par processeur,
les allocations paralléles ont trés peu influencé le temps d’exécution total.
Enfin, 'opération de calcul est équilibrée en charge. Dans un environnement
512x512, sans obstacles, avec une connectivité de 4 et un rayon de vision
de 8, nous obtenons de trés bonnes performances : accélération de 49 sur
64 processeurs. La courbe d’efficacité a une allure trés intéressante, avec de
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Fic. 1.2 — La fonction théorique d’équilibrage de charge concorde avec les
mesures expérimentales faites : les extrema locaux apparaissent pour les
meémes nombres de processeurs (DSM Origin 2000).

fortes variations. Comme montré dans la figure 1.2, nous avons pu trouver la
source de cette forme. Elle est due au déséquilibrage de charge qui provient
de la décomposition horizontale imparfaite de I’environnement. L’équilibrage
théorique de charge entre les processeurs est donné par la fonction Qigpal,
que nous avons pu établir, et la figure 1.2 montre trés bien que la fonction
théorique et les mesures pratiques concordent.

En faisant varier les paramétres de vision lors des nombreuses mesures
de performances, nous avons établi empiriquement que le temps d’exécution
séquentiel de I'opération de calcul est donné par la relation :

timeiﬁﬁng =alN ’I“12,

De plus, l'utilisation de la symétrie, ainsi qu’une connectivité de 4 a la place
de 8, réduit le temps d’exécution exactement & moitié. Ces résultats expéri-
mentaux concordent également avec nos calculs théoriques.

En revanche, aucune influence des caches n’a été observé lors de ces
mesures.

Finalement, pour les parameétres donnés ci-dessus, les performances glo-
bales de l'algorithme de vision sont, pour 57 processeurs, un temps d’exécu-
tion de moins d’une seconde et une accélération de 43. Nous considérons que

les performances de l’algorithme de vision sont suffisamment bonnes pour
nos simulations.
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1.7 Conception d’algorithmes de propagation de po-
tentiel

Introduction

Toute ressource peut générer aux alentour d’elle un champ de potentiel
qui décroit avec ’éloignement de la ressource. La perception de ces potentiels
est un percept des agents qui leur permet donc de trouver le chemin vers les
ressources.

Contrairement a la vision, les champs de potentiel contournent les obs-
tacles. Mais les champs de potentiel évoluent pendant la simulation, et ils
doivent étre mis & jour plusieurs fois pendant la simulation.

Dans nos simulations nous avons fait deux hypothéses. La premiére est
que le potentiel décroit linéairement avec la distance vers la ressource. La
deuxiéme est que, lorsque plusieurs champs se superposent dans une case, le
potentiel de la case est donné par le mazimum des potentiels concernés. Ces
hypothéses ont été suffisamment bonnes pour le but de nos simulations et
suffisamment simples & implanter efficacement.

La propagation du champ de potentiel se base sur le principe de Huy-
gens [51]. Elle commence d’abord par mettre le potentiel de la ressource dans
la case de celle-ci et continue par mettre récursivement dans toutes les cases
du nouveau front de potentiel un potentiel décrémenté de 1. La topologie
du champ de potentiel est alors identique & la topologie du champ de vision
(voir section précédente).

Méthodes séquentielles

Nous avons imaginé 4 types de méthodes de propagation séquentielle de
potentiel.

Les méthodes récursives mettent le potentiel de la ressource dans sa
propre case et, tout en évitant les obstacles, propagent récursivement ce
potentiel en soustrayant 1 a chaque fois qu’on s’éloigne de la ressource. La
propagation peut se faire en largeur ou en profondeur. La propagation en
largeur utilise une queue pour la sauvegarde des cases en train d’étre trai-
tées, et met dans chaque case directement son potentiel final. La propagation
en profondeur utilise la pile fournie automatiquement par le langage de pro-
grammation, mais a le désavantage que certaines cases regoivent plusieurs
potentiels avant de recevoir leur potentiel final. Dans les deux cas, I’espace
mémoire nécessaire est O(N) (chaque case stocke son potentiel), ou N est
le nombre de cases de l’environnement. Le temps d’exécution est O(p?), ou
p est le potentiel de la ressource, ce qui donne un temps d’exécution total de
O(p?R), o1 R est le nombre de ressources dans I’environnement.

Les méthodes itératives balaient plusieurs fois tout ’environnement en
appliquant une opération simple sur chaque case. Les deux méthodes que
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nous présentons commencent par mettre dans les cases des ressources leur
propre potentiel. Ensuite, la méthode de Bouton [13], qui a travaillé dans
notre équipe, balaie ’environnement successivement avec chacun des poten-
tiels en commencant par le plus grand potentiel des ressources et en finissant
a 1. Lors de chaque balayage, toutes les cases avec un potentiel égal au po-
tentiel de balayage mettent dans leurs cases voisines ce potentiel moins 1, au
cas ol elles ne contiennent pas déja une valeur plus grande. A la fin des ba-
layages, ’environnement contient tous les champs de potentiel complétement
propageés.

Notre méthode itérative est de balayer I'environnement jusqu’a ce que
le potentiel d’aucune case ne soit plus mis & jour. Lors de chaque balayage,
toutes les cases voisines de la case courante recoivent le potentiel de la case
courante moins 1, au cas ou elles ne contiennent pas déja une valeur plus
grande. Cette méthode a I’avantage d’étre trés rapide lorsque peu d’obstacles
existent dans ’environnement.

L’espace mémoire des méthodes itératives est identique aux méthodes
récursives : O(N) (chaque case stocke sont potentiel). Le temps d’exécution
dans le pire cas est de O(Np), nécessaire pour les p balayages des N cases.

Un autre type de méthodes consiste a stocker dans chaque case des dis-
tances vers des ressources. Il serait possible de stocker dans chaque case soit
les distances vers toutes les ressources qui l'influencent, soit une seule dis-
tance, vers la ressource qui lui impose son potentiel. La premiére méthode a
le désavantage d’utiliser beaucoup de mémoire dans le cas général, quand les
cases sont influencées par plusieurs ressources. La deuxiéme méthode n’est
pas trés facile & mettre en ceuvre, car elle doit prendre en compte les fron-
tieres dynamiques d’influence entre les ressources. Nous n’avons donc pas
pris en considération ces méthodes.

Enfin, la méthode multi-grille est efficace dans le cas ou il existe des
régions de l’environnement qui sont équipotentielles. Elle divise ’environne-
ment en plusieurs domaines rectangulaires et met des potentiels identiques
dans un méme domaine. En réitérant le procédé et en changeant les do-
maines, en faisant I’hypothése de la convergence de la méthode on obtient
des potentiels de plus en plus exacts. Cette méthode a aussi ’avantage que
la propagation peut s’arréter plus tot, obtenant une propagation faiblement
inexacte des potentiels. Nous n’avons pas démontré la convergence de cette
méthode et nous ne ’avons pas prise en considération.

11 est difficile de trouver la meilleure de ces méthodes en comparant seule-
ment leurs temps d’exécution théoriques. Nous avons donc recouru & des
mesures de performance en changeant tous les paramétres qui peuvent in-
fluencer le temps d’exécution.
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Méthodes paralléles

Les méthodes séquentielles ne peuvent pas étre utilisées en paralléle telles
qu’elles sont a cause des accés concurrents aux potentiels des cases. Plusieurs
méthodes de parallélisation des méthodes séquentielles présentées précédem-
ment existent. Nous avons étudié les méthodes de parallélisations suivantes :
par décomposition fixe du domaine, par décomposition variable du domaine,
par répartition des données protégées par exclusions mutuelles et par décom-
position du domaine avec environnement privé pour chaque processeur.

La premiére méthode est la méthode bien connue de parallélisation par
décomposition fixe du domaine. Dans notre cas, cette méthode décompose
horizontalement 1’environnement en plusieurs domaines et chaque processeur
recoit un domaine propre. Les domaines ont un nombre de lignes identique
ou différent de 1. La propagation compléte comprend trois étapes.

La premiére étape correspond, pour chaque processeur, i la propagation
des potentiels dans son domaine propre. Toute méthode séquentielle peut étre
utilisée ici. La deuxiéme étape consiste & sauvegarder les frontiéres dans des
tampons. Enfin, pendant la troisiéme étape, chaque processeur fait une mise
a jour de ses frontiéres en les comparant avec les tampons adjacents & son
domaine et propage ensuite les potentiels de ses frontiéres (repropagation).
Des méthodes séquentielles sont utilisées de nouveau.

Une seule propagation de frontiéres peut ne pas suffire. Les étapes 2 et 3
sont répétées jusqu’a ce qu’aucune case de la frontiére ne change plus son
potentiel. En présence des obstacles, dans le pire cas le nombre de repropa-
gations est égal au potentiel de la ressource la plus forte.

Cette méthode a l'inconvénient d’avoir besoin de plusieurs repropaga-
tions pour compléter la propagation des potentiels. En revanche, son espace
mémoire est faible : seuls les tampons utilisent de la mémoire.

La deuxiéme méthode utilise une décomposition variable du domaine et a
pour but de réduire le nombre de repropagations. Pour cela, entre deux repro-
pagations successives on change les domaines et les frontiéres affectées aux
processeurs. Par exemple, les nouvelles frontiéres sont situées & mi-chemin
entre deux anciennes frontiéres. La méthode précédente avait l'inconvénient
de faire de nombreuses repropagations, nécessaires & cause des frontiéres
qui changeaient souvent leur potentiel. Avec la nouvelle méthode, pendant
la propagation des anciennes frontiéres, les nouvelles frontiéres sont loin des
anciennes, donc elles sont bien plus rarement mises & jour et le nombre de re-
propagations est bien réduit. Mais les changements de domaines impliquent
des conflits de cache pour un nombre important de cases, ce qui nous a
conduit & rejeter cette méthode.

La troisiéme méthode essaie de résoudre simplement, sans modification
de l'algorithme séquentiel, le probléme posé par la parallélisation des al-
gorithmes séquentiels, & savoir ’accés concurrent aux potentiels des cases.
Chaque région du code ou le potentiel d’une case est accédée est transformée
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en une région d’exclusion mutuelle, et un verrou (lock) par case peut étre
utilisé. La gestion des régions d’exclusion mutuelle représente une surcharge
importante en mémoire et en temps d’exécution, ce qui nous a amené & ne
pas prendre en considération cette méthode.

La quatriéme méthode utilise des environnements privés a chaque pro-
cesseur. Dans une premiére étape, les ressources sont divisées en un nombre
de groupes égal au nombre de processeurs et chaque processeur propage dans
son propre environnement le potentiel des ressources qui lui sont assignées.
Cette propagation se fait avec une des méthodes séquentielles déja présen-
tées. Dans la deuxiéme étape, ’environnement regoit ses potentiels finaux
par superposition des potentiels des environnements privés. Pour cela, 1'en-
vironnement est décomposé en domaines et chaque processeur met a jour
son domaine en faisant dans chaque case la superposition des potentiels de
toutes les cases homologues des environnements privés.

En paralléle, les environnements privés sont accédés par plusieurs pro-
cesseurs au cours des deux étapes. Cette méthode ajoute donc des conflits
de cache qui peuvent fortement pénaliser les performances de cette méthode.
En revanche, cette méthode n’utilise qu'une seule synchronisation entre les
processeurs.

La comparaison théorique des méthodes paralléles n’est pas suffisante
non plus pour trouver la meilleure méthode. Par conséquent, nous avons
procédé & de nombreuses mesures de performances, autant séquentielles que
paralléles.

Performances des algorithmes de propagation par vagues

Pour nos expérimentations nous avons utilisé les deux machines paralléles
présentées dans la section précédente.

Les algorithmes de propagation par vagues ont une partie d’initialisation,
exécutée en début de simulation, et une partie de propagation proprement
dite, exécutée plusieurs fois pendant la simulation. Nous nous intéressons
seulement & cette partie de propagation.

Les paramétres qui influencent les performances des algorithmes de pro-
pagation sont : le nombre de cases de ’environnement, sa topologie (envi-
ronnement torique ou borné), la connectivité des cases (4 ou 8), le nombre
d’obstacles, le nombre et le potentiel des ressources (nous avons utilisé un
seul type de potentiel pour nos expérimentations) et le nombre de proces-
seurs.

Notre démarche pour la mesure de performances est la suivante. Nous
avons d’abord mesuré les performances séquentielles et paralléles de chaque
méthode, ensuite nous avons fait une comparaison détaillée des méthodes qui
ont donné les meilleures performances et finalement nous avons développé la
meilleure méthode.
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Performances de chaque méthode. Nous avons implanté plusieurs mé-
thodes de propagation par vagues et nous avons mesuré les performances de
chacune. Pour comparer toutes ces méthodes nous avons utilisé un environ-
nement borné de 1024x1024, sans obstacles, avec une connectivité de 4 et
1 % de ressources, chacune avec un potentiel de 16.

La méthode de récursion en largeur avec décomposition en domaines fixe
donne un temps séquentiel de 1.35 secondes, et sa meilleure accélération
est de 15, pour 32 processeurs. C’est une méthode qu’on retrouvera dans la
comparaison des meilleures méthodes.

La méthode de propagation en profondeur avec décomposition en do-
maines fixe a un temps séquentiel de 70 secondes. Ce temps est bien plus
grand que celui de la méthode précédente, & cause des multiples mises & jour
des cases, comme expliqué dans la présentation de la méthode. Par consé-
quent, nous ne prenons plus en considération cette méthode.

Notre méthode itérative avec décomposition de domaines fixe a un temps
séquentiel de 0.6 secondes (plus petit que celui de la premiére méthode), mais
son accélération n’est pas satisfaisante, par exemple elle est de moins de 2
pour 4 processeurs. Cependant, elle est fortement influencée par deux fac-
teurs, comme montré dans la figure 1.3. Le premier est le cache, qui corres-
pond au redressement de ’accélération & partir de 3 processeurs. Le deuxiéme
est le surtravail, dii & ’étape de repropagation qui apparait seulement en pa-
ralléle, qui est plus visible & partir de 4-8 processeurs®. Le faible temps d’exé-
cution séquentiel, ainsi que l'influence du cache nous ont amenés & prendre
en considération cette méthode.

La méthode de récursion en largeur avec des environnements privés a
chaque processeur différe de la premiére méthode seulement par la méthode
de parallélisation. Mais sa meilleure accélération est de 3 sur 4 processeurs,
moins que celle de la premiére méthode. Nous ne la prenons donc plus en
considération.

Enfin, notre méthode itérative avec des environnements privés a chaque
processeur différe de la méthode similaire avec domaines fixes seulement
par la méthode de parallélisation. Mais sa courbe d’accélération n’est pas
extensible et nous ne la prenons plus en considération.

Performances détaillées des meilleures méthodes. Suite aux mesures
de performances précédentes, nous avons distingué deux méthodes : la pro-
pagation en largeur et notre méthode itérative, les deux parallélisées avec la
décomposition de domaines fixe. Pour une meilleure comparaison du temps
d’exécution séquentiel, nous allons faire varier séparément les parameétres qui
influencent leurs performances.

3Le surtravail apparait dans toutes les méthodes basées sur la décomposition de do-
maine, mais il est plus visible dans cette méthode & cause de la mauvaise accélération pour
un nombre petit de processeurs.
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Fi1G. 1.3 — Accélération de notre méthode itérative avec décomposition de
domaines fixe, ol on observe un redressement a partir de 3 processeurs (DSM
Origin 2000).

Nous avons ainsi constaté empiriquement les caractéristiques suivantes.
La taille de ’environnement influence de la méme facon les deux méthodes.
La connectivité, ainsi que le nombre et le potentiel des ressources, influencent
légérement la méthode itérative et beaucoup la méthode de récursion en lar-
geur. En contrepartie, le nombre d’obstacles influencent beaucoup la méthode
itérative, mais pas la méthode de récursion en largeur.

Meilleure méthode. Basés sur les résultats précédents, nous avons pu
établir un certain nombre de régles qui spécifient les cas ol une méthode
est meilleure en séquentiel que ’autre. Ces régles font intervenir plusieurs
indicateurs, comme le nombre d’obstacles et le nombre moyen de ressources
qui influencent une case.

Comme dans certains cas la méthode itérative est plus rapide en séquen-
tiel que la méthode récursive en largeur, nous avons implanté une méthode
mixte, qui utilise la méthode itérative pour la propagation de domaine et la
méthode récursive pour la propagation des frontiéres. La figure 1.4 présente
les performances de cette méthode mixte et de la méthode purement itéra-
tive. Nous remarquons la différence des performances paralléles et 'influence
des caches, qui est bien visible dans la méthode itérative pure. Nous pouvons
considérer cette accélération comme celle du point de vue de l'utilisateur,
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Fi1G. 1.4 — Accélération de la meilleure méthode, une combinaison entre la
méthode mixte (la premiére dans la légende) et la méthode itérative pure (la
deuxiéme dans la légende) (DSM Origin 2000).

car elle utilise le meilleur temps séquentiel, celui de la méthode itérative,
comme référence. La meilleure méthode dépend alors du nombre de proces-
seurs utilisés, comme montré dans la figure 1.4 : la méthode mixte pour peu
de processeurs ou la méthode itérative pure pour plus de processeurs.

Propagation inexacte de potentiel

Les agents sont, par définition, autonomes et s’adaptent & ’environne-
ment. En conséquent, pour obtenir des performances encore meilleures, on
envisage aussi des propagations inexactes de potentiel. Ce type de propaga-
tion tolérerait des erreurs mineures dans les potentiels des cases, erreurs que
les agents sont sensés pouvoir surmonter.

1.8 Caractéristiques et implantation de ParSSAP

Caractéristiques de notre bibliothéque

Nous avons implanté et validé notre modeéle de simulation de systémes
multi-agent par une bibliothéque qui implante la plupart des fonctionnalités
du modele. Les champs de visibilité, la propagation par vagues et la résolu-
tion des conflits sont automatiquement prises en charge par la bibliothéque.
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Les trois types d’informations sur le systéme multi-agent (statistiques, infor-
mations succinctes et informations complétes sur son évolution) sont égale-
ment fournis. En revanche, la version actuelle de notre bibliothéque présente
quelques limitations, comme de ne supporter qu’au maximum une ressource
par case, de n’offrir que deux percepts pour les agents (la vision et la per-
ception du potentiel) et de n’accepter comme actions des agents que de se
déplacer (aléatoirement ou non) et de prendre ou déposer des objets dans
des ressources.

La bibliothéque, écrite en langage C, est paralléle. Elle utilise des threads
et supporte deux interfaces de programmation multi-threading : les threads
POSIX et les threads Irix. Un de nos buts a été de cacher les difficultés du
parallélisme & I'utilisateur. En contrepartie, & l'intérieur de la bibliothéque, le
parallélisme est utilisé dans tous les sous-cycles de simulation, & ’exception
de la fonction utilisateur (qui est exécutée en séquentiel). Le parallélisme a
été exploité dans la bibliothéque de la méme facon : par décomposition sta-
tique du domaine. Le nombre de processeurs, la seule information de paral-
lélisme donnée par 'utilisateur, est spécifié par 'utilisateur et reste inchangé
pendant toute la simulation.

Simultanéité et parallélisme dans notre bibliothéque

Si, du point de vue macroscopique, notre modéle de simulation est syn-
chrone et organisé en cycles de simulation, pendant un cycle les agents
doivent avoir une vue asynchrone de l’environnement et leurs comporte-
ments doivent étre activés conceptuellement en simultané. Pour résoudre
ces problémes nous avons utilisé deux types de structures de données, des
structures locales & chaque thread et des structures globales, et chaque cycle
de simulation a été divisé en plusieurs étapes bien distinctes :

1. étape de planification : exécution du comportement de chaque agent
et planification de la création et de la destruction des agents;

2. barriére de synchronisation ;

3. transfert des demandes de création globales d’agents dans des struc-
tures locales aux threads concernés;

4. transfert des demandes de mouvement inter-domaine d’agents dans des
structures locales aux threads concernés;

5. étape de gestion des conflits spatiaux : résolution de tous les conflits
spatiaux, création des agents gagnants et refus de l'action des agents
perdants ;

6. création des agents locaux;
7. barriére de synchronisation ;

8. étape d’action : exécution de l’action des agents et destruction des
agents ;
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9. barriére de synchronisation ;

10. étape utilisateur : exécution séquentielle de la fonction utilisateur (qui
permet par exemple de spécifier la fin de la simulation) et incrémenta-
tion du numéro du cycle;

11. barriére de synchronisation ;
12. étape de sauvegarde : sauvegarde paralléle du systéme, si demandé;
13. étape de mise & jour des percepts de I’environnement ;

14. barriére de synchronisation.

Aspect aléatoire et reproductibilité des simulations

Une grande attention a été accordée dans notre bibliothéque & l’aspect
aléatoire et a la reproductibilité des simulations. L’aspect aléatoire signifie
que toutes les fonctions a caractére aléatoire, comme le mouvement aléatoire
des agents et le choix aléatoire des gagnants dans les conflits, utilisent des
nombres aléatoires, avec des probabilités égales pour tous les choix*. D’un
autre coté, la reproductibilité assure que les simulations sont complétement
reproductibles, indifféremment du nombre de processeurs.

Notre méthode consiste & utiliser une seule racine globale, sans utiliser
des racines locales aux processeurs (voir la section 1.3 pour la génération des
nombres aléatoires). Additionnellement, des racines temporaires, qui ne dé-
pendent pas du nombre de processeurs, ont été utilisées. L’utilisateur spécifie
seulement la racine globale, et toutes les racines temporaires sont calculées
A partir de cette unique racine et d’autres informations, comme le numéro
du cycle et le numéro d’identification de l'agent.

Pendant la simulation, les nombres aléatoires apparaissent dans trois cas :

— Aucun agent n’est concerné. Ce cas apparait seulement pendant 1’ini-
tialisation, donc nous utilisons la racine globale.

— Un seul agent est concerné. Ce cas apparait quand un agent fait un
mouvement aléatoire, quand il crée un autre agent dans un endroit
aléatoire de l'environnement ou tout simplement quand un agent a
besoin d’un nombre aléatoire. Nous utilisons dans ce cas une racine
créée juste avant l’activation de I’agent et initialisée par une fonction
dédiée, présentée ci-dessous.

— Plusieurs agents sont concernés. Ce cas apparait seulement dans les
conflits. Nous ordonnons dans ce cas les agents suivant leur numéro
interne d’identification, qui est unique. Ensuite, nous choisissons le
gagnant en utilisant un nombre aléatoire généré a partir d’une racine
créée par la méme fonction dédiée (voir ci-dessous).

Cette fonction dédiée doit générer des racines différentes lors de ses dif-

férents appels. Elle doit étre paramétrable, donc utiliser la racine globale

4Sous réserve de Defficacité du générateur de nombres aléatoires fourni avec le systéme
d’exploitation.
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donnée par l'utilisateur. Elle doit aussi étre spatiale et temporelle, pour gé-
nérer des racines différentes dans des cycles de simulation et/ou des cases de
I’environnement différents. Dans notre bibliothéque nous avons donc choisi
la fonction suivante, qui remplit toutes ces caractéristiques :
seed=gseed+7-cycle+y-dimx+x,

ou (y, x) est la position du conflit, dimx est la dimension de ’environnement
sur 'axe x et cycle est le numéro du cycle en cours.

Utilisation de la bibliothéque

Pour utiliser la bibliothéque ParSSAP il faut inclure le fichier agents.h
dans les fichiers de l'application et utiliser la bibliothéque agents pendant
I’édition de liens.

Nous allons présenter les principales parties d’une application « collec-
tionneurs de diamants ». Il s’agit d’'un monde virtuel de 50x100 cases avec
50 cases inaccessibles (obstacles) et 15 diamants. Dans ce monde se trouvent
5 collectionneurs qui cherchent les diamants. Ils se déplacent aléatoirement
et ils prennent tous les diamants qu’ils rencontrent. Nous nous intéressons a
Iefficacité de ces collectionneurs pendant un certain nombre de cycles.

La création de ’environnement se fait avec les lignes suivantes :

44 pmCreateEnv (DIMY, DIMX, EDGES);

45 pmPutRandomObstacles (OBSTACLES);
46 pmPutRandomResources (DIAMONDS, 0, 1, 0, NULL);

47 pmPutRandomAgents (WORKERS, 1, NORM _PR, 100, NULL, 0, take or_ random);

Le comportement des collectionneurs est décrit par les lignes suivantes :

15 pmAction t take or random (void *mem)

16 {

17 pmAction_t act;

18 // if found a resource with a diamond, take it

19 if ((pmlmGetSquareType() == RESSQ) && (pmlmGetSquareResLoad() == 1)){
20 act.type = TAKE;

21 act.param = 1;

22 lelse // else do random movement

23 act.type = MOVERANDOM,;

24 return act;

25}

Enfin, la simulation finit quand un certain nombre de cycles est passé :

30 int runfunc (void)

32 if (pmgGetCycle() >= CYCLES) // end the simulation, if maz count reached
33 return STOP;

34 else
35 return CONT;
36}

Comme partiellement décrit dans cet exemple, la méthodologie de déve-
loppement d’une application utilisant la bibliothéque ParSSAP est :
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1. écrire le code ou le fichier de données pour l'initialisation de ’environ-
nement ;

2. écrire la fonction utilisateur, qui permet, entre autres, de spécifier la
fin de la simulation ;

3. écrire la fonction qui donne le potentiel de chaque ressource en fonction
de sa charge;

4. écrire le comportement de chaque agent.

Plus d’informations sur les fonctions fournies par la bibliothéque sont
données dans son manuel de référence (annexe A).

1.9 Domaines d’application et performances globales

Notre bibliothéque permet de simuler une grande variété de systemes
multi-agent. Par exemple, nous avons implanté le jeu de la vie de Conway [39],
basé sur des cellules statiques et la création et la destruction dynamique de
ces cellules. Nous avons aussi implanté un simulateur plus complexe, présenté
ci-dessous.

Simulateur multi-consommateur

Nous essayons de simuler ici ’application suivante. Plusieurs personnes
habitent dans un village. Le village contient leurs maisons, des magasins o
ils font leurs achats et d’autres batiments non intéressants (appelés simple-
ment batiments). Le but des simulations est d’étudier efficacité de cette
population & faire ses achats et & les ramener & domicile.

Le village. Pour le village, nous avons utilisé un environnement borné avec
25x25 cases (pour la mesure des performances nous utiliserons un environ-
nement plus grand). Dans cet environnement nous avons créé deux régions :
une premiére région, sans batiments, a la périphérie du village, contenant
les maisons, et une deuxiéme région, avec de nombreux batiments, en centre
du village, contenant les magasins. Ce village est illustré sur la figure 1.5.
Chaque magasin contient 10 objets destinés & étre achetés, simulé par une
ressource avec une charge de 10. Leur potentiel est constant et couvre tout
I’environnement.

Le comportement des personnes. Nous avons créé trois types de per-
sonnes :
1. Les non-consommateurs, qui se proménent dans le village sans but
précis et sans rien acheter (les enfants).

2. Les consommateurs inexpérimentés et déterministes, qui vont dans les

magasins dans un ordre prédéfini, font des achats et les raménent a
leurs maisons (les hommes).
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FiG. 1.5 — Le village utilisé dans le simulateur multi-consommateur, avec la
région des maisons en haut, et la région des cinq magasins et des batiments
(plus petits que les magasins dans cette figure) en centre.

3. Les consommateurs expérimentés, qui agissent comme les précédents a
I’exception que, s'ils sont impliqués dans un embouteillage, ils changent
Pordre de visite des magasins et se dirigent vers d’autres magasins (les
femmes).

Aucune personne n’a une vision globale du village. Elles n’utilisent que
leurs perceptions locales et leur mémoire propre pour visiter tous les magasins
et faire leurs achats. La perception locale qu’elles utilisent est la perception
du gradient de potentiel, qui les dirigent vers les magasins.

Efficacité des personnes. Nous avons fait des tests dans lesquels nous
avons mis 2 enfants, et 10 hommes et femmes. Nous avons varié le nombre
d’hommes/femmes de 0 & 10 et nous avons constaté son influence sur l'effi-
cacité du systéme. L’efficacité du systéme est donnée par le pourcentage du
nombre d’objets achetés et ramenés jusqu’aux maisons.

Grace aux informations que la bibliothéque fournit sur le mouvement
des agents, nous avons pu aussi visualiser le trajet de chaque personne. Nous
avons ainsi découvert que les personnes se bloquent souvent entre elles. La
figure 1.6 présente quelques captures de fenétre avec ces situations.

L’efficacité de ces personnes dans notre simulation, avec les achats rame-
nés aux maisons et le nombre de cycles de simulation nécessaire, est donnée
dans le tableau 1.1. Une étude plus poussée de l'efficacité de ces comporte-
ments peut étre faite avec ParSSAP.

Performances. Pour la mesure de performances nous avons utilisé un en-
vironnement de 256x256 cases, avec 655 personnes (1 % des cases), 655 mai-
sons (1 % des cases), 163 magasins (0,25 % des cases) et 327 batiments
(0,5 % des cases). Parmi les personnes, 20 % sont des hommes et 80 % sont
des femmes. Le potentiel de chaque ressource couvre tout ’environnement.
Chaque ressource a un potentiel constant de 512 et nous avons donc propagé
leurs potentiels seulement en début de simulation.
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(a) Position en (b) Position finale (c) Position
début de simu- d’une simulation bloquée, pour
lation (cycle 4), avec efficacité 5 femmes et
pour 10 femmes et de 100 %, pour 5 hommes
aucun homme, ou 10 femmes et (remarquez lem-
pour 5 femmes et aucun homme bouteillage au
5 hommes (méme (remarquez les centre).

position). deux enfants

errants).

FiG. 1.6 — Captures d’écran de la simulation multi-consommateur.

Hommes | Femmes | Achats | Cycles
0 10 100 % 178
1 9 100 % 168
2 8 26 % 251
3 7 50 % 251
4 6 50 % 251
5 5 0% 251
6 4 0% 251
7 3 0% 251
8 2 0% 251
9 1 0% 251
10 0 0% 251

TAB. 1.1 — Efficacité des personnes dans la simulation multi-consommateur.
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Fi1G. 1.7 — Accélération de la simulation multi-consommateur (peu favorable
a notre parallélisation), qui augmente lentement et atteint presque 2 sur
4 processeurs (DSM Origin 2000).

Nous avons exécuté cette simulation pendant 400 cycles, ce qui s’est avéré
insuffisant pour que toutes les personnes raménent leurs achats a la maison.
Nous avons supprimer les entrées/sorties et nous avons mesuré le temps total
de la simulation (« wall-clock time »).

L’exécution sur la machine DSM Origin 2000 a donné un temps séquentiel
de 55 secondes. L’accélération est présentée sur la figure 1.7. Elle augmente
lentement jusqu’a 12 processeurs.

Sur la machine SMP avec 4 processeurs nous avons obtenu un temps
séquentiel d’exécution de 260 secondes. L’accélération est ensuite comparable
a celle de la machine DSM.

Cette application a montré que notre bibliothéque est suffisamment flexible
pour implanter rapidement et simuler une telle application. En fait, toute
I’application utilisée pour nos mesures de performances a 240 lignes de code
source. En revanche, cette application n’est pas trés adaptée a notre paral-
lélisation : le potentiel de chaque ressource couvre tout ’environnement et
plusieurs repropagations sont nécessaires, et ’environnement n’est pas ho-
mogéne : les agents tendent a se concentrer vers le centre. Néanmoins, nous
avons obtenu une accélération de presque 2 sur 4 processeurs (50 % d’effica-
cité) pour cette application originale.
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1.10 Bilan et futurs travaux

Bilan de nos travaux

Les systémes multi-agent (SMA) sont un domaine de recherche en crois-
sance. Dans ce contexte, notre recherche traite la simulation de larges popu-
lations d’agents. Notre contribution s’est étendue dans trois directions.

Modéle de simulation. Nous avons tout d’abord congu un modéle de si-
mulation de SMA. En particulier, il prend en considération les mouvements
simultanés des agents. Notre modeéle contient quatre composants : (1) I’envi-
ronnement, (2) les ressources, qui propagent des champs de potentiels, (3) les
agents, qui se déplacent dans I’environnement suivant leur but et leurs per-
ceptions, et (4) Parbitre, qui a le role de maintenir la cohérence du systéme.
Plusieurs fonctionnalités utiles dans la simulation de systémes multi-agent
sont offertes par la bibliothéque.

La simulation est discrétisée. Chaque cycle de simulation contient plu-
sieurs sous-cycles, qui permettent de gérer la simultanéité des actions des
agents, notamment les conflits spatiaux entre les agents.

Algorithmique paralléle. Nous avons également fait un intense travail
algorithmique paralléle sur la simulation de SMA. Le calcul des champs de vi-
sibilité est basé sur le tracage de lignes épaisses. Un algorithme nouveau pour
le tracage de telles lignes a été proposé. L’algorithme de vision est un algo-
rithme régulier, et nous avons obtenu de grandes performances : accélération
de 28 sur 32 processeurs (efficacité supérieure a 90 % jusqu’a 32 processeurs).
Nous avons identifié des variations dans la courbe d’efficacité et nous avons
trouvé leur cause dans un déséquilibrage de charge entre les processeurs.

Le percept de détection des potentiels utilise les champs de potentiels
propagés par les ressources. La propagation est basée sur le principe de Huy-
gens [51] et constitue un algorithme irrégulier. Nous avons présenté plu-
sieurs méthodes séquentielles et paralléles pour son implantation. Aprés de
nombreuses mesures de performances, nous avons découvert les meilleures
méthodes en temps d’exécution. Nous avons ensuite fait une comparaison
détaillée de ces méthodes. Finalement, nous avons implanté une combinai-
son de ces méthodes et nous avons trouvé les cas oll chaque méthode est la
meilleure.

Une attention toute particuliére a été accordée & l’aspect aléatoire et a
la totale reproductibilité des simulations.

Implantation paralléle portable du modéle. Enfin, nous avons im-
planté et validé notre modeéle par la création d’une bibliothéque, appelée
ParSSAP. Nous y avons implanté la plupart des fonctionnalités du modéle.
Elle est paralléle, mais la difficulté de la programmation paralléle est cachée
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a l'utilisateur. Elle a été concue pour une utilisation facile et pour de bonnes
performances paralléles. Les hypothéses qu’elle fait sont suffisamment bonnes
pour nos simulations multi-agent et suffisamment simples pour étre efficaces
en termes de temps d’exécution. Pour une application complexe, le simula-
teur « multi-consommateur », nous avons obtenu une modeste accélération
de 2 sur 4 processeurs. Néanmoins, nous considérons que le temps de déve-
loppement a été largement réduit, comme illustré par les seules 240 lignes de
code de toute 'application.

Travaux futurs

Amélioration du modéle. Nous envisageons d’introduire la communica-
tion explicite entre les agents et le mélange des ressources et des agents, ce
qui permettrait aux ressources d’étre mobiles et aux agents de propager des
potentiels.

Optimisations des algorithmes. Au niveau des algorithmes des per-
cepts, nous envisageons, par ordre croissant de difficulté, d’optimiser les al-
gorithmes de propagation des potentiels, d’implanter et d’évaluer d’autres
algorithmes de propagation de potentiel, et de permettre une propagation
inexacte, mais plus rapide, des potentiels.

Au niveau des agents, nous envisageons introduire d’autres percepts, tout
en gardant la simplicité et les performances de la bibliothéque & un niveau
acceptable.

Au niveau de la simulation, nous envisageons d’optimiser les perfor-
mances paralléles de la bibliothéque. L’amélioration la plus importante ici
est de fournir un équilibrage de charge dynamique, trés utile pour des simu-
lations avec des environnements hétérogénes.

Amélioration de ’environnement de programmation. Pour une fa-
cilité encore plus accrue, nous envisageons l'implantation d’outils graphiques
pour la création des environnements de simulation et pour la visualisation
des résultats générés par les simulations.

Exploitation. Aprés la création d’'un produit, une étape importante est
son utilisation. Nous envisageons donc d’utiliser cette bibliothéque dans un
cadre d’expérimentation et de recherche en SMA & Supélec par l'intermé-
diaire de projets d’étudiants et/ou de théses de doctorat.

En fournissant un outil pour la simulation de larges populations d’agents,
facile & 'utilisation et performant & ’exécution, nous espérons avoir apporté
notre pierre & 1’édifice de la recherche multi-agent et & celui de 'algorithmique
paralléle.
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Chapter 2

Motivations and introduction

2.1 Motivations

There are large and distributed systems where an efficient or an optimum
solution has to be found. Examples of such systems are traffic simulation
and simulation of ant populations. Such systems are too complex for a total
planning. A promising way to cope with such systems is the distributed
computing, where the knowledge of the problem is not central, but spread
in several points of the system.

Currently, an appropriate model to simulate such systems is the multi-
agent model. An agent is an autonomous entity found in an environment,
which perceives it and acts on it. Its knowledge and its perceptions and
actions are local, hence simpler than a centralised system. Agents move
in the environment and run concurrently in the system. They have goals
and can communicate to reach their goals. Sometimes, the cooperation,
which can be explicit, as well as indirect, among simple agents can lead to
an efficient global system, concept known as emergence. It is interesting to
look for self-organisation of populations of agents with basic behaviour and
knowledge. We have chosen to focus on situated multi-agent systems, where
agents are constrained by physical laws, such as obstacles which prevent
agents to move in some places.

No general, nor efficient theory exists yet for this kind of systems. A clas-
sical approach in finding mechanisms for self-organisation consists in doing
many experimentations of such systems. In fact, there are many parameters
which influence the performance of the system, and we are first trying to
understand their effects on the global behaviour. However, simulations can
take a lot of time to execute and to be written. A methodology of writing
such systems would allow their faster implementation, while their execution
on parallel architecture would allow decreased execution times.

The simplicity of writing such programs is yet more necessary as re-
searchers in artificial intelligence are not necessary specialists in parallelism.
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Also, the optimisation and parallelisation of such systems allow to reduce
their execution time, but the parallel programming is known to be more dif-
ficult than its sequential counterpart. This is especially true for multi-agent
systems, which are irregular by nature, given that each agent can have its
own behaviour and that they move in the environment. Even if the multi-
agent model is naturally parallel, as there are many agents running concur-
rently, this parallelism is different than that provided by modern parallel
architectures, where the overhead of parallelism (such as memory coherence)
is often a real issue. Also, it is known that, unlike general programs, which
are written once and executed a lot of times without modification, programs
written by researchers are meant to be executed a few times and modified
frequently, according to their results. Therefore, the balance between execu-
tion time and development time is no more unbalanced, and the development
time becomes an important issue.

Currently, there is a lack of tools allowing the simulation of such systems.
This is due in part to the generality of the agent concept. A few such
simulators exist, but they are too simple or too specific. In this context, our
aim is to write a tool which allow researchers in a given area of multi-agent
systems to quickly experiment behaviours of agents. Our first focus is the
development time of experiments. In fact, if the development time is not
much reduced compared to a version written from scratch, the user would
rather prefer to write the application from scratch. Also, the difficulty of
writing such applications, and their performance in execution time do not
encourage people to test such systems. We provide our tool as a library
written in C language, and the simplicity of use of our tool is our first concern.

Our second focus is the execution time: experimentations have to execute
fast. We have chosen to provide a tool with a parallel implementation.
As an example, if an experiment takes three days to complete, a parallel
implementation six times faster will take only one night, and the user can
analyse the results the next day. It is worthwhile to precise that our tool
deals with parallelism transparently for the user of the tool. In fact, the only
information where the parallelism is involved is the number of processors
to use during the simulation. On the other side, we, as tool developers,
have been faced with several parallel paradigms. Even if at any given time
agents have local information and they make local computations, through
the simulation agents move and the computations are global. Therefore, for
simplicity of our programming and performance in execution time, we have
chosen the shared-memory paradigm for programming, and shared-memory
architectures for execution.

During the development of the tool we have needed to do research on
parallel algorithmic applied to multi-agent systems. As examples, two useful
percepts have been studied (vision and wave propagation), and the simul-
taneity of agent’s actions has been fully taken into account.

The contribution of this thesis is threefold. Firstly, we have created
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a programming model to simulate situated multi-agent systems. Secondly,
we have done an algorithmic work on multi-agent systems, especially for
implementation and analysis of wave propagation and vision algorithms, and
for providing fully reproducibility of random simulations. Thirdly, we provide
a parallel implementation of our model allowing researchers and other users
interested in this domain to quickly develop execution-efficient simulations.
The tool validates also our model.

2.2 ParCeL language family

Our contribution is not singular. It is a continuation of the work started in
our team 12 years ago. ParCeL (Parallel Cellular Language) family’s long-
term goal is to provide parallel tools to easy the writing of distributed com-
putation, especially situated agents and neural networks. A second goal is
to use modern parallel architectures, since they evolve rapidly.

Compared together, tools provided by ParCeL family (figure 2.1 on the
following page) are however different. We have first created a language,
ParCeL-1 [81, 84|, influenced by the actor model [2], which allows to imple-
ment neural networks and symbolic calculus (semantic networks). It works
on today unused transputer [52] machines. The next generation is a virtual
machine, ParCeL-3 [82], destined to simulation of multi-agent systems. For
such simulations it replaces ParCeL-1, which was not sufficiently flexible, for
instance it did not take into account cells’ movement. It works on modern
MIMD machines. However, ParCeL-3’s goal was to be sufficiently generic,
hence its use is not as easy as we have wished to. With ParCeL-4 [12] and
our ParCel-5, we try to find the right balance between power of expressive-
ness and development easiness. They are much more targeted: ParCelL-4 for
neural networks and our ParCeL-5 for situated multi-agent systems. Instead,
they are simpler to use and provide a higher level than their predecessors.

2.3 Features of our programming model

The simulations are done in a discrete environment. Each entity contained
in the environment occupies one square. Three kinds of entities exist: obsta-
cles, resources and agents. Obstacles prevent agents to enter their square.
Resources’ main goal is to guide agents. They can propagate potential fields
which are perceived by agents, allowing them to find the way to resources,
even in the presence of obstacles. The potential field size can change during
the simulation. Moreover, several types of potential can be used, in order
to introduce several kinds of resources. Also, resources can contain objects
which can be carried by agents.

Agents are the mobile entities of the simulation. Each agent has a specific
behaviour and a memory associated. Agents can be created and destroyed
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Figure 2.1: ParCeL language family.

dynamically. Additionally to the potential percept presented above, they
can be also influenced by the vision percept, which allows them to see at a
certain distance if no obstacle prevents them.

The time also is discretised and the simulation is based on cycles. During
each cycle the potential fields can be recalculated. During each cycle each
agent is activated. The behaviour of agents generates an action, based on
their perception. Examples of actions are move and take/drop objects in
resources.

The model takes into account the simultaneity of actions and solves the
spatial conflicts among agents.

In a pure multi-agent system, agents have only a local perception. How-
ever, for the flexibility of the model global perception is also available, but
a clear distinction between local and global perception is done.

Additionally, statistics about the state of the simulation for every cycle
are taken into account.

2.4 Features of our development tool

We have implemented a library based on our model. It allows the simulation
of agents on sequential machines and of large populations of agents on parallel
machines. We summarise here its main features according to the model
presented above.

In our implementation the environment is two-dimensional. Agents can
move only one square, in its neighbourhood of 4 or 8 squares. The main
actions an agent can do are move and take/drop an object. Agents have
memory and two main percepts: the odour, allowing them to sense potential
fields, and the vision. In order to bypass obstacles, a wave propagation
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method is used to spread the potential.

Care has been taken to give to the user of the library a clear distinction
between local and global perception of agents.

The library allows to save in files three kinds of information:

1. Statistics about the state of the system on each cycle, such as the
number of agents and the number of empty resources.

2. Information about the agents, such as their move, and the resources,
such as their load, useful to visualise the evolution of the system. A
simple tool! to visualise this information is also provided.

3. The state of the whole system (checkpoint). The simulation may be
continued afterwards using this information.

The library is parallel. However, the use of the library is eased by hiding
almost entirely the parallelism to the user of the library. Also, regardless of
the number of processors, the simulation takes into account the simultaneity
of actions and generates a fully reproducible simulation.

Our library has surely limited features, nevertheless it allows the simu-
lation of a broad type of applications, such as Conway’s universe, based on
local creation and destruction of cells, and city centre jams, characterised by
people movements and spatial conflicts.

2.5 Hypotheses taken in our model and develop-
ment tool

During the development of our tool, in order to keep a small development
time, we have been forced to take some hypotheses. Some of them concern
two important models of perception, namely the vision and the potential
propagation (wave propagation), presented below.

The vision percept allows or prevent agents to see a given square. The
only squares preventing the vision are the obstacles. Also, the vision radius
for all the squares has the same value.

The wave propagation model used in odour perception of agents contain
two important hypotheses. The first hypothesis is that the decreasing of
potential is linear, equal to p—d, i.e. the potential of a square is the potential
of the resource influencing it minus the distance to it. (Surely, we suppose
that the potential influenced is positive, otherwise it is zero.) The second
hypothesis is that when a square is influenced by several resources, it receives
the maximum potential among them.

These assumptions are not always real. For example, for electrostatic
fields the potential decreasing is in p/d? and the function used is sum. Nev-
ertheless, our assumptions are simple to use and sufficiently flexible to allow

1 This tool has been written by other people in our team.
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a broad domain of applications to be written, such as Conway’s universe
and traffic simulation. Moreover, they are simple and efficient in terms of
execution time. Therefore, we have adopted these hypotheses, which are
appropriate for the multi-agent system simulations we want to parallelise
successfully.

2.6 Plan of the dissertation

The following two chapters present the principles of multi-agent systems and
parallelism issues, describing the options which we have faced and presenting,
with arguments, our choices. The following chapter describes some sequen-
tial and parallel implementations of multi-agent simulators, and we compare
them with our model and its implementation. After a chapter describing
our model of simulation of situated multi-agent systems, two other chapters
deal with algorithmic issues: vision and wave propagation algorithms. Be-
sides a chapter dedicated to the perspectives of our work, the remainder of
this dissertation describes mainly the implementation and use of our tool:
its features, examples of applications and the reference manual.



