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Abstract

Nonparametric Estimation of a k-monotone Density:

A New Asymptotic Distribution Theory

by Fadoua Balabdaoui

Chair of Supervisory Committee:

Professor Jon A. Wellner
Department of Statistics

In this dissertation, we consider the problem of nonparametric estimation of a k-monotone

density on (0,∞) for a fixed integer k ≥ 1 via the methods of Maximum Likelihood (ML)

and Least Squares (LS).

In the introduction, we present the original question that motivated us to look into this

problem and also put other existing results in our general framework. In Chapter 2, we

study the MLE and LSE of a k-monotone density g0 based on n i.i.d. observations. Here,

our study of the estimation problem is local in the sense that we only study the estimator

and its derivatives at a fixed point x0 > 0. Under some specific working assumptions,

asymptotic minimax lower bounds for estimating g
(j)
0 (x0), j = 0, · · · , k − 1 are derived.

These bounds show that the rates of convergence of any estimator of g
(j)
0 (x0) can be at

most n−(k−j)/(2k+1). Furthermore, under the same working assumptions we prove that this

rate is achieved by the j-th derivative of either the MLE or LSE if a certain conjecture

concerning the error in a particular Hermite interpolation problem holds.

To make the asymptotic distribution theory complete, the limiting distribution needs to

be determined. This distribution depends on a very special stochastic process Hk which is

almost surely uniquely defined on R. Chapter 3 is essentially devoted to an effort to prove

the existence of such a process and to establish conditions characterizing it. It turns out





that we can establish the existence and uniqueness of the process Hk if the same conjecture

mentioned above with the finite sample problem holds. If Yk is the (k − 1)-fold integral of

two-sided Brownian motion + (k!/(2k)!) t2k, then Hk is a random spline of degree 2k − 1

that stays above Yk if k is even and below it if k is odd. By applying a change of scale, our

results include the special cases of estimation of monotone densities (k = 1), and monotone

and convex densities (k = 2) for which an asymptotic distribution theory is available.

Iterative spline algorithms developed to calculate the estimators and approximate the

process Hk on finite intervals are described in Chapter 4. These algorithms exploit both

the spline structure of the estimators and the process Hk as well as their characterizations

and are based on iterative addition and deletion of the knot points.
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Chapter 1

INTRODUCTION

Our interest in nonparametric estimation of a k-monotone density was first motivated

by Jewell (1982); Jewell considered the nonparametric Maximum Likelihood estimator of

a scale mixture of Exponentials g,

g(x) =

∫ ∞

0
t exp(−tx)dF (t), x > 0

where F is some distribution function concentrated on (0,∞). Such a scale mixture of

Exponentials is a possible model for lifetime distributions when the population that is at

risk of failure or deterioration is nonhomogenous and when one is not willing to assume the

number of its components to be known. See Jewell (1982) for a survey of the application

of the model in different fields.

Suppose that X1, · · · ,Xn are n independent observations from a common scale mixture

of Exponentials g. Jewell (1982) established that the Maximum Likelihood estimator

(MLE), of the mixing distribution F , F̂n say, exists and is discrete with at most n support

points. This implies that the MLE of the true mixed density g, ĝn say, is a finite mixture of

Exponentials with at most n components. This result also follows from the work of Lindsay

(1983a), Lindsay (1983b), and Lindsay (1995) on nonparametric maximum likelihood in a

very general mixture model setting. Jewell (1982) was also able to establish uniqueness and

strong consistency of the MLE and used an EM algorithm to compute it. As in other mixture

models, there are two main estimation problems of interest when considering a scale mixture

of Exponentials: the direct and inverse problems. In the first one, the goal is to estimate

the mixed density g directly from the observed data, whereas in the second one the focus is

on the underlying mixing distribution F . To our knowledge, the exact rate of convergence

of the MLE is still unknown in both problems and thus the asymptotic distribution theory
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is yet to be developed. In the inverse problem and under additional assumptions on the

mixing distribution, asymptotic lower bounds on the rate of convergence of a consistent

estimator were derived. For example, Millar (1989) assumed that the mixing distribution

F belongs to the class Gm,M of all mixing distributions defined on some subset A ⊂ R and

have a density f that is m-differentiable and such that supx∈A |f (j)(x)| < M, j = 0, · · · ,m.

Using characteristic function techniques, Millar (1989) could establish that

(log n)−m and (log n)−(m+1)

are uniform asymptotic lower bounds on the rate of estimation of the mixing density f and

the distribution function F at a fixed point x0 respectively. See Millar (1989) for more

details about the definition of uniformity.

Although we want to consider the class of all mixing distributions, this result can be

used at least heuristically to derive bounds in more general settings. For m = 0, where we

impose the minimal smoothness constraints on the mixing distribution F , the asymptotic

lower bound for estimating F (x0) specializes to 1/ log n. The logarithmic order of these

lower bounds show how slow the rate of convergence can be in this kind of nonparametric

setting. The estimation problem is far from being regular and therefore one should expect

the rate of convergence to be slower than
√
n. In mixture models with smoother kernels,

this rate of convergence is expected to be slower. The scale mixture of Exponentials is one

example of a “smooth mixture”. Another good example is location mixtures of Gaussians.

This model is very often used to take measurement error into account. Formally, if X is

some random variable with an unknown distribution function F , one gets to observe only

Y = X + Z, where Z ∼ N (0, σ2
0) and σ0 > 0 is supposed to be known. The density of

X is given by the convolution of φ, the normal density and the distribution function F .

Several authors were interested in the inverse problem which is also known as the Gaussian

deconvolution problem. The work of Stefanski and Carroll (1990), Carroll and Hall

(1988) , and Fan (1991) suggest that the rate of convergence of a consistent estimator of

the underlying distribution F , if achieved, would be of the order of 1/
√

log n. Note that this

rate is even slower than the expected log n in the case of scale of mixture of Exponentials.

In the direct problem where the focus is on the mixed density, the sieve MLE was studied
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by Ghosal and Van der Vaart (2001). By considering a particular class of mixing distrib-

utions, the authors could show that log n/
√
n is an upper bound for its rate of convergence.

This bound is much faster when compared to the one obtained in the inverse problem.

But this is not surprising if we associate the difficulty of estimation to the “size” of the

class to which the distribution function or the density belongs. In this particular case, the

mixed density belongs to a small class of densities that have to be equal to the convolution

of the normal density and some distribution function F . It follows that any element of

this class has to be infinitely differentiable. But on the other hand, this same smoothness

makes the task of “untangling” the underlying distribution F from the Gaussian noise to

be statistically hard.

As for the scale mixture of Exponentials, the exact asymptotic distribution of the MLE

in the mixture of Gaussians is still to be derived. Although the two models are very differ-

ent, one can see that some mathematical connection can be made through the exponential

form of their kernels. We have not pursued thoroughly this thought as it is beyond the

scope of this thesis, but we believe that getting a better understanding of the asymptotics

of the MLE in scale mixture of Exponentials might be helpful in achieving the same thing

for mixture of Gaussians.

Part of the difficulty of knowing more about the asymptotic behavior of the MLE in these

kind of nonparametric models is primarily due to the implicit nature of the characterizations

of the estimators. For the scale mixture of Exponentials, Jewell (1982) established that

ĝn is the MLE of the mixed density if and only if

∫ ∞

0

λ exp(−λx)
ĝn(x)

dGn(x)





≤ 1, λ > 0

= 1, if λ is a support point of F̂n

where Gn is the empirical distribution function. For the characterization of the MLE in

a location mixture of Gaussians, see Groeneboom and Wellner (1992), Proposition 2.3,

page 58. However, although there are no standard methods available to make these char-

acterizations easily exploitable to derive the exact asymptotic distribution of the MLE, it

seems that more is known about the class of scale mixture of Exponentials itself. Indeed,
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Jewell (1982) noted that g is a scale mixture of Exponentials if and only if the complement

of its distribution function is the Laplace transform of some distribution function F . Jewell

(1982) also recalled the fact that the class of scale mixtures of Exponentials can be identified

as the class of completely monotone densities (Bernstein’s theorem) where by definition, a

function f on (0,∞) is completely monotone if and only if f is infinitely differentiable on

(0,∞) and (−1)kf (k) ≥ 0, for k ∈ N (see, e.g., Widder (1941), Feller (1971), Williamson

(1956), Gneiting (1999)).

Now, if we suppose that the density g is only differentiable up to a finite degree but

that its existing derivatives alternate in sign, then g is said to be k-monotone if and only

if (−1)jg(j) is nonnegative, nonincreasing and convex for j = 0, · · · , k − 2 if k ≥ 2 and

simply nonnegative and nonincreasing if k = 1 (see, e.g., Williamson (1956), Gneiting

(1999)). One can see that the class of completely monotone densities is the intersection of

all the classes of k-monotone densities, k ≥ 1 (see e.g. Gneiting (1999)) and a completely

monotone density can be viewed then as an “∞-monotone” density.

To prepare the ground for establishing the exact rate of convergence of the MLE for scale

mixtures of Exponentials or equivalently for completely monotone densities, it seems natural

to work on establishing an asymptotic distribution theory for the MLE for k-monotone

densities.

When k = 1, the problem specializes to estimating a nonincreasing density g0 and was

first solved by Prakasa Rao (1969) and revisited by Groeneboom (1985). Groeneboom

(1985) used a geometric interpretation of the MLE (the Grenander estimator) to reprove

that

n1/3 (ĝn(x0) − g0(x0)) →d

(
1

2
g0(x0)|g′0(x0)|

)1/3

C ′(0),

where x0 > 0 is a fixed point such that g′0(x0) < 0 and g′0 is continuous in a neighborhood

of x0, ĝn is the Grenander estimator, and C is the greatest convex minorant of two-sided

Brownian motion starting at 0 plus t2, t ∈ R. For k = 2, Groeneboom, Jongbloed, and

Wellner (2001b) considered both the MLE and LSE and established that if the true convex
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density g satisfies g′′0 (x0) > 0 and g′′0 is continuous in a neighborhood of x0, then



 n2/5 (ḡn(x0) − g0(x0))

n1/5 (ḡ′n(x0) − g′(x0))



→d




(

1
24g

2
0(x0)g

′′
0 (x0)

)1/5
H ′′(0)

(
1

243 g0(x0)g
′′(x0)

3
)1/5

H(3)(0)





where ḡn is the either the MLE or LSE, H is a random cubic spline function such that H ′′ is

convex, H stays above the integrated two-sided Brownian motion plus t4, t ∈ R and touches

it exactly at those points where H ′′ changes its slope (see Groeneboom, Jongbloed, and

Wellner (2001a)).

Under the working assumption that the true k-monotone density g0 is k-times differen-

tiable at x0 such that (−1)kg
(k)
0 (x0) > 0 and g

(k)
0 is continuous in a neighborhood of x0,

asymptotic mimimax lower bounds for the rates of convergence of estimating g
(j)
0 (x0) are

derived in Chapter 2 and found to be n−(k−j)/(2k+1) for j = 0, · · · , k−1. This result implies

that no estimator of g
(j)
0 (x0) can converge at a rate faster than n−(k−j)/(2k+1).

The major result of this research is to prove that the above rates are achievable by both

the MLE and LSE and that the joint asymptotic distribution of their j-th derivatives at x0,

ḡ
(j)
n (x0), j = 0, · · · , k − 1 is given by





n
k

2k+1 (ḡn(x0) − g0(x0))

n
k−1
2k+1 (ḡ

(1)
n (x0) − g

(1)
0 (x0))

...

n
1

2k+1 (ḡ
(k−1)
n (x0) − g

(k−1)
0 (x0))




→d





c0(g0)H
(k)
k (0)

c1(g0)H
(k+1)
k (0)
...

ck−1(g0)H
(2k−1)
k (0)




(1.1)

where Hk is a process characterized by:

(i) (−1)k(Hk(t) − Yk(t)) ≥ 0, t ∈ R.

(ii) Hk is 2k-convex; i.e., H
(2k−2)
k exists and is convex.

(iii) For any t ∈ R, Hk(t) = Yk(t) if and only if H
(2k−2)
k changes slope at t;

equivalently,

∫ ∞

−∞
(Hk(t) − Yk(t)) dH

(2k−1)
k (t) = 0,
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Yk is the (k − 1)-fold integral of two-sided Brownian motion +(k!/(2k)!)t2k , t ∈ R; i.e.,

Yk(t) =






∫ t
0

∫ tk−1

0 · · ·
∫ t2
0 W (t1)dt2 · · · dtk−1 + (k!/(2k)!)t2k , t ≥ 0

∫ 0
t

∫ 0
tk−1

· · ·
∫ 0
t2
−W (t1)dt2 · · · dtk−1 + (k!/(2k)!)t2k , t < 0,

and finally the constants cj(g0), j = 0, · · · , k − 1 are given by

cj(g0) =

{
(g0(x0))

k−j

(
(−1)kg

(k)
0 (x0)

k!

