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Prof. Alessandro E. P. Villa, Codirecteur de thèse
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The spike train, i.e. the sequence of the action potential timings of a single unit (i.e. a

single neuron in most cases), is the usual data that is analyzed in electrophysiological record-

ings for the description of the firing pattern which is supposed to characterize a certain type

of cell. The statistical distribution of the interspike intervals (ISI) is a first order statistics

that is often provided in experimental studies. However, its interpretation is far from being

trivial and could reveal interesting phenomena associated to the underlying network activity.

We present the results obtained describing the firing activity of a small network of neurons

with a mathematical jump diffusion model. That is the membrane potential as a function

of time is given by the sum of a stochastic diffusion process and two counting processes that

provoke jumps of constant sizes at discrete random times. Different distributions are consid-

ered for such processes: jump processes with inter-events Exponentially and Inverse Gaussian

distributed, Wiener and Ornstein Uhlenbeck diffusion processes. Moreover we consider two

configuration of the small network: open circuit and close circuit. Two main results emerge.

The first one is that interspike intervals (ISI) histograms show more than one peak (multi-

modality) and exhibit a resonant like behavior. This fact suggests that in correspondence of

each mode (i.e. the lag of the maxima) the cell has a higher probability of firing such that the

the lags become characteristic times of the cell which could be modulated under physiological

conditions. The second main result concerns the role of inhibition in neuronal coding. Indeed

we show that the inhibitory inputs may facilitate the transmission of the spikes generated by

the excitatory unit. This fact suggests that inhibitory cells are not only involved in keeping

balanced the excitability of the cell but that they may also play a key role in the information

process.

The simulation of such kind of models requires to evaluate the first passage time through

a threshold of a stochastic process. In this framework arises the necessity to improve classical

algorithms with the evaluation of bridge process crossing probabilities. So that the second



part of this manuscript is dedicated to a purely theoretical study on multidimensional bridge

processes associated to a regular diffusion process. The SDE fulfilled by the conditioned

process is written, starting from the SDE giving the process on which the bridge is built.

Two methods to have a version of the solution of the SDE giving the bridge are explored,

i.e. the space time transformations and the conditioning of the solution of a suitable second

order SDE with Dirichlet boundary conditions.
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Les enregistrements électrophysiologiques extracellulaires permettent d’obtenir le soi-

disant “train de spikes”, c’est à dire la série temporelle des potentiels d’action d’un neurone,

qui est supposée être l’une des caractéristiques fonctionnelles de l’activité neuronale. La dis-

tribution des intervalles entre deux décharges neuronales successives (ISI) est une statistique

du premier ordre couramment utilisée dans les études expérimentales électrophysiologiques.

Cependant, son interprétation est loin d’être banale et pourrait indiquer des phénomènes

intéressants associés à l’activité fondamentale du réseau. Afin de mieux comprendre cette

statistique, ce travail présente les résultats obtenus par l’étude de l’activité d’un micro réseau

neuronal décrit par des équations mathématiques du type “saut-diffusion”. La variation

du potentiel membranaire du neurone en fonction du temps est donné par la somme d’un

processus stochastique de diffusion et de deux processus de point, qui provoquent des sauts

d’amplitude constante à des temps aléatoires discrets. Différentes distributions sont con-

sidérées pour ces processus: processus de saut avec inter-événements distribués exponentielle-

ment ou par une fonction gaussienne inverse, processus de diffusion de Wiener ou d’Ornstein

Uhlenbeck. Nous considérons aussi deux configurations de micro réseau: réseau ouvert ou

réseau fermé, c’est à dire avec rétroaction du processus résultant sur les processus générateurs.

Ce travail fait ressortir deux résultats principaux. Le premier est que les histogrammes des

ISI montrent plusieurs maxima et un comportement de type résonnant. En correspondance

de chaque maximum la cellule a une probabilité plus élevée de se décharger, de manière que les

latences des pics d’histogrammes représentent des temps caractéristiques de la cellule pouvant

être modulés par diverses conditions physiologiques. Le deuxième résultat principal concerne

le rôle de l’inhibition dans le codage neuronal. Nous avons démontré que, sous certaines

conditions, les afférences inhibitrices peuvent faciliter la transmission des potentiels d’action

propagés par les connexions excitatrices. De ce fait l’on déduit que les cellules inhibitrices

ne doivent pas seulement être considérées pour leur rôle équilibreur vis-à-vis de l’excitabilité



générale des neurones mais également pour le rôle qu’elles peuvent jouer dans le traitement

et le codage de l’information neuronale.

La simulation de ce type de modèles exige l’évaluation du temps de premier passage par le

seuil d’un processus stochastique. Dans ce cadre surgit la nécessité d’améliorer les algorithmes

classiques avec l’évaluation des probabilités de croisement du seuil par un processus “bridge”,

correspondant au processus de diffusion simulé. La deuxième partie de ce manuscrit est dédiée

à une étude purement théorique sur les processus bridge multidimensionnels associés à un

processus de diffusion régulier. Nous écrivons l’équation stochastique différentielle satisfaite

par le processus bridge et proposons deux méthodes alternatives pour trouver une version de

la solution dans le cas bidimensionnel. Toutes les méthodes présentées sont illustrées avec

l’exemple du processus du mouvement brownien intégré.
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Universitè Joseph Fourier



CHU Grenoble Pavillon B

BP 217 38043 Grenoble cedex 9, France.

Expert

Dr. ssa Patricia Duchamp-Viret

Laboratoire de Neurosciences et Systémes Sensoriels
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RÉSUMÉ

Comprendre le fonctionnement du cerveau est l’un des défis scientifiques les plus importants.

Jusqu’à la fin du XIXème siècle, et au début du XXème, les scientifiques n’étaient pas encore

persuadés que le tissu cérébral était composés par des cellules. C’est le scientifique espag-

nol Santiago Ramón y Cajal, avec son remarquable travail histologique, qui convainquit la

communauté scientifique que le cerveau était constitué par des cellules, les neurones, qui sont

de véritables éléments unitaires et qui agissent l’un sur l’autre par des contacts spécialisés

appelés synapses. Aujourd’hui nous savons que le tissu du cerveau se compose de deux types

principaux de cellules, les cellules nerveuses, appelées neurones, et les cellules neurogliales,

appelées généralement glie. La glie joue un rôle important, pas encore complètement com-

pris, mais qui ne fait pas l’objet de cette étude. L’unité qui nous intéresse et qui traite

principalement la transmission du signal, est le neurone. Mais qu’est-ce que c’est un signal?

Dynamique de la membrane neuronale

Dans le système nerveux humain il est possible de trouver près de 1012 neurones car-

actérisés par une diversité morphologique et fonctionnelle extraordinaire. Cependant, comme

point de départ, nous allons décrire une cellule neuronale typique, et simplifiée, (cf. Figure

0.1), avec trois éléments fondamentaux: le corps de la cellule, appelé soma, qui est la partie de

la cellule où se trouve le noyau; les dendrites, qui sont des appendices ramifiées donnant lieu à

l’arbre dendritique, et où se produisent les contacts avec les autres cellules aux emplacements

spécialisés appelés synapses; l’axone qui est une appendice particulière et unique, avec des

branchements terminaux, par laquelle se propage le potentiel d’action. Il y a une différence

de potentiel entre l’intérieur et l’extérieur de la cellule neuronale, mais ce qui caractérise un

neurone est son excitabilité. Le courant électrique est porté par des ions, principalement le

xi



xii RÉSUMÉ

sodium (Na), le potassium (K), le calcium (Ca) et le chlorure (Cl), qui traversent la mem-

brane cellulaire dans certaines conditions. Même si les lois de la physique qui règlent les

mouvements ioniques sont simples, les propriétés électrophysiologiques caractéristiques d’une

cellule neuronale sont très complexes. La description analytique de la décharge d’une cel-

Figure 0.1. Représentation schématique d’une cellule neuronale typique.

lule neuronale porta A. L. Hodgkin et A. F. Huxley [24] à formuler les premières équations

en fonction de la concentration différentielle des conductances ioniques et des concentrations

des ions. La membrane du neurone peut être vue comme une série de capacités électriques

(dues à la double couche lipidique de la membrane cellulaire) et de résistances variables (dues

aux canaux ioniques). Une interprétation simplifiée de cette vue porta à la formulation des

modèles stochastiques à partir du modèle de Lapique et qui seront traités en détail dans le

chapitre 2. Dans ce type de modèles, à chaque fois que le potentiel de membrane atteint un

état particulier, le neurone produit un potentiel d’action, appelé spike. Cet état particulier
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est souvent représenté par un seuil du potentiel de membrane: c’est une manière très prag-

matique et pratique de traiter le problème mais ce n’est pas une description physiologique

des processus biophysiques qui règlent la génération d’un spike.

Une autre approche du problème consiste en une approche phénoménologique qui est

traitée computationellement par des modèles numériques digitaux, plutôt que analytique-

ment. Cette approche s’appuie sur des modèles neuronaux simplifiés appelés intégrateurs

tout-ou-rien (en anglais: integrate-and-fire) est s’est développée à partir du travail de Mc

Cullock et Pitts (1943) pour la simulation de réseaux neuronaux de grande taille.

Les deux approches ont chacune le pour et le contre et nous présentons dans cette thèse

quelques idées qui pourraient représenter un compromis dans le sens que les formulations

discrétisées des modèles analytiques pourraient être employées pour des simulations digitales

intensives.

Connectivité neuronale

Le potentiel d’action est produit dans une zone particulière de la membrane cellulaire, la

partie initiale de l’axone (cf. Fig. 0.1), et il est transmis dans toutes les branches de l’axone.

Les points d’interaction entre deux neurones, les synapses, sont orientés de sorte que l’on

différencie le neurone présynaptique (en anglais: le neurone trigger) et le neurone postsy-

naptique (en anglais: le neurone follower). Quand le potentiel d’action atteint la synapse, le

neurone présynaptique libère un neurotransmetteur chimique qui traverse la fente synaptique

et atteint la membrane du neurone postsynaptique où il se lie avec des récepteurs spécifiques.

Il y a plusieurs genres de récepteurs (ionique, metabotropique, etc...) qui sont caractérisés

par des temps d’activation allant de la milliseconde jusqu’à plusieurs secondes, par divers

niveaux de plasticité et par divers effets de polarisation sur la membrane postsynaptique.

L’effet de polarisation permet de distinguer les neurones en deux catégories principales: ex-

citateur (si un courant de dépolarisation, EPSP, est produit) et inhibiteur (si un courant

d’hyperpolarisation, IPSP, est produit).
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Train de spikes

Ce travail aborde l’étude du système nerveux par le biais de modèles qui génèrent des

trains de spike. Le train de spike est la sequence temporelle des potentiels d’action produits

par une seule unité, habituellement un neurone. Les techniques expérimentales récentes ont

évolué vers l’enregistrement de l’activité neuronale par des électrodes multiples permettant

d’obtenir des séries temporelles multivariées correspondant aux trains de spike provenants

de plusieurs cellules enregistrées simultanément. La répétition de ISI particuliers, au delà

de la chance estimée du hasard, observée dans les trains de spike [3], [6], [63], [64] soulève

plusieurs questions sur la signification que pourraient avoir de tels motifs temporels (en

anglais: pattern) soit en rapport avec des motifs spécifiques d’activité neuronale au sein d’un

réseau soit avec des propriétés intrinsèques propres à la membrane des cellules analysées.

Cadre du modèle adopté

Une sous-classe de pattern temporels, indiquée par les histogrammes multimodaux de la

distribution des ISI, peut être étudiée en détail avec l’aide de modèles mathématiques de la

dynamique neuronale. C’est l’approche que nous avons adopté dans cette étude. Le point

de départ ont été les modèles stochastiques de saut-diffusion. Ce type de modèles décrit le

potentiel de membrane à l’aide d’un processus de diffusion et de la somme de deux processus

de point qui provoquent des sauts d’amplitude constante à des temps aléatoires discrets. En

particulier nous avons étudié les deux modèles suivants (illustrés en détail dans le chapitre

2):

1. processus de diffusion de Wiener avec sauts;

2. processus de diffusion d’Ornstein Uhlenbeck avec sauts.

Structure de la dissertation

Le chapitre 1 introduit ce document, qui est divisé en deux sections. La première section

(qui comprend les chapitres de 2 à 5) définit les fondements mathématiques des modèles

neuromimétiques ainsi que les algorithmes utilisés pour leur simulation et pour les analyses

des résultats computationnels. La deuxième section (chapitre 6) introduit et décrit en détail

les résultats originaux obtenus dans la recherche purement mathématique des processus de
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type “bridge”. Une conclusion générale (chapitre 7) reprend les résultats principaux et permet

de comprendre les liens entre ces deux sections et les perspectives futures de ce travail.

Le chapitre 2 présente les équations mathématiques qui permettent d’analyser l’activité

d’un neurone simplifié (appelé aussi neuromime) en fonction de certains paramètres car-

actéristiques. Ces paramètres décrivent l’évolution du potentiel membranaire du neurone

à partir de deux hypothèses fondamentales. La première hypothèse est que le potentiel de

membrane fluctue en suivant une trajectoire assimilée à celle d’un processus de diffusion. La

deuxième hypothèse est qu’un certain nombre d’afférences neuronales influencent la fluctu-

ation de cette trajectoire de manière très importante de sorte à lui imposer des sauts. La

combinaison de ces deux hypothèses amène à la formulation du modèle “jump diffusion”

(saut-diffusion). La variation du potentiel de membrane, dû à la combinaison de ces proces-

sus provoque la décharge du neurone au delà d’un certain seuil. La fin de ce chapitre est

dédiée à l’interprétation biologique de ce modèle en particulier par rapport à la localisation

proximale ou distale des afférences neuronales.

Le chapitre 3 introduit l’algorithme de simulation étudié pour approcher la discrétisation

du processus “jump diffusion” (saut-diffusion) introduit dans le chapitre précédent. Cet

algorithme se base sur les techniques connues pour simuler les processus de diffusion à partir

de l’équation stochastique differentielle qu’ils vérifient. La présence des processus de saut et

les problèmes liés à la surestimation du temps de premier passage requient l’utilisation de

nouvelles techniques ici décrites.

Le chapitre 4 étudie le modèle neuronal de saut-diffusion dans lequel la diffusion est

donnée par un processus de Wiener. Nous considérons les intervalles successifs (“ISI”) entre

plusieurs décharges neuronales (“spike”). La distribution de ces intervalles est caractéristique

de la dynamique neuronale. En fonction de plusieurs paramètres du processus de Wiener nous

observons différentes classes de distributions ISI. Nous sommes particulièrment interessés aux

distributions multimodales, qui peuvent être rapprochées à des observations expérimentales

ou neurophysiologiques. Du point de vue du modèle nous analysons les conséquences des sauts

dont la distribution des ISI suit une distribution exponentielle ou une distribution gaussienne

inverse.

Le chapitre 5 étudie le modèle de saut-diffusion dans lequel la diffusion est donnée par un

processus d’Ornstein Uhlenbeck. De manière similaire au chapitre precédent nous analysons
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ici les effets des processus de sauts dont la distribution temporelle suit une distribution ex-

ponentielle ou une distribution gaussienne inverse. Dans les deux cas nous observons des

distributions multimodales. Dans une marge restreinte de l’espace des paramètres nous ob-

servons la présence d’un phénomène nouveau, décrit ici pour la première fois. Il s’agit d’un

phénomène de type résonnant (“resonant like”) dû à la composition du processus diffusif

et des processus de saut correspondant aux afférences excitatrices et afférences inhibitrices.

Cette observation suggére que pour certaines intensités des processus de saut afférents (“bruit

de fond”) un neurone puisse participer à plusieurs assemblées de cellules (“cell assemblies”).

Le chapitre 6 étudie les processus “bridge” associés à un processus de diffusion générique.

L’analyse du temps de premier passage d’un processus de diffusion, approché par le temps

de premier sortie d’un processus discretisé, laisse une ambigüıté sur la trajectoire exacte

entre deux instants de la discrétisation. Le problème peut avoir de très graves conséquences

dans l’évaluation de la solution. Pour résoudre ce problème on écrit l’équation stochastique

differentielle satisfaite par le processus bridge. On propose deux méthodes alternatives pour

trouver une version de la solution dans le cas bidimensionnel. Les méthodes présentées sont

illustrées avec l’exemple du processus “Integrated Brownian Motion”. Une généralisation de

cette approche est indispensable à l’analyse des modèles neuronaux dans une simulation de

réseaux de grand taille.

Le chapitre 7 rappelle le cheminement qui nous a permis de passer des modèles mathéma-

tiques simples aux modèles de plus en plus compliqués pour la simulation de la dynamique

neuronale. Les principaux résultats obtenus sont rappelés sourtout à la lumière de leur in-

terprétation neurobiologique: premièrement, l’observation qu’une afférence inhibitrice peut

renforcer l’efficacité des afférences excitatrices sous certaines conditions; deuxièmement, l’ob-

servation des distributions ISI multimodales en l’absence d’afférences périodiques est parti-

culièrment importante dans la perspective des synchronisations de l’activité cerebrale. Le

dévelopement ultérieur des résultats de cette thèse, aussi bien dans le domaine des neuro-

sciences computationelles que dans les applications informatiques, est décrit avec quelques

exemples.
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Conclusions

Nous avons développé ce travail dans deux directions principales. D’une part, nous avons

étudié les modèles neuronaux stochastiques où le potentiel membranaire est décrit par un

processus de saut-diffusion. Nous avons prouvé que, bien que simples, de tels modèles peuvent

produire des dynamiques complexes et intéressantes. Nous avons concentré notre attention

sur les propriétés des patterns de décharge d’un petit réseau composé par un neurone simple et

par deux unités (cellules) afférentes. Les caractéristiques étudiées (plusieurs maxima dans les

histogrammes d’ISIs, comportement résonnant, corrélations, rôle des afférences inhibitrices)

permettent d’élargir la perspective et placer le micro réseau dans un environnement plus

grand. D’autre part, d’un point de vue purement théorique, nous avons étudié les processus

bridge multidimensionnels associés à un processus de diffusion.

