G. Agez, Effets du bruit et d'un flot transverse sur les instabilités spatio-temporelles dans un système optiquè a cristaux liquides, 2005.

L. S. De, B. Alves, R. M. Cotta, and J. Pontes, Stability analysis of natural convection in porous cavities through integral transforms, Int. J. Heat Transfer, vol.45, issue.6, pp.1185-1195, 1999.

W. Appel, Mathématiques pour la physique et les physiciens, 2002.

I. S. Aranson and L. Kramer, The world of the complex Ginzburg-Landau equation, Reviews of Modern Physics, vol.74, issue.1, pp.99-143, 2002.
DOI : 10.1103/RevModPhys.74.99

M. Azaiez, M. Dauge, and Y. Maday, Spectral methods applied to porous media, East- West Num, Math, vol.2, pp.91-105, 1994.

K. L. Babcock, G. Ahlers, and D. S. , Noise amplification in open Taylor-Couette flow, Physical Review E, vol.50, issue.5, pp.3670-3691, 1994.
DOI : 10.1103/PhysRevE.50.3670

A. Batoul, H. Khallouf, and G. Labrosse, Une méthode de résolution directe (pseudospectrale ) duprbì eme de Stokes 2D/3D instationnaire. ApplicationàApplication`Applicationà la cavité entrainée carrée, C.R. Acad.Sci.Paris,t.Série II, vol.319, pp.1455-1461, 1994.

J. Bear, Dynamics of Fluids in Porous Media, Soil Science, vol.120, issue.2, 1972.
DOI : 10.1097/00010694-197508000-00022

C. Bender and S. Orsag, Advance mathematical methods for scientists and engineers, 1978.

P. A. Bois, IntroductionàIntroduction`Introductionà la mécanique théorique des fluides, 2000.

J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2000.
DOI : 10.1007/978-3-642-83876-7

H. R. Brand, R. J. Deissler, and G. Ahlers, Simple model for the B??nard instability with horizontal flow near threshold, Physical Review A, vol.43, issue.8, pp.4262-4268, 1991.
DOI : 10.1103/PhysRevA.43.4262

R. J. Briggs, Electron-Stream interaction with Plasmas, Research Monograph, 1964.

H. C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Flow, Turbulence and Combustion, vol.15, issue.1, pp.27-34, 1947.
DOI : 10.1002/andp.19063240204

C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods in fluid dynamics, 1988.
DOI : 10.1007/978-3-642-84108-8

P. Carrì-ere and P. A. Monkewitz, Convective versus absolute instability in mixed Rayleigh???B??nard???Poiseuille convection, Envelope equations for the Rayleigh- Bénard-Poiseuille system. Part1, Spatially homogenous case, pp.243-262153, 1999.
DOI : 10.1017/S0022112098004145

P. Carrì-ere, A. Bottaro, and P. Metzener, Wavelength selection in Rayleigh-Bénard convection between horizontal boundaries of finite conductivity, Eur. J. Mech/ B. Fluids, vol.16, pp.483-508, 1997.

B. Chabat, IntroductionàIntroduction`Introductionà l'analyse complexe, 1990.

H. Chaté and P. Manneville, Phase diagram of the two-dimensional complex Ginzburg-Landau equation, Physica A: Statistical Mechanics and its Applications, vol.224, issue.1-2, pp.348-368, 1996.
DOI : 10.1016/0378-4371(95)00361-4

J. M. Chomaz and A. Couairon, Against the wind, Physics of Fluids, vol.11, issue.10, pp.2977-2983, 1999.
DOI : 10.1063/1.870157

J. M. Chomaz, Fully nonlinear dynamics of parallel wakes, Journal of Fluid Mechanics, vol.495, pp.57-75, 2003.
DOI : 10.1017/S0022112003006335

URL : https://hal.archives-ouvertes.fr/hal-01024934

T. J. Chung, J. H. Park, C. K. Choi, and D. Y. Yoon, The onset of vortex instability in laminar forced convection flow through a horizontal porous channel, International Journal of Heat and Mass Transfer, vol.45, issue.14, pp.3061-3064, 2002.
DOI : 10.1016/S0017-9310(02)00012-1

M. Combarnous, Convection naturelle et convection mixte en milieux poreux , Thèse d'´ etat, Faculté des Sciences de l, 1970.

M. Combarnous, Description du transfert de chaleur par convection naturelle dans une couche poreuse horizontalè a l'aide d'un coefficient de transfert solide-fluide, C.R

. Acad and . Sc, Paris, t. 275, Série A, pp.1375-1378, 1972.

M. Combarnous and S. A. Bories, Hydrothermal convection in satured porous media, Advaces in Hydroscience, pp.231-307, 1975.