Chapter 3

Principles of multi-agent
systems

This chapter introduces multi-agent system topics that are related to our
thesis. It does not provide an exhaustive multi-agent system overview.

3.1 Main interests on multi-agent paradigm

If in the beginning the hardware, compared to the software, was the main
part of computer science and engineering, nowadays the software is given a
much greater attention. The applications are becoming more and more nu-
merous and diversified, and the software engineering is becoming too complex
for our minds [54]. New methods and models of programming, which deal
with this complexity, are needed. The multi-agent approach promises to
cope with the actual complexity of the programming.

For example, Gasser [40], from University of Illinois, USA, thinks that the
agent-oriented programming is a step forward in the language programming.
He states that programming technologies have always oscillated between two
extremes:

1. flexibility of the programs, and

2. the need to control that openness and complexity (flexibility) with
structure, with language design decisions.

The agent concept in programming deals with complexity in the same way
as functions do (in the programming sense), but at a higher level. It directly
supports autonomy, goal-directed behaviour, which Gasser calls “structured
persistent action™ “You can now have a program that will persistently try to
accomplish something” [40]. On the contrary, other key concepts in agent-
based programming, like communication and different kinds of action, seem
to him as not being fundamental.
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Figure 3.1: Compared to other paradigms, cellular computing allows simul-
taneously simplicity, vast parallelism and locality (image obtained through
courtesy of M. Sipper [75]).

Sipper [75], from Swiss Federal Institute of Technology, Lausanne, thinks
that the future of programming is the “cellular computing” (as he calls it),
guided by 3 principles: simplicity, vast parallelism and locality. This leads
him to place cellular computing at the other side of the programming space, at
the opposite of the general-purpose serial systems, which are complex, serial
and global, as shown in figure 3.1. He considers that cellular computing is
a good candidate for image processing applications, finding fast solutions
to a few NP-complete problems and fast calculating machines which involve
arithmetic operations.

In [54], Jennings, from University of Southampton, UK, discusses in
depth the engineering of agent-based systems. He identifies some of their
key concepts, such as decentralisation/decomposition, abstraction and or-
ganisation, and he states that these systems are capable to “significantly im-
prove the theory and the practice of modelling, designing, and implementing
computer systems.” Moreover, the development of robust and scalable soft-
ware systems requires cooperating autonomous agents which can deal with
dynamic and uncertain environments. However, the multi-agent model has
two major drawbacks, both concerning unpredictability:

e unpredictable interaction of the agents

e difficulty, even impossibility, of predictable behaviour of the whole sys-
tem, due to the possibility of emergence of new and global behaviour.

Nowadays, agent-oriented paradigm continues to evolve. Ferber, from
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Montpellier IT University, France, sees four reasons which push on the devel-
opment of this paradigm [32]:

1. The artificial intelligence (AI), in particular distributed AI (DAI), has
reached a limit in organisation of knowledge [33].

2. It allows the simulation of real populations, such as societies of ants,
in order to discover successful behaviours of individuals in groups.

3. It provides alternative methods in robotics: several small, elementary
entities can sometimes be better than one big entity, while being also
easier to develop.

4. The general tendency towards “distributed” systems, which means net-
work, heterogeneity and parallelism, generates software cooperation,
which is a key point of this paradigm.

The work of this thesis fits reasons 2 and 3. As we will see in chapter 9, it
allows to simulate populations of autonomous entities, for finding emergence
of global behaviour for example [1, pages 15-17].

3.2 Multi-agent system overview

Multi-agent systems are a relatively new domain of computer science, which
nowadays becomes more and more popular. The first attempts date back
to late 80s. In 1988, Ferber and Briot [33] were working on a concurrent
language, Mering IV, for distributed AL. They wrote: “We believe that it
is easier to study and model the activity of a social community than the
intelligent activity of one man.” In 1993, Shoham [73] pushed on the defi-
nition of an agent and endowed it with mental components such as beliefs,
capabilities, choices, and commitments. It is worthwhile to note that some
researchers [40, 54| consider agents as programming entities which extend
objects.

3.2.1 Broad definition of agent concept

A multi-agent system (MAS) is a system where multiple agents are simulated.
Nowadays the definition of agent is still unclear. Generally, the definition
of an agent involves an autonomous entity which is in an environment. An
agent has a goal. In order to accomplish its goal, it generally communicates
with the environment (by sensing it with its percepts and by modifying it
through its actions) and with other agents (figure 3.2 on the following page).

Ferber [32] finds two definitions of the agent: weak and strong. The weak
definition uses only a few of the concepts usually developed in MASs and is
very close to software engineering. It considers an agent as an entity which
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Figure 3.2: Illustration of the agent concept.

has a behaviour described by a “script” in the software sense, such as a pro-
cedure, and which can optionally travel on the computer networks. On the
other hand, the strong definition takes into account all the usual key points
of MASs: agents can communicate, an agent has its own goals, has resources
and owns only a local knowledge about the environment. Local means they
perceive and act only on their neighbourhood. The model of simulation pre-
sented in this thesis allows the implementation of weak agents. Additionally,
in order to give a more realistic simulation of autonomous robots, a special
attention has been paid to allow the use of only local information.

As defined, an agent is a possible model for many real societies of beings.
Any being can be modelled by an agent, as they are autonomous, have a
goal and have a local perception.

Many researchers have observed a similarity between the implementation
of an agent and an object. However, as noticed by Gasser [40], Guessom [45]
and others, an agent is also autonomous. Even an active object, which
integrates an object along with its activity (namely a thread or process),
cannot fully encapsulate the notion of agent, which is [40] “persistently trying
to accomplish something”. We can consider that the design of an active
entity has started by the objects, continued by active objects, processes and
daemons and has finally arrived to agent. It has also been influenced by
the actor concept [2], which is oriented mainly towards AI, and has a more
specific model.

3.2.2 Types of agents

The actions of the agent are entirely given by its behaviour. This behaviour
can use internal state of the agent and sensitive information, from environ-
ment or other agents. We distinguish two types of agents:

e Reactive' agents, which act instantly as a function of its inputs and

!Ferber [31, page 207] defines a tropic agent as an agent which acts entirely by reflex.
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which generally have no memory or state.

e (Cognitive agents, which have memory and can include complex knowl-
edge and inexact information, such as doing plans.

The first type is simple to implement and predict, while the second should
give an artificial intelligence to the agent level. In practice, an agent often
cannot be categorised in only one of these categories, because it inherits
from both types of behaviour. For instance, as we will see in chapter 9, the
model of simulation presented in this thesis is more suited to reactive agents,
although it provides some useful functionalities from cognitive agents, such
as memory.

A special kind of MASs are the situated MASs [31, page 16]. These
systems try to mimic a world with topological constraints, such as our phys-
ical world. The modelling of the environment becomes important in such
systems. The environment can be discrete or continuous. Generally, it is
two-dimensional (2D) or three-dimensional (3D). In 2D, its shape is gener-
ally rectangular, and it can be toroidal (the left and right, up and bottom
edges are respectively glued) or edged. The cells are generally square. The
modelling of the environment is discussed in more detail in section 3.4.

The constraints in situated MASs are given by world laws [15], which
deal with:

e System coherence, forbidding actions like entering an obstacle or mov-
ing to a long distance.

e Simultaneity, forbidding actions leading to a situation where several
agents are simultaneously in the same place (we suppose only one agent
can occupy a given place in the environment).

The model of simulation presented in this thesis is designed for simulation
of situated MASs, and it uses a discrete, rectangular environment, toroidal
or not. It pays attention to world laws by forbidding invalid actions such as
those presented above.

3.2.3 Cooperation vs. antagonism

The communication is used by the agents to exchange information. In par-
ticular, when the agents have similar goals, they use it to avoid conflicts
when they try to access a shared resource. Without this communication, the
possibly resulting conflicts among agents can lead to natural antagonism.
Table 3.1 on the next page presents the classification made by Ferber [31,
page 74] about the interactions among agents by considering the compati-
bility of their goals, their skills and the number of resources.
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Goals Resources | Skills Types of situation Category
Compatible Sufficient Sufficient Independence Indifference
Compatible Sufficient Insufficient | Simple collaboration
Compatible Insufficient | Sufficient Obstruction Cooperation
Compatible Insufficient | Insufficient | Coordinated collaboration
Incompatible | Sufficient Sufficient Pure individual competition
Incompatible | Sufficient Insufficient | Pure collective competition A .
Incompatible | Insufficient | Sufficient | Individual conflicts over resources | £Rtagonism
Incompatible | Insufficient | Insufficient | Collective conflicts over resources

Table 3.1: Classification made by Ferber [31, page 74] about the interactions
among agents, function of their goals, resources and skills.

However, this antagonism is not always a disadvantage. Dagaeff et al. [24]
discuss antagonism ws. cooperation of agents. The combined actions of au-
tonomous agents naturally induce an emergent antagonism, which is gen-
erally avoided by explicit and direct cooperation. The authors show that,
even in the presence of this antagonism, cooperation can emerge, and it is
sometimes possible to make advantage of this antagonism.

In our model the communication among agents cannot be done directly.
Nevertheless, agents can communicate indirectly, through the environment
for example.

3.3 Applications

A model cannot become viable unless the apparition of tools to construct
applications and applications themselves. Ferber [32] does a survey of the
multi-agent architectures, development environments and applications.

The applications of MASs are successfully used in industry and in re-
search. Jennings and Wooldridge, in “Applications of Intelligent Agents” [53],
"identify and distill the key conceptual foundations of agent-based computing
and present them in the context of a variety of commercial and industrial ap-
plication domains.” Some of the domains addressed are telecommunications,
portfolio management and financial services. Wang [85] presents the bene-
fits of agent technology in real-time process industry like power plant. “A
scalable agent-based architecture enables it to enjoy a level of flexibility that
cannot be found in traditional industry systems.” Ferber [32]| shows several
domains of multiple expertise, such as medical diagnostics, shapes recogni-
tion and natural language comprehension, which can be designed with agent
technology.

The multi-agent model is often used in simulations. There are simula-
tions of real and possibly difficult applications, such as the car traffic in a
city, in order to avoid traffic jams, or simulation of distributed intelligence



3.4. MODELLING OF SOCIETIES OF SITUATED AGENTS 69

applications, such as the sport teams |78], where each player is modelled by
an autonomous and goal-oriented agent. There are also simulations of real
multi-robot applications. To find appropriate behaviours of the robots, a lot
of tests are needed. This cannot be done in reality, but only with simula-
tions, each robot being modelled by an agent. In both cases, the execution
time of the simulation can be an important parameter. Later, the automatic
parallelisation provided by our model of simulation will be presented, as a
method to decrease the execution time of the applications.

An example of such simulation is the Robot World Cup Initiative?. This
is an international research and education initiative which provides a frame-
work and a competition for several types of artificial football game, from
simulation to real robots. Its goal is to push on the research in MAS do-
main. Tabme et al. [78] deal with two challenges of MASs: multi-agent
collaboration (or teamwork) and learning. As the model of teamwork, they
use a hierarchy of agents. As learning, they use both off-line learning (coded
by the programmer) and on-line learning (developed by the agent itself dur-
ing training) in order to improve and specialise agents’ individual skills in
RoboCup competition. They notice that both off-line learning and on-line
learning have been critical in improving agents’ skill.

More generally, a category of applications suitable to multi-agent sim-
ulations is artificial life. They model societies of entities and study their
evolution. In this case, the goal is generally to discover the emergence of in-
teresting properties, such as collective intelligence, where simple individual
behaviours lead to a powerful global behaviour [1, pages 15-17].

The model of simulation presented in this thesis can be appropriate for
simulations such as those presented above.

3.4 Modelling of societies of situated agents

The topological constraints of the environment in SMASs lead to several
specific features of these systems. Their modelling uses notions of space,
time, movement, as described in the following.

3.4.1 Modelling of space and time

The environment of experiments is generally discrete, a two-dimensional (2D)
grid of rectangular shape. The cells are generally square, but hexagon cells
or other shapes can be imagined. Pengi [4] and its new implementation [30]
(called in the following Pengi-2) use 2D rectangular environments formed
by squares. BioLand [86] uses a rectangular toroidal 2D environment. Our
model of simulation allows generally environments both toroidal and edged.

2RoboCup, Web site: www.robocup.org.
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Several objects can also be considered as belonging to the environment,
such as obstacles, resources, active (mobile) objects. The most simulators
include such objects. However, BioLand environment does not provide ob-
stacles. This influences the algorithms used.

The computer simulations are by definition time discrete. This can be
divided in two categories: discrete time, such as cycle-based ([15] and our
model) or discrete event time.

If the time is discrete (in cycles), the simultaneity of actions (which ap-
pears in reality) has to be taken into account. This can be done by dividing
every cycle in several subcycles. The PIOMAS simulator [14] for instance uses
four subcycles, which allow to deal with spatial conflicts. BioLand [86] uses
seven subcycles, which allows to update the environment and to simulate
the biots. Our model of simulation uses a virtual machine with five subcy-
cles: (1) perception and decision, (2) conflicts avoiding, (3) action, (4) user
function call, and (5) percept and environment update. The first and the
third cycles mark the difference between planning of agents action and their
effective action. The first and the fourth subcycles are provided by the user
of the tool. The other subcycles are done automatically by the tool.

3.4.2 Modelling of agents
Modelling of agents’ movements

It can be exact, such as in Pengi simulator [30], or inexact, such as in PIOMAS
simulator [15]. PIOMAS takes into account uncertainties at both levels of
effectors and sensors, based on a probability table.

Also, in some simulators [15] the agent has two actions concerning the
move: rotate and go ahead, while in others (such as our tool) it can move
directly in any direction, without needing to rotate.

The movement, compared to other agent actions, has generally the prop-
erty to potentially engender spatial conflicts in situated agents simulations.
However, Bioland [86] seems to not take into account such conflicts.

Our tool offers also a random movement in any direction, used for sim-
plicity of programming. A special care has been payed to provide random
but deterministic movements.

Modelling of other actions

Besides the movement, the agents can have other capabilities, such as tak-
ing objects from the environment or dropping objects they possess. It can
be done simultaneously with a movement (such as our tool) or not. The
side-effects of these actions can be taken into account entirely by the sim-
ulator or not. Our tool belongs to the former category, as it automatically
increases/decreases the load of the agents doing such action and that of the
resources concerned.
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vision odour

distance | far small
obstacles | highly disturbed | less disturbed

Table 3.2: Main user differences between odour and vision percepts.

Other actions, not present in our tool but sometimes simulable, are used
in other simulators:

e Pushing blocks is a feature of Pengi [4, 30].

e Rotation of agents is a feature of the PIOMAS simulator [15]. The agents
can move only in front of them.

Modelling of agents’ reproduction and death

This can make use of genetics. Our tool provides a simple functionality for
the reproduction and the death of agents, but does not provide a built-in
functionality for genetics.

3.4.3 Modelling of agents’ percepts

As seen in section 3.2, the agents generally use one or more percepts in order
to fulfil their goals. The percepts are used to interact with the environment
and/or to communicate with other agents.

It is worthwhile to note that the agents, by definition, have a local per-
ception. For my part, I think this is the reality too: we do not see, for
example, something at a given distance; it is the information which comes
to us. A special attention has thus been paid to the library for locality: it
provides special functions that allow the use of only local perceptions.

Several percepts are used in the literature [31]. We describe only two
of them, which are used in our tool: odour and vision. The vision gives
agents information not only about the adjacent cells, but on a larger domain.
However, this percept is highly disturbed by obstacles. The odour, on the
other hand, is not disturbed by obstacles, as shown below, but has generally
a smaller radius of action, as shown in table 3.2. A combination of these two
percepts seems useful to create efficient agents.

Odour

The odour (smell) percept tries to simulate the properties of the real odour,
namely the fact that the nearer the resource, the stronger is the odour. An
important consequence is that the potential field has to get around obstacles.
This field can thus be used by agents for finding the way to resources, while
totally avoiding obstacles. In the following we will call potential the value of
the odour in one cell.
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Figure 3.3: Illustration of the wave propagation model (4-connecting cells).

Most simulators [30, 59, 86], and our tool too, use the so-called wave
propagation model for simulating the odour propagation through the envi-
ronment. More information about potential propagation can be found in [31,
pages 194-200 and 216-218|. For the exact propagation of one resource, this
model starts by putting the right potential in the resource square and, like
the waves, goes repeatedly further the resource while decreasing the value of
the potential, as shown in figure 3.3.

While moving off the resources, the potential (as a function of the dis-
tance to the resource) is given by a strictly decreasing function. Let p be
the potential of a resource, and d the distance between the resource and the
square. Our tool uses a linear function pot(d) = p — d, while BioLand uses
a square root function pot(d) = p/d? (for d > 0).

It is possible to have squares influenced by several resources. In this
case, their potential is a function of all the potentials involved. BioLand
uses the add function. Our tool uses the maximum function. This choice
can have a high influence on the agent performance. The first function
allows the creation of equipotential zones (their perception being unuseful,
figure 3.4(a) on the facing page). The second function can absorb weak
resources (figure 3.4(b)), nevertheless it provides always a path to a resource.

The cells of the environment can be 4 or 8-connected. This influences the
spread of the potential. BioLand, PIOMAS simulators use 4-connected cells.
Our model of simulation allows both connectivities.

The propagation of potential field, one part of the environment updating,
is generally time consuming, as noticed by [86]. Two methods can be used
to speed up this propagation. The first is to parallelise it. Several problems
appear however, as a square can be influenced by several resources, and
simultaneous accesses to variables appear.

The second is to create inexact gradient fields, which can potentially
increase the speed of updates. This is not always a drawback, as agents are
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Figure 3.4: Problems of gradients models.

autonomous entities, so they have to adapt themselves to the environment.
BioLand and our tool use always exact gradients. For more information see
chapter 8.

Vision

The vision is a percept which allows agents to see what a certain square
contains (agent, resource etc.) Contrary to the odour percept, this square
can be far from the agent, and is highly affected by obstacles (which prevent
its propagation). In particular, this percept is very useful for avoiding agent
agglomeration, one point which can decrease the system global performance.

The vision can be global (all the environment is seen by the agent) or
local to the agent (only a part of the environment, near to the agent, can
be seen). If local, the region allowed to be seen traditionally contains all
the squares situated at a distance (Euclidean or not) inferior to a certain
number, called wvision radius.

A square A can be seen from a square B if the continuous line from
the centre of A to the centre of B does not intersect any opaque square.
Traditionally, opaque squares are obstacles, but other objects, such as mobile
objects or agents themselves, can be used. In order to compute the visibility
domain from a square, modified lines drawing algorithms can thus be used.
In general the visibility domains for squares are computed either statically,
at the beginning of the simulation, or dynamically, during the simulation and
when needed. A static computation can sometimes be preferable, in the case
when this computation is time-consuming. However, it does not work when
the visibility domains change run-time (opaque squares change run-time).

In chapter 7 several line tracing algorithms are presented together with
the one we have used.
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Chapter 4

Principles of parallel
computing

This chapter introduces parallelism topics that are related to our thesis. It
does not provide an exhaustive parallel computing overview.

4.1 Introduction

4.1.1 Benefits of parallelism

There are many applications whose execution time is either critical or too
high to be useful. Some of them use numerical computations, and appear in
image processing and forecast! fields for example. A significant decreasing of
their execution time can sometimes be obtained by using several processors
for their execution. Parallelism is the domain of computer science which
involves the use of several processors for the execution of the program.

The beginnings of parallelism date back to sixties |5, page 31]. The “first
supercomputer”, ILLTAC IV, was designed in 1967 and had 64 processors. It
lived for several years and was eventually replaced by a faster mono-processor
machine.

Nowadays, the parallel machines are used at large scale. Bal et al. [10]
see three different reasons for the use of parallelism, with respect to the
paradigm used:

1. Problems exhibiting inherent parallelism are better designed with a
parallel programming paradigm. In this case, the parallel programming
becomes the paradigm to be used. An example is a discrete event
simulator, dealing with multiple entities: a convenient approach is to
have one piece of code for every entity, and possibly run all these
entities in parallel.

!One can imagine that, if forecasting the next three days takes four days to the appli-
cation to execute, its result is certainly unuseful.

75
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2. Nature of some applications requires to run them on multiple machines
connected to a network. The distributed programming paradigm is
then appropriate, as these applications have not sequential counterpart.
Examples are electronic mails, and banking or airline reservations.

3. Performance, more precisely execution time, can be critical for some
applications. Here, the parallel paradigm does not always help to write
the program, but it is useful to decrease its execution time or to run
bigger problems. Examples of such applications are forecast and nu-
clear simulations.

The tool presented in this thesis uses the parallel paradigm for the first
and the third reasons. An MAS is by definition a collection of autonomous
entities, so a parallel programming paradigm is appropriate. In addition, if
the native parallelism of an MAS is identical or at least compatible with the
parallelism offered by parallel machines, the simulation can also be sped up
by using such a machine.

As this latter point is a matter of choice, we are mostly interested in the
performance analysis of parallelism when its sequential counterpart exists.
As the benefits of parallelism have already been presented, the rest of this
section treats the difficulties it engenders.

4.1.2 Measurement of performance of parallel programs

The measure and analysis of the performance of a program is generally very
complex, especially for parallel programs. One reason is that it involves
many factors, both internal to the program, such as input data, and ex-
ternal to the program, such as the speed of various devices?. Furthermore,
the performance may vary a lot if changing these factors. Thus, a lot of
carefully-selected tests need to be done, in order to obtain a measure of the
performance of a particular program as accurate as possible. Sections 7.10
and 8.8 deal with the main tests done for the tool presented in this thesis.
Knowing the performance of a parallel program is useful for comparing
it with other similar parallel programs, but it is also useful for comparing
it with a sequential implementation. On the one hand, this sequential im-
plementation can be the best sequential implementation of the application.
A customer or the final user is certainly interested by this comparison, as
it gives the real benefit of the parallelisation of the application. Comparing
the best sequential implementation with the sequential execution of the par-
allel program allows also to know its sequential slowdown (or the overhead
of parallelism in sequential execution). On the other hand, the sequential

2Such examples are the overlapping between communications and computations, whose
relative speed can influence the performance, the processors load, as they can be used by
other applications in the same time, cache and memory size, hard disk bandwidth and
So on.



4.1. INTRODUCTION 7

implementation can be the parallel program itself when executed either by
a single thread/process, or on a mono-processor. When comparing with its
own execution on a mono-processor, we obtain an indicator not on the ef-
ficiency of the algorithm itself, but only on its degree of parallelisation (its
processor scalability).

Several indicators exist to quantify these comparisons, but the most often
used is the speed-up. The speed-up of a parallel program is defined as the
ratio between the sequential execution time and the parallel execution time:
S(P) =T(1)/T(P). Two points need to be addressed here:

1. In general, time may have several meanings. It may be the wall-clock
time, i.e. the real, physical time elapsed between the start and the end
of the application, or between two arbitrary points of the program. It
may also be the processor time, i.e. the time passed by the processor
only, for example without I/O or time passed for other applications in
a multi-tasking environment. The parallel execution time adds differ-
ent meanings to this. In both types of times, it may be the average,
the maximum or the minimum time among the times passed by the
Processors.

2. The sequential time T'(1) may have different meanings too. It may
be considered as being the execution time of either the same parallel
program on one processor, or its best sequential implementation.

A speed-up equal to the number of processors used is called ideal speed-up.
This is generally the maximum speed-up which can be obtained by paralleli-
sation. However, we see three cases when the speed-up of a program can be
superior to the ideal one (supralinear speed-up):

1. Cache influence. The reason is that the total cache of several processors
is greater than the cache of one processor. A supralinear speed-up
appears for applications whose data which is regularly used does not
fit in one cache (sequential execution case), but fit in the caches of the
processors involved (parallel execution case).

2. Non deterministic work. For some applications which end when a so-
lution of the problem has been found, a supralinear speed-up can be
obtained when the parallel version, because of the multiple starting
points, happens to start with variants nearer to the solution than the
sequential version.

3. Modification of the algorithm. This can appear involuntarily when
parallelising some algorithms.

Unless otherwise stated, in the following of this thesis we are interested
by methods which seek to minimise the total execution time of a single
application running on a parallel system.
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As seen above, the measuring of the performance is a sensitive issue, as
it can influence the judgement of external people on an application. Many
results are thus presented in chapters 7 and 8, in order to provide greater
accuracy on program performance.

4.1.3 Overview of the impediments of parallelism

As shown in the previous section, parallelism can be a a solution in reducing
the execution time of an application. However, this comes with a price.

Firstly, the performance of parallel programs is limited by several factors,
both in software, such as sequential bottlenecks, and in hardware, such as
communication among processors. Due to the nature of parallelism, which
involves sewveral processors, we classify parallel performance impediments
based on two extremes, which degrade obviously its performance:

1. Too little use of parallelism, i.e. existence of sequential parts, which
limits theoretically the performance by not using all the processors
available for it3.

2. Too high use of parallelism, more precisely overhead of parallelism, such
as memory contention and communication among processors, which
limits practically the performance by the time constraints (latency and
bandwidth) of the network connecting the processors.

On the other hand, Bull [18] divides them in temporal and spatial, and
presents a hierarchical classification of all the parallelism overheads. Lester [60,
page 15] also cites a list of such factors, described in the following two sec-
tions.

Secondly, a parallel program is often harder to write than its sequential
counterpart. Depending on the type of the problem, the difference in diffi-
culty can be less or greater. The next two sections present these difficulties
in more detail, comparing them to their sequential implementation. Finally,
sections 4.2 and 4.3 describe problems which are architecture-specific and
software-specific.

4.1.4 Sequential impediments to performance of parallelism

Sequential parts of program affect parallel performance. There are two laws
which give the theoretical upper limit of the speed-up, given the fraction f of
sequential part of the program. The best known is Amdahl’s law [6], which
answers the question: given a program executed on 1 processor, how much
time is gained when executing it on P processors (figure 4.1)7

31t can be argued that these unused processors can be used temporarily by other
applications, but we are interested here only in the performance of a given application.
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Figure 4.1: The sequential and parallel execution times used in the definition
of the speed-up, as calculated by Amdahl’s law and by Gustafson-Barsis’ law.

Amdahl’s law [6]: Let T; be the execution time of a parallel
program on a single processor, and f the fraction of 77 which
cannot be parallelised. Then the speed-up of the parallel program
for P processors is upper limited by Spax(P) = H+;i (hence

P
< 7)-
As an example, if T} = 100s and f = 5% (Tieq = 5s), the speed-up cannot
exceed 20, regardless of the number of processors. If P = 95, then the limit
of the speed-up is Smax(P) ~ 16.

Some authors, like Gustafson [46], Lewis [61, page 13| and Roosta [69,
pages 227-228|, claim that Amdahl’s law is not appropriate for certain types
of parallel programs, such as data-parallel ones. For these applications, the
amount of potential parallelism increases with the size of vectors in the ap-
plication, while the execution time of the sequential part (initialisation for
example) remains constant, regardless of the data size. Gustafson-Barsis’
law? [46] gives a measure of the data size scalability. It answers the ques-
tion: given a program executed on 1 processor in time 77, how much time
is gained when increasing data size and using P processors give the same
execution time 77 (figure 4.1)7?

Gustafson-Barsis’ law [46]: Let T1 be the execution time of
a parallel program on a single processor, and f the fraction of T}
which cannot be parallelised. If the natively-sequential time f73
is constant regardless of the data size of the program, then the
speed-up of the parallel program for P processors, with increased
data size and execution time of 77, is upper limited by Spax(P) =

f+1=F)P.

In the example above, if Tp = 100s and f = 5% (Tyeq = 5s), then the
speed-up is limited by Smax(P) = 90 when P = 95, and is no more limited

“

“We call it Gustafson-Barsis because Gustafson [46] writes: . an alternative to

Amdahl’s law suggested by E. Barsis. ..”
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when P — oo. Compared to Amdahl’s law, the limit of the speed-up is
greater and is scalable.

It is worthwhile to notice that the two laws above are not incompatible.
They only are applied to different parallel execution times and data sizes
(figure 4.1 on the page before). Amdahl’s law varies the number of proces-
sors P at constant data size W, which gives different execution times 7T,
while Gustafson-Barsis’ law varies P and W so that 7' remains constant.
Otherwise said, there are two fundamental differences between the two laws,
both appearing during the compute of the speed-up:

1. The data size of the program is unchanged for Amdahl’s law, while for
Gustafson-Barsis’ law it increases.

2. The ezxecution time Ty, To, ..., Tp is decreasing for Amdahl’s law,
while for Gustafson-Barsis’ law it is maintained constant. As a conse-
quence, the fraction f of sequential time which cannot be parallelised
is constant for Amdahl’s law (fa = constant) and is decreasing for
Gustafson-Barsis’ law (fgs = f(W)).

The link between the two laws is illustrated in figure 4.2 on the facing
page. It presents Amdahl’s curve in four distinct cases, corresponding to
sequential fractions of 0.01, 0.02, 0.04 and 0.08. Gustafson-Barsis’ law takes
the hypothesis that when the number of processors available increases, the
data size of application is also increased. Considering a simple case, when the
amount of computation of the parallel part has complexity O(W), the four
cases come from data sizes of 8W, 4W , 2W and W, respectively. As data size
increases and execution time of sequential part decreases, Gustafson-Barsis’
law speed-up simply “jumps” from worse to better Amdahl’s law curves. As
an example, for 28 processors the limit given by Amdahl’s law is about 8,
while the limit given by Gustafson-Barsis’ law is much greater (e.g. about 22
for data size 8 times greater and constant execution time of sequential part).

The tool presented in this thesis contains a few small sequential parts.
These will be discussed in chapter 9.

4.1.5 Parallel impediments to performance of parallelism

Natively parallel obstacles can also affect parallel performance. Some of
them are low-level, namely memory contention, process creation time, com-
munication delay and synchronisation delay. Others are higher level, such
as load unbalancing and overwork. Finally, we take into account another
important factor in parallel performance, the granularity.

Hardware impediments to parallelism

It is important to notice that:
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Figure 4.2: Link between Amdahl’s law and Gustafson-Barsis’ law:
Gustafson-Barsis’ speed-up “jumps” from worse to better Amdahl’s law
curves, increasing data size.

e all of them are not theoretical obstacles, but practical ones, given by
the technology used for the architecture, and

e they are independent of the theoretical limits of the two laws given
above and their influence is added to them.

These obstacles are presented below.

Unlike sequential applications, the parallelism involves creation of tasks,
either implicitly or explicitly. If not done properly, for example when the
time needed to create (and kill) a task is comparable to the duration of
execution of the task, the overhead of task management becomes significant
and reduces drastically the performance of the parallel program. This issue
has influenced the tool presented in this thesis by constraining it to use the
same number of tasks, to create them at the beginning of a simulation and
to kill them only when the simulation ends.

Memory contention is specific to computers with shared memory and ap-
pears when several processors request data from memory at a higher speed
than it can deliver data. Some processors are hence delayed. Memory con-
tention acts at all the levels of memory hierarchy. For main memory, which
is shared, the bandwidth may be insufficient to deliver the data in real time.
As we will see later in section 4.2, this is the reason why the basic bus-based
parallel architectures are not scalable. On the other hand, the caches are
generally local to the processor, and, for cache coherence systems, it is the
hardware which assures the coherence of caches. In this case, contention
manifests when the caches are very frequently updated in order to guarantee
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Performance impediments of parallelism

Software-related impediments

Load unbalancing Overwork

Algorithm changing

Figure 4.3: Software-related impediments to performance of parallelism.

their coherence [49], updates which do not exist in mono-processors. Several
attempts have been done to cope with this difficulty, and more information
can be found in section 4.2.4. The tool presented in this thesis is influenced
by this issue mostly by the false sharing problem, as described later.

Communication delay is another issue of parallel programming, specific to
multi-computers, where the processors communicate data through a network.
This communication is necessary because the processors cooperate, more or
less, to carry out the same task, in its entirety. Two parameters of network
are of main interest: latency and bandwidth, defined in section 4.2.

Algorithms often cannot be divided in fully independent parts, processed
by different processors, and a certain sequence of tasks, done with synchro-
nisation, has to be done [5, page 13]. When the synchronisation is frequent,
the synchronisation delay becomes important and can lead to memory con-
tention also.

Software impediments to parallelism

The issues discussed above are low-level. They depend on the hardware per-
formance and their absolute value decreases with the development of hard-
ware. The next issues are high-level. They involve the software (figure 4.3).

Another source of parallel performance decreasing is the overwork. The
parallelisation of some algorithms changes the algorithm and adds work to
processors. This is the case for example of our iterative-fixed method of the
wave propagation implementation (section 8.8.3, page 194). In sequential,
the algorithm consists of a propagation. In parallel, an additional work of
repropagation needs to be done to obtain correct results.

Finally, an important impediment is the load unbalancing of the proces-
sors. The sequential parts discussed before can be considered as a extreme
case of load unbalancing, with only one processor working. In order to avoid
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idle processors, the tasks given to the processors need to be as equilibrated as
possible. A method is to statically divide the work to the processors. How-
ever, good load balancing can sometimes be difficult to obtain, especially
when the application is irregular (the tasks durations are not the same), or
dynamic and unpredictable (the tasks durations change unpredictably during
the execution). In this case, a dynamic load balancing can be used [88].

Granularity

The factors presented above are responsible for parallel performance decrease
of applications. It is also worth to notice an important parameter of appli-
cations which indirectly influences the performance: the granularity. Often,
the granularity of an application is a measure of the frequency of proces-
sors synchronisation. Specifically, Almasi and Gottlieb [5, pages 13-18] call
granularity the average size of the processor (individual) subtask, between
two consecutive synchronisation or communication points. Thus, a fine grain
parallelism means individual subtasks are relatively small in terms of code
size and execution time; coarse grain is the opposite. The smaller the gran-
ularity, the greater the potential for parallelism (as given by load balancing)
and hence speed-up. However, the smaller the granularity, the greater the
overheads of synchronisation and communication.

Another definition of granularity concerns the number of tasks. Fos-
ter [37] calls a decomposition as being fine-grained if a large number of small
tasks are defined. More generally, we can define the granularity as the ratio
between the number of tasks and the number of processors. This definition
is generally used when the first number is much greater than the second
number. The reason of this definition is that in this case the parallel pro-
gramming becomes more difficult, as one processor needs to process several
tasks, and then problems of synchronisation and load balancing appear.

On the one hand, as the applications of the model and tool presented in
this thesis often use a very high number of agents with simple behaviours,
the tool has to offer a fine grain parallelism. On the other hand, as discussed
below (section 4.2), we used MIMD machines, which provide medium and
coarse grain parallelism. This means that, if from the software point of view
the tool has to offer fine grain parallelism, from the hardware point of view
the tool is bound to medium and coarse grain parallel architectures.

4.1.6 Parallel programming complexity

In addition to the performance impediments presented above, which decrease
the execution time compared to the ideal one (sequential execution time di-
vided by number of processors), often parallel programming is also more dif-
ficult than sequential programming, which increases the development time.
This additional effort is less or greater, function of the nature of the algo-
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rithm and of the parallel performance required. A good design of a parallel
algorithm can sometimes increase drastically the parallel performance, as
shown by our experiences [83].

However, it is worth to notice a distinction here. There are applications,
in research for example, which are executed seldom. There are also applica-
tions, in forecast for example, which are executed often. Generally, higher is
development time, lower is execution time. Sometimes, a tradeoff has to be
done between these two times: Some algorithms can be optimised in order to
minimise either the execution time, or the development time. We think that
every simulation written with the tool realised in this thesis will be generally
executed a few times, in order to discover if the current behaviour of the
agents is productive. Skillicorn [76, page 131] notes:

“Long-term maintainability [of numerical or scientific programs|
is emphasised less because of the research nature of such software.
Many programs are intended for short-term use, generating re-
sults that make themselves obsolete by suggesting new problems
to be attacked and new techniques to be used.”

In this case, the development time is as important as the execution time.
This tradeoff has influenced the design of the tool presented in this thesis,
as simplicity of programming (chapter 9) is its first goal, and execution
performance the second one.

Another added difficulty of parallel programming is the decomposition of
programs in sequential and concurrent tasks. Also, parallel programs contain
parts which need to be executed in order, for example initialisation, user
input waiting, computing and final result saving. Synchronisations among
processors have to be made at appropriate places.

Additionally, in parallel programming objects shared by several processes
need a special attention. If several processes modify simultaneously the same
shared variable, different or incorrect results may appear. Such race condi-
tions are avoided generally by synchronisations, such as lock and unlock
functions®. Other methods of synchronisation are presented in section 4.4.2.

In MASSs, the agents have to do simultaneous actions, which is not done
the same in execution. For instance, it is possible that the simulator has
already finished the execution of the behaviour of one agent when it starts
the execution of another one, but no agent perceives it. In sequential ex-
ecution, the simulation of the agents is done fully sequentially. In parallel
execution, the behaviours of agents are executed sequentially for some, and
parallelly for others. The reasons of not doing fully parallel execution is the
fine granularity, as described in section 4.1.5. This simultaneity constraint
has had consequences in the design (programming complexity) of the model

5This is also an example of synchronisation delay, as described in section 4.1.5.
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and tool presented in this thesis and in its parallel performance, as described
in chapters 6 and 9.

Another difficulty of parallel programming compared to sequential one
is portability. Numerous different parallel architectures exist and, as shown
by Skillicorn et al. [76], while the execution time of a sequential program
changes by a constant factor when changing architectures, the execution
time of parallel programs can change by an order of magnitude when chang-
ing parallel architectures. As a consequence, there is no single standard of
parallel programming. Several attempts have been made, such as POSIX
threads and OpenMP, however a lot of work is needed if the performance on
several architectures is the most important parameter. This has direct im-
plications to the maintenance also, because sometimes a great effort has to
be done when the architecture changes. The tool implemented in this thesis
uses the POSIX threads and Irix-native threads on SGI systems.

The debugging of parallel programs is also much more difficult than that
of sequential ones. Firstly, there is the added complexity by the parallel
implementation, as introduced above. Also, support for multi-task execution
is needed by the debugger, which is not always fully given by the actual
debuggers [23]. Furthermore, the overhead incurred by the debugger when
executing the application, such as step-by-step execution, changes the timing
of the processes of the applications, and can give different results in the
presence of a race condition around a shared resource.

Others difficulties of parallel programming include deadlock, network se-
curity and network failure. Network failure or security are out of the scope
covered by this thesis.

By providing a tool which hides almost completely the parallelism to
the user, most of the parallel programming complexity described above is
avoided by the user. On the other side, the implementation of our parallel
tool has involved these complexities above.

4.1.7 Brief prospect on the future of parallelism
Performance and financial points of view

All the issues concerning parallelism presented above are targeted for perfor-
mance (execution time costs) and ease of programming (human time costs
t00). However the real world imposes that the financial cost of the paral-
lel machine needs to be taken into consideration too. Actually, the ratio
between the performance of an efficient shared-memory parallel computer
and its cost is at least one order of magnitude less than that of a sequential
machine. The network of stations provides an alternative of parallel process-
ing at lower performance, but at lower price too. For applications which do
not need a very fast interconnection network or a global address space, the
network of stations (clusters) can be a practical alternative.
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Future parallel models

As shown above, generally the parallelism allows the increase of the perfor-
mance of some programs in exchange of human time and material costs. A
lot of research is done to increase the profitability of the parallelism. Skil-
licorn and Talia [76] think that the failure of parallel computation to become
mainstream is its lack of a long-term growth path. By improving classical
parallel methods, they hope that within a few years parallel models will be-
come easy to program and will be portable, even if “it will take longer for
software development methods to come into general use”.

Flynn [36] takes a longer-term view. Looking back to the beginning of
parallelism, he recently noticed that the difficulty of parallelism was signif-
icantly underestimated. Contrary to the classical point of view above, he
thinks that a new representation of problems, using a cellular design with
element-private form, and not a global data space, is needed to exploit the
real power of parallelism. The problems would be addressed by computers
in which each element has its own memory. As in the past, when scientists
of several domains worked together to the realisation of the first comput-
ers, he suggests that an interdisciplinary effort may be needed to take best
advantage of “parallel processor’s great potential”.

4.2 Parallel computer architectures

Deciding whether an application is appropriate for execution on a parallel
machine passes necessarily through the choice of an appropriate parallel ar-
chitecture for the given application. This section describes the actual parallel
architectures taken into account for the tool implemented in this thesis.

For us, the most important parameter of a parallel architecture is its
performance for the target applications, the decision based on the cost of
the parallel machine being out of the scope of this thesis. When speaking
about performance, we take the nature of target applications into account,
such as frequency of inter-processor communications and I/O issues, because
it influences the performance.

4.2.1 Flynn’s taxonomy

In 1966, Flynn [35] made a classification of computers, based on the stream
concept, which characterises the systems based on the concurrent sequences
of instructions and data managed by the processor:

1. Single instruction single data (SISD) machines execute one instruction
on one data at a time. The classical processor is such an example.
However, modern processors are pipelined and superscalar, hence they
may execute several instructions in parallel. Therefore, as Flynn has
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recently noted [36], the more precise definition of SISD machines in-
volves a processor in which one operation is erecuted per state transi-
tion. These are sequential machines, so we are not interested in them
in this chapter.

2. Single instruction multiple data (SIMD) machines allow the execution
of one instruction on several data at a time. For instance, this property
appears in programs of wheather forecasting. Examples are vector and
array processors.

3. Multiple instruction single data (MISD) machines do not exist in re-
ality in their pure form, because a data can be processed only sequen-
tially. Thus, we are neither interested in this architecture. However,
an analogy can be made with pipeline processing of modern processors,
where each data (instruction) needs several stages to complete. Several
instructions are processed in the same time, with a same instruction
being at different stages in every processing unit at different times.
The pipeline execution [43] is another form of software parallelism, as
shown in section 4.3.1.

4. Multiple instruction multiple data (MIMD) machines allow the con-
current execution of several instructions on different data. We will
discuss them below.

4.2.2 MIMD machines

The MIMD has been the computing paradigm of 1990s [36]. This type of
machines can further be classified, as their performance depends highly of
the interconnection network among processors. A common classification is
to split them in two categories [60, page 153|: multicomputers, a network
of computers, and multiprocessors, several processors bound together in a
same machine.

Almost all programs obey, more or less, to the locality principle, both
temporal and spatial, and both for instructions and for data. Also, the lo-
cality can be valid only on some parts of a program, not necessary all the
program. This principle is virtually always exploited by the use of caches,
a high-speed memory, bound to processors. They improve a lot the perfor-
mance of the machine. We will present them later.

Multicomputers

A multicomputer (for example a cluster of workstations) is a distributed
computer system: memory, processors and I/O are all distributed. Every
processor has local memory and cache, and I/O accessible by itself only.
However, a library could allow a shared-memory view of the whole memory
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and disks transparently to the programmer, as described in section dedicated
to parallel software (section 4.3).

For applications which need a lot of communication among processors
(synchronisation or data) the type of the network is important. Very impor-
tant parameters of network are [5, pages 381-382]:

1. Topology: star, token ring, bus-based etc.

2. Latency of the network, defined as the time needed for a bit to arrive
from one processor to another. This influences directly the synchroni-
sation delay and the data exchange speed among the processors.

3. Bandwidth of the network, defined as the maximum data size trans-
fered through the network in the unit of time. This parameter becomes
important when big data are exchanged among processors.

Compared to multiprocessors, the low cost of multicomputers and the
fact that clusters can include machines already in use have influenced their
large deployment.

Multiprocessors

A multiprocessor is a natively shared-resource computer system: memory
and I/O are shared among all the processors. It provides natively the
shared-memory parallel programming paradigm (as described in section 4.3)
in exchange of a more complex hardware implementation of the machine |5,
page 29|.

Almost all shared-memory machines have caches. They are private to
every processor. Unlike multicomputers, as they cache data from a global
memory, the same data in memory can be found on several caches and a
coherence protocol is often offered. Caches and their influence on the per-
formance are described in section 4.2.3.

Multiprocessors are mainly characterised by a high speed interconnec-
tion network between processors and memory, much faster than a classical
network of multicomputers. As in the case of multicomputers, the most im-
portant parameters are its latency and its bandwidth, presented above, and
its topology. Several topologies exist for MIMD machines [5, chapter 8|:

e (Classical bus-based networks consist of a single bus which connects
all the processors to all the memory modules (figure 4.4 on the facing
page). They are also called Symmetric MultiProcessors (SMPs). They
are simple to build and allows a simple cache-coherence system, but
are not scalable.

e Fully connected nodes, where connects directly every module. It is
the fastest and the most complex topology type, and it is theoretically
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Figure 4.4: Architecture of an SMP machine, where processors are connected
to memory banks through a common bus.

completely scalable. However, it is seldom used because of its hardware
implementation complexity.

e Several other topologies exist between the centralised approach of bus-
based systems and the fully connection of grid approach. Examples of
such topologies are butterfly, fat-trees and hypercube.

The topology is important for parallel programs because of their different
number of processors supported and their performance. In chapters 7 and 8,
performance measurements of two machines used are given (an SMP bus-
based system and a DSM system, presented below, with a hypercube topol-

ogy).

Distributed shared-memory computers

The performance of shared-memory machines and the scalability of the clus-
ters are claimed to be the successful goal of a recent type of parallel ma-
chines, the distributed shared-memory machines (DSM) [44, 67, 34]. Such
a machine contains several cluster memories, which are shared by hardware,
and a scalable interconnection network [44]. Origin 2000 is an example of
such a machine (figure 4.5 on the next page), which is formed by several
nodes, each node containing mainly one or more processors and their local
memory, every node being interconnected with other nodes by a fast router.
A common organisation of the nodes is the hypercube structure.