L’étude du processus de diffusion de Wiener avec sauts est essentiellement préliminaire

et nous a permis de présenter et focaliser les problèmes que nous avons développé plus en

détail avec le processus d’Ornstein Uhlenbeck avec sauts. Les résultats que nous avons obtenu

montrent que la superposition de sauts change considérablement la dynamique du potentiel

membranaire. Quand les sauts sont distribués selon une distribution gaussienne inverse, les

processus de saut forcent le potentiel membranaire á des fluctuations régulieres (cf. Fig.

5.3, panneaux a–b). Avec une distribution exponentielle des événements, les processus de

saut n’ont aucune composante ni régulière ni oscillante (cf. Fig. 5.6, panneaux a–b), mais

néanmoins la composition des sauts avec le processus de diffusion, pour certaines valeurs des

paramètres, provoque des histogrammes d’ISI multimodaux. Ce résultat est particulièrement

intéressant. En correspondance de chaque maximum de l’histogramme, la cellule a une prob-

abilité plus élevée de décharger, de manière á ce que les latences des pics représentent des

valeurs caractéristiques de la cellule. Ces temps peuvent représenter la “signature” de la par-

ticipation d’un neurone à plusieurs circuits neuronaux. Ces temps pourraient être modulés

par diverses conditions physiologiques et donner lieu à des phénomènes résonnants que nous

avons mis en évidence avec les simulations.

Les autres résultats que nous avons obtenu sur l’étude du modèle neuromimétique mettent

en évidence le rôle de l’inhibition dans le codage neuronal. En effet nous prouvons que

l’inhibition peut aider à la transmission du signal excitateur (cf. Fig. 5.6, panneau d). Ce

fait suggère que les cellules inhibitrices ne sont pas seulement impliquées dans la conservation
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de l’équilibre entre excitation et inhibition mais qu’elles peuvent aussi également jouer un

rôle important dans le traitement de l’information.

Nous avons aussi travaillé au traitement mathématique des processus bridge associés à un

processus de diffusion. Nous avons obtenu des résultats purement théoriques que nous voudri-

ons appliquer aux problèmes de simulation de temps de premier passage. Les algorithmes

utilisés pour simuler le premier passage d’un processus stochastique (c’est à dire la formula-

tion mathématique que nous avons adopté pour trouver les temps de décharge d’un neurone

avec le potentiel membranaire modelé par un processus stochastique) permettent d’obtenir

des approximations discrètes des trajectoires du processus simulé; à chaque étape les algo-

rithmes évaluent si le nouveau point se trouve au delà du seuil. Cette procédure provoque

le manque de détection des croisements possibles entre deux points successifs simulés. Nous

ne pouvons pas observer de telles occurrences puisque nous ignorons la trajectoire exacte

entre deux noeuds de l’approximation discrète de la trajectoire. Ainsi, l’erreur qui peut

affecter l’estimation du temps de passage est très forte (cf. [19]). Notre travail suggère

une correction de l’algorithme en ajoutant, à chaque étape, l’évaluation de la probabilité

que le processus de bridge correspondant croise le seuil. Il faut noter que si nous traitons

de grands réseaux de neurones et sommes intéressés par leur simulation, la présence d’une

erreur à chaque évaluation du temps de premier passage pourrait provoquer une erreur im-

portante sur l’activité d’une cellule qui se propagera et induirait une mauvaise interprétation

des résultats.
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RÉSUMÉ xi
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CHAPTER 1

Introduction

Résumé Le chapitre 1 introduit le présent document divisé en deux sections:
la première section (qui comprend les chapitres de 2 à 5) définit les fonde-
mentes mathématiques des modèles neuromimétiques ansi que les algorithmes
utilisés pour leur simulation et pour les analyses des résultats computation-
nels. La seconde section (chapitre 6) introduit et décrit en détail les resultats
originaux obtenus dans la recherche purement mathematique des processus
de type “bridge”. Une conclusion générale (chapitre 7) reprend les resultats
et permet de comprendre les liens entre ces deux sections et les perspectives
futures de ce travail.

Contents

1.1. Membrane dynamics 2

1.2. Neuronal connectivity 4

1.3. Spike trains 4

1.4. Framework of the adopted model 5

1.5. Structure of the dissertation 5

To understand the functioning of brain functions is one of the major scientific challenges.

Until the end of the nineteenth century, beginning of the twentieth, scientists were still

not convinced that the brain tissue was made by cells. Santiago Ramón y Cajal, with his

wonderful and massive histological work, convinced the scientific community that the brain

was constituted by cells, the neurons, that are closed units interacting each other at specialized

contacts called synapses. Nowadays we know that brain tissue is made up by two main kind

of cells, the nervous cells, called neurons, and the neuroglial cells, called glia. Glia play

important roles, not yet completely understood, which are not the goal of this study. The

1
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unit we are interested in and that mainly deals with transmission of the signal is the neuron.

When talking about nervous system often the term signal is used. But what is a signal?

1.1. Membrane dynamics

In the human nervous system it is possible to find about 1012 neurons, that exhibit ex-

traordinary morphological and functional diversities. The number of different morphological

classes of neurons in the vertebrate brain is estimated to be near 103. And that’s a lot.

However, as a starting point, we are going to describe a typical, and simplified, nerve cell (cf.

Fig 1.1), with three basic components: the cell body, usually called soma, that is the part

of the cell where the nucleus lies; the dendrites that branch several times and form treelike

structures, the dendritic tree, and where, at specialized sites called synapses, the contact with

other cells occur and the inputs arrive; the axon through which the output signal, action po-

tential, propagates to reach other cells. There’s a difference of potential between the inside

and the outside of the neuronal cell, but what characterizes a neuron is that it is excitable,

i.e. it can generate a neuronal signal both electrical and chemical. The electrical signal

is carried through the membrane by ions, mainly sodium (Na+), potassium (K+), calcium

(Ca2+) and chloride (Cl−). Even if the laws of the physics that regulate their movements are

quite simple, the whole electrophysiological properties that characterize a neuronal cell are

very complex.

The differential concentration of ions lead A. L. Hodgkin and A. F. Huxley [24] to for-

mulate the first analytical description of the discharge of a nerve cell. They give differential

equations for the membrane potential as a function of the conductances of the ions and get

to the description of successive action potentials. Moreover the neuron membrane can be

viewed as a series of capacitancies (due to the lipidic bilayer) and variable resistances (due

to the ionic channels). A simplified interpretation of this view let to formulate the stochastic

models that arise from the seminal Lapique’s model and that are treated more in details in

Chapter 2. With this kind of models, whenever the membrane dynamics reaches a particular

state, the neuron generates an action potential, called spike. It is often considered that this

particular state is represented by a threshold in the level of the membrane potential. This is a

very pragmatic and practical way to treat the problem but it is not a physiological description

of the biophysical processes that regulate the generation of a spike.



1.1. MEMBRANE DYNAMICS 3

Figure 1.1. Schematic representation of a typical nerve cell.

Another approach to the problem is to consider simplified integrate and fire (IF) neurons,

characterized by a phenomenological approach that is treated computationally rather that

analytically. This alternative approach started to develop from the seminal work from Mc

Cullock and Pitts (1943) and is the preferred approach (with refinements of the original

formulation) of large scale neuronal networks simulations.

Both approaches have pros and cons and we introduce in this thesis some ideas that could

represent a kind of compromise in the sense that discretized formulations of the analytical

models might be used for computationally intensive simulations.
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1.2. Neuronal connectivity

The action potential is generated in a particular area of the cell membrane, the initial

part of the axon (cf. Fig. 1.1), and is transmitted throughout all the branches of the axon by

means of electrotonic currents. The contact point between two neurons, called synapses, are

oriented in the way that one neuron, the trigger, acts on another neuron, the follower. The

trigger neuron is often called pre-synaptic neuron and the follower neuron is often calle post-

synaptic neuron. When the action potential reaches the synapse the pre-synaptic neuron

releases a chemical neurotransmitter that crosses the synaptic cleft and reaches the mem-

brane of the post-synaptic terminal where it binds with receptors that are specific to the

released neurotransmitter. There are many kind of receptors (ionic, metabotropic) which are

characterized by time courses from milliseconds to seconds, by various levels of plasticity and

by the polarizing effects on the post-synaptic membrane. This polarizing effect divides nerve

cells into two main categories: excitatory (if a depolarizing current, EPSP, is generated after

the neurotransmitter binds with the receptor) and inhibitory (if an hyperpolarizing current,

IPSP, is generated after the neurotransmitter binds with the receptor).

1.3. Spike trains

We face the study of the nervous system, from a modelling point of view, through the

analysis of the so called spike trains. The spike train is the time series corresponding to the

times of occurrence of the action potentials generated by a single unit, that usually corre-

sponds to one neuron. Experimental setups are often aimed to record single unit activity from

one electrode such that the statistics of spike trains analysis is usually limited to descriptive

values such as the mean firing rate. Most recent experimental techniques evolved towards

the recording of neuronal activity by means of multiple electrodes that yields multivariate

time series of simultaneously recorded spike trains. Particular attention has been given to

recurrence of preferred time intervals above chance expectancy observed in spike trains under

various experimental conditions [3], [6], [63], [64]. This observation raises several questions

about the significance of such temporal patterns which may reflect either the existence of spe-

cific activity patterns sustained by specific neural connectivity or intrinsic activity patterns

of the cell membrane. In order to understand the relation between the inputs to a neuron

and the spike train it generates it would be idea to record from the axon of one neuron the
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succession of action potential elicited by the cell and to know as well all the inputs incoming

to the cell body. Actually this is not an achievable task and spike trains can be obtained from

experimental extracellular recordings of neurons activity. But also from artificial neuromimes

either modelled by mathematical functions or from electronic artifacts.

1.4. Framework of the adopted model

A subclass of temporal patterns, revealed by multimodal inter-spike interval (ISI) dis-

tribution histograms, can be investigated in detail by mathematical modelling of neuronal

dynamics. This is the approach we adopted in the study here presented. The starting point

has been the jump diffusion type stochastic models. Such kind of models describe the mem-

brane potential in time as a diffusion process (continuous in time and in the state space) with

the sum of two counting processes that provoke jumps of constant sizes at random times. In

particular we studied the two following models (illustrated in detail in Chapter 2):

1. Wiener process with jumps, i.e. a stochastic perfect integrator with jumps model;

2. Ornstein Uhlenbeck process with jumps, i.e. a stochastic leaky integrator with jumps

model.

The study of the first model (1) begins with paper [20]. There we investigated on the

peculiarities of the model through the output frequency (f ) and the coefficient of variation

(CV), considered representative statistics of the ISI distribution. From this first work we

realized that we could proceed in the analysis of the model considering histograms of the

ISIs generated by the model. And successively with a generalization to the stochastic leaky

integrator model with jumps (2).

1.5. Structure of the dissertation

The present manuscript is divided into two parts. The first one, called Neuro-modelling,

collects the studies on neuronal models above mentioned. In Chapter 2 the stochastic perfect

and leaky integrator with jumps models are introduced and discussed in their biological

framework and Chapter 3 is devoted to the discussion of the simulation algorithms used to

write the simulative programs. The results obtained on the first model are illustrated and

discussed in Chapter 4. The results obtained on the second model are illustrated and discussed
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in Chapter 5. The second part, called Bridge Processes, collects results on a mathematical

investigation we developed and that has been inspired by simulative difficulties. This is a

fully mathematical problem we faced while working on models. As will be mentioned in

Chapters 3 and 6, bridge processes find a fundamental application in simulations of first

passage times of diffusion processes through a threshold. The work presented in Chapter 6

is a study on multidimensional bridge processes through the construction of the stochastic

differential equation (SDE) fulfilled by the bridge. Two methods to characterize the bridge

process are given. The first one looks for time-space transformations that give a version of the

solution of the SDE fulfilled by the bridge process, while the second one is based on a suitable

conditioning of the solution of the second order SDE with Dirichlet type boundary condition

appropriately written. The aim of this study is to develop methods to find analytical results

on general bridge process with the intent to apply them to first passage time simulation

problems. We give a final discussion and conclusion in Chapter 7. We decided not to write

a Chapter dedicated to the mathematical background necessary to develop the works here

presented. We will give references to the books and articles that hold the widenings and

prerequisites useful for a better readability.

The work illustrated in this manuscript has been developed in strict collaboration be-

tween the Department of Mathematics of the University of Torino (Italy) and the Laboratoty

of Preclinic Neurosciences of the University Joseph Fourier, Grenoble (France). The cooper-

ation between mathematicians, electrophysiologists and computer scientists as well, lead to

approach to the problem from different points of view. The exchange of knowledge and the

necessity to find a common statement of the problem, made the study particularly stimulat-

ing. The biological interpretation of the models and the reinterpretation of the results in a

suitable biological framework are the outcome of a in-depth study, a continuous dialog and

edifying discussions between all the parts. And the analysis of the stochastic leaky integrator

with jumps model illustrated in Chapter 5 is representative of this effort.



CHAPTER 2

Neuronal models

Résumé Le chapitre 2 présente les équations mathématiques qui permet-
tent d’analyser l’activité d’un neurone simplifié (appelé aussi neuromime) en
fonction de certains paramètres caractéristiques. Ces paramètres décrivent
l’evolution du potentiel membranaire du neurone à partir de deux hypothèses
fondamentales. La première hypothèse est que le potentiel de membrane
fluctue en suivant une trajectoire assimilée à celle d’un processus de diffu-
sion. La deuxième hypothèse est qu’un certain nombre d’afférences neuronales
influencent la fluctuation de cette trajectoire de manière très importante de
sorte à lui imposer des sauts. La combinaison de ces deux hypothèses amène
à la formulation du modèle “jump diffusion” (saut-diffusion). La variation
du potentiel de membrane, dû à la combinaison de ces processus provoque
la décharge du neurone au delà d’un certain seuil. La fin de ce chapitre est
dédiée à l’interprétation biologique de ce modèle en particulier par rapport à
la localisation proximale ou distale des afférences neuronales.

Contents

2.1. Stochastic Neuronal models 8

2.1.1. The early models 9

2.1.2. Jump diffusion models 13

2.2. Biological interpretation of the models 16

In this Chapter we introduce the two neuronal models we studied during this Ph. D.

thesis. After a brief introduction to stochastic neuro-models, we will derive the equations

of the two jump-diffusion models we analyzed. Next we discuss the model from a biological

point of view, to underline the motivations that lead us to study such kind of models and to

introduce the framework in which the results will be interpreted and discussed.

7
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2.1. Stochastic Neuronal models

There are two main classes of neuronal models. Deterministic models and stochastic

models. The first ones make use of differential equations (with a threshold condition), or

systems of differential equations, to describe the answer of the neuronal cell given an input

current (cf. [66] and [67] for a review). For example, one of the simplest deterministic models

is the so called Lapique model, that represents the single neuron as an equivalent electrical

circuit made up by a resistance R and a capacitance C in parallel. Thus the evolution in

time of the difference of potential across the cell membrane, V = V (t), satisfies the following

equation

C
dV (t)

dt
+

V (t)

R
= I(t), (2.1.1)

where t ≥ 0, V (0) = v0, I = I(t) is the input current and V < S with S the threshold.

An action potential is generated when V (t) reaches the threshold S. Given the functional

expression of the current I the sequence of times of occurrence of the spikes is uniquely

determined and always the same. This is a deterministic model.

Beside this family of models, the stochastic models have been introduced. There are

many and different reasons that may lead to conclude that deterministic models could be

inadequate to describe the neuronal activity. First of all let us remark that usually the input

current to the cell is not known. It is the (non linear) sum of all the inputs coming from the

other neurons that have synapses on the dendritic tree of the considered cell. It seems difficult

to give a mathematical expression of such a complex phenomena with a deterministic function

of the time. We have to consider as well that many cells produce spontaneous activity, i.e.

in absence of a stimulation coming from other cells. In the early ’50s Fatt and Katz observed

small random depolarizing potentials in the end-plate region of frog muscle fibers [16], [14].

They called them miniature end-plate potentials (m.e.p.p.) and showed that they occurred

with “quantal” behavior, i.e. as multiples of a “quantum” quantity, and as random release of

packets of neurotransmitters from synaptic vesicles, with mean rate from 1 to 100 per second.

Moreover even in steady conditions small fluctuations in the membrane potential have been

observed. These fluctuations are attributed to the continuous movement of the ions across

the cellular membrane, due to the Brownian motion of the particles and to the changes in the

conductance of the membrane as a consequence of the opening and closing of the ion channels.

All the above described evidences of random behaviors cannot be properly described by a
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deterministic mathematical function and drove mathematical neuronal modelling to make use

of probabilistic tools. That is the membrane potential is described by means of a probabilistic

law that allows to calculate the probability that at time t it attains a value in a given interval.

In a stochastic model the membrane potential at time t, Vt, will be a random variable and

the evolution of the membrane potential in time will be a stochastic process V = {Vt, t ≥ 0}.

The mathematical description of the firing times of a neuron takes the form of a first

passage time problem. That is we suppose that when the potential crosses a fixed threshold

level above the resting potential the neuron fires and gives an output spike. After an action

potential is emitted, the cell comes back to its resting potential and only when the membrane

potential will reach again the threshold another action potential will be fired. The output

of a neuron is the sequence of firings and the time of occurrence of an spike is given by the

random variable

T = inf{t ≥ 0 | Vt ≥ S}, V0 < S, (2.1.2)

that is the so called first passage time (FPT) of the stochastic process V across the threshold

S. When the process V is not continuous in time, we will call T first exit time (FET) from

the strip (−∞, S).