M. Combarnous and S. A. Bories, Modelisation de la convection naturelle au sein d'une couche poreuse horizontale a l'aide d'un coefficient de transfert solide-fluide, International Journal of Heat and Mass Transfer, vol.17, issue.4, pp.505-514, 1974.
DOI : 10.1016/0017-9310(74)90027-1

C. Cossu and T. Loiseleux, On the Convective and Absolute Nature of Instabilities in Finite Difference Numerical Simulations of Open Flows, Journal of Computational Physics, vol.144, issue.1, pp.98-108, 1998.
DOI : 10.1006/jcph.1998.5990

A. Couairon and J. M. Chomaz, Absolute and convective instabilities, front velocities and global modes in nonlinear systems, Physica D: Nonlinear Phenomena, vol.108, issue.3, pp.236-276, 1997.
DOI : 10.1016/S0167-2789(97)00045-6

A. Couairon and J. Chomaz, Primary and secondary non linear global instability, Physica D, vol.123, pp.428-456, 1999.
DOI : 10.1016/s0167-2789(99)00062-7

M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Reviews of Modern Physics, vol.65, issue.3, pp.851-1112, 1993.
DOI : 10.1103/RevModPhys.65.851

H. Darcy, Les fontaines publiques de la ville de Dijon, Librairie des Corps Impériaux des Ponts et Chaussées et des Mines, 1856.

A. Delache, N. Ouarzazi, and M. C. , Structuration de la convection mixte en milieu poreux confin?? lat??ralement et chauff?? par le bas : effets d'inertie, Comptes Rendus M??canique, vol.330, issue.12, pp.885-891, 2002.
DOI : 10.1016/S1631-0721(02)01535-8

A. Delache, N. Ouarzazi, and M. , Combarnous Etude comparative des prévisions théoriques et des résultats expérimentaux de la convection mixte en milieu poreux chauffé par le bas, 16ème16`16ème Congrès Français de Mécanique, 2003.

A. Delache, N. Ouarzazi, and M. , Combarnous, Spatio-temporal instabilities of mixed convection flows in porous media heated from below : Comparison with experiments. , article soumisàsoumisà, Int. J. of Heat and Mass Transfer, 1998.

F. Dufour and M. C. , Numerical study of instability in a horizontal porous channel with bottom heating and forced horizontal flow, Physics of Fluids, vol.10, issue.9, pp.2198-2207, 1998.
DOI : 10.1063/1.869741

M. Firdaouss, J. L. Guermond, and P. L. Quéré, Nonlinear corrections to Darcy's law at low Reynolds numbers, Journal of Fluid Mechanics, vol.343, pp.331-350, 1997.
DOI : 10.1017/S0022112097005843

F. Forchheimer, Z. Wassergnengung-durch-boden, and . Vereines, Deutcher Ingnieure, XXXXV, 49 p, pp.1736-1741, 1901.

K. Fujimura and R. E. Kelly, Mixed mode convection in an inclined slot, Journal of Fluid Mechanics, vol.122, issue.-1, pp.545-568, 1993.
DOI : 10.1016/0017-9310(73)90153-1

A. V. Getling, Rayleigh-Bénard convection, structure and dynamics, advanced series in nonlinear dynamics, World Scientific, vol.11, 1998.

R. C. Givler and S. A. Altobelli, A determination of the effective viscosity for the Brinkman???Forchheimer flow model, Journal of Fluid Mechanics, vol.5, issue.-1, pp.355-370, 1994.
DOI : 10.1016/0017-9310(90)90015-M

P. Gondret, P. Ern, L. Meignin, and M. Rabaud, Experimental Evidence of a Nonlinear Transition from Convective to Absolute Instability, Physical Review Letters, vol.82, issue.7, pp.1442-1445
DOI : 10.1103/PhysRevLett.82.1442

P. Haldenwang, G. Labrosse, S. Abboudi, and M. , Chebyshev 3-D spectral and 2-D pseudospectral solvers for the Helmholtz equation, Journal of Computational Physics, vol.55, issue.1, pp.115-128, 1984.
DOI : 10.1016/0021-9991(84)90018-4

C. W. Horton and F. T. Rogers, Convection Currents in a Porous Medium, Journal of Applied Physics, vol.16, issue.6, pp.367-370, 1945.
DOI : 10.1063/1.1707601

P. Huerre and P. A. Monkewitz, Local and Global Instabilities in Spatially Developing Flows, Annual Review of Fluid Mechanics, vol.22, issue.1, pp.473-537, 1990.
DOI : 10.1146/annurev.fl.22.010190.002353

P. Huerre and M. Rossi, Hydrodynamic instbilities in open flows, In : Hydrodynamics and nonlinear instabilities, 1998.

A. Joulin and M. N. Ouarzazi, Mixed convection of a binary mixture in a porous media, C .R. Acad. Sci. Paris., série II b, vol.328, pp.311-316, 2000.