)2j+1} 1
2k+1

.

The existence of the process Hk is the other major outcome of this work and is established

in Chapter 3. By applying a change of scale, the greatest convex minorant of two-sided

Brownian motion +t2, t ∈ R and the “invelope” H can be viewed as the two first elements

of the sequence (Hk)k≥1.

In general, the process Hk is a random spline of degree 2k − 1 that stays above Yk

when k is even and below it when k is odd. Furthermore, this spline is of a very particular

shape since its (2k − 2)-th derivative has to be convex. At the points of strict increase of

the process H
(2k−1)
k (note that the existence of this derivative follows from the convexity

assumption), the processes Hk and Yk have to touch each other. To be more accurate, it is

still conjectured that H
(2k−1)
k is a jump process. Although the numerical results strongly

supports this conjecture, the possibility that H
(2k−1)
k is a Cantor type function has not

been yet excluded even for the particular case k = 2 (Groeneboom, Jongbloed and Wellner

(2001A)). The proof of existence and almost surely uniqueness of the process Hk is inspired

from the work of Groeneboom, Jongbloed, and Wellner (2001a). In our setting, the

process Hk is connected with the Gaussian problem

dXk(t) = tkdt+ dW (t), t ∈ R

which can be viewed as an estimation problem with tk being the “true” function . To

“estimate” tk, we define for a fixed c > 0 a Least Squares problem over the class of k-

convex functions g on [−c, c]; i.e., g(k−2) exists and convex. The process Hk can be then

obtained by taking the limit (in an appropriate sense) of the k-fold integral of the solution

of the LS problem as c→ ∞.

We find that there is a nice parallelism between the problems of estimating the true

k-monotone density g0 and the k-convex function tk via the Least Squares method. The
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two problems have many aspects in common and this is one important feature that makes

the Least Squares method very appealing. On the computational side, this parallelism

helps in reducing the problems of calculating the LSE and approximating the process Hk on

finite intervals to one basic algorithm. Described in Chapter 4 in more details, the iterative

(2k − 1)-th spline algorithm is based on iterative addition and deletion of the knot points

of the k-fold integral of the LSE and those of the process Hk, which are both splines of

degree 2k − 1. As for the MLE, although the same principle applies, a different version of

the algorithm is needed to suit the nonlinear form of its characterization.
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Chapter 2

ASYMPTOTICS OF THE MAXIMUM LIKELIHOOD AND LEAST

SQUARES ESTIMATORS

2.1 Introduction

Let X1, · · · ,Xn be n independent observations from a common k-monotone density g0.

We consider two estimators corresponding to different estimation procedures: the Maxi-

mum Likelihood (ML) and Least Squares (LS) estimators. Both estimators were considered

by Groeneboom, Jongbloed, and Wellner (2001b) in the special case of estimating a

monotone and convey density. We first establish a mixture representation for k-monotone

functions which proves to be very useful in showing existence of both estimators. This

result is to some extent similar to Bernstein’s theorem for completely monotone functions

(see, e.g., Widder (1941), Feller (1971)). Whereas existence of the MLE follows easily

from the work of Lindsay (1983a), Lindsay (1983b), and Lindsay (1995)) on nonparametric

Maximum Likelihood estimators in a very general mixture model setting, establishing exis-

tence of the LSE is a much more difficult task. Beside a compactness argument, the proof

of existence in the particular case k = 2 uses the fact that the LSE is a piecewise linear

function (see Groeneboom, Jongbloed, and Wellner (2001b)) but a different reasoning

is needed when k > 2. In the general case, the MLE and LSE belong to a special subclass

of k-monotone functions: they are k-monotone splines of degree k − 1. For the MLE, this

particular form follows immediately from Theorem 22 of Lindsay (1995). As for the LSE,

the proof relies, in the special case k = 2, on the simple fact that given any decreasing and

convex function g and a finite number of fixed points on its graph, there exists a piecewise

decreasing and convex function g̃, passing through the points and staying below g. For more

details on this proof, see Groeneboom, Jongbloed, and Wellner (2001b). For k > 2, such

a property is hard to generalize for any number of points (see Balabdaoui (2004)) and hence
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there is a need for a different argument to show that the LSE is a spline.

Characterizations of the MLE and LSE are established in Section 2. These characteriza-

tions appear to be natural extensions of those obtained in the case k = 2 by Groeneboom,

Jongbloed, and Wellner (2001b). Beside that they give necessary and sufficient conditions

for a k-monotone function to be the solution of the corresponding optimization problem,

they are very useful in proving strong consistency of the estimators and their derivatives.

In Section 3, we show that for j = 0, · · · , k−1, the j-th derivative of either the MLE or LSE

is strongly consistent and that this consistency is uniform on intervals of the form [c,∞),

c > 0 for 0 ≤ j ≤ k − 2.

In a step towards an asymptotic distribution theory, asymptotic minimax lower bounds

for the rate of convergence of estimating g
(j)
0 (x0), j = 0, · · · , k − 1 are derived in Section

4. Here, we are interested in local estimation at a fixed point x0 > 0. We assume that the

true density g0 is k-times differentiable at x0, the derivative g
(k)
0 is continuous in a small

neighborhood of x0 and (−1)kg
(k)
0 (x0) > 0. Under this working assumptions, the asymptotic

lower bound for estimating g
(j)
0 (x0) is found to be n−(k−j)/(2k+1), j = 0, · · · , k − 1. This

result extends the lower bounds obtained in estimation of a decreasing density and that of

a decreasing and convex density and its first derivative at a fixed point (see Groeneboom,

Jongbloed, and Wellner (2001b)). The result implies that no estimator of g
(j)
0 (x0) can

converge (in the sense of minimax risk) at rate faster than n−(k−j)/(2k+1). Although these

asymptotic bounds cannot be a substitute for the exact rates of convergence, they give a

good idea about what one should expect these rates to be.

Under the same working hypotheses, we prove in Section 6 that n−(k−j)/(2k+1) is achieved

by the j-th derivative of the MLE and LSE, j = 0, · · · , k − 1. The assumption that

(−1)kg
(k)
0 (x0) > 0 along with consistency of the (k − 1)-th derivative “force” the num-

ber of knot points of the estimators, that are in a small neighborhood of x0, to diverge to

infinity almost surely as n → ∞. This fact is very important for proving the rate achieve-

ment. More precisely, the major argument that goes into the proof is the fact that the

distance between two successive knots (or jump points of the (k − 1)-th derivative of the

estimators) in a small neighborhood of x0 is Op(n
−1/(2k+1)). The entire Section 5 is devoted

to this problem that we refer to as the “gap problem”.
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In the last section, we derive the joint asymptotic distribution of the derivatives of the

MLE and LSE. The limiting distributions depend on a stochastic processHk whose existence

and characterization are established in Chapter 3. In addition, these distributions involve

constants that depend on g0(x0) and g
(k)
0 (x0). An asymptotic distribution is also derived for

the associated mixing distribution using an explicit inversion formula established in Section

2.

2.2 The Maximum Likelihood and Least Squares estimators of a k-monotone

density

2.2.1 Mixture representation of a k-monotone density

Williamson (1956) gave a very useful characterization of a k-monotone function on (0,∞)

by establishing the following theorem:

Theorem 2.2.1 (Williamson, 1956) A function g is k-monotone on (0,∞) if and only if

there exists a nondecreasing function γ bounded at 0 such that

g(x) =

∫ ∞

0
(1 − tx)k−1

+ dγ(t), x > 0 (2.1)

where y+ = y1(0,∞)(y).

The next theorem gives an inversion formula for the measure γ:

Theorem 2.2.2 (Williamson, 1956) If g is of the form (2.1) with γ(0) = 0, then at a

continuity point t > 0, γ is given by

γ(t) =
k−1∑

j=0

(−1)k−lg(j)(1/u)

j!

(
1

u

)j

.

Proof of Theorems 2.2.1 and 2.2.2: See Williamson (1956). �

From the characterization given in (2.1), we can easily derive another integral representa-

tion for k-monotone functions that are Lebesgue integrable on (0,∞); i.e.,
∫∞
0 g(x)dx <∞.
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Lemma 2.2.1 A function g is an integrable k-monotone function if and only if it is of the

form

g(x) =

∫ ∞

0

k(t− x)k−1
+

tk
dF (t), x > 0 (2.2)

where F is nondecreasing and bounded on (0,∞).

Proof. This follows from Theorem 5 of Lévy (1962) by taking k = n + 1 and f ≡ 0 on

(−∞, 0]. �

Lemma 2.2.2 If F in (2.2) satisfies limt→∞ F (t) =
∫∞
0 g(x)dx, then at a continuity point

t > 0, F is given by

F (t) = G(t) − tg(t) + · · · + (−1)k−1

(k − 1)!
tk−1g(k−2)(t) +

(−1)k

k!
tkg(k−1)(t), (2.3)

where G(t) =
∫ t
0 g(x)dx.

Proof. By the mixture form in (2.2), we have for all t > 0

F (∞) − F (t) =
(−1)k

k!

∫ ∞

t
xkdg(k−1)(x).

But, for j = 1, · · · , k, tjG(j)(t) ց 0 as t → ∞. This follows from Lemma 1 in Williamson

(1956) applied to the (k + 1)-monotone function G(∞) −G(t). Therefore, for j = 1, · · · , k,
tjg(j−1)(t) ց 0 as t→ ∞.

Now, using integration by parts, we can write

F (∞) − F (t) =
(−1)k

k!

[
xkg(k−1)(x)

]∞

t

+
(−1)(k−1)

(k − 1)!

∫ ∞

t
xk−1g(k−1)(x)dx

= −(−1)k

k!
tkg(k−1)(t) − (−1)k−1

(k − 1)!
tk−1g(k−2)(t)

+
(−1)k−2

(k − 2)!

∫ ∞

t
xk−2g(k−2)(x)dx

...

= −(−1)k

k!
tkg(k−1)(t) − (−1)k−1

(k − 1)!
tk−1g(k−2)(x) + · · · −

∫ ∞

t
g(x)dx,
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Using the fact that F (∞) =
∫∞
0 g(x)dx, the result follows immediately. �

The characterization in (2.2) is more relevant for us since we are dealing with k-monotone

densities. It is easy to see that if g is a density, and F is chosen to be right-continuous and

to satisfy the condition of Lemma 2.2.2, then F is a distribution function. For k = 1

(k = 2), note that the characterization matches with the well known fact that a density is

nondecreasing (nondecreasing and convex) on (0,∞) if and only if it is a mixture of uniform

densities (triangular densities). More generally, the characterization establishes a one-to-

one correspondance between the class of k-monotone densities and the class of scale mixture

of Beta’s with parameters 1 and k. From the inversion formula in (2.3), one can see that

a natural estimator for the mixing distribution F is obtained by plugging in an estimator

for the density g and it becomes obvious that the rate of estimating F is controlled by

that of estimating the highest derivative g(k−1). When k increases the densities become

much smoother and therefore, the inverse problem of estimating the mixing distribution F

becomes harder.

In the next section, we consider the nonparametric Maximum Likelihood and Least

Squares estimators of a k-monotone density g0. We show that these estimators exist and

give characterizations thereof. In the following, Mk is the class of all k-monotone functions

on (0,∞), Dk is the sub-class of k-monotone densities on (0,∞), X1, · · · ,Xn are i.i.d. from

g0 and Gn is their empirical distribution function.

2.2.2 The Maximum Likelihood estimator of a k-monotone density

Let

ψn(g) =

∫ ∞

0
log g(x) dGn(x) −

∫ ∞

0
g(x)dx,

be the “adjusted” log-likelihood function defined on Mk ∩ L1(λ), where λ is Lebesgue

measure on R. Using the integral representation established in the previous subsection, ψn

can also be rewritten as

ψn(F ) =

∫ ∞

0
log

(∫ ∞

0

k(t− x)k−1
+

tk
dF (t)

)
dGn(x) −

∫ ∞

0

∫ ∞

0

k(t− x)k−1
+

tk
dF (t)dx,

where F is bounded and nondecreasing.
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Lemma 2.2.3 The functional ψn admits a maximizer ĝn in the class Dk. Moreover, the

density ĝn is of the form

ĝ(x) = w1
k(a1 − x)k−1

+

ak
1

+ · · · + wm
k(am − x)k−1

+

ak
m

,

where w1, · · · , wm and a1, · · · , am are respectively the weights and the support points of the

maximizing mixing distribution F̂n.

Proof. First, we prove that there exists a density ĝn that maximizes the “usual” log-

likelihood ln =
∫∞
0 log g(x)dGn(x) over the class Dk. For g in Dk, let F be the distribution

function such that

g(x) =

∫ ∞

0

k(y − x)k−1
+

yk
dF (y).

The unicomponent likelihood curve Γ as defined by Lindsay (1995)) is then

Γ =

{(
k(y −X1)

k−1
+

yk
,
k(y −X2)

k−1
+

yk
, · · · , k(y −Xn)k−1

+

yk

)
: y ∈ [0,∞)

}
.