The distributed shared-memory machines have physical distributed mem-
ory, because every processor has its own local memory. But, unlike other
machines (such as Cray-T3E) for the programmer all the memory is shared,
as the hardware does transparently the routing of data. This is also the rea-
son why we will put them in the category of shared memory-machines for
the rest of this section.

However, in exchange to the physical distribution of the memory, these
machines have lost one useful property of SMP architectures: the uniform
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Figure 4.5: Origin 2000, a DSM machine with a hypercube organisation,
contains nodes with one memory, two processors, and a connecting hub.

access to the memory. This NUMA (Non Uniform Memory Access) property
comes from the fact that the access to data depends on its location. As a
possible consequence, the access time may not be the same, for example a
local memory may be much faster than a remote memory (local to another
processor). Therefore, two factors need to be taken into account:

e On DSM machines with a large number of nodes, a cache miss is quite
expensive if the data is found in the memory of a far node. Also,
on cache-coherence NUMA (CC-NUMA) machines, special attention
needs to be paid for cache conflicts, because a cache line invalidation
can involve the whole system.

e In order to bring nearer data to the processors which use it, some
DSM systems support data migration transparently by hardware. If it
is used, frequent migrations can potentially add an expensive overhead.

Origin 2000 is a CC-NUMA DSM machine, supporting transparently
data migration also [34].

4.2.3 Impacts of cache memory on performance

Nowadays, in terms of speed, the processor development is quite ahead of
the memory. In order to reduce this divergence, the common technique
is the use of caches, invented at IBM in the 1960s [72, page 182]. The
cache is a small and fast memory interposed between the processor and
the memory. It is managed by the hardware and acts transparently to the
programmer. It improves significantly the performance of an application
executed in sequential and, except in special cases, in parallel. Additionally,
a programming development accordingly to the structure of the caches can
improve significantly the execution time of most applications. The influence
of the cache on the execution time of an application is particularly true for
shared-memory parallel machines, where an added complexity is that several
caches can contain the same data, as presented below.
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Storage Size Latency | Notes
register 32 bytes 3ns register renaming file
L1 cache 32KB 6ns on-chip, half Pentium-II clock rate

L2 cache 256 KB 57ns off-chip, on-package
memory | 64000KB 162ns 100 MHz SDRAM, single bank

Table 4.1: Storage hierarchy sizes and latencies on 350MHz Deschutes Pen-
tium II system (1998) [71].

The reason of using slow memory instead of fast caches is the cost of
the hardware complexity of caches. For the same hardware complexity, as a
general principle, faster the memory is, smaller it is (table 4.1 gives precise
information for a Pentium II processor). To further optimise the role of
caches, several caches exist in modern computers. Typically, there are two
levels of cache: a small and very fast cache (level 1 cache), generally in the
same chip as the processor, and a larger and less fast cache (level 2 cache)
between the L1 (level 1) cache and the memory.

Actual cache architecture

Almost all programs obey to two principles of locality [48, page 38|, [74,
page 17]:

1. Temporal locality: Programs often access a same data several times in
a relatively short time interval.

2. Spatial locality: Programs often tend to access data near a data already
accessed.

The goal of actual caches is to exploit these localities. They do this by
caching lines of memory data (see figure 4.6 on the next page). Caching
data exploits temporal locality, while caching lines of data exploits spatial
locality.

In addition to the two localities presented above, Hill et al. [49] consider
another locality, specific to shared-memory parallel computing: processor
locality. A program has good processor locality if contemporaneous accesses
to a memory data come from a single processor (rather than many different
ones). Its influences and guidelines for a better use are shown below.

For our purposes, the cache organisation has two important properties
which influence the performance on parallel machines:

1. As the cache is organised by lines, a same cache line can contain several
distinct data, such as variables in programming languages.

2. As the memory is global for shared-memory parallel architectures, the
same memory line can be found on several caches.
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Figure 4.6: Caches store copies of data lines from memory.

A lot of research on cache architecture and on automatic compiler tech-
niques has been made to avoid actual drawbacks. For example, such an
architecture, presented in [70], splits the cache in several subcaches, based
on the fact that several specialised subcaches better exploit the spatial and
temporal localities. The high use of the processor locality remains however
the programmer’s task. Other works try to take benefit on the cooperation
between the cache and the computer architecture [63]. It is worthwhile to
notice that if such methods are adopted by hardware manufacturers, several
optimisations presented below will no longer be needed.

4.2.4 Software development guidelines for cache access opti-
misation

In order to use efficiently the cache, several guidelines have to be taken into
account by the programmer. Hill et al. [49] discuss some cache models (no
caches, infinite word caches, infinite block caches and finite block caches) and
analyses their properties in sequential and parallel programs. In the following
we divide the optimisations in two categories, sequential and parallel, and
we present both of them, as parallel programs involve the both.

Sequential optimisations

The memory access being expensive, the cache misses (data not found in
cache) have to be avoided as much as possible. A method to do this is to
access the memory continuously, because the caches are finite and useful
data can be flushed from the cache. This exploits the lines organisation of
the caches, because all the data found in the same cache line can be accessed
with the price of only one cache miss. A typical programming example is the
access of all the elements of a matrix. In C language, for example, matrices
are stored by lines in memory. Therefore, in order to better exploit the cache,
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matrices have to be accessed by lines.

During the processing of a problem, a data can be used several times.
Another optimisation resulting from the finite size of the caches consists
of trying to process data already in cache until its processing is finished.
Thus, when the data will be flushed from the cache, it will no longer be
necessary [49].

Parallel optimisations

The cache is yet more important for cache-coherent shared-memory archi-
tectures. In these systems the coherence of caches is assured by a continuous
update of caches, and several cache coherence hardware protocols exist [77].
Therefore, if several processors use write operation on a same variable (a
same memory location), this variable is found in several caches, and each
time a processor changes it, all the caches are updated. This can even lead
to speed-ups inferior to 1.

Another important aspect, less visible, is the false sharing [48, pages 669—
670], [49]. The cause is the line organisation of caches. It appears when
several processors modify distinct variables, which happen to belong to the
same cache line. The cache of each processor contains this cache line, and
each time a processor changes the value of its variable, the cache line in
the other processor is updated. If these operations are frequent, the loss in
performance can be very high. Methods to cope with this unwanted problem
are the padding (adding unused memory space near a variable to ensure that
another variable cannot be in the same line) and the data alignment (using
data starting to a multiple of cache lines, which ensures that two data are
not found in a same cache line) [49].

4.3 Parallel programming strategies

Our main goals concerning the parallelisation of our model implementation
are to be portable and generic, i.e. to have a high power of expressiveness.
We will analyse in this section the options we have had and the reasons for
our choices.

4.3.1 Sources of parallelism

Germain-Renaud and Sansonnet [43, chapter 1| present three ways to exploit
parallelism in applications:

1. Data parallelism, where the data of the application is divided in pieces,
each piece being processed by one of the processors. This is the most
used source of parallelism.
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2. Pipeline parallelism, where the processing of the same data of the ap-
plication can be decomposed in several consecutive sub-processings,
each sub-processing being assigned to a different processor.

3. Control (functional) parallelism, where some parts of processing of the
application can be done in parallel, each processor executing a part of
processing.

The pipeline parallelism is suitable to specific applications, and we have
not used it in our implementation of the simulation model. Instead, we
have used the other two sources of parallelism. For instance, in our vision
algorithm (section 7) the simulated environment is decomposed in several
domains and each processor works on a different domain (different data).
Also, each agent has a proper behaviour, and the behaviour of agents is
executed in parallel by all the processors.

4.3.2 Abstraction levels of parallel programming

Skillicorn [76] considers six models for a parallel programming tool, based
on their parallelism abstraction:

1. Completely abstract, where the parallelism use is not even known by
the programmer.

2. Explicit parallelism only, where the programmer knows only that the
program is executed in parallel.

3. Explicit parallelism and decomposition, where the programmer has to
decompose himself the data.

4. Explicit parallelism, decomposition and mapping, where the program-
mer has to map himself each piece of data to processors.

5. Explicit parallelism, decomposition, mapping and communication, where
the programmer takes into account also the communication among pro-
Cessors.

6. Everything explicit, where the synchronisation is also explicit. This is
a difficult model of programming.

The final practical result of this thesis is a parallel programming tool of
level 2. In fact, the user has only to specify the number of threads to use,
and a few inherent constraints appear for his programs. Instead, in order
to implement efficiently the tool, internally we have used low-level parallel
programming of level 6.
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4.3.3 Parallel programming paradigms

Writing parallel software is a difficult task, and several models of paral-
lelism have been created. Kale [55] presents a state of the art of models
and languages used in computational science and engineering. Based on
the paradigm of communication among processors, we distinguish several
parallel software paradigms:

e Message-passing paradigm, where the communication among proces-
sors is done through explicit messages. This is the natural method
of parallelisation for multicomputers. Two standards have emerged:
PVM [42] and MPI [65].

e Shared-memory paradigm, where all the processors can access the
whole memory, and the communication is done through the memory.
This is the natural method of parallelisation for multiprocessors.

e Mixed, combining both message-passing and shared-memory paradigms.
An example is MPI-OpenMP, which may be efficient in execution time,
but more complex (2 paradigms to deal with) [22].

e Natively parallel paradigms, such as actors [2], Linda model [66], CSP
(Occam model [19]) and ParCeL model [84, 82, 12], which use message-
passing or shared-memory paradigms.

In the message-passing paradigm each processor has a private memory,
which cannot be accessed by other processors. Therefore, when processors
need data from other processors, they have to communicate. The communi-
cation is done through explicit messages. This paradigm is appropriate for
multicomputers, but it can also be simulated on multiprocessors (through
memory copying for example). The advantage of this paradigm is that the
programmer has greater control over the communication, since the commu-
nication is explicit. Therefore, he can optimise the communication for the
program. However, the programmer is forced to program the communica-
tion, which increases the difficulty of writing parallel programs.

Based on the difficulty of message-passing programming used in our pre-
vious experimentations of situated multi-agent systems [57], we have consid-
ered the shared-memory paradigm easier for such systems, therefore we have
focused on this paradigm for our implementation of the model.

Moreover, we have used a simple programming style, based on SPMD
(Single Program Multiple Data) parallel programming strategy and BSP (Bulk
Synchronous Parallelism) computation model. In BSP [80] all the processors
have pure computation parts and communication parts, separated by barri-
ers. In SPMD strategy [5, pages 609—610] all the processors run the same pro-
gram but can execute different subroutines between synchronisation points
(as a function of some local data for example). These computation model
and strategy mix very well.
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4.4 Shared-memory parallel programming paradigms

In this paradigm the memory is shared among all the processors. The
communication among processors can be done through shared-memory tech-
niques, explained below. However, if not carefully used (an example is the
false sharing), the performance can decrease.

4.4.1 List of existing paradigms

The most used methods of parallel programming are based on sequential
models. Based on the parallelism transparency, they can be divided in the
following categories:

e Explicit multi-process. An example is the parallelisation by processes,
as process creation in Unix with the fork system call.

e Explicit multi-threading, where threads operations are created explic-
itly [64]. Several multi-threading interfaces exist. In our tool we sup-
port the standard POSIX threads interface. We also support the na-
tive Irix multi-threading library, since our experience has shown that
during the thesis the POSIX threads interface was not yet efficiently
implemented on the Origin 2000 machine we used.

e Implicit multi-threading, where some thread-specific techniques, such
as data decomposition, can be implicitly done by the compiler based
on hints given by the programmer. For regular computations this is
easier to use than explicit multi-threading, but can be inappropriate
for complex problems with irregular computations. The parallelisation
can be done in two ways:

1. Directive-based, where the parallelisation hints are given by com-
piler directives. A recent standard has emerged, OpenMP [25, 20].
Its first implementation was in 1998, when this thesis has al-
ready been started. As we have written in our paper [27], we
did not know if it has sufficient power of expressiveness to paral-
lelise our irregular multi-agent systems, characterised by different
behaviours for agents and different potential for resources. Conse-
quently, we preferred to use another technique of shared-memory
parallelisation.

2. Sequential languages enriched with parallel constructions. Two
examples are Cilk [68], based on C language, and Java threads [50].

We can add also some automatic parallelisation techniques, where the
compiler reads the sequential program and adds transparently paral-
lelisation constructs (for example thread creation and destruction).
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e Original and natively parallel programming languages working also on
shared-memory machines, such as Linda language [66] and ParCeL-3 [81].

In this context, we have preferred explicit multi-threading parallelisation,
as they are nowadays portable, generic and efficient.

4.4.2 Synchronisation techniques

In shared-memory programming, the synchronisation among processors can
be done by several techniques [5, 37, 60]. Some of them deal with critical
regions (at most one processor at a time can be executing the given region).
Locks allow to implement easily mutual exclusion with at most one processor
at a time in the same region. They can be busy-wait, where the processor
executes an empty loop verifying each time if it can continue, or suspending,
where the processor is awaken by a signal. Semaphores allow to implement
more complex synchronisation protocols, for example at most a given number
of processors at a time in the same region, or producer-consumer protocol.

Other techniques allow to synchronise several processors, such as barri-
ers, which are used for instance to implement SPMD parallelisations. Since
processors are forced to wait the completion of the barrier, without actually
executing the program, the more barriers, the greater the load unbalancing
among processors.

As we have used the SPMD parallel programming strategy, we have used
mainly synchronisation barriers for thread synchronisation.

4.5 Parallel and deterministic generation of ran-
dom numbers

In order to allow diversity within the simulations written with our tool®, the
use of random numbers is necessary.

When using computer-generated random numbers, the primary goal is
the randomness of the sequence of numbers. The generator is generally a
function which, applied to the current random number, gives the next ran-
dom number. Knuth [58] and Anderson [7]| provide a sound mathematical
analysis of sequential random number generators. The quality of the random-
ness provided by the libraries of actual operating systems is often sufficient
for applications. However, there are several issues to be aware of. Firstly,
as the generation is done by a mathematical function, the numbers gener-
ated are pseudo-random numbers”. Secondly, as the next number is function

5The parameters involved in this diversity are given in section 9.2.3.

"However, mathematical functions may be avoided. For instance, the GNU/Linux
operating system provides a random number generator based on the noise of physical
devices: “The random number generator gathers environmental noise from device drivers
and other sources into an entropy pool” (from random man page).
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of the current one, and the number of integers is finite in a computer, the
sequence generated is periodic. This can be an important issue if a lot of
random numbers are needed.

Thirdly, the sequence of numbers is generated in a deterministic fashion.
For a given generator, if the first number (called seed) used by a generator
is identical, then the same sequence will be obtained. Thus, the choice of
a unique seed between different executions of a program ensures the repro-
ducibility of random numbers. The reproducibility can be useful for several
reasons, such as validation and debugging of the programs, and comparison
between the results of two executions.

For parallel applications, the generation of random numbers has several
issues:

e It is more difficult, as the randomness of the sequence has to be pre-
served when concurrent access to the generator appears [37].

e The scalability (execution time efficiency) of the random number gen-
eration can be an issue, for example when several processes use a single
generator which uses lock operations.

o If several identical generators are used, correlation problems can also
appear, leading to the same sequence of random numbers on different
generators [37].

Anderson [7] and Foster [37, pages 329-335] present some background on
deterministic parallel random numbers. They present three approaches for
general parallel random numbers generators:

1. The centralised approach uses one generator for all the tasks. Concur-
rent access and scalability must be dealt with. The reproducibility is
hard to achieve, because the sub-sequence of random numbers given to
each task depends on the request time.

2. The replicated approach gives a separate generator to each task. All
the generators start with reproducible seeds, identical or not (given by
the task identifier for example). A bad choice of the seed can lead to
serious correlation problems.

3. The distributed approach uses several generators, as the previous ap-
proach. However, in this approach, any sequence of random numbers
is given by several generators, which avoids the correlations problems
from the previous approach.

As seen above, the independence of the number of processors is pro-
vided by binding the generators to tasks, not to processors. We will see
in section 9.2.3 that our tool guarantees reproducibility by using simulation
parameters, such as current square and cycle number, as “tasks”.
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4.6 Parallel disk input/output in multi-agent sys-
tems

The analysis of a simulation can be done by using files written during the
simulation. As these files need to contain sufficient information for analy-
sis, they can have big sizes. As input/output (I/O) operations are slower
than memory accesses, and because they can have high sizes, they can be a
bottleneck in the simulation. Thus, their parallelisation becomes useful.

Choudhary [21] does a classification of the I/O used by different types of
applications:

“Different types of applications present a variety of workloads
to an I/O system. For example, transaction processing system
can be characterised as performing a large number of I/O accesses
of small sizes. Scientific applications require fewer accesses, each
of larger size. Image processing applications require even fewer
accesses, each of very large size. Finally, multimedia applica-
tions may involve accesses to large image and video data requir-
ing tremendous bandwith and storage capacity. The real-time
requirements of multimedia systems add another dimension to
the I/O system design problem because system’s response time
must be deterministic.”

Our tool, depending on the information needed and on the parameters in-
volved in the simulation, can write either one little-size file, or several high-
size files. In this last case, their parallelisation can be very interesting.

The parallelisation of I/O is possible and provides good results on the
parallel computer we have used [29].
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Chapter 5

Parallel implementations of
multi-agent systems

There are many SMASs used in literature [32]. Nevertheless, as the term
“agent” is used in a very broad sense, we present here only some SMASs
which are similar to our tool. We divide them in two categories: sequential
simulators and parallel simulators.

5.1 Sequential multi-agent system simulators

5.1.1 Pengi, by Agre and Chapman

Pengi [4, 3] is an example of SMAS. It plays a video game known as Pengo.

The environment is a 2D rectangle of squares. Certain squares contain
ice blocks, such a block having one square.

There is only one controllable agent in the simulation: a penguin. In
the video game, it is navigated by the player through a joystick. In Pengi,
the programmer can code himself its behaviour. The other agents, not con-
trollable by the player, are the bees. The bees are not intelligent, but they
generally tend to get closer to the penguin. From time to time, they suddenly
change direction. The goal of the bees is to kill the penguin, the game being
finished when this happens. The penguin is killed if a bee is close enough to
the penguin, because it is stung. The goal of the penguin is to collect all the
“magic blocks”. A bee and the penguin are killed when one ice block slides
into it.

The agents (penguin or bee) can move only one square at a time. If an
ice block is in front of an agent, either penguin or bee, and the agent moves
in that direction, the block slides in that direction up to another ice block.
It kills everything it meets.

The only percept of the agent is the vision. The only actions the penguin
and the bees can do is the movement, potentially pushing an ice block.
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Conflicts are taken into account in behaviour level. If the penguin sees
a bee, it has to run away. If it simultaneously sees an ice block, it will go to
it. The authors argue that several levels of arbitration can be used in this
case, rather than planning.

The Pengi simulator is however a simple one. The goal has not been
to write a MAS simulator, but to have a simulation support for behaviours
other than planners. It is not flexible, as it is simply a program. It uses only
two types of agents: penguin and bees. It is sequential. Only one percept,
the vision, is implemented.

Compared to Pengi, the tool presented in this thesis does not allow move-
ment of objects, such as ice cubes. Instead, it offers much more functionality,
for example it allows several agents with personal behaviours. Several types
of resources can exist in the environment, and the system can take care of
propagating their potential, which can be perceived by the agents. It is also
more flexible, being a library.

5.1.2 Improved Pengi, by Drogoul, Ferber and Jacopin

Drogoul et al. [30] wrote another version of Pengi, with the aim of show-
ing that the simplicity of the model does not prevent the simulation game
from being correct. They pointed out also the emergence of more complex
behaviours.

However, compared to the original version of Pengi, several modifications
were made. In original Pengi, the behaviour of the penguin was given by
routines thought by the programmer. In the new version, the authors want
to put intelligence and learning into the agent level. Their agents are based
on Gul Agha’s actor model [2]. Each agent follows the principle of locality
and autonomy. They have simple behaviours consisting of only satisfaction
and flight. The satisfaction of the penguin is to reach and eat the nearest
diamond. The flight behaviours is generated when a bee is seen. It can
choose to slip a cube, if one exists, or to get away as far as possible.

The percepts of the penguin are two: vision, as shown above, and odour.
The odour is used to find the diamonds. The authors noted that for the odour
the local perception is sufficient. The adjacent locations of the penguin are
sufficient to find the way to the source. As the diamonds are fixed and they
do not change their potential, the potential field can be rarely calculated,
at the beginning of the simulation and when a diamond is collected (in this
case it disappears). The propagation of the field is done by waves. Every
square has a value equal to the mimimal number of moves needed by an
agent on this square to reach the diamond. Compared to the simple solution
of having a value equal to the euclidian distance between the two points, this
propagation allows to avoid obstacles.

In the future, the authors want to integrate the notion of learning, based
on memorising past situation and on the use of genetic algorithms.
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Compared to this simulator, our tool provides much more functionnali-
ties, such as several agents and flexibility of their behaviour.

5.2 Parallel multi-agent system simulators

An important feature of the simulators presented in this category is that
they run efficiently on parallel machines. We present a simulator taking
into account uncertainties and errors, and another one dedicated to massive
simulations.

5.2.1 PIOMAS error-accounting simulator

The specificity of the PIOMAS simulation program designed by Bouzid [14,
16, 15] is that it takes into account uncertainties and errors in both effectors
and sensors of agents. It is based on a Markovian model taken from Partially
Observable Markov Decision Processes (POMDPs).

The environment of the simulation is discrete and contains inert objects
(e.g. walls) and active objects (e.g. doors, robots). The evolution of the
system is ruled by two types of constraints: laws to maintain the coherence
of the system (e.g. a robot must never go through a wall) and laws to handle
simultaneous influences.

As said above, the uncertainties and errors are taken into account at two
levels:

1. Perception: for each agent, type and observation, a probability distri-
bution of the set of observations that might be confused with the good
one is calculated. A confusion matrix is thus obtained and used to
express error OCCurences.

2. Action: for each agent and action, a set of transitions and their oc-
curence probabilities are calculated. This transition matrix gives the
next state of the agent.

The simulation model is divided in cycles of constant step. During each
cycle, the simulator executes the following sub-cycles:

1. Perception/decision/action phase of each active object, where every
agent plans its action.

2. Detection and solving by the simulator of all the conflits.
3. Execution of the actions of all active objects.

4. Update of the environment observations and transition probability dis-
tributions.
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Because the model is stochastic, the evolution of the system is not determin-
istic.

A simulator is provided based on some real information. This information
has been acquired from many experimentations and measurements with a
real robot. In the simulation, a robot occupies a contiguous set of boxes
and moves just one box at a time in front of it. The slowness of the active
objects is simulated by moving it every n cycles, thus all movements being
multiple of 1 cycle. It has also basic rotating movements: it can rotate
90 degrees at left or at right. The sensor and effector models used are those
of a NOMAD 200 robot (for which they have a training corpus). For each
action, the corresponding transition set and its probability distribution have
been calculated from the movement noticed on the real robot they have used.

From the parallelism point of view, the simulator is implemented in C on
a DSM machine (see section 4.2.2 for more information), Origin 2000, with
up to 64 processors and 24GB of physical memory. The various behaviours of
the agents and their dynamic position in the environment give an irregular
nature to the simulator. The solution to cope with this irregularity has
been the use of a parallel ultra-light cellular library, ParCeL-3' [82] (see
section 2.2), built on a multi-threading library. One of the difficulties of the
simulation, namely the simultaneity of actions and the solving of the spatial
conflicts, is carefully taken into account by a two work-pool [60] model: the
first work-pool contains all the tasks (any task represents an active object)
in pre-planning state, while the second contains only super-tasks (a super-
task contains a task along with all the tasks conflicting with this one, if they
exist) which are planned but not already carried out. The work-pool model,
by its dynamic load balancing, is also adapted to such irregular problems.

The parallel performance is satisfactory, with a speed-up greater than 2
on 5 Processors.

This simulator has other goals as the ours. It is appropriate for fine
simulation of uncertainties and errors in both effectors and sensors of agents,
living in a population of few agents.

5.2.2 BioLand massively simulator

BioLand [86] is another parallel MAS simulator. It resembles our tool in
several points. Its main features include massively parallelism (tens of thou-
sands of agents) and a lot of provided functionalities, like gradient algorithm,
ANN-based agents behaviours and use of genetic information. It is mainly
useful in DAT (Distributed Artificial Intelligence).

Several distinct populations (“species”) of agents (called “biots”) evolve in
a toroidal 2D environment. The environment is made by square cells. There
is no obstacle in the world preventing the agents to enter.

!This library has been developed at our laboratory (Supélec).
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Any biot behaviour is entirely controlled by an ANN specified by its
individual genome. Each ANN has input neurons connected to the sensors
of the biot, and a few output neurons giving the action to be taken. The
biots have two types of perceptions: smell and sound. These perceptions
are propagated by any biot and by any action of the biots. The actions of
biots are mainly moving a certain speed, eating, reproducing and producing
sounds.

Any biot has a simulated metabolism, given by a number. The metabolism
increases when the biot eats, and decreases generally over the time (e.g. when
moving or emitting a sound). When its metabolism drops to zero, it dies.

Any biot has a gender. If two biots of the same type but of different
gender meet, and their metabolism is higher than a certain value, they en-
gender a biot. The genome of the new biot is created from recombination
and mutation of parental genes.

The processing of several parameters involved in the biots (concerning
metabolism and reproduction for example) is automatically taken into ac-
count and updated by the simulator. It is also responsible of the propagation
of the gradients, which are perceived by the agents. Each object in the world
and each action taken by an object produces a gradient. Although several
types of gradient exist, it seems that only one type of propagation is used
in the simulator. More specifically, the strength of a gradient in any square
is inversely proportional to the square of the distance between itself and the
source. When a square is influenced by several sources, the potential adds.
The propagation of the potential is done entirely, i.e. the gradient is ezract
(see section 8.9 for a comparison exact/inexact gradient algorithms).

The simulator has been implemented in the C* language on a 16k-processor
CM-2 machine (a massively parallel SIMD machine). It can be used for ex-
periments with about 32000 entities in an environment of about 1000 x 1000
cells (1 biot occupies 1 cell). The total memory size of CM-2 was 128MB.
Parallel performance is not shown, but it seems that the SIMD architecture
is appropriate for such simulations and provides very good results.

BioLand authors present also some conclusions after such a simulation,
whose main characteristics are presented in the following. It involved three
species of biots: prairie dogs, hawks and snakes, and three non-animal species:
plants, trees and holes. Prairie dogs eat plants, and hawks and snakes eat
prairie dogs. Each type of object has a specific smell and sound. The biots
can reproduce and can die. Plants are generated by the environment from
time to time. The simulations done in such hypotheses showed an evolu-
tion of agents behaviours. They were capable to learn (during lifetime) and
evoluate (over generations).

BioLand thus offers a very rich model of simulation of SMAS, richer than
ours. However, the vision and the spatial conflicts among agents, provided
in our tool, are not supported, its algorithmic is simpler (no obstacle in the
world) and it runs on SIMD machines, not on classical modern MIMD ones.
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5.3 Development environments of parallel M ASs

From the practical point of view, the result of this thesis is a tool allowing the
implementation of certain MASs, as shown in section 3.2. The two primary
objectives of the tool are ease of programming and good performance. Also,
the tool has to implement and to offer some parallel algorithms (some of
them are presented in [26]).

When implementing a tool, one of the choices to be done is the pro-
gramming development offered to the user, such as a programming language
together with a compiler/interpreter, or a library. In this section, the term
user refers to the user of our tool.

A first approach is to provide an application with multiple options or pa-
rameters, for example one of its parameters specifies the number of threads to
use, another the dimensions of the environment. This approach is interesting
in that it is easier to write, because it is specific and not flexible, and simple
to use, because only the options or parameters have to be known. Nonethe-
less, this solution is generally inflexible (all its functionalities are fixed) and
does not allow parametrisation by programming code?. It is useful when an
already known set of functionalities is needed.

The other approach is to allow and force the user to write code, as he
does when he programs. This makes harder its use. However, it gives all
the flexibility of a programming language. As such, it is adapted for tools
whose set of functionalities is not known in advance. Three solutions can be
offered to the user:

1. A domain-specific programming language and its compiler/interpreter
eases the user programming by providing syntax specific to the tasks
and functionalities necessary to implement them. It can also be op-
timised for such tasks. The compiler can generate machine code or
another language, such as C, which will then be compiled with its
appropriate compiler. The major drawback of this approach is that
the user needs to learn this new language. This leads to the increase
of learning and development time. Also, in the case when the com-
piler generates machine code, its output is machine-dependent, thus
the programmer of the tool needs to write a compiler which supports
the needed parallel architectures. Kale [55] does a survey of sequential
and parallel programming languages, both general and domain-specific,
used for computational science and engineering. Bagrodia [9] surveys
parallel languages for discrete-event simulations. Ferber [32] surveys
MAS-specific languages.

2. On the other extreme there is the library approach, which provides
functionalities by means of a set of functions, commonly called API (Ap-

2Special mechanisms, such as plug-ins, can be used to cope with these difficulties, but
supporting them starts to resemble to the next approach.
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plication Programming Interface). It is possible to use the library
simply by writing in the same programming language as the library.
However, other languages can be supported too, sometimes in exchange
of language transformation time loss and greater programming com-
plexity. For instance, the CORBA [41] software architecture allows the
execution of a program written in several languages. A library cannot
provide, like a new programming language, a domain-specific syntax.
If it does not provide a binding to other languages, the user can also
be limited by the syntax of the corresponding language. On the other
hand, a library does not create a new language that the user needs to
learn. Its level of portability is much greater than the previous solu-
tion. Examples of parallel libraries are MPI [65], PVM [42] and POSIX
threads.

3. A language extension is an intermediate approach which combines
the two approaches presented above. Generally, several keywords are
added to an existent language. Kale [55] presents some extension lan-
guages used in computational science and engineering.

Additionally, a graphic interface can be offered, as do Visual Basic and
Delphi. Our tool does not provide such an interface for simulator program-
ming, however such an interface is possible.

The programming language chosen for our tool is C. It provides perfor-
mance, portability and flexibility.

5.4 Conclusions

There are few implementations allowing to simulate societies of situated
MASs. We have presented two simple sequential simulators and two complex
parallel simulators. The first parallel simulator is appropriate for simulations
of a few number of agents, while the second one works on SIMD machines
and is not as flexible as ours.

We have not found a general, simple and parallel simulator on MIMD
machines. Our model and its implementation aim to fill this gap.
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Chapter 6

The ParSSAP model of
multi-agent system simulation

This chapter presents the model we have conceived for the simulation of
situated multi-agent systems. It does mot provide a model of multi-agent
systems, nor even agents, which is the job of the user. Instead, it provides
a simulation model which helps him to implement his multi-agent model.
It aims to hide the algorithmic issues of simulation and to give to the user
a programming view where agents simply evolve concurrently. For exam-
ple, the user does not need to deal with linked lists of agents or with the
dynamical state of the system. This is facilitated also by implementing it
as a library, which allows user to use only functionalities he needs and to
customise it for its model.

6.1 Components of the model

Four components appear in the model (figure 6.1 on the following page):

1. Environment: the world where the entities evolve. It is discretised
in space. It is toroidal (left and right frontiers, and top and bottom
frontiers are glued) or edged. Each square of the environment has a
type: either free square, or obstacle, or resource, and a state: either
unoccupied, or occupied by an agent. An obstacle prevents the agents
to enter that square.

2. Resources: entities of one square size guiding agents. They can do
so by spreading potential fields which are perceived by agents. The
potential field decreases with the distance to resource, even in the
presence of obstacles, thus allowing agents to find the way to resources.
Each resource contains objects, which can be carried by agents. The
potential field size can change during the simulation, according to its

109



110CHAPTER 6. THE PARSSAP MODEL OF MULTI-AGENT SYSTEM SIMULATION

o
o HEIE
- T gen
I ENRG M Mineresource
: v‘(M)A\) N
NINSEE n F  Factory resource
|| SR Bl obsce
R (vl

Figure 6.1: Example of situated multi-agent system provided by our imple-
mentation.

load in objects. Moreover, several types of potential can be used, in
order to introduce several kinds of resources/objects.

3. Agents: mobile entities having a memory and a behaviour. The be-
haviours of agents generate actions, based on their perceptions and
their memories. The perceptions allow agents to find information about
the environment. The actions allow agents to change the state of the
system. More information about agents’ perceptions and actions is
given in the next section.

The memory of each agent allows the agent to memorise facts during
the simulation. Its size can dynamically grow or decrease, according
to agent’s needs.

Agents have also a speed, giving the frequence with which their be-
haviour is activated, and a priority. As agents act simultaneously and
they do not know the other agents’ action, several agents may try to
enter the same square in the same time. The spatial conflicts use the
priority of agents and are solved by the arbitrator, as described below.

4. Arbitrator: virtual entity maintaining the coherence of the system.
During the simulation it verifies that the simulation laws are fulfilled.
Such laws are avoiding agents to enter an obstacle or to move to a
distance longer than possible, and avoiding spatial conflicts. Another
example of simulation law is a given upper limit on the number of
agents in the system.

A spatial conflict appears when two agents want to enter the same
square of environment. In this case, the arbitrator lets only one agent,
the winner, to carry out its action and blocks the others. Several



6.2. AGENTS’ BEHAVIOUR 111

strategies may be used to find the winner. For instance, in our im-
plementation the choice of the winner is done at three levels. If there
are agents to be created, the winner is randomly chosen among them.
Elsewhere, if there are agents with high priority, the winner is ran-
domly chosen among them. Elsewhere, it is chosen randomly among
the agents. The agents’ priority, which influences the choice of the
winner, is specified by the user during agent creation.

6.2 Agents’ behaviour

This section presents important features used in the behaviour of agents, but
which are general and not necessarily bound to other agents’ features.

In a pure multi-agent system, agents’ perceptions and actions are always
local. However, for the flexibility of the model, global functionalities are also
available, but a clear distinction between local and global functionalities is
done at agent level. For example, an agent may create agents not in its
neighbourhood, and we will use this feature to implement Conway’s game of
life (section 10.1).

Agents’ perceptions

The perceptions allow agents to sense the environment. Examples of high-
level percepts are: mark sensing, vision and odour detection. The mark
sensing allows agents to know whether a square contains a mark (put by
another agent) or not. The vision percept allows agents to know if they
can see a given square, for example to know if it contains an agent or a
resource. A square is visible from another square if the line between them
does not intersect any obstacle. The odour percept allows agents to know
the potential of squares near them, helping them to find the way to resources
even if they have to go around obstacles. Agent communication is a complex
problem, and it has not yet been taken into consideration.

Not all the agents have the same percepts. Some agents may have no
percept, while others one or several percepts.

Agents’ actions

The most frequent action of agents is the move. Examples of other actions
are: take an object from the environment, drop an object it possesses in the
environment and push an object in the environment. They can also create
and destroy agents, as described below. Some actions are mutually exclusive,
for example move in north and east direction in the same cycle.

For generality, an agent may do several actions during one activation,
provided that they are compatible.
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Except the spatial conflict processing, the effects of actions are predeter-
mined and deterministic, e.g. agents will move in a square if such a move was
asked and is possible, and they cannot arrive accidentally in another square.

Agents’ dynamical creation and destruction

Agents may be created or destroyed in any cycle of simulation. They may be
created in any free square of the environment, near or far from the creator
agent. Their exact position may be specified by the user or may be randomly
chosen by the system, either in all the environment, or at a specified distance
from the creator agent. In all cases, if their creation leads to spatial conflicts,
their creation obeys to the arbitrator’s decision.

When an agent is destroyed it simply disappears from the system. Agents
communicate through the environment, hence finding information about
agents is always done through the environment. Therefore, the agent to
be destroyed is specified by its position. An agent may destroy itself too.

6.3 Simulation of the simultaneity of actions

In our model the agents act synchronously and simultaneously. They act
synchronously because during each cycle of simulation (see below) all the
agents are activated only once. They act simultaneously because there is
no predefined execution order of agents during activation, and no agent has
precedence over other agents. Also, the state of the system remains identical
during the activation of any agent.

The simultaneity of actions is source of many difficulties in the model
design and its implementation. It leads to conflicts, managed by this model,
as shown below.

6.4 Execution engine

The simulation starts by the initialisation of the system. During the initiali-
sation, the environment is created and resources and initial agents are created
and put in the environment. Afterwards, the percept data is initialised, such
as potential fields and visibility fields.

The time is discretised, and the simulation is based on cycles. In or-
der to achieve simultaneity of actions, the execution of agents is divided
in three steps: behaviour execution (action plan), spatial conflict avoiding
and action execution. The simulation consists of a synchronous virtual ma-
chine which repeatedly, every cycle, executes in order the following five steps
(figure 6.2 on the next page):

1. Activate each agent by executing its behaviour (according to its speed,
as shown above). Each behaviour generates the planned action of the
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Figure 6.2: Execution engine of simulation.
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Figure 6.3: Example of conflict and its solution: (a) two agents want to
move in the same square, where an agent is planned also to born, but (b) the
arbitrator lets only one, at random, to execute its planned action.

agent. Additionally, it can plan to create or destroy agents. The
creation/destruction of agents becomes effective in the third step, as
explained below.

2. Avoid all the spatial conflicts. Conflicts appear among agents which
either move in the given square, or are created in the given square
(figure 6.3). For any such conflict, the arbitrator chooses a winner
among all the agents involved, as explained above. Only the winner
carries out its planned action. For all the other agents the arbitrator
changes their action from move to stay, or refuses their creation.

3. Execute the action of each agent. During this step the actions of agents
become effective (except for agents having lost a conflict).

4. Execute the user-function. This is a function given by the user of the
model and thus allows to do per cycle actions or to interfere with other
programs. It is the best place to specify the end of the simulation and
to save information about the simulation.

5. Update the environment. For example, update the potential fields of
the resources which have changed their potential.

Among these steps, the 1st and the 4th must be provided by the user,
while the others may be done automatically by the model. Additionally,
the user must specify the evolving law of resources by providing a function
giving their potential based on their dynamic load.

6.5 Information about the state of the system and
its evolution

During simulation, the system provides information about itself. Three types
of information are provided:
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1. Basic evolution of the system (statistic information), such as the num-
ber of agents, the number of resources not yet visited by agents and
the number of objects in resources. This allows to measure the perfor-
mance of agent population.

2. Detailed evolution of the system (evolution information), such as the
movement of agents and the load of resources. This allows to look at
agent’s behaviour efficiency.

3. Complete state of the system (checkpoints), which describes the state
of the whole system at a given point of simulation. A checkpoint may
be used to resume a simulation as well as to initialise the system. For
a better organisation, especially for system initialisation, the state of
the system is divided in two parts: general and local information. The
general information part consists of a file which contains information
about simulation parameters, such as the dimension of the environment
and links to the local information part. The local information part con-
tains all the information about obstacles, agents and resources. So, in
order to simplify its use, several files are involved in local information,
one per domain of environment. In each local file, the coordinates are
relative to the domain, so that these files can be assembled in several
ways to form a complete environment.

6.6 The transparency of parallelism of the model

As noticed, the model does not take into account whether the execution is
done in parallel or not. The model is not specific to sequential or to parallel
execution. Therefore, if parallel machines are used, the parallelism will be
transparent to the user.

6.7 Conclusions

This brief chapter has presented the simulation model we propose. It al-
lows the simulation of situated multi-agent systems by offering to the user
a programming view where agents simply evolve concurrently. The model
has four components: environment, resources, agents and arbitrator. Agents
may be dynamically created and destroyed. Agents’ perceptions and actions
are always local, but, for flexibility, global perceptions and actions are also
provided and a clear distinction is made between them. The model takes
into account the simultaneity of actions. The arbitrator solves the spatial
conflicts among agents.

Agents act synchronously and simultaneously. Synchronism refers to that
agents are activated only once during a cycle of simulation. Simultaneity
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refers to that their activation is concurrent, and no agent has precedence
over another.

The execution model is based on cycles, and each cycle has five steps. The
first three steps deal with agents: plan step, conflict solve step and action
step. The fourth step allows the user to take control over the simulation.
The last step updates agents’ percept data.

Additionally, several types of information about the system are provided.

The model is not specific to sequential or parallel features. Our imple-
mentation of this model (chapter 9) provides almost full transparency to the
user.

We think that this model and its implementation are sufficiently complex
to allow the simulation of a broad domain of systems, as partially shown in
chapter 10.



Chapter 7

Parallel algorithmic of vision
perception

The agent, by definition (section 3.2), does sense the environment by its
percepts. Our tool provides built-in support for two percepts. One of them
simulates the odour, and will be presented in the next chapter. The other
one, presented in this chapter, simulates the vision (direct perception). Basic
information has already been presented in section 3.4.3. More specifically,
this chapter presents an algorithm for calculating visibility fields of the MASs
simulated with our tool. When an agent needs to obtain information on a
specific square, it uses firstly the visibility field of its square in order to know
if the desired square is visible from it. If affirmative, it calls the function
which gives it information about the occupy state of the desired square. The
vision algorithm consists in finding the visibility field of each square of the
environment (figure 7.1 on the next page).

7.1 Properties of the vision percept

In our simulations, the only opaque squares (which prevent the vision prop-
agation) are the obstacles; the agents and the resources do not prevent the
visibility. Moreover, the obstacles are fixed during the simulation. Thus,
compared to the wave propagation algorithm (chapter 8), which need to be
regenerated during the simulation, the visibility fields are fixed. It can be
executed only once for all the squares of the environment. However, it uses
large amounts of memory to store all the visibility fields. Methods to cope
with these trade-offs are described later, in section 7.7. This algorithm is
thus characterised by a once-execution and high memory size.

Another useful property of the vision percept is that it is generally sym-
metric: if A can see B, then B can also see A. The use of symmetry leads to
the decrease of the execution time and of the memory used by a factor of 2.

Therefore, compared to the wave propagation model simulating the odour

117
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. Central square

o | ] invisible square

* D Obstacle

Figure 7.1: Example of visibility field of one square (with radius of 4 in an
8-connectivity environment).

percept, the vision percept has two specific properties:

1. Tt is independent of the distance between the squares, as soon as they
are in the same visibility field.

2. It is highly influenced by obstacles.

7.2 Definition of the visibility field topology

Our first choice is to consider that the visibility field of a square is local and
contains the squares in its proximity at a specified distance (called radius)
from it. Obstacles can reduce the visibility field. Its own square is, by
definition, always visible.

The second choice involves the distance used. In order to be coherent with
the movements of the agents, we chose to consider as distance between two
squares A and B, the minimum number of movements needed by an agent
to go from A to B. Moreover, as the agent movements are function of the
environment connectivity, the distance and thus the visibility field depend on
the environment connectivity. In fact, the connectivity type is global to the
system (see section 7.7) and acts upon the vision algorithm, the wave propa-
gation algorithm, and on the agent movements. Figure 7.2 on the facing page
gives an example of the distance in 4-connectivity and 8-connectivity cases,
and compares them with the classical Euclidean distance. Our 4-connectivity
case gives in fact the well-known von Neumann neighbourhood, and the
8-connectivity case the well-known Moore neighbourhood [79].

From the mathematical point of view, all these three distances are par-
ticular cases of norms. Some norms are defined in 2D environments [87,
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Figure 7.2: The distance between squares A and B is different: 5 for Eu-
clidean distance, 7 in 4-connectivity case, and 4 in 8-connectivity case.

page 55| by:
[olln = {/ldz|™ + |dy["

In our case, dr = x4 — zp, and dy = y4 — yp- The three distances from
figure 7.2 are obtained with:

e n = 1 for 4-connectivity (which corresponds to ||v|| = |dz| + |dy]),
e n = 2 for Euclidean distance, and
e 1 = oo (which corresponds to ||v|| = max(|dz|, |dy|)) for 8-connectivity.

As shown above, the distance depends on the connectivity type. Fig-
ure 7.3 on the following page presents the maximum visibility field in both
cases. By convention, the visibility field containing the squares adjacent to
one square has a radius of 1. In 4-connectivity case, the shape of the field is
a thombus!, shown in figure 7.3(a), and, if we note by 7, the vision radius,
the number of squares it contains is given by:

1=Ty
NSy=4>i+1=2r)+2r, +1 (7.1)
i=1
In 8-connectivity case, the shape of the field is a square, shown in fig-
ure 7.3(b), and the number of squares is given by:

NS = (2r, + 1)2 = 472 +-4r, + 1 (7.2)

The two types of connectivity are taken into account for execution time
and memory requirement optimisations of the vision algorithm, as described
in section 7.7. For example, the 4-connectivity case needs twice fewer com-
putes than the 8-connectivity case. Our tool allows the use of both connec-
tivities, which has to be chosen at the beginning of the simulation.

'In continuous environment, the rhombus becomes a square rotated by 90 degrees.
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Figure 7.3: Comparison of visibility fields between 4- and 8-connectivity
(radius = 2).

7.3 Vision algorithm

As previously mentioned, in order to use the vision, the agents have to
know if they can see a certain square or not. Two steps are involved: the
initialisation of the visibility fields and their use. The latter is simply a
function call giving the element value of the visibility field concerned. The
former (which we call the vision algorithm) is the most complex and time
consuming part, and is presented in the following.

The vision algorithm calculates the visibility field of each square of the
environment (all the agents have the same vision radius). This gives a 4D ma-
trix for all the environment (figure 7.4 on the next page). Calculating the
field of one square consists of calculating what squares are visible from it.
We thus use a line drawing algorithm, which will be presented later, for all
the points at a distance inferior to the vision radius to the centre. More
rigorously, the algorithm is the following:

for all square S of the environment do
for all square Sy at distance inferior to radius do
if line 5155 passes through an opaque square then
field[S1][S2] < false
else
field[S1][S2] < true
end if
end for
end for
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Visibility fielc
of square S

Environment

Figure 7.4: The visibility matrix of the environment is a 4D matrix.

7.4 Difficulties introduced by obstacles

In a world without obstacles, the visibility fields would not be prevented by
anything. Additionally, the obstacles not only limit the visibility, but also
add complexity, together with the space discretisation, to the computing of
the vision fields. These difficulties are presented below.