 -4

 -2

0

2

time  [ms]

S

X
  
 [
m

V
]

t T

Figure 2.1. First passage time T (cf. eq. (2.1.2)) through the constant threshold S of
a sample path of a general diffusion process X = {Xt, t ≥ 0}.

2.1.1. The early models. The starting point of the stochastic modelling of neuronal

cells is the assumption that the difference of potential across the cell membrane varies accord-

ing to the inputs the cell receives from its dendritic tree. Thus an excitatory post synaptic
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potential (EPSP) induces a depolarization of the membrane potential and an inhibitory post

synaptic potential (IPSP) causes an hyperpolarization of the membrane potential. Moreover

let us suppose that EPSPs and IPSPs arriving to the neuron are instantaneous and that they

provoke a constant jump (positive or negative) in the membrane potential. So that EPSPs

and IPSPs result completely determined by the time they occur and by the amplitude of the

jump they provoke in the trajectory of the process describing the evolution of the membrane

potential. It means that their occurrences can be described mathematically via two counting

processes. Considering that the cell receives many inputs coming from all the neurons that

have a synapse on its dendritic tree, the simplest equation we can write is the following:

V
(1)
t = Vrest +

∑

j

V +,j
t +

∑

k

V +,k
t , (2.1.3)

where V (1) = {V (1)
t , t ≥ 0}, the membrane potential at time t, is a stochastic process contin-

uous in time, Vrest is the resting potential, V +,j = {V +,j
t , t ≥ 0} and V −,k = {V −,k

t , t ≥ 0}
∀j, k ∈ N are counting processes that at time t give the number of events (EPSPs and IPSPs

respectively) occurred in the depolarization and hyperpolarization procesesses. Note that,

for the sake of simplicity, in eq. (2.1.3) the amplitude of the jumps in the trajectory of the

membrane potential due to incoming EPSPs and IPSPs is considered unitary.

If the number of superimposed counting processes is sufficiently large, use can be made

of results (cf. [54] and [29]) stating that, under suitable assumptions (like the stationarity

of the superimposed sequences and bounded spike rate of the pooled sequence), it is possible

to approximate the sum of such processes with a Poisson process. That is it is possible to

approximate process V (1) with process V (2) = {V (2)
t , t ≥ 0} given by

V
(2)
t = Vrest + a+N+

t + a−N−
t , (2.1.4)

where the processes N+ = {N+
t , t ≥ 0}, N− = {N−

t , t ≥ 0} are two independent Poisson

processes of parameters λ+ and λ− respectively and with N+
0 = N−

0 = 0 that approximate

the sums in eq. (2.1.3) and a+ > 0 and a− < 0 are the amplitudes of the change of the

membrane potential due to an incoming EPSP or IPSP respectively.

If the following hypothesis are introduced, a+, a− → 0 and λ+, λ− → ∞ such that

a+λ+ + a−λ− → µ

a2
+λ+ + a2

−λ− → σ2 (2.1.5)
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eq. (2.1.4) can be approximated with a Wiener process with drift (cf. [67]). That is process

V (2) can be approximated by the diffusion process V B = {V B
t , t ≥ 0} solution of the following

stochastic differential equation (SDE)

dV B
t = µdt + σdWt

V B
0 = Vrest, (2.1.6)

where µ is the drift coefficient, σ > 0 is the diffusion coefficient and W = {Wt, t ≥ 0}
is a standard Brownian motion. Process V B is continuous in time with trajectories that

are continuous functions of the time, thus possible to study analytically, since the difference

equations that arise when handling discrete time process are here substituted with differential

equations that are easier to solve. This model has been introduced at first by Gerstein and

Mandelbrot in [18]. They studied the statistical properties of spontaneously occurring spike

trains from single neurons, such as the inter-spike interval (ISI) distribution and the joint

distribution of successive ISIs, with the intention to give a mathematical model with first

passage time distributions well fitting with recorded data. They introduced the random walk

model, i.e. a standard Brownian motion. To obtain a better agreement between data and

model they corrected it with the random walk model with drift, i.e. the Brownian motion

with drift given by eq. (2.1.6). This way they obtained a good fit of a wide variety of

neurophysiological observations. The main advantage gained using the random walk model

with drift is that the distribution of the first passage time through a constant threshold is

analytically calculated. Named g the probability density function of the random variable first

passage time (2.1.2) of the process (2.1.6) through the constant threshold S, it is given by

g(x; a, b) =

√

b

2π
x−3/2 exp

[

−b(x − a)2

2a2x

]

, x > 0, (2.1.7)

where a = |S − Vrest|/µ and b = (S − Vrest)
2/σ2, i.e. it is Inverse Gaussian distributed

IG(a, b). However the model can be improved. As Gerstein and Mandelbrot remarked in their

paper, this model is “a gross oversimplification that does not take into account the complex

geometry of the neuron membrane and the complicated distribution of synaptic knobs [45]”.

Such complexity can be partially recovered in the discrete model (2.1.4) considering that both

EPSPs and IPSPs incoming to the cell provoke different jumps in the membrane potential

according to the strength of the synapse connecting the two neurons, so that the membrane
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potential is described by the process V (3) = {V (3)
t , t ≥ 0} defined by

V
(3)
t = Vrest +

∑

j

aj
+N+,j

t +
∑

k

ak
−N−,k

t , (2.1.8)

where N+,j and N−,j , ∀j, k ∈ N are independent Poisson process with parameters λ+,j and

λ−,k respectively and aj
+ and ak

−, ∀j, k ∈ N are the amplitudes of the jumps in the membrane

potential due to EPSPs and IPSPs reaching the cell.

In 1965 Stein [62] introduced a further improvement in the discrete model of a single

neuron (2.1.8), saying that the underthreshold membrane potential could be modelled with

the stochastic process V (4) = {V (4)
t , t ≥ 0} given by

dV
(4)
t = −1

θ
V

(4)
t dt +

∑

j

aj
+dN+,j

t +
∑

k

ak
−dN−,k

t

V
(4)
0 = Vrest (2.1.9)

where N+,j , N−,j , aj
+ and ak

− are as in equation (2.1.8) and θ is the so called time constant

of the membrane. This model assumes that in between two successive inputs, the membrane

potential decays exponentially to its resting value. That is an electrophysiological property

of the neuron observed in recorded data [15] due to the resistive and capacitative properties

of the biological membrane (cf. eq. (2.1.1)). Model (2.1.9) is not easy to handle analyti-

cally. Methods to approximate such equation with a diffusion process have been proposed

by Kallianpur, Capocelli and Ricciardi and Lánský [25], [26], [49], [46], [12] and [33]. They

state that for aj
+, ak

− → 0 and λ+,j , λ−,k → ∞ such that

∑

j

aj
+λ+,j +

∑

k

ak
−λ−,k → µ

∑

j

(aj
+)2λ+,j +

∑

k

(ak
−)2λ−,k → σ2 (2.1.10)

the process V (4) solution of the SDE (2.1.9) converges in distribution to the process V OU =

{V OU
t , t ≥ 0} solution of the following SDE

dV OU
t =

(

−1

θ
V OU

t + µ

)

dt + σdWt

V OU
0 = Vrest (2.1.11)
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where W = {Wt, t ≥ 0} is a standard Brownian motion, µ and σ > 0 are the infinitesimal

moments of the process and θ keeps the same meaning as in eq. (2.1.9). Process V OU is the

so called Ornstein Uhlenbeck (OU) process, a Gaussian Markov diffusion process.

2.1.2. Jump diffusion models. Models (2.1.6) and (2.1.11) obtained as continuous

approximations of discrete models (2.1.4) and (2.1.9) allow, from a mathematical point of

view, to obtain more analytical results in their analysis. But it is worth to remember that

their discrete versions better describe, from a biological point of view, the neurophysiological

characteristics of the neuron. In particular Stein’s model (2.1.9) is accepted as a good descrip-

tion of the membrane potential behavior. It is important not to forget that the procedure

to approximate the discrete model with the continuous one needs the hypothesis (2.1.5) and

(2.1.10). That is it is necessary to hypothesize that the frequencies of the incoming inputs

tends to infinity, i.e. at least very very big, and that the amplitudes of the EPSPs and IPSPs

go to zero, i.e. at least very very small. Since the involved quantities have a direct biological

meaning, we cannot ignore that conditions (2.1.5) and (2.1.10) may have a consequence in

the validity and goodness of the model itself. To reach a better physiological likelihood mixed

models have been introduced, i.e. models with a part that is continuous and a part that is

discrete and that are called jump diffusion models [40].

Let us consider Stein’s model (2.1.9) and let us separate the synaptic inputs in two groups.

The first one is referred to as the strong inputs, i.e. the inputs with strong impact on the

membrane potential (a+ and a−) interpreted as a strong synaptic weight. Let us distinguish

them from all the weak inputs, i.e. with weak synaptic weight, labelled with superscript

WW . Then isolating the strong inputs from the sum of the weak inputs eq. (2.1.9) can be

rewritten as

dV
(5)
t = −1

θ
V

(5)
t dt +

∑

j

aWW,j
+ dN+,WW,j

t +
∑

k

aWW,k
− dN−,WW,k

t + a+dN+
t + a−dN−

t

V
(5)
0 = Vrest, (2.1.12)

where ∀j, k ∈ N, N+,WW,j and N−,WW,k are independent homogeneous Poisson processes of

intensities λ−,j
WW and λ+,k

WW respectively. Applying the procedure we explained for eq. (2.1.9)
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with
∑

j

aWW,j
+ λ+,j

WW +
∑

k

aWW,k
− λ−,k

WW → µ

∑

j

(aWW,j
+ )2λ+,j

WW +
∑

k

(aWW,k
− )2λ−,k

WW → σ2 (2.1.13)

we obtain the following equation describing the membrane potential evolution according to

the jump diffusion process V OUJ = {V OUJ
t , t ≥ 0}

dV OUJ
t =

(

−1

θ
V OUJ

t + µ

)

dt + σdWt + a+dN+
t + a−dN−

t

V OUJ
0 = Vrest, (2.1.14)

where µ and σ > 0 are the infinitesimal moments called drift (with no direct biological

interpretation) and diffusion coefficient (the intensity of the Brownian motion), a+ > 0

and a− < 0 are the amplitudes of the jumps in the membrane potential due to strong

excitatory (inhibitory) post-synaptic potential reaching the cell, N+ and N− are independent

homogeneous Poisson processes with N+
0 = N−

0 = 0 and θ keeps the same meaning as in eq.

(2.1.9). Eq. (2.1.14) can be rewritten in integral form as

V OUJ
t = Vrest +

∫ t

0

(

−1

θ
V OUJ

s + µ

)

ds + σWt + a+N+
t + a−N−

t . (2.1.15)

The process V OUJ is a jump diffusion process whose trajectories present discontinuities at

discrete times (determined by processes N+ and N−) and evolve as trajectories of an Ornstein

Uhlenbeck process in the time intervals where the process is continuous.

It is possible to apply the same arguments to model (2.1.8) as well, that corresponds to

Stein’s model with θ → ∞. Separating strong inputs from weak inputs and approximating

with a Wiener process with drift we obtain the following equation for the membrane potential

V WJ = {V WJ
t , t ≥ 0}

dV WJ
t = µdt + σdWt + a+dN+

t + a−dN−
t

V WJ
0 = Vrest, (2.1.16)

where µ and σ > 0 are the drift and the diffusion coefficient, a+ > 0, a− < 0, N+ and N−

are as in eq. (2.1.14). Written in integral form eq. (2.1.16) becomes

V WJ
t = Vrest + µt + σWt + a+N+

t + a−N−
t . (2.1.17)



2.1. STOCHASTIC NEURONAL MODELS 15

0 30 60 90
0

5

10

15

time  [ms]
t1 t   = T2

V
 tO

U
J

S

Figure 2.2. First passage time through the constant threshold S = 10 mV of a sample
path of the jump diffusion process V OUJ

t in (2.1.15) with µ = 0.98 mVms−1, θ = 10 ms,
σ2 = 0.05 mV2ms−1, λ+ = 30 and λ− = 20 [ev/s], a+ = −a− = 5 mV. Here t1 and t2 are
times of occurrence of a downward jump (in the process N−) and of an upward jump (in
the process N+) respectively and T is the first passage time defined in (2.1.2).

Process V WJ is a jump diffusion process whose trajectories show discontinuities at discrete

times (determined by processes N+ and N−) and evolve as trajectories of a Wiener process

with drift in the points of continuity.

We will refer to such models as OU process with jumps (2.1.14) and Wiener process

with jumps (2.1.16), naming “diffusive” the continuous parts of the processes and “discrete”

the jump processes. Furthermore we will consider as well some generalizations of equation

(2.1.17). For both the models we will examine the following modification. Besides the instance

with processes N+ and N− that are Poisson processes, we will consider that N+ and N− are

counting processes with inter events distributed according to IG distributions with parameters

(|S+|/µ+, S2
+/σ2

+) and (|S−|/µ−, S2
−/σ2

−) respectively. This way the jump processes may be

interpreted as coming from pools of neurons firing following an IG distribution (2.1.7), i.e.

whose membrane potential is modelled with a random walk model (2.1.6) as pointed out in

the previous Section. The further generalization we will study only involves model (2.1.14).

After an action potential is generated the membrane potential is reset to its resting state

value Vrest, i.e. the diffusion process V OU and the two counting processes N+ and N− are

all reset to their initial values V OU
0 = Vrest and N+

0 = N−
0 = 0. The sequence (Ti)

+∞
i=1

of successive first exit times (2.1.2) is a renewal process and n repeated simulations of the
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FETs T1, T2, ..., Tn give us a sample of n independent identically distributed random variables

representing the ISI of a single neuron. However, we consider as well the case where after a

spike the counting processes N+ and N− are not reset to their initial values N+
0 = N−

0 = 0.

Let us define Tk the k-th FET from the strip. In order to evaluate the next FET, Tk+1, the

jump processes are set to the values N+
0 = N+

Tk
and N−

0 = N−
Tk

while the diffusion process

is reset to its initial value V OU
0 = Vrest. In this case n repeated simulations of the FETs

T1, T2, ..., Tn give us a discrete time serie that is no longer a renewal process.

To summarize, in the next Chapters we will explain the results we obtained analyzing

the following models:

- Wiener process with jumps (2.1.16):

- N+ and N− Poisson processes

- N+ and N− with inter events IG distributed

- Ornstein Uhlenbeck process with jumps (2.1.14):

- with reset to V OU
0 = Vrest and N+

0 = N−
0 = 0:

- N+ and N− Poisson processes

- N+ and N− with inter events IG distributed

- with reset to V OU
0 = Vrest and N+

0 = N+
Tk

and N−
0 = N−

Tk
:

- N+ and N− Poisson processes

- N+ and N− with inter events IG distributed

2.2. Biological interpretation of the models

Models (2.1.16) and (2.1.14) describe the evolution in time of the membrane potential

(the difference of potential between inside and outside the cell body) by means of two jump

diffusion processes. That is, they include a diffusive part of the equation that defines a

diffusion process continuous in time with continuous state space and a discrete part that is

the sum of two counting processes (N+
t and N−

t ), that provokes discontinuities (i.e. jumps)

in the trajectories of the process Vt at randomly distributed times.

In this Section we try to give the motivations that lead us to study such models in order

to introduce the biological framework in which we will discuss the results. We would like

to point out that model (2.1.16) may be considered as a particular case of model (2.1.14),
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i.e. for θ → +∞. It has been for us a “simplification” and a “preliminary” study to better

approach to model (2.1.14). From a modelling point of view as well it has been recognized that

the Wiener process with drift, the so called random walk model with drift, is an excessive

simplification of neurophysiological characteristics of neurons. So that the starting point

should be Stein’s model (2.1.9), or at least its continuous counterpart, the OU process (2.1.11).

But we believe that the main limitation of such model is in the unrealistic assumptions that

have to be done to substitute eq. (2.1.9) with eq. (2.1.11). So we introduce model (2.1.14)

that considers both EPSPs and IPSPs that may have a stronger impact on the membrane

potential and a frequency that falls into biological ranges. The inputs we call weak are

summed together and approximated with the diffusion process (2.1.11), and the ones we call

strong that cannot be approximated because they not fulfil conditions (2.1.13), are treated

separately by means of the two counting processes N+
t and N−

t .

From a biological point of view the question is: where do strong inputs come from? To

explain the phenomenon let us treat separately EPSPs from IPSPs.

Figure 2.3. Distal and proximal apical dendritic stem regions. (Modified from [55]).

The strong IPSPs introduced in the model are suggested by the so called shunting inhi-

bition phenomenon (cf. [56] and [65]). Such term refers to the activation of an inhibitory

synapse that prevents coincident EPSPs to depolarize the trigger zone of the axon. As a con-

sequence of such temporal summation of the two kind of stimuli, the neuron does not generate
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an action potential. Such phenomenon is included into the model by means of strong IPSPs

provoking an abrupt hyperpolarization of the membrane potential and a consequent inability

of the cell to elicit an action potential.

As far as excitation is concerned, the stimuli we introduce into the model represent

EPSPs coming to the soma through particularly strong synapses. About the reason of such

strength we restrict here ourselves to only sketch the phenomena that can give as a result

more effective synapses. Actually, how it happens that some stimuli are stronger than others,

it’s a question that still has not a unique answer. Even more, the way a nerve cell transforms

thousands of incoming synaptic inputs into a specific pattern of action potential output still

is a non answered question. Possible biological explanations of such differences in synaptic

strength have been searched in more directions and we sketch here some of them. First

of all more realistic assumptions should separate the inputs occurring on distal dendrites,

which represent the vast majority, from the inputs on proximal dendrites or on the cell body.