It is easy to see that Γ is bounded (notice that the i-th component is equal to 0 whenever

y < Xi). Also, Γ is closed. By Theorems 18 and 22 of Lindsay (1995), there exists a unique

maximizer of ln and the maximum is achieved by a discrete distribution function that has

at most n support points.

Now, let g be a k-monotone function in Mk ∩ L1(λ) and let
∫∞
0 g(x)dx = c so that

g/c ∈ Dk. We have

ψn(g) − ψn(ĝn) =

∫ ∞

0
log

(
g(x)

c

)
dGn(x) + log(c) − c+ 1 −

∫ ∞

0
log (ĝn(x))dGn(x)

≤
∫ ∞

0
log

(
g(x)

c

)
dGn(x) −

∫ ∞

0
log (ĝn(x))dGn(x)

≤ 0

since log(c) ≤ c− 1. Thus ψn is maximized over Mk ∩ L1(λ) by ĝn ∈ Dk. �

The following lemma gives a necessary and sufficient condition for a point t to be in the

support of the maximizing distribution function F̂n.
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Lemma 2.2.4 Let X1, · · · ,Xn be i.i.d. random variables from the true density g0, and let

F̂n and ĝn be the MLE of the mixing and mixed distribution respectively. Then, for all t > 0,

1

n

n∑

j=1

k(t−Xj)
k−1
+ /tk

ĝn(Xj)
≤ 1, (2.4)

with equality if and only if t ∈ supp(F̂n) = {a1, · · · , am}.

Proof. Since F̂n maximizes the log-likelihood

ln(F ) =
1

n

n∑

j=1

log

(∫ ∞

0

k(y −Xj)
k−1
+

yk
dF (y)

)
,

it follows that for all t > 0

lim
ǫց0

ln((1 − ǫ)F̂n + ǫδt) − ln(F̂n)

ǫ
≤ 0.

This yields

1

n

n∑

j=1

k(t−Xj)
k−1
+ /tk − ĝn(Xj)

ĝn(Xj)
≤ 0

or

1

n

n∑

j=1

k(t−Xj)
k−1
+ /tk

ĝn(Xj)
≤ 1. (2.5)

Now, let Mn be the set defined by

Mn =

{
t > 0 :

1

n

n∑

j=1

k(t−Xj)
k−1
+ /tk

ĝn(Xj)
= 1

}
.

We will prove now that Mn = supp(F̂n). We write PF̂n
for the probability measure associ-

ated with F̂n. Integrating the left hand side of (2.5) with respect to F̂n, we have

1

n

n∑

j=1

∫∞
0

(
k(t−Xj)

k−1
+ /tk

)
dF̂n(t)

ĝn(Xj)
=

1

n

n∑

j=1

ĝn(Xj)

ĝn(Xj)
= 1.

But, using the definition of Mn, we can write,

1 =
1

n

n∑

j=1

∫∞
0

(
k(t−Xj)

k−1
+ /tk

)
dF̂n(t)

ĝn(Xj)

= PF̂n
(Mn) +

1

n

n∑

j=1

∫

�
+\Mn

(
k(t−Xj)

k−1
+ /tk

)

ĝn(Xj)
dF̂n(t),
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and so

PF̂n
(R+ \Mn) =

∫

�
+\Mn

1

n

n∑

j=1

(
k(t−Xj)

k−1
+ /tk

)

ĝn(Xj)
dF̂n(t)

< PF̂n
(R+ \Mn), if PF̂n

(R+ \Mn) > 0.

This is a contradiction and we conclude that PF̂n
(R+ \Mn) = 0. �

Remark 2.2.1 The above characterization can be also given in the following form: The

k-monotone density ĝn is the MLE if and only if

∫ ∞

0

(t− x)k−1
+

ĝn(x)
dGn(x)





≤ tk

k , for all t ≥ 0

= tk

k , if and only if t is a support point of F̂n.

This form generalizes the characterization of the MLE of a nonincreasing and convex density

(k = 2) obtained by Groeneboom, Jongbloed, and Wellner (2001b).

Remark 2.2.2 The main reason for using the “adjusted” log-likelihood is to obtain a “nice”

characterization for the MLE since the maximization is performed over the cone of all

integrable k-monotone functions (not necessarily densities).

For k = 2, Groeneboom, Jongbloed, and Wellner (2001b) proved that there exists at

most one change of slope of the MLE between two successive observations and used this fact

to show that the estimator is unique. For k > 2, proving uniqueness seems to be harder.

However, we were able to do it for the special case k = 3. In the following, we give a proof

of this result.

Lemma 2.2.5 Let k = 3. The MLE ĝn of a 3-monotone density is unique.

Proof. We start by establishing the fact that the MLE has at most one knot between two

successive observations. For that, we take k > 2 to be arbitrary and define the function Ĥn

by

Ĥn(t) =
1

n

n∑

j=1

k(t−Xj)
k−1
+

tkĝn(Xj)
, t > 0.
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By strict concavity of the log-likelihood, the vector (ĝn(X(1)), · · · , ĝn(X(n))) is unique. As

the support points a1, · · · , am are the solutions of the equation Ĥn(t) = 1, it follows that

they are uniquely determined. On the other hand, from the characterization of the MLE in

(2.4), Ĥn(t) ≤ 1 if and only if t ∈ {a1, · · · , am},m ≤ n the set of knots or equivalently the

set of jump points of ĝ
(k−1)
n . This implies that the derivative

Ĥ ′
n(t) =

1

n

n∑

j=1

k(t−Xj)
k−2
+ (−t+ kXj)

tk+1ĝn(Xj)
, t > 0

is equal to 0 at ar for r = 1, · · · ,m. The derivative Ĥ ′
n can be rewritten as

Ĥ ′
n =

1

n

n∑

j=1

k(t−X(j))
k−2
+ (−t+ kX(j))

tk+1ĝn(X(j))
=

1

n

1

tk+2
Qn(t)

where

Qn(t) =
n∑

j=1

λj(t−X(j))
k−2
+ (−t+ kX(j))

with

λj =
k

ĝn(X(j))
.

Note that the first support point a1 has to be strictly larger than X(1). Indeed, a1 ≤ X(1)

implies that Ĥn(a1) = 0 and this is impossible since Ĥn(a1) = 1.

Now let k = 3. In the following, we are going to show that ar > X(r) for all r ∈
{1, · · · ,m}. The assertion is true for r = 1. If m = 1, there is nothing else to be proved.

Now we assume that m > 1 and that the claim is true for all 1 < r ≤ m− 1. Suppose that

it is not true for r + 1. This implies that

X(r) < ar < ar+1 ≤ X(r+1).

Since Ĥn takes the value 1 at both points ar and ar+1, it follows by the mean value theorem

that the derivative Ĥ ′
n has another zero between ar and ar+1. Therefore, Qn has three

different zeros in [X(r),X(r+1)). But note that on this interval, Qn is given by

Qn(t) =

r∑

j=1

λj(t−X(j))(−t+ kX(j))
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and therefore, Qn is a polynomial of degree 2. The latter implies thatQn ≡ 0 on [X(r),X(r+1)),

which is impossible. We conclude that

ar ≥ X(r) (2.6)

for all r ∈ {1, · · · ,m}.
Now, let p1, · · · , pm be the masses corresponding to the support points a1, · · · , am. For

j = 1, · · · , n, we have

ĝn(X(j)) =
m∑

r=1

pr

k(ar −X(j))
2
+

a3
r

. (2.7)

Suppose that {q1, · · · , qm} is another set of masses that satisfy the same system in (2.7). If

we denote βr = pr − qr, then we have for all j ∈ {1, · · · , n}
m∑

r=1

βr(ar −X(j))
2
+ = 0. (2.8)

To prove that βr = 0 for r = 1, · · · ,m, we need to prove first that am > X(n) (this is true

for all k > 2). We have

1 =

∫ ∞

0
ĝn(x)dx

= p1
ak

1

ak
1

+ · · · + pm
ak

m

ak
m

=
p1

ak
1

∫ a1

0

k(a1 − x)k−1

ĝn(x)
dGn(x) + · · · + pm

ak
m

∫ am

0

k(am − x)k−1

ĝn(x)
dGn(x)

where in the last equality, we used Lemma 2.2.4. But using the chain rule, we can rewrite

the right side of this equality as

p1

ak
1

∫ a1

0

k(a1 − x)k−1

ĝn(x)
dGn(x) + · · · + pm

ak
m

∫ am

0

k(am − x)k−1

ĝn(x)
dGn(x)

=

∫ a1

0

(
p1
k(a1 − x)k−1

ak
1

+ · · · + pm
k(am − x)k−1

ak
m

)
1

ĝn(x)
dGn(x)

+

∫ a2

a1

(
p2
k(a2 − x)k−1

ak
2

+ · · · + pm
k(am − x)k−1

ak
m

)
1

ĝn(x)
dGn(x)

...

+

∫ am

am−1

pm
k(am − x)k−1

ak
m

1

ĝn(x)
dGn(x)
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=

∫ a1

0

ĝn(x)

ĝn(x)
dGn(x) +

∫ a2

a1

ĝn(x)

ĝn(x)
dGn(x) + · · · +

∫ am

am−1

ĝn(x)

ĝn(x)
dGn(x)

= Gn(am).

It follows that G(am) = 1 and hence am ≥ X(n). But am 6= X(n) because otherwise

ĝn(X(n)) = 0 and ln = −∞. Therefore, am > X(n). However, am is the only support point

that is bigger than X(n). In fact, if there exists another support point aj , j < m such that

X(n) ≤ aj < am, then the nontrivial polynomial Qn of degree 2 would have three different

zeros in [X(n),∞) (here, we assume that m ≥ 2). By plugging j = n in (2.8), we obtain

that βm = 0 and therefore

β1(a1 −X(j))
2
+ + · · · + βm−1(am−1 −X(j))

2
+ = 0 (2.9)

for all 1 ≤ j ≤ n − 1. Now, let j0 = max{1 ≤ j ≤ n − 1 : X(j) ≤ am−1 ≤ X(j+1)}.
By the same reasoning as before, am−1 is the only support point in [X(j0),X(j0+1)). By

plugging j = j0 in (2.9), we obtain that βm−1 = 0. Using induction,we show that βr = 0

for 1 ≤ r ≤ m− 2 and uniqueness of the masses follows. �

2.2.3 The Least Squares estimator of a k-monotone density

The least squares criterion is

Qn(g) =
1

2

∫ ∞

0
g2(x)dx−

∫
g(x)dGn(x) . (2.10)

We want to minimize this over g ∈ Dk ∩L2(λ), the subset of square integrable k−monotone

functions. Instead we will actually solve the somewhat easier optimization problem of

minimizing Qn(g) over Mk ∩L2(λ) and show that even though the resulting estimator does

not necessarily have total mass one it consistently estimates g0 ∈ Dk. Using arguments

similar to those in the proof of Theorem 1 in Williamson (1956), one can show that g ∈ Mk

if and only if

g(x) =

∫ ∞

0
(t− x)k−1

+ dµ(t)

for a positive measure µ on (0,∞). Thus we can rewrite the criterion in terms of the

corresponding measures µ: note that
∫ ∞

0
g2(x)dx =

∫ ∞

0

∫ ∞

0
(t− x)k−1

+ dµ(t)

∫ ∞

0
(t′ − x)k−1

+ dµ(t′)dx
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=

∫ ∞

0

∫ ∞

0
rk(t, t

′)dµ(t)dµ(t′)

where

rk(t, t
′) ≡

∫ ∞

0
(t− x)k−1

+ (t′ − x)k−1
+ dx =

∫ t∧t′

0
(t− x)k−1(t′ − x)k−1dx ,

and

∫ ∞

0
g(x)dGn(x) =

∫ ∞

0

∫ ∞

0
(t− x)k−1

+ dµ(t)dGn(x)

=

∫ ∞

0

1

n

n∑

i=1

(t−Xi)
k−1
+ dµ(t) ≡

∫ ∞

0
sn,k(t)dµ(t) .

Hence it follows that, with g = gµ

Qn(g) =
1

2

∫ ∞

0

∫ ∞

0
rk(t, t

′)dµ(t)dµ(t′) −
∫ ∞

0
sn,k(t)dµ(t) ≡ Φ(µ)

Now we want to minimize Φ over the set X of all non-negative measures µ on R+. Since Φ

is convex and can be restricted to a subset C of X on which it is lower semicontinuous, a

solution exists and is unique.

Proposition 2.2.1 The problem of minimizing Φ(µ) over all non-negative measures µ has

a unique solution µ̃.

Proof. Existence follows from Zeidler (1985), Theorem 38.B, page 152. Here we verify

the hypotheses of that theorem.

We identity X of Zeidler’s theorem with the space X of nonnegative measures on [0,∞),

and we show that we can take M of Zeidler’s theorem to be

C ≡ {µ ∈ X : µ(t,∞) ≤ Dt−(k−1/2)}

for some constant D <∞.