The discretisation of the environment has led us to take two choices.
Suppose we want to find out if the square B is visible from square A. The
first choice is that the square A is condensed in one point: its centre. This
comes from the fact that we consider any agent as being in the centre of
the square?. The second choice is that, from visibility point of view, the
square B is also condensed in its centre. Thus, we consider a square B
as visible from A if the real line between the centres of A and B does not
intersect any opaque square. If either A or B is an obstacle, then they are
considered invisible from each other (an obstacle cannot be seen).

Before explaining the implications of the second choice to the visibility
field, we present a third choice, namely when the real line passes through
the corner of an opaque square (figure 7.5 on the following page). We chose
to consider that the obstacle does prevent the vision (points A are some
examples). If we have chosen to not prevent the vision, an anomaly can
appear in 4-connectivity case: a square is visible, but the way to it is blocked
by obstacles (point B).

Finally, we need to check for obstacle all the squares the ideal line pierces.
Therefore, classical lines, which have only one square per major coordinate,
are not appropriate, hence we will use the so-called supercover lines.

In fact, the dimension of an agent is less than a square, since a square can contain
both an agent and a resource, for instance.
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Figure 7.5: Example of visibility field of a square: if the real line intersects
a corner of an opaque square, then it is considered as hidden (points A). If
we had chosen to consider it as visible, some points would be visible, but
unreachable (point B).

7.5 Line and supercover line tracing algorithms

In order to compute the visibility domain of a square, modified lines drawing
algorithms can be used. This section deals with several algorithms which
can be used in vision, algorithms found in ray-tracing. All these algorithms
decompose uniformly the environment (cells of equal dimension). Algorithms
which decompose non-uniformly the environment, for example taking into
account the number of obstacles, can also be imagined. More information
about ray-tracing algorithms can be found in [89].

7.5.1 Line tracing algorithms
Bresenham’s original algorithm for drawing lines

Bresenham [17] presents an algorithm to draw lines, one point per coordinate.
It has the important particularity that it uses no floating-point operations
(which are time-consuming) and no multiplication or division operations.
Only the principle of this algorithm is described here, for more information
and rigorous demonstration, see the original paper [17].

We have to draw a line from (z1, y1) to (z2, y2) (figure 7.6 on the next
page). Suppose we are in the first octant, so Az > 0, Ay > 0, and Az > Ay
(0 < slope < 1). This means we will draw one point per x-coordinate (O is
the driving axis and Oy is the passive axis), i.e. we draw an 8-connected line.
The other cases can be brought to this case by simply changing the signs of
some parameters of the algorithm. Bresenham algorithm is clearly explained
in [89]:
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Figure 7.6: Illustration of the Bresenham line.

“During the process of generating each consecutive cell, the coor-
dinate corresponding to the driving axis is unconditionally incre-
mented by one unit. At the same time, a control term, the error,
measured on the passive axis, is updated by substracting from
it the slope value and then checking whether it is still smaller
then half the cell size. When this test fails, a unit increment of
the passive axis is performed. The control term is corrected by
adding it the value corresponding to one cell whenever underflow
occurs.”

As the slope of the real line is Az/Ay, the real line has to add Az/Ay
every time z changes. However, when using integers, we use a variable,
error, which accumulates the difference between the real line and the drawn
line (see figure 7.7 on the following page). Every time we change z, we have
to choose between the points B and C. If the next point is B, the error
variable increments by Ay. Otherwise, the next point is C' and the error
variable increments by Ay — Ax:
ddy = 2 * (y2 — yl);

ddx = 2 * (x2 — x1);
for (i=0;1i < dx; i++){
X 45
error += ddy;
if (error > ddx){ // if the point is B

y
error —= ddx;

}
DRAW _POINT (y, x);

}

The algorithm implemented in our tool uses a slightly modified version
of the Bresenham algorithm.

© 0 N 3 s W N
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Figure 7.7: Illustration of the Bresenham algorithm.

Linear interpolation using fixed points

As previously said, the main goal of Bresenham algorithm is to use only
integer operations. However, it has a serious drawback: for every point it
draws, it does a decision either it does a jump or not (the if instruction
above). The jumps are painful to actual processors, because their pipeline
architecture is not efficiently used. A method to avoid the jumps is to use
fixed point arithmetic for floating-point calculations. Thus, a simple interpo-
lation on the major axis is sufficient. Fixed point representation is a simple

method to store floating point numbers in integer ones?.

7.5.2 Supercover line tracing algorithms

The two previous methods allow to draw lines. The following methods (the
first and the second use Bresenham original algorithm) draw lines which
include all the cells pierced by the continuous line. These particular lines
are usually called supercover lines [8]. Therefore they allow to calculate the
visibility region.

Bouton’s algorithm

Bouton [13] uses a variant of the Bresenham algorithm to calculate the visi-
bility region. For every two points, he checks if the line drawn by Bresenham
algorithm intersects an obstacle (figure 7.9 on page 127). If the coordinate
of the major axis does not change, one square is drawn. If it changes, two
squares are drawn. If the line intersects a corner, three squares are drawn.

3More information about fixed point representation can be found at http://www.
nondot.org/sabre/graphpro/index_line.html, where line tracing implementations us-
ing fixed point representation are also explained.
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It is close to our supercover algorithm. Here is the core part (suppose the
first octant)?:

1 d=dy — dx;

2 dil = 2xdy;

3 di2 = 2xdy — 2xdx;

4 for (i=0;i < dx; i++)

5 if (d <0){ // same coordinate => one square
6 d += dit;

7 X ++;

8 DRAW _POINT (x, y);

9 } else if (d !=0){ // coordinate changed => two squares
10 d += di2;

11 DRAW _POINT (x, y+1);

12 DRAW_POINT (x+1, y+1);

13 X ++;

14 y ++3

15 } else if (d > 0){ // corner => three squares
16 d += di2;

17 DRAW_POINT (x+1, y);

18 DRAW _POINT (x, y+1);

19 DRAW_POINT (x+1, y+1);

20 X ++;

21 y ++3

22 }

Fujimoto’s generalised DDA algorithm

Maybe the first algorithm dealing with all the points a line pierces is pre-
sented by Fujimoto et al. [38]. It is based on the Bresenham’s one. Several
algorithms for decomposing a line into cells (pixels) exist under the generic
name of DDA (Discrete Differential Analyser). Better algorithms derived
from this one are presented in [89, 11].

Bandi [11] decomposes the processing of every point in two steps: one for
testing the cell above, and one for testing the cell below. In this algorithm
the line needs not terminate at cell centers. Also, the algorithm can be
adapted easily to three-dimensional environments.

Andres’ generalised supercover line

A method which does not use the Bresenham algorithm is presented by
Andres [8]. The supercover line is the line which contains all the points the
real line intersects. It is based on the following property:

Let’s consider the two-dimensional line D : ax 4+ by + ¢ = 0. Then the
supercover line corresponds to all the points in the plan verifying:

_la[+ 0]
2

S(D):{(q;’y)ezz Sax-l—by+c§|a|2;|b|}

4Taken directly from its code source.
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Figure 7.8: Comparison between line and supercover line.

The left and right terms of the relation provide the thickness of the line.

As an example, if the line D passes through points (1, 3) and (5, 9), then
we obtain D : 3z — 2y + 3 = 0, and the points of the supercover line are
those verifying the relation:

S(D)z{(a;,y)eZ2 —g§3x—2y+3§g}

Two methods of generation of such lines are given in [8]. This method
works also for rational numbers coordinates. A similar formula can be used
for three-dimensional case (and N-dimensional case).

7.6 Our supercover line tracing algorithm

In order to cope with the difficulties introduced by obstacles, the vision
algorithm uses a line tracing algorithm which, compared to classical line
drawing algorithms, has to draw all the points pierced by the ideal line, not
only one per coordinate (see figure 7.8).

We propose a new algorithm to draw supercover lines, based on the
Bresenham one. This section describes our supercover line algorithm.

The Bresenham algorithm (presented in section 7.5.1) has two particular-
ities which give its interest: it uses no floating point operations or multipli-
cation/division operations, which are time-consuming on actual processors.
Square by square, it accumulates the error between the ideal line and the
drawn line. When the error exceeds a certain value (corresponding to the
dimension of a square), the drawn line is adjusted to the ideal one.

The Bresenham algorithm cannot be used in our case, because, unlike it,
the vision has to take into account all the points the ideal line pierces. We
needed another algorithm, and we have chosen to base it on Bresenham one
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Figure 7.9: In a Bresenham-based supercover line tracing, during a step three
cases appear: (a) one square drawn, (b) two squares drawn and (c) three
squares drawn.

because of the two properties shown above. The key difference to Bresenham
algorithm is that we use also the error of the previous step.

Because the Bresenham algorithm has already been presented, we present
here only the difference between our algorithm and this one. In the following,
we will use the following terms:

e Next square: the square which will become current in the next step.
It will always be drawn.

e Drawn square: a square which belongs to the (supercover) line, so it
will be drawn.

e To check a square: to verify if that square will be drawn or not.

As before, we take into account only the first octant. The other octants work
similarly. Suppose a general step in the algorithm. We must differentiate
three cases, presented in figure 7.9. In the following we will use figure 7.10 for
our explanations. Suppose we are in square A (i.e. A is the current square).
As in the Bresenham algorithm, the next square will be B or C. In fact, the
next square in supercover algorithm is always identical to Bresenham one,
and as a consequence it will always be drawn. The difference is that the
supercover line algorithm additionally checks some squares, as shown below.

If the Bresenham algorithm does not change the y-coordinate (next square
is C), this means that D will not be drawn, so we pass directly to C, and we
go to the beginning again.

The difference appears when Bresenham algorithm changes the y-coordinate,

i.e. when the next square is B. In this case, both C and D have also to be
checked. As seen in figure 7.10, we can know if C and D are drawn or not
by the following relation:

1 // three cases

2 if (error + errorprev < ddx) // case a: bottom square C will be drawn

3 DRAW _POINT (y—ystep, x);

4 else if (error + errorprev > ddx) // case c¢: left square D will be drawn
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Figure 7.10: Parameters involved in the supercover line algorithm (the next
point is B). In case a (error+errorprev<ddx), square C is drawn. In
case b (error+errorprev=ddx, the ideal line passes through a corner), both
squares C and D are drawn. In case ¢ (error-+errorprev>ddx), square D
is drawn.

DRAW _POINT (y, x—xstep);

else{ // case b (corner): bottom C and left D squares will be drawn
DRAW _POINT (y—ystep, x);
DRAW _POINT (y, x—xstep);

}

error is the current error (in point B), while errorprev is the previous
error (in point A). As described in the Bresenham algorithm, the error is the
“distance” (non-normalised) from the ideal point to the grid line below the

© 00 N & o

ideal point.
This algorithm draws a square if the ideal line passes through one of its
corners. It is possible to remove this hypothesis by simply removing lines 6-9.
The full implementation of our algorithm for drawing supercover line can
be found in appendix B.

7.7 Optimisations of the vision algorithm

Several optimisations can be done on the vision algorithm presented above.
Their aim is to decrease execution time and memory size.

1. Symmetry: As noticed, a useful property of the vision relation is the
symmetry: If the square A is visible from the square B, then B is also
visible from A. When computing the visibility fields of all the squares,
this can be used to decrease both execution time and memory used by
a factor of 2. Our tool allows the use of the symmetry by computing
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Figure 7.11: Memory space needed in non-symmetric and symmetric cases.

the visibility from (ya, z4) to (yB, zg) only if (y < ya) V ((y =
ya) A (zp < x4)), as shown in figure 7.11. It is worthwhile to notice
that, while computing the fields only in half of the cases is always twice
faster, using half of memory leads to small overheads during the reading
of these fields. This comes from the fact that every time we need to
know if a square A is visible from square B, we have to check which
of A sees B and B sees A was computed. If the available memory is
sufficiently large, it is possible to cope with this trade-off by computing
only the first half and just copying it into the second half (however,
synchronisation problems appear in parallel execution).

2. Rhombus allocation on 4-connectivity: We have previously seen that
the field on 4-connectivity (a rhombus) has about twice less squares
than for 8-connectivity. This allows to halve the execution time and
the memory needed. For memory, however, as the computer memory is
linear, a mapping (correspondence) should be made from the rhombus
(logical coordinates) to the memory (physical coordinates), as shown
in figure 7.12 on the next page. A method for doing this mapping is to
order the squares of the field, and using this index to access linearly
the memory. This ordering has to work for any vision radius.

It is worthwhile to notice that a bijection rhombus — square cannot
be obtained (easily) by a rotation operation of 45 degrees. Firstly, the
rhombus is a square in continuous coordinates, but not on discrete ones
(figure 7.12). Secondly, a rotation generates irrational coordinates, so
they need to be converted to integer ones.

Both these methods of memory optimisation add an overhead both
on initialisation and access phase. In 4-connectivity case, our tool is
optimised for execution time, but not for memory requirements.

3. Programming type of the vision matriz: This is actually a coding is-
sue. The vision relation having a binary result, a bit is sufficient to



130CHAPTER 7. PARALLEL ALGORITHMIC OF VISION PERCEPTION

5 /\
1216
ufaf@ 2|7 [1]e o «]12]
10/3 8
9

Figure 7.12: To optimise the memory requirements in 4-connectivity case,
a bijection should be made between the visibility field (a rhombus) and the
memory (linear), for example by ordering the squares of a rhombus.

store it. The use of bits instead of character type (8 bits) or integer
type (generally 32 bits on actual machines) reduces thus the memory
occupied by a factor of 8 (if character) or 32 (if integer). The trade-off
is that every time we use the bit, it has to be isolated from the other
bits (with an AND operation for example). Our tool uses the character
type (8 bits).

4. Type of propagation: As said in the beginning of the chapter, in our
tool, the vision is influenced only by obstacles, which are fixed during
the simulation. Thus, the visibility fields are fixed also (the second
method, dynamical, can be used also when the obstacles are not fixed).
Several solutions have been explored for their computing:

(a) Statical: The visibility fields are entirely calculated at the begin-
ning of the simulation. The characteristics of this method are: a
lot of memory used, a lot of initialisation (all the fields) and a
fast usability.

(b) Dynamical: The fields are calculated during the simulation, when
they are needed. It can be used also when the obstacles are not
fixed. No memory space is needed. This works also if the fields
are not static. During a test, about 75% of squares were visited
by agents. Thus, the field of some squares do not need to be
calculated, while the field of others needs to be calculated several
times.

(¢) Mixed (cache-like): The fields are calculated during the simula-
tion and, based on the same principle as the cache, only some of
them (the most frequently used for example) are stored. This is
a trade-off between the memory used and the access time of the
visibility fields.

(d) Mixed (lazy): The fields are calculated dynamically when they are
needed, and stored in the matrix once calculated. This method
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uses the same amount of memory as the static one, but can de-
crease the execution time only when a little part of the visibility
matrix is accessed during the simulation. However, during a test,
about 75% of squares were visited by agents. Additionally, the
load balancing is no more optimal and depends highly on the
parameters of the system.

Our tool allows the use of the first two methods (static and dynamic).

5. Matriz traversal method: In the static case, when using frequently high
quantities of data, the locality of the data becomes yet more important.
The base principle is that, once in cache, the data be processed as much
as possible. A typical situation appears in matrix traversal, especially
when the squares near the current one are also accessed. Additionally
to the simple raster scan (or scanline, from left to right and from top to
bottom), several so-called space filling curves have been proposed, such
as Hilbert curve, zig-zag scan and Regazzoni curve [62]. Their goal is
to access all the elements of the matrix in an order that reduces the
average distance between two consecutive processed elements, hence
its interest in cases when for each element nearby elements are also
used. Nevertheless, this does not appear in our algorithm, as will be
shown also by performance measurement results: The vision matrix
is not reused, but only the obstacles matrix, which has a size much
smaller than the vision matrix, and hence a negligible influence on the
performance. Therefore, the vision in our tool uses the simple raster
scan.

7.8 Parallel issues of the vision algorithm

Independently of the optimisations presented above, our vision algorithm is
highly parallel, both during the initialisation phase and during the access
phase. In the dynamic case, the computing of the visibility fields is done
during the simulation, by the processor associated to the square concerned.
The load balancing depends on many factors, especially on the run-time
behaviour of the agent, so it is difficult to express. Thus, in the following we
consider only the static type of propagation.

As the visibility fields are static, during the access phase, the matrix
storing them is read-only, so no data consistency problem occurs.

The initialisation phase involves the computation of the visibility fields
of all the squares. Computing the field of a square involves reading the
environment (to find if a square contains an obstacle or not) during the
supercover line algorithm, and writing the result in the visibility matrix of the
square. The obstacle information is stored in the environment matrix, shared
read-only in this algorithm by all the processors. The writing operations
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. * Symmetric elements

Figure 7.13: Load imbalance of a symmetric relation: on an equal-sized hori-
zontal decomposition of a matrix (3 domains in this figure), load unbalancing
appears if the symmetry (the computes are done on the grayed half of the
matrix only) is taken into account.

apply only to the square involved, hence cache conflicts are very unlikely.
The load-balancing is not a real issue either. In a toroidal world without
obstacles, the computing of the field of a square takes the same amount of
time®. The obvious parallelisation is thus the partitioning of the domain
(presented in section 4.4), with domains of equal number of squares. If
there are obstacles located at random coordinates, the load is balanced on
expectation. Otherwise, domains based on their size and their number of
obstacles may be imagined. Our library parallelises this algorithm by using
an equal-sized decomposition of the domain: each domain contains the same
number of lines. In fact, if the total number of lines in the environment is
not divisible by the number of domains, the number of lines between any
two domains may be differing by 1, and hence a small load unbalancing can
appear.

It is worthwhile to mention a property of the vision model: the decom-
position giving an ideal load-balancing is the same, whether the relation is
symmetric or not. For 2D matrices, the linear decomposition of a symmetric
relation (the matrix M is symmetric) is different than the linear decom-
position of the same non symmetric relation (figure 7.13 presents such an
example). Instead, in our case, the vision matrix (corresponding to the
environment) is a 4D matrix, and, while the decomposition appears at ma-
trix level (first and second dimensions), the symmetry is exploited at element
level (third and forth dimensions), as shown in figure 7.11 on page 129. Thus,
the same number of elements is calculated, but the work on each element is
halved.

5We take into account only the processor instructions here, not the cache considera-
tions, often quasi-unpredictable, such as some data already in cache.
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7.9 Memory and timing models

Before proceeding to theoretical models of the vision algorithm, we first
present the parameters which influence it:

1. Environment size (N squares) and type: the type of the environment
can be toroidal or with edged.

2. Connectivity type (c: 4 or 8): as previously seen, both the memory
requirements and the execution time are influenced by the connectivity

type.
3. Vision radius (ry).

4. Walls percentage (w): the more obstacles exist in the environment,
the faster the implementation works (the supercover algorithm stops
at the first obstacle met).

5. Number of processors (P).

We want also to emphasise that this is an example of algorithm which
needs not only a mathematical complexity analysis, but also a practical
analysis. There are several optimisations which do not affect mathematical
complexity, but practical measurement results, where the gain in execution
time or memory is noticeable.

We consider here only the vision of statical type, which means the visi-
bility fields are calculated at the beginning of the simulation. The 4D matrix
of the vision stores elements of value true or false. The vision algorithm
consists of computing and storing each of these values. The computing part
gives its timing model, and the storing part gives its memory model.

Note: For the computing of complexities we will use an “extended” form
of the classical order class O, as described in paragraph Note at page 163.

7.9.1 Memory model

We are interested in the application memory model mainly because the vision
algorithm uses huge amounts of memory.

In the sequential execution, the vision matrix stores the visibility field
of all the squares of environment (figure 7.4 on page 121). There are N to-
tal squares, and the visibility field of each square has (2r, + 1)? elements
(formula 7.2 on page 119). Therefore, the number of elements needed by
the vision matrix of the non optimised algorithm is given by the following
relation:

memponopt (N, 7y) = N (27, + 1) (7.3)

As noticed, it does not depend on the walls percentage w, nor the connectiv-
ity type c. We obtain the theoretical memory complexity of this algorithm,
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as a function of the number N of squares and the vision radius 7,:
mem(N, r,) = O(Nr?)
For a given r, the complexity becomes:
mem(N) = O(N)

A special case appears when r, = aN, with « a constant. Notice that
this means that the characteristics of agents can be modified: a larger envi-
ronment leads to a large visibility field of agents. In this case the memory
complexity becomes:

mem(N) = O(N?)

However, the optimisations presented above allow the decreasing of this
number. The symmetry decreases by 2 this number. In a connectivity of 4,
it decreases by about 2, so we will use the term ¢/8, which gives 1 for
8-connectivity and 1/2 for 4-connectivity. If we suppose that in the non
optimised case each element has the type char (stored on 8 bits), then us-
ing 1 bit for each element decreases by 8 the memory requirements. Thus,
we arrive at the following practical memory requirements of the optimised
algorithm:

N(2r, +1)

1 2
22098 gbits

mem gp; (N, 7y, €) :N(2r,2,-|—1) 58 16

This number does not depend on the walls percentage w.

As an example, in a 4-connected 1024 x 1024 environment with radius
of 16, we obtain the following practical memory requirements: Mypop; ~
1GB and M,y ~ 34MB. As noticed, the optimisations allow a noticeable
decreasing of the memory needed of about 30 times, which can influence also
the execution time due to latency of memory hierarchy.

For the parallel execution, since the vision matrix is equilibrated among
the processors, the memory needed by each processor is equal to the total
memory needed (in optimised or non optimised case) divided by the number
of processors P.

7.9.2 Timing model

Let teem be the average time to compute the value of one element of the
vision matrix, i.e. whether two squares are visible from each other or not.
This time depends on w, 7, and ¢ (it depends on the configuration of the
obstacles in environment and the distance between the two squares). As
previously shown, the decomposition of the matrix is equilibrated among
the processors. Therefore, for the parallel execution of the vision algorithm,
the time needed by one processor is approximately the total time divided by
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the number of processors P. The total execution time is the multiplication
between the number of elements N (27, +1)? of the vision matrix (formula 7.3
above), and the average time tgp,, to compute the value of one element.
The execution time of the non optimised algorithm is therefore given by the
following relation (as shown above, the term ¢/8 takes into account also the
connectivity):

. 1 c
timeypnopt = ﬁN(z’"v + 1)2§t6l€m

We obtain from this the theoretical time complexity of this algorithm:
1

time(N, ry, P) = O(P

Nrgtelem)

For P and r, given, we obtain:
time(N) = O(N)

The symmetry optimisation presented above decreases the execution time
by a factor of 2. We obtain thus the following optimised execution time:

. 1 c
tlmeopt = ﬁN(2TU + 1)2§telem

Consequently, the use of the symmetry property is more efficient than
not using it, and we have implemented both (see appendix A.5).

7.10 Performance of the vision algorithm

7.10.1 Experimental condition overview
System information

For measurements, two systems have been used. The first system is an SMP
machine, 450 Sun Enterprise® with 4 Sparc processors at 400MHz, 1GB of
memory and 4MB of cache per processor. It runs GNU/Linux RedHat 6.2,
gee (GNU Compiler Collection) version eges—2.91.66, and the parallel library
is the native one, linux threads’, an implementation of the Posix threads
standard [64]. The compiler optimisation parameter has been -03.

The second system is a DSM machine, SGI Origin 2000 [34] with 64
R10000 processors at 195MHz, 24GB of memory and 4MB of cache per pro-
cessor. It runs Irix version 6.5, the compiler used is its native one, MIPSPro
version 7.3.1.2m, with Irix native multi-threading library. The compiler op-
timisation parameter has been -0fast=1ip27.

For both systems, the memory allocation library used has been their
default system library.

Shttp://wuw.sun.com/servers/workgroup/450
"http://pauillac.inria.fr/~xleroy/linuxthreads
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Figure 7.14: Execution of the three functions of the vision (case of 3 threads).

Measurement information

As described in section 4.1.2, several indicators need to be taken into account.

Firstly, each test has been executed once, but in mono-user mode, to re-
duce at maximum the influence of external programs. Also, we have experi-
mented two times: wall-clock time (given by times function), and processor-
time (given by clock function). Even if they have generated results which
do not differ very much, for our plots we have used the results given by
times, as it is the reference from the user point of view. Generally, these
functions have an accuracy better or equal to 10ms®. The overhead of the
parallel version is negligible. In fact, the only difference between a pure se-
quential version and the parallel version executed by each thread is only the
dimension of the domain.

Two kinds of graphics will be presented. The first, the bar plot, plots
for each number of processors the arithmetic average of execution time of
all the processors during the same execution, along with the maximum and
the minimum execution times. It allows to discover load unbalancing. The
second plots the execution time, the speed-up and the efficiency for each
processor, using always the slowest processor. It allows to discover mainly
the scalability of the algorithm from the final user point of view. Also, we
have used one thread per processor, therefore the terms processor and thread
can often be used interchangeable in the analysis below.

7.10.2 Vision algorithm implementation

In static case (static computing of visibility fields), the vision uses a 4D ma-
trix. In our library, the matrix is dynamically allocated, dimension by di-
mension, and afterwards filled with the results of the visibility fields. In order
to measure separately the execution time of each step, this is implemented
through three functions, shown in figure 7.14 (vm is the vision matrix):

1. allocate-seq function. The first two dimensions involve all the en-
vironment, hence they are allocated in sequential, before creating the

8For instance, on Irix “the resolution of the clock is 10 milliseconds on IRIS worksta-
tions.” (man page of function clock).
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threads. From the programming point of view, this function ensures
that all the elements vm[i] [j] are allocated.

2. allocate-par function. The other two dimensions involve each square
separately, and they are allocated in parallel, by its own thread. As
previously shown, the memory size allocated depends whether the sym-
metry is taken into account or not. From the programming point of
view, this function ensures that all the elements vm[i] [j] [k] [1] are
allocated.

3. fill-par function. Immediately after allocation, each element vm[i] [j] [k] [1]
of the vision matrix is filled with the appropriate values. This oper-
ation is done in parallel, by each thread. As previously shown, the
number of computations depend whether the symmetry is taken into
account or not.

We will present the performance of each of these three functions.

Two versions of the parallel allocation (allocate the third and the fourth
dimension of the vision matrix) have been implemented. The first version
allocates several small vectors for each square, while the second method
allocates two large matrices for each domain (processor).

Several parameters influence the execution time of the vision algorithm.
Also, for more precision, in each graphic the legend contains information
about all these parameters. They are:

e N, the number of squares in the environment (y and z in legends).

e The type of the environment (¢ in legends, 0 for toroidal and ¢1 for
edged).

e 7,, the vision radius (r in legends).

e w, the percentage of obstacles (walls).

e ¢, the connectivity (4 or 8).

e s, if we use the symmetry property of the vision (s1) or not (s0).
e P, the number of processors.

All the legends have the form y.z.t.r.w.c.s., according to the parameters
above.

7.10.3 Influence of parallel memory allocations

In this section we present the overhead of numerous parallel memory allo-
cations, appearing in the basic version of the parallel allocation. For each
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Figure 7.15: Bar plot of the execution time of the parallel allocation (basic
version), showing increasing average time and important load unbalancing

(DSM Origin 2000).

square of environment, this version allocates r, + 1 vectors (of 2r, + 1 el-
ements) in symmetric case (2r, + 1 vectors in non symmetric case), see
figure 7.11 on page 129. This gives in symmetric case N(r, + 1) small mem-
ory allocations (N (2r, + 1) for non symmetric case) for all the environment.
Note that the total number of allocations is identical, no matter the number
of threads used. As similar results appear for several values of the param-
eters, the following parameters have been used for illustration purposes: a
toroidal environment of 512x512 squares, without obstacles, for a connec-
tivity of 4 and a vision radius of 8. In non symmetric case, these parameters
correspond to about 4 millions allocations (5122 % (27, + 1)) of 17B each
(2ry + 1 elements with 1 byte/element).

For the DSM machine (with 64 processors) there are several memory al-
locators available. We have used the default allocator provided by malloc
function. Figure 7.15 presents the bar plot giving the execution time of par-
allel allocation. Starting from 8 processors, an important load unbalancing
can be noticed. Even if the number of allocations is identical, the execution
with 1 thread is always faster than the execution with any other number
of threads. Also, it is increasing starting from 4 processors, number proba-
bly corresponding to the trade-off between benefits and overhead of parallel
memory allocation. This affects also the execution time of the whole vision
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Figure 7.16: Bar plot of the execution time of the whole vision algorithm (ba-
sic version) showing slightly increasing execution time starting from 32 pro-
cessors (DSM Origin 2000).

algorithm (allocation plus filling), as shown in figure 7.16, where the load
unbalancing and the execution time of the slowest processor start slightly
increasing from 32 processors.

For the SMP machine (with 4 processors), using its standard malloc
function, the load unbalancing is much reduced, probably because of the
SMP architecture. Figure 7.17 presents a case where it is visible. Unlike the
DSM machine, for all the parameters, the execution time decreases with the
number of processors (experimented with up to 4 processors).

These experiments confirm that memory allocation may be a sensitive is-
sue in a parallel program. Consequently, we have implemented an enhanced
version of the memory allocation in our implementation. The number of
allocations appearing in parallel has been reduced to 2. Each thread allo-
cates two larger memory blocks (corresponding to the third and the fourth
dimensions of the vision matrix), depicted in figure 7.18.

In the following section we will see that the enhanced version has greatly
improved the performance of parallel allocations. Therefore, no other parallel
memory allocator systems have been tried.
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Figure 7.17: Bar plot of the execution time of the parallel allocation (basic
version), showing decreasing average time (SMP Sun 450).
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Figure 7.18: Enhanced memory allocation, where each processor allocates
only two blocks.



7.10. PERFORMANCE OF THE VISION ALGORITHM 141

7.10.4 Performance measurement results

As shown in the overview, the vision algorithm consists of three parts: se-
quential allocation, parallel allocation and parallel filling. In this section we
present the performance of each of these functions.

Unless otherwise explicitly stated, the simulation parameters used are
those of a typical simulation: a toroidal environment of 512 x 512 squares,
without obstacles, with a connectivity of 4 and a vision radius of 8. In
these tests we have chosen the non-symmetric case in order to obtain higher,
hence more accurate, execution times for this simulation. As described in
section 7.7 and as we will show later in figure 7.30 on page 151, the symmetry
reduces ezactly twice the execution time of the algorithm (with respect to
the difference in data size). However, in applications the faster symmetric
case may be used.

This is a representative case for the majority of tests for two reasons:
any measured execution time is greater than 1 second (a minimum time
to obtain a sufficiently accurate value from our point of view), and cache
effects are still noticeable (if they exist). Also, the order of magnitude of
these parameters is realistic for our planned simulations.

Sequential allocation performance

The sequential allocation consists of allocating the first and the second di-
mension of the vision matrix. This means allocating mainly a block of
N pointers (N is the number of squares in environment). Even if executed
sequentially, its execution time is very small compared to the other two func-
tions. As an example, for one processor, we have obtained statistically an
execution time of less than 1ms for this function, while the execution of the
whole algorithm took about 10 seconds. Consequently, it counts for less
than 10™ of the execution time of the whole algorithm. As it is executed
sequentially, Amdahl’s law (section 4.1.4, page 78) limits the speed-up on
P processors to:
1

SIII&X —
— 1-104
1074 4 =107

For 64 processors (the case for our DMS machine), this gives a limit of
speed-up of about 63.6. For our requirements, this value is very close to
the ideal speed-up of 64, therefore we have considered the influence of this
sequential function as negligible, and we will not present it in our results.

Parallel allocation performance

Here we use the enhanced version of parallel allocation, where each thread
allocates two larger memory blocks (see figure 7.18). The results obtained are
given in figure 7.19. We notice that this version of parallel allocation is not
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Figure 7.19: Bar plot of the execution time of the enhanced parallel alloca-
tion, showing low execution times (compared to those in figure 7.15) (DSM
Origin 2000).

scalable either. Nevertheless, it is scalable for average execution time and,
more important, it has low execution times for any number of processors.

Parallel filling performance

The filling is a highly parallelisable operation, since all the computations in-
volved are independent. Therefore, for sufficient data to process, we expect
to obtain good load balancing, and speed-ups close to the ideal speed-up. In
figure 7.20, which presents the bar plot of the parallel filling, no important
load unbalancing can be noticed. The speed-up, presented in figure 7.21, in-
creases nearly linearly up to 48 processors, and is about 49 for 64 processors.
We will see that on a higher environment, the speed-up on 64 processors
becomes higher.

An interesting result is given by the efficiency curve. Figure 7.22 reveals
that the efficiency curve is nonmonotonic. In order to have more information
about the source of this non-monotonicity, we have done tests for any number
of processors from 1 to 64. Figure 7.23 presents the result.

The reason of this non-monotonicity is the load unbalancing given by the
horizontal decomposition of the environment. As described in section 7.8
(page 131), if the number of lines in environment is not divisible by the
number of domains, some domains will obviously have a number of lines
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Figure 7.20: Bar plot of the execution time of the parallel filling, showing
load balancing (DSM Origin 2000).
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greater by 1 than others. (For instance, if 33 processors are used to compute
the visibility on an environment with 512 lines, the average number of lines
given to each processor is 512/33 = 15.51, therefore some processors will
process 15 lines, while others will process 16 lines.)

Let f be the fractional part of the average number of lines (f € [0,1)).
The ideal load balancing, when all the domains have the same number of
lines, is obtained when f = 0. If f # 0, then some domains have 1 line more
than others. As the efficiency curve is based on the execution time of the
slowest thread, the load unbalancing is the most visible when there is only
one domain with number of lines greater by 1 than the others, i.e. when f is
close to 0 (but different than 0). The more domains have a number of lines
greater by 1 than others (i.e. the greater is f), the less visible is the load
unbalancing. Then, for our environment of 512 lines, we define the quality of
load balancing as the discrete function Qigpal : N* — (0, 1] given by ({z} is
the fractional part of z):

(1 if {512/P} =0
Qaval(P) = { {512/P} otherwise

Given the discussion above, the greater the value of function Qigpa1, the
greater the load balancing. Now, if we plot the efficiency curve together
with the discrete function Qiqpai(P) (figure 7.24), we notice that the two
curves match very well, i.e. their local extremes appear at the same number
of processors. We also notice that the load unbalancing is more visible as the
number of processors increases, since the processing of 1 line has a greater
influence when the total number of lines to process is smaller (i.e. the number
of processors is greater). Therefore, the load unbalancing given by processing
different number of lines gives indeed the efficiency’s zigzag shape. This is an
example of algorithm where some values of number of processors give better
performance than other values.

7.10.5 Influence of caches

The vision algorithm computes only once the visibility field of all the squares.
As shown in section 7.8 no cache conflicts appear. For cache performance
purposes, we are then interested in the reusability of data. The only data
reused is the two-dimensional matrix storing information about position of
obstacles, which has a small size compared to the fourth-dimensional vision
matrix. As cache conflicts do not appear and data is generally not reused,
we expect that the caches have a little influence on the performance of the
algorithm.

The vision matrix has N(2r, + 1)? elements for non-symmetric case
(N(2r2 4 2r, + 1) elements for symmetric case). In our implementation,
each such element is stored as char, so it occupies 1B (i.e. 1 byte). For our
previous parameters, N = 512 x 512 and r, = 8, this gives 7T0MB (35MB).
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Figure 7.24: Comparison between the quality of the load balancing and the
measured efficiency of parallel filling: their local extremes appear at the same
number of processors (DSM Origin 2000).

Additionally, we have to add the space needed by the environment matrix,
storing information about squares (whether they contain an obstacle or not):
5N elements. In our implementation, the integer type (int) has been used,
occupying 4B each. This gives 5MB for the environment matrix. Sum-
ming up, we obtain the total memory processed by the vision algorithm:
75MB (40MB). As the cache of each processor on our DSM machine has 4MB,
and the size of the data used by several processors is small for the param-
eters we have chosen, the data is contained completely in caches starting
from 19 (10) processors. As our plots do not present any discrepancy start-
ing from 19 (10) processors, we can conclude that the caches do not influence
the performance of the algorithm. (However, high values for r, may lead to
cache misses during the reading of the environment matrix.)

We have not obtained supralinear speed-ups in any case. This result has
been expected, since the caches do not influence the performance and the
work is completely deterministic (as described in section 4.1.2, page 76).

7.10.6 Influence of the vision parameters

As previously shown, the performance of the vision algorithms depends on

several parameters. We have varied these parameters, and obtained the
following results:
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Figure 7.25: Comparative execution time of the parallel filling for environ-
ment sizes of 256 x 256, 512 x 512 and 1024 x 1024 squares, showing that it
increases linearly with the number of squares (DSM Origin 2000).

1. Environment size. We have executed the vision algorithm with several
environment sizes: 256 X 256, 512 x 512 and 1024 x 1024. On the
DSM machine, starting from 2048 x 2048 we have received memory
allocation error from the system. As shown in the previous section, this
corresponds to more than 1GB of total memory to allocate. This may
come from the 2GB memory limitation and memory fragmentation of
our 32-bit program. Nevertheless, for such high environment sizes the
dynamic computing of the vision could be used, or a 64-bit compilation
could be studied.

Figure 7.25 presents the comparative execution time of the parallel
filling. We notice that in sequential the execution time grows linearly
with the number of squares of the environment: about 1s for 256 x 256
squares, about 4s for 512 x 512 squares, and about 170s for 1024 x 1024
squares. Figure 7.26 presents the comparative speed-up of the parallel
filling. Up to 32 processors the parallel filling scales very well. Starting
from 32 processors the speed-up depends on the size of computation:
the greater the environment size, the greater the speed-up.

2. Type of environment. As previously shown, the environment can be
toroidal or edged. With the horizontal domain decomposition we have
used, a load unbalancing can appear when the environment has edges.
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Figure 7.26: Comparative speed-up of the parallel filling for environment
sizes of 256 x 256, 512 x 512 and 1024 x 1024 squares, showing that the
greater the environment size, the greater the speed-up (DSM Origin 2000).

In fact, if the environment has no obstacles, the computing of visibility
fields of the squares near edges is much faster, because the number
of squares to check is reduced by the edges of the environment. The
domains which are most influenced are the first and the last domain,
which touch the highest number of edge squares (this comes from the
horizontal decomposition, section 7.8). The bar plot of execution time
of the parallel filling in the torus case is presented in figure 7.27 (for
better visibility, the number of processors is greater than 16). The
average time is about at the middle of the maximum and minimum
times. Figure 7.28 presents the execution times of the application
with the same parameters, but on edged case. We notice that the
execution times are smaller than in the torus case, since the number of
computations of each thread is smaller. Also, the difference between
the average time, and the maximum and minimum times is noticeable:
The average time is nearer to the maximum time than to the minimum
time. This result corresponds to our theoretical result, where the first
and last processor have fewer computations to do than all the other
Processors.

3. Connectivity and symmetry. As previously shown, the number of com-
putations is twice for a connectivity of 8 compared to a connectivity
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Figure 7.27: Bar plot of the execution time of the parallel filling in a toroidal
environment (number of processors greater than 16) (DSM Origin 2000).
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Figure 7.28: Bar plot of the execution time of the parallel filling in an edged
environment, showing that a few processors have less execution time than
all the others (number of processors greater than 16) (DSM Origin 2000).



150CHAPTER 7. PARALLEL ALGORITHMIC OF VISION PERCEPTION

90000 % . . .
| y512-x512-t0-r8-w0-c4-s0 —+—
y512-x512-t0-r8-w0-c8-s0 ---x---

80000 |

70000

60000

50000

Execution time (ms.)

40000 *\ :

30000 -k
& X
20000 \\ <
10000 e
\.\ R

e
e ——— fezoogeme x

0 10 20 30 40 50 60 70
Number of processors

Figure 7.29: Comparative execution time of the parallel filling for con-
nectivity of 4 and connectivity of 8, showing a twice execution time in
8-connectivity case compared to 4-connectivity case (DSM Origin 2000).

of 4. Also, the number of computations is half when the symmetry of
the vision is taken into account. The experiments give the same results
(figures 7.29 and 7.30).

4. Vision radius. In formulae 7.1 and 7.2 (page 119), the number of com-
putations increases with the square of the vision radius. The exper-
iments give approximately the same results: the sequential execution
time (figure 7.31) grows with about the square of the vision radius, and
the greater the vision radius, the greater the speed-up (figure 7.32). For
Ty = 16, the execution time does not increase with ezactly the square
of the vision radius, which may probably be due to cache effects.

5. Number of obstacles. Since the supercover algorithm finishes when an
obstacle is met, the execution time of the vision algorithm depends
on the number of obstacles. A theoretical formula is difficult to be
given. The experiments (figures 7.33 for execution time and 7.34 for
speed-up) show that indeed the greater the number of obstacles, the
smaller the execution time and, starting from about 40 processors the
slightly smaller the performance. Nevertheless, the sequential execu-
tion time and the speed-up are not much influenced by this parameter.
In these tests, the obstacles are randomly put in the environment.
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Figure 7.30: Comparative execution time of the parallel filling when taking
the symmetry of the vision into account and not, showing that taking the
symmetry into account reduces twice the execution time (DSM Origin 2000).
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Figure 7.31: Comparative execution time of the parallel filling for several

vision radiuses, showing that the execution time increases with about the
square of the vision radius (DSM Origin 2000).



152CHAPTER 7. PARALLEL ALGORITHMIC OF VISION PERCEPTION

70
y512-X512-t0-r4-W0-c4-50 ——
y512-x512-t0-r8-w0—-c4-s0 ---x---
y512-x512-t0-r16-w0—c4—-s0.~--*---
60 ideal speed-up -
50 L /
o 40 e X A
S -
- = ///
Q
Q
joX
9 30
20 it
10 /
0

0 10 20 30 40 50 60 70
Number of processors

Figure 7.32: Comparative speed-up of the parallel filling for several vision ra-
diuses, showing that the speed-up increases when the vision radius increases
(DSM Origin 2000).
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Figure 7.33: Comparative execution time of the parallel filling for several
numbers of obstacles (0%, 1%, 4% and 16% of the number of squares), show-
ing that the more obstacles, the less the execution time (DSM Origin 2000).



7.10. PERFORMANCE OF THE VISION ALGORITHM 153

70 T .
y512-x512-t0-r8-w0-c4-s0 —+—
y512-x512-t0-r8-wl-c4-s0 ---x---
y512-x512-t0-r8-w4—-c4-s0.<--*---

y512-x512-t0-r8-w16-c4-s0 &

60 ideal speed-up —-—- |
50 o -
i g %
S g
o 40 .
=
<
5]
[}
Q.
9 30

20

10 ﬁ/ /

0
0 10 20 30 40 50 60 70
Number of processors

Figure 7.34: Comparative speed-up of the parallel filling with several values
of number of obstacles, showing greater speed-ups for fewer obstacles (DSM
Origin 2000).

Using the results of our experiments, we can deduce an approximative
timing model of our vision algorithm. It increases linearly with the num-
ber N of squares of environment, it is twice on 8-connectivity compared to
4-connectivity, it is reduced by a factor of 2 when the symmetry is taken
into account (s = 1 in symmetric case and s = 2 in non symmetric case)
and it increases with about the square of the vision radius. Slightly, it is
also affected by the type of environment and the number of obstacles. For
the parallel filling part, the following formula gathers these results (« is a
constant):

This formula agrees with our expectations, since it is similar to the theoretical
formula presented in section 7.9.2.

. Seq _
tlmeﬁning =«

7.10.7 Overall performance of the vision algorithm

Summing up the results obtained, we can give the performance of the whole
vision algorithm. The vision algorithm consists of a sequential memory al-
location part, a parallel memory allocation part and a filling part. The
sequential allocation part has a negligible time. The memory allocation part
is difficult to parallelise, while the filling part has good parallel performance.
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Figure 7.35: Speed-up of the whole vision algorithm, showing good parallel
performance (DSM Origin 2000).

Figure 7.35 presents the overall speed-up of the vision algorithm (i.e. the
sum of the three functions). Its performance is very good, though it seems
that the speed-up stops growing after 60 processors, with a maximum value
of about 43 for 57 processors. The speed-up is slightly smaller than for the
parallel filling operation because on high number of processors, the execution
time of the scalable parallel filling (about 1 second) becomes comparable to
the execution time of the non scalable parallel allocation (about 100ms).

The efficiency curve of the whole algorithm is presented in figure 7.36.
We notice the zigzag shape given by load unbalancing, but the efficiency
remains close to 0.9 for 32 processors.

7.11 Conclusions

The vision algorithm is used in the percepts of agents in our multi-agent sim-
ulators. Compared to wave propagation algorithms, it needs a lot of memory
and is executed only once during the simulation. The vision algorithm con-
sists of computing for each square its visibility field, based on a constant
vision radius. Because of obstacles, a special and innovative algorithm, a
supercover algorithm, has been created to allow the computing of visibility
fields. Some properties of the vision relation allow to enhance the execution
performance of our vision algorithm. These optimisations appear not only
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Figure 7.36: Efficiency of the whole vision algorithm, showing good parallel
performance and the influence of load unbalancing (DSM Origin 2000).

in sequential, but also in parallel.

The vision algorithm has two parts: allocation and filling. The experi-
ments give a small execution time for the allocation part. For the filling part,
the computing of each square is independent of each other, and we have ex-
pected a very good parallel performance. Our measurements have agreed
with our expectations. An interesting zigzag efficiency curve has been ob-
tained, and we have proven that it is due to load unbalancing. Despite the
good scalability of the filling part, for environments not very large and high
number of processors the overall speed-up of the vision algorithm is made
worse by the parallel allocation.

For yet better execution performance, inexact vision algorithms can be
imagined. They would allow to build visibility fields with minor errors, with-
out affecting agent’s quality from SMA point of view. Nevertheless, in our
practical simulations the vision algorithm is executed only once per simula-
tion, and the parallel execution times are sufficiently small (e.g. 1 second).