A. Joulin, Instabiité convectives et absolues d'un mélange binaire en convection mixte dans un milieu poreux, Thèse de Doctorat de l'Université des Sciences et Technologie de Lille, 2001.

Y. Kato and K. Fujimura, Prediction of pattern selection due to an interaction between longitudinal rolls and transverse modes in a flow through a rectangular channel heated from below, Physical Review E, vol.62, issue.1, 2000.
DOI : 10.1103/PhysRevE.62.601

E. R. Lapwood, Convection of a fluid in a porous medium, Proc. Cambridge, pp.508-525, 1948.
DOI : 10.1098/rspa.1928.0045

H. Li, R. E. Kelly, and P. Hall, Absolute instabilty of Rayleigh-Bénard convection in time-periodic shear flow, Linquist, Proceeding of Premier Congrés des Grands Barrages, pp.1273-1276, 1930.

S. Lovejoy, D. Schertzer, and P. Silas, Diffusion in one-dimensional multifractal porous media, Water Resources Research, vol.28, issue.2, pp.3283-3291, 1998.
DOI : 10.1029/1998WR900007

C. M. Marle, Ecoulement monophasique en milieu Poreux, Revue Institut Français du Pétrole, pp.1471-1509, 1967.

C. Mei and J. Auriault, The effect of weak inertia on flow through a porous medium, Journal of Fluid Mechanics, vol.2, issue.-1, pp.647-663, 1991.
DOI : 10.1016/0020-7225(79)90022-3

L. Meignin, Formation et dynamique de vague en cellule de Helle-Shaw, Thése, 2001.

N. Mitarai and H. Nakanishi, Spatiotemporal Structure of Traffic Flow in a System with an Open Boundary, Physical Review Letters, vol.85, issue.8, p.1766, 2000.
DOI : 10.1103/PhysRevLett.85.1766

H. W. Müller, R. J. Tveitereid, and S. Trainoff, Rayleigh-B??nard problem with imposed weak through-flow: Two coupled Ginzburg-Landau equations, Physical Review E, vol.48, issue.1, pp.263-271, 1993.
DOI : 10.1103/PhysRevE.48.263

M. Muskat, The Flow of Homogeneous Fluids Through Porous Media, Soil Science, vol.46, issue.2, 1946.
DOI : 10.1097/00010694-193808000-00008

A. H. Nayfeh, Perturbation methods, 1973.

A. C. Newell and J. A. Whitehead, Finite bandwidth, finite amplitude convection, Journal of Fluid Mechanics, vol.39, issue.02, pp.279-303, 1969.
DOI : 10.1017/S0022112069000176

S. Nguyen and C. Delcarte, A spectral collocation method to solve Helmholtz problems with boundary conditions involving mixed tangential and normal derivatives, Journal of Computational Physics, vol.200, issue.1, pp.34-49, 2004.
DOI : 10.1016/j.jcp.2004.03.004

S. Nguyen, Dynamique d'une interface en présence d'une singularité de contact solid/fluide, Thèse de Doctorat de Paris-Sud XI, 2005.

X. Nicolas, A. Mojtabi, and J. K. Platten, Two-dimensional numerical analysis of the Poiseuille???B??nard flow in a rectangular channel heated from below, Physics of Fluids, vol.9, issue.2, pp.337-348, 1997.
DOI : 10.1063/1.869235

X. Nicolas, J. M. Luijkx, and J. K. Platten, Linear stability of mixed convection flows in horizontal rectangular channels of finite transversal extension heated from below, International Journal of Heat and Mass Transfer, vol.43, issue.4, pp.589-610, 2000.
DOI : 10.1016/S0017-9310(99)00099-X

URL : https://hal.archives-ouvertes.fr/hal-00695287

X. Nicolas, Revue bibliographique sur les ??coulements de??Poiseuille???Rayleigh???B??nard : ??coulements de convection mixte en conduites rectangulaires horizontales chauff??es par le bas, International Journal of Thermal Sciences, vol.41, issue.10, pp.961-1016, 2002.
DOI : 10.1016/S1290-0729(02)01374-1

M. N. Ouarzazi, A. Joulin, P. A. Bois, and J. K. Platten, Soret Effect and Mixed Convection in Porous Media, Lecture Notes in Phys, vol.584, pp.428-447, 2002.
DOI : 10.1007/3-540-45791-7_20

M. T. Ouazzani, J. K. Platten, and A. Mojtabi, Etude exp??rimentale de la convection mixte entre deux plans horizontaux ?? temp??ratures diff??rentes???II, International Journal of Heat and Mass Transfer, vol.33, issue.7, pp.1417-1427, 1990.
DOI : 10.1016/0017-9310(90)90039-W