First, we can, without loss, restrict the minimization to the space of non-negative mea-

sures on [X(1),∞) where X(1) > 0 is the first order statistic of the data. To see this, note

that we can decompose any measure µ as µ = µ1 +µ2 where µ1 is concentrated on [0,X(1))
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and µ2 is concentrated on [X(1),∞). Since the second term of Φ is zero for µ1, the contri-

bution of the µ1 component to Φ(µ) is always non-negative, so we make inf Φ(µ) no larger

by restricting to measures on [X(1),∞).

We can restrict further to measures µ with
∫∞
0 tk−1dµ(t) ≤ D for some finite D = Dω.

To show this, we first give a lower bound for rk(s, t).

For s, t ≥ t0 > 0 we have

rk(s, t) ≥
(1 − e−v0)t0

2k
sk−1tk−1 (2.11)

where v0 ≈ 1.59. To prove (2.11) we will use the inequality

(1 − v/k)k−1 ≥ e−v, 0 ≤ v ≤ v0, k ≥ 2 . (2.12)

(This inequality holds by straightforward computation; see Hall and Wellner (1979),

especially their Proposition 2.) Thus we compute

rk(s, t) =

∫ ∞

0
(s− x)k−1

+ (t− x)k−1
+ dx

= sk−1tk−1

∫ ∞

0
(1 − x/s)k−1

+ (1 − x/t)k−1
+ dx

=
1

k
sk−1tk−1

∫ ∞

0

(
1 − y

sk

)k−1

+

(
1 − y

tk

)k−1

+
dy

≥ 1

k
sk−1tk−1

∫ v0(t∧s)

0
e−y/se−y/tdy

=
1

k
sk−1tk−1

∫ v0(t∧s)

0
e−cydy, c ≡ 1/s + 1/t

=
1

k
sk−1tk−1 1

c

∫ v0(t∧s)

0
ce−cydy,

=
1

k
sk−1tk−1 1

c
(1 − exp(−c(t ∧ s)v0))

≥ 1

k
sk−1tk−1 1

c
(1 − exp(−v0))

since

c(s ∧ t) =
s+ t

st
(s ∧ t) =





(t+ s)/t, s ≤ t

(t+ s)/s, s ≥ t




 ≥ 1 .

But we also have
1

c
=

1

(1/s) + (1/t)
=

st

s+ t
≥ 1

2
s ∧ t ≥ 1

2
t0
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for s, t ≥ t0, so we conclude that (2.11) holds.

From the inequality (2.11) we conclude that for measures µ concentrated on [X(1),∞)

we have ∫∫
rk(s, t)dµ(s)dµ(t) ≥

(1 − e−v0)X(1)

2k

(∫ ∞

0
tk−1dµ(t)

)2

.

On the other hand,

∫ ∞

0
sn,k(t)dµ(t) ≤

∫ ∞

0
tk−1dµ(t) .

Combining these two inequalities it follows that for any measure µ concentrated on [X(1),∞)

we have

Φ(µ) =
1

2

∫∫
rk(t, s)dµ(t)dµ(s) −

∫ ∞

0
sn,k(t)dµ(t)

≥
(1 − e−v0)X(1)

4k

(∫ ∞

0
tk−1dµ(t)

)2

−
∫ ∞

0
tk−1dµ(t)

≡ Am2
k−1 −mk−1 .

This lower bound is strictly positive if

mk−1 > 1/A =
4k

(1 − e−v0)X(1)
.

But for such measures µ we can make Φ smaller by taking the zero measure. Thus we may

restrict the minimization problem to the collection of measures µ satisfying

mk−1 ≤ 1/A . (2.13)

Now we decompose any measure µ on [X(1),∞) as µ = µ1 + µ2 where µ1 is concentrated

on [X(1),MX(n)] and µ2 is concentrated on (MX(n),∞) for some (large) M > 0. Then it

follows that

Φ(µ) ≥ 1

2

∫∫
rk(t, s)dµ2(t)dµ2(s) −

∫ ∞

0
tk−1dµ(t)

≥
(1 − ev0)MX(n)

4k
(MX(n))

2k−2µ(MX(n),∞)2 − 1/A

≡ Bµ(MX(n),∞)2 − 1/A > 0

if

µ(MX(n),∞)2 >
1

AB
=

4k

(1 − e−v0)X(1)

4k

(1 − e−v0)(MX(n))2k−1
,
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and hence we can restrict to measures µ with

µ(MX(n),∞) ≤ 4k

(1 − e−v0)X
1/2
(1) X

k−1/2
(n)

1

Mk−1/2

for every M ≥ 1. But this implies that µ satisfies

∫ ∞

0
tk−3/4dµ(t) ≤ D

for some 0 < D = Dω < ∞, and this implies that tk−1 is uniformly integrable over µ ∈ C.

Alternatively, for λ ≥ 1 we have

∫

t>λ
tk−1dµ(t) = λk−1µ(λ,∞) + (k − 1)

∫ ∞

λ
sk−2µ(s,∞)ds

≤ λk−1 K

λk−1/2
+ (k − 1)

∫ ∞

λ
sk−2Ks−(k−1/2)ds

= Kλ−1/2 + (k − 1)K

∫ ∞

λ
s−3/2ds

≤ Kλ−1/2 + (k − 1)2Kλ−1/2

→ 0 as λ→ ∞

uniformly in µ ∈ C.

This implies that for {µm} ⊂ C satisfying µm ⇒ µ0 we have

lim sup

∫ ∞

0
sn,k(t)dµm(t) ≤

∫ ∞

0
sn,k(t)dµ0(t) ,

and hence Φ is lower-semicontinuous on C:

lim inf
m→∞

Φ(µm) ≥ Φ(µ0) .

Since Φ is lower semi-compact (i.e. the sets Cr ≡ {µ ∈ C : Φ(µ) ≤ r} are compact for

r ∈ R), the existence of a minimum follows from Zeidler (1985), Theorem 38.B, page 152.

Uniqueness follows from the strict convexity of Φ. �

In the following, we give a characterization of the least squares estimator.

Proposition 2.2.2 Define Yn and H̃n respectively by

Yn(x) =

∫ x

0

∫ tk−1

0
· · ·
∫ t2

0
Gn(t1)dt1dt2 · · · dtk−1, x ≥ 0,
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and

H̃n(x) =

∫ x

0

∫ tk

0
· · ·
∫ t2

0
g̃n(t1)dt1dt2 · · · dtk, x ≥ 0.

Then g̃n is the LS estimator over Mk ∩ L2(λ) if and only if the following conditions are

satisfied for g̃n and H̃n:






H̃n(x) ≥ Yn(x), for x ≥ 0,

and
∫∞
0

(
H̃n(x) − Yn(x)

)
dg̃

(k−1)
n (x).

(2.14)

Remark 2.2.3 Note that Yn and H̃n can be written in the more compact form

Yn(x) =

∫ x

0

(x− t)k−1

(k − 1)!
dGn(t)

and

H̃n(x) =

∫ x

0

(x− t)k−1

(k − 1)!
g̃n(t)dt.

Proof. Let g̃n ∈ Mk∩L2(λ) satisfy (2.14), and let g be an arbitrary function in Mk∩L2(λ).

Then

Qn(g) −Qn(g̃n) =
1

2

∫
g2(x)dx − 1

2

∫
g̃2
n(x)dx−

∫
g(x)dGn(x) +

∫
g̃n(x)dGn(x).

Now, using integration by parts

∫ ∞

0
(g(x) − g̃n(x))dGn(x)

= −
∫ ∞

0
Gn(x)(g′(x) − g̃′n(x))dx

=

∫ ∞

0

(∫ x

0
Gn(y)dy

)
(g′′(x) − g̃′′n(x))dx

...

= (−1)k

∫ ∞

0
Yn(x)(dg(k−1)(x) − dg̃(k−1)

n (x)),
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and
∫ ∞

0
(g2(x) − g̃2

n(x))dx

=

∫ ∞

0
(g(x) + g̃n(x))(g(x) − g̃n(x))dx

= −
∫ ∞

0

(∫ x

0
g(y)dy +

∫ x

0
g̃n(y)dy

)
(g′(x) − g̃′n(x))dx

...

= (−1)k

∫ ∞

0
(Gk(x) + H̃n(x))(dg(k−1)(x) − dg̃(k−1)

n (x)),

where Gk is the k-th order integral of g. Hence,

Qn(g) −Qn(g̃n) =
1

2
(−1)k

∫ ∞

0
(Gk(x) + H̃n(x))(dg(k−1)(x) − dg̃(k−1)

n (x))

− (−1)k

∫ ∞

0
Yn(x)(dg(k−1)(x) − dg̃(k−1)

n (x))

=
1

2
(−1)k

∫ ∞

0
(Gk(x) − H̃n(x))(dg(k−1)(x) − dg̃(k−1)

n (x))

+ (−1)k

∫ ∞

0
(H̃n(x) − Yn(x))(dg(k−1)(x) − dg̃(k−1)

n (x))

≥ (−1)k

∫ ∞

0
(H̃n(x) − Yn(x))(dg(k−1)(x) − dg̃(k−1)

n (x)).

To see that, we notice (using integration by parts) that

(−1)k

∫ k

0
(Gk(x) − H̃n(x))(dg(k−1)(x) − dg̃(k−1)

n (x)) =

∫ ∞

0
(g(x) − g̃n(x))2dx.

But condition (2.14) implies that
∫ ∞

0
(H̃n(x) − Yn(x))dg̃(k−1)

n (x) = 0.

Therefore,

Qn(g) −Qn(g̃n) ≥
∫ ∞

0
(H̃n(x) − Yn(x))(−1)kdg(k−1)(x) ≥ 0,

since H̃n ≥ Yn and (−1)k−2dg(k−1)(x) = (−1)kdg(k−1)(x) ≥ 0 because (−1)k−2g(k−2) is

convex.

Conversely, take gx ∈ Mk to be

gx(t) =
(x− t)k−1

+

(k − 1)!
, t ≥ 0.



25

We have:

lim
ǫ→0

Qn(g̃n + ǫgx) −Qn(g̃n)

ǫ
=

∫ x

0

(x− t)k−1

(k − 1)!
g̃n(t)dt−

∫ x

0

(x− t)k−1

(k − 1)!
dGn(t).

Using integration by parts, we obtain

0 ≤ lim
ǫ→0

Qn(g̃n + ǫgx) −Qn(g̃n)

ǫ
= H̃n(x) − Yn(x) .

Finally, since g̃n maximizes Qn it follows that

0 = lim
ǫ→0

Qn((1 + ǫ)g̃n) −Qn(g̃n)

ǫ
=

∫ ∞

0
g̃2
n(x)dx−

∫ ∞

0
g̃n(x)dGn(x)

=

∫ ∞

0
(H̃n(x) − Yn(x))(−1)k−1dg̃(k−1)

n (x),

which holds if and only if the equality in (2.14) holds. �

In order to prove that the LSE is a spline of degree k − 1, we need the following result.

Lemma 2.2.6 Let [a, b] ⊆ (0,∞) and let g be a nonnegative and nonincreasing function on

[a, b]. For any polynomial Pk−1 of degree ≤ k − 1 on [a, b], if the function

∆(t) =

∫ t

0
(t− s)k−1g(s)ds − Pk−1(s), t ∈ [a, b]

admits infinitely many zeros in [a, b], then there exists t0 ∈ [a, b] such that g ≡ 0 on [t0, b]

and g > 0 on [a, t0) if t0 > a.

Proof. By applying the mean value theorem k times, it follows that (k−1)!g = ∆(k) admits

infinitely many zeros in [a, b]. But since g is assumed to be nonnegative and nonincreasing,

this implies that if t0 is the smallest zero of g in [a, b], then g ≡ 0 on [t0, b]. By definition of

t0, g > 0 on [a, t0) if t0 > a. �

Remark 2.2.4 In the previous lemma, the assumption that ∆ has infinitely many zeros

can be weakened. Indeed, we obtain the same conclusion if we assume that ∆ has k + 1

distinct zeros in [a, b].
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Now, we will use the characterization of the LSE g̃n together with the previous lemma

to show that it is a finite mixture of Beta(1, k)’s. We know from Proposition 2.14 that g̃n

is the LSE if and only if

H̃n(t) ≥ Yn(t), for t > 0, (2.15)

and

∫ ∞

0

(
H̃n(t) − Yn(t)

)
dg̃(k−1)

n (t) = 0 (2.16)

where

H̃n(t) =

∫ t

0

(t− s)k−1

(k − 1)!
g̃n(t)dt,

and

Yn(t) =

∫ t

0

(t− s)k−1

(k − 1)!
dGn(t).