Distal inputs occur on membrane sites characterized by passive conductance properties well

described by the cable theory of dendrites (cf. [45] and [51]). According to this theory the

farther from the cell body the more attenuated and slowed down will be the effects of the

post-synaptic potentials. Proximal inputs occur on membrane sites characterized by active

conductance properties. Non linear active membrane properties of proximal excitatory inputs

may produce a strong depolarization of the cell membrane either after a single large EPSP

or after temporal summation (the non linear sum of two or more EPSPs very near in time)

or spatial summation (the nonlinear sum of EPSPs very near in space) [36], [69]. In the

present study the distal inputs are labelled weak and approximated by the diffusion process

(2.1.11). The proximal inputs are labelled strong, described by the counting processes N+
t

and N−
t at frequencies that fall in the biological ranges. But recent experiments and multi-

site patch-clamp recordings from the soma and the apical dendrites of pyramidal neurons

let emerge contrasting results. In [37] it is shown that in CA1 hippocampal pyramidal

neurons the average somatic amplitude of EPSPs is independent from the apical dendrite

site of generation, whereas in [68] it is said that in layer 5 neocortical pyramidal neurons the

average somatic amplitude of EPSPs decreases as the synapse location in the apical dendritic

tree is farther. So that the question remains, in a certain sense, open and feed a heated

scientific debate [34].
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Furthermore we would like to recall the Hebbian learning theories that suggest that the

strength of a synapse is the result of the “history” of the synapse, how much and in coincidence

of which stimuli it has been activated. In particular Hebb suggested that synapses in the brain

become stronger if there is a correlation between the presynaptic and postsynaptic activities

[23]. He spoke of strengthening synapses in which the presynaptic activity slightly preceded

the postsynaptic activity. In accordance with those theories, the strong EPSP incoming to

the cell can be attributed to a synapse that, independently on its position in the dendritic

tree, increased its strength as a consequence of a learning phenomenon.

           

Open circuitClosed circuit

E I

A

E I

A

time [ms] time [ms]

Figure 2.4. The model (2.1.14) describes a small networks of neurons with a reference
unit A that receives a pool of excitatory inputs from unit E and inhibitory inputs from unit
I. (a) The circuit is closed, characterized by a feedback of A on E and I that provokes a
reset of the diffusion process and of the two jump process after each spike of unit A. (b)
The circuit is open, with no reset of the two jump processes.

Figure 2.4 illustrates the model assuming the strong inputs project on a reference unit A

from pools of excitatory E and inhibitory I units. Notice that in model (2.1.14) the process

V OUJ is reset to its initial value Vrest after each crossing of the threshold S. It means that

also the processes N+
t and N−

t are reset to their initial values N+
0 and N−

0 after each FET.

Such hypothesis is very helpful from a mathematical point of view because the sequence of

FET generated by process V OUJ is a renewal process, but it implies that neuron A has an

inhibitory feedback on units E and I and makes the circuit closed (cf. Fig. 2.4a). The

removal of the inhibitory feedback from unit A to units E and I implies that after each

crossing of the threshold, processes N+ and N− are not reset to their initial values and only

the diffusion process (2.1.11) is reset (cf. Fig. 2.4b). Under such assumptions the modelled
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circuit can be considered an open circuit, but for a mathematical treatment of the serie of

the FETs generated by the process V OUJ it is necessary to remember that it is no more a

renewal process.

To conclude we would like to remark that we are interested in the impact of strong

postsynaptic potentials on the generation of action potentials. That is to say that we believe

that there exists biological evidence of different synaptic weights and we would like to study

how the sequence of action potentials elicited by the cell is affected by that. As long as the

biological mechanism that leads to the generation of such strength, we consider the debate

open.



CHAPTER 3

Simulation Algorithms

Résumé Le chapitre 3 introduit l’algorithme de simulation étudié pour ap-
procher la discrétisation du processus “jump diffusion” (saut-diffusion) intro-
duit dans le chapitre précédent. Cet algorithme se base sur les techniques con-
nues pour simuler les processus de diffusion à partir de l’équation stochastique
differentielle qu’ils vérifient. La présence des processus de saut et les problèmes
liés à la surestimation du temps de premier passage requient l’utilisation de
nouvelles techniques ici décrites.

Contents

3.1. The algorithm 21

In this Chapter the simulation algorithm employed to calculate the trajectories of the

jump-diffusion processes, solutions of eq. (2.1.16) and (2.1.14), is introduced. The estimation

of the random variable FET from the strip (−∞, S) of such processes is based on a suitable

discrete time approximation of the trajectories, obtained modifying the techniques introduced

in [30] and adapting the method proposed in [19] to jump diffusion processes. For an in-depth

review on first passage problems approached from a theoretical point of view, we address the

reader to the paper [50] and references quoted therein. And for an outline on numerical and

algorithmic approach to first passage problems we refer to [48] and references quoted therein.

3.1. The algorithm

The simulation of the FET from a strip of a jump diffusion process introduces two main

difficulties.

21
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The first one is due to the presence of the jump processes. Indeed it is necessary to

modify the techniques proposed in [30] for the solution of a stochastic differential equation

(a diffusion process) through a discrete time approximation. Let us suppose that the process

to simulate Y = {Yt, t ≥ t0} is the solution of the generic SDE

dYt = a(t, Yt)dt + b(t, Yt)dWt

Yt0 = y0, (3.1.1)

where W = {Wt, t ≥ t0} is a standard Wiener process and the coefficients a and b fulfil the

conditions necessary to the existence and uniqueness of a solution of the SDE [7]. Given the

time discretization t0 < t1 < t2 < ... < tN = T of the time interval [t0, T ], the approximation

of process Y , that we name Ỹ = {Ỹt, t ≥ t0}, is calculated on the times of the discretization

(ti)
N
i=0 according to different schemes (cf. [30]), obtained as truncations of the stochastic

Taylor expansion of the process Y . If the noise term is additive, a good approximation of

the solution is obtained even with a truncation of the Taylor expansion at the first order. So

that in the case of a Wiener process with drift (2.1.6) the discrete time approximation Ỹ W

on the times (ti)
N
i=0 is given by

Ỹ W
ti+1

= Ỹ W
ti + µ(ti+1 − ti) + σ

√

ti+1 − tiZi (3.1.2)

where Zi are independent identically distributed Standard Normal random variables, and µ

and σ are as in eq. (2.1.6). This is the so called Euler scheme. While if considering an OU

process (2.1.11), the discrete time approximation Ỹ OU on the times (ti)
N
i=0 is given by

Ỹ OU
ti+1

= Ỹ OU
ti +

(

1

θ
Ỹ OU

ti + µ

)

(ti+1 − ti) + σ
√

ti+1 − tiZi (3.1.3)

where Zi are as in eq. (3.1.2) and µ, θ, σ are as in eq. (2.1.11). Those techniques are proved

to be efficient even for non constant and random step sizes of the time discretization (ti)
N
i=0.

So that to include the jump processes, we proceed as follows: each time the occurrence of

a jump falls in between a discretization interval [ti, ti+1], in the i-th step of the algorithm

the new node ti+1 it is replaced with the time of the jump and the approximation Ỹti+1 is

calculated. Finally the jump amplitude is summed to the simulated value Ỹti+1 .

The second problem that emerges is about the estimation of the FET. Indeed at each

step it is checked whether the approximated value overcome the threshold, i.e. if Ỹtn ≥ S.

This way, probable crossing occurring at times in between two nodes ti and ti+1 of the time
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discretization are not detected. As a consequence the FET is systematically overestimated.

To overcome this difficulty let us consider the approach to the problem illustrated in [19].

Given a diffusion process Y = {Yt; t ≥ t0} with in Yt0 = y0 we can associate a corresponding

bridge process Ŷt = {Ŷt; t ∈ [t0, t1]} (also called tied down process [28] or pinned process [8])

defined as the process Yt conditioned on the event {Yt1 = y1}. At each step of the algorithm,

the probability p̂ that the tied down process Ŷ originated in (ti, Ỹti) and constrained to

assume the value (ti+1, Ỹti+1) exits from the strip, is evaluated and when a simulated uniform

random variable falls in the interval [0, p̂] it is assumed that the bridge process exits from

the strip. In the case of a Wiener process with drift the probability that the bridge process

originated in (ti, Ỹti) and constrained to assume the value (ti+1, Ỹti+1) crosses the threshold

is given by

p̂W = exp

[

−
2(S2 − SỸ W

ti − SỸ W
ti+1

+ Ỹ W
ti Ỹ W

ti+1
)

σ2(ti+1 − ti)

]

(3.1.4)

and directly evaluated. When considering an OU process, we can evaluate p̂OU by means

of the approximation proposed in [19]. Note that the presence of jumps does not introduce

new difficulties in the correction of the simulative procedure via bridge processes. Indeed

the algorithm is built such that times of occurrence of the jumps are nodes of the time

discretization and in between two nodes the process has no discontinuities.

We now illustrate in details the algorithm procedure. Let us denote with Ỹti the simulated

solution of the SDEs (2.1.6) or (2.1.11), i.e. the diffusion process, and Ṽti the simulated

solution of eq. (2.1.16) or (2.1.14), i.e. completed with the jump processes. The maximum

step h of the time discretization is fixed and t+ and t−, times of occurrence of events in the

processes N+ and N−, are generated.

The iterative stepwise procedure of the algorithm is described as follows.

Step 1. Set ti+1 = min{ti + h, t+, t−} ;

Step 2. Evaluate the approximated solution of SDEs (2.1.6) or (2.1.11) in ti+1 according to

(3.1.2) or (3.1.3) respectively;

Step 3. IF (Ỹti+1 ≥ S) GOTO Step 10 ;

Step 4. Generate a pseudo-random number U uniformly distributed in [0, 1] and compare

it with the probability p̂ that the corresponding tied down process constrained in

(ti, Ỹti) and (ti+1, Ỹti+1) crosses the boundary S ;
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Step 5. IF (U < p̂) GOTO Step 10 ;

Step 6. IF (ti+1 = ti + h) THEN {
Ṽti+1 = Ỹti+1 ;

ti = ti+1 ;

GOTO Step 1 ; }
Step 7. IF (ti+1 = t+) THEN {

Ṽti+1 = Ỹti+1 + a+ ;

Generate a new inter-time t+new between two events in the process N+
t ;

t+ = t+ + t+new ; }
Step 8. IF (ti+1 = t−) THEN {

Ṽti+1 = Ỹti+1 + a− ;

Generate a new inter- time t−new between two events in the process N−
t ;

t− = t− + t−new ; }
Step 9. IF (Ỹti+1 < S) THEN {

ti = ti+1 ;

GOTO Step 1 ; }
Step 10. The algorithm stops and returns the first exit time (FET) T = ti+1 .

The generation of Inverse Gaussian distributed pseudo-random numbers is performed follow-

ing the method described in [38] that makes use of transformations of random variables with

multiple roots. While the generation of Exponentially distributed pseudo-random numbers

is trivial thanks to the classic method of inverse transformation that produces exponentially

distributed inter-times. The algorithm has been written in C language and the simulations

run on Pentium III personal computers.

Notice that the proposed algorithm works for the simulation of the trajectories of any

jump diffusion process but difficulties can arise in evaluating p̂. In non additive noise instances

it is recommended at Step 2 to use a discrete time approximation of the diffusion process Y

of higher strong convergence order in substitution of the Euler scheme [30].
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CHAPTER 4

A Wiener process with jumps as a simple neuronal model

Résumé Le chapitre 4 étudie le modèle neuronal de saut-diffusion dans lequel
la diffusion est donnée par un processus de Wiener. Nous considérons les in-
tervalles successifs (“ISI”) entre plusieurs décharges neuronales (“spike”). La
distribution de ces intervalles est caractéristique de la dynamique neuronale.
En fonction de plusieurs paramètres du processus de Wiener nous observons
différentes classes de distributions ISI. Nous sommes particulièrment interessés
par les distributions multimodales, qui peuvent être rapprochées à des obser-
vations expérimentales ou neurophysiologiques. Du point de vue du modèle
nous analysons les conséquences des sauts dont la distribution des ISI suit une
distribution exponentielle ou une distribution gaussienne inverse.
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4.1. Results 29

4.1.1. Jump processes with Exponentially distributed inter-arrival times 29

4.1.2. Jump processes with Inverse Gaussian distributed inter-arrival times 31

4.2. Discussion 33

In this Chapter we illustrate the results obtained on the study of model (2.1.16) that are

published in the papers [53], [52] and [59]. As mentioned in Chapter 2, this model have

strong weaknesses from a biological point of view. Its analysis has been for us a preliminary

study on jump diffusion models and a starting point to analyze then model (2.1.14) whose

results are showed in Chapter 5. Indeed model (2.1.16) can be considered as a simpler version

of model (2.1.14) with no exponential decay, i.e. the term governed by parameter θ, so that

it is a model in which trajectories evolve in time with a linear growth perturbed by the

stochastic term W , i.e. the Brownian motion.

27
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We adopted an approach to jump diffusion models that is mainly based on the analysis

of multimodal inter-spike intervals (ISIs). That is we observed that there exist ranges of the

involved parameters that give rise to ISIs histograms with more than one single peak. As

deeply explained in Chapter 5.2, this feature caught our attention. From a mathematical

and phenomenological point of view it is kind of unexpected property of the random variable

FET (2.1.2). Indeed the first passage time of a Wiener process (the diffusive part of model

(2.1.16)) through a constant threshold S has unimodal probability density function (4.1.2)

and the FET of a pure jump process J = {Jt, t ≥ 0} obtained as

Jt = a+N+
t + a−N−

t , (4.0.5)

where J0 = 0 and a+, a−, N+ and N− are the same as in eq. (2.1.16), i.e. the discrete

part of the model, shows, for the chosen range of the parameters, unimodal histograms on a

very large time scale. Moreover, histograms with more than one single peak, remind p.d.f.
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Figure 4.1. ISIs distributions from models (2.1.16) and (4.0.6). In model (2.1.16) µ = 1.5
mVms−1, σ2 = 0.25 mV2ms−1, a+ = −a− = 7.5 mV and λ+ = λ− = 100 ev/s, S = 10 mV,
Vrest = 0 mV (continuous line) and in model (4.0.6) µ̃ = 1.5 mVms−1, σ̃2 = 8.25 mV2ms−1,

S̃ = 11 mV, Ṽrest = 0 mV, q = −2.42, ν = 1.1 and φ = 2.7708 (dashed line).

obtained for the first passage time of diffusive models with forcing oscillatory drift term (cf.

[10], [11], [35], [39], [57] and references quoted therein). In particular we showed that there

exists a range in the parameters space of model (2.1.16) that allow to completely reproduce

(cf. Fig. 4.1) the p.d.f. obtained for the first passage time of the process V OB = {V OB
t , t ≥ 0}
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considered in [10] and given by

dV OB
t = [µ̃ + q cos(νt + φ)] dt + σ̃dWt

V OB
0 = Ṽrest. (4.0.6)

where W is a Wiener process and an external periodic force of frequency ν > 0, intensity

q > 0 and phase φ is applied. This fact let arise many questions like which are similarities

and differences between jump-diffusion models and models with oscillatory drift.

From a bio-modelling point of view as well, multi-peak ISIs histograms are particularly

interesting. But we postpone a detailed discussion about that subject in Chapter 5.2 where

we discuss the results obtained for model (2.1.14). Indeed we analyze model (2.1.16) only

from a phenomenological point of view since we believe that it is an excessive simplification

of the neurophysiological properties of a neuron and it makes inadequate a reinterpretation

of the results in a biological framework.

4.1. Results

We will not pay attention, in this preliminary study, to the physiological agreement of

the parameters values, target that we are going to deal with very carefully when studying

model (2.1.14). Our goal is to illustrate features of the model related with the coupling of

the two random sources (the diffusion process and the jump processes) and arising with the

introduction of the non linearity, i.e. the threshold. We consider only the process V WJ reset

to its resting value after each spike, i.e. the case that we called closed circuit (cf. Fig. 2.4a).

If not differently stated, we choose λ+ = λ− and a+ = a−, i.e. the jump processes affect the

dynamics with null total contribution. We fix S = 10 mV and Vrest = 0 mV. We divide in two

Sections the analysis. In Section 4.1.1 we consider jump processes N+ and N− that are two

independent homogeneous Poisson processes. In Section 4.1.2 we consider jump processes

with inter-event IG distributed.

4.1.1. Jump processes with Exponentially distributed inter-arrival times. We

consider here that N+ and N− in eq. (2.1.16) are two independent homogeneous in time

Poisson processes with N+
0 = N−

0 = 0 and intensities λ+ and λ− respectively. Here follows a

summary of the results.
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Figure 4.2. Simulated ISI distribution of the model (2.1.16) with Poisson jump processes
as jump amplitudes a+ = −a− [mV] vary. Here µ = 1.5 mVms−1 and σ2 = 0.25 mV2ms−1,
λ+ = λ− = 10 ev/s, a+ = 7.5 (a), a+ = 5.5 (b), a+ = 4 (c) and a+ = 2.5 mV (d)

As the jumps amplitudes a+ = a− decrease, ISIs histograms become unimodal (cf. Fig.

4.2). It means that to detect multimodal histograms the jumps amplitudes need to be suf-

ficiently big with respect to the threshold level. Thus in accordance with the diffusive limit

theorems that suppose jumps amplitudes going to zero (cf. eq. (2.1.5) and [25]). In Fig. 4.3

the ISIs histograms for different values of the jump processes intensities λ+ = λ− are plotted.