In conclusion, the in-depth practical performance measurements we have
done agree with our expected theoretical results. Summing up, as the
speed-ups of the whole vision algorithm we have obtained for 32 proces-
sors are greater than 28 (with an efficiency of almost 0.9), and the parallel
execution time can reach 1 second in many cases, we consider that the vision
algorithm has a satisfactory parallel performance for our simulations.
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Chapter 8

Parallel algorithmic of
potential field propagation and
perception

The first percept of agents, simulating the vision, has already been presented
in the previous chapter. The other percept, presented in this chapter, sim-
ulates the odour by potential gradient (indirect perception). By following
squares with increasing potential, the agents find the way to the resources
found in the environment (figure 8.1 on the next page). A model simulat-
ing very well the spread of potential is the wave propagation model, which
bypasses the obstacles. This chapter presents several wave propagation al-
gorithms. (We have also written a brief paper [28] dedicated to these algo-
rithms.)

8.1 Properties of the potential gradient

Compared to the vision percept, the odour (which will be called potential in
the following) has two main characteristics:

1. The strength of the potential decreases with the distance from its
source.

2. It copes with obstacles by getting around them, as shown below.

In our multi-agent simulation model, only resources can propagate po-
tentials. Also, in our model, the position of resources is fixed during the
simulation. But the value of the potential they propagate can change during
the simulation, so their potential field changes. During a cycle of simula-
tion, only some of the resources change their potential. In order to have
always exact potential fields, update of the potential field of these resources
needs to be done every time when the potential fields change. Compared to

157
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Figure 8.1: Illustration of the potential field of a resource.

the vision algorithm, which is executed only once during the simulation, the
wave propagation is thus characterised by frequent executions, hence high
execution times. This may become the most costly operation during the
simulation [31].

Two functions are involved in resources:

1. The spreading of the potential in the environment is a function of
the distance to the resource. This is a decreasing function. Several
functions can be used, such as linearly decreasing or square root. Our
tool uses a linearly decreasing function pot: pot(S) = pot(S,) — d,
where S is the square where the potential is computed, S, is the square
containing the resource, and d is the distance between the resource in
S, and the square S. This function is used for squares at distance
inferior to pot(Sy).

2. In our model, the potential given by a resource in its own square is a
function of its load. The load is simply the quantity of objects found in
the resource. The function load — potential is private to each resource
and is given by the user. As this function depends on the user and
on the load, the potential evolution can be nonmonotonic in time.
An example is a resource where some agents put objects inside, while
others take them off.

Several resources can exist in an environment. It is thus possible that
several potential fields overlap. The potential of such squares is described
by another function, based on the potentials given by each field. We have
used the max function, as described later.

Each resource spreads potential of one type! (and only one). Tt is also
possible to have different potential types coming from different resources.

!More precisely, identifier.
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This simulates then several types of potential, corresponding for example to
several types of objects. The potentials of different type spread on a same
square without mixing themselves.

Another interesting property of our multi-agent simulation model is that
during a cycle of simulation, as the potential is perceived only by agents, the
potential is needed only in certain squares, namely those that are perceived
by agents. This can be used to create optimised algorithms, which calculate
the potential of only the needed squares.

8.2 Definition of the potential field topology

The topology of the potential field involves the distance used and is identical
to the vision percept. Section 7.2 details the distance used and the topology
field.

8.3 Difficulties introduced by obstacles

In an environment without obstacles, the propagation of the potential would
be very simple. In fact, the distance between any two squares, defined as the
mimimum number of movements needed by an agent to go from one square
to the other, would be |dz| + |dy|. An iterative algorithm, efficient in terms
of execution, would allow to sweep all the squares influenced by a resource.

In the presence of obstacles, the formula |dz| + |dy| is no longer appro-
priate as distance between two squares (see figure 8.1 on the facing page).
Because the obstacles prevent the movement of the agents, the number of
movements needed by agents depends on the position of obstacles. Other
models are thus necessary to correctly construct decreasing potential fields
that avoid obstacles. One of these models is the wave propagation one,
presented below.

8.4 Wave propagation model

In this section we present the two hypotheses we have taken in our model:
1. The potential decreases linearly from the resource.

2. If several potentials overlap on a same square, the square receives the
maximum potential among them.

These hypotheses are not general, and therefore cannot be used in some
real models such as electrostatic fields, where the potential decreases using a
square root function. Nevertheless, they are sufficiently good for our multi-
agent systems (since the agents can find the way to resources) and they are
sufficiently simple to be fast in terms of execution speed (compared to square
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root function for example). Some of the methods we present still work with
other hypotheses too.

8.4.1 Wave propagation of one resource

The wave propagation model, based on the Huygens’ principle [51], is a
propagation model that allows the ezact building of the potential field of
a resource even in the presence of obstacles. This field is perceived locally
by agents in order to arrive to a resource using a collision-free path (the
collision concerns only obstacles, not agents). As we will see in section 8.9
the propagation can be done also inexactly, in order to optimise memory
usage and/or execution time of the algorithm.

The key points of the model, allowing it to be similar to the gradient
propagation of potential, are that the potential is spread decreasingly by
moving off the resources, while bypassing obstacles. The algorithm below
describes it more precisely, with p the potential function and S, the resource
square:

for d = 0 to pot(S,) do
for all square S at distance d from the resource do
pot(S) < pot(S;) —d
end for
end for

In this algorithm we have used a linearly decreasing function, but other
decreasing functions, such as square root, can be used as well.

Finding all the squares at distance d can be done recursively: they are
all the unprocessed neighbours of the squares at distance d — 1 (figure 8.2 on
the next page). Finding out if a square has been processed or not can be
done by firstly initialising the potential of all squares to zero and, during the
propagation, checking for each current square if it already contains a higher
potential than the one being applied. We will use this technique in most of
the sequential implementations described below. Thus the model is given by
the following steps (figure 8.2 on the facing page):

1. Put p into the resource square (p is the potential given by the resource)
2. Put p — 1 into the neighbours of the resource

3. Put p — 2 into the unprocessed neighbours of the neighbours of the
resource

4. Put p — 3 into the unprocessed neighbours of the neighbours of the
neighbours of the resource

5. ... and so on...
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A useful property of the model is that, for any square, the difference of
potential between that square and its neighbours is either -1 (further from
the resource), or 1 (nearer to the resource).

This model does not generate false local extremes (i.e. squares with local
extreme potential where there is no resource). Such an example is presented
in figure 8.3.

8.4.2 Overlapping of potential fields

A special case appears when a square is influenced by several resources, i.e.
when it belongs to several potential fields. Several mixing functions can be
used, as presented in section 3.4.3. We chose to use the maximum of the values
imposed by fields. This function gives two properties to the final potential
field:

1. The difference of potential between a square and any of its neighbours
can be only -1, 0, or 1.

2. As for one-resource propagation, it does not introduce false local ex-
tremes.

An example of overlapping potential fields is given in figure 8.7 on page 174.

8.5 Wave propagation implementation overview

The wave propagation model can be implemented in several ways. We will
present in the following several possible implementations, though not all of
them have been implemented. For each method, we present its specificities,
particularly its strengths and its weaknesses, and compare it with the others.
Firstly, we describe the sequential methods, which are sufficient, but not
always time-efficient, to generate the potential field of all resources on the
complete environment. We have divided them in the following categories:

1. Recursive methods, which propagate individually each resource.
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2. Tterative methods, which sweep several times the whole environment.

3. Distance-based methods, which store in squares the distance to re-
sources.

4. Other methods, consisting of a multi-grid method which repetitively
decomposes the environment in regions and put the same potential in
each of them.

Next, we will present the parallelisation methods, which work only in
conjunction with sequential methods, and aim the decreasing of their execu-
tion time. We have divided them in two categories:

1. Based on domain decomposition, which decompose the environment.

2. Based on data decomposition, which decompose the resources in sev-
eral groups. Some advantages of the domain decomposition can also
be acquired if each group contains all the resources in a domain of
environment and only them.

As written in the beginning of the chapter, there may be several types of
resources in the environment, and each type needs to be completely propa-
gated during each cycle of simulation. Based on this property, some methods
can be optimised by decreasing the memory used, or better exploiting the
cache. Also, the propagation is done repetitively, each cycle, and this prop-
erty can be used to optimise some methods; an example of such optimisation
is spreading the potential of only some of the resources.

During the simulation, an important optimisation applies to all these
methods: The propagation of a type is done only if the potential fields
have changed, i.e. there are resources of that type which have changed their
potential since the last propagation of that type. This optimisation has not
been implemented in our tool.

During the presentations of methods, the following notations will be used:

e N, the number of squares in the environment.

e p, the potential of a resource (i.e. the potential in its own square).
e R, the number of resources in the environment.

e P, the number of processors.

Note: For the computing of complexities we will use an “extended” form
of the classical order class O. Its argument, even if it contains several vari-
ables, represents the dominant term of the expression (we assume that all
the variables are greater than 1; in our case there will always be a dominant
term). For example, for the expression (2p? + 2p + 1)R/N we will also use
O(p?’R/N).
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8.6 Sequential methods

8.6.1 Recursive methods

These methods create the potential fields by propagating successively each
resource. The propagation of each resource is done recursively.

Recursive with breadth-first propagation

The obvious method to generate the potential fields, implemented also in
our tool, is based on the recursivity mechanism. We use the breadth-first
recursivity.

Explanation. As the programming language used by our library (C lan-
guage) does not offer a built-in breadth-first search mechanism, it was sim-
ulated with a queue that stores the elements used in recursion. Thus the
queue simulates also the recursion. The propagation is given by the following
algorithm:

Require: the potential of all the squares is cleared to 0
Ensure: all the resources propagate completely their potential
for all square S, containing a resource do
propagate-square (S, pot(R))
end for

procedure propagate-square (square S, potential p)
pot(S) < p
queue-add (S)
p—p—1
queue-add (DELIM)
loop
S <+ queue-remove
if S = DELIM then
p—p—1
if p = 0 or queue is empty then
end procedure
end if
queue-add (DELIM)
S1 ¢ queue-remove
end if
for all S neighbour of S; do
if S not obstacle and pot(S) < p then
pot(S) < p
queue-add (S)
end if
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end for
end loop
end procedure

DELIM is a special element which delimits groups of consecutive potential.

Discussion. Because this method uses the breadth-first search, each square
is modified only once. As such, the number of updates of squares is equal to
the number of squares in the potential field. In an environment without ob-
stacles, its complexity is then O(p?), where p is the potential in the resource
square. In an environment with R resources, considering that no overlapping
appears among the potential fields, the execution time is then O(p?R).

Because each square stores one potential value, the memory complexity
is O(N), where N is the number of squares in the environment. The length
of the queue (the maximum number of elements stored simultaneously) does
not need to appear in this formula, since it does not depend on N. Indeed,
because the queue stores simultaneously only elements found at current dis-
tance d, and their neighbours (found at distance d + 1), the length of the
queue is less than twice the maximum number of elements to a given dis-
tance. The maximum number of elements at a given distance appears at
distance p (p is the maximum potential of a resource square), giving 4p ele-
ments. This means the maximum number of elements stored in the queue is
2 x 4p = 8p.

A useful optimisation exists, based on the fact that the propagation is
done every cycle. It appears if, since the propagation during the previous
cycle, all the modified resources have grown their potential. In this case, the
potential field of any modified resource increases. As we have used the max
function when fields overlap, the propagation of only the modified resources
is sufficient to correctly propagate all the potentials in environment. In this
case, the potential of the environment is not cleared to 0 anymore, and the
old potentials will be used.

Finally, in case of several types of resources, it is more efficient, for cache
reasons, to propagate entirely each type before propagating another type.

Recursive with depth-first propagation

We are interested to know the performance of depth-first propagation too.
This method uses the depth-first recursivity.

Explanation. In this method, the propagation starts from each resource
and is recursively spread on the environment while decreasing the value of the
current potential. The algorithm below presents this method:

Require: the potential of all the squares is cleared to 0
Ensure: all the resources propagate completely their potential
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for all square S containing a resource do
propagate-square (S, pot(S))
end for

procedure propagate-square (square S, potential p)
if pot(S) < p then {S has not the correct value, so it needs processing}
pot(S) < p
if p > 1 then
for all neighbour S; of S do {propagate to all its neighbours}
if S is not an obstacle then
propagate-square (S1, p — 1)
end if
end for
end if
end if

Discussion. The key point of this method is that the call to the propagate-square
recursive function gives a depth-first propagation. The depth-first recursion
is simple to implement, since it is automatically provided by modern pro-
gramming languages. However, this is an algorithm where the depth-first
search is not efficient. The reason is that some squares are giving increasing
potential, so their potential is successively updated (this appears only when
the potential of resource is greater or equal to 4). Figure 8.4 on the next page
presents an example in the case where the neighbours are taken in N, E, S,
W order (potential of resource is 4). The potential of the square at right to
the resource receives two updates: It is firstly set to 1, then to its correct
value 3. Generally, greater the potential of the resource is, more squares are
updated, and more updates are needed in average for each square.

It is worthwhile to notice that an update of the potential of a square
generates also a recursive update of all its neighbours. This affects drasti-
cally the performance. The previous method has execution time complexity
of O(p?). As the number of updates is greater in this method, its time
complexity is at least O(p?), where p is the potential in the resource square.

Like the previous method, each square stores its own potential, so NV mem-
ory elements are totally needed (N is the number of squares of the environ-
ment). The maximum level of recursivity is p. This means a memory re-
quirement of ap, where « is a constant representing the number of elements
involved in a recursive call. Then the total memory requirements are N + ap.
This gives O(N).

Like the previous method, in the particular case when all the resources
grow their potential between two consecutive cycles of simulation, the propa-
gation can be done by propagating only the modified resources (see previous
method for more information). Also, in case of several types of resources,
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Figure 8.4: Depth-first search has the inconvenient to give some squares
increasing potential (the square at the right of the resource in this example),
which means its potential is updated several times during the propagation
(twice in this example).

it is more efficient, for cache reasons, to propagate entirely each type before
propagating another type.

8.6.2 Iterative methods

These methods sweep several times the whole environment, updating each
square when necessary. The execution time complexity is therefore higher
than recursive methods. However, as their processing is simple, they are
interesting in some cases.

Iterative with fixed potential

This method is presented by Bouton [13], who has worked in our team.

Explanation. This method works by firstly putting the potential of every
resource in its square. Then, during the first iteration, all the environment
is swept in order to find all the squares containing the greatest potential p.
Every time a square with potential p is found, all its neighbours having po-
tential less than p — 1 are given a potential of p — 1. During the second
iteration, all the squares with potential p — 1 are found and their neighbours
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with less potential are given potential p — 2. The iterations continue un-
til the potential 1 is reached. At this step, the propagation is completely
finished on all the environment. It is worthwhile to notice that having no
squares updated during a step is not a sufficient condition for the end of the
propagation. It is also necessary to not have resources whose potential has
not yet been propagated, specifically resources with potential lower than the
last potential propagated.

The algorithm below describes this method more rigorously:

Require: the potential of all the squares is cleared to 0
Ensure: all the resources propagate completely their potential
for all square S, containing a resource do
pot(S;) = potential given by resource r
end for

for p = max pot(S,) downto 2 do
for all square S in the environment do
if pot(S) = p then
for all S; neighbour of S do
if pot(S1) <p—1 then
pot(S1) +p—1
end if
end for
end if
end for
end for

Discussion. The drawback of this method is that during each step all the
environment is swept, which leads to a lot of unuseful processed squares.
In an environment without obstacles, this gives an execution time T =
tsquare N D, Where tgqyqre is the average time needed to process a square, N is
the number of squares of the environment, and p is the maximum potential
in a resource square. This gives an execution time complexity of O(Np).
Note that this number does not depend on the number of resources in the
environment.

The interest of this method comes from the fact that the processing of
each square is very simple: compare its potential with the maximum po-
tential p of its neighbours, and update it with p — 1 if necessary. As its
time complexity does not depend on the number of resources, this method
achieves good performance in the worst cases of other methods (see sec-
tion 8.8 dedicated to performance measurements).

Like the recursive methods, since each square stores its potential, the
memory requirements are in O(N).
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Optimisations. This method, not implemented in our tool, can be op-
timised by reducing the part of environment swept to the useful part (a
rectangle for simplicity). This optimisation is particularly useful when it is
combined with the private environments parallelisation method (as shown
in section 8.7). As an example, if there is only one resource in environ-
ment, the sweep can be done only on a rectangle containing entirely its
potential field. In the general case, the rectangle will contain the potential
fields of all the resources. It can be calculated during the first part of the
algorithm, by adding and substracting from each resource coordinates its
potential:
ytop < 0o, xtop < oo {rectangle initialisation}
ybottom < 0, zbottom < 0 {suppose y increases from top to bottom}
for all square S, containing a resource do
pot(S;) < potential given by resource in S,
if ytop > ys — pot(S,) then
ytop < ys — pot(S,)
end if
{and so on for ztop, ybottom, and zbottom}
end for

In the case where several types of resources exist, the performance can
be influenced by the cache. If the cache is sufficiently large to contain all
the data needed to process one type, but not all the types, then processing
completely each type before processing another type allows to reuse the cache
data, thus increasing performance. If the data size is greater than the cache
size, then, depending on the data structures of the program, it can be more
efficient to process for example each line of environment for all the types
before processing the next line.

During the simulation, if between two consecutive cycles of simulation
all the modified resources have grown their potential, then the squares with
potential higher than the new potential of modified resources do not change.
Therefore, the sweep needs not to start from the maximum potential of
all resources; it can start on the maximum potential of only the modified
resources. The potential of the environment needs not be cleared to 0 in this
case, but the old potentials will be used.

Iterative with variable potential

A similar method have been implemented in our tool, with similar advantages
and disadvantages.

Explanation. The difference between this method and the previous one is
that, during each step, instead of processing only squares with a given poten-
tial p, it compares each square with its neighbours, updating it if necessary.
The algorithm is the following:
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Require: the potential of all the squares is cleared to 0
Ensure: all the resources propagate completely their potential
for all square S, containing a resource do
pot(S,) = potential given by resource in S,
end for

repeat
modified < false {has the environment been modified?}
for all square S in the environment do
for all S; neighbour of S do
if pot(S1) — 1 > pot(S) then
modified + true
pot(S) < pot(S1) — 1
end if
end for
end for
until not modified

Discussion. This method presents the same theoretical complexities as
the previous iterative method. The memory complexity is in O(N), and the
execution time complexity is in O(Np). (Note that this number does not
depend on the number of resources in the environment.)

Optimisations. All the optimisations presented in the previous iterative
method apply to this method. More information is given in iterative fixed
method.

An important optimisation specific to this method, implemented in our
tool, is that in an environment without obstacles, a top-down sweep (each
line processed from left to right) fills the south-east quarter of the potential
field of a resource, plus nearby squares (figure 8.5(a) on the facing page). A
following bottom-up sweep completes the filling of the potential field (fig-
ure 8.5(b)). During the third sweep no square changes its potential, so the
algorithms ends. The number of sweeps is influenced by the number of ob-
stacles and the overlapping quantity of potential fields.

8.6.3 Distance-storing methods

These methods are characterised by the fact that each square stores not
potentials, but distances to resources, and the potential is computed based
on this distance. This is very important, because the potential of only the
squares perceived by agents needs to be calculated.
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Figure 8.5: In an environment without obstacles, two sweeps completely
propagate the potential of a resource (4-connectivity in this example).

Distance-storing of all influent resources

The interest of this method is that it does not need propagation, so it seems
to work tremendously faster than all the previous methods. The trade-off is
that it has high memory requirements, and it was not implemented in our
library.

Explanation. Based on the fact that the place of resources is fixed during
the simulation, a method which uses this fixed distance between squares
and resources can be used. In order to identify resources, we associate a
unique number (its identifier) to each resource. Each square can store the
identifier of each of the resources which can influence its potential during the
simulation, and the distance to it. When the potential of a square needs to be
known, the influence of every resource on it can be simply calculated by using
the distances it stores and the actual potential of the resource concerned.
This method has two phases. The initialisation phase fills each square
with the identifier and the distance of the resources that can influence it:

Ensure: all squares store the identifier of all resources that can influence it
p < the maximum potential field radius
for all square S in the environment do
for all resource r at distance < p from square S do
store in square S the identifier of r and the distance to it
end for
end for

As noticed, the maximum potential field radius needs to be known in ad-
vance, in order to know the resources which can influence it.
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The use phase consists of finding the potential of a given square, based
on the resources identifiers it stores:

Ensure: know the value of the potential of square S

pot(S) < 0 {clear its potential}

for all resource identifier r stored in square S do
p < the potential given by r in square S, based on the distance d to it
if pot(S) < p then

pot(S) < p

end if

end for

Discussion. The potential can be calculated for all squares, as for the
previous methods. Additionally, this method allows to calculate the potential
“on demand” (only for the squares needed), which can be very fast. As an
example, if agents are found on 1% of the squares, then, for 4-connectivity,
the potential of maximum 5% (the square itself and its four neighbours) of
the squares is calculated. Also, it is possible to calculate the potential only
for squares that are influenced by resources having changed their potential.

In the following we calculate an approximate average of the number of
resources influencing a square (N is the number of squares in environment,
A is the number of agents in environment, R is the number of resources, and
p is the average potential of a resource). Firstly, in average, in environment
there are R/N resources per square. Secondly, on a 4-connectivity environ-
ment the potential field of each resource contains an average of 2p% + 2p + 1
squares (formula 7.1 on page 119). Thus, the average number of resources
influencing each square is given by:

R, = (2p* +2p+1)R/N (8.1)

As memory requirements, the whole environment contains N squares,
thus it needs RN = (2p® + 2p + 1) R identifiers, along with the distance to
each of the resources. This gives a complexity of O(p?R). As an example,
for N = 10% squares, R = 2% x N resources in environment, and an average
potential p = 10, the number of identifiers (and the distance to each of them)
that need to be stored is 4 x 106.

We are interested also in the time complexity of the algorithm. Since
the first stage is executed only once, in the beginning of simulation, we take
into account only the second stage. The execution time depends on the
number of agents A. Consider the 4-connectivity case (the 8-connectivity
case is similar, with respect to a constant). Suppose each agent “smells”
(read potential of) its own square and the 4 squares in its neighbourhood.
Then the number of squares whose potential needs to be known is 5A. Each
square is influenced by an average of R, squares (formula 8.1 above), so the
time needed to calculate the potential of all the needed squares is 5ARt; =
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Figure 8.6: On a high density of agents, some squares can be perceived
by several agents, which reduces the number of squares whose potential is
needed: in this example, the number of squares “smelled” by 4 agents is 20
at left, and only 12 at right.

5(2p® + 2p + 1) ARty /N, where t, is the unit time to calculate the potential
influenced by a resource into a square.

In fact, the exact number of squares whose potential needs to be known
is between about A and 5A. The first value appears when agents are near to
each other. In this case, a same square is smelt by several agents, so it needs
to be counted only once. Figure 8.6 presents two densities of agents: one with
agents far away from each other, and another with agents sufficiently near to
each other that some squares be perceived by several agents. Nevertheless,
the execution time complexity does not change, and it is in O(p?AR/N).

As we will present in the section 8.7, dedicated to parallelisation meth-
ods, this method has the advantage that the computes of each square are
independent, so no special method of avoiding parallelisation conflicts is
needed.

Distance-storing of the most influent resource

This method stores only one resource, the most influent one, per square.
It is a fast method, and has less memory requirements than the previous
distance-storing method. It was not implemented in our library, because of
time constraints.

Explanation. This method is based on the previous method. However,
instead of storing in each square the identifier of all the resources which
influence it, it stores the identifier of only the most influent resource. The
most influent resource is that which gives the potential of the square, i.e. it
gives the maximum potential in the case of overlapping fields. By storing in
each square information of only the most influent resource, this method thus
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Figure 8.7: Each resource has its own influence zone in the environment.
The frontiers of zones (in a 4-connectivity environment) contain bold digits.

divides the environment in zones of influence, as shown in figure 8.7.

This method is based on the fact that the propagation is done repetitively
each cycle of simulation. In fact, a particularity of this method is that the
potential field is not cleared, but updated since the last propagation. Each
square contains the resource identifier R, the distance d to the resource that
influences it, and a boolean value f allowing to know if it is on the frontier of a
zone or not. As any square contains the distance to the resource, and not the
potential, the field updates need to be done only on the neighbourhood of the
resources which have changed their potential, and not on all the environment.
The difficulty is then to recognise the frontiers, which need to be updated
when its resource changes. Two variants can be imagined:

1. Store in each resource the squares which belong to it. This seems to
be difficult, because the frontier between resources has variable length
and changes during the simulation.

2. Store in each square the identifier of the resource it belongs to. This
seems to be more appropriate, and will be used in the following.

Two phases can be noticed in this method. During the first phase, oc-
curing at the beginning of the simulation, the parameters of each square
(R, d, and f) are initialised. During the second phase, occuring during the
simulation, the zones of influence and the parameters of squares are updated.

Discussion. This method needs three elements on each square (R, d,
and f). The memory required is thus 3N elements, where N is the number
of squares in environment, which gives a memory complexity of O(N).
This method has a much more difficult implementation than the previous
method. It has the same advantage that, during the second phase, the
potential of only the squares needed by agents is computed. However, since
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only one resource is stored in each square, it has less memory requirements
than the previous method.

8.6.4 Other methods
Multi-grid

We present here the basic principle of another method we have imagined.
It has not been implemented, because we have not proven its convergence,
and as such we will not take into account in method comparison. This
method decomposes the environment in domains and put a same potential
value in each square of the domain. Reiterating this process for different
domain decompositions, exact or approximate potential fields are hoped to
be obtained.

Explanation. This method proposes that any square receives succesive
potential values, nearer and nearer to its exact value. The environment is
decomposed in several domains, and each domain sets all its square at the
same potential. This potential is calculated from the potential of the re-
sources contained in the domain. By iterating this operation, and by chang-
ing the domain decomposition, the squares would receive potentials more
and more exact. This algorithm would be described in the pseudo-code be-
low:

set all potentials to 0
set all resources to their potential

repeat
choose decomposition of environment
for all domain do
find all resources R; in the domain
pa < f(R;) {average potential, based on the resources in the domain}
put p, in each square of the domain
end for
until no change appears

Discussion. The way in which the environment is decomposed is very
important to the convergence of potentials. Thus, in order to correctly prop-
agate the potential of any square, any two neighbour squares may need to
belong to a same domain in one of the steps. Otherwise, the field does not
propagate from one square to the other square.

A feature of this method is that the zones without resources would be
eliminated from the beginning. Also, the iteration can be stopped before the
exact value is reached, thus obtaining an inexact but faster propagation.
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Execution time Memory
Method\ Comparison element Complexity Complexity | Number of elements
Recursive breadth-first O(p*’R) O(N) N +8p
Recursive depth-first > O(p*R) O(N) N+ ap
Iterative, fixed potential O(Np) O(N) N
Tterative, variable potential O(Np) O(N) N
Distance-storing, all resources O(p*>AR/N) O(p’R) 2(2p2 +2p+ 1)R
Distance-storing, most influent resource | ? O(N) 3N

Table 8.1: Comparison of wave propagation sequential methods (N is the
total number of squares, R is the total number of resources, A is the total
number of agents, and p is the strongest potential. Also, « is the memory
needed by the system for a recursive function call with a few parameters).

8.6.5 Theoretical comparison of sequential methods

Table 8.1 shows the memory requirements and the execution time of all
sequential methods presented above. Several conclusions can be taken:

e The recursive breadth-first method is better than recursive depth-first
one.

e The two iterative methods give approximately the same results.
e The memory requirements of best algorithms are in O(N).

It is also worthwhile to notice that for all methods, smaller the potential
of resources is, generally smaller the execution time of update is. Therefore,
if the potential of resources decreases during simulation, the execution time
decreases too. The reasons of this are: for recursive methods, the potential
fields are smaller, so there is less processing; for iterative methods, the max-
imum potential is smaller, so generally there are fewer iterations; and for the
method based on all influent resources, squares will be influenced by fewer
resources, so there are fewer resources to process.

8.7 Parallelisation methods

In the previous section several sequential methods were presented. They are
not sufficient for execution on parallel machines. Indeed, the only imped-
iment is the concurrent access to squares. The goal of the parallelisation
methods presented in this section is to cope with this concurrent access. All
these methods work in conjunction with sequential methods described above.
Some of the combinations between the parallelisation methods and the se-
quential ones are possible without any modification, others are inefficient,
while others are not possible. Their mixing is presented in table 8.2 on the
next page and will be described below.
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Parallelisation\Sequential method | Recursive | Iterative | Distance-all | Distance-most influent

Fixed domain partitioning ok ok first stage only ?
Changing domain partitioning ok ok first stage only ?
Thread-private environments ok ok inefficient ok
Mutex-based ok ? no ok

Table 8.2: Mixing between the parallelisation methods and the sequential
ones. The methods implemented are in bold.

Thread 0

Thread 1

Thread 2

Figure 8.8: Domain partitioning example for 3 threads.

The parallelism can be exploited by three methods (section 4.3.1): data
parallelism, flow parallelism, and control parallelism. The flow parallelism is
used when there is a continuous flow of data (every square in this case) in in-
put, and each data needs consecutive processing, which is not the case on the
sequential propagation algorithms presented above. The control parallelism
can be used if we do different processing on different data. As the potential
propagation of each resource (the data, as shown below) is not fine grain, we
prefer to consider that a mixing between data and control parallelism will
be used.

The decomposition can be done in two ways: data (resources) decom-
position, and domain (environment) decomposition. The first aims mainly
a good load-balancing, while the second aims mainly to avoid parallelism
conflicts (such as cache conflicts and concurrent access to data).

Four parallelisation methods have been explored, exploiting both data
and domain decomposition, which are presented in the following. The first
two methods exploit mainly domain decomposition, and the last two methods
exploit mainly data decomposition.

8.7.1 Fixed domain decomposition

This is the classical domain decomposition parallelisation (section 4.4), and
it was implemented in our library too. The basic principle is that each
processor is affected to a different part of the domain. Thus, in our case, the
environment is decomposed in several domains (figure 8.8). The number of
domains is equal to the number of processors, and each processor is bound
to a distinct domain.
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Figure 8.9: For each processor, the propagation is completely described by
three stages: resources propagation, frontiers saving (only 2 frontiers in this
figure), and frontiers propagation, the last two stages being repeated several
times.

The simplest decompositions are rectangle decompositions: (1) horizon-
tal, (2) vertical, and (3) horizontal and vertical decompositions. We took
into account only these decompositions, because of their less overhead com-
pared to other specific decompositions. We have used a two-dimensional
matrix to store the squares of the environment, and, in the programming
language we have used (C language), the matrices are stored in memory line
by line [56, page 104]. Therefore, a vertical decomposition can generate false
sharing (section 4.2.4), appearing for squares found on the same matrix line
and the same cache line but on two distinct domains. Another very impor-
tant parameter is the length of the frontiers. Generally, greater the length of
the frontiers, greater the number of resources whose potential field intersects
frontiers, hence greater the number of repropagations (as described below)
and greater the execution time.

An ideal decomposition would then decompose the environment such that
the load-balancing among the processors be as close as possible, the cache
be best used, and the length of the frontiers be as small as possible. In our
tool, we have used a horizontal decomposition which is firstly done such that
the size of the domains be as close to each other as possible (figure 8.8 on
the page before).

The complete propagation is described in three stages (figure 8.9). The
first stage propagates the potential of all the resources in each domain sepa-
rately. The second stage saves the frontiers to a memory accessed by neigh-
bour processors. The third stage propagates in each domain separately the
potentials of all the frontiers (we will use the term repropagation in this case).
The second and the third stages are repeatedly executed until no change of
potential is done during the third stage. At this moment, the propagation
is entirely done in all the environment. These stages are detailed in the
following sections.
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Figure 8.10: Illustration of the second stage, where the frontiers of the three
domains are saved into buffers accessed by other processors.

First stage

During the first stage, each processor propagates individually and sequen-
tially all the resources found in its domain, setting the correct potential on
each square of its domain. This can be done with any of the sequential
methods presented above, as shown in table 8.2 on page 177.

For the method storing distances to all influent resources (section 8.6.3),
this stage is sufficient to have the correct potentials in every square. The
reason is that, as described in its sequential implementation, any square
processing is independent of the other.

Nevertheless, for the other methods the separate propagation on each
domain does not assure the correct propagation on all the environment. In
fact, squares in a domain can be influenced by resources in other domains,
i.e. the potential field of a resource may spread on several domains.

Second stage

The second stage corresponds to frontiers “exchanging”. More precisely, the
frontiers are saved into a memory accessed by other processors.

A frontier represents a line or column of environment (or a part of it, if
the decomposition is both horizontal and vertical). Each processor contains
a memory, called buffer in the following, of the same length as its frontiers
(figure 8.10). Each processor, once it has finished its first stage (propagation
of its domain), saves into its own buffers the frontiers of its domain. No
synchronisation point is needed during this second stage, since there is no
sharing conflict: each processor reads and writes its own data (domain and
buffers).
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Third stage

The third stage consists of a propagation of the potential of the frontiers of
the neighbours (called repropagation in the following).

Firstly, we can notice that the repropagation needs the potentials of
the neighbour frontiers, i.e. reading the buffers of the neighbour processors.
Since these buffers have been written at the end of the previous stage, a
synchronisation point is mandatory at this moment.

The repropagation is similar to the first stage (propagation), except that
the potential is not cleared to zero, and the propagation starts from all the
points of the frontiers, and not from resources.

Any of the sequential methods described, according to table 8.2 on page 177,
can be used in this stage, with minor modifications:

1. For the recursive methods, as described, the propagation starts from
resources. Instead, the repropagation variant has to start from all
the squares found on frontiers. As the time complexity of the re-
cursive methods is proportional to the number of potential sources
(section 8.6.1), in the repropagation case this corresponds to frontier
length. In a horizontal domain decomposition the frontier length is
equal regardless of the number of processors. We will see later (sec-
tion 8.8.3) how this propoerty influences the parallel performance of
the recursive methods.

2. For the iterative methods, as described, the propagation starts with the
maximum potential of resources. The repropagation can be identical.
Nevertheless, it is faster to start with the maximum potential of the
squares found at frontiers, since only the frontiers have changed their
potential.

Number of repropagations

A repropagation is generally not sufficient to complete the propagation of po-
tential on the whole environment. Figure 8.11, left case, presents an example
where two repropagations are necessary. During propagation, the obstacles
prevent the square S to receive the potential from resource R. A first re-
propagation allow intermediate squares to receive correct potential values,
and only the second repropagation can put the right potential into square S.

Even in an environment without obstacles, several repropagations may
need to take place. In fact, it is possible for a square S to update its potential
from a square found in another domain, which in turn gets its potential
from a resource R found in yet another domain. Such a case can appear in
horizontal and vertical decomposition in 4-connectivity (figure 8.11, middle
case), or when a potential is greater than the length of a domain (figure 8.11,
right case).
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Figure 8.11: Examples where two repropagations are needed for square S to
receive the correct potential value from resource R.

Figure 8.12: In the worst case, in 8-connectivity the number of repropagation
stages needed is p — 1, where p is the potential of a resource (resource R has
potential p = 10 in this figure).

The exact number of repropagations (frontiers propagations) needed can-
not be known in advance (before the complete propagation). In fact, it
depends on the potential of resources and on the configuration of the en-
vironment (position of obstacles and domain partitioning). Nevertheless, it
exists a sufficient value, which, in the worst case, is also necessary. On the
one hand, this number £ is upper bounded by pmax — 1, where pmax is the
greatest potential:

B < Pmax — 1 (82)

To prove it, we notice that any square receives its final potential from one
and only one resource, let w be the way of decreasing potential from the
resource to the square. Its maximum length is p — 1, where p is the potential
of the resource, and each frontier propagation advances in this way w at least
by one square. This proves also that repropagation is a convergent procedure
in finite time. On the other hand, the value p — 1 can also be reached in the
worst case, as in figure 8.12, where the potential propagates by decreasing
one value per propagation.

More precisely (as we implemented in our tool too), the repropagation
is finished when and only when no frontier square changes its potential. No
change in any frontier square is a sufficient condition: since the frontiers
are identical to the previous repropagation, a new repropagation would not
change any square.
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Synchronisation issues

We are also interested in the number of synchronisations needed by this
method. Up to now, the data accesses during all propagations can be de-
scribed like this:

write own domain and frontiers {1st stage}
repeat
synchronisation point {added to protect the access to the buffers}
write own buffers {2nd stage}
synchronisation point {3rd stage}
read neighbours’ buffers {3rd stage}
write own domain and frontiers {3rd stage}
until no change on any frontier

The buffers are the only data accessed by several processors. Each buffer is
written by its own processor, in the second stage, and read afterwards by a
neighbour processor at the middle of the third stage. The first synchronisa-
tion point in the algorithm above protects this concurrent access to buffers
(it could have been done also just after reading neighbours’ frontiers). This
method, implemented also in our tool, gives two synchronisation points for
each repropagation.

A more efficient solution can be found, which avoids the use of a second
synchronisation. This is provided by the double-buffering technique pre-
sented in section 4.4.2. The following procedure uses it:

write own frontiers
i = 0 {variable i is private to each processor}
repeat
write own buffers]i]
synchronisation point
read neighbours’ buffers][i]
i =1 -1 {choose the other set of buffers}
write own frontiers
until no change on any frontier
The use of this technique implies higher memory requirements. More pre-
cisely, this solution needs an additional memory equal to the memory needed
by storing all the frontiers.

Discussion

In this method, the processors have their own domain, which does not change
during the simulation. Therefore, if the cache is sufficiently large to contain
all the data involved in a domain, then the cache misses will be avoided (ex-
cept the buffers). Another advantage is that, since the only memory accessed
by several processors is the buffers, it can be implemented on distributed
memory machines also. The trade-off is that it has decreased performance
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in the worst case, when a lot of repropagations are necessary.
When several types of resources exist, this method can be used in two
ways:

1. Propagate each type completely before propagating another type:

for all type T; of potential do
propagate completely type T;
end for

Above, for each Tj, Ngyn.(¢) synchronisation points are needed. This
has the advantage to use better the cache, in case the cache can contain
all the data needed to one type, but not the data of several types. The
disadvantage is that the total number of synchronisation points is the
sum of synchronisations of each type: Ngyne = > ; Nsync(%)-

2. Do the domain or frontier propagation of all the types (up to the syn-
chronisation point) before passing to the following domain or frontier
propagation:

for all type T; of potential do
do domain propagation of T;
end for
repeat
synchronisation point
for all type T; of potential which need repropagation do
do frontier propagation of T; (no synchronisation point)
end for
until no need of repropagation on any type

As memory requirements, this needs as many buffers as types. Never-
theless, the execution time is much lower: the number of synchronisa-
tion points is the maximum number of synchronisations of each type:
Nyyne = max; N Sync(z'). This leads also to better load balancing among
processors.

The timing model depends on many factors and is difficult to model, so
we present only the memory model.

Memory model

We do not include in these models the part corrresponding to the sequential
first stage (resources propagation), since, for any method, it has already been
analysed in section 8.6.

We use in this discussion the following parameters: N, is the number of
columns of the environment, and P is the number of processors.

The second stage uses buffers, thus it needs a memory size corresponding
to the size of all the frontiers. For a horizontal decomposition, and on a
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toroidal environment, each frontier has the same length: N, squares (see
figure 8.10 on page 179). Each processor has two frontiers, hence its buffers
need 2N, squares. The third stage may used another set of identical buffers,
in the case of double-buffering technique. Therefore, for all the P processors,
this parallelisation method adds a memory overhead of

mem = O(PN,)

8.7.2 Changing domain decomposition

The fixed domain decomposition method, as noticed in its description and
taken into account by its timing model attempt, needs several repropagations
to complete the potential spreading in the environment. The aim of the
changing domain decomposition is to reduce the number of repropagations,
generally to 1.

Principle

This method is similar to the previous one. It can be divided into two
stages: resources propagation, and frontiers propagation. The decomposition
analysis and the resources propagation are identical to those of the previous
method. Therefore, we take into account in the following only the second
stage, and its differences compared to the previous parallelisation method.

The distinctive feature of this method is that the domain decomposition
changes when the frontiers are propagated (figure 8.13 on the facing page).
The new frontiers are now located at some distance d from the old ones.
As the repropagation starts on old frontiers, it is less frequently that new
frontiers are modified, so, as detailed below, the number of repropagations
is less than the one of the previous method. However, if during the reprop-
agation the new frontiers were changed, during the next repropagation the
set of frontiers changes: the new frontiers become the old ones, and the old
frontiers become the new ones. This mechanism ensures that during each
repropagation the new frontiers are located at some distance from the old
ones.

It is worthwhile to notice that this method, based on moving off the
frontiers so that the new ones are far from the old ones, works on horizontal
decomposition and on vertical decomposition, but not on a horizontal and
vertical decomposition. Figure 8.14 on the next page presents the latter
case, with the continuous lines for the old frontiers. We can see that the
new frontiers, the dotted ones, cannot be drawn without intersecting the old
frontiers, so a minimal distance d between any square on old frontier and
any square on new frontier cannot be guaranteed.

In figure 8.13, the number of processors used during each propagation is
not the same, but differs by 1: P, P—1, P, P—1, and so on. Nevertheless, the
same number of threads can still be used, by giving to the Pth processor parts
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Figure 8.13: The repropagation changes the decomposition in order to move
off the frontiers: the continuous lines mark the old frontiers, and the inter-

rupted ones the new frontiers.

Figure 8.14: In a both horizontal and vertical domain decomposition, the
new frontiers (the interrupted ones) cannot be drawn without interesecting

the old frontiers (the continuous ones).
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of the first and the last domains. In this case, in an edged environment the
domain decomposition becomes more difficult (the last domain is composed
by two rectangles).

Improvements on number of repropagations

In this section the differences from the previous method concerning the re-
propagation are described.

In the previous method, a synchronisation point was introduced because
of the frontiers saving. This method does not need such a synchronisation.

After the domain propagation and a first frontiers propagation, another
frontiers propagation can appear only if there is a resource whose potential is
superior to the distance d between old and new frontiers (i.e. a new frontier
has changed). When the potential of a square on the old frontier influences a
square on the new frontier, their difference of potential is at least d, therefore
the potential of a resource decreases at least by d. Therefore, the maximum
number of frontier propagations S for this method is then limited according
to the following formula (p is the maximum potential of a resource, and d is
the minimum of all distances between old and new frontiers of any processor):

p< b (8.3)

This formula insures that the number of repropagations in the worst case
is smaller in this method than in the previous method (where it is equal
to p — 1, see equation 8.2 on page 181). As an example, this method is not
impacted by the case presented in figure 8.12 on page 181.

Drawbacks on square misses

In this method, the decreasing of the number of propagations is provided by
a domain decomposition that changes. A first consequence of this technique
is that it leads to cache misses. They correspond to the squares which change
processor (called square misses in the following), and they appear during the
execution of each stage (first or the second). We calculate in the following
a minimum value for the number of square misses. Each processor different
that the first and the last is involved in square misses. Therefore, the number
of blocks with square misses (the filled squares in figure 8.13 on the preceding
page) is at least P — 2, where P is the number of processors used. If the
distance between any old and new analogous frontiers is d, then the number
of square misses for these processors has N.d(P —2) squares, where N, is the
number of columns. But all the distances d are equal (as presented in the
principle of the method), hence d is half an old domain, i.e. d = N;/(2P),
where NN; is the number of lines. It results that the number of square misses
is at least:

N, = N5~ = O(N)
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where N = N;N_ is the number of squares in the environment. We notice
that this number of square misses tends to N/2. A second consequence
of this technique is that, since the number of squares misses is high, an
implementation on purely distributed machines cannot be efficient.

This parallelisation method does not add any memory overhead. Never-
theless, when P increases, the number of square misses becomes higher and
higher, therefore we preferred to choose other parallelisation methods.

8.7.3 Data decomposition with mutexes

The two previous methods have used mainly the domain (environment) de-
composition. This method and the next one use mainly data (resources)
decomposition.

The only problem posed by the wave propagation parallelisation is the
concurrent access to squares. Therefore, the most obvious and simplest
parallelisation method is to solve it directly by using mutexes, presented in
section 4.4.2. It was not implemented in our tool, because of time constraints.

Explanation

Each processor is assigned a part of resources, and propagates their potential.
However, as the potential fields may overlap, the access to squares, for both
read and write, is protected by a mutex (section 4.4.2). Then the propagation
of each resource is done completely, hence no repropagation is needed.

The mutexes can be fine-grained (each square is protected by a mutex),
or coarse-grained (a mutex per group of squares). Examples of such groups
are a whole line of environment, a whole column of environment, and groups
of n xn squares. Larger the group, lower the overhead of mutexes, but higher
the probability to wait for mutexes to become available. The efficiency of
groups depends on the position and the potential of resources.

The combinations between this parallelisation method and sequential
methods are presented below:

e The recursive methods work without modification: their propagation
is completely done, using mutexes each time a square is accessed.

e The iterative methods themselves are based mainly on domain de-
composition, hence the data decomposition based on mutexes is not
appropriate. Nevertheless, a mixing is possible, which resembles to the
fixed domain parallelisation described above. During a first stage, it
puts the right potential in each resource square. During the second
stage, each processor sweeps (and processes) once all its domain and
the neighbour frontiers which touch its domain. Because of the domain
decomposition, only frontiers are accessed by more than one processor.
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Each time a square on frontier is accessed, mutexes are used. The sec-
ond stage is repeatedly executed until no square changes its potential.

e The method distance-based with most influent resource works without
any modification: the propagation of resources is completely done,
using mutexes each time a square is accessed.

e The method distance-based with storing the distances to all influent
resources is not appropriate to mutexes. Indeed, in this sequential
method, computing the potential of a square involves only information
on this square and the potential of resources involved.