The condition in (2.16) implies that H̃n and Yn have to be equal at any point of in-

crease of the monotone function (−1)k−1g̃
(k−1)
n . Therefore, the set of points of increase

of (−1)k−1g̃
(k−1)
n is included in the set of zeros of the function ∆̃n = H̃n − Yn. Now, note

that Yn can be given by the explicit expression:

Yn(t) =
1

(k − 1)!

1

n

n∑

j=1

(t−X(j))
k−1
+ , for t > 0.

In other words, Yn is a spline of degree k − 1 with simple knots X(1), · · · ,X(n). Note also

that the function (−1)k−1g̃
(k−1)
n cannot have a positive density with respect to Lebesgue

measure λ. Indeed, if we assume otherwise, then we can find 0 ≤ j ≤ n and an interval

I ⊂ (X(j),X(j+1)) (with X(0) = 0 and X(n+1) = ∞) such that I has a nonempty interior,

and H̃n ≡ Yn on I. This implies that H̃
(k)
n ≡ Y

(k)
n ≡ 0, since Yn is a polynomial of degree

k − 1 on I, and hence g̃n ≡ 0 on I. But the latter is impossible since it was assumed that

(−1)k−1g̃
(k−1)
n was strictly increasing on I. Thus the monotone function (−1)k−1g̃

(k−1)
n can

have only two components: discrete and singular. In the following theorem, we will prove

that it is actually discrete with finitely many points of jump.
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Proposition 2.2.3 There exists m ∈ N\{0}, ã1, · · · , ãm and w̃1, · · · , w̃m such that for all

x > 0, the LSE g̃n is given by

g̃n(x) = w̃1
k(ã1 − x)k−1

+

ãk
1

+ · · · + w̃m
k(ãm − x)k−1

+

ãk
m

. (2.17)

Proof. We need to consider two cases:

(i) The number of zeros of ∆̃n = H̃n − Yn is finite. This implies by (2.16) that the number

of points of increase of (−1)k−1g̃
(k−1)
n is also finite. Therefore, (−1)k−1g̃

(k−1)
n is discrete with

finitely many jumps and hence g̃n is of the form given in (2.17).

(ii) Now, suppose that ∆̃n has infinitely many zeros. Let j be the smallest integer in

{0, · · · , n − 1} such that [X(j),X(j+1)] contains infinitely many zeros of ∆̃n (with X(0) = 0

and X(n+1) = ∞). By Lemma 2.2.6, if tj is the smallest zero of g̃n in [X(j),X(j+1)], then

g̃n ≡ 0 on [tj ,X(j+1)] and g̃n > 0 on [X(j), tj) if tj > X(j). Note that from the proof

of Proposition 2.2.1, we know that the minimizing measure µ̃n does not put any mass on

(0,X(1)], and hence the integer j has to be strictly greater than 0.

Now, by definition of j, ∆̃n has finitely many zeros to the left of X(j), which implies that

(−1)k−1g̃
(k−1)
n has finitely many points of increase in (0,X(j)). We also know that g̃n ≡ 0 on

[tj,∞). Thus we only need to show that the number of points of increase of (−1)k−1g̃
(k−1)
n

in [X(j), tj) is finite, when tj > X(j). This can be argued as follows: Consider zj to be the

smallest zero of ∆̃n in [X(j),X(j+1)). If zj ≥ tj, then we cannot possibly have any point of

increase of (−1)k−1g̃
(k−1)
n in [X(j), tj) because it would imply that we have a zero of ∆̃n that

is strictly smaller than zj . If zj < tj, then for the same reason, (−1)k−1g̃
(k−1)
n has no point of

increase in [X(j), zj). Finally, (−1)k−1g̃
(k−1)
n cannot have infinitely many points of increase

in [zj , tj) because that would imply that ∆̃n has infinitely zeros in (zj , tj), and hence by

Lemma 2.2.6, we can find t′j ∈ (zj , tj) such that g̃n ≡ 0 on [t′j , tj ]. But this impossible since

g̃n > 0 on [X(j), tj). �

2.3 Consistency of the estimators

In this section, we will prove that both the MLE and LSE are strongly consistent. Further-

more, we will show that this consistency is uniform on intervals of the form [c,∞), where
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c > 0.

2.3.1 The Maximum Likelihood estimator

The following lemma establishes a useful bound for k-monotone densities.

Lemma 2.3.1 If g is a k-monotone density function then

g(x) ≤ 1

x

(
1 − 1

k

)k−1

for all x > 0.

Proof. We have

g(x) =

∫ ∞

x

k

yk
(y − x)k−1dF (y) =

1

x

∫ ∞

x

kx

y
(1 − x

y
)k−1dF (y)

≤ 1

x
sup

x≤y<∞

kx

y

(
1 − x

y

)k−1

=
k

x
sup

0<u≤1
u(1 − u)k−1

=
1

x

(
1 − 1

k

)k−1

since, with gk(u) = u(1 − u)k−1 we have

g′k(u) = (1 − u)k−1 − u(k − 1)(1 − u)k−2 = (1 − u)k−2(1 − ku)

which equals zero if u = 1/k and this yields a maximum. (Note that when k = 2, this

bound equals 1/(2x) which agrees with the bound given by Jongbloed (1995), page 117 in

this case.) �

Proposition 2.3.1 Let g0 be a k-monotone density on (0,∞) and fix c > 0. Then

sup
x≥c

|ĝn(x) − g0(x)| →a.s. 0, as n→ ∞.

Proof. Let F0 be the mixing distribution function associated with g0. Then for all x > 0,

we have

g0(x) =

∫ ∞

0

k(t− x)k−1
+

tk
dF0(t).
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Now, let Y1, · · · , Ym be i.i.d. from F0. Taking m = n, let Fn be the corresponding

empirical distribution and gn the mixed density

gn(x) =

∫ ∞

0

k(t− x)k−1
+

tk
dFn(t), x > 0.

Let d > 0. Using integration by parts, we have for all x > d

|gn(x) − g0(x)| =

∣∣∣∣
∫ ∞

x
k
(t− x)k−1

tk
d(Fn − F0)(t)

∣∣∣∣

=

∣∣∣∣
∫ ∞

x
k
(k − 1)tk(t− x)k−2 − ktk−1(t− x)k−1

t2k
(Fn − F0)(t)dt

∣∣∣∣

≤
(∫ ∞

x
k2 (t− x)k−2

tk
dt+

∫ ∞

x
k2x

(t− x)k−2

tk+1
dt

)
‖Fn − F0‖∞

≤
(∫ ∞

d
k
(t− d)k−2

tk
dt+ k2

∫ ∞

d

(t− d)k−2

tk
dt

)
‖Fn − F0‖∞

≤
(

2k2

∫ ∞

d

(t− d)k−2

tk
dt

)
‖Fn − F0‖∞

= Cd ‖Fn − F0‖∞.

By the Glivenko-Cantelli theorem, the sequence of k-monotone densities (gn)n satisfies

sup
x∈[d,∞)

|gn(x) − g0(x)| →a.s. 0, as n→ ∞.

Since the MLE ĝn maximizes the criterion function over the class Mk ∩ L1(λ), we have

lim
ǫց0

1

ǫ
(ψn((1 − ǫ)ĝn + ǫgn) − ψn(ĝn)) ≤ 0,

and this is equivalent to

∫ ∞

0

gn(x)

ĝn(x)
dGn(x) ≤ 1. (2.1)

Let F̂n denote again the MLE of the mixing distribution. By the Helly-Bray theorem, there

exists a subsequence {F̂l} that converges weakly to some distribution function F̂ and hence

for all x > 0

ĝl(x) → ĝ(x), as l → ∞,

where

ĝ(x) =

∫ ∞

0
k
(t− x)k−1

+

tk
dF̂ (t), x > 0.
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The previous convergence is uniform on intervals of the form [d,∞), d > 0. This follows

since ĝl and ĝ are monotone and ĝ is continuous.

Much of the following is along the lines of Jongbloed (1995), pages 117-119, and

Groeneboom, Jongbloed, and Wellner (2001b), pages 1674-1675. We are going to show

that ĝ and the true density g0 have to be the same. For 0 < α < 1 define ηα = G−1
0 (1−α).

Fix ǫ so small that ǫ < ηǫ. By (2.1) there is a number Dǫ > 0 such that ĝl(1/ǫ) ≥ Dǫ for

sufficiently large l. To see this, note that (2.1) implies that

1 ≥
∫ ∞

0

gl(x)

ĝl(x)
dGl(x) ≥

∫ ∞

ηǫ

gl(x)

ĝl(x)
dGl(x) ≥

1

ĝl(ηǫ)

∫ ∞

ηǫ

gl(x)dGl(x) ,

and hence

lim inf
l

ĝl(ηǫ) ≥ lim inf
l

∫ ∞

ηǫ

gl(x)dGl(x) =

∫ ∞

ηǫ

g0(x)dG0(x) > 0 ,

by the choice of ηǫ and hence we can certainly take Dǫ =
∫∞
ηǫ
g0(x)dG0(x)/2.

Hence, by continuity of gl and the bound in Lemma 3.4

ĝl(z) ≤
1

z
(1 − 1

k
)k−1 ≡ ek

z
, gl(z) ≤

1

z
(1 − 1

k
)k−1 ≡ ek

z
,

gl/ĝl is uniformly bounded on the interval [ǫ, ηǫ]. That is, there exist two constants cǫ and

cǫ such that for all x ∈ [ǫ, ηǫ]

cǫ ≤
gl(x)

ĝl(x)
≤ cǫ.

In fact,

gl(x)

ĝl(x)
≤ gl(ǫ)

ĝl(ηǫ)
≤ ǫ−1ek

Dǫ
,

while

gl(x)

ĝl(x)
≥ gl(ηǫ)

ĝl(ǫ)
≥ g0(ηǫ)/2

ǫ−1ek

using the (uniform) convergence of gl to g0. Therefore

gl(x)

ĝl(x)
→ g0(x)

ĝ(x)
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uniformly on [ǫ, ηǫ]. For sufficiently large l, we have using (2.1)

∫ ηǫ

ǫ

g0(x)

ĝ(x)
dGl(x) ≤

∫ ηǫ

ǫ

(
gl(x)

ĝl(x)
+ ǫ

)
dGl(x) ≤ 1 + ǫ.

But since Gl converges weakly to G0 the distribution function of g0 and g0/ĝ is continuous

and bounded on [ǫ, ηǫ], we conclude that

∫ ηǫ

ǫ

g0(x)

ĝ(x)
dG0(x) ≤ 1 + ǫ.

Now, by Lebesgue’s monotone convergence theorem, we conclude that

∫ ∞

0

g0(x)

ĝ(x)
dG0(x) ≤ 1,

which is equivalent to

∫ ∞

0

g2
0(x)

ĝ(x)
dx ≤ 1. (2.2)

Define τ =
∫∞
0 ĝ(x)dx. Then ĥ = τ−1ĝ is a k-monotone density. By (2.2), we have that

∫ ∞

0

g2
0(x)

ĥ(x)
dx = τ

∫ ∞

0

g2
0(x)

ĝ(x)
dx ≤ τ.

Now consider the function

K(g) =

∫ ∞

0

g2
0(x)

g(x)
dx

defined on the class Cd of all continuous densities g on [0,∞). Minimizing K is equivalent

to minimizing

∫ ∞

0

(
g2
0(x)

g(x)
+ g(x)

)
dx.

It is easy to see that the integrand is minimized pointwise by taking g(x) = g0(x). Hence

infCd
K(g) ≥ 1. In particular, K(ĥ) ≥ 1 which implies that τ = 1. Now, if g 6= g0 at a point

x, it follows that g 6= g0 on an interval of positive length. Hence, g0 6= g ⇒ K(g) > 1. We

conclude that we have necessarily ĥ = ĝ = g0.

We have proved that from each subsequence of ĝn, we can extract a further subsequence

that converges to g0 almost surely. The convergence is again uniform on intervals of the

form [c,∞), c > 0 by monotonicity of ĝn and ĝ and continuity of g0. �
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Corollary 2.3.1 Let c > 0. For j = 1, · · · , k − 2,

sup
x∈[c,∞)

|ĝ(j)
n (x) − g

(j)
0 (x)| →a.s. 0, as n→ ∞,

and for each x > 0 at which g0 is k − 1-times differentiable,

ĝ(k−1)
n (x) →a.s. g

(k−1)
0 (x) .

Proof. This follows along the lines of the proof in Jongbloed (1995), page 119, and

Groeneboom, Jongbloed, and Wellner (2001b), Lemma 3.1, page 1675. �

2.3.2 The Least Squares estimator

We also have strong and uniform consistency of the LSE g̃ on intervals of the form [c,∞), c >

0.

Proposition 2.3.2 Fix c > 0 and suppose that the true k-monotone density g0 satisfies
∫∞
0 x−1/2dG0(x) <∞. Then

sup
x≥c

|g̃n(x) − g0(x)| →a.s. 0, as n→ ∞.