It appears that as λ+ = λ− increase the peaks at larger lags disappear and the probabilistic

mass accumulates at shorter lags making the first peak the highest one. It is possible to

notice as well a strong regularity in the position of the peaks as λ+ = λ− vary. We may make

the hypothesis that the lag of each peak is given by the mode of the first passage time of a

Wiener process without jumps (2.1.6) through different constant thresholds

S − a+, S, S + a+, S + 2a+, ... = S + ka+, where k = −1, 0, 1, 2, ... (4.1.1)

Named m(S) the mode of an IG(|S|/µ, S2/σ2) distribution with threshold S, given by the

following expression

m(S) =

√

S2

µ2
+

9σ4

4µ4
− 3σ2

2µ2
, (4.1.2)



4.1. RESULTS 31

40

30
0

0

N
o

rm
a

li
ze

d

  c
o

u
n

t 
(%

)

Lag [ms]

40

30
0

0

N
o

rm
a

li
ze

d

  c
o

u
n

t 
(%

)

Lag [ms]

40

30
0

0

N
o

rm
a

li
ze

d

  c
o

u
n

t 
(%

)

Lag [ms]

40

30
0

0

N
o

rm
a

li
ze

d

  c
o

u
n

t 
(%

)

Lag [ms]

a b

c d

Figure 4.3. Simulated ISI distribution of the model (2.1.16) with Poisson jump processes
as λ+ = λ− [ev/s] increase. Here µ = 1.5 mVms−1, a+ = a− = 7.5 mV, σ2 = 0.25 mV2ms−1,
λ+ = λ− = 100 in (a), λ+ = λ− = 200 in (b), λ+ = λ− = 300 in (c) and λ+ = λ− = 400
ev/s in (d).

the peaks lags will be m(S + ka+), with k = −1, 0, 1, 2, ... This fact is confirmed in Fig. 4.4.

As the drift parameter of the diffusive part of the model increases, the peaks lags shorten

following eq. (4.1.2), the FET becomes faster and the tail slims. Increasing the diffusive

coefficient (second order infinitesimal moment) σ2 the FETs spread out on the time axis

giving rise to heavier tails and less marked multimodality (cf. Fig. 4.5). In Fig. 4.6 the

model is considered when receiving only inhibitory strong inputs and no excitatory ones, i.e.

with a+ = 0 mV. There, multimodal ISIs histograms show longer tails with regular peaks as

the intensity of the jump process N− increases.

4.1.2. Jump processes with Inverse Gaussian distributed inter-arrival times.

We consider here that N+ and N− in eq. (2.1.16) are two independent point processes

with N+
0 = N−

0 = 0 and inter-events distributed according to IG(|S+|/µ+, (S+)2/σ2
+) and

IG(|S−|/µ+, S2
−/σ2

−) respectively. We fix S+ = S− = 10 mV. Here follows a summary of the

results.
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Figure 4.4. Simulated ISI distribution of the model (2.1.16) with Poisson jump processes
as µ [mVms−1] varies. Here σ2 = 0.25 mV2ms−1, λ+ = λ− = 100 ev/s, and a+ = −a− = 7.5
mV, µ = 1.4 (a), µ = 2.4 (b) and µ = 3.0 mVms−1 (c). In (d) the height of the first four
peak versus µ is plotted. From the first to the fourth peak the lines are dotted, continuous,
dashed and dash-dotted respectively.

As the drift parameters µ+ = µ− in the IG distribution governing the inter-events distri-

bution of the jump processes, i.e. the frequency of occurrences, decrease (cf. Fig. 4.7) ISIs

histograms become unimodal. It is noticeable that the peaks lags are affected by changes

in µ+ = µ− values. The peaks position seems determined by the jump processes and in

particular by multiples of the mode m of the inter-events distributions given by (4.1.2) so

that the k-th peaks lies at lag k ·µ, with k ∈ N. As the inter-times between successive jumps

increase their variances σ2
+ = σ2

−, multimodality disappears (cf. Fig. 4.8). On the other hand

as the diffusion coefficient σ2 of the underlying diffusion process increases (cf. Fig. 4.9) the

tail lengthen and let appear regularly more peaks in the histograms. In Fig. 4.10 the model

is considered when receiving only inhibitory strong inputs and no excitatory ones, i.e. with

a+ = 0 mV. It is shown that increasing the frequency of the jumps, the histograms becomes

sharply multimodal.
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Figure 4.5. Simulated ISI distribution of the model (2.1.16) with Poisson jump processes
as σ2 [mV2ms−1] increases. Here µ = 1.5 mVms−1, λ+ = λ− = 100 ev/s, a+ = a− = 7.5
mV, σ2 = 0.15 mV2ms−1 in (a), σ2 = 0.5 mV2ms−1 in (b), σ2 = 0.75 mV2ms−1 in (c) and
σ2 = 1 mV2ms−1 in (d).

4.2. Discussion

From the preliminary study of the jump-diffusion model made up by the superimposition

of a Wiener process with drift and two counting processes (2.1.16) it is possible to conclude,

in the first resort, that the dynamics of the membrane potential are very different whether

the inter-times between successive jumps are Exponentially distributed or IG distributed.

The peaks lags are determined by the diffusion parameters when the jump processes are

Poisson processes (cf. Fig. 4.4), while they results determined by the jumps parameters

when IG inter-distributed (cf. Fig. 4.7). These results seem due to the fact that, if IG

inter-distributed, the jump processes dominate the dynamics establishing the time lags of

the crossing of the threshold. This fact is confirmed as well by the different behavior of

the two models with respect to changes in the value of the diffusive parameter σ2. When

the jumps are Poisson processes an increase in the value of σ2 hides the peaks in the ISIs

histograms in particular in the tails that become heavier (cf. Fig. 4.5). But when the jumps

are IG inter-distributed (cf. Fig. 4.9), increasing the diffusive coefficient makes the ISIs
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Figure 4.6. Simulated ISI distribution of the model (2.1.16) with Poisson jump processes
as jump intensity λ− [ev/s] vary and with a+ = 0 mV. Here µ = 1.5 mVms−1, σ2 = 0.25
mV2ms−1, a+ = 0 mV and a− = −7.5 mV, λ− = 20 (a), λ− = 80 (b) and λ− = 180 ev/s
(c). In (d) the heights of the first three peak height versus λ− is plotted. From the first to
the third peak the lines are continuous, dotted and dashed respectively.

more clearly multimodal and the tails let emerge new peaks. The dynamics in this case is

dominated by the jump processes that produce events (EPSP or IPSP) at very regular time

intervals and better emerge from a more scattered underlying diffusion process. The way the

two random sources (the jump processes and the diffusion process) couple together is very

different according to the distribution of the jump processes. This remark will be confirmed

as well when the underlying diffusion process will be an Ornstein Uhlenbeck process (2.1.14).

This first study gives an idea about the influence of each parameter on the model. But

it is restricted to a phenomenological approach. We would like to recall that the range of

the parameters values that let appear multimodal ISIs histograms is quite small. Moreover

it further narrows when considering the jump-diffusion model with OU underlying diffusion

process (2.1.14). So this analysis allowed to acquire the knowledge necessary to face the study

of a more complex model such as (2.1.14).
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Figure 4.7. Simulated ISI distribution of the model (2.1.16) with IG jump processes as
µ+ = µ− [mVms−1] decrease. Here µ = 1.5 mVms−1, σ2 = 1 mV2ms−1, σ2

+ = σ2
− = 0.5

mV2ms−1 and S+ = S− = 10 mV, µ+ = µ− = 6 mVms−1 in (a), µ+ = µ− = 4 mVms−1 in
(b), µ+ = µ− = 3 mVms−1 in (c) and µ+ = µ− = 2 mVms−1 in (d).
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Figure 4.8. Simulated ISI distribution of the model (2.1.16) with IG jump processes as
σ+ = σ− [mV2ms−1] vary. Here µ = 1.5 mVms−1 and σ2 = 2 mV2ms−1, µ+ = µ− = 3
mVms−1, σ+

2 = 3 (a) and σ+
2 = 0.5 mV2ms−1 (b).
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Figure 4.9. Simulated ISI distribution of the model (2.1.16) with IG jump processes as
σ2 [mV2ms−1] increases. Here µ+ = µ− = 5 mVms−1, σ2

+ = σ2
− = 0.5 mV2ms−1, µ = 1.5

mVms−1, σ2 = 0.5 in (a), σ2 = 1 in (b), σ2 = 2 in (c) and σ2 = 4 mV2ms−1 in (d).
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Figure 4.10. Simulated ISI distribution of the model (2.1.16) with IG jump processes
as µ− [mV] varies and a+ = 0 mV. Here µ = 1.5 mVms−1, σ2 = 2 mV2ms−1 and σ2

− = 0.5
mV2ms−1, µ− = 1 (a) and µ− = 1.5 mVms−1 (b).



CHAPTER 5

An Ornstein Uhlenbeck process with jumps as a neuronal

model

Résumé Le chapitre 5 étudie le modèle de saut-diffusion dans lequel la diffu-
sion est donnée par un processus d’Ornstein Uhlenbeck. De manière similaire
au chapitre precédent nous analysons ici les effets des processus de sauts dont
la distribution temporelle suit une distribution exponentielle ou une distribu-
tion gaussienne inverse. Dans les deux cas nous observons des distributions
multimodales. Dans une marge restreinte de l’espace des paramètres nous
observons la présence d’un phénomène nouveau, décrit ici pour la première
fois. Il s’agit d’un phénomène de type résonnant (“resonant like”) dû à la
composition du processus diffusif et des processus de saut correspondant aux
afférences excitatrices et afférences inhibitrices. Cette observation suggère que
pour certaines intensités des processus de saut afférents (“bruit de fond”) un
neurone peut participer à plusieures assemblées de cellules (“cell assemblies”).
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In the present Chapter we investigate multimodal ISI distributions in the case of a neu-

ronal model corresponding to an Ornstein Uhlenbeck process with the superimposition of two

jump processes with inter spikes intervals Exponentially and Inverse Gaussian distributed.

The results here illustrated are collected in the paper [60]. The model describes the membrane

37
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potential evolving in time following the jump diffusion process. The spike train corresponds

to the sequence of times when the jump diffusion process crosses a constant threshold S. We

analyze such model in two instances. In the first case the jump diffusion process is reset to its

initial value any time the membrane potential crosses the threshold. The sequence of firing

times is a renewal process and this case may be viewed as the activity of a small network

with internal feedback, referred to as closed circuit. In the second case the jump processes

are not reset to their initial value after the membrane potential crosses the threshold. In this

case the generated spike train is not a renewal process and its dynamics may be the result of

a small network without internal feedback, referred to as open circuit. These two versions of

the model are introduced and discussed in detail in Section 2.1.2. In Section 5.1 we perform

a systematic study of the parameters of the model that generate ISI histograms with more

than one peak and we show the existence of optimal values of the noise intensity that can

enhance the signal transmission. Finally in Section 5.2 we discuss our results in details both

from a mathematical and a biological point of view.

5.1. Results

The main objective of this study is to determine the roles of the parameters that are

involved in the neuronal model given by the jump-diffusion process defined by equation

(2.1.14). The ranges of the parameters were selected near biological ranges but the values

were not selected with the intention to test a specific physiologically valued model, but rather

with the goal to study the qualitative features of the neuromimetic model. In particular we

present results associated with the conditions that let appear a multimodal distribution of

the inter-spike intervals. The peaks of the histogram may be considered as characteristic

times of the neuron and may suggest multiple functional roles of the neuron, as discussed in

Section 5.2.

Since no closed form expression is available for the density of the random variable T

(2.1.2), this study is performed by means of simulations of the SDE (2.1.14). The simulation

algorithm is presented in detail in Chapter 3.

5.1.1. Tuning of the parameters. Throughout this Chapter the resting potential is

fixed to Vrest = 0 mV and the threshold to S = 10 mV, that corresponds to a simple
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translation of physiological data values useful to simplify the mathematical analysis of the

model. To represent the intensity of the strong inputs, large values of a+ = −a− = 5 mV

are chosen with respect to the threshold value. Moreover, we study the model in a particular

condition with balanced excitatory and inhibitory strong inputs, such that a+ = −a− and,

if not differently stated, the same probability of occurrence for the excitatory and inhibitory

jumps are selected. Hence the sum of the jump processes results characterized by zero mean

and avoids to mask the trend given by the diffusive part of the model.

The examples proposed in the next Subsections are consistent with the parameters of

the common underlying diffusion process (2.1.11). The value of the time constant is kept

fixed at θ = 10 ms and the value of the diffusion coefficient at σ2 = 0.05 mV2ms−1. The

value of the drift µ of the Ornstein Uhlenbeck process (2.1.11) is µ = 0.7 mVms−1 if the

jump processes have inter-events Inverse Gaussian distributed and µ = 0.98 mVms−1 if the

jump processes are Poisson processes. This choice is determined by the fact that the range

of the parameters values of the model that produce ISI distributions depends on the type of

distribution of the jump processes. In both cases we choose the values of the parameters such

that µ · θ < S. Indeed for such range of the parameters values the dynamics of the Ornstein

Uhlenbeck process is as much as possible different from the dynamics of the Wiener process

we already studied in Chapter 4.

Simulation batches are performed with samples of N = 10, 000 runs. At each run the

spike trains (i.e., the epochs of the events) are recorded and the ISIs are calculated. The

model is usually described by the ISI distributions and in some cases of interest the auto-

and cross-correlation histograms are calculated according to [1], [43], [44] and [2] using the

program available at http://openAdap.net/.

5.1.2. Jump processes with Inverse Gaussian distributed inter-arrival times.

In this subsection we analyze the case of Inverse Gaussian (IG) distributed inter-event in-

tervals in the jump processes. This means that the counting processes N+
t and N−

t are

generated with inter-event intervals distributed according to independent IG, eq. (2.1.7),

with parameters (|S+|/µ+, S2
+/σ2

+) and (|S−|/µ−, S2
−/σ2

−) respectively.

The parameters that determine the dynamics of the process Vt described in eq. (2.1.15)

can be naturally divided into two groups: the first group collects together the parameters
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that drive the jump processes, while the second group gather the parameters that run the

diffusion process.
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Figure 5.1. Dependency on parameters of the jump processes, µ+ = µ− [mVms−1]
and on σ+ = σ− [mV2ms−1]. Open circuit instance. Distributions of the first exit time
of the process (2.1.14) with Inverse Gaussian distributed interarrival jumps through the
constant threshold S. This corresponds to the ISI histograms of spike train A given an IG
distribution of the input jumps processes of units E and I. Here S = 10 mV, µ = 0.7
mVms−1, θ = 10 ms, σ2 = 0.05 mV2ms−1, S+ = S− = 10 mV, and a+ = −a− = 5 mV.
In (a, b, c, d) µ+ = µ− = 0.3 mVms−1. In (b, e, f, g) σ2

+ = σ2
− = 0.01 mV2ms−1. In (a)

σ2
+ = σ2

− = 0.005, (b) σ2
+ = σ2

− = 0.01, (c) σ2
+ = σ2

− = 0.1 and (d) σ2
+ = σ2

− = 0.5. In (b)
µ+ = µ− = 0.3, (e) µ+ = µ− = 0.2, (f) µ+ = µ− = 0.1 and (g) µ+ = µ− = 0.05.

5.1.2.1. Dependency on the jump processes. The parameters characterizing the diffusion

process (2.1.11) are kept constant at values θ = 10 ms, µ = 0.7 mVms−1 and σ2 = 0.05

mV2ms−1. The value S+ = S− = 10 mV is kept constant as well, but the parameters

µ+ = µ− and σ2
+ = σ2

−, are varied, i.e. the frequency and the variability of the jump

processes are varied. Fig. 5.1 shows the ISI histograms in the open circuit instance (cf.

Fig. 2.4a). It is interesting to notice that for small values of variance of the jumping times,

i.e. the coefficients σ2
+ = σ2

−, it is possible to observe up to seven separate peaks in the ISI

histograms (Fig. 5.1a). Conversely, larger values of variance of the jumping times provoke a

loss of multimodality in the ISI histograms (Fig. 5.1d). The inter-times between successive

jumps become longer and the ISI histograms show fewer peaks with small values of the
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parameters µ+ = µ− (Fig. 5.1f,g). The abscissae of the peaks is completely determined

by the jump processes parameters. Named m the mode of the IG distribution given by the

following expression

m =

√

S2
+

µ2
+

+
9σ4

+

4µ4
+

− 3σ2
+

2µ2
+

, (5.1.1)

the peaks will appear at abscissae tm = km, with k ∈ N. The analysis of cross correlation

histograms between the time series of firing times from units A, E and I represented in Fig.

