R. Development and C. Team, R : A language and environment for statistical computing. R Foundation for Statistical Computing, pp.3-900051, 2004.

A. A. Avery, Infantile methemoglobinemia: reexamining the role of drinking water nitrates, Environmental Health Perspectives, vol.107, issue.7, pp.583-586, 1999.
DOI : 10.1289/ehp.99107583

R. J. Beckman, C. J. Nachtsheim, and R. D. Cook, Diagnostics for mixed-models analysis of variance, Technometrics, p.29, 1987.

R. D. Cook, Detection of influtiential observations in linear regression, Technometrics, vol.19, pp.15-18, 1977.

R. D. Cook, Influential Observations in Linear Regression, Journal of the American Statistical Association, vol.2, issue.365, pp.169-174, 1979.
DOI : 10.1080/01621459.1979.10481634

R. D. Cook, Assessment of local influence, Journal of the Royal Statistical Society, vol.48, pp.133-169, 1986.

N. A. Cressie, Statistics for spatial data Wiley Series in Probability and mathematical statistics : Applied Probability and statistics, 1993.

C. De-boor, Splines as linear combination of b.splines. a survey, Approximation Theory II, pp.1-47, 1976.

C. B. De-boor, (asic) spline basics, Fundamental Developments of Computer-Aided Geometric Modeling, pp.27-49, 1993.

P. J. Diggle, P. Heagerty, K. Y. Liang, and S. Zeger, Analysis of Longitudinal Data., Biometrics, vol.53, issue.2, 2002.
DOI : 10.2307/2533983

C. R. Dimatteo, I. , and R. E. Kass, Bayesian curve-fitting with free-knot splines, Biometrika, vol.88, issue.4, pp.1055-1071, 2001.
DOI : 10.1093/biomet/88.4.1055

URL : http://biomet.oxfordjournals.org/cgi/content/short/88/4/1055

D. L. Donoho and I. M. Johnstone, Ideal spatial adaptation via wavelet shrinkage, Biometrika, vol.11, pp.425-455, 1994.
DOI : 10.2307/2337118

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Franke and B. Grunder, Athens Conference on Applied Probability and Time Series chapter General kriging for spatial-temporal processes with random ARX-regression parameters, pp.177-190, 1996.

P. J. Green, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, vol.82, issue.4, pp.711-732, 1995.
DOI : 10.1093/biomet/82.4.711

P. J. Green and P. J. Silverman, Nonparametric Regressions and Genralized Linear Models, 1994.

C. Gu, Smooothing spline ANOVA models, 2002.

D. A. Harville, Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems, Journal of the American Statistical Association, vol.27, issue.358, pp.320-339, 1977.
DOI : 10.1080/01621459.1973.10482448

T. J. Hastie and R. J. Tibshirani, Genralized Additive Models, 1990.

H. Jacqmin-gadda, P. Joly, D. Commenges, and C. Binquet, Penalized likelihood approach to estimate a smooth mean curve on longitudinal data, Statistics in Medicine, vol.14, issue.16, pp.2391-2402, 2002.
DOI : 10.1002/sim.1225

G. James and T. Hastie, Principal component models for sparse functional data, Biometrika, vol.87, issue.3, pp.711-732, 2000.
DOI : 10.1093/biomet/87.3.587

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

. Ath and . Kehagias, A hidden markov model segmentation of hydrological and environnemental time series, 2002.

B. Knobeloch, L. Saina, A. Hogan, J. Postle, and H. Anderson, Blue Babies and Nitrate-Contaminated Well Water, Environmental Health Perspectives, vol.108, issue.7, pp.675-678, 2000.
DOI : 10.1289/ehp.00108675

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1638204

R. Kohn, C. F. Ansley, and D. Tharm, The Performance of Cross-Validation and Maximum Likelihood Estimators of Spline Smoothing Parameters, Journal of the American Statistical Association, vol.40, issue.416, pp.1042-1050, 1991.
DOI : 10.1016/0141-1195(86)90098-7