Proof. The main difficulty here is that we don’t know whether the LSE g̃n is a genuine

density; i.e. g̃n ∈ Mk but not necessarily g̃n ∈ Dk. But if only one knew that g̃n stays

bounded in some sense with high probability, the proof of consistency will be much like the

one used for k = 2; i.e., consistency of the LSE of a convex and decreasing density (see

Groeneboom, Jongbloed, and Wellner (2001b)). The proof for k = 2 is based on the

very important fact that the LSE is a density, which helps in showing that g̃n at the last

jump point τn ∈ [0, δ] of g̃′n for a fixed δ > 0 is uniformly bounded. The proof would have

been similar if we only knew that

∫ ∞

0
g̃n(x)dx = Op(1) .
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Here we will first show that
∫∞
0 g̃2

ndλ = O(1) almost surely. From the last display in the

proof of Proposition 2.2.2

∫ ∞

0
g̃2
n(x)dx =

∫ ∞

0
g̃n(x)dGn(x)

and hence
√∫ ∞

0
g̃2
n(x)dx =

∫ ∞

0
ũn(x)dGn(x), (2.3)

where ũn ≡ g̃n/‖g̃n‖2 satisfies ‖ũn‖2 = 1. Take Fk to be the class of functions

Fk =

{
g ∈ Mk,

∫ ∞

0
g2dλ = 1

}
.

In the following, we show that Fk has an envelope G ∈ L1(G0).

Note that for g ∈ Fk we have

1 =

∫ ∞

0
g2dλ ≥

∫ x

0
g2dλ ≥ xg2(x) ,

since g is decreasing. Therefore

g(x) ≤ 1√
x
≡ G(x)

for all x > 0 and g ∈ Fk; i.e. G is an envelope for the class Fk. Since G ∈ L1(G0) (by our

hypothesis) it follows from the strong law that

∫ ∞

0
ũn(x)dGn(x) ≤

∫ ∞

0
G(x)dGn(x) →a.s.

∫ ∞

0
G(x)dG0(x), as n→ ∞

and hence by (2.3) the integral
∫∞
0 g̃2

ndλ is bounded (almost surely) by some constant Mk.

Now we are ready to complete the proof. Most of the following arguments are similar to

those of proof of consistency of the LSE when k = 2 as given in Groeneboom, Jongbloed,

and Wellner (2001b).

Let δ > 0 and τn be the last jump point of g̃
(k−1)
n if there are jump points in the interval

(0, δ], otherwise we take τn to be 0. To show that the sequence (g̃n(τn))n stays bounded,

we consider two cases:
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1. τn ≥ δ/2. Let n be large enough so that
∫∞
0 g̃2

ndλ ≤Mk. We have

g̃n(τn) ≤ g̃n(δ/2) ≤ (2/δ)(δ/2)g̃n(δ/2) ≤ (2/δ)

∫ δ/2

0
g̃n(x)dx

≤ (2/δ)
√
δ/2

√∫ δ/2

0
g̃2
n(x)dx ≤

√
2/δ

√∫ ∞

0
g̃2
n(x)dx

=
√

2Mk/δ. (2.4)

2. τn < δ/2. We have

∫ δ

τn

g̃n(x)dx ≤
√
δ − τn

√∫ δ

τn

g̃2
n(x)dx

≤
√
δ

√∫ ∞

0
g̃2
n(x)dx =

√
δMk.

Using the fact that g̃n is a polynomial of degree k − 1 on the interval [τn, δ] we have

√
δMk ≥

∫ δ

τn

g̃n(x)dx

= g̃n(δ)(δ − τn) − g̃′n(δ)

2
(δ − τn)2

+ · · · + (−1)k−1 g̃
(k−1)
n (δ)

k!
(δ − τn)k

≥ (δ − τn)

(
g̃n(δ) +

1

k
(−1)g̃′n(δ)(δ − τn)

+ · · · + (−1)k−1 g̃
(k−1)
n (δ)

(k − 1)!
(δ − τn)k−1

)

= (δ − τn)

(
g̃n(δ)

(
1 − 1

k

)
+

1

k
g̃n(τn)

)

≥ δ

2k
g̃n(τn)

and hence

g̃n(τn) ≤ 2k
√
Mk/δ.

Therefore, combining the obtained bounds, we have for large n

g̃n(τn) ≤ 2k
√
Mk/δ = Ck. (2.5)
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Now, since g̃n(δ) ≤ g̃n(τn), the sequence g̃n(x) is uniformly bounded almost surely for

all x ≥ δ. Using a Cantor diagonalization argument, we can find a subsequence {nl} so

that, for each x ≥ δ, gnl
(x) → g̃(x), as l → ∞. By Fatou’s lemma, we have

∫ ∞

δ
(g̃(x) − g0(x))

2dx ≤ lim inf
l→∞

∫ ∞

δ
(g̃nl

(x) − g0(x))
2dx. (2.6)

On the other hand, the function g̃nl
+ ǫg0 is a square integrable k-monotone function for all

ǫ > 0. Therefore, from the characterization of g̃nl
it follows that

∫ ∞

0
(g̃nl

(x) − g0(x))d(G̃nl
(x) − Gnl

(x)) ≤ 0 .

Thus we can write
∫ ∞

δ
(g̃nl

(x) − g0(x))
2dx

≤
∫ ∞

0
(g̃nl

(x) − g0(x))
2dx

=

∫ ∞

0
(g̃nl

(x) − g0(x))d(G̃nl
(x) −G0(x))

=

∫ ∞

0
(g̃nl

(x) − g0(x))d(G̃nl
(x) − Gnl

(x)) +

∫ ∞

0
(g̃nl

(x) − g0(x))d(Gnl
(x) −G0(x))

≤
∫ ∞

0
(g̃nl

(x) − g0(x))d(Gnl
(x) −G0(x)) →a.s. 0, (2.7)

as l → ∞. The last convergence is justified as follows: since
∫∞
0 g̃2

nl
dλ is bounded almost

surely, we can find a constant C > 0 such that g̃nl
− g0 admits G(x) = C/

√
x, x > 0, as an

envelope. Since G ∈ L1(G0) by hypothesis and since the class of functions {(g− g0)1[G≤M ] :

g ∈ Mk ∩ L2(λ)} is a Glivenko-Cantelli class for every M > 0 (each element is a difference

of two bounded monotone functions) (2.7) holds. From (2.6), we conclude that
∫ ∞

δ
(g̃(x) − g0(x))

2dx ≤ 0 ,

and therefore, g̃ ≡ g0 on (0,∞) since δ > 0 can be chosen arbitrarily small. We have

proved that there exists Ω0 with P (Ω0) = 1 and such that for each ω ∈ Ω0 and any given

subsequence g̃nk
(·, ω), we can extract a further subsequence g̃nl

(·, ω) that converges to g0

on (0,∞). It follows that g̃n converges to g0 on (0,∞), and this convergence is uniform on

intervals of the form [c,∞), c > 0 by the monotonicity and continuity of g0. �
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Corollary 2.3.2 Let c > 0. Under the assumption of Proposition 2.3.2, we have for j =

1, · · · , k − 2,

sup
x∈[c,∞)

|g̃(j)
n (x) − g

(j)
0 (x)| →a.s. 0, as n→ ∞,

and for each x > 0 at which g0 is k − 1-times differentiable,

g̃(k−1)
n (x) →a.s. g

(k−1)
0 (x) .

Proof. See the proof of Corollary 2.3.1. �

2.4 Asymptotic minimax lower bounds

In this section we derive asymptotic minimax lower bounds for the behavior of any estimator

of a k−monotone density g and its first k − 1 derivatives at a point x0 for which the

k−th derivative exists and is non-zero. The proof will rely upon the basic Lemma 4.1 of

Groeneboom (1996); see also Jongbloed (2000). This basic method seems to go back to

Donoho and Liu (1987) and Donoho and Liu (1991)). As before, let Dk denote the class of

k−monotone densities on [0,∞). Here is the notation we will need. Consider estimation of

the j−th derivative of g ∈ Dk at x0 for j ∈ {0, 1, . . . , k−1}. If T̂n is an arbitrary estimator of

the real-valued functional T of g, then the (L1−)minimax risk based on a sample X1, . . . ,Xn

of size n from g which is known to be in a suitable subset Dk,n of Dk is defined by

MMR1(n, T,Dk,n) = inf
tn

sup
g∈Dk,n

Eg|T̂n − Tg| .

Here the infimum ranges over all possible measurable functions tn : R
n → R, and T̂n =

tn(X1, . . . ,Xn). When the subclasses Dk,n are taken to be shrinking to one fixed g0 ∈ Dk,

the minimax risk is called local at g0. The shrinking classes (parametrized by τ > 0) used

here are Hellinger balls centered at g0:

Dk,n,τ =

{
g ∈ Dk,n : H2(g, g0) =

1

2

∫ ∞

0
(
√
g(x) −

√
g0(x))

2dx ≤ τ/n

}
,

The behavior, for n → ∞ of such a local minimax risk MMR1 will depend on n (rate of

convergence to zero) and the density g0 toward which the subclasses shrink. The following

lemma is the basic tool for proving such a lower bound.
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Lemma 2.4.1 Assume that there exists some subset {gǫ : ǫ > 0} of densities in Dk,n such

that, as ǫ ↓ 0,

H2(gǫ, g0) ≤ ǫ(1 + o(1)) and |Tgǫ − Tg0| ≥ (cǫ)r(1 + o(1))

for some c > 0 and r > 0. Then

sup
τ>0

lim inf
n→∞

nrMMR1(n, T,Dk,n) ≥ 1

4

( cr
2e

)r
.

Proof. See Jongbloed (1995) and Jongbloed (2000). �

Here is the main result of this section:

Proposition 2.4.1 Let g0 ∈ Dk and x0 be a fixed point in (0,∞) such that g0 is k times

differentiable at x0 (k ≥ 2). An asymptotic lower bound for the local minimax risk of any

estimator T̂n,j for estimating the functional Tjg0 = g
(j)
0 (x0), is given by:

sup
τ>0

lim infn→∞n
k−j
2k+1MMR1(n, Tj ,Dk,n,τ ) ≥

{
|g(k)

0 (x0)|2j+1g0(x0)
k−j

}1/(2k+1)

dk,j,

where dk,j > 0, j ∈ {0, . . . , k − 1}. Here

dk,j =
1

4

(
4
k − j

2k + 1
e−1

) k−j
2k+1 λ

(j)
k,1

(λk,2)
k−j
2k+1

where

λk,2 = 24(k+1) (2k + 3)(k + 2)

(k + 1)2
((2(k + 1))!)2

(4k + 7)!((k − 1)!)2
((

k
k/2−1

))2 , when k is even

and

λk,2 = 24(k+2)(2k + 3)(k + 2)
((2(k + 1))!)2

(4k + 7)!(k!)2
((

k+1
(k−1)/2

))2 when k is odd

and, with r(x) ≡ (1 − x2)k+1(1 + x) for −1 ≤ x ≤ 1 and Ck,j ≡ r(j)(0),

λ
(j)
k,1 =

∣∣∣∣
Ck,j

Ck,k

∣∣∣∣ , 0 ≤ j ≤ k − 1.
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Proof. Let µ be a positive number and consider the function gµ defined by:

gµ(x) = g0(x) + s(µ)(x0 + µ− x)k+1(x− x0 + µ)k+21[x0−µ,x0+µ](x), x ∈ (0,∞)

where s(µ) is a scale to be determined later. We denote the unscaled perturbation function

by g̃µ; i.e.,

g̃µ(x) = (x0 + µ− x)k+1(x− x0 + µ)k+21[x0−µ,x0+µ](x).

If µ is chosen small enough so that the true density g0 is k-times differentiable on [x0 −
µ, x0 + µ] and g

(k)
0 is continuous on the latter interval, the perturbed function gµ is also

k-times differentiable on [x0 − µ, x0 + µ] with a continuous k-th derivative. Now, let r be

the function defined on (0,∞) by

r(x) = (1 − x)k+1(1 + x)k+21[−1,1](x) = (1 − x2)k+1(1 + x)1[−1,1](x).

Then, we can write g̃µ as

g̃µ(x) = µ2k+3r

(
x− x0

µ

)
.

Then for 0 ≤ j ≤ k

g(j)
µ (x0) − g

(j)
0 (x0) = s(µ)µ2k+3−jr(j)(0).

The scale s(µ) should be chosen so that for all 0 ≤ j ≤ k

(−1)jg(j)
µ (x) > 0, for x ∈ [x0 − µ, x0 + µ].

But for µ small enough, the sign of (−1)jg
(j)
µ will be that of (−1)jg

(j)
0 (x0). For j = k,

g(k)
µ (x0) = g

(k)
0 (x0) + s(µ)µk+3r(k)(0).

Assume that r(k)(0) 6= 0. Set

s(µ) =
g
(k)
0 (x0)

r(k)(0)
× 1

µk+3
.