5.1 show that the efficiency of both excitatory and inhibitory inputs is not affected by varying

σ2
+ = σ2

− and µ+ = µ−. It is worth reporting that in the case of the close circuit the results

are very similar with respect to the changes in the shape of the ISI histograms at varying the

parameters.
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Figure 5.2. Dependency on parameters of the diffusion process, θ [ms] and on µ

[mVms−1]. Distributions of the first exit time of the process (2.1.14) with Inverse Gaussian
distributed interarrival jumps through the constant threshold S. This corresponds to the ISI
histograms of spike train A given an IG distribution of the input jumps processes of units E

and I. Panels (a–i) refer to the open circuit instance. Panels (d′,e′,h′,i′) refer to the closed

circuit instance. Here S = 10 mV, σ2 = 0.05 mV2ms−1, S+ = S− = 10 mV, µ+ = µ− = 0.3
mVms−1, σ2

+ = σ2
− = 0.01 mV2ms−1 and a+ = −a− = 5 mV. In (a, b, c, d, d′, e, e′)

µ = 0.7 mVms−1. In (b, f, g, h, h′, i, i′) θ = 10 ms. In (a) θ = 9, (c) θ = 15, (d, d′)
θ = 17.5 and (e, e′) θ = 20 ms. In (f) µ = 0.8, (g) µ = 1, (h, h′) µ = 1.05 and (i, i′) µ = 1.2

mVms−1.
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5.1.2.2. Dependency on the diffusion process. The parameters that drive the counting

processes N+
t and N−

t are kept constant to the values S+ = S− = 10 mV, µ+ = µ− = 0.3

mVms−1 and σ2
+ = σ2

− = 0.01mV2ms−1. Fig. 5.2 shows the ISI histograms of cell N as a

function of the coefficients µ and θ in the diffusion process, eq. (2.1.11). With combination

of parameter ranges such that θ ≤ 15 and µ ≤ 1 (Fig. 5.2a,b,c,f,g) the results obtained

with both open and closed circuits are very similar and show a multimodal distribution

characterized by the first peak as the highest one. In the non renewal model (open circuit)

the ISI histograms are also multimodal for larger values of θ and µ but the shape is very

different and the last peak is the highest one (Fig. 5.2d,e,h,i). On the opposite, the diffusive

part of the jump diffusion process, i.e. the Ornstein Uhlenbeck process, is the dominating

process for larger values of θ and µ in the renewal case (closed circuit). In this case Fig.

5.2d′, e′,h′,i′ show FETs with an estimated p.d.f. that can be overlapped to the p.d.f. of the

first passage time of only an Ornstein Uhlenbeck process through a constant boundary. This

suggests the existence of two different dynamics of the model associated to the two domains

in the space of the parameters θ and µ. In the open circuit case the spike trains of the

reference unit A, of the excitatory input E and of the inhibitory input I have been analyzed

in detail in the time domain by means of the auto- and cross-correlation histograms. Fig.

5.3a shows the analysis for the pair of units (A,E) with parameters θ = 17.5 and µ = 0.7. All

correlograms show many oscillations due to the pacemaker-like activity of cells E and I when

inter-spikes intervals are IG distributed. The asymmetrical peak on the left side of time zero,

at lags 1 − 2ms, denotes the high probability that unit E fires just before unit A. Fig. 5.3b

shows the analysis for the pair of units (A, I) given the same previous set of parameters θ

and µ. It is interesting to notice that the autocorrelograms of units E and I are very similar

but their different timings produce a totally different cross-correlogram. The asymmetrical

trough on the left side of time zero in the cross-correlogram of pair (A, I) denotes the low

probability that unit E fires at short lags before unit A. In Fig. 5.3c we examine the area of

the nearest peak or trough to time zero beyond the 99% limits of confidence of the correlogram

as θ varies. This area is expressed in “events” units. In the case of pair (A,E) the peak area

corresponds to the fraction of E events that contribute to the firing of unit A, which may

be interpreted as the “excitatory efficiency” of the E input. In the case of pair (A, I) the

trough area may be interpreted as the “inhibitory efficiency” of the I input. Two domains

of these curves are ideally separated in the parameter space by the critical value θ̄ = 14.28
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Figure 5.3. Dependency on parameter θ [ms] of the diffusion process. Crosscorrelation
analysis in the open circuit instance. (a) Correlation analysis for the pair of units (A, E) with
99% confidence limits (dashed lines) calculated according to [1]. Notice the asymmetrical
narrow peak on the left side near time zero in the crosscorrelogram. Here θ = 17.5 ms and
µ = 0.7 mVms−1, i.e. the same as in Fig. 5.2d. The other parameters are S = 10 mV,
σ2 = 0.05 mV2ms−1, S+ = S− = 10 mV, µ+ = µ− = 0.3 mVms−1, σ2

+ = σ2
− = 0.01

mV2ms−1 and a+ = −a− = 5 mV. (b) Correlation analysis for the pair of units (A, I) with
the same parameters of the model as in panel (a). (c) Dependency of “excitatory” and
‘inhibitory efficiency” (see text for definitions) on parameter θ. Notice the existence of a
subthreshold and a suprathreshold regime for θ less than and greater than θ = 14.28 ms,

respectively.

(Fig. 5.3c). The “excitatory efficiency” is stable or slowly decreases as θ < θ̄ increases but it

decreases very steadily as θ > θ̄. The “inhibitory efficiency” decreases as θ < θ̄ increases but
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it reaches a minimum at θ = θ̄ and it increases for parameter values θ > θ̄. The meaning of

the critical value of θ̄ on the model dynamics can be easily interpreted. The value θ̄ = 14.28

is calculated such that µ · θ = S. In the range µ · θ < S the Ornstein Uhlenbeck process, eq.

(2.1.11), crosses the constant boundary S exclusively due to the stochastic part of the process.

Then, the range of parameters µ ·θ < S determines a subthreshold regime. Conversely, in the

range µ · θ > S, the crossing is mainly due to the deterministic trend of the process, which

charaterizes a suprathreshold regime.

5.1.2.3. Resonant like behavior. In the current model, eq. (2.1.15), a random input term

(i.e., the two counting processes) is superimposed to the same underlying Ornstein Uhlenbeck

process. The analysis of the resulting process can be performed as a function of the coupling of

the two random sources. A similar approach has been performed in [10], [11], [35], [39], and

[57]. In the quoted papers the term stochastic resonance refers to noise induced enhancement

in the detection and transmission of a signal and it goes with a deterministic oscillatory input

term in a stochastic model. The absence of a pure oscillatory term in model (2.1.15), and

hence of a period, does not allow a fully analogous description with stochastic resonance

and so we use the term “resonance like” to denote noise induced phenomena. Moreover the

analysis is here restricted to the heights of the peaks of the ISI histograms as σ2 (the noise

intensity) varies, recalling that their positions is here determined by the mode m of the IG

distribution, that is a possible analogous of the period of the oscillatory term of previously

described models [11], [57]. In the case of the closed circuit (i.e., with reset of the input

process) the second peak of the ISI histogram, at lag t2, was the significant one for this

analysis (Fig. 5.4a-d). Figure 5.4e shows that a level of noise corrresponding to σ2 = 0.5

lets appear more firing patterns of unit A characterized by ISIs equal to lag t2 than other

investigated levels of noise. In the case of the open circuit (i.e., without any reset of the input

process) it is the first peak of the ISI histograms that goes through a maximum as the noise

intensity σ2 increases (Fig. 5.4f-l). The efficiency of the excitatory and inhibitory inputs were

calculated by the crosscorrelogram analysis, as indicated in the previous Subsection, but no

dependence on the level of the input noise σ2 could be observed.

5.1.3. Jump processes with Exponentially distributed inter-event times. In

this Subsection we examine the model when the two counting processes N+
t and N−

t are
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Figure 5.4. Dependency on σ2 [mV2ms−1]. Distributions of the first exit time of the
process (2.1.14) with Inverse Gaussian distributed interarrival jumps through the constant
threshold S. This corresponds to the ISI histograms of spike train A given an IG distribution
of the input jumps processes of units E and I. Left panels correspond to the closed circuit

and right panels to the open circuit instance. Here S = 10 mV, µ = 0.7 mVms−1, θ = 10 ms,
S+ = S− = 10 mV, µ+ = µ− = 0.05 mVms−1, σ2

+ = σ2
− = 0.2 mV2ms−1 and a+ = −a− = 5

mV. (a,f) σ2 = 0.01. (b, g) σ2 = 0.5. (c, h) σ2 = 1. (d, e) σ2 = 2. (e) Resonant like
behavior in the closed circuit instance. The height of the second peak (lag t2) goes through
a maximum for σ2=0.5. (f) Resonant like behavior in the open circuit instance. The height
of the first peak (lag t1) goes through a maximum for σ2=1.0.

Poisson processes, i.e. with intervals between events that are distributed according to Expo-

nential distributions of parameters λ+ and λ− so that mean and variability of the process are

given by E(N+
t ) = tλ+ = V ar(N+

t ). In this case the spike trains of units E and I are much

more scattered and irregular in time than in the previous subsection where the inter-spike
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intervals were IG distributed. The drift parameter of the diffusion process is fixed to the

value µ = 0.98 mVms−1 that determines a subthreshold regime where the crossing of the

threshold S is caused only by the random part of the process (2.1.11).
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Figure 5.5. Dependency on the rate of the excitatory λ+ [ev/s] and inhibitory inputs
λ− [ev/s]. Distributions of the first exit time of the process (2.1.14) with Exponentially
distributed interarrival jumps through the constant threshold S. This corresponds to the
ISI histograms of spike train A given a Poisson distribution of the input jumps processes of
units E and I. Here S = 10 mV, µ = 0.98 mVms−1, θ = 10 ms, σ2 = 0.05 mV2ms−1. (a)
Reference histogram with a+ = a− = 0 mV. In (b, c, d) λ− = 10 ev/s; (b) λ+ = 10; (c)
λ+ = 20; (d) λ+ = 30. In (e, f, g) λ− = 20 ev/s; (e) λ+ = 10; (f) λ+ = 20; (g) λ+ = 30. In
(h, i, l) λ− = 30 ev/s; (h) λ+ = 10; (i) λ+ = 20; (l) λ+ = 30. In (m, n, o) λ− = 50 ev/s;
(m) λ+ = 10; (n) λ+ = 20; (o) λ+ = 30.

Figure 5.5 shows the histograms of the FETs following the variation of λ+ and λ−. Notice

that the ISI histograms of the reference spike train A are identical in both open and closed

circuit models if the jump processes N+
t and N−

t are Poisson processes. This is due to the

memoryless property of the Exponential distribution. The histograms of Fig. 5.5 show two

peaks at most and a long tail, a very different shape with respect to the cases illustrated

in Fig. 5.1 and Fig. 5.2. The first peak in Fig. 5.5 is driven by parameter λ+ and is due

to the probability mass of the trajectories that reach the threshold S following one upward

jump. The lag of the first peak is not affected but its height is increased as λ+ is increased, as

illustrated in the series of panels of Fig. 5.5b-d, Fig. 5.5e-g, Fig. 5.5h-l, and Fig. 5.5m-o. The
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second peak of the histograms is determined by the diffusion process and stays practically

unchanged when λ+ is increased. Indeed this peak is due to the FETs of trajectories that

reach the boundary without jumps (upward or downward) or with an equal number of positive

and negative jumps. The parameter λ− affects the tail of the histogram, making it longer

and heavier, such that the height of both peaks is slightly decreased as λ− is increased but

with no more peaks appearing. With parameters λ+ = 30 ev/s and λ− = 10 ev/s the auto-

and cross-correlograms of the units pairs (A,E) and (A, I) are shown in Fig. 5.6a and Fig.

5.6b, respectively. The asymmetrical peak on the left side of the (A,E) crosscorrelogram

indicates that there is a high probability that unit E is firing at short lags before unit A.

Conversely, the trough on the left side of the (A, I) crosscorrelogram indicates that there is

a low probability that unit I is firing at short lags before unit A.

The inhibitory effect of unit I on unit A is linear, as shown in Fig. 5.6c by the decrease

in the firing rate of A as the firing rate of I (i.e., λ−) is increased, independent of the

rate λ+. Figure 5.6d shows the “excitatory efficiency” (i.e., the peak area in the (A,E)

crosscorrelograms) as a function of an increase in the rate of inhibition, λ−. It is remarkable to

notice a counterintuitive result. An increase in λ− provokes a linear increase of the “excitatory

efficiency” for any tested λ+.

5.2. Discussion

We studied the firing pattern of an integrate and fire neuromimetic model whose mem-

brane potential dynamics is described by a jump diffusion process, eq. (2.1.15). The spike

train is obtained by the epochs of successive first exit times of the process from the strip

(−∞, S]. The main objective we pursued was to describe a range of the parameters of the

model such that the inter-spike intervals (ISI) histograms are characterized by a multimodal

distribution. In the absence of a pacemaker or of an oscillatory input the existence of such

range of the parameters is of particular interest because the lag of each peak of the histogram

is one of the times at which that neuron fires with higher probability (its “characteristic

time”). The general hypothesis is that “global” parameters could affect the membrane ex-

citability not of only one neuron but of an entire brain circuit such that more than one

characteristic time could appear in the firing pattern under specific conditions not associated

to a particular stimulus. In biology, the existence of the so-called non-specific pathways,
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Figure 5.6. Dependency on the rate of the excitatory λ+ [ev/s] and inhibitory inputs
λ− [ev/s] that follow a Poisson distribution. Here S = 10 mV, µ = 0.98 mVms−1, θ = 10
ms, σ2 = 0.05 mV2ms−1. (a) Correlation analysis for the pair of units (A, E) with 99%
confidence limits (dashed lines) calculated according to [1]. The parameters of the jump
processes are λ+ = 30 and λ− = 10 [ev/s], i.e. the same as in Fig. 5.5d. Notice the
asymmetrical narrow peak on the left side near time zero in the crosscorrelogram. (b)
Correlation analysis for the pair of units (A, I) with the same parameters as in panel (a).
(c) Firing rate of unit A plotted as λ− varies, with λ+ = 10 ev/s (squares), λ+ = 20 ev/s
(circles) and λ+ = 30 ev/s (diamonds). (d) Excitatory efficiency of unit pair (A, E) plotted
as λ− varies, with λ+ = 10 ev/s (squares), λ+ = 20 ev/s (circles) and λ+ = 30 ev/s

(diamonds).
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generally characterized by mono-aminergic and cholinergic projections from the brainstem to

the forebrain could play the role of setting the global parameters. Then, one same neuron

could participate to different cell assemblies, characterized by the synchronous firing of many

cells, if its firing pattern would include multiple characteristic times.

In this study we analyze two cases of counting processes that give the times of occurrence

of the strong inhibitory and excitatory inputs. In the case of Inverse Gaussian (IG) inter

events distribution the inputs are very regular in time. Conversely, in the case of Exponen-

tially distributed inter events the strong inputs follow the more casual probabilistic law. As

shown by the results of Subsection 5.1.2, the strong inputs that follow an IG distribution

dominate the dynamics of the spike train of the target unit A. The IG distribution of the in-

puts determines the position, shape and number of the peaks appearing in the ISIs histograms

of unit A. An increase in the value of the variances σ2
+ = σ2

− of the IG distributions provokes

a decrease in the regularity of the inputs processes and the histograms become unimodal. We

have shown the existence of two regimes of model dynamics, subthreshold and suprathresh-

old, that correspond to two domains in the space of the parameters θ and µ (Fig. 5.2). In

the suprathreshold regime the characteristic times of firing are no more integer multiples of

the mode m of the IG distribution but become a combination between m and the mode of

the first passage time of an Ornstein Uhlenbeck process (2.1.11) through the boundary S (i.e.

without jumps). In this regime the crosscorrelation analysis has demonstrated that the “ex-

citatory efficiency” of the strong inputs is decreased following an increase of the parameter θ.

This result is interesting because this parameter may have a direct biological interpretation.

The parameter θ may correspond to the time constant of the cell membrane determined by

its resistive and capacitive properties, i.e. θ = RC, where R is the resistance and C the

capacitance of the electrical circuit equivalent to the cell membrane. The capacitance C is

usually considered constant on a short time scale. Then, a variation of θ may be considered

as a change of the resistive properties of the membrane. This means that our neuromimetic

model (2.1.15) accounts for a change in the dynamics following a change of the resistance of

the cell membrane. In biology, there are several examples of voltage-dependent ion channels

that could account for such changes in the resistive properties of the cell membrane [9].

In this framework we have investigated the existence of resonant like phenomena in our

model. One of the most striking effect emerging from the study of non linear random systems



50 O.U. PROCESS WITH JUMPS

coupled with a deterministic oscillatory term, is the so called stochastic resonance. Such

term is usually referred to the existence of an optimal level of noise for a signal detection

and transmission. It has been demonstrated that the multimodal ISI distribution obtained

from an Ornstein Uhlenbeck process coupled with a deterministic oscillatory input term goes

through a maximum as the noise intensity σ2 increases [11], [57]. Such maximum appears

when the period of the stimulus is close to the mode of the ISI distribution in absence of

the modulation, a phenomenon referred to as time-scale matching. In this study we have

presented evidence that the peaks of the ISI histograms go through a maximum when the

noise intensity σ2 increased (cf. Subsection 5.1.2.3). Our goal was not to find the optimal

level of noise. Instead, in both open and closed circuit instances the results have shown

that the neuronal model introduced in the current study is characterized by a non linear

dependence of the level of noise that exhibits a “resonance” like behavior. In the case of the

closed circuit (Fig. 2.4a), with reset of the inputs after each firing, the resonance like behavior

could be attributed to the intrinsic feedback loop within the circuit. A similar finding in the

open circuit instance (Fig. 2.4b), which is more biologically plausible, calls for a different

interpretation. We suggest that in a large neural network the background activity (here

represented by the noise intensity) may act as a filter in selecting particular firing patterns,

determined by the characteristic times in the ISI histograms.

In the case that strong inputs follow Poisson processes the range of the parameters char-

acteristic of multimodal ISI distributions is smaller than in the IG distributed inputs. This

is because with Poisson distributed inputs the dynamics of the membrane potential is due

to both jump processes and diffusion process with no domination of one of the processes on

the others. With Poisson inputs and with diffusion parameters in subthreshold regime we

found evidence of only bimodal ISI distributions with variable tails depending on the param-

eters, but without any appearance of a third peak. We have shown that the model linearly

integrated the inhibitory inputs (Fig. 5.6c) but an increase in the rate of the inhibitory

inputs provoked an increase in the efficiency of the excitatory inputs (Fig. 5.6d). This means

that the timing of the spikes of the excitatory inputs carry more information if the rate of

inhibition is increased.