N. M. Laird and J. H. Ware, Random-Effects Models for Longitudinal Data, Biometrics, vol.38, issue.4, pp.963-974, 1982.
DOI : 10.2307/2529876

E. Lesaffre and G. Verbeke, Local Influence in Linear Mixed Models, Biometrics, vol.54, issue.2, pp.570-582, 1998.
DOI : 10.2307/3109764

J. R. Magnus and A. L. Vasnev, Local sensitvity and diagnostics tests, 2004.

G. Matheron, Traité de géostatistique appliquée, Bur. Rech. Géol. Minières, 1962.

D. J. Nott and T. M. Dunsmuir, Estimation of nonstationary spatial covariance structure, Biometrika, vol.89, issue.4, pp.819-829, 2002.
DOI : 10.1093/biomet/89.4.819

D. Pregibon, Logistic regression diagnostics. The Annals of Statistics, 1981.

C. R. Rao, Linear Statistical Inference and Its Applications, 1973.
DOI : 10.1002/9780470316436

J. A. Rice and C. O. Wu, Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves, Biometrics, vol.50, issue.1, pp.253-259, 2001.
DOI : 10.1111/j.0006-341X.2001.00253.x

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. K. Robinson, That BLUP is a Good Thing: The Estimation of Random Effects, Statistical Science, vol.6, issue.1, pp.15-51, 1991.
DOI : 10.1214/ss/1177011926

D. Ruppert, M. P. Wand, and R. Carroll, Semiparametric Regression, 2003.
DOI : 10.1017/CBO9780511755453

P. D. Sampson and P. Guttorp, Nonparametric Estimation of Nonstationary Spatial Covariance Structure, Journal of the American Statistical Association, vol.40, issue.417, pp.108-119, 1992.
DOI : 10.1080/01621459.1992.10475181

S. R. Searle, G. Casella, and C. E. Mcculloch, Variance Components, 1992.
DOI : 10.1002/9780470316856

B. W. Silverman, Some aspects of the smoothing approach to non-parametric regression curve fitting, Journal of the Royal Statistical Society, vol.47, pp.1-52, 1985.

M. L. Stien, A comparaison of generalized cross validation and modified maximum likelihood for estimating the parameters of a stochastic process. The Annals of Statistics, pp.1139-1159, 1990.

G. Verbeke and G. Molenberghs, Linear Mixed Models for Longitudinal Data, 2000.
DOI : 10.1007/978-1-4612-2294-1_3

G. Wahba, Improper priors, spline smoothing and the problem of guarding against models errors in regression, Journal of the Royal Statistical Society, vol.40, pp.364-372, 1978.

G. Wahba, A Comparison of GCV and GML for Choosing the Smoothing Parameter in the Generalized Spline Smoothing Problem, The Annals of Statistics, vol.13, issue.4, pp.1378-1402, 1985.
DOI : 10.1214/aos/1176349743

G. Wahba and S. Wold, A completely automatic french curve, Commun. Statistics, vol.4, pp.1-17, 1975.

M. P. Wand, Vector Differential Calculus in Statistics, The American Statistician, vol.56, issue.1, pp.55-62, 2002.
DOI : 10.1198/000313002753631376

Y. Wang, Mixed effects smoothing spline analysis of variance, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.60, issue.1, pp.159-174, 1998.
DOI : 10.1111/1467-9868.00115

S. L. Zeger and P. J. Diggle, Semiparametric Models for Longitudinal Data with Application to CD4 Cell Numbers in HIV Seroconverters, Biometrics, vol.50, issue.3, pp.689-699, 1994.
DOI : 10.2307/2532783

D. Zhang, X. Lin, J. Raz, and M. Sowers, Semiparametric Stochastic Mixed Models for Longitudinal Data, Journal of the American Statistical Association, vol.50, issue.442, pp.710-719, 1998.
DOI : 10.1080/01621459.1998.10473723

X. Zhang and M. L. King, Influence diagnostics in garch processes, 2002.

H. T. Zhu and S. Y. Lee, Local influence in generalized linear models. La revue canadienne de statistisque, pp.293-309, 2003.