Then for 0 ≤ j ≤ k − 1

g(j)
µ (x0) = g

(j)
0 (x0) + µk−j g

(k)
0 (x0)r

(j)(0)

r(k)(0)

= g
(j)
0 (x0) + o(µ), as µց 0
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and so we can choose µ small enough so that (−1)jg
(j)
µ (x0) > 0. For j = k

(−1)kg(k)
µ (x0) = 2(−1)kg

(k)
0 (x0) > 0.

To show that r(j)(0) 6= 0 for 0 ≤ j ≤ k, we define

xn,m =
(
(1 − x2)n

)(m)
∣∣∣∣
x=0

.

Let m ≥ 2 and 2n ≥ m. We have

(
(1 − x2)n

)(m)
=

(
((1 − x2)n)′

)(m−1)

=
(
−2nx(1 − x2)n−1

)(m−1)

= −2n
(
x
(
(1 − x2)n−1

)(m−1)
+ (m− 1)

(
(1 − x2)n−1

)(m−2)
)

where in the last equality, we used Leibniz’s formula for the derivatives of a product; see

e.g. Apostol (1957), page 99. Evaluating the last expression at x = 0 yields

xn,m = −2n(m− 1)xn−1,m−2.

If m is even, we obtain

xn,m = (−2)m/2

m/2−1∏

i=0

(n− i) ×
m/2−1∏

i=0

(m− 2i− 1) × xn−m/2,0

= (−2)m/2

m/2−1∏

i=0

(n− i) ×
m/2−1∏

i=0

(m− 2i− 1)

since xn−m/2,0 = 1. Similarly, when m is odd, we have

xn,m = (−2)(m−1)/2

(m−1)/2−1∏

i=0

(n− i) ×
(m−1)/2−1∏

i=0

(m− 2i− 1) × xn−(m−1)/2,1

= 0,

since xn−(m−1)/2,1 = 0. Now, we have for 1 ≤ j ≤ k

r(j)(x) =
(
(1 − x2)k+1(1 + x)

)(j)

= (x+ 1)
(
(1 − x2)k+1

)(j)
+ j

(
(1 − x2)k+1

)(j−1)
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and hence

r(j)(0) =
(
(1 − x2)k+1

)(j)

x=0
+ j

(
(1 − x2)k+1

)(j−1)

x=0
.

Therefore, when j is even, the second term vanishes and

r(j)(0) = (−2)j/2

j/2−1∏

i=0

(k + 1 − i) ×
j/2−1∏

i=0

(j − 2i− 1) 6= 0.

When j is odd, the first term vanishes and

r(j)(0) = (−2)(j−1)/2

(j−1)/2−1∏

i=0

(k + 1 − i) × j ×
(j−1)/2−1∏

i=0

(j − 2i− 2)

= (−2)(j−1)/2

(j−1)/2−1∏

i=0

(k + 1 − i) ×
(j−1)/2∏

i=0

(j − 2i) 6= 0.

We denote

r(j)(0) = Ck,j, for 1 ≤ j ≤ k − 1

and r(k)(0) = Ck, which specializes to

Ck =





(−2)k/2

∏k/2−1
i=0 (k + 1 − i) ×∏k/2−1

i=0 (k − 2i− 1), if k is even

(−2)(k−1)/2
∏(k−1)/2−1

i=0 (k + 1 − i) ×∏(k−1)/2
i=0 (k − 2i), if k is odd.

The previous expressions can be given in a more compact form. After some algebra, we find

that

Ck =





2 × (−1)k/2(k + 1)(k − 1)!

( k
k/2−1

)
, if k is even

(−1)(k−1)/2k!
(

k+1
(k−1)/2

)
, if k is odd.

(2.1)

We have for 0 ≤ j ≤ k − 1,

|Tj(gµ) − Tj(g0)| =
∣∣∣g(j)

µ (x0) − g
(j)
0 (x0)

∣∣∣ =

∣∣∣∣
Ck,j

Ck
g
(k)
0 (x0)

∣∣∣∣µ
k−j ≡ λ

(j)
k,1

∣∣∣g(k)
0 (x0)

∣∣∣µk−j

where we defined λ
(j)
k,1 = |Ck,j/Ck| for j ∈ {0, . . . , k − 1}. Furthermore

∫ ∞

0

(gµ(x) − g0(x))
2

g0(x)
dx
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=

(
g
(k)
0 (x0)

)2

µ2(k+3)(Ck)2

∫ x0+µ

x0−µ

(x0 + µ− x)2(k+1)(x− x0 + µ)2(k+2)

g0(x)
dx

=

(
g
(k)
0 (x0)

)2

µ2(k+3)(Ck)2

∫ µ

−µ

(µ2 − y2)2(k+1)(y + µ)2

g0(x0 + y)
dy

=

(
g
(k)
0 (x0)

)2

µ2(k+3)(Ck)2
× µ4(k+1)+3

∫ 1

−1

(1 − z2)2(k+1)(z + 1)2

g0(x0 + µz)
dz

=





(
g
(k)
0 (x0)

)2

(Ck)2

∫ 1

−1

(1 − z2)2(k+1)(z + 1)2

g0(x0 + µz)
dz



µ2k+1

=





(
g
(k)
0 (x0)

)2

g0(x0)

∫ 1
−1(1 − z2)2(k+1)(z + 1)2dz

(Ck)2



µ2k+1 + o(µ2k+2)

as µց 0. This gives control of the Hellinger distance as well in view of Jongbloed (2000),

Lemma 2, page 282, or Jongbloed (1995), Corollary 3.2, pages 30 and 31. We set

λk,2 =

∫ 1
−1(1 − z2)2(k+1)(z + 1)2dz

(Ck)2
.

The constants λk,2 can be given more explicitly using the formula

In,2p =

∫ 1

0
(1 − x2)nx2pdx = 22n+1n!(n+ 1)!

(2n + 2)!

(n+p
n+1

)

(2(n+p)+1
2(n+1)

) ,

for any integers n and p, using the convention

(
n+ p

n+ 1

)
=

(
2(n + p) + 1

2(n+ 1)

)
= 1

when p = 0. We have,

∫ 1

−1
(1 − x2)2(k+1)(x+ 1)2dx =

∫ 1

−1
(1 − x2)2(k+1)x2dx+

∫ 1

−1
(1 − x2)2(k+1)dx,

since

∫ 1

−1
(1 − x2)2(k+1)xdx = 0,

and hence

∫ 1

−1
(1 − x2)2(k+1)(x+ 1)2dx = 2(I2(k+1),2 + I2(k+1),0)
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= 24k+6 (2(k + 1))!(2k + 3)!

(4k + 6)!

(2k+3
2k+3

)
(
4k+7
4k+6

) +
24k+5 ((2(k + 1))!)2

(4k + 5)!

= 24k+5 ((2(k + 1))!)2

(4k + 6)!

(
2(2k + 3)

4k + 7
+ (4k + 6)

)

= 24k+5 ((2(k + 1))!)2

(4k + 7)!
((4k + 6) + (4k + 6)(4k + 7))

= 24k+5 ((2(k + 1))!)2

(4k + 7)!
(4k + 6)(4k + 8)

= 24(k+2)(2k + 3)(k + 2)
((2(k + 1))!)2

(4k + 7)!
. (2.2)

Combining and (2.1) and (2.2), we find that λk,2 is given by

λk,2 = 24(k+1) (2k + 3)(k + 2)

(k + 1)2
((2(k + 1))!)2

(4k + 7)!((k − 1)!)2
((

k
k/2−1

))2 , when k is even,

and

λk,2 = 24(k+2)(2k + 3)(k + 2)
((2(k + 1))!)2

(4k + 7)!(k!)2
(
C

(k−1)/2
k+1

)2 , when k is odd.

Now, by using the change of variable ǫ = µ2k+1(bk + o(1)), where

bk = λk,2

(
g
(k)
0 (x0)

)2

g0(x0)

so that µ = (ǫ/bk)
1/(2k+1) (1 + o(1)), then for 0 ≤ j ≤ k− 1, the modulus of continuity, mj,

of the functional Tj satisfies

mj(ǫ) ≥ λ
(j)
k,1g

(k)
0 (x0)

(
ǫ

bk

)(k−j)/(2k+1)

(1 + o(1)).

The result is that

mj(ǫ) ≥ (rk,jǫ)
k−j
2k+1 (1 + o(1)),

where

rk,j =

(
λ

(j)
k,1g

(k)
0 (x0)

)(2k+1)/(k−j)

bk
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and hence

sup
τ>0

lim
n→∞

inf n
k−j
2k+1MMR1(n, Tj ,Dk,n,τ ) ≥

1

4

(
4
k − j

2k + 1
e−1

) k−j
2k+1

(rk,j)
k−j
2k+1 , (2.3)

which can be rewritten as

sup
τ>0

lim
n→∞

inf n
k−j
2k+1MMR1(n, Tj ,Dk,n,τ )

≥ 1

4

(
4
k − j

2k + 1
e−1

) k−j
2k+1 λ

(j)
k,1

(λk,2)
k−j
2k+1

{ ∣∣∣g(k)
0 (x0)

∣∣∣
2j+1
2k+1

g0(x0)
k−j
2k+1

}

for j = 0, · · · , k − 1. �

Remark 2.4.1 It might seem that a more natural choice for a perturbation would have been

gµ(x) = g0(x) + s(µ)(x0 + µ− x)k+1(x− x0 + µ)k+11[x0−µ,x0+µ](x).

The scale s(µ) can be chosen such that the perturbed function is k-monotone and k-times

differentiable with a continuous k-th derivative in the neighborhood [x0−µ, x0+µ]. However,

using this perturbation, asymptotic lower bounds can only be derived for estimating the

functionals Tj(g) when j is even since g
(2l+1)
µ (x0) = g

(2l+1)
0 (x0) for l ∈ N.

2.5 The gap problem

2.5.1 Introduction

Recall that it was assumed that g0 is k-times continuously differentiable at x0 and that

(−1)kg
(k)
0 (x0) > 0. This hypothesis together with strong consistency of the (k − 1)-st

derivative of the MLE and LSE imply that the number of jump points of this derivative,

in a small neighborhood of x0, has to diverge to infinity almost surely as the sample size

n→ ∞. This “clustering” phenomenon is one of the most crucial elements in studying the

local asymptotics of the estimators. The jump points form then a sequence that converges

to x0 almost surely and therefore the distance between two successive jump points, for

example located just before and after x0, converges to 0 as n→ ∞. But it is not enough to

know that the “gap” between these points converges to 0: we would like to determine an

upper bound for this rate of convergence.
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Using the characterizations of the MLE and LSE and the “mid-point property” (that

we will describe later), Groeneboom, Jongbloed, and Wellner (2001b) could prove that

for k = 2, this gap is of the order n−1/5. For k = 1, the same property can be used to see

that the gap in this case is of the order n−1/3. As a function of k, it is natural to think that

the order of the gap takes the general form n−1/(2k+1). In the problem of nonparametric

regression via splines, Mammen and van de Geer conjectured the same form for the knot

points of the regression spline but did not suggest any method to prove the conjecture (see

Mammen and van de Geer (1997), page 400).

In the following subsection, we describe the difficulty of establishing this result for k > 2.

In the general case, the problem exhibits a high level of complexity and the situation becomes

fundamentally different from the one encountered in the case k = 2. In fact, the arguments

used in this special case cannot be applied in our general case but rather, one should think

of a general way of arguing the result and in which the proof for k = 2 would only be

recognized as a very special case.

2.5.2 Fundamental differences

Let τ−n and τ+
n be the last and first jump points of the (k−1)-sh derivative of either the MLE

or LSE, located before and after x0 respectively. To obtain a better understanding of the

gap problem, we describe the reasoning used by Groeneboom, Jongbloed, and Wellner

(2001b) in order to prove that τ+
n − τ−n = Op(n

−1/5) for the special case k = 2. Here, we

restrict ourselves only to the LSE since it is a simpler case to deal with than the MLE.

Recall that for k = 2 the characterization of the LSE, g̃n, is given by

H̃n(x)





≥ Yn(x), x ≥ 0

= Yn(x), if and only if x is a jump point of g̃′n
(2.1)

where

H̃n(x) =

∫ x

0
(x− t)g̃n(t)dt, and Yn(x) =

∫ x

0
(x− t)dGn(t),

and Gn is the empirical distribution function. For ease of notation, we omit writing the

subscript n on the jump points, but their dependence on n should be kept in mind. On
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the interval [τ−, τ+), the function g̃′n is constant since they are no more jump points in

this interval. This implies that H̃n is polynomial of degree 3 on [τ−, τ+). But, from the

characterization in (2.1), it follows that

H̃n(τ−) = Yn(τ−), H̃ ′
n(τ−) = Y

′
n(τ−)

and

H̃n(τ+) = Yn(τ+), H̃ ′
n(τ+) = Y

′
n(τ+).