To conclude, this study has presented new results that demonstrate that an original

jump-diffusion neuromimetic model, precisely described by its mathematical formulation and
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despite a number of oversimplifications, is able to suggest interesting hypotheses for the

interpretation of experimentally recorded firing patterns. Resonant like phenomena and the

increase in excitatory efficiency due to an increase in the rate of inhibitory inputs represent

interesting unexpected results that contribute to widen the investigation of neural dynamics.

Future studies of the model presented here could extend further the analyses and investigate

the effect of mixtures of jump processes, for example with IG distributed excitatory inputs

and Poisson distributed inhibitory inputs.
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CHAPTER 6

Multidimensional bridges with application to the integrated

brownian motion

Résumé Le chapitre 6 étudie les processus “bridge” associés à un processus
de diffusion générique. L’analyse du temps de premier passage d’un proces-
sus de diffusion, approché par le temps de premier sortie d’un processus dis-
cretisé, laisse une ambigüıté sur la trajectoire exacte entre deux instants de
la discrétisation. Le problème peut avoir de très graves conséquences dans
l’évaluation de la solution. Pour résoudre ce problème on écrit l’équation
stochastique differentielle satisfaite par le processus bridge. On propose deux
méthodes alternatives pour trouver une version de la solution dans le cas bidi-
mensionnel. Les méthodes présentées sont illustrées avec l’exemple du pro-
cessus “Integrated Brownian Motion”. Une généralisation de cette approche
est indispensable à l’analyse des modèles neuronaux dans une simulation de
réseaux de grand taille.
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In this chapter we explain the results obtained on multidimensional bridge processes and

collected in the paper [61]. A bridge process (also called tied down process [28] or pinned

55
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process [8]), associated to a diffusion process X, with X0 = a, is the process X conditioned

on the event {Xt1 = b}. That is the diffusion process conditioned on the subset of the

trajectories that go through the point (t1, b). In the literature it is possible to find results

about Brownian bridge, i.e. the Brownian motion constrained to attain a given state at time

t1, Bessel bridge and bridges of certain Wiener Integrals [28], [31], [32]. A definition of the

general Markov bridges is given in [17].

Our interest in bridge processes arises from the field of the simulation of first passage time

T of a diffusion process through a threshold S. As explained in Chapter 3, the numerical

techniques that allow to solve such problems are based on discrete time approximations of

the trajectories of the diffusion process, that give the value of the simulated trajectory, X̃ti ,

at discretized times, (ti)
N
i=0, of the time interval. At each step the simulated point of the

trajectory is compared with the threshold, i.e. X̃ti ≤ S, and the crossing checked. Those

techniques may lead to an overestimation of the first passage time. Indeed the crossing may

occur at times that lie in between two of the nodes of the partition, T ∈ (ti, ti+1), so that in

correspondence of such times the value of the trajectory has not been calculated. To evaluate

the possibility of crossings hidden in between the nodes of the time discretization, in [21]

the authors introduced an improvement of the algorithm with study of the bridge processes.

So that the probability that the bridge process associated to the simulated diffusion process,

originated in (ti, X̃ti) and constrained to attain the simulated point (ti+1, X̃ti+1), crosses the

threshold S is evaluated and compared with a number Uniformly distributed in [0, 1] in order

to decide wether the crossing occurred or not. In this way the algorithm accounts for possible

crossings at times in between two simulated points of the sample path. In this framework

it is particularly important to have results and general techniques that can allow to handle

bridge processes. Indeed new results on bridge processes (in particular multidimensional

ones) could be applied everywhere the simulation of a first passage time is required. A very

interesting field in which those techniques could find a proper application is the simulation of

large network of spiking neurons. There it seems very important to correct the algorithm to

simulate the firing of each single cell. If not, due to the very large number of repetitions, the

final error could go out of control. But this is not the only field in which first passage time

problems arise. Let us think to the methods of domain decomposition for elliptic boundary

value problems (cf. [4] and [5]). There, to split the problem into fully decoupled subproblems
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Figure 6.1. First passage time T (cf. eq. (2.1.2)) through the constant threshold S of
a time discrete approximated sample path of a general diffusion process X = {Xt, t ≥ 0}.
In the expanded panel a possible trajectory of the process in between two nodes of the
discretization of time and the lost first passage time.

on subdomains, first passage times through the boundaries of the decomposed domains need

to be found.

In Section 6.2 we introduce a definition of the bridge process associated to a multidi-

mensional diffusion process and we determine the corresponding diffusion coefficients. We

apply the result to the case of an Integrated Brownian Motion (IBM) (cf. [32]) giving the

closed form expression of the solution of the stochastic differential equation (SDE) fulfilled

by the IBM bridge. In Section 6.3 we propose two alternative methods to find a version of

the solution of the SDE fulfilled by the bridge process in the bidimensional case. The first

method looks for space-time transformations that allow to change the solution of the SDE

fulfilled by the non conditioned process into a version of the solution of the SDE fulfilled by

the associated bridge process. The second method gives the finite dimensional distributions of

the bridge process conditioning in a suitable way the solution of an appropriate second order

SDE with Dirichlet boundary conditions [41] and [42]. The methods presented throughout

this Section are illustrated via the IBM process.
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6.1. Mathematical Background and Notations

Let X = {Xt, t ≥ 0} be a d-dimensional diffusion process defined on the probability space

(Ω,F , (Ft)t≥0, P) with state space R
d satisfying the stochastic differential equation (SDE)

dXt = µ(t,Xt)dt + σ(t,Xt)dWt (6.1.1)

X0 = c

where {Wt, t ≥ 0} is a m-dimensional Wiener process, µ : [0, +∞) × R
d → R

d and σ :

[0, +∞) × R
d → R

d × R
m are assumed to be defined and measurable, and c ∈ R

d. Let

us assume that the diffusion coefficients µ and σ satisfy the conditions of existence and

uniqueness (cf. [7] and [27]) of a strong solution of the SDE (6.1.1). For x, y ∈ R
d and

s < t ∈ [0, +∞), let

f(x, t|y, s) =
∂

∂x
P(Xt ≤ x|Xs = y) (6.1.2)

be the transition probability density function (p.d.f.) of the process X. The p.d.f. is a

fundamental solution of the backward Kolmogorov equation, i.e. for fixed x ∈ R
d, t ∈ [0, +∞)

and for all y ∈ R
d and s ∈ [0, +∞) and s < t

∂f(x, t|y, s)

∂s
+

d
∑

i=1

µi(s, y)
∂f(x, t|y, s)

∂yi
+

1

2

d
∑

i=1

d
∑

k=1

αik(s, y)
∂2f(x, t|y, s)

∂yi∂yk
= 0 (6.1.3)

and, for fixed x, y ∈ R
d, satisfies the end condition

lim
s↑t

f(x, t|y, s) = δ(x − y) (6.1.4)

where δ is Dirac’s delta function, µi are the components of the vector µ and αik are the

elements of the matrix α = σσT where T indicates the transpose matrix. The process X,

solution of eq. (6.1.1) is called time homogeneous if ∀x ∈ R
d the infinitesimal coefficients

µ(t, x) = µ(x) and σ(t, x) = σ(x) are independent of time. The process X with state space

I ⊆ R
d is regular if, whenever x, y ∈

◦
I (the interior of I)

P(T (y) < ∞|X0 = x) > 0, (6.1.5)

where T (y) is the random variable equal to the first time the process attains the value y (cf.

[28]).
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6.2. Multidimensional bridges

Here we consider the multidimensional bridge associated to a regular time homogeneous

diffusion process X, i.e. the process conditioned to attain a given state at time t1 > 0. Our

goal is to derive the SDE verified by the conditioned process when is assigned the process

X and the corresponding SDE. The case of the Integrated Brownian Motion exemplifies our

results.

Definition 6.2.1. Let X be a time homogeneous regular diffusion process. The process

X̃ = {X̃t, 0 ≤ t < t1} is called bridge (or tied-down process) associated to the process X if

X̃ is the process X conditioned on Xt1 = b ∈ R
d.

Note that X̃ is a diffusion process itself. In fact it has continuous paths and it is a Markov

process (cf. [28]).

Proposition 6.2.2. For x, y ∈ R
d and s < t ∈ [0, t1) let f̃(x, t|y, s) be the transition

p.d.f. of the conditioned process X̃. The following relation holds

f̃(x, t|y, s) =
f(x, t|y, s)f(b, t1|x, t)

f(b, t1|y, s)
, s < t ∈ [0, t1). (6.2.1)

Proof. Extending the proof given in [28] to the case of a general multidimensional

regular and time homogeneous diffusion process, for x, y ∈ R
d and s < t ∈ [0, t1), we get

∫

A
f̃(x, t|y, s)dx = P(Xt ∈ A|Xt1 = b,Xs = y)

= lim
ε↓0

P(Xt ∈ A|Xt1 ∈ Bb(ε), Xs = y)

= lim
ε↓0

∫

A

f(x, t|y, s)π(x, t)

π(y, s)
dx (6.2.2)

where Bb(ε) is the d-dimensional ball centered in b of radius ε, and for x ∈ R
d and t ∈ [0, t1),

π(x, t) is the probability that from the state value x at time t the sample path of X satisfies

Xt1 ∈ Bb(ε). Hence

∫

A
f̃(x, t|y, s)dx =

∫

A
f(x, t|y, s) lim

ε↓0

∫

Bb(ε)
f(z, t1|x, t)dz

∫

Bb(ε)
f(z, t1|y, s)dz

dx, (6.2.3)

and we get the thesis. ¤



60 MULTIDIMENSIONAL BRIDGES WITH APPLICATION TO THE IBM

Use of (6.2.1) allows to relate the diffusion coefficients of the bridge with the diffusion

coefficients and the transition p.d.f. of the not conditioned process. Indeed it holds:

Proposition 6.2.3. Let X be a d-dimensional regular and time homogeneous diffusion

process with infinitesimal coefficients µ = µ(x) and σ = σ(x). The corresponding bridge X̃,

obtained conditioning on Xt1 = b, for t ∈ [0, t1), satisfies the following SDE

dX̃t = µ̃(t, X̃t)dt + σ̃(X̃t)dWt (6.2.4)

X̃0 = c

where, for t ∈ [0, t1) and x ∈ R
d,

µ̃(t, x) =

(

µi(x) +
1

2

d
∑

k=1

αik(x) + αki(x)

f(b, t1|x, t)

∂

∂xk
f(b, t1|x, t)

)

i

(6.2.5)

σ̃(x) = σ(x)

Proof. The transition p.d.f. f(x, t|y, s) of the process X satisfies the backward Kol-

mogorov equation (6.1.3). From (6.2.1) we have

f(x, t|y, s) =
f̃(x, t|y, s)f(b, t1|y, s)

f(b, t1|x, t)
, s < t ∈ [0, t1). (6.2.6)

and substituting it into (6.1.3) we obtain

∂f̃(x, t|y, s)

∂s
+

d
∑

i=1

∂f̃(x, t|y, s)

∂yi

[

µi(y) +
1

2

d
∑

k=1

αik(y) + αki(y)

f(b, t1|x, t)

∂

∂yk
f(b, t1|x, t)

]

+
1

2

d
∑

i=1

d
∑

k=1

αik(y)
∂2f̃(x, t|y, s)

∂yi∂yk
= 0 (6.2.7)

Since the Kolmogorov equation uniquely identifies a diffusion process in terms of the infini-

tesimal coefficients, the thesis holds. ¤

Remark 6.2.4. Note that the infinitesimal variance σ̃ of the bridge process X̃ is equal

to the infinitesimal variance of the not conditioned process X. On the other hand the drift

term µ̃ changes following equation (6.2.5). Observe that it can be rewritten as

µ̃(t, x) =

(

µi(x) +
1

2

d
∑

k=1

[αik(x) + αki(x)]
∂

∂xk
ln f(b, t1|x, t)

)

i

. (6.2.8)
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Note that if X is solution of a linear SDE then even the corresponding bridge process X̃ is

solution of a linear SDE.

Remark 6.2.5. When eq. (6.2.4) cannot be solved in closed form, it is possible to

obtain an approximated solution extending to the multidimensional case the nested algorithm

illustrated in [21].

6.2.1. Application to the Integrated Brownian Motion.

In this subsection we apply the results obtained in the previous section to the Integrated

Brownian Motion process. The process Z = {Zt = (Z
(1)
t , Z

(2)
t )T , t ≥ 0} defined on the

probability space (Ω,F , (Ft)t≥0, P) with state space R
d satisfying the following bidimensional

stochastic differential equation
{

dZ
(1)
t = Z

(2)
t dt

dZ
(2)
t = dWt

(6.2.9)

with initial conditions Z
(1)
0 = c1 and Z

(2)
0 = c2, where {Wt, t ≥ 0} is a bidimensional Wiener

process, is called Integrated Brownian Motion. Eq. (6.2.9) can be written in matrix form as

dZt = AZtdt + σdWt (6.2.10)

Z0 = c,

where c = (c1, c2) ∈ R
2 and A and B are given by

A =

(

0 1

0 0

)

σ =

(

0 0

0 1

)

(6.2.11)

Note that eq. (6.2.9) is very simple and the solution is given by

{

Z
(1)
t = c1 + c2t +

∫ t
0 Wsds

Z
(2)
t = c2 + Wt

(6.2.12)

It results that Z is a bidimensional Gaussian process with mean vector and covariance matrix

given by

E(Zt) =

(

c1 + c2t

c2

)

Cov(Z
(1)
t , Z

(2)
t ) =

(

t3/3 t2/2

t2/2 t

)

(6.2.13)
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and the transition p.d.f. for any z = (z1, z2) ∈ R
2 and t > 0 is given by

fZ(z, t|0, 0) =

√
3

πt2
exp

(

− 6

t3
[

(z1 − c1 − c2t)
2+ (6.2.14)

−t(z2 − c2)(z1 − c1 − c2t) +
t2

3
(z2 − c2)

2

])

.

Let us denote with Z̃ the bridge corresponding to the IBM conditioned on being at state

b = (b1, b2) at time t1 = 1. Applying Proposition 6.2.3 to the IBM process we obtain that

the infinitesimal coefficients of the process Z̃, for any z ∈ R
2 and t ∈ [0, 1), are

µ̃(t, z) =











z2

6(b1 − z1)

(1 − t)2
− 2(2z2 + b2)

(1 − t)











(6.2.15)

σ̃(z) =

(

0 0

0 1

)

Hence the linear SDE fulfilled by the process Z̃ can be written in matrix form for t ∈ [0, 1)

as follows

dZ̃t = [Ã(t)Z̃t + ã(t)]dt + σ̃dWt (6.2.16)

Z̃0 = c,

where σ̃ is as in eq. (6.2.15) and Ã and ã are given by

Ã =











0 1

−6

(1 − t)2
−4

(1 − t)











ã =











0

6b1

(1 − t)2
− 2b2

(1 − t)











(6.2.17)

The solution of eq. (6.2.16) is given by

Z̃t = Φ(t)

[

c +

∫ t

0
Φ−1(s)ã(s)ds +

∫ t

0
Φ−1(s)σ̃dWs

]

, 0 ≤ t < 1 (6.2.18)
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where the matrix function Φ(t) is the fundamental solution to the homogeneous equation

ẋ(t) = Ã(t)x(t) (cf. [22]). After some calculation we obtain that

Φ(t) =







(2t + 1)(t − 1)2 t(t − 1)2

6t(t − 1) (t − 1)(3t − 1)






(6.2.19)

and the solution of eq. 6.2.16 is














































Z̃
(1)
t = c1(2t + 1)(t − 1)2 + c2t(t − 1)2 + b1t

2(3 − 2t) + b2t
2(t − 1)+

−(t − 1)2
∫ t

0

s

(s − 1)2
dWs + t(t − 1)2

∫ t

0

1

(s − 1)2
dWs

Z̃
(2)
t = 6c1t(t − 1) + c2(3t − 1)(t − 1) + 6b1t(1 − t) + b2t(3t − 2)+

−2(t − 1)

∫ t

0

s

(s − 1)2
dWs + (t − 1)(3t − 1)

∫ t

0

1

(s − 1)2
dWs

Note that Z̃ is a Gaussian process with vector mean and covariance function Cov(Z̃t, Z̃s) =

E[(Z̃t − E(Z̃t))(Z̃s − E(Z̃s))
T ] given by

E(Z̃t) =







c1(2t + 1)(t − 1)2 + c2t(t − 1)2 + b1t
2(3 − 2t) + b2t

2(t − 1)

6c1t(t − 1) + c2(3t − 1)(t − 1) + 6b1t(1 − t) + b2t(3t − 2)







Cov(Z̃t, Z̃s) =













s2(1 − t)2
[

−s(1 − t)

6
+

t(1 − s)

2

]

s(1 − t)2

2
(2st + s − 2t)

t(1 − s)2

2
(2st + t − 2s) s(1 − t)(3st + 1 − 3t)













.(6.2.20)

6.3. Two methods to find a version of the bridge process in the bidimensional

case

In this section we present two different methods to calculate the distribution of a bridge

associated to a given bidimensional diffusion process. The first method looks for time-space

transformations that allow to obtain a version of the process solution of the SDE for the

bridge knowing the solution of the SDE of the not conditioned process, following a method

proposed in [47] for a similar one dimensional problem. The second method allows to obtain
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the distribution of the bridge by conditioning the second component of the process solution

of a second order SDE with Dirichlet boundary conditions (cf. [42]).

6.3.1. Space-time transformation of the process. In this subsection we look for

space-time transformations (cf. [13],[47]) of the type

s′ = φ(s)

y′1 = ψ1(s, y1, y2)

y′2 = ψ2(s, y1, y2) (6.3.1)

with the further condition

f(x, t|y, s) = Jf ′(x′, t′|y′, s′) (6.3.2)

where s > 0, s′ ∈ [0, t1), y = (y1, y2)
T ∈ R

2, y′ = (y′1, y
′
2)

T ∈ R
2 and J is the Jacobian of

the transformation. Equations (6.3.1) and (6.3.2) change eq. (6.1.3) into the Kolmogorov

equation of the bridge corresponding to the original process that is eq. (6.2.7) for d = 2.