Discussion

The advantage of this parallelisation method is that it does not have reprop-
agations (except the combinations with iterative methods); repropagations
increase execution time. Instead, the execution time is increased by the
overheads of mutex operations. A timing model is difficult to give, since the
overhead of mutexes (acquiring, waiting and releasing a mutex) depends on
many parameters. While it seems that the overheads added by this method
are higher than the improvements induced by the decreasing of the number
of repropagations, only experiments can provide a qualitative measure of the
performance of this method.

The memory overhead is given by the structures associated to mutexes.
If we note by m,, the average memory overhead per square of a mutex, then
the memory overhead of this parallelisation method is (/N is the total number
of squares in environment):

mem = Nmy,

As an example, if a mutex is associated to each square, and m,, = 24 bytes?,
we obtain a memory overhead of mem = 24N bytes. This number is much
higher than for fixed domain decomposition method, which needs a memory
of O(PN,.), with N, the number of columns. It is also higher than the mem-
ory needed for recursive and iterative sequential methods (about N bytes,
as shown in section 8.6).

8.7.4 Data decomposition with processor-private environments

The main issue of the previous method is the use of mutexes to avoid the
concurrent access to squares. This concurrent access can be avoided also by
duplicating the (main) environment on each processor, so that each processor
access only its environment. This method based on private environments has
been implemented in our tool.

2Case of a GNU/Linux machine with glibc library.
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Figure 8.15: The first stage of the private-environment parallelisation
method: each processor propagates a part of resources in its private en-
vironment.

SEEEE s

private environment private environment private environment main environment

Figure 8.16: The second stage of the private-environment parallelisation
method: each processor works on the same part of every private environ-
ment and updates each square of the main environment with the maximum
potential of the corresponding squares.

Explanation

In this method, each processor has a private memory of the same size as
the environment. The complete propagation is done in two stages. The first
stage (private propagation) uses a data (resources) decomposition: each pro-
cessor propagates a part of resources through all its private environment F;
(figure 8.15). During the second stage (global propagation), a domain de-
composition is used: the environment is updated by all the threads in par-
allel; each square of the main environment receives the maximum of all its
corresponding squares of the private environments E; (figure 8.16). This
stage can be skipped for squares whose potential is not needed. To avoid
concurrent access to private environments, a synchronisation point is needed
between the two stages. Thus each processor executes the following algo-
rithm:

clear to 0 the potentials of its own private environment F;

for all own resource r do

propagate r in its own private environment FE;

end for

synchronisation point

for all square Sy,4i, in its domain of the main environment do
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Smain < Max Sprivate {the corresponding squares in each private envi-
ronment}
end for

Not all the sequential propagations described in the previous section are
appropriate to the private propagation, as described below:

e Both recursive sequential methods of propagation work without mod-
ification. In our tool, the combination with recursive breadth-first
method has been implemented.

e Both iterative sequential methods of propagation work without modi-
fication. In our tool, the combination with iterative variable potential
method has also been implemented. It is worthwile to note that, if the
potential of resources is comparable to the environment size, the iter-
ative sequential method is inefficient to such a parallelisation. Indeed,
in this case reducing the number of resources to process (each proces-
sor is assigned only a part of resources) does not reduce the rectangle
to be swept.

e The distance-based method with storing all the resources does not need
private environments. Nevertheless, this combination can be imagined,
by allowing each square of the private environments to store the dis-
tance to only some resources. It is very inefficient though, compared
to its mixing with the fixed domain decomposition described above.

e The distance-based method with storing the most influent resource
works without modification. The reason is that the most influent re-
source among all influent resources on a square is the same as the most
influent resource among the most influent resource of each private en-
vironment. As we have not implemented this sequential method, we
cannot give more information about this mixing.

Discussion

Compared to previous parallelisation methods, this method uses only one
synchronisation point. The trade-off is that the processors have changed
domain during the two stages, which leads to cache invalidations during the
first stage and cache misses during the second stage. If the data is less
than the cache size, then the performance of the algorithm depends on the
number of square misses (squares processed by a different processor in the
second stage). We are then interested by the number of square misses Nj.
We suppose that each processor P; writes all the squares of its own private
environment, i.e. almost all the squares of environment have a potential
greater than 0. Then, during the second stage, all the squares read by a
processor in the private environment of other processors are square misses.
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There are P—1 other processors, and it reads N/ P squares from each private
environment, so the number of square misses for each of the processors is:

N
Nsp - (P— 1)f

Then the total number of square misses is given by:
Ny =PNgy, =N(P—-1)

This is a very high number, leading to a decrease of the practical performance
of this parallelisation method (section 4.2.3).

The memory overhead of this method is given by the P private environ-
ments, each of them having N squares. Then the overhead in number of
squares is:

mem = PN

If the potential radius of any resource is much less than the size of the en-
vironment, the memory overhead can be much reduced. In fact, the potential
fields of resources in a domain spread on only a part F; of the environment.
Therefore, the private environments need not to have the same size as the
main environment, but a less size, equal to E;. This optimisation is inde-
pendent of the sequential method chosen.

When several types of resources need to be propagated (let N; be the
total number of types), two variants can be used:

1. Propagate each type completely before propagating another type:

for all type T; of potential do
do private propagation
synchronisation point
do global propagation

end for

The memory overhead in this case is one private environment for each
processor. The total number of synchronisation points is Ngype = Ny.

2. Do the private propagation for each type, and thereafter the global
synchronisation:

for all type T; of potential do
do private propagation
end for
synchronisation point
for all type T; of potential do
do global propagation
end for
The memory overhead in this case is Ny private environments for each

processor. The total number of synchronisation points is Ngyn. = 1.
This leads also to better load balancing.
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Parallelisation method | + -
Fixed domain very little memory overhead high number of repropagations
decomposition cache well exploited

(works also on distributed memory)
Changing domain no memory overhead cache not well exploited
decomposition few number of repropagations
Mutex-based no repropagation high overheads in execution time

high overheads in memory

Private environments | 2 steps only cache not well exploited

(works also on distributed memory) | high memory overheads

Table 8.3: Main advantages and drawbacks of wave propagation parallelisa-
tion methods.

8.7.5 Theoretical comparison of parallel methods

Table 8.3 presents a comparison among the parallelisation methods presented
in this section. Each of them has advantages and drawbacks. The theoretical
measurement is not sufficient to find the best method, therefore we have done
many practical measurements, described below.

8.8 Performance of the wave propagation algorithms

In this section we present the sequential and parallel execution times of the
wave propagation methods implemented in our tool.

8.8.1 Experimental condition overview

The system and measurement information is the same as in the vision case,
see section 7.10.1 on page 135. Again, we have used both functions clock
and times, but the difference between the times they have reported has been
very small. In fact, the implementations of this algorithm do not use I/0,
but only computation. We will use only the results of function times in our
discussion.

8.8.2 Wave propagation algorithm implementation

The wave propagation algorithms have an initialisation part and a propaga-
tion part. The initialisation part consists of various memory allocations and
variable initialisations, and is done only once, at the beginning of simulation.
It has a very low execution time. The propagation part is done generally
each cycle of simulation. Therefore, we will focus only on the propagation
part.

The propagation part needs the potential of resources. The potential of
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each resource is computed from its current load® using a function given by
the user of the tool.

Several parameters influence the execution time of wave propagation al-
gorithms. Also, for more precision, in each graphic the legend contains in-
formation about all these parameters. They are:

e N, the number of squares in environment (y and z in legends).

e The type of environment (¢ in legends, t0 for toroidal and ¢1 for edged).
However, the torus case is not supported in our implementations of
wave propagation, hence we will use only the edged case in our exper-
iments.

e w, the percentage of obstacles (walls). In our benchmarks we will
randomly put them in the environment.

e ¢, the connectivity (4 or 8).

e For each resource, its potential type and its potential value. In our
benchmarks we will randomly put r percents of resources in environ-
ment, each of them with a potential value of p and a potential type ¢
(we will use only one type, noted with 7' in legends). The load balanc-
ing in case of domain partitioning is then statistically assured. Also,
this statistical balancing appears in many simulations done.

e The sequential and the parallelisation method (m in legends). Three
sequential methods have been implemented: depth-first recursive, breadth-
first recursive, and iterative with changing potential. The two paral-
lelisation methods implemented are: fixed domain decomposition and
private environments. These gives six combinations possible: depth-
domain (m4), breadth-domain (m0), iterative-domain (m8), depth-
private, breadth-private (m9) and iterative-private (m10). Addition-
nally, we will use m6 in legends for the mixing iterative-breadth-domain.

e P, the number of processors.

All the legends have the form y.z.t.w.c.T.p.r.m., according to the parameters
above.

In our implementation a potential of 1 in a resource means its potential
field is the resource square itself. This is different than in the vision algo-
rithm, where a vision radius of 1 covers the square itself and its 4 (or 8)
neighbours. Hence, in a world without obstacles, the potential field of a re-
source of potential n is the same as the visibility field of a square for a vision
radius of n+ 1. Notice that this does not affect theoretical complexities, but
only practical results, which are presented in this section.

3Except for the very first propagation, where the initial potential given by the user is
used (appendix A).
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8.8.3 Performance of each method

In this section we present the performance of each method. As the theoretical
results are not sufficient to find the most appropriate solution, in this section
we will discover the slow methods we have implemented and, in the next
section, we will discuss the fast methods.

Unles otherwise stated, we will use for each method the following param-
eters: an edged environment with 1024 x 1024 squares, without obstacles,
with a connectivity of 4, and one potential type with 1% of resources each
with a potential of 16. This is a realistic case, and we will present later its
influence on the execution time of the best methods.

Note: The execution times presented in all these tests correspond to
10 runs of the propagation (hence 10 times greater execution times), in order
to obtain execution times of minimum 0.5 seconds, for better accuracy.

The memory size needed by the wave propagation is given by the poten-
tial matrix and the environment matrix. The potential matrix has the size
of environment (N elements), each element storing an integer value for each
type of potential. For our tests we will use only one type of potential. This
gives N integers. The environment matrix stores information about each
square, such as its type and its dynamic state (occupied or not by an agent),
and contains 5N integers. Summing up, we obtain 6N integers. In our ex-
periments the size of an integer is 4B (4 bytes). Therefore, the total memory
requirements of our implementation of wave propagation is 6N x 4 bytes, i.e.
24N bytes.

The cache of each processor on our DSM Origin 2000 64 processor ma-
chine has 4MB. Therefore, in an environment of 512 x 512 squares, 6MB are
used, i.e. the size of 1.5 caches. For N = 1024 x 1024, 24MB are used, i.e.
the size of 6 caches. For N = 4096 x 4096, 192MB are used, i.e. the size of
64 caches. Surely, as the cache contain code and other minor data, the real
value may be a bit higher. We will use this information to discover the cache
influence on our implementations.

Breadth-first with fixed domain decomposition

Figure 8.17 presents the bar plot of the execution time of this method. We
can see that no important load unbalancing is visible, and that the execution
time of 10 runs in 1-thread case is about 13.5 seconds. Figure 8.18 presents
the speed-up of this method. Its maximum value (about 15) is reached
somewhere near 32 processors. It is relatively scalable but is low, i.e. it
does not have speed-ups close to the ideal speed-up. This result comes
from the horizontal decomposition of the environment. Indeed, this method
has two parts: domain propagation and frontier propagation. As shown in
section 8.7.1, the execution time of the frontier propagation of the breadth-
first method does not depend on the entire domain size, but just on the
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Figure 8.17: Bar plot of the execution time of 10 runs of breadth-first with
fixed domain decomposition, showing good load balancing and a sequential
time of about 13.5 seconds (DSM Origin 2000).

frontier length. In horizontal decomposition the frontier length is constant
for any number of processors, hence the low curve of speed-up.

As explained above, the cache effects may appear after 6 processors.
However, no change in performance can be seen in figure 8.18. In fact, this
method propagates entirely and separately each resource, and the data size
of the potential field of any resource is smaller than the cache size. Therefore,
the cache size does not affect the performance of this method.

This method is relatively scalable so we will take it into account in the
next section.

Depth-first with fixed domain propagation

Figure 8.19 presents the bar plot of the execution time of this method. No
important load unbalancing appears. However, the execution time of 10 runs
for 1-thread case is about 700 seconds. This time is much higher compared
to previous breadth-first method (about 13.5 seconds). This result has been
expected, since the number of squares visited by this method is much higher
than for the breadth-first method, as shown in section 8.6.1. Therefore, we
will eliminate this method of propagation in our following tests.
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Figure 8.18: Speed-up of breadth-first with fixed domain decomposition,
showing good speed-up, with a maximum somewhere near 32 processors
(DSM Origin 2000).
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Figure 8.19: Bar plot of the execution time of 10 runs of depth-first with
fixed domain decomposition, showing good load balancing but a very high
sequential time of about 700 seconds (DSM Origin 2000).



8.8. PERFORMANCE OF THE WAVE PROPAGATION ALGORITHMS197

6000

-\' y1024-x1024-t1-W00—c4-TO-p16-r1-m8 —
5000

4000 \
3000 \
2000 \‘\

1000

Execution time (ms.)

\\N

e %

0 5 10 15 20 25 30 35 40 45 50
Number of processors

Figure 8.20: Bar plot of the execution time of 10 runs of iterative-variable
with fixed domain decomposition, showing good load balancing and a se-
quential time of almost 6 seconds (DSM Origin 2000).

Iterative-variable with fixed domain propagation

Figure 8.20 presents the bar plot of the execution time of this method. We
can see that no important load unbalancing is visible, and that the execution
time of 10 runs in 1-thread case is almost 6 seconds (smaller than the breadth-
first method).

Figure 8.21 presents the speed-up of this method. We can notice that
for a very small number of processors (up to 4) the speed-up is very low.
The reason is that the frontier propagation involves only the squares of the
frontiers, but this method sweeps inefficiently all the environment.

It is very interesting to notice that starting for a few processors the
speed-up curve of this method is in fact highly influenced by two factors,
both positive. The first factor is the classical cache size, as described above:
the speed-up of 8 processors (equal to 4.5) is more than twice higher than for
4 processors (equal to 2.1). Indeed, this method sweeps all the environment
several times, and this operation is faster when all the data can be stored in
caches.

The second factor is due to overwork of changing algorithm in parallel
case (figure 4.3, page 82), and leads to the conclusion that the speed-up
becomes better starting from a certain number of processors. Figure 8.22
presents three curves. The first one represents the execution time of the
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Figure 8.21: Speed-up of iterative-variable with fixed domain decomposition,
showing mainly its non-scalability, the overwork effect from 3 processors, and
the cache effects starting from 4-8 processors (DSM Origin 2000).

method without cache effects (environment 4096 x 4096). In parallel, this
method has two parts: domain propagation and frontier propagation. Based
on the execution time complexity of O(Np) of the method (section 8.6.2),
we consider that the execution time of domain propagation is proportional
to the size of the domain, i.e. the more processors, the smaller domain,
hence the smaller execution time. The second curve presents the theoretical
execution time of the domain propagation part, with a parallel time equal
to the sequential time divided by the number of domains (processors):

timegeq

P

timep,, =

The “frontier propagation” curve is simply the difference between the first
and the second curves. It contains all the parallel overheads, the most im-
portant being the parallel overwork. This curve corresponds to theoretical
expectations, since it decreases starting from 2 processors (and is 0 for 1 pro-
Cessor).

The smaller execution time for 1-thread compared to breadth-first method,
the cache effects which can highly speed up its execution, and the better
speed-ups for a higher number of processors have led us to take it into ac-
count. We will analyse it more thoroughly in the next section.
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Figure 8.22: Execution time of 10 runs of iterative-variable with fixed domain
decomposition on a bigger environment, along with theoretical execution
times of its two parts, showing the overwork effects (DSM Origin 2000).

Breadth-first with private environments

This method differs from the breadth-first with domain decomposition method
only in parallel, hence we are interested in its parallel performance only. Fig-
ure 8.23 presents the bar plot of this method. For the parameters chosen the
best execution time appears for about 4 processors. After this number the
cache misses, as shown in section 8.7.4, take over the benefits of parallelism.
We are then interested on the speed-up on the scalable interval.

Figure 8.24 presents the speed-up of this method. For 4 processors the
speed-up is about 3. This speed-up is not as high as for breadth-first with
fixed domain decomposition, which has a speed-up of about 3.75 for 4 pro-
cessors. Therefore, we will eliminate this method in our following tests.

Iterative-variable with private environments

Figure 8.25 presents the bar plot of the execution time of this method. We
can see that the greater the number of processors, the greater the execution
time: this method is not scalable. This result has been expected, since
reducing the number of resources does not reduce the domain to be swept,
always equal to the whole environment (section 8.6.2). Therefore, we will
eliminate this method in our following tests.
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Figure 8.23: Bar plot of the execution time of 10 runs of breadth-first with
private environments, showing good load balancing and best execution time
for about 4 processors (DSM Origin 2000).
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Figure 8.24: Speed-up of breadth-first with private environments, showing a
speed-up of about 3 for 4 processors (DSM Origin 2000).
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Figure 8.25: Bar plot of the execution time of 10 runs of iterative-variable
with private environments, showing that it is not scalable at all (DSM Ori-
gin 2000).

8.8.4 In-depth comparison between the best methods

In the previous section we have eliminated all the methods but two, breadth-
first and iterative-variable, both combined with fixed domain decomposition.
In this section we will analyse in more detail the performance of the two
methods.

Until now we have done tests on a realistic case: an edged environment
with 1024 x 1024 squares, without obstacles, with a connectivity of 4, and
one potential type with 1% of resources each with a potential of 16 (note
that the number of resources is proportional to the environment size). We
want to know if this realistic case is favourable to any of the methods.

In our 4-connectivity case we use formula 8.1 (page 172) with p = 16 and
R = 0.01N, which gives the average number of resources influencing a square.
We obtain that each square is influenced by an average of 5.5 resources. On
the one hand, this is not the best case for breadth method. In fact, a better
case for breadth method is when a square is influenced by only one resource.
Also, an environment without obstacles is a case favourable to the iterative
method, which is optimised in this case. On the other hand, this is not
the best case for iterative method, since the benefit of cache effects in the
iterative method are not visible until about 6 processors. Therefore, both
methods have advantages and inconvenients in this case.
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To obtain more information about the efficiency of both methods, we are
interested in the performance of the methods when parameters change, both
on the execution time and on the speed-up. We have done tests by varying
separately each of these parameters, using the parameters above as basis:
An edged environment with 1024 x 1024 squares, without obstacles, with a
connectivity of 4, and one potential type with 1% of resources each with a
potential of 16. We have obtained the following results:

1. Environment size. We have varied only the environment size. The
percentage of the number of resources has been maintained constant
(1% of the environment), hence their number has changed too. The
execution times of 10 runs for 1-thread execution when varying the
environment size are gathered in the following table:

Size Ezecution time (ms.)
Breadth ‘ Iterative

512 x 512 3230 1210
1024 x 1024 12540 5830
2048 x 2048 58630 26530
4096 x 4096 | 256620 165810

We notice that for both methods the execution time grows about lin-
early with the number of squares in environment. Also, the iterative
method is faster than the breadth method in the 1-thread case.

The speed-ups of both methods are presented in figure 8.26 and 8.27.
For both methods the speed-up increases with the environment size.
However, the iterative curves show the positive influence of caches in
the first two cases, and the scalability without the cache influence in
the last case (4096), where the data size is always higher than the size
of all the caches.

2. Connectivity. The execution time of 10 runs in 1-thread case when
changing only the connectivity type is given in the following table:

Connectivity | Execution time (ms.)

Breadth ‘ Tterative
4-connectivity 13520 5890
8-connectivity ‘ 30950 ‘ 6770

We notice that the breadth method is highly influenced by the connec-
tivity. The reason is that since the potential field in 8-connectivity is
about twice larger than in 4-connectivity, each square is influenced by
yet more resources, hence more square updates. However, the iterative
method is not very much influenced by the connectivity. The reason
is that the execution time depends mainly on the number of sweeps of
environment, and in our case (0% obstacles) the number of sweeps is
identical regardless of the connectivity.




8.8. PERFORMANCE OF THE WAVE PROPAGATION ALGORITHMS203

50 T T T T T
y512-x512-t1-w00-c4-T0-p16-rl-m0 —+——
y1024-x1024-t1-w00-c4-T0-p16-rl-m0 ---%---
45 y2048-x2048-t1-w00-c4-T0-p16-r1-mQ.-~-*--- |
y4096-x4096-t1-w00-c4-T0-p16-r1-m0 --&
ideal speed-up ———-
40 s g

35 5

30 P

25 g a

Speed-up

20

15

10

- -

0 5 10 15 20 25 30 35 40 45 50
Number of processors

Figure 8.26: Speed-up of breadth-first with fixed domain decomposition,
with various environment sizes, showing that the speed-up increases with
the environment size (DSM Origin 2000).
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Figure 8.27: Speed-up of iterative-variable with fixed domain decomposition,
with various environment sizes, showing the influence of caches and that the
speed-up increases with the environment size (DSM Origin 2000).
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Figure 8.28: Speed-up of breadth-first with fixed domain decomposi-
tion, for 4-connectivity and 8-connectivity, showing a better speed-up for
8-connectivity (DSM Origin 2000).

The connectivity also influences the speed-up of the breadth method
(greater for 8-connectivity, figure 8.28). The speed-up is better in
8-connectivity, but this is not useful in this case because the sequen-
tial execution time is much higher (30950ms compared to 13520ms, as
shown above). The speed-up of the iterative method is not affected
(figure 8.29).

3. Number of resources. The execution times of 10 runs in 1-thread ex-
ecution when varying only the number of resources (in percentage of
the squares of environment) are shown in the following table:

Resources (%) | Execution time (ms.)
Breadth Tterative

0.1 3720 5560

0.2 5440 5620

0.3 6960 5720

1 13530 5890

10 45280 6740

For the breadth method, the greater the number of resources, the
greater the execution time, because it propagates each resource con-
secutively and because squares are influenced by yet more resources.
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Figure 8.29: Speed-up of iterative-variable with fixed domain decomposi-
tion, for 4-connectivity and 8-connectivity, showing similar speed-ups (DSM
Origin 2000).

The iterative method is not very much influenced by this parameter,
the number of sweeps being the dominant parameter. For our parame-
ters, the value where the execution times are similar for the methods is
slightly greater than 0.2% resources, which corresponds to about 1.1 re-
sources per square (formula 8.1, page 172, with a potential of 16). For
about 0.185% of resources, where each square is influenced by an aver-
age of 1 resource (same formula), the breadth method is slightly faster
than the iterative one.

For the breadth method, the greater the number of resources, the
greater the number of computations, and the better the speed-up (fig-
ure 8.30). For the iterative method, the greater the number of re-
sources, the smaller the speed-up (figure 8.31). Note that even if the
speed-up is sometimes greater for breadth method than for iterative
method (for instance for a potential of 10), the iterative method has a
sequential time much smaller, hence its speed-up remains better than
that of the breadth method.

4. Resource potential. The following table presents the execution time of
10 runs in 1-thread case when varying only the resource potential:
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Figure 8.30: Speed-up of breadth-first with fixed domain decomposition,
for various number of resources, showing that the speed-up grows with the
number of resources (DSM Origin 2000).
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Figure 8.31: Speed-up of iterative-variable with fixed domain decomposition,
for various number of resources, showing that the speed-up decreases with
the number of resources (DSM Origin 2000).
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Figure 8.32: Speed-up of breadth-first with fixed domain decomposition, for
various values for resource potential, showing that the speed-up increases
with the resource potential (DSM Origin 2000).

Potential | Ezecution time (ms.)
Breadth ‘ Tterative

8 5850 5890
16 13500 5820
32 28080 5830

Again, the breadth method is highly influenced by the resource poten-
tial, since the potential field size, hence the number of square updates,
changes. The iterative method does not change its execution time.
The methods have the same execution time for a potential of 8, which
corresponds to about 1.45 resources per square (formula 8.1, page 172,
with 1% of resources). An average of 1 resource per square is obtained
for a potential of 6-7 (same formula), and in this case the breadth
method is slightly faster than the iterative one.

Figures 8.32 and 8.33 present the speed-ups of the methods. For the
breadth method, the greater resource potential, the more computa-
tions, hence the better the speed-up. For the iterative method, the
speed-up is not much influenced.

5. Number of obstacles. The execution times of 10 runs in 1-thread case
when varying only the number of obstacles (in percentage of squares),
randomly put in the environment, are given in the following table:
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Figure 8.33: Speed-up of iterative-variable with fixed domain decomposition,
for various values for resource potential, showing not very much influences

(DSM Origin 2000).

Obstacles (%) | Ezecution time (ms.)
Breadth | Iterative

0 13500 5860
1 13470 8390
4 13250 10930
16 12080 13340

The greater the number of obstacles, the less the potential field size,
hence the fewer square updates. We can see that the execution time
of the breadth method slightly decreases with the number of obstacles.
On the contrary, the iterative method is highly influenced by this pa-
rameter. It is worthwhile to note that the configuration of obstacles
influences also the performance of the iterative method. As shown in
its explanations (section 8.6.2), 3 sweeps are sufficient to completely
propagate the potential on an environment without obstacles, while in
the worst case numerous sweeps are necessary.

Figures 8.34 and 8.35 present the speed-up. For the breadth method,
generally the greater the number of obstacles, the less scalable is the
algorithm. Instead, the iterative method is not very much influenced by
the number of obstacles. Moreover, in our cases its sequential execution
time is almost always better compared to that of breadth.
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Figure 8.34: Speed-up of breadth-first with fixed domain decomposition, for
various number of random obstacles, showing that generally the speed-up
decreases with the number of obstacles (DSM Origin 2000).
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Figure 8.35: Speed-up of iterative-variable with fixed domain decomposition,
for various number of random obstacles, showing that the speed-up is not
much influenced by the number of obstacles (DSM Origin 2000).
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8.8.5 Final best method

Based on the results presented in the previous section, we arrive to the
following conclusions concerning the breadth and iterative methods:

1. Only the iterative method is highly influenced by the positive cache
effects.

2. Both methods have a sequential execution time proportional to the
number of squares.

3. The breadth method has an overall value where its sequential per-
formance starts to degrade. This value depends on all the parameters
discussed above, and corresponds to the case when all the environment
is filled with non overlapping potential fields, i.e. an average influence
of 1 resource per square (see also formula 8.1, page 172). This degra-
dation is given by the inutile updates and may be very high.

4. The iterative method is much faster for small number of obstacles (with
random positions).

5. On our system architecture (Origin 2000), similar sequential execution
times have been obtained for an environment in 4-connectivity, without
obstacles, and an average influence of about 1.1-1.45 resources per
square (occuring when the data does not enter the cache).

6. With our horizontal decomposition the performance of the frontier
propagation with the breadth-first method is not much influenced by
the number of processors, while for iterative propagation it increases
with the number of processors.

Therefore, in 1-thread case, a 4-connected environment, without obsta-
cles, for parameters giving an influence of more than 1.5 resources per square
and when the data does not enter 1 cache, the iterative method is faster than
the breadth one (on our Origin 2000 system architecture). The 1-thread case
corresponds to domain propagation. In our domain decomposition paralleli-
sation method, the parallel case corresponds to frontier propagation. Because
of the cache effects appearing for our parameters, the best performance in
parallel depends on the number of processors. Therefore, the general best
method is a combination of the two methods, depending on the parameters
needed and on the number of processors used.

We have implemented the combination of iterative domain propagation
and breadth frontier propagation. The sequential time of 10 runs, corre-
sponding to domain propagation, is, of course, equal to the iterative method,
i.e. about 6 seconds, hence we can compare their speed-up. The speed-up
is presented in figure 8.36. The first curve on the legend represents our
combination, while the second one only the iterative method (the same as
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Figure 8.36: Speed-up of the best method, a combination of iterative sequen-
tial domain propagation and either breadth-first for a few processors (first
curve of the legend), or iterative for higher number of processors (second
curve on the legend) (DSM Origin 2000).

figure 8.21 on page 198). As expected, we notice that the combination is
better up to about 10 processors, while afterwards the iterative method is
better. Therefore, for these parameters, the best method is yet another
combination of the two methods. In our example, the best method is to use
iterative method for domain propagation, and either breadth-first propaga-
tion if a few processors (less than about 10 processors, corresponding to a
small parallel machine for example), or iterative propagation if higher num-
ber of processors (a better parallel machine). It is worthwhile to note that
we can consider this speed-up as the speed-up from the user point of view,
since it involves the best sequential execution time of our methods.

8.9 Inexact potential propagation

A method to reduce the execution time of simulations of wave propagation
algorithms is their parallelisation. We present in this section a promising
direction to reduce even more the execution time of simulations, and/or its
memory requirements. The basic idea is to allow the tolerance of minor
errors in potential propagation, provided that they do not affect agent’s
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performance from MAS point of view?.

This idea is not new. Rabin’s work on the notion that “certain programs
should be designed to produce errors on rare occasions” [72, page 68] has led
to the idea of acceptable uncertainty. Particularly, Hayes [47] considers the
gradient-following algorithm, “which the program deliberately makes imper-
fect by adding a random ’wiggle’ to the cells’ direction-finding procedure.”

Surely, some systems are not appropriate for inexactitudes. However, the
agents by definition have to adapt themselves to environment and they are
autonomous, hence they will cope with inexactitudes provided that they are
not too important.

What the term “important” means depends on agents’ behaviour. As
an example, let e(S) be the error function equal to the difference between
the exact and the given inexact propagation in square S (e : squares — Z).
Generally, we try to avoid nonmonotonic functions e, as they introduce false
directions to resources, while monotonic ones do not suffer from this property.

”

Inexactitudes can appear not only on some regions of the environment,
but also on the whole environment.

In order to provide actual potential of resources, the propagation is done
each cycle of simulation. With the price of being not always actual, the
simulation can be sped up by doing fewer propagations: the propagation
can be done only once, at the beginning of the simulation, or each k cycles.
This optimisation has been implemented in our tool (the user may define the
k parameter).

Also, they can appear either in the sequential, and/or the parallelisation
method. An example of sequential inexactitude is doing only a part of the
propagation in iterative methods, i.e. stopping the iteration before the end
of the propagation.

The following two examples of inexactitudes involve the parallelisation
methods:

1. Since the parallelisation methods complete the propagation, doing only
the sequential part in the methods presented in this chapter gives a
strongly incomplete propagation. Also, doing only one or two fron-
tier propagations gives a light incomplete propagation. Generally, the
nearer the frontier of decomposition, the higher the inexactitude.

2. Another source of inexactitude appears in the context of mutex-based
parallelisation. In fact, the mutexes were needed in order to still put the
correct potential in case of simultaneous access from several threads.
Therefore, not using mutexes at all avoids the overhead in execution
time and memory requirements of mutex-based parallelisation method,
but can generate some inexactitudes in the potential field storage.

“This idea was confirmed by the agent community who attended the “COLINE Day”
(Journées COLINE) at LORIA, June 8-9, 2000.
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It is difficult to give exact results about the appropriateness of these in-
exact methods, since this depends on many factors. For example, doing only
the sequential part can rise no problem for very few obstacles randomly put
in the environment, while it can be unacceptable for some given configura-
tions of obstacles. Nevertheless, the tolerance of inexactitudes in propagation
fields seems to be a promising direction of research, allowing potentially both
less execution times and less memory requirements.

8.10 Conclusions

This section has presented the wave propagation model we use in our multi-
agent simulations. This model allows resources to generate a potential which
is used by agents in order to find them. As the potential of resources changes
during the simulation, the potential fields need to be updated frequently and
can occupy a significant part of the simulation time. Several sequential and
parallelisation algorithms have also been presented. The theoretical analysis
of these algorithms has not been sufficient to compare them. The practi-
cal performance analysis of the algorithms we have implemented has led us
to focus on two sequential methods, a recursive one and an iterative one,
parallelised with the fixed domain decomposition method. After a detailed
comparison, we have detected the cases where each of them is better than
the other, and have implemented a combination of them, giving the best
performance, both in sequential and parallel. Its performance has been pre-
sented.

A promising way of research seems to be the use of methods doing slightly
inexact propagation. They would allow a yet greater performance on execu-
tion time, without affecting the agents’ quality from MAS point of view.
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Chapter 9

ParSSAP features and
implementation

ParSSAP (PARallel Simulator of Situated Agent Populations) is the library
we provide to implement situated multi-agent systems. It is based on the
simulation model presented in chapter 6. Its main goals are fast develop-
ment time and time-efficient execution. The applications written with this
library can be executed on all sequential machines and on parallel machines
providing a shared-memory interface. In this chapter we present its features
and explain some basic applications written with it. The library reference
manual is found in appendix A.

9.1 Features of our library

We present in this section only the differences between the model presented
in chapter 6 and our current implementation.

9.1.1 General features

In our library the environment is two-dimensional and can be toroidal or
edged. For edged environments, obstacles are automatically added on edges
(agents are forced to stay into the environment).

It is not possible to have two resources in the same square. Each resource
has its own load and its own function which gives its potential based on its
load. The propagation of the potential is automatically done by the library
using one of the wave propagation algorithms presented in chapter 8 (only
some of them are implemented). In order to speed up the simulation, the
potential fields can be calculated either each cycle, or each k cycles (for a
given k), or only at the beginning of the initialisation.

The memory of agents is given by a simple pointer to a memory space.
This is a flexible approach, since the user is free to use it as he needs. In fact,
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the user initialises the agent’s memory and, during the creation of agent, he
gives the pointer to the agent’s memory and its memory size. The library
then creates the real agent’s memory by allocating a memory space with size
equal to that provided by the user, and copying in it the memory space given
by the user. The memory given by the user is no longer needed. The library
automatically deallocates its memory when the agent is destroyed or at the
end of the simulation.

Because of time constraints, currently agents have only two percepts:
odour and vision!. Functions dealing with local and global perception are
clearly differentiated through their names.

The actions an agent can do are move, take/drop an object and cre-
ate/destroy agents. Objects can be found only in resources, and take/drop
actions are local to the agent square, therefore these two actions work only
in resource squares. Additionally, a special action is provided by the library,
random move (for the reproducibility of random numbers, see section 9.2.3).

Agents can move only one square, in its neighbourhood of 4 or 8 squares.
They do not have an implicit direction and they do not rotate, they just
move in a given direction.

In our library an agent can do only one of the following actions during
a cycle: move, take and drop. Additionally, it may execute any number of
create/destroy agents during the same cycle. The number of agents used in
the simulation is not limited by the library.

The spatial conflicts are automatically taken into account by the library.
The choice of the winner among agents in conflict is influenced by their
priority. Two priorities have been implemented: high and normal. Agents
which lose in a conflict are forced to stay.

The initialisation of the system may be done in code, in initialisation files
or both.

9.1.2 Information about system’s state and evolution

The library provides functions to save information about the simulation.
The frequency of savings is left to the user, an appropriate place is the user
function. Three kinds of information can be saved in files:

1. Statistics about the state of the system on each cycle, mainly the num-
ber of agents, the number of empty agents, the number of empty re-
sources and the number of unvisited resources.

2. Information about all the agents, such as their move, and all the re-
sources, such as their load, useful to visualise the evolution of the

! Another simulator written before the beginning of this thesis has been supported mark
sensing [57].
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system. A tool? to visualise this information is also provided.

3. The state of the whole system (checkpoint). The simulation may be
resumed afterwards using this information. The system may also be
initialised from such information. There is one general file, with infor-
mation about parameters of the system, and one or several local files,
containing information about domains of environment. The domains
are given by the decomposition of the environment, as described in par-
allel issues next section. The local files contain relative coordinates,
which eases their use. Currently, checkpoints do not save/restore the
memory of agents.

9.1.3 Parallel issues

Our library is parallel. The library uses threads and supports two thread
interfaces: POSIX threads and Irix-native one. It can also be executed on
sequential machines without multi-threading libraries, a C compiler being
sufficient.

With the exception of the user function, the parallelism is involved in
all the simulation steps: behaviour of agents, spatial conflict processing, ac-
tion execution, and vision and propagation algorithms. Among the savings,
only the checkpoints are saved in parallel. The system initialisation is also
sequential.

The technique of parallelisation used by the library is the statical domain
decomposition. The number of processors used remains unchanged during all
the simulation. The environment is decomposed horizontally, each processor
being given an equal number of lines of the environment (or differing by 1 if
the division is not an integer number):

1 topline = nblines * threadid / nbthreads;
2 bottomline = nblines * (threadid + 1) / nbthreads;

The use of the library is very much eased by hiding almost entirely the
parallelism to the user of the library. The only function dealing with paral-
lelism is the one specifying the number of processors to use.

Compared to a sequential implementation our library presents two minor
limitations:

1. During a cycle, no warranty is given about the order of execution of
the behaviour functions of the agents®. In fact, behaviour functions
may be executed concurrently.

2This tool has been written at our school by another person, before the beginning of
this thesis.

30f course, as already mentioned, each behaviour function is assured to be executed
exactly once during a cycle.
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2. Due to parallelism restrictions, the functions giving the behaviour of
agents, and the functions giving for each resource its potential based
on its load (see section 9.8) cannot use static or global variables, in the
sense of the C language*. The only functions involved are those used by
several entities, where a race condition might appear if the functions
are executed concurrently by different processors.

A special attention has been paid to allow randomness and fully repro-
ducibility of simulation. More information is given in the next section.

9.2 Simultaneity processing and parallelism in the
library

Macroscopically, our model of simulation is synchronous, based on cycles.
However, during a cycle agents must have an asynchronous view, more pre-
cisely they are activated simultaneously, without any synchronisation. So,
on each processor we have to simulate this simultaneity and we have to deal
with real concurrent access to data structures from different processors. In
order to solve these issues, specific structures are used, and each cycle of
simulation is divided in several steps. This section presents them and ex-
plains how simultaneity and parallelism have been taken into account in our
library.

9.2.1 Internal structures

Agents can be created and destroyed run-time. Also, agents may be pro-

cessed by different processors during simulation. In order to cope with

the dynamical number of agents, we have implemented expandable vectors

(which grow automatically when elements are inserted past their end).
Several structures will be used in our discussion:

e Agents: vector containing all the information about the agents, such as
its actual and its planned position, and if it is to be killed. Its size can
change during run-time and it can reuse deleted elements. It is shared
by all the processors. Processors work on different agents, hence no
mutex is used.

e Local requested created agents: expandable vector containing informa-
tion about agents which are to be created in the local domain. It is
private to each processor.

e Global requested created agents: expandable vector containing the
agents to be created in the domain of another processor than the one

“This is due to the special properties of this kind of variables in a parallel program.
However, you can use them if the application is sequential.
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--- identifiers of al agentsin conflict

_

new position structure global conflicts structure

Figure 9.1: New position and conflicts structures.

which want to create the agent. It is shared by all the processors and
its access is protected by a mutex.

¢ Global requested move agents: expandable vector containing the agents
which are in a domain and move into another domain. It is shared by
all the processors and its access is protected by a mutex.

e Global conflicts: vector containing the agents involved in conflicts.
Each element corresponds to a conflict, and contains all the agents
involved in the conflict (figure 9.1). It is shared by all the processors,
but each processor accesses only the conflicts appearing in its domain,
hence no mutex is used.

e Global new positions: static matrix of the same size as the environ-
ment, whose elements contain mainly the number of the conflict ele-
ment of global conflicts structure, if any (figure 9.1). Each time an
agent is added in this structure (“mark new position”), the library
checks if there is already an agent inside and, if affirmative, creates a
conflict. It is shared by all the processors, but each processor accesses
only its domain, hence no mutex is used.

e Potential fields: static matrix containing the potential of resources. It
is shared by all the processors, but each processor accesses only its
domain, hence no mutex is used.

9.2.2 Execution flow

The following steps form a cycle and are executed by each processor:

1. Plan step: execute behaviour of all agents and plan agent creation and
destruction.

2. Synchronisation barrier (wait for the global created agents and global
move agents to be completely filled).
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3. Transfer global requested created agents in local structures.
4. Transfer global requested move agents in local structures.

5. Spatial conflict step: solve all conflicts. Create winner agents. For
loser agents, refuse their creation or change their move action in stay.

6. Create local agents.
7. Synchronisation barrier (wait for conflict solving to be completed).

8. Action step: kill agents and execute the planned action of the agents
(move, take or drop).

9. Synchronisation barrier (wait for all agents’ actions to be finished).

10. User step: execute sequentially the user function. This is the normal
place to specify the end of simulation and to save information about
the system. Also, the cycle number is incremented.

11. Synchronisation barrier (wait for the user to complete its a priori un-
known processing).

12. Parallel saving step: if specified in previous step, the whole system is
saved in parallel.

13. Environment percept update step: update if necessary the potential
fields.

14. Synchronisation barrier (wait for the propagation of all the potential
fields, since an agent may perceive information into another domain).

The whole procedure is presented in figure 9.2 on the next page and is
explained below.

During the first step, each processor execute the behaviour of the agents
found in its domain. If they request to create agents (through the call to the
appropriate function) in the local domain, then the requested created agents
are put in its local structure of requested created agents and their position
is stored in the global new position structure. Elsewhere, if the position
of requested created agents is in another domain, they are put in a global
structure to be dispatched afterwards in a local structure. If they move and
their new position is again in its domain, their new move is stored either
in the global new position structure. If they move and change the domain,
they are put in the global requested move agent structure.

After a synchronisation among all the processors, each processor reads
the global requested created agent structure and copy the agents belonging
to its domain into its local requested created agent structure. All the re-
quested created agents are now in the appropriate local requested created
agent structures.
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repeat
for all squares in its domain (PLAN STEP)
if it contains an agent
execute its behaviour
[for all agents it creates
if its new position is in its domain
put it in local requested created agent structure
mark new position
else
put it in global requested created agents structure
for all agents it kills
plan it to be killed]
if it moves
if its new position is in its domain
mark new position
else
put it in global requested move agent structure
SYNC
for all global requested created agents (GLOBAL -> LOCAL CREATED AGENTS)
if it is in its domain
put it in local requested created agent structure
mark its position
for all global requested move agents (GLOBAL -> LOCAL REQUESTED MOVE AGENTS)
if its new position is in its domain
mark the new position
for all (local) conflicts (SPATIAL CONFLICT STEP)
if created agents exist
choose randomly the winner among them
create the winner
else if high priority agents exist // only move agents
choose randomly the winner among them
else // normal priority only
choose randomly the winner among them
for all loser agents
if it was to be created
refuse its creation
else // it wanted to move
change its action into stay
for all local requested created agents not in conflict (CREATE LOCAL REQUESTED AGENTS)
create them
SYNC
for all agents whose new position is in its domain (ACTION STEP)
if agent was to be killed
kill it
else
execute its action
SYNC
if thid==0 (USER STEP)
execute user function
if it returns STOP
mark end simulation
cycle = cycle + 1
SYNC
save system if needed (in parallel) (PARALLEL SAVING STEP)
if not end simulation
recalculate potential fields if needed (ENVIRONMENT PERCEPT UPDATE STEP)
SYNC
clear all vectors
until end simulation

Figure 9.2: Execution flow of each processor.
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Afterwards, the same processing is done for requested move agents. Now
all the move agents are also in local requested move agent structures.

The next step solves the spatial conflicts among agents. The conflicts
can be solved separately by each processor, since any conflict involves agents
whose new position is identical, hence processed by a same processor. For any
conflict case, in order, a random winner is chosen among the created agents
(the priority is not used in this case). If there are no requested created agents
in the conflict, a random winner is chosen among agents with high priority,
if there are any, elsewhere among all the agents. Winner agents are created,
while for loser agents, their creation is refused or their action is changed into
stay (does nothing).

The next step creates all the agents not in conflict in the local requested
created agent structure. Now, all the requested created agents appear in the
agent structure.

After a synchronisation among all the processors, all the agents carry out
their action. Also the requested killed agents are killed in this step.

After another synchronisation among all the processors, one thread exe-
cutes the user function. If it returns STOP, then the simulation will end. The
cycle number is incremented.

After another synchronisation among all the processors, the state of all
the system is saved if it has been specified. The saving is done in this step
because it is done in parallel by all the processors, while the previous step is
executed in sequential. The files saved are the general file, saved by one of
the processors, and the local files, one for each processor, saved in parallel
by all the processors.

The last step updates if needed the percept data, in our case the potential
fields. Also, all the vectors with cycle-life information are cleared.

These steps are executed repeatedly until the end of the simulation.

9.2.3 Randommness and reproducibility of simulations

Our tool provides fully reproducibility of simulations when using random
numbers and different number of processors. Randomness refers to that all
the functions involving randomness (see below) use random numbers. This
means equal probability® for all the choices, which is given by the simultane-
ity of actions. Reproducibility refers to that the simulation generates a fully
reproducible simulation: the results of simulation are the same (provided
that the initial conditions are the same).

Randomness appears in several parts of the model: put randomly agents
in the environment, random move of agents (among all neighbour squares or
among some of them), take/drop a random number of objects in resources,
random choice of the winner in conflicts, creation of an agent in a random

SWith respect to the quality of random numbers provided by the operating system
libraries.
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square of the environment, or simply get a random number for an agent.
Generally, it involves no agent, one agent or several agents.

We need reproducible results for different number of processors. There-
fore, in our implementation we cannot count on the order of elements in
global tables, since it depends on number and speed of processors. We can
neither count on the order of elements in local tables, since it changes for
different number of processors. On the contrary, the behaviour of each agent
is always processed sequentially.

Our method is to use parallel random number generators and several
seeds (section 4.5). We use a global seed and numerous temporary seeds.
The successfulness of our method is given by the following very important
property: For an agent, even if we choose seeds by simple determinist formu-
lae (e.g. the seed is the current number of cycle), as long as a same random
number generator is used, the results are guaranteed to be random and re-
producible. Therefore, for several agents we need to use different seeds.

The user specifies only one seed for the simulation, the global seed. It is
used to allow diversity within a given simulation parameter space, and will
be used every time a random number is generated. All the temporary seeds
are generated from this seed.