R. Peyret, Spectral method for incompressible viscous flow, 2002.
DOI : 10.1007/978-1-4757-6557-1

A. N. Posadas, D. Giménez, R. Quiroz, and R. Protz, Multifractal Characterization of Soil Pore Systems, Soil Science Society of America Journal, vol.67, issue.5, pp.1361-1369, 2003.
DOI : 10.2136/sssaj2003.1361

M. Prats, The effect of horizontal fluid flow on thermally induced convection currents in porous mediums, Journal of Geophysical Research, vol.2, issue.20, pp.4835-4838, 1967.
DOI : 10.1029/JZ071i020p04835

M. Quintard and S. Whitaker, One- and Two-Equation Models for Transient Diffusion Processes in Two-Phase Systems, Advances in Heat Transfer, vol.23, pp.369-464, 1993.
DOI : 10.1016/S0065-2717(08)70009-1

A. P. Radli´nskiradli´nski, E. Z. Radli´nskaradli´nska, M. Agamalian, G. D. Wignall, P. Lindner et al., Fractal Geometry of rocks, Phys. Rew. Letters, vol.82, 1999.

M. H. Rahimian and A. Pourshaghaghy, DIRECT SIMULATION OF FORCED CONVECTION FLOW IN A PARALLEL PLATE CHANNEL FILLED WITH POROUS MEDIA, International Communications in Heat and Mass Transfer, vol.29, issue.6, pp.867-878, 2002.
DOI : 10.1016/S0735-1933(02)00376-7

D. A. Rees, The effect of inertia on the onset of mixed convection in a porous layer heated from below, International Communications in Heat and Mass Transfer, vol.24, issue.2, pp.277-283, 1997.
DOI : 10.1016/S0735-1933(97)00013-4

D. A. Rees and A. Postelnicu, The onset of convection in an inclined anisotropic porous layer, International Journal of Heat and Mass Transfer, vol.44, issue.21, pp.4127-4138, 2001.
DOI : 10.1016/S0017-9310(01)00055-2

F. Reinhardt and H. Soeder, Atlas des mathématiques, 1997.

E. Sanchez-palencia, Comportements local et macroscopique d'un type de milieux physiques heterogenes, International Journal of Engineering Science, vol.12, issue.4, pp.331-351, 1980.
DOI : 10.1016/0020-7225(74)90062-7

E. Sanchez-palencia, Non-homogeneous media and vibration theory , Lectures Notes in Physics, 1980.

L. Segel, Distant side-walls cause slow amplitude modulation of cellular convection, Journal of Fluid Mechanics, vol.21, issue.01, pp.203-235, 1969.
DOI : 10.1063/1.1691940

I. Sezai, Flow patterns in a fluid-satured porous cube heated from below, J. Fluid Mech, vol.523, pp.392-410, 2005.

A. E. Sheidegger, the phyics of flow through porous media, 1960.

E. Skjetne and J. L. Auriault, New insights on steady, non-linear flow in porous media, European Journal of Mechanics - B/Fluids, vol.18, issue.1, pp.131-145, 1999.
DOI : 10.1016/S0997-7546(99)80010-7

C. L. Street and M. G. Macaraeg, Spectral multi-domain for large-scale fluid dynamic simulations, Applied Numerical Mathematics, vol.6, issue.1-2, pp.123-139, 1989.
DOI : 10.1016/0168-9274(89)90058-5

M. Tveitereid and H. W. Müller, Pattern selection at the onset of Rayleigh-B??nard convection in a horizontal shear flow, Physical Review E, vol.50, issue.2, pp.1219-1226, 1994.
DOI : 10.1103/PhysRevE.50.1219

R. Q. Twiss, Propagation in Electron-Ion Streams, Physical Review, vol.88, issue.6, pp.1392-1407, 1952.
DOI : 10.1103/PhysRev.88.1392

S. Whitaker, ADVANCES IN THEORY OF FLUID MOTION IN POROUS MEDIA, Industrial & Engineering Chemistry, vol.61, issue.12, pp.12-15, 1969.
DOI : 10.1021/ie50720a004

H. Ward, M. N. Ouarzazi, M. Taki, and P. Glorieux, Influence of walkoff on pattern formation in nondegenerate optical parametric oscillators, Physical Review E, vol.63, issue.1, p.16604, 2000.
DOI : 10.1103/PhysRevE.63.016604

J. C. Wodie, ContributionàContribution`Contributionà l'etude des milieux poreux par la méthode de l'homogénéisation : filtration non linéaire, milieux fissurés, Thèse, 1992.