Rewriting eq. (6.1.3) in terms of the new variables given by (6.3.1) and equating it to the

new Kolmogorov equation given by eq. (6.2.7) for d = 2, we obtain the following system of
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partial differential equations:











































































































































































































































∂ψ1(s, y)

∂s
+ µ1(y)

∂ψ1(s, y)

∂y1
+ µ2(y)

∂ψ1(s, y)

∂y2
+

a11(y)

2

∂2ψ1(s, y)

∂y2
1

+

+
a22(y)

2

∂2ψ1(s, y)

∂y2
2

+
a12(y) + a21(y)

2

∂2ψ1(s, y)

∂y1∂y2
= µ̃1(φ(s), ψ(s, y))

dφ(s)

ds

∂ψ2(s, y)

∂s
+ µ1(y)

∂ψ2(s, y)

∂y1
+ µ2(y)

∂ψ2(s, y)

∂y2
+

a11(y)

2

∂2ψ2(s, y)

∂y2
1

+

+
a22(y)

2

∂2ψ2(s, y)

∂y2
2

+
a12(y) + a21(y)

2

∂2ψ2(s, y)

∂y1∂y2
= µ̃2(φ(s), ψ(s, y))

dφ(s)

ds

a11(y)

(

∂ψ1(s, y)

∂y1

)2

+ a22(y)

(

∂ψ1(s, y)

∂y2

)2

+ (a12(y) + a21(y))
∂ψ1(s, y)

∂y1

∂ψ1

∂y2
=

= a11(ψ(s, y))
dφ(s)

ds

a11(y)

(

∂ψ2(s, y)

∂y1

)2

+ a22(y)

(

∂ψ2(s, y)

∂y2

)2

+ (a12(y) + a21(y))
∂ψ2(s, y)

∂y1

∂ψ2(s, y)

∂y2
=

= a22(ψ(s, y))
dφ(s)

ds

2a11(y)
∂ψ1(s, y)

∂y1

∂ψ2(s, y)

∂y1
+ 2a22(y)

∂ψ1(s, y)

∂y2

∂ψ2(s, y)

∂y2
+

+2(a12(y) + a21(y))
∂ψ1(s, y)

∂y1

∂ψ2(s, y)

∂y2
= (a12(y) + a21(y))

dφ(s)

ds
(6.3.3)
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where ψ(s, y) = (ψ1(s, y), ψ2(s, y))T , with the conditions

φ(0) = 0

lim
s→∞

φ(s) = t1

ψ1(0, c1, c2) = c1

ψ2(0, c1, c2) = c2

lim
s→∞

ψ1(s, y1, y2) = b1, ∀y ∈ R
2

lim
s→∞

ψ2(s, y1, y2) = b2, ∀y ∈ R
2. (6.3.4)

In the general case the system (6.3.3) is not solvable in closed form. Hence we focus on the

particular case of the IBM process.

Application to the IBM process. Let us consider the process Z given by eq. (6.2.9).

We look for the transformations that allows to change the Kolmogorov equation for the IBM

transition p.d.f.

∂f

∂s
+ y2

∂f

∂y1
+

1

2

∂2f

∂y2
2

= 0 (6.3.5)

into the Kolmogorov equation for the transition p.d.f. of the corresponding bridge Z̃, given

by

∂f ′

∂s′
+ y′2

∂f ′

∂y′1
+

[

6(b1 − y′1)

(1 − t′)2
− 2(2y′2 + b2)

(1 − t′)

]

∂f ′

∂y′2
+

1

2

∂2f ′

∂y′22
= 0 (6.3.6)
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obtained substituting (6.2.15) in eq. (6.2.7). When considering an IBM bridge, the system

(6.3.3) becomes










































































































∂ψ1(s, y)

∂s
+ y2

∂ψ1(s, y)

∂y1
+

1

2

∂2ψ1(s, y)

∂y2
2

= ψ2(s, y)
dφ(s)

ds

∂ψ2(s, y)

∂s
+ y2

∂ψ2(s, y)

∂y1
+

1

2

∂2ψ2(s, y)

∂y2
2

=
dφ(s)

ds

[

6(b1 − ψ1(s, y))

(1 − φ(t))2
− 2(2ψ2(s, y) + b2)

(1 − ψ(t))

]

(

∂ψ1(s, y)

∂y2

)2

= 0

(

∂ψ2(s, y)

∂y2

)2

=
dφ(s)

ds

2
∂ψ1(s, y)

∂y2

∂ψ2(s, y)

∂y2
= 0

(6.3.7)

with conditions (6.3.4). The system (6.3.7) has infinite solutions, one for each choice of the

function φ(t) satisfying conditions (6.3.4). Fixing the transformation for the time

φ(s) =
s

1 + s
(6.3.8)

we obtain the following transformations for the spaces

ψ1(s, y1, y2) =
y1 − b2 + 2b1 − 3c1

(s + 1)3
+

b1s
2 + (1 − s)(b2 − 2b1) + 3c1

(s + 1)2

ψ2(s, y1, y2) =
y2 − 3b2 + b2t + 4b1 − 6c1

(s + 1)
+

−3y1 + 3(b2 − 2b1) + 9c1

(s + 1)2
. (6.3.9)

Then, applying the previous transformations to the solution (6.2.12), we find that a version

of the IBM bridge is given by the process Z̄ as follows














































Z̄
(1)
t = c1(2t + 1)(t − 1)2 + c2t(t − 1)2 + b1t

2(3 − 2t) + b2t
2(t − 1)+

−(t − 1)3
∫ t/(1−t)

0
Wsds

Z̄
(2)
t = 6c1t(t − 1) + c2(3t − 1)(t − 1) + 6b1t(1 − t) + b2t(3t − 2)+

−(t − 1)W t

(1−t)
− 3(1 − t)2

∫ t/(1−t)

0
Wsds
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Simple computations allows to see that the process Z̄ has the same finite-dimensional distri-

butions as process Z̃.

6.3.2. Second order SDE with Dirichlet boundary conditions. In this subsection

we consider the particular case of a one-dimensional diffusion process Y = {Yt, t ∈ [0, t1)}
fulfilling the following second order SDE

d2Yt

dt2
+ f

(

Yt,
dYt

dt

)

=
dWt

dt
, (6.3.10)

with Dirichlet type boundary conditions

Y0 = c1 Yt1 = b1 (6.3.11)

where c1 and b1 are real fixed numbers. Note that the solution of eq. (6.3.10) with boundary

conditions (6.3.11) is a process originated in c1 and constrained to be at time t1 in state b1.

If we also condition the derivative of the process to attain a fixed value at time t = 0 and

t = t1 we get a process equal in law to a bridge. In fact if we consider the bidimensional

process Ŷt = (Ŷ
(1)
t = Yt, Ŷ

(2)
t = dYt/dt), eq. (6.3.10) can be written as
{

dŶ
(1)
t = Ŷ

(2)
t dt

dŶ
(2)
t = −f(Ŷ

(1)
t , Ŷ

(2)
t )dt + dWt

(6.3.12)

and with this notation the boundary conditions (6.3.11) are

Ŷ
(1)
0 = c1 Ŷ

(1)
t1

= b1. (6.3.13)

The process Ŷ conditioned on the event B = {Ŷ (2)
0 = c2, Ŷ

(2)
t1

= b2} becomes a new process

Ỹ originated in (c1, c2) and constrained to attain value (b1, b2) at time t1. The process Ỹ has

the same finite-dimensional distributions of the bridge associated to the process Y .

Application to the IBM process. Let’s consider eq. (6.3.10) with boundary conditions

(6.3.11) for f ≡ 0 and t1 = 1. Denote by Ẑ = (Ẑ
(1)
t = Zt, Ẑ

(2)
t = dZt/dt) the solution given

by






















Ẑ
(1)
t = c1 + (b1 − c1)t − t

∫ 1

0
Wsds +

∫ t

0
Wsds

Ẑ
(2)
t = (b1 − c1) −

∫ 1

0
Wsds
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Note that Ẑ is a Gaussian process with vector mean and covariance function given by

E(Ẑt) =







c1 + (b1 − c1)t

(b1 − c1)






(6.3.14)

Cov(Z̃t, Z̃s) =











s(t − 1)

6
[s2 + t(t − 2)]

(t − 1)

6
[3s2 + t(t − 2)]

(s − 1)

6
[3t2 + s(s − 2)]

t2 + s2

2
− t +

1

3











,

for s < t ∈ [0, 1).

Proposition 6.3.1. The process Ẑ conditioned on the event B = {Ẑ(2)
0 = c2, Ẑ

(2)
1 = b2}

has the same finite-dimensional distributions of the IBM bridge Z̃ given by eq. (6.2.20).

Proof. In order to get the thesis let us calculate the distribution of the conditioned

process Ẑ|B. To this aim let us consider the 4-dimensional Gaussian vector

H =

(

H1

H2

)

(6.3.15)

where H1 = (Ẑ2
0 , Ẑ2

1 )T and H2 = (Ẑ1
t , Ẑ2

t )T . We recall that given

X =

























X1

...

Xk

Xk+1

...

Xn

























=

(

X(1)

X(2)

)

(6.3.16)

a Gaussian n-dimensional vector with vector mean and covariance matrix

E(X) =

(

µ1

µ2

)

(6.3.17)

Σ(X) =

(

Σ11 Σ12

Σ21 Σ22

)

,
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where µi = E(X(i)) and Σij = Cov(X(i), X(j)), the distribution of the conditioned process

X(2)|X(1) is again Gaussian with mean µ2|1 and covariance matrix Σ22|1 (cf. [58])

µ2|1 = µ2 + Σ21Σ
−1
11 (X(1) − µ1), (6.3.18)

Σ22|1 = Σ22 − Σ21Σ
−1
11 Σ12.

Applying this result to the vector H we get

E(H) =













b1 − c1

b1 − c1

c1 + (b1 − c1)t

b1 − c1













(6.3.19)

Σ(H) =





































1

3
−1

6

t

6
(t − 1)(t − 2)

t2

2
− t +

1

3

−1

6

1

3

t

6
(t2 − 1)

t2

2
− 1

6

t

6
(t − 1)(t − 2)

t

6
(t2 − 1)

t2

3
(t − 1)2

t

3
(2t − 1)(t − 1)

t2

2
− t +

1

3

t2

2
− 1

6

t

3
(2t − 1)(t − 1) t2 − t +

1

3





































.

Hence the conditioned process Ẑ|B at time t is Gaussian distributed with mean vector and

covariance matrix given by

E(Ẑt|B) =







c1(2t + 1)(t − 1)2 + c2t(t − 1)2 + b1t
2(3 − 2t) + b2t

2(t − 1)

6c1t(t − 1) + c2(3t − 1)(t − 1) + 6b1t(1 − t) + b2t(3t − 2)







Cov(Z̃
(1)
t , Z̃

(2)
t |B) =













t3(1 − t)3

3

t2

2
(1 − 2t)(1 − t)2

t2

2
(1 − 2t)(1 − t)2 t(1 − t)(3t2 − 3t + 1),













(6.3.20)
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that are equal to (6.2.20) for s = t. In order to obtain the covariance function of Ẑ|B we

apply the same method to the Gaussian vector H with H2 = (Ẑ1
t , Ẑ1

s )T , H2 = (Ẑ1
t , Ẑ2

s )T and

H2 = (Ẑ2
t , Ẑ2

s )T respectively and we get the thesis. ¤

6.4. Discussion

In this first study on bridge processes we tried to follow an approach to the problem

that goes through the SDE fulfilled by the conditioned process, starting from the SDE giving

the process on which the bridge is built. We explored two methods to have a version (at

least) of the solution of the SDE giving the bridge, i.e. the space time transformations and

the conditioning of the solution of a suitable second order SDE with Dirichlet boundary

conditions.

This is truly an explorative study, we are going to complete. At first we would like to

build another example to illustrate the results. Then we would like to work on the first

passage time of the bridge process through the threshold. Indeed the application of bridge

processes in which we are mainly interested, as already said, is the simulation of first passage

times of diffusion processes. There we need to have results on the first passage time of the

bridge process build on the diffusion process that is simulated. So we consider this (very

intriguing) problem still open.





CHAPTER 7

Conclusions

Résumé Le chapitre 7 rappelle le cheminement qui nous a permis de
passer des modèles mathématiques simples aux modèles de plus en plus
compliqués pour la simulation de la dynamique neuronale. Les principaux
résultats obtenus sont rappelés sourtout à la lumière de leur interprétation
neurobiologique: premièrement, l’observation qu’une afférence inhibitrice
peut renforcer l’efficacité des afférences excitatrices sous certaines conditions;
deuxièmement, l’observation des distributions ISI multimodales en l’absence
d’afférences périodiques est particulièrment importante dans la perspective
des synchronisations de l’activité cerebrale. Le dévelopement ultérieur des
résultats de cette thèse, aussi bien dans le domaine des neurosciences com-
putationelles que dans les applications informatiques, est décrit avec quelques
exemples.

We developed our studies in two main directions. On one hand, we studied stochastic

neuronal models where the membrane potential is described through a jump diffusion process.

We showed that, even if simple, such models are able to produce complex and interesting

dynamics. We focused our attention on the properties of the firing patterns of a small

network consisting in one single neuron and two units (cell assemblies) synapting on it. The

investigated features (such as multimodality of the ISIs histograms, resonant like phenomena

and correlations) allow to widen the perspective and to set the small network in a larger

environment. On the other hand we faced, from a purely theoretical point of view, the study

of multidimensional bridge processes associated to a diffusion process. We wrote the SDE

fulfilled by the conditioned process, starting from the SDE giving the process on which the

bridge is built. We explored two methods to have a version of the solution of the SDE giving

the bridge, i.e. the space time transformations and the conditioning of the solution of a

suitable second order SDE with Dirichlet boundary conditions.
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With respect to the neuromodelling topic we dealt with the following models:

- Wiener process with jumps (2.1.16):

- N+ and N− Poisson processes

- N+ and N− with inter events IG distributed

- Ornstein Uhlenbeck process with jumps (2.1.14):

- with reset to V OU
0 = Vrest and N+

0 = N−
0 = 0:

- N+ and N− Poisson processes

- N+ and N− with inter events IG distributed

- with reset to V OU
0 = Vrest and N+

0 = N+
Tk

and N−
0 = N−

Tk
:

- N+ and N− Poisson processes

- N+ and N− with inter events IG distributed

The study of the Wiener process with jumps has been mainly preliminary, and allowed

us to introduce and focus the problems we developed more in details with the Ornstein

Uhlenbeck process with jumps. The results we obtained show that the superimposition of the

jump processes with Inverse Gaussian or Exponential inter events distributions considerably

changes the dynamics of the membrane potential. The two jump processes we considered have

very different consequences on the dynamics of the membrane potential. When the inter

events are Inverse Gaussian distributed, the jump processes force the membrane potential

fluctuations with strong regularities (cf. Fig. 5.3, panels a–b), that we find again in the

ISI histograms. While with Exponential distribution of the inter times, the jumps processes

have no regular nor oscillatory component (cf. Fig. 5.6, panels a–b). Despite that, the

composition with the jump diffusion process, for some range of the parameters, gives rise

to ISI histograms again multimodal. We gave particular relevance to this feature exhibited

by the ISI histograms. Indeed to consider firing times of the nerve cell given by a random

variable distributed according to a density with multiple peaks, means that in correspondence

of each one of the modes (i.e. the lags giving the maxima of the density) the cell has a higher

probability of firing (referred to as characteristic time). The hypothesis that the probability of

firing around a characteristic time could be modulated is confirmed by the study on resonant

like phenomena we performed. So that the same single neuron, when varying physiological

background properties, may produce firing patterns significantly different and participate to

different circuits.
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The other relevant results we obtained on the study of the neuromimetic model concerns

the role of inhibition in neuronal coding. Indeed we show that inhibition helps the excitatory

signal transmission (cf. Fig. 5.6, panel d). This result suggests that inhibitory cells are not

only involved in keeping a stable balance with excitation but also may take an active role in

the information processing. To some extent we could say that the role of inhibitory inputs

can be considered “content driven”.

Beside the neuro-modelling problem, we worked on bridge processes associated to a dif-

fusion process. We obtained purely theoretical results we would like to apply to first passage

time simulation problems. Indeed the algorithms to simulate the first passage time of a sto-

chastic process through a threshold (that is the mathematical formulation we adopted to find

the firing times of a neuron with membrane potential modelled through a stochastic process)

build time discrete approximations of the sample path of the considered stochastic process

and at each step evaluate whether the new point lies beyond the boundary. These procedures

cause the loss of possible crossings in between two successive simulated points. We ignore

such occurrences since we ignore the trajectory in between two nodes of the time discrete

approximation of the trajectory. The error that affects the first passage time estimate is very

relevant (cf. [19]). So that the algorithm is corrected by adding, at each step, the evaluation

of the probability that the bridge process built conditioning on the nodes of the partition of

the time crosses the threshold. Note that if we deal with large networks of neurons and we

are interested in a simulation of such network, the presence of an important error on each cell

will propagate. The study we performed on multidimensional bridges is at an early stage and

we are planning to apply them to the simulation of large networks of neurons. Pure mathe-

matical applications of first passage time problems arise also in algorithms that solve elliptic

boundary value problems with domain decomposition methods. There, to split the problem

into fully decoupled problems, it is important to have efficient and reliable algorithms at

disposal to evaluate first passage times.
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