The seeds are needed in three cases, depending on the number of agents
involved:

e No agent is involved. This case appears only during the initialisation,
where a specified number of agents, resources or obstacles are put ran-
domly in the environment. This is executed in sequential, hence we
can use safely the global seed.

e One agent is involved. This case appears when an agent does a random
move, creates an agent somewhere in the environment or needs a ran-
dom number. We use in this case a temporary seed generated by a ded-
icated function, as explained below. Each processor has one temporary
seed for these cases. This seed is initialised for each agent immediately
before executing the behaviour of the agent. It may be used several
times during the execution of the behaviour function, if the agent does
several times calls to functions involving random numbers. Since dur-
ing a cycle an agent is processed sequentially, the reproducibility is
thus guaranteed.

e Several agents are involved. This case appears in conflicts. We use
again temporary seeds, created during simulation. Here, they are used
only once. For each conflict we do the following processing. Firstly, we
construct the table with all the agents involved. Then, as the order
of elements in this table is not reproducible (some data may come
from global vectors), we sort its elements in ascending order of agent’s
identifier (for move agents) or agent parent’s identifier (for agents to
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be created, which may come from global tables). Any such identifier
is unique and reproducible®, therefore the order is now guaranteed.
Finally, we choose the winner by a random number generator which
uses a temporary seed generated by the same dedicated function, as
explained in the next paragraph.

Identical seeds lead to generation of identical random numbers. There-
fore, the seeds generated by the function dedicated to conflict cases must have
four properties: parametrisable, spatial, temporal and “spatio-temporal”.
Parametrisable means it depends on the initial seed given by the program-
mer, in order to allow diversity (as described above). Spatial means it de-
pends on the position of the conflict (the position is unique to each conflict),
otherwise during a cycle all the conflicts with the same number of agents
involved would lead to the same rank for the winner. Temporal means that
it depends on the cycle number, otherwise all the conflicts appearing in the
same position during the simulation would lead to the same rank for the
winner. “Spatio-temporal” means that it does not give the same result in
different cycle and position, as exemplified below. In our implementation
this dedicated function is:
gseed+7-cycle+y-dimx+x,
where (y, x) is the position of the conflict and dimx is the dimension of
the environment on the x-axis. The multiplication of the cycle with 7, a
prime number, tries to avoid generation of the same result for different cy-
cles (the “spatio-temporal” property above). For instance, a function such as
cycle+x would give the same result during a given cycle (cycle+x) and the
next cycle if the agent moves at the left (cycle+1+x—1), which is avoided
by introducing the multiplication with 7.

Finally, it is worthwhile to notice that our method of using temporary
seeds avoids any memory overheads.

9.3 Compiling information

9.3.1 Compiling the library

In order to compile the ParSSAP library you have to edit the Makefile file
and do the following changes appropriate for your system: the compiler to
use, the file appropriate for your multi-threading library (pthreads or Irix
threads), and a flag corresponding to run-time checks.

5Any information which is unique to the agent and reproducible might be used here,
another example is their position in the environment. Note that even if several agents have
the same parent’s identifier, results are still reproducible, since their creation is requested
by the same processor.
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9.3.2 Compiling an application

In order to write an application you have to include the agents.h file of
the library in your appropriate sources and link with the agents library (you
can do this with the -lagents flag during the link stage). Depending on
your system, you may also need to link with the multi-threading library (for
instance with -1pthread on glibc-based systems, such as GNU /Linux).

An example of execution line is the following (the order of the parameters
in this line is important!):
gcc myappli.c -lagents -lpthread

9.4 Execution of a simulation from the user point
of view

Any application using ParSSAP library must call in order the following func-
tions provided by the library:

e pmInitSystem, which allocates and initialises (with default values) in-
ternal data of the library.

e Fither pmCreateEnv, which creates the environment, or pmLoadSystem,
which creates the environment and optionally initialises the system.

e Optionally, miscellaneous functions, such as set the number of threads
and put agents or resources in the environment. Note that, during this
initialisation, some steps cannot be redone, for example a resource or
an agent cannot be removed from the environment once it was put in.

e pmRunSystem, which starts the simulation.
e pmEndSystem, which deallocates the internal data of the library.

This sequence can be repeated indefinitely.
The following two sections describe two applications based on this se-
quence of function calls.

9.5 “Hello world” example

This section introduces you in the philosophy of the library by writing a very
simple application: print a “Hello world” message to the screen. For that, we
will create a MAS consisting of an environment containing one agent. The
agent simply prints the message above. The full listing will be presented at
the end of the section.
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9.5.1 Implementation and explanations

First of all, in order to use the ParSSAP library we have to include the header
agents.h and to initialise it before using it:

2 #include "agents.h"

27 pmInitSystem (0);

The parameter of the pmInitSystem function is the global seed, as ex-
plained in section 9.2.3. Also, notice that at the end of the simulation we
have also to destroy the data used by the library:

31 pmEndSystem ();

Now, once the library is initialised, we can write the code for our simu-
lation. Firstly, we create a 50 x 50 environment:

28 pmCreateEnv (50, 50, TORUS);

And we populate it with an agent:
29 pmPutAgent (0, 0, 1, NORM _PR, 0, NULL, 0, hello);

Notice that every function provided by ParSSAP starts with pm in order
to avoid conflicts with other functions of the system. The environment has
type TORUS, which means the left and right edges are glued, and also the top
and bottom edges.

The creation of the agent needs several parameters. In order, we specify:
its coordinates in the environment ((0, 0)), its slowness (1 means it moves ev-
ery cycle of simulation), its priority (used in spatial conflicts between agents;
here, we give it normal priority), its maximum load of miscellaneous objects
(0, unused in this example), and the function which gives its behaviour. This
function, called hello, is the following:

// behaviour function of the agent

5
6 // print the message "Hello world"
7 pmAction_t hello (void *mem)
8
9

{

pmAction_t act;
10 act.type = MOVERANDOM,;
11 printf ("Hello_world'\n");
12 return act;

13}

This function, called at the beginning of every cycle of simulation, has a
precise header: it has one parameter (a pointer to the memory of the agent,
which is unused in this example), and returns an action which corresponds
to the desired action of the agent during the current cycle. The agent of this
example simply does a random move and prints the “Hello world!” message.

We have now all the information about the world and its agent. It re-
mains to start the simulation:

30 pmRunSystem (runfunc);
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For flexibility, a parameter is given to pmRunSystem, which is a function
to be called at the end of every cycle. We use it to specify when we want to
end the simulation, in our case immediately (after the first cycle):

16 // called at the end of every cycle of simulation

17 // stop the simulation after one cycle
18 int runfunc (void)

19 {
20 return STOP;
21}

The full listing of the application is the following:

#include <stdio.h>
#include "agents.h"

// behaviour function of the agent
// print the message "Hello world"
pmAction_t hello (void *mem)
{
pmAction_t act;
act.type = MOVERANDOM;
printf ("Hello_world!\n");
return act;

}
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// called at the end of every cycle of simulation
// stop the simulation after one cycle
int runfunc (void)

{
return STOP;

}
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// the main function — beginning of the program
int main (void)

NN N
N O w;

pmInitSystem (0);

pmCreateEnv (50, 50, TORUS);

pmPutAgent (0, 0, 1, NORM_PR, 0, NULL, 0, hello);
pmRunSystem (runfunc);

pmEndSystem ();

return 0;

}

The execution output is presented in figure 9.3 on the following page.

W W W W N N
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9.5.2 Richer “Hello world”

Suppose we want to run the simulation for more cycles, say 10. Our agent
will then print 10 times the message, once per cycle. The only modification
needed is the function runfunc, which becomes:
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N eminescut™F goc —Wall helloworld,c -labc/agents -lagents -Labc/agents -lpthread
i eminescut™f L Aa.out
" Hella world!

| eminescu:™$ |

Figure 9.3: Execution output of the “Hello world” program.

int runfunc (void)

if (pmgGetCycle() >= 10)
return STOP;
else
return CONT;
}

It is possible to give agents to print also the number of the current cycle.
The only function that changes is hello, which becomes:

pmAction_t hello (void *mem)

{

pmAction_t act;

act.type = MOVERANDOV,;

printf ("Hello_world!__The_current_cycle_is:_%d\n", pmgGetCycle());
return act;

}

Notice that the pmgGetCycle function starts with pmg, with g letter standing
for global. The user is thus noticed by the fact that this function uses global
information, and not local one, as used by a pure MAS.

Finally, if we want to have several agents in the world, say 15, we can
use the function pmPutRandomAgents instead of pmPutAgent above:
pmPutRandomAgents (15, 1, NORM PR, 0, NULL, 0, hello);

The parameters are the same, except that instead of the position we specify
the number of agents desired.

9.6 “Diamond collector”, a more complex example

This section presents all the steps to implement and execute a simple pro-
gram, the “Diamond collector”, using our library. The full listing will be
shown in figure 9.4 on page 232.

9.6.1 Specifications

Here is the application to be written:

"However, some people can object against this afirmation by saying that every agent
has a local notion of time.
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Suppose a 2D maze with 50x100 squares, containing 50 squares
already occupied (inaccessible obstacles). There are 15 fixed di-
amonds and 5 mobile workers. The goal of the workers is to col-
lect all the diamonds. Any diamond/worker occupies one square.
During every cycle of simulation, a worker has two choices: either
collect a diamond if the square where it is contains a diamond,
or move into one of the four neighbouring squares. We have to
write a simulator of such a system, when the workers have totally
random movement. The simulation ends after a specified num-
ber of cycles (say 1000), and we are interested by the number of
diamonds collected during this time.

9.6.2 Implementation and explanations

Several steps can be seen in this example. First of all, as seen above, in
order to use the ParSSAP library we have to include the header agents.h, to
initialise it (the parameter is the global seed) before using it, and to destroy
the data it uses at the end of the simulation:

2 #include "agents.h"
42 pmlInitSystem (0);

50 pmEndSystem ();

Optionally, we can specify the number of threads used, which otherwise
defaults to 1:

43 pmSetThreadsNo (4);

Now, once the library is initialised, we can write the code for our simula-
tion. Firstly, there are the parameters of the environment: a 2D maze with
50x100 squares, 50 obstacles, 15 diamonds and 5 workers. To have a more
readable program, we prefer to define these parameters:

// parameters of the simulation

#define DIMY 50 // world dimension (y)
#define DIMX 100 // world dimension (z)
#define OBSTACLES 50 // number of obstacles
F#define DIAMONDS 15 // number of diamonds
#define WORKERS 5 // number of workers

© 00 N O o s

Once defined, we create the world and populate it with objects:

44 pmCreateEnv (DIMY, DIMX, EDGES);
45 pmPutRandomObstacles (OBSTACLES);
46 pmPutRandomResources (DIAMONDS; 0, 1, 0, NULL);

a7 pmPutRandomAgents (WORKERS, 1, NORM _PR, 100, NULL, 0, take or_random);

The environment has type EDGES, which means obstacles are added au-
tomatically at the borders of the environment (we have a closed world).
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In order to be more flexible, the library allows the creation of resources
containing a certain load. We think thus of diamonds as resources of load 1
(only 1 diamond into every resource). Their creation needs a few parameters.
The first is the number of diamonds to be created, and the second is their
type (the library allows several types of objects to be defined). The next pa-
rameter specifies the initial load of the resource. We want only one diamond
in them. The last two parameters are its initial potential® and the function
giving its potential as a function of its load. They are used in more complex
simulations, for example in the case where diamonds propagate potential
fields to attract workers.

The creation of the workers needs several parameters. In order, we spec-
ify: the number of workers, their slowness (1 means they move at every
cycle of simulation), their priority (used in spatial conflicts between work-
ers; here, all the workers have the same normal priority), their maximum
load of diamonds, their memory (data address and data size, ununsed in
this simple example) and the function giving their behaviour. This func-
tion, called take_or_random, will be written in the following. Here is its
implementation:

13 // behaviour function of the workers

14 // take a diamond if possible , else move randomly
15 pmAction_t take or_ random (void s#mem)

16 {

17 pmAction_t act;

18 // if found a resource with a diamond, take it

19 if ((pmlmGetSquareType() == RESSQ) && (pmlmGetSquareResLoad() == 1)){
20 act.type = TAKE;

21 act.param = 1;

22 lelse // else do random movement

23 act.type = MOVERANDOM,;

24 return act;

25}

The implementation of this example simply checks if there is a source in
its square and if it contains a diamond. In this case, it takes the diamond,
else it does a random movement.

We have now all the information about the world and its workers. It
remains to start the simulation:

48 pmRunSystem (runfunc);

The function runfunc allows us to specify when we want to end the
simulation, i.e. when the desired number of cycles is reached:

28 // called at the end of every cycle of simulation
20 // stop the simulation after the specified number of cycles
30 int runfunc (void)

31 {
32 if (pmgGetCycle() >= CYCLES) // end the simulation, if maz count reached

8See appendix A.4 for the reason of why we need to specify also the initial potential.
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33 return STOP;
34 else

35 return CONT;
36 }

The constant CYCLES needs to have already the value of the desired num-
ber of cycles, 1000:

10 #define CYCLES 1000 // number of cycles

The full listing of the application is shown in figure 9.4 on the following
page.

9.7 “Carrier robots”, an example with potential fields

This section presents an application using the ParSSAP library, mainly in
order to illustrate environment configuration, user function and wave prop-
agation use. More information about the functions provided by the library
are given in the reference (appendix A). Suppose the following application:

There are 1024 robots in a 256 x 256 world. The world is a
discrete torus (the right and left edges are glued, the same for
bottom and top edges) and contains resources of ore (mines) and
resources which catch the ore (factories). Agents’ goal is to carry
all the ore from mines to factories, using the potential spread by
resources and avoiding the obstacles. They can move one square
in one of the four adjacent squares, or take or drop several units
of ore if they are in a mine, respectively in a factory. Many
behaviours for these agents exist, and we are interested by the
emergence of a collective behaviour for this society of agents. We
need also a statistic file providing the state of the agents during
each cycle.

In order to implement such an application we will use a few development
steps, described in the following.

9.7.1 System initialisation

This section presents an initialisation by code:

7 #define MINE 0
8 F#define FACTORY 99

93 pmlInitSystem (0); // library initialisation , seed=0

94 pmSetThreadsNo (4); // 4 threads for the simulation

95

96 pmCreateEnv(256, 256, TORUS);

o7 pmPutRandomObstacles (4000);

98 pmPutRandomResources (2000, MINE, 100, 15, 12pmine);

99 pmPutRandomResources (2000, FACTORY, 0, 15, 12pfact);

100 pmPutRandomAgents (1024, 1, HIGH PR, 5, NULL, 0, behaviour);
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#include <stdio.h>
#include "agents.h"

// parameters of the simulation

#define DIMY 50 // world dimension (y)
#define DIMX 100 // world dimension (z)
#define OBSTACLES 50 // number of obstacles
#define DIAMONDS 15 // number of diamonds
#define WORKERS 5 // number of workers
#define CYCLES 1000 // number of cycles

// behaviour function of the workers
// take a diamond if possible, else move randomly
pmAction_t take or random (void xmem)
{
pmAction_t act;
// if found a resource with a diamond, take it
if ((pmlmGetSquareType() == RESSQ) && (pmlmGetSquareResLoad() == 1)){
act.type = TAKE;
act.param = 1;
lelse // else do random movement
act.type = MOVERANDOM,;
return act;

}

// called at the end of every cycle of simulation
// stop the simulation after the specified number of cycles
int runfunc (void)

if (pmgGetCycle() >= CYCLES) // end the simulation, if maz count reached
return STOP;

else
return CONT;

// the main function — beginning of the program
int main (void)
{
pmlInitSystem (0);
pmSetThreadsNo (4);
pmCreateEnv (DIMY, DIMX, EDGES);
pmPutRandomObstacles (OBSTACLES);
pmPutRandomResources (DIAMONDS, 0, 1, 0, NULL);
pmPutRandomAgents (WORKERS, 1, NORM PR, 100, NULL, 0, take or random);
pmRunSystem (runfunc);
printf ("Number_of_diamonds_collected_is_%d\n", pmgGetResTotalLoad (0));
pmEndSystem ();
return 0;

Figure 9.4: Full listing of the “Diamond collector” program.
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Firstly, the call to pmInitSystem initialises the library, giving 0 as the global
seed. In the next line the number of threads (4) used for the simulation is
given. By default, the agents can move only in the four squares in its close
proximity, therefore no function call is needed. The statistic file also is
initialised by default.

The world is a 256 x 256 toroidal environment, with 4000 obstacles (6% of
the environment) at random positions. There are 2000 mines, with initial
potential of 15, initial load of 100 and 12pmine as function of potential
evolution. There are also 2000 factories, with initial potential of 15, initial
load of 0 and 12pmine as function of potential evolution. All the mines
and the resources are put at random positions in the environment. Finally,
there are 1024 agents with the same priority at random positions, carrying
maximum 5 units of ore and with behaviour as behaviour function. They
do not have internal memory.

9.7.2 User function of end of cycle

The user function is called at the end of each cycle and is executed sequen-
tially. This function will be used to decide the end of the application (by
returning STOP) and to save information about the agents in the statistic file
(by calling the saveStat function):

82 // callback function called at the end of each cycle
83 static int userfunction (void)

85 pmSaveStat (); // save statistic information about the agents
86 if (pmgGetCycle() < 1000) // 0..1000, so 1001 cycles for the simulation
87 return CONT;

88 return STOP;

8}

9.7.3 Functions related to resources

Suppose that the potential propagated by mines is a function of their load,
while the potential of factories is constant. Thus two different functions are
needed. Figure 9.5 on the next page presents the source codes and the plots
of the two functions chosen: a linear function for mines and a constant one
for factories.

9.7.4 Agent behaviour function

The behaviour of agents is the most difficult part of the application. Suppose
the agents have the following behaviour (in pseudo-code):

1 if it is not full and it is into a non—empty mine, then
2 TAKE

3 return

4 if it is not empty and it is into a factory, then
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// load— >potential function for mines (linear)
static int 12pmine (int load, int initload , int initpot)

{

return load # initpot / initload ;

}

// load— >potential function for factories (constant)
static int 12pfact (int load, int initload , int initpot)

{

return initpot;

}
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Figure 9.5: Resource functions in carrier robots simulation: function plots

and corresponding ParSSAP code.
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10
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14

DROP
return
if its load is 0, then
use mine potential
else
use factory potential
if there is a square with the potential different than 0, then
choose it
else
do a random movement

As noticed, the agents do not need internal memory, but use potential

fields. This can be implemented easily by using some percept functions
provided by the ParSSAP library. The complete implementation of this be-
haviour in the ParSSAP library is presented in figure 9.6 on the facing page.

9.7.5 Simulation

The simulation is started by the call to function runSystem, giving it the
above user function as parameter. When this function returns, a call to the

endSystem function is necessary:

102
103

pmRunSystem (userfunction);
pmEndSystem ();
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5 #define DIRNB 4 // the connectivity

10 // agent’ behaviour function, following increasing potentials
11 static pmAction t behaviour (void *mem)

12 {

13 int dir, d;

14 int load, maxload;

15 int odourtype, odour, maxodour;
16 pmAction_t act;

18 load = pmlmGetAgentLoad ();
19 maxload = pmlmGetAgentMaxload ();

21 // if it is not full and it is into a non—empty mine, then TAKE
22 if ((load != maxload) && (pmlmGetSquareType() == RESSQ)

23 && (pmlmGetSquareResType() == MINE) && (pmlmGetSquareResLoad() != 0)){
24 int resload = pmlmGetSquareResLoad();

25 act.type = TAKE;

26 act.param = (maxload—load < resload) ? maxload—load : resload;

27 return act;

28 }

30 // if it is not empty and it is into a factory, then DROP
31 if ((load > 0) && (pmlmGetSquareType() == RESSQ)

32 && (pmlmGetSquareResType() == FACTORY)){

33 act.type = DROP;

34 act.param = load;

35 return act;

36 }

37

38 // if its load is 0, then search for mines, else for factories
39 odourtype = (load == 0) ? MINE : FACTORY;

40

41 // try potential first
42 dir = pmtmRand() % DIRNB;

43 // get the maz odour

44 maxodour = 0;

45 for (d=0 ; d<DIRNB ; d++){

16 dir = (dir + 1) % DIRNB;

a7 odour = pmldGetSquarePotential (odourtype, dir); // if can move, get the odour
48 if (odour > maxodour)

49 maxodour = odour;

50 }

51 // found an odour

52 if (maxodour != 0){

53 for (d=0 ; d<DIRNB ; d++){

54 dir = (dir + 1) % DIRNB;

55 if (pmtdCanMove(dir) && (pmldGetSquarePotential(odourtype, dir) == maxodour)){
56 act.type = MOVE; // action type
57 act.param = dir; // direction

58 return act;

59 }

60 }

61 act.type = STAY;

62 return act;

63 }

64

65 // no odour found
66 act.type = MOVERANDOM,;
67 return act;

68 }

Figure 9.6: Agent behaviour implementation in the carrier robots simulation,
using potential fields.
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9.8 Generic design of an application

As described above, in order to write an application using the ParSSAP library
you have to follow these steps:

1. Write code for the initialisation of the environment and of the agents
and call the function which starts the simulation (pmRunSystem). The
initialisation can also be entirely made by files, see appendix A.

2. Write the user-function, which is called by the library at the end of
every cycle (as shown in the “Hello world” example above). It allows
to take control over the application at the end of every cycle. It can
be used for example to end the simulation, to print or write files with
information about the status of the simulation, such as miscellaneous
statistics. For simplicity of the user, this function is executed in se-
quential.

3. Optionally, for every type of resource (the diamonds in the example
above), write the function allowing to compute its potential based on
its load. During the creation of the resources, you can specify that
you do not need such functions by passing NULL as parameter. If you
specify such functions, the system will calculate regularly the potential
field of the resources concerned. The agents can use then these fields
to guide themselves to resources.

4. Write the behaviour function for every agent. This function is called
every cycle (if the slowness of the agent is 1) and specifies the action
that the agent wants to do during that cycle. Notice that this action
can be changed to nothing (i.e. the agent simply stays) if it is involved
in a spatial conflict with other agents and it loses. The priority in such
conflicts can be controlled by a parameter at the agent creation.

9.9 Conclusions

In this chapter we have presented our library and our solution to several
problems, expecially actions’ simultaneity, parallel execution, randomness
and reproducibility. It consists mainly of breaking agents’ actions in three
steps: plan, conflict resolution and execution steps. We have also presented
how the global data access has been dealt in a parallel execution.

We have explained the use of our library by an in-depth description of a
few applications using the library. In the next chapter we will present more
complex applications, involving more advanced features of the library.



Chapter 10

Domains of application and
global performance

We present in this chapter two applications. The first one is the well-known
Conway’s game of life, where cells are static and consists basically of creation
and destruction of cells. The second one is a multi-consumer simulator, where
people basically move between different stores, where they buy goods, and
their home, where they bring their goods.

10.1 Conway’s game of life

Description

The Game of life! is a two-dimensional cellular automaton [79] governed by a
simple set of birth, death and survival rules. It was invented in 1970 by John
Conway and popularised by Martin Gardner [39]. Each of the cells in the
2D universe can be in one of two states: alive or dead. Beginning with any
given initial pattern of live cells, Conway’s rules can be employed in order
to determine the behaviour of the universe over any number of generations
(time steps, cycles). Whether a cell survives, dies or comes into being is
determined by the number of live neighbours the cell has. Each cell has
eight possible neighbours (our 8-connectivity). The rules for survival, death
and birth are as follows:

e Survival: if a live cell has two or three live neighbours, then it survives.

e Death: if alive cell has less than two or more than three live neighbours,
then it dies.

e Birth: if a dead cell has exactly three live neighbours, it is born.

!This description is adapted from the Web page “The Game of Life”. http://www.
reed.edu/alife/classes/models/life/gameoflife.html.

237
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When these rules are employed to any given initial pattern of live cells, the
results can be startling. Complex behaviour consisting of various life forms,
composed of several or more living cells, often occurs [39].

Implementation models

In our library, Conway’s universe can be modelled in two ways. For both
of them, an 8-connectivity is assumed. The first model is to put an agen-
t/resource in each cell, and execute their behaviour each cycle. One possible
method is to put an agent and a resource (with load equal to 1) in each cell.
The potential propagation is not used. Agents do not move, and they can
take or drop the unit of the resource where they are. A live cell is represented
by a loaded agent (or empty resource), and inversely. An interesting model,
with several states for a cell (not only dead or alive), is obtained if we use
greater potential for resources.

Another method is to have a resource in each cell. All the resources
have a potential of 0 or 1, so that the potential fields do not overlap and
the potential propagation is not needed. A live cell is represented by a
resource with potential of 1, while a dead cell by a resource with potential
of 0. The resource function is called every cycle and, based on the potentials
of its neighbouring cells, each resource can compute its correct potential.
An interesting model, with larger neighbourhoods, is obtained when the
potential of resources can be greater than 1, with possibly different types of
potential.

We can imagine yet another method, with only agents, one per cell. The
communication among agents can be done through their memory, which we
deliberately make shared to all agents (this can be done by giving the same
memory address to all the agents’ memory).

All these methods can be parallelised efficiently, since each cell do mainly
the same processing and hence the processor load is approximately balanced.
A drawback of these methods when implemented with our library is that they
are not natural models, hence a specific external program has to be used to
show the results of simulation.

By contrast, the second model is to have agents only in live cells, and
dynamically create/destroy agents. The advantage compared to the first
model is that the execution time is smaller, since the number of agents is
smaller. As an example, for a 512 x 512 environment with few live cells, we
may have only a few agents instead of 256 thousands agents. This model
and its implementation are described in the next section.

As shown above, the library is sufficiently rich to allow several models to
be used for an application such as Conway’s universe.



10.1. CONWAY’S GAME OF LIFE 239

1 #agents

2 # Y z slownes priorit load mazload funcInd
3 A 20 22 1 0 0 0 0

4 A 21 20 1 0 0 0 0

5 A 21 21 1 0 0 0 0

6 A 21 22 1 0 0 0 0

7 A 22 21 1 0 0 0 0

Figure 10.1: Methuselah pattern and the corresponding data file.

Implementation chosen

Based on the fact that cells born only near live cells, we can use the natural
model, where a live cell is represented by an agent, and a dead cell by an
empty square. Agents will be dynamically created and destroyed. This
model also allows us to use the already written external program to visualise
the agents’ position for each cycle of simulation.

The initial state of the environment contains an agent for each live cell in
the initial pattern. Figure 10.1 presents an initial pattern known as Methuse-
lah? and the corresponding data file, called conway-methuselah, used in our
tool (lines starting with # character are comments).

The initialisation of the simulation can be done in code or in data file. We
have chosen the latter, which is simpler. Here is the file, called conway.ini:

#number of threads used
nbThreads 1

#number of lines of the environment
dimy 512

#number of columns of the environment
dimx 512

© 00 9 & oA W N =

#type of the environment: 0=TORUS, 1=EDGES
envtype 0

= e
N o= O

#connectivity
nbdirs 8

e
(2B )

#local files
17 file 0 0 methuselah

We have specified the number of threads used, the dimension of the

2More precisely, “R-pentomino” [39]. A pattern which stabilises after a large number
of cycles is called Methuselah, and there are several such patterns.
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environment, its type, the connectivity and finally the file name with the
initial state of the environment.

It remains to code the cells’ behaviour. The processing done by each live
cell (agent) is divided in two parts. The first part is to count the number of
neighbours and, if appropriate, to die the next cycle. The second part is to
check each of its neighbours and, for each dead cell, to check if it must be
born or not. With such a behaviour, cells which will be born are processed
by several neighbouring live cells. The library anyway creates one and only
one agent, so the simulation is still correct. However, in order to program
properly and to avoid multiple births, we have added code so that any born
cell be created by only one live cell, namely the first in its neighbours in the
order of directions checked (from UP to DOR). The full code in C language
is presented in figure 10.2 on the facing page. Snapshots of the external
program for a smaller universe are given in figure 10.3 on page 242.

A drawback of this implementation is that its parallel performance is
satisfactory only in some cases. In fact, for a life form of a few and contiguous
live cells, it is highly difficult to obtain an efficient parallelisation. The reason
is that modern MIMD parallel machines are not appropriate for fine-grained
parallelism, due to memory constraints. Nevertheless, if the use of our library
does not allow a gain in parallel execution speed, it has allowed a gain in
development time: the main thing written has been the cells’ behaviour.

Possible extensions to Conway’s game of life

Compared to a specific implementation, our implementation of Conway’s
universe allows an easy implementation of some exotic features. Such a
feature is the use of a toroidal environment. A toroidal environment acts
like an infinite environment for some patterns, and introduces exotic issues
for others. Also, test agents with different slownesses, i.e. cells’ computation
is done regularly, but not every cycle.

A special case appears when obstacles are used in Conway’s universe.
New rules, taking into account obstacles, need to be written. New interesting
patterns might appear in this case, for example a life form which transforms
into another life form when it meets an obstacle.

10.2 Multi-consumer simulator

The second application we present is a multi-consumer simulator. Several
people live in a town. The town contains homes where people live, shops
where people buy from, and uninteresting buildings (buildings for short)
which prevent people to enter them. The goal of simulation is to study the
efficiency of these people to buy goods and bring them at their home, i.e.
how fast they do it.
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31

#include <stdlib.h>
#include "agents.h"

#define CYCLES 1024 // mazimum number of cycles allowed

// cells ’ behaviour function
static pmAction _t cell (void *mem)
{
pmAction_t act;
int dir, neighbours = 0; // number of neighbour cells alive
for (dir=UP ; dir<=DOR ; dir++)
if (pmldGetSquareState (dir) == OCCUP) // found a live cell
neighbours ++;
else{ // unoccupied cell => try to check if it will be born
int nbdir, nbneighbours = 0;
for (nbdir=UP ; nbdir<=DOR ; nbdir++){
int yrel = pmtDir2y (dir) + pmtDir2y (nbdir);
int xrel = pmtDir2x (dir) + pmtDir2x (nbdir);
if (pmlrGetSquareState (yrel, xrel) == OCCUP){
if ((nbneighbours == 0) && ((yrel != 0) || (xrel != 0)))
break; // cell processed by another live cell
nbneighbours +-+;

}

}
if (nbneighbours == 3) // this cell will be born
pmldCreateAgent (dir, 1, NORM PR, 0, NULL, 0, cell);

if ((neighbours |= 2) && (neighbours != 3)) // the cell will die
pmlmKillAgent ();

act.type = STAY; // cells do not move

return act;

}

// function called at the end of each cycle, controlling the end of simulation
static int runfunc (void)

pmSaveChanges ();

if ((pmgGetCycle () >= CYCLES) || (pmgGetAgentNumber () == 0))
return STOP;

return CONT;

}

int main (void)

{
pmpfAgent af[] = {cell, NULL},
pmpfSource rf[]] = {NULL};
// init environment
pmInitSystem (0);
pmLoadSystem ("initial—state", af, rf);
// start simulation
pmRunSystem (runfunc);
pmEndSystem ();
return 0;

Figure 10.2: Full code of Conway’s game of life.
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(a) Methuselah initial pattern. (b) State of the world after cycle 44.

Figure 10.3: Snapshots of Conway’s game of life on a world of 50 x 50 with
a Methuselah as initial pattern.

Description of the town

In our simulations we have considered an edged environment for the town.
About the size, for our explanations we have used an environment of 25x25
squares. Such a small world allows us to better introduce the system princi-
ples. On the contrary, for performance measurements we have used a more
realistic case, an environment of 256x256 squares.

In this town we have created two regions: a region without buildings at
the periphery of the town, containing the homes where people live, and a
region with many buildings, in the centre of the town, where shops are. The
resulted town is depicted in figure 10.4 on the facing page, taken with the
external program.

The general file, called multi-consumer.ini, contains global information
about the simulation (figure 10.5 on the next page). It includes the local
file, called multi-consumer-town, containing the town configuration, i.e.
all the information about homes, shops and other buildings (figure 10.6 on
page 244).

Each shop contains 10 objects to be bought, simulated through a resource
load of 10. Their potential is constant, and the potential propagation can
be done only at the beginning of the simulation (figure 10.7 on page 245).

Description of the people

We have created three types of people:
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Figure 10.4: The town used in multi-consumer simulation, showing the pe-
riphery of the town with people homes (at the top), and the centre of the
town with several buildings and five shops (smaller than buildings in the
figure).

#number of threads used
nbThreads 1

#number of lines of the environment
dimy 25

#number of columns of the environment
dimx 25

© 00 N 3 s W N

-
o

#type of the environment: 0=TORUS, 1=EDGES
envtype 1

e
[SURE U

#connectivity
nbdirs 4

= e
[ NS

#local files
file 0 0 multi—consumer—town

-
=

Figure 10.5: System parameters file for multi-consumer simulation.
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Figure 10.6: Town configuration for multi-consumer simulation.
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23
24
25
26
27
28
29
30
31

33

// home potential spreading
static int home (int load, int initload , int initpot)

{
}

return initpot;

// shop potential spreading
static int shop (int load, int initload , int initpot)

{
}

return initpot; // return load * initpot / initload ;

pmSetResRefreshPeriod (0);

Figure 10.7: Resource functions for multi-consumer simulation.

1. Non-consumers, who walk throughout the town without any precise

direction and without buying (they have no money). We consider
them as children.

. Unexperimented and deterministic consumers, who go to all the shops

in a predefined order, buy from them and bring the goods at home. In
order to find the way to shops and homes, they use the odour percept.
They cannot carry all the goods at once, so they need to go several
times to shops and to home. Once they have finished all the shops,
they rest at home indefinitely. We consider them as men.

. Experimented consumers, who act like the previous type except that

if they are involved in a traffic jam, then they try other shops. We
consider them as women.

The people behaviour and implementation are explained in detail in the
following.

No person has a global perception of the town. All of them use only local

perception and their memory in order to guide to shops or homes, and to
buy goods.

Each person has a memory containing the “odour” of his home, his dy-

namic goal, the next shop where he goes, the visited shops and the dogged-
ness (the latter is used only by women). This is implemented with the
following structure:

15
16
17
18
19
20
21

typedef struct{
int homeid; // its home: type of potential of its home
int goal ; // its goal: go to SHOP, HOME or REST
int shopid; // next shop to go (potential type: SHOPID..SHOPID+/)
int visited [5]; // bool giving shops already visited
int doggedness; // doggedness to a resource (0 = no doggedness)

}person_t;
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Firstly, we present a pseudo-code procedure, gotoshop, to go to a specific
resource, either home or shop, based on the potential perceived:

PROCEDURE gotoshop
get max potential among all neighbourhood squares
if max potential > 0
if there are unoccupied squares with max potential
choose randomly one of them
move inside
else
wait (stay)
else
move random

This procedure tries to go to a specific resource by finding the square with
maximum potential p > 0. If there is no such square, it moves randomly.
If there are such squares and all of them are occupied, it waits for them
to be freed. Elsewhere it chooses randomly one of the available squares
with maximum potential. Its implementation with our library is given in
figure 10.8 on the facing page.

Men’s behaviour is to go to resources in a predefined order, buy until
they become full and bring the goods to home. They repeat this behaviour
until they have bought from all the shops. Afterwards, they rest at home.
Here is their behaviour in pseudo-code:

MAN:
if goal==shop
if he is in the current shop
buy
mark shop as visited
next shop becomes current shop
if he is full or has finished all shops
goal=home
else
gotoshop current shop
else if goal==home
if he is at home
leave goods
if he has finished all shops
goal=rest
else
goal=shop
else
gotoshop home
else {goal==rest}
rest (do nothing)

Its implementation with our library is given in figure 10.9 on page 248.
Women’s behaviour is identical to that of men, except that they can

change the order of shops. In fact, if they have unsuccessfully tried a few

times to go towards a shop (they have been blocked in a traffic jam), then
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35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

/% follow potential of the resource of given type and return the new move:
* if it finds the way to the shop, then
*  find all the squares which bring it nearer to the shop
x if there are such squares and it can go inside one (they are not occupied)
* choose *randomlyx among them
*x  else wait for the other agents to free the place
* else move randomly
*/
static pmAction t gotoshop (int shopid)
{
int dir, maxpot = 0;
int move[4], count = 0;
pmAction_t act;
// get squares with maz potential where it can go
for (dir=0 ; dir<4 ; dir++){
int pot = pmldGetSquarePotential (shopid, dir);
if (maxpot < pot){ // found a shorter way to resource
maxpot = pot;
count = 0;

if ((maxpot <= pot) && pmtdCanMove (dir)) // unoccupied square => remember it
move[count+-+] = dir;

// do the appropriate action
if (maxpot > 0){ // found the way to the shop
if (count > 0){ // found unoccupied squares => choose one of them randomly
act.type = MOVE;
act.param = move[pmtmRand () % count];
lelse // traffic jam, all the squares are occupied => wait
act.type = STAY;
telse // did not find the way to the shop => move randomly
act.type = MOVERANDOM,;
return act;

Figure 10.8: Gotoshop procedure for multi-consumer simulation.
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// return 1 if end of shopping, else 0
static int endshopping (person t smem)
{

int id;

for (id=0; id<5 ; id++)

if (! mem—>visited[id])
return 0;
return 1;

}

// man’s behaviour function
// wvisit shops and persist to shopping order
static pmAction t man (void *xmemory)
{
pmAction_t act;
person_t *mem = (person_t *)memory;
if (mem—>goal == SHOP){ // go shopping
if ((pmlmGetSquareType () == RESSQ)
&& (pmlmGetSquareResType () == mem—>shopid)){ // found the right shop => do shopping
act.type = TAKE; // do shopping
act.param = 1;
mem— >visited[mem— >shopid — SHOPID] = 1; // has visited this shop
mem~—>shopid ++; // go to next shop (in order)
if ((pmlmGetAgentLoad () + act.param == pmlmGetAgentMaxload ())
|| endshopping (mem))
// s full or has finished the shopping => go home
mem—>goal = HOME;
lelse // go to the wanted shop
act = gotoshop (mem—>shopid);
}else if (mem—>goal == HOME){ // go home
if ((pmlmGetSquareType () == RESSQ)
&& (pmlmGetSquareResType () == mem—>homeid)){ // found the home => rest
act.type = DROP; // leave its goods at home
act.param = pmlmGetAgentLoad ();
if (endshopping (mem))
mem—>goal = REST; // and rest
else
mem—>goal = SHOP; // or continue shopping
lelse // go home
act = gotoshop (mem—>homeid);
telse // rest endlessly
act.type = STAY;
return act;

}

Figure 10.9: Man’s behaviour for multi-consumer simulation.
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13 #define MAXDOGGEDNESS 1 // maz doggedness

123 // woman’s behaviour function
124 // wvisit shops but do not persist in shopping order
125 static pmAction t woman (void *memory)

126 {

127 int id;

128 pmAction_t act;

129 person_t *mem = (person_ t %)memory;

130 act = man (memory); // the same as man, with one exception...
131 if ((mem—>goal == SHOP) && (act.type == STAY)){ // shopping; impatient, instead of long waiting, try another shop
132 if (mem—>doggedness == 0){ // do not stay

133 for (id=0 ; id<5 ; id++)

134 if (! mem—>visited[id] && (mem—>shopid != id+SHOPID)){ // try other shops
135 act = gotoshop (id+SHOPID);

136 if (act.type != STAY){ // no longer dogged

137 mem—>doggedness = MAXDOGGEDNESS;

138 break;

139 }

140 }

141 }else

142 mem—>doggedness ——;

143 }else

144 mem—>doggedness = MAXDOGGEDNESS;

145 return act;

46}

Figure 10.10: Woman’s behaviour for multi-consumer simulation.

they change their mind and they go towards another shop. Here is their
behaviour:

WOMAN :

man +

if goal==shop and involved twice in a traffic jam
try to go to another shop

Its implementation with our library is given in figure 10.10, and uses men’s
behaviour.

Children walk randomly throughout all the town, without buying any-
thing:
CHILD:
random movement

Their implementation with our library is very simple and is presented in
figure 10.11 on the next page.
People’s efficiency

In each test we have created 2 children, and 10 men and women. Men and
women may carry at most 3 objects at a time. We will vary the number
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80 // child’s behaviour function
81 static pmAction t child (void *memory)

82 {

83 pmAction_t act;

84 act.type = MOVERANDOM,;
85 return act;

86 }

Figure 10.11: Child’s behaviour for multi-consumer simulation.

of men/women from 0 to 10 and we will notice its influence on the people’s
efficiency. By their efficiency we mean the percentage of objects brought to
homes. Children do not buy anything, and a man/woman buys one object
from any of the shops. The 10 men and women will therefore need to bring
to homes 50 objects. As given above, the shops contain 50 objects, sufficient
for all the people.

The implementation with our library of the creation of people is given in
figure 10.12 on the facing page.

The end of simulation appears when all the goods have been brought
at homes (50 objects) or when a maximum number of cycles (250 in our
example, as shown below) has been reached. We also save people’s movement
during each cycle of simulation (figure 10.13 on page 252) in order to discover
possible problems.

For these parameters, the people block themselves in many cases. The
blocking appears in the centre of the town, because of the buildings (fig-
ure 10.14 on page 252). We present in the following table the total number
of goods brought to homes as a function of the number of men and women
(number of cycles needed also printed):

Women | Men Goods Cycles
0 10 | 50 (100%) 178
1 9 |50 (100%) 168
2 8 13 (26%) 251
3 7 25 (50%) 251
4 6 25 (50%) 251
5 5 0 (0%) 251
6 4 0 (0%) 251
7 3 0 (0%) 251
8 2 0 (0%) 251
9 1 0 (0%) 251
10 0 0 (0%) 251

From the results presented in this table, we notice the interest of having
agents able to adapt in unknown situations, since increasing the ratio of
agents able to change their goal has furnished better results. This is a basic
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161

int main (int argc, char xargv[])

{

person_t mem;
int i, homeid = 0, mennb = —1;
pmpfAgent af[] = {child, man, woman, NULL};
pmpfSource rf]| = {home, shop, NULL};
// parameter parsing
if (argec == 2)
mennb = atoi (argv[l]);
if ((mennb <0) || (mennb > 10)){
printf ("Usage:_ %s_menNumber(0..10)\n", argv[0]);
return 1;

printf ("%d_men, %d_women\n", mennb, 10—mennb);
// init environment
pmlInitSystem (0);
if (pmLoadSystem ("multi—consumer.ini", af, rf) != OK)
return 1;
pmSetResRefreshPeriod (0);
pmSetPropagationMethod (ITERATIVE ITERATIVE DOMAIN);
// agent initialisation
mem.goal = SHOP;
mem.shopid = SHOPID;
for (i=0; i<5; i++)
mem.visited[i] = 0;
// first child
mem.homeid = homeid;
homeid ++;
pmPutAgent (1, 1, 1, HIGH PR, 0, NULL, 0, child); // higher priority
// men
for (i=0 ; i<mennb ; i++){
mem.homeid = homeid;
pmPutAgent (1, 2xhomeid+1, 1, NORM _PR, 3, &mem, sizeof (mem), man);
homeid ++;
}
// women
mem.doggedness = MAXDOGGEDNESS;
for (i=mennb ; i<10 ; i++){
mem.homeid = homeid;
pmPutAgent (1, 2¥homeid+1, 1, NORM _PR, 3, &mem, sizeof (mem), woman);
homeid ++;
}
// second child
mem.homeid = homeid;
pmPutAgent (1, 2«homeid+1, 1, HIGH PR, 0, NULL, 0, child); // higher priority
// start simulation
pmRunSystem (runfunc);
pmEndSystem ();
return 0;

Figure 10.12: People’s creation for multi-consumer simulation.
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5 #define CYCLES 500 // mazimum number of cycles allowed

148 // function called at the end of each cycle, controlling the end of simulation
149 static int runfunc (void)

150 {

151 int i, homeload = 0;

152 // pmSaveChanges ();

153 for (i=0; i<12 ;i++)

154 homeload += pmgGetResTotalLoad (i);

155 // printf ("%2d ", homeload); fflush (stdout);

156 if ((homeload == 50) || (pmgGetCycle () >= CYCLES))

157 return STOP;
158 return CONT;
159}

Figure 10.13: User function for multi-consumer simulation, giving the end
of simulation.

(a) Position near
the beginning of
simulation  (cy-
cle 4), for 10 men
and no woman,
and for 5 men and
5 women.

(b) Final position
of a successful
simulation, for
10 men and no
woman (note the
two wandering
children).

(¢) Blocked po-
sition, for 5 men
and 5 women
(note the traffic
jam in the centre).

Figure 10.14: Snapshots of the multi-consumer simulator.
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Figure 10.15: Environment of the multi-consumer simulation used for per-

VA

formance measurement.

observation, but a real research about agent behaviour (outside the scope
of this thesis) could be done with our library in order to optimise such a
multi-agent system.

Execution performance of the application

We present a basic performance measurement of this application. In our
tests we have used a town discretised in 256 x 256 (i.e. 65536) squares. Due
to our horizontal decomposition in parallel, better parallel performance is
obtained when people and homes are in several domains. Therefore we have
rotated the world by 90 degrees. The simulation results do not change. The
residential region is at the left. The centre of the town is near the right, and
it has been heighten. Figure 10.15 presents this new town.

In this town we have put 655 people (1% of the total squares), 655 homes
(1% of the total squares), 163 shops (0.25% of the total squares) and 327 build-
ings (0.5% of the total squares). Among the people, 20% are men and
the other 80% are women. The potential field of any resource covers all
the environment. All the resources have constant potential (equal to 512),
hence we have done the potential propagation only at the beginning of
simulation. We have used the iterative method of potential propagation
(ITERATIVE_ITERATIVE_DOMAIN). People and homes have been randomly
put in the residential region, each person in his own home. Also, shops and
buildings have been randomly put in the centre of the town. We do not have
used configuration files. The number of source code lines is 240.

We have executed the simulation for 400 cycles, less than the number
of cycles needed by agents to carry all the goods in their homes. On the
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Figure 10.16: Execution time of the multi-consumer simulation, showing
decreasing execution time up to 12 processors (DSM Origin 2000).

contrary, on the small size problem 250 cycles were sufficient, because agents
could cross its entire world in a few cycles.

The system information is presented in section 7.10.1 on page 135. We
have removed the I/O part of the application (save statistic file). We have
measured the wall-clock time of the whole application for a number of pro-
cessors ranging from 1 to 16. The tool used for measurement is the time
command available on Unix machines.

The execution of the application on the DSM Origin 2000 machine gives
the following results. Figure 10.16 presents the execution time. We notice
the smallest execution time for 12 processors. The speed-up is presented
in figure 10.17. It increases slowly up to 12 processors. The efficiency is
presented in figure 10.18.

We have also executed it on the SMP Sun 450 machine with 4 proces-
sors. The comparative execution time on both machines is presented in
figure 10.19. The comparative speed-up when executed on both machines
(but different execution times) is given in figure 10.20. Compared to the
DSM machine (different processors, different architectures), the execution
time is higher, but both speed-ups are close.
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Figure 10.17: Speed-up of the multi-consumer simulation, showing slowly
increasing speed-up, with a speed-up of about 2 for 4 processors (DSM Ori-
gin 2000).
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Figure 10.18: Efficiency of the multi-consumer simulation (DSM Ori-
gin 2000).
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Figure 10.19: Execution time of the multi-consumer simulation, showing
decreasing execution time for the SMP machine too (4 processors only).
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Figure 10.20: Speed-up of the multi-consumer simulation, showing close
speed-ups for both the SMP machine and the DSM machine.
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Conclusions

This section has presented a basic simulation of several people living in a
town and doing their shoppings. Some people just walk, others buy from
shops in a predefined order, while others are stubborn in a shop order for
a few times only. Depending on the number of each type of people, the
presented behaviours give successful or unsuccessful results. This example
has shown that our library is sufficiently flexible to quickly implement and
simulate such an application. All the application used in our performance
measurements consists of only 240 lines of source code.

On the other hand, this application is not very well adapted to paralleli-
sation. The potential field of any resource covers all the environment, which
implies several domain propagations when executed in parallel. Moreover,
there is only one resource for each potential type, and our wave propagation
algorithm has not been optimised in this case. Finally, the environment is
not too homogeneous: agents tend to concentrate to a region of the environ-
ment, hence decreasing the load balancing among processors. Nevertheless,
we have obtained a speed-up of about 2 for 4 processors for this original
application.

10.3 Conclusions

We have presented two applications written with our library. The first one
is Conway’s game of life, based on static cells and dynamical creation and
destruction of cells. The library is sufficiently rich to allow several meth-
ods to implement this application, as described. We have chosen a method
optimising the execution time.

The second application is a more complex multi-consumer simulator. It
involves much more functionalities, such as people travelling, traffic jams and
shopping. Its implementation is much easier than a version written from
scratch, since many features, such as resource potential propagation and
traffic jams, are already taken into account by the library. This application
is not very appropriate to our parallelisation method, nevertheless its parallel
execution time decreases, with a speed-up of 2 for 4 processors.

This chapter has shown that despite its simplicity our tool can be used
in several domains of simulation. The implementation is easy and may have
satisfactory parallel performance while decreasing development time.
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Chapter 11

Conclusions and future work

11.1 Main results of our research

Multi-agent systems are an increasing domain of research. They allow to
model many real problems. An interesting way of research is the simula-
tion of large populations of agents, in order to discover emergence of global
behaviour from simple individual behaviours (chapter 3).

In this context, this thesis has had three main contributions: it has
presented a model of simulation of situated multi-agent systems, it has de-
veloped parallel algorithmic of multi-agent systems, and it has supplied an
implementation of the model on parallel computers. Performance of this
implementation (a C library) has been measured and is satisfactory.

Simulation model

The model, introduced in chapter 6, is destined to simulation of large pop-
ulations of agents and pays special attention to agent move processing. The
model has four components: environment, resources, agents and arbitrator.
The environment is discrete and may contain obstacles, which prevent agents
to enter some squares. Resources are entities guiding agents through the en-
vironment. They do so by propagating potential fields sensed by agents.
Agents are the mobile entities of the model. They act on the environment
by moving through it and they perceive it through their percepts. Agent
percepts and actions are by definition local, but for flexibility the model al-
lows any agent to use global information through specific calls. They have
also memory. They may be created and destroyed dynamically, during the
simulation. The fourth component, the arbitrator, maintains the coherence
of the system by forbidding illegal agent moves and avoiding spatial conflicts
among agents.

Statistics and information about the system can be regularly written in
files and analysed by an external program. Checkpoints of the whole system
are also possible.

259
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The execution engine of the simulation is based on cycles. Each cycle
is divided in several steps. This allows to deal with simultaneity of actions,
such as percept data updates and spatial conflict avoiding. It also allows the
user to control its application on a per-cycle basis.

Parallel algorithmic

The second contribution of this thesis consists of the work done on parallel
algorithmic of multi-agent systems. We have been particularly interested in
the implementation and analysis of two percepts of our agents: the vision
and the detection of potential fields.

The vision percept, presented in chapter 7, is based on ray-tracing. A
new algorithm of drawing supercover lines has been proposed. It is an ex-
ample of regular algorithm, and its parallel performance is very high: a
speed-up greater than 28 on 32 processors (an efficiency greater than 90%
up to 32 processors). We have also noticed a minor load unbalancing due to
domain decomposition.

The potential percept, presented in chapter 8, uses a wave propagation
model based on Huygens’ principle [51]. It is an irregular model, and several
algorithms have been presented, both sequential and parallel. After carefully
performance measurement, a comparison between the best two algorithms
has been done. A combination between them has been shown to have the
best performance, and it has been implemented and analysed. The parallel
performance of the best algorithm obtained is acceptable: a speed-up of 17
on 32 processors (an efficiency greater than 50% up to 32 processors).

A particular attention has also been paid to allow random and fully
reproducible simulations, regardless of the number of processors used.

Portable parallel implementation of the model

The third contribution of this thesis is the validation of our simulation model
through its operational and portable parallel implementation. The library is
presented in chapter 9 (features) and appendix A (reference manual). During
the limited time of the thesis we have implemented the most part of our
simulation model, including two percepts: vision, simulated by a visibility
field, and odour detection, simulated by a wave propagation of potential.
The library also fills a real gap in multi-agent research (chapter 5), as it
allows to easily simulate large populations of agents. The library focuses on
simplicity of programming from the user point of view, and on performance
of execution. The simplicity is provided by providing a methodology of cre-
ating simulations along with several common functionalities used in agent
simulations, and by almost completely hiding the difficult parallel program-
ming (chapter 4) from the user of the library. The performance is given
by the parallelisation of our library (chapter 4) on shared-memory machines
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and by a set of algorithms carefully implemented and analysed, as explained
above.

Nevertheless, in order to achieve these goals, it assumes some hypotheses
(chapter 2). The hypotheses are simple enough to be optimised on actual
machines, and sufficient enough to allow the simulation of a broad range of
applications. As our implementation of the simulation model is operational,
we have used it to implement two applications, presented in chapter 10. The
first is the well-known Conway game of life, based mainly on cell creation and
destruction. It shows that our model and its implementation can be used to
implement systems with immobile agents. The second is a multi-consumer
simulator, which allows to simulate the traffic jams among people living and
doing their shopping in a town. It validates our model and our library for
the implementation of situated MAS simulators.

The multi-consumer application has a speed-up of about 2 on 4 proces-
sors. On the other side, we consider that the development time has been
greatly reduced. For instance, the multi-consumer application consists of
only 240 lines of source code.

11.2 Future work

Our future work has several directions. It involves the model enhance-
ment, algorithm optimisation, programming environment enhancement and
exploitation.

Model enhancement

Concerning our model of simulation, we plan to introduce explicit agent com-
munication. Also, an interesting feature will be the merge of the simulated
entities: agents and resources will be gathered in a single type. This would
allow agents to be sources of potential, and resources to be mobile and to
born and die.

Algorithm optimisation

Concerning the model implementation, we plan firstly to enhance the wave
propagation model and its current implementation. In increasing order of
difficulty, a feature enhancement of our implementation is to provide propa-
gation in toroidal environments too, as specified in our model. An execution
performance enhancement is to better optimise the propagation when po-
tential fields do not change or change partially. Also, we plan to implement
and analyse other methods, such as distance-based sequential methods and
mutex-based parallelisation method. Finally, a complex enhancement of our
model of wave propagation is to allow inexact propagation that remains ac-
ceptable from agent point of view and runs faster.
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Secondly, we plan to optimise the vision model and algorithm by reducing
the memory requirements in 4-connectivity. A promising approach is to
implement the computing of visibility fields through a cache-based approach.
We also plan to implement another method of computing visibility fields and
compare it with the actual solution. It would work by creating a database
with the visibility fields of all the cases where just one obstacle is involved,
and afterwards computing the fields by superposing the database results that
match the real configuration of obstacles.

Thirdly, at the agent level, we plan to integrate other agent percepts
while keeping the simplicity and performance of the library at acceptable
values. Such an example is the mark sensing (sort of pheromone) and mark
taking/dropping actions.

Finally, at the simulation level, we plan to optimise its parallel per-
formance. In this context, the most important feature is to implement a
dynamic load balancing. An idea is to automatically grow or decrease the
number of lines processed by each processor, based on the processing time
it spent in previous cycles of simulation. With a dynamic load balancing,
the parallel performance may become much greater for not so regular simu-
lations, for example when the majority of the agents are concentrated in a
region of environment.

Programming environment enhancement

Another direction of work is the creation of external graphical programs to
automatically generate environments to be simulated (world initialisation),
and to better visualise simulation results, such as agents’ performance, by
using the already implemented I/O features of the library. The checkpoints
would also need to store all the information about the system, such as the
memory of agents.

Exploitation

Until now we have been involved in providing this library. Nevertheless, a
very important future work is the real use of this tool by artificial intelligence
researchers to search for emergence of behaviour. This is planned to be done
at Supélec starting from September 2002 through our graduate students’
projects or Ph.D. thesis.

By providing such a tool to easily and efficiently test behaviours of large
populations of agents, we hope to have successfully contributed to a part of
the multi-agent research.



Appendix A

ParSSAP reference manual

This appendix presents all the structures, types and functions provided by
our library. The functions have been grouped in several categories:

e Simulation start and end functions.

e Environment creation functions.

Simulation parameters functions.

Input/output functions.

Agents dynamic creation and destruction functions.
e System information functions.

We present first some general considerations about the library, afterwards
all the functions provided by our library and finally we explain the files
processed by ParSSAP.

A.1 General considerations

Many functions of the ParSSAP library return a value. Generally, this value is
OK, for successful return, or ERR, in case of error. For save/load functions, two
other return values exist: FILEERR (error when using the file) and FUNCERR
(the function found in file/code does not exist in code/file, see Input/output
functions).

Each square of the environment has one and only one of the following
types: FREESQ (if the square is free), RESSQ (if there is a resource in the
square) and WALLSQ (if there is an obstacle in the square). It has also one
of the two followings states: OCCUP (if there is an agent in the square) and
UNOCCUP (if the square is not occupied by an agent).

The action an agent can do is specified in the structure pmAction_t.

263
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The action of the agents may be read in order to know if during that
cycle they have done the planned action or not. This can be done in two
places. The first is the behaviour function of the agent, through the call
to the function pmgiGetAgentActiontype, which gives the action done in
the previous cycle of simulation. (For agents with slowness different than 1,
this returns always PASS, as shown below, since during the previous cycle its
behaviour function has not been called.) The second is the user function,
through calls to the functions pmgiGetAgentActiontype and its variants. As
the user function is executed at the end of cycle, it may be used to obtain
the action for agents with slowness different than 1 too. The only part which
can change the action of the agents is the conflict part. Thus:

e MOVE may be changed into MOVE_CONFLICT (if it has won in a conflict
case), STAY_CONFLICT or STAY_CA_CONFLICT (if it has lost in a conflict
case where the winner has been a move agent, respectively a created
agent).

e MOVERANDOM may be changed in MOVERANDOM_STAY (if the agent has
no square to move), MOVERANDOM_MOVE (if it has randomly moved),
MOVERANDOM_MOVE_CONFLICT (if it has randomly moved and it has won
a conflict), MOVERANDOM_STAY_CONFLICT, or MOVERANDOM_STAY_CA_CONFLICT.
(if it has randomly planned a move, but it has lost in the conflict case
where the winner has been a move agent, respectively a created agent).

e PASS means that the behaviour function of the agent was not called
during that cycle because of its slowness.

A.2 Data structures and types

pmAction_t

typedef struct{
int type;
int param;
}pmAction_t;

The action of an agent.
type the type of the action. It may be STAY, MOVE, TAKE, DROP, or MOVERANDOM.

param the parameter associated to the type. It may be a direction (UP,
DOWN, LEFT, RIGHT, UPL, UPR, DOL, DOR, in this order) if the action is
MOVE, or the number of units taken/dropped if TAKE/DROP. DOWN is
equivalent to incrementing the y coordinate, and RIGHT is equivalent
to incrementing the x coordinate!.

1 This information is needed in vision.
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pmAction_t pmpfAgent (void *memory)

The behaviour function of an agent.

memory a pointer to the internal memory specific to the agent. This is the
pointer passed as parameter during the pmPutAgent call.

returned value the planned action of the agent. It may be changed by the
arbitrator in conflict cases, see section A.l.

int pml2pFunc (int load, int initload, int initpot)

The resource function giving its potential as a function of its load (and the
initial values of its load and its potential).

load the dynamic load of the resource.
initload the initial load of the resource.
initpot the initial potential of the resource.

For any such function the following relation is true:
pml2pFunc (initload, initload , initpot) == initpot

Note: The reason to have also initload and initpot as parameters is to
allow to have only one function for resources with different initload and/or
initpot. See also the note in the description of function pmPutResource.

int pmpfCallback (void)

The user function. Called (sequentially) at the end of every cycle.

returned value STOP to stop the simulation, or CONT to continue it.

A.3 Simulation start and end functions

void pmInitSystem (unsigned int randomseed)

Initialises the system. It must be called before any other function of the
library.

randomseed the global seed used for all the random number generation.
Two executions give the same result if the same value for randomseed
is used and, instead of classical random functions, pmAgRand function
is used.
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void pmRunSystem (pmpfCallback userfunc)

Starts the simulation. It must be called when the initialisation of the envi-
ronment is complete (see section A.4).

userfunc The function to be called at the end of every cycle. Here you
can write the code you need to be executed every cycle. See the type
pmpfCallback for more information.

void pmEndSystem (void)

Deallocates all the memory used by the system.

A.4 Environment creation functions

These functions must be called before starting the simulation with the pmRunSystem
function.

void pmCreateEnv (int dimy, int dimx, int type)

Creates the environment.

dimy the dimension (number of squares) on y axis. The coordinate starts
from 0 (0..dimy—1) and grows from top to bottom.

dimx the dimension (number of squares) on x axis. The coordinate starts
from 0 (0..dimx—1) and grows from left to right.

type the type of the environment: EDGES (obstacles are added automatically
on all the edges of the environment to prevent the agents to leave the
environment) or TORUS (the last column is continued with the first
column, the same for lines).

void pmPutObstacle (int y, int x)

Puts an obstacle at a precise square of the environment. This must be called
after the creation of the environment. If the square is already occupied, the
program aborts.

y the y coordinate of the obstacle.

X the x coordinate of the obstacle.
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void pmPutRandomObstacles (int nb)

Puts randomly nb obstacles in the environment. This must be called after
the creation of the environment. If nb is greater than the number of free
squares, this function aborts.

nb the number of obstacles to put in the environment.

void pmPutAgent (int y, int x, int slowness, int prio, int maxl,
void #*mem, int memsize, pmAgFunc func)

Puts an agent in the environment. This must be called after the creation of
the environment. There is no imposed limit on the number of agents.

y the y coordinate of the agent.
x the x coordinate of the agent.

slowness a positive number specifying the speed of the agent. An agent
with slowness n means that its behaviour function is called every n cy-
cles.

prio the priority of the agent. It may be NORM_PR or HIGH_PR. It is used only
in spatial conflict cases, when the winner is chosen randomly among
the high priority agents in conflict. If high priority agents do not exist,
they are randomly chosen among the agents.

maxl the maximum load of the agent. Actually, an agent may carry only
one type of ore at the same time.

mem pointer to an initialised area which is copied (memsize bytes) to the
memory of the agent.

memsize the size, in bytes, of the memory of the agent.

func the behaviour function of the agent, which is called every slowness
cycles.

void pmPutRandomAgents (int nb, int slowness, int prio, int
maxl, void *mem, int memsize, pmAgFunc func)

Puts randomly nb agents in the environment with the given parameters (see
the previous function for their meaning). This must be called after the
creation of the environment. If nb is greater than the number of free squares,
this function aborts.
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void pmPutResource (int y, int x, int type, int initload, int
initpot, pml2pFunc func)

Puts a resource in the environment. This must be called after the creation
of the environment. A square cannot contain more than one resource. If
the square is already occupied by another resource, this function aborts the
program. This kind of resource propagates a potential field using a wave
propagation algorithm described in chapter 8. There is no imposed limit on
the number of resources created.

y the y coordinate of the agent.
x the x coordinate of the agent.

type the type of the potential propagated by the resource. There is no
imposed limit for the number of types. Also, the type numbers may
be discontinuous (e.g. 1 and 3).

initload the initial load of the resource.
initpot the initial potential of the resource.

func function which has the load as parameter and returns the potential.
It NULL, then the resource will have always the potential initpot.

Note: The parameter initpot is needed because the function func takes
also the initial load and initial potential as parameters (see the note in the
description of type pml2pFunc). If the func function had depended only on
load, then the initial potential would not have need to be given as parameter
here (in fact, it would have been implicitly known in func function).

void pmPutRandomResources (int nb, int type, int initload, int
initpot, fctl2p func)

Puts randomly nb resources in the environment with the given parameters
(see the previous function for their meaning). This must be called after the
creation of the environment. If nb is greater than the number of free squares,
this function aborts.

A.5 Simulation configuration functions

These functions must be called before starting the simulation with the pmRunSystem
function.

The default values of the functions represent the value which is used if
that function is not called.
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void pmSetDirsNo (int n)

Sets the connectivity of the system. The connectivity is taken into account
by the agents (the number of directions allowed for movement) and by the
wave propagation and the vision algorithms. This is used in computing the
vision field and the gradient propagation fields.

n the connectivity (4 or 8). For agents movement, 4 allows only the UP,
RIGHT, DOWN, and LEFT directions, while 8 allows all the them.

default 4.

void pmSetThreadsNo (int nbth)

Sets the number of threads used during the simulation. The program will
create nbth—1 threads (nbth> 1). The simulation will be done in parallel by
all the nbth threads. This is the only function dealing with the parallelism.

default 1.

void pmSetResRefreshPeriod (int upd)
Sets the period of update of the potential fields of the resources.

upd the period of update. A value of 0 means initialisation only, otherwise
update every upd cycles (useful to speed-up the simulation).

default 1.

void pmSetPropagationMethod (int method)

Sets the method of potential propagation of resources. Actually, three se-
quential and two parallelisation methods are implemented. The sequential
methods are: recursive with breadth-first propagation (BREADTH), recursive
with depth-first propagation (DEPTH), and iterative with variable potential
(ITERATIVE). The parallelisation methods are: fixed domain decomposition
(DOMAIN), and private environments (PRIVATE). All these methods propagate
exactly the potential fields, and hence yield the same potential fields. Their
difference is only in execution time and memory requirements.

method The combination between sequential and parallel methods. When
using domain decomposition, two sequential methods are used: one
for domain propagation, the other for frontier propagation (in this
order in the name below). The method may be one of the following:
BREADTH_BREADTH_DOMAIN, BREADTH_DEPTH_DOMAIN, BREADTH_ITERATIVE_DOMAIN,
DEPTH_BREADTH_DOMAIN, DEPTH_DEPTH_DOMAIN, DEPTH_ITERATIVE_DOMAIN,
ITERATIVE_BREADTH_DOMAIN, ITERATIVE_DEPTH_DOMAIN, ITERATIVE_ITERATIVE_DOMAIN,
BREADTH_PRIVATE, and ITERATIVE_PRIVATE.
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default BREADTH_BREADTH_DOMAIN.

void pmSetVisionRadius (int vr)

Sets the vision radius. Note that its square is always seen.

vr if 0, the vision is not used in the program, leading to a lot of memory
save. If greater than 0, this sets the vision radius. A vision of 1 means
the agent sees the 4/8 squares (depending on the connectivity) in its
close proximity.

default 0.

void pmSetVisionType (int vt)

Sets the vision type. Each square S of the environment has associated a
matrix (2ur+1) x (2vr+1) with boolean elements, which says if that square is
visible from the square S or not. The vision is influenced only by obstacles, so
this matrix may be computed once for all at the beginning of the simulation.
However, this matrix needs a lot of memory, hence it may greatly influence
the execution time of the application. Greater the vision radius is, more it
needs memory. The memory needed for the vision is about dimy * dimz *2vr?
bytes (the visibility relation is commutative), which, for 1024 x 1024 world
with rv = 16, gives 512MB. The goal of the function setVisionType is
to allow the user to specify if the matrix must be allocated and computed
at the beginning of the simulation, or the vision fields must be computed
dynamically (i.e. no storage necessary).

vt if STATIC, the matrix is allocated and filled at the beginning of the sim-
ulation. If DYNAMIC, no matrix is needed and the vision fields are
computed every time they are needed.

default DYNAMIC.

void pmSetVisionSymmetry (int sym)

The vision relation is symmetric. If you use this property, the memory
needed and the initialisation time are halved. Note that this adds a slight
execution time overhead when the vision is used, since a check needs to be
made to each vision read in order to access the correct half of the memory.

sym 1 to use the symmetry, 0 to not use it.

default 1.
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A.6 Input/output functions

These functions must be called either before starting the simulation with the
pmRunSystem function, or in the user function. However, the pmInitChanges
and pmInitStat initialisation functions must be called before starting the
simulation.

int pmSaveSystem (char *filename, pmpfAgent *useragfunc[], pml2fFunc
*userl2pfunc[])

Saves all the state of the system (checkpoint). The name of files written
are filename for the general file, and one or more local files with name
filename.X, where X is a number starting from 0. See appendix A.9 for a
full-featured example of the files saved.

filename the base name of the files to save the system state in.

useragfunc a vector ended with NULL value, containing the behaviour func-
tions of the agents.

userl2pfunc a vector ended with NULL value, containing the resource func-
tions.

returned value OK if successful, ERR if the number of functions exceeds the
current limit (100 on actual implementation), FUNCERR if no function
in useragfunc or userl2pfunc sets corresponds to the index found in
the local files included by file filename, or FILEERR for input/output
or parsing errors.

int pmLoadSystem (char *filename, pmpfAgent *useragfunc[], pml2fFunc
*userl2pfunc[])

Loads a previous saved system (checkpoint). The parameters and the re-
turned value are identical to the previous function. The parameters useragfunc
and userl2pfunc must be the same for save/load of the same files. The only
thing required in initialisation file is the parameters of pmCreateEnv, i.e. di-
mensions and type of the environment. See appendix A.9 for a full-featured
example of the file saved.

void pmSetParallelSaving (int type)

Sets the type of the saving done by pmSaveSystem. In parallel, each processor
saves in a different file its domain.

type 0 for a sequential saving and 1 for a parallel saving.

default 1.
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int pmInitChanges (char *basename)

Specifies the name of the file to save information about the agents. See the
next function for details.

basename the base name of the files to save information in. The files writ-
ten are: basename.env for environment information, and basename.agents
for agents information.

returned value OK if successful, ERR if the basename has too many charac-
ters.

default "Changes".

int pmSaveChanges (void)

Saves information about environment (position of the obstacles, resources),
resources (their dynamic load) and agents (their position and load) for the
current cycle. This information may be used by an external program to
visualise the evolution of the system.

returned value OK if successful.

int pmInitStat (char *fn)

Initialises the statistic file. See the next function for details.
fn the file name of the statistic file.

returned value OK if successful, ERR if the basename has too many charac-
ters.

default "Statistics".

void pmSaveStat (void)

Saves statistic information about the current cycle in the file previously
initialised with pmInitStat. The information saved is: the percentage of
objects in each type of resources, the percentage of empty resources, the
percentage of unvisited (by the agents) resources, the number of agents alive
during that cycle, the number of agents in random movement, and the num-
ber of agents which are empty. See appendix A.10 for a full-featured example
of this file.
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A.7 Agents dynamic creation and destruction func-
tions

These functions must be called in agent behaviour functions.

Important note: Functions in this section have generally several variants.
The name of each function starts with pm. The third letter may be one of
the following:

e 1 (local), then it is a local function, in the spirit of agent principles.
e g (global), then it is global.

e t (tool), then it is a tool function.

The fourth (and fifth sometimes) letter may be one of the following:

e a (absolute), then the coordinates are absolute.

e r (relative), then the coordinates are relative to the coordinates of the
current agent.

e d (direction), then the coordinates are given by a parameter specifying
the direction relative to the coordinates of the current agent.

e m (me), then the coordinates are not given, but implicitly taken as the
coordinates of the current agent.

void pmgaCreateAgent (int y, int x, int slowness, int priority,
int maxload, void *memory, int memorysize, pmAgFunc agfunc)

Creates an agent during the simulation with the specified parameters (see
the pmPutAgent function for a description of these parameters). If more than
one agent are planned to be created in the same square, only one is created,
and a warning for each agent not created is printed on the screen. This one
is chosen randomly among the first eight agents appeared in conflict. In
conflicts between created and move agents, the former have always higher
priority than the latter, this means that if there is a conflict among a created
agent and move agents, all the move agents will be forced to STAY.

Available also as: pmlrCreateAgent, pmldCreateAgent, pmlCreateAgentDist
(create an agent at a specified distance from the current agent), pmlCreateAgentAnywhere
(create an agent at a random position in the environment).

void pmgiKillAgent (int id)

Kills, during the simulation, the agent with the specified identifier. The
identifier becomes free, and it may be used later, when agents are created.
Available also as: pmgaKillAgent, pmlrKillAgent, pm1dKillAgent, pmlmKillAgent.
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A.8 System information functions

Please see the note of the previous section concerning variants of functions.

These functions must be called either in agent behaviour functions, or in
the user function. Additionaly, functions involving the current agent cannot
be used in the user function. Note that, while behaviour functions are called
before doing agents’ action, the user function is called after it.

int pmgGetEnvDimy (void)

Gets the dimension of the environment on y axis.
return the y dimension of the environment.

Available also as: pmgGetEnvDimx.

int pmgGetCycle (void)

Gets the current cycle.

int pmgGetAgentNumber (void)

Gets the number of agents in the environment.

int pmgaGetAgentId (int y, int x)

Gets the identifier number of the agent in square (y, x).
Available also as: pmlrGetAgentId, pmldGetAgentId, pmlmGetAgentId.

int pmgiGetAgenty (int id)

Gets the y coordinate of the agent id.
Available also as: pmgmGetAgenty, pmgiGetAgentx and pmgmGetAgentx.

int pmgiGetAgentActiontype (int id)

Get the previous action type done by the agent id. It can be used for
example to find out if it has succeeded to carry out its action.

Available also as: pmgaGetAgentActiontype, pmgrGetAgentActiontype,
pmlmGetAgentActiontype.

int pmgiGetAgentMaxload (int id)

Gets the maxload of the agent id.
Available also as: pmgaGetAgentMaxload, pmgrGetAgentMaxload, pmlmGetAgentMaxload.
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int pmgiGetAgentLoad (int id)

Gets the dynamic load of the agent id.
Available also as: pmgaGetAgentLoad, pmgrGetAgentLoad, pmlmGetAgentLoad.

int pmgaGetSquarePotential (int type, int y, int x)

Gets the potential of type type in the square (y, x).
Available also as: pmlrGetSquarePotential, pmldGetSquarePotential.

int pmgaGetSquareType (int y, int x)

Gets the type (FREESQ, RESSQ or WALLSQ) of the square (y, x).
Available also as: pmlrGetSquareType, pmldGetSquareType, pmlmGetSquareType.

int pmgaGetSquareState (int y, int x)

Gets the state (OCCUP or UNOCCUP) of the square (y, x), i.e. if there is an
agent in the square or not.
Available also as: pmlrGetSquareState, pmldGetSquareState, pmlmGetSquareState.

int pmgGetResTotalLoad (int type)

Gets the total load of resources of type type.

int pmgaGetSquareResType (int y, int x)

Gets the type of the resource in (y, x).
Available also as: pmlrGetSquareResType, pmldGetSquareResType, pmlmGetSquareResType.

int pmgaGetSquareResLoad (int y, int x)

Gets the load of the resource in (y, x).
Available also as: pmlrGetSquareResLoad, pmldGetSquareResLoad, pmlmGetSquareResLoad.

int pmgaalsVisibleSquare (int yl, int x1, int y2, int x2)

Checks if the square (y2, x2) is visible by the square (y1, x1). Returns 1 if
yes, else 0.

Available also as: pmgiaIsVisibleSquare, pmgmalsVisibleSquare, pmlrIsVisibleSquare,
pmldIsVisibleSquare.
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int pmtmRand (void)

Gets a random and reproducible number. The use of this function for all
random numbers guarantees that the results are fully reproducible, regardless
of the number of processors. This function may be used also in the user
function.

int pmtDir2y (int dir)

Gets the y relative coordinate (-1, 0, or 1) for the direction dir.
Available also as: pmtDir2x.

int pmtaCanMove (int y, int x)

Returns 1 if an agent can move in square (y, x), else 0. An agent may move
in a square if and only if the square is not an obstacle and it is not occupied
by an agent. Note that it returns only if an agent can occupy the square
(i.e. it does not contains an obstacle and it is unoccupied), not if the square
is near the current agent.

Available also as: pmtmrCanMove, pmtdCanMove, pmtmGetAgentRandomMove
(gets a random move for an agent).

int pmtarCoordy (int)

Transforms a relative y-coordinate in absolute y-coordinate.
Available also as: pmtraCoordy, pmtraCoordx and pmtraCoordx.

A.9 Full-featured example of system files

System files contain all the information about the system (with a few excep-
tions). The information is saved in two kinds of files: one general file and
one or several local files. Both files are preprocessed by the C-preprocessor.
Additionally, the # character starts a comment.

The general file stores information about the parameters of the system.
Here is a full-featured example of general file:

//start with cycle number :
cycle 0

//number of threads used
nbThreads 1

#global seed (an unsigned int)
gseed 0

© 00 N 3 oA W N

//number of lines of the environment
dimy 128

= e
N o= O
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13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

//number of columns of the environment
dimx 128

//type of the environment: 0=TORUS, 1=EDGES
envtype 1

//number of directions used (4 or 8)
nbdirs 4

//period of gradient sources updates: 0= initialization only, k=every k cycles
gradsrcUpdate 1

#£vision type (0=STATIC, 1=DYNAMIC)
visiontype 1

#Changes file name
changesfilename bouton

//local files (ytop wztop filename) — environment coordinates start with 0
file 0 0 area—plain

file 128 0 area—plain

file 256 0 area—desert

file 0 128 area—forest
file 128 128 area—city

file 0 0 area—city

file 256 128 area—plain

file 0 256 area—mountain

file 128 256 area—forest
file 256 256 area—plain

The general file contains information about the cycle number, the number

of threads, the global seed, the size and the type of the environment, the
connectivity, the vision type and the name of statistic and trace file. Finally,
the names of the local files and their coordinates relative to the environment
are given. This file contains nine local files of 128x128, corresponding to an
environment of 384x384.

Local files store information about resources and agents. Here is a full-

featured example of local file:

© 0 N O Ok W N

e e e
B W N = O

// CITY AREA file, 1285128

// Resources codes
#define GoldMine 0
#define GoldFactory 1

// Load to potential function codes
#define Const 0
#define Rung 1

// Agent behaviour function codes
#define Worker 0
#define Superv 1
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15 //The walls

6 /W oy z

7 W 50 54

18 W i 54

19 W 54 50

20 W 54 7

21 W 50 55

22 W 77 55

23

24 //The resources

25 //S Y z Type Load  Load0 Pot Pot0  FuncInd
26 S 10 20 GoldMine 100 100 8 8 Rung
27 S 20 40 GoldFactory 0 0 8 8 Const
28 S 70 120 GoldMine 100 100 8 8 Rung
29 S 100 80 GoldMine 100 100 8 8 Rung
30 S 110 20 GoldFactory 0 0 8 8 Const
31 S 90 10 GoldFactory 0 0 8 8 Const
32

33 //The agents

34« J/A oy T Slownes Priorit Load  LoadMaz Funclnd

35 A 11 13 1 0 0 13 Worker

36 A 13 13 1 0 0 13 Worker

37 A 15 13 1 0 0 13 Superv

The first lines define some words in order to facilitate the comprehension.

Any line of local file defines one of the following entities: obstacle, re-
source and agent. Each one starts with the corresponding letter. The infor-
mation needed by walls is given in the following;:

e For obstacles: its position.

e For resources: position, potential type, load, initial load, potential, ini-
tial potential?, and the index of its function. The index is the element
index of the table given to the pmLoadSystem.

e For agents: position, slowness, priority, load, maximum load and be-
haviour function index. The index is the element index of the table
given to the pmLoadSystem.

A.10 Full-featured example of statistic file

Statistic file contains miscellaneous statistic information about the evolution
of the system. Here is a full-featured example of statistic file:

1 #cycle load0 load9  empty0 empty9 init0  init9 nbAg randAg emptyAg
2 0 99.20 0.00 0.00 100.00 92.02 100.00 1310 0.00 99.01

2The same file format is used for both system initialisation and simulation continuation,
and, while for initialisation the potential and the load are always equal to initial potential
respectively to initial load (hence superfluous), for simulation continuation they are not
identical. See description of the pml12pFunc type for why the initial potential also is needed.
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3 10 92.94 0.25 0.00 97.55 44.17 97.55 1310 1.83 91.53
4 20 88.96 0.61 0.00 93.87 28.22 93.87 1310 0.00 87.02
5 30 85.28 0.92 0.00 90.80 18.40 90.80 1310 9542 82.82
6 40 81.60 2.33 0.00 79.14 1288 79.14 1310 6.26  80.00
7 50 78.90 3.07 0.00 73.62 8.59 73.62 50  4.00 84.00
8 60 78.53 3.13 0.00 73.62 8.59 73.62 44 5227 75.00
9 70 78.34 3.19 0.00 73.62 8.59  73.62 40 4750 70.00
10 80 78.22 3.25 0.00 73.62 8.59 73.62 32 938 65.62
11 90 78.10 3.25 0.00 73.62 8.59 73.62 13 6154 69.23
12 100 78.10 3.31 0.00 73.62 8.59  73.62 4 25.00 100.00
13 110 78.10 3.31 0.00 73.62 8.59 73.62 2 0.00 100.00
14 120 78.10 3.31 0.00 73.62 8.59 73.62 2 100.00 100.00
15 130 78.10 3.31 0.00 73.62 8.59 73.62 1 0.00 100.00
16 140 78.10 3.31 0.00 73.62 8.59 73.62 1 0.00 100.00

The first line of the file contains information about the data. The fol-
lowing lines contain the data corresponding to each cycle. Columns in each
line are separated by tab characters, and data is right justified.

The first column represents the cycle number. We notice that in this
example the statistics have been saved for each cycle multiple of 10. The
rest of the columns provide information about the system as it was at the
corresponding cycle.

The following columns provide information about each type of resources.
Three kinds of information are provided for each type of resource:

1. load: Percentage of the current load of all the resources of this type
compared to the total initial load of all the resources of all the types.

2. empty: Percentage of empty resources of this type compared to the
total number of resources of this type.

3. init: Percentage of resources of this type whose current load is iden-
tical to its initial load (if the resource function is monotonic, this cor-
responds to full /unvisited resources) compared to the total number of
resources of this type.

In this example we have created two resources, with types 0 and 9, and
columns 2—7 provide this information.

The last three columns provide information about agents. In order, the
dynamical number of agents, the percentage of agents in a random movement
and the percentage of empty agents.

This example of statistics file comes from a simulation where agents’ goal
was to carry objects of the same type from resources of type 0 (mines) to
resources of type 9 (factories). Several things may be noted in this simula-
tion. The simulation finished before the 150th cycle, because of the death
of all the agents. Between the 50th and the 60th cycle most of the agents
died. Agents have taken about a quarter of the objects from mines, and have
successfully deposed 3% of the total number of objects in factories (the other
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objects have disappeared when agents died). Finally, almost all the mines
were visited, and only a quarter of the factories were visited.



Appendix B

Implementation of the
supercover line tracing
algorithm

Unlike ordinary line, the supercover line is formed by all the points the ideal
line pierces. The full implementation of our algorithm for drawing supercover
line in the C language is the following (the lines which are changed from
Bresenham algorithm are printed in bold):

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

void useVisionLine (int y1, int x1, int y2, int x2)

{

int i; // loop counter

int ystep, xstep; // the step on y and z azis

int error; // the error accumulated during the increment

int errorprev; // the previous value of the error variable

int y =yl, x =x1; //the line points

int ddy, ddx; // compulsory variables: the double values of dy and dz

int dx = x2 — x1;

int dy = y2 — y1;

POINT (y1, x1); // first point

// NB the last point can’t be here, because of its previous point (which has to be wverified )

if (dy < 0){
ystep = —1;
dy = —dy;

}else
ystep = 1;

if (dx < 0){
xstep = —1;
dx = —dx;

lelse
xstep = 1;

ddy = 2 * dy; // work with double values for full precision

ddx = 2 * dx;

if (ddx >= ddy){ // first octant (0 <= slope <= 1)
// compulsory initialization (even for errorprev, needed when dz==dy)
errorprev = dx;
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28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

}

error = dx; // start in the middle of the square
for (i=0; 1 < dx ; i++){ // do not use the first point (already done)

X += xstep;
error += ddy;

if (error > ddx){ // increment y if AFTER the middle ( > )

y += ystep;
error —= ddx;

// three cases (octant == right— >right—top for directions below):
if (error + errorprev < ddx) // bottom square also

POINT (y-ystep, x);

else if (error + errorprev > ddx) // left square also

POINT (y, x-xstep);

else{ // corner: bottom and left squares also

POINT (y-ystep, x);
POINT (y, x-xstep);

}

POINT (y, x);
errorprev = error;

telse{ // the same modifications as above
errorprev = dy;
error = dy;
for (i=0; i <dy; i++){
y += ystep;
error += ddx;
if (error > ddy){
x += xstep;
error —= ddy;
if (error + errorprev < ddy)
POINT (y, x-xstep);
else if (error 4 errorprev > ddy)
POINT (y-ystep, x);
else{
POINT (y, x-xstep);
POINT (y-ystep, x);

}

POINT (y, x);
errorprev — error;

}
}



Appendix C

Publications written during
this thesis

This Ph.D. thesis allowed me to publish articles in international and national
conferences, presented below together with their abstract. It also allowed me
to present them and to do other dissertations to researcher groups.

C.1 International conferences with lecture committee

[27] Eugen Dedu, Stéphane Vialle, and Claude Timsit. Comparison of
OpenMP and classical multi-threading parallelization for regular and
irregular algorithms. In H. Fouchal and R. Y. Lee, editors, Proceedings
of Software Engineering Applied to Networking & Parallel/Distributed
Computing (SNPD), pages 53-60, Reims, France, May 2000.
Abstract: The new emerging Distributed Shared Memory architec-
ture promises to be more scalable than Symmetric Multiprocessor ar-
chitecture, and leads to a regain of interest for parallel shared-memory
programming paradigms. This paper compares two such important
paradigms: classical multi-threading and multi-threading based on
compiler directives (with OpenMP). Several implementations of reg-
ular and irregular algorithms, taken from artificial intelligence field,
were made on an SGI-Origin2000 (a DSM architecture) and compared
both in terms of development time and of execution time. Finally, we
identify the most appropriate paradigm for each kind of algorithm.

[28] Eugen Dedu, Stéphane Vialle, and Claude Timsit. Parallelisation of
wave propagation algorithms for odour propagation in multi-agent sys-
tems. In D. Grigoras, A. Nicolau, B. Toursel, and B. Folliot, editors,
Advanced Environments, Tools and Applications for Cluster Comput-
ing (IWCC), LNCS 2326, pages 92-102, Mangalia, Romania, Sept.
2001. NATO, Springer.
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[83]

Abstract: One of the algorithms used in multi-agent systems is based
on the wave propagation model. This article discusses some sequen-
tial (recursive, iterative, and based on distance) and parallel methods
(frontier exchanging, domain decomposition changing, private environ-
ments, and mutex-based) to implement it. The mixing between these
sequential and parallel methods is also shown, and the performance
of some of them on two shared-memory parallel architectures is intro-
duced.

Stéphane Vialle and Eugen Dedu. Long parallel algorithm design
vs. quick parallel implementation. In Proceedings of European Work-
shop on OpenMP (EWOMP), pages 145-150, Edinburgh, Scotland,
UK, Sept. 2000.

Abstract: Some applications have a parallel natural algorithm well
adapted to modern MIMD parallel computers, while others seem at
first look to be sequential and need a parallel algorithm design. In this
last case, we have to choose between doing just a parallel implementa-
tion of a poor parallel algorithm, or doing a parallel algorithmic effort
before the parallel implementation. As today it is possible to quickly
parallelize sequential source code using OpenMP, the temptation is
great to avoid to design new parallel algorithms. This paper relates
some new and previous experiences [27], and points out the difference
between parallel algorithmic and parallel implementation, and some
contributions of OpenMP.

C.2 National conference with lecture committee

[26]

Eugen Dedu. Bibliothéque paralléle pour I'implantation de systémes
multi-agent & composantes connexionnistes. In Proceedings of Rencon-
tres Francophones du Parallélisme, des Architectures et des Systémes
(RENPAR), pages 211-216, Besancon, France, June 2000. In French.
Abstract: Les réseaux de neurones, par leur généralité, peuvent ap-
porter des solutions & des problémes difficiles & caractériser. La modéli-
sation des systémes multi-agent utilise des entités qui doivent s’adapter
eux-mémes dans leur environnement, parfois inconnu. Pour essayer dif-
férents comportements des agents (réactif, cognitif), les chercheurs ont
besoin de créer rapidement leurs applications. Ces applications, qui
nécessitent parfois des tailles énormes de données, doivent étre rapides
a U'exécution, sans pour autant complexifier leur implantation. Cet ar-
ticle propose une bibliothéque pour des machines paralléles & mémoire
partagée, qui permet d’implanter simplement une catégorie de systémes
multi-agent ol les agents peuvent utiliser des réseaux de neurones dans
leur comportement cognitif. L’accent est mis sur les problémes posés
a4 la parallélisation.
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Discipline: computer science, parallelism.

This thesis treats about parallel simulation of multi-agent systems (MAS), in
particular behaviours of situated agents: autonomous entities acting in an envi-
ronment. Simulation of traffic jams, people or animal populations are some of its
applications.

Nowadays, there is a lack of efficient parallel simulators of these systems, useful
to reduce the execution time of high-scale simulations. In this context, our con-
tribution is threefold: (1) provide a simulation model of high-scale MASs, called
ParSSAP, (2) do a parallel algorithmic work in MASs, and (3) provide an imple-
mentation of this model through a parallel library.

In this dissertation we start by introducing MASs, their parallelisation issues
and the state of the art in MAS simulation. Afterwards, we detail our contribution:
the simulation model we have conceived, the parallel algorithmics we have designed
in two agent percepts provided in our library (computing of vision fields and po-
tential field propagation), the documentation of our library and a few applications
together with their execution performance. Finally, we present the conclusions of
our work.

Our model and its parallel implementation are targeted to easy utilisation and
efficient execution. They may yet be enriched, nevertheless our library allows al-
ready to easily build efficient applications on modern parallel computers.

Keywords: parallelism, situated multi-agent systems, algorithmics, wave prop-
agation, performance measurement.

Discipline : informatique, parallélisme.

Nous nous intéressons dans cette thése & la simulation paralléle des systémes
multi-agent (SMA), plus particuliérement & des comportements d’agents situés : en-
tités autonomes agissant dans un environnement. La simulation du trafic routier, de
populations de personnes ou d’animaux sont quelques exemples de ses applications.

Actuellement, il y a un manque de simulateurs paralléles efficaces pour ces
systémes, qui seraient trés utiles, compte tenu des temps d’exécution pour des
simulations & grande échelle. Dans ce contexte, notre apport se divise en trois
parties : (1) fournir un modéle de simulation de SMAs & grande échelle, appelé
ParSSAP, (2) faire un travail d’algorithmique paralléle dans les SMAs et (3) fournir
une implantation de ce modéle sous la forme d’une bibliothéque paralléle.

Dans cette thése nous commencgons par introduire les SMAs, les problémes de
parallélisation qu’ils posent et I’état de ’art dans la simulation des SMAs. Nous
présentons ensuite nos travaux et apports : le modéle de simulation que nous avons
concu, ’algorithmique paralléle utilisée dans deux percepts d’agents fournis dans
notre bibliothéque (calcul des champs de visibilité et propagation des champs de
potentiel), la documentation sur notre bibliothéque et quelques applications avec
leurs performances a ’exécution. Finalement, nous présentons le bilan, positif, de
nos travaux.

Notre modéle et son implantation paralléle sont destinés & une utilisation facile
et & des exécutions efficaces. Ils peuvent encore étre enrichis, néanmoins notre biblio-
theéque permet déja de construire rapidement des applications efficaces & I'exécution
sur des machines paralléles modernes.

Mots-clé : parallélisme, systémes multi-agent situés, algorithmique, propaga-
tion par vagues, mesure de performances.