These four boundary conditions allow us to fully determine the cubic polynomial H̃n on

[τ−, τ+]. Using the explicit expression for H̃n and evaluating it at the mid-point τ̄ =

(τ− + τ+)/2, Groeneboom, Jongbloed, and Wellner (2001b) established that

H̃n(τ̄) =
Yn(τ−) + Yn(τ+)

2
− (Gn(τ+) − Gn(τ−)) (τ+ − τ−)

8
.

Groeneboom, Jongbloed and Wellner refer to this as the “mid-point property”. By applying

the first condition (the inequality condition) in (2.1), it follows that

Yn(τ−) + Yn(τ+)

2
− (Gn(τ+) − Gn(τ−)) (τ+ − τ−)

8
≥ Yn(τ̄).

The inequality in the last display can be rewritten as

Y0(τ
−) + Y0(τ

+)

2
− (G0(τ

+) −G0(τ
−)) (τ+ − τ−)

8
≥ En

where G0 and Y0 are the true counterparts of Gn and Yn respectively, and En a random

error. Using techniques from empirical processes, Groeneboom, Jongbloed, and Wellner

(2001b) could prove that

|En| = Op(n
−4/5) + op((τ

+ − τ−)4). (2.2)

On the other hand, Groeneboom, Jongbloed, and Wellner (2001b) established that there

exists a universal constant C > 0 such that

Y0(τ
−) + Y0(τ

+)

2
− (G0(τ

+) −G0(τ
−)) (τ+ − τ−)

8

= −Cg′′0(x0)(τ
+ − τ−)4 + op((τ

+ − τ−)4). (2.3)



46

Combining the results in (2.2) and (2.3), it follows that

τ+ − τ− = Op(n
−1/5).

The problem has two main features that make the above arguments work. First of all, the

polynomial H̃n can be fully determined on [τ−, τ+] and therefore it can be evaluated at

any point between τ− and τ+. Second of all, it can expressed via the empirical process Yn

and that enables us to “get rid of” terms depending on g̃n whose rate of convergence is

still unknown at this stage. We should also add that the problem is symmetric around τ̄ , a

property that helps establishing the formula derived in (2.3).

When k > 2, we have established in Proposition 2.2.2 that g̃n is the LSE if and only if

H̃n(x)





≥ Yn(x), x ≥ 0

= Yn(x), if and only if x is a jump point of g̃
(k−1)
n

where

H̃n(x) =

∫ x

0

(x− t)k−1

(k − 1)!
g̃n(t)dt

and

Yn(x) =

∫ x

0

(x− t)k−1

(k − 1)!
dGn(t).

If τ is an arbitrary jump point of g̃
(k−1)
n , then the equalities

H̃n(τ) = Yn(τ), and H̃ ′
n(τ) = Y

′
n(τ)

still hold. However, these equations are not enough to determine the polynomial H̃n, now of

degree 2k − 1, on the interval [τ−, τ+]. One would need 2k conditions to be able to achieve

that. But we would be in this situation if we had equality of the higher derivatives of H̃n

and Yn at τ− and τ+, that is

H̃(j)
n (τ−) = Y

(j)
n (τ−), H̃(j)

n (τ+) = Y
(j)
n (τ+) (2.4)

for j = 0, · · · , k−1. For example, in the case of k = 3, the polynomial H̃n of degree 5 would

be identically equal to the polynomial P̃n given by

P̃n(t) =
α0

5!
(τ+ − t)5 +

α1

4!
(τ+ − t)4(t− τ−) + · · · + α2k−1

5!
(t− τ−)5
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for t ∈ [τ−, τ+], where

α0 = 5!
Yn(τ−)

(τ+ − τ−)5

α1 = 5!
Yn(τ−)

(τ+ − τ−)5
+ 4!

Y
′
n(τ−)

(τ+ − τ−)4

α2 = 5!
Yn(τ−)

(τ+ − τ−)5
+ 2 · 4! Y

′
n(τ−)

(τ+ − τ−)4
+ 3!

Y
′′
n(τ−)

(τ+ − τ−)3

and

α3 = 5!
Yn(τ+)

(τ+ − τ−)5

α4 = 5!
Yn(τ+)

(τ+ − τ−)5
− 4!

Y
′
n(τ+)

(τ+ − τ−)4

α5 = 5!
Yn(τ+)

(τ+ − τ−)5
− 2 · 4! Y

′
n(τ+)

(τ+ − τ−)4
+ 3!

Y
′′
n(τ+)

(τ+ − τ−)3
.

For n = 6 and n = 10, we simulated n i.i.d. random variables from a standard Exponential

and in each case, the LSE was calculated using the iterative (2k − 1)-th spline algorithm

(see Chapter 4). The plots in Figures 2.1, 2.2 show clearly that H̃n and P̃n are two different

polynomials. A similar conclusion is reached with n = 50 and k = 4 (see Figure 2.3).

Two jump points are clearly not sufficient to determine the polynomial H̃n. However,

if we consider p > 2 jump points τ0 < · · · < τp−1 (all located e.g. after x0), H̃n is a spline

of degree 2k − 1 that is (2k − 2)-times differentiable at its knot points τ0, · · · , τp−1. In the

next subsection, we prove that if p = 2k − 2, the spline H̃n is completely determined on

[τ0, τ2k−3] by the conditions

H̃n(τi) = Y(τi), and H̃ ′
n(τi) = Y

′(τi) (2.5)

for i = 0, · · · , 2k − 3. This result proves to be very useful for determining the stochastic

order of the distance between two successive jump points in a small neighborhood of x0.

2.5.3 A Hermite interpolation problem

In the next lemma, we prove that given τ0 < · · · < τ2k−3, 2k − 2 jump points of g̃
(k−1)
n , H̃n

is the unique solution of the Hermite problem given by (2.5). But before that, we need the

following lemma which gives a definition of B-splines.
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Figure 2.1: Plots of H̃n − Yn in black and P̃n − Yn on [τ−, τ+] in red, where k = 3, n = 6,
τ− = 0.169 and τ+ = 2.319.

Lemma 2.5.1 Let m ≥ 1 be an integer and x1 < · · · < xm+1 be arbitrary (m + 1) points

in R. There exists a unique vector (a1, · · · , am+1) ∈ R
m+1 such that the spline

B(t) =

m+1∑

i=1

ai(t− xi)
m−1
+ , t ∈ R

satisfies

B(t) = 0, if t ≤ x1 or t ≥ xm+1 (2.6)

Bk(t) > 0, if t ∈ (x1, xm+1) (2.7)
∫ xm+1

x1

B(t)dt = 1. (2.8)

B is called the B-spline of degree m− 1 with support [x1, xm+1]. Furthermore,

B(t) = [x1, · · · , xm+1](−1)mm(t− ·)m−1
+ , t ∈ R; (2.9)

thus B(t) is the divided difference of order m of the function x 7→ (−1)mm(t−x)m−1
+ , x ∈ R

with respect to the knots x1, . . . , xm+1.
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Figure 2.2: Plots of H̃n −Yn in black and P̃n −Yn on [τ−, τ+] in red, where k = 3, n = 10,
τ− = 2.880 and τ+ = 6.680.

Proof. See e.g. Nürnberger (1989), Theorems 2.2 and 2.9, pages 96 and 99. �

Remark 2.5.1 Note that for any a and b in R, we have

(b− a)m−1 = (b− a)m−1
+ + (−1)m−1(a− b)m−1

+ .

On the other hand, we can write

m+1∑

i=1

ai(t− xi)
m−1 =

m+1∑

i=1

ai

m−1∑

l=0

(
m− 1

l

)
xl

i t
m−1−l

=

m−1∑

l=0

(
m− 1

l

)(m+1∑

i=1

aix
l
i

)

tm−1−l = 0, for t ∈ R,

where the last equality follows from the identities in (2.4) of Theorem 2.2 in Nürnberger

(1989). Therefore, B can also be given by

B(t) = (−1)m
m+1∑

i=1

ai(xi − t)m−1
+ t ∈ R,
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Figure 2.3: Plots of H̃n −Yn in black and P̃n −Yn on [τ−, τ+] in red, where k = 4, n = 50,
τ− = 1.901 and τ+ = 9.141.

or equivalently

B(t) = [x1, · · · , xm+1]m(· − t)m−1
+ . (2.10)

The latter form will be used in the rest of this chapter.

Lemma 2.5.2 Let k ≥ 2. Given any 2k − 2 successive jump points of H̃
(2k−1)
n , τ0 <

· · · < τ2k−3, the (2k − 1)-th spline H̃n is uniquely determined on [τ0, τ2k−3] by the values

of the empirical process Yn and of its derivative Y
′
n at τ0, · · · , τ2k−3. Furthermore, for any

arbitrary points τ−(2k−1) < · · · < τ−1 to the left of τ0 and τ2k−2 < · · · < τ4k−4 to the

right of τ2k−3, there exist coefficients α−(2k−1), · · · , α2k−4 depending on Yn(τi) and Y
′
n(τi),

i = 0, · · · , 2k − 3, such that the spline H̃n can be written as

H̃n(t) =

2k−4∑

i=−(2k−1)

αiBi(t), (2.11)

for all t ∈ [τ0, τ2k−3] where, for i = −(2k−1), · · · , 2k−4, Bi is the B-spline of degree 2k−1

corresponding to the set of knots {τi, · · · , τi+2k}.
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Proof. We know that for any jump point τ of H̃
(2k−1)
n , we have

H̃n(τ) = Yn(τ) and H̃ ′
n(τ) = Y

′
n(τ).

This can viewed as a Hermite interpolation problem if we consider that the interpolated

function is the process Yn and that the interpolating spline is H̃n (see e.g. Nürnberger

(1989), Definition 3.6, pages 108 and 109).

Now, let p = 2k − 2 and consider successive 2k − 2 jump points τ0 < · · · < τ2k−3.

We denote τ0 = x0 = a, τ2k−3 = x2k−3 = b and τ1 = x1, · · · , τ2k−4 = x2k−4. Also,

for i = 1, · · · , 4k − 4, consider the points ti such that t1 = t2 = x0, t3 = t4 = x1,. . . ,

t4k−5 = t4k−4 = x2k−3. Using this notation, we see that the (2k− 1)− th spline H̃n satisfies

H̃n(ti) = Yn(ti) and H̃ ′
n(ti) = Y

′
n(ti) (2.12)

for all i = 1, · · · , 4k − 4. Furthermore, we can check that for all i = 1, · · · , 2k − 4, we have

ti < xi < ti+2k.

Indeed, for a given i = 1, · · · , 2k − 4, we know that xi = t2i+1 = t2i+2 and it is easy to see

that

ti < t2i+1 = t2i+2 < ti+2k.

Therefore, by Theorem 3.7 in Nürnberger (1989), page 109, the Hermite interpolation

problem defined in (2.12) has a unique solution in S2k−1(x1, · · · , x2k−4), the space of splines

of degree 2k−1 that are (2k−2)-times continuously differentiable at the knots x1, · · · , x2k−4

(or, see DeVore and Lorentz (1993), Theorem 9.2, page 162). Notice that in Nürnberger’s

notation (see Nürnberger (1989)), the parameters p− 2 and 2k − 1 play the role of k and

m respectively. Also, note that the integer p = 2k−2 was chosen here so that the number of

equations (2p) and the dimension of the space S2k−1(x1, · · · , xp) (dim(S2k−1(x1, · · · , xp)) =

p− 2 + 2k) are equal. It follows that we can find α−(2k−1), · · · , α2k−4 such that

H̃n(t) =
2k−4∑

i=−(2k−1)

αiBi(t)
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for all t ∈ [a, b] ≡ [τ0, τ2k−3], where αt = (α−(2k−1), · · · , α2k−4)
t is the unique solution of the

linear system

Mα ≡





B−(2k−1)(τ0) · · · B2k−4(τ0)

(B−(2k−1))
′(τ0) · · · (B2k−4)

′(τ0)
...

...
...

B−(2k−1)(τ2k−3) · · · B2k−4(τ2k−3)

(B−(2k−1))
′(τ2k−3) · · · (B2k−4)

′(τ2k−3)





α =





Yn(τ0)

Y
′
n(τ0)
...

Yn(τ2k−3)

Y
′
n(τ2k−3)





(2.13)

and Bi, i = −(2k−1), · · · , 2k−4, are (4k−4) linearly independent B-splines of degree 2k−1

and knots τi, · · · < τi+2k. �

In the following lemma, we prove a preparatory result that will be used later for deriving

the stochastic order of the distance between the jump points.

Lemma 2.5.3 Let τ̄ ∈ ∪2k−4
i=0 (τi, τi+1). If ek(t) denotes the error at t of the Hermite inter-

polation of the function y2k/(2k)! at the points τ0, · · · , τ2k−3, then

−g(k)
0 (τ̄ )ek(τ̄ ) ≤ En + Rn

where En defined in (2.15) is a random error and Rn defined in (2.17) is a remainder that

both depend on the knots τ0, · · · , τ2k−3 and the point τ̄ .

Proof. In this proof, we use the explicit B-splines representation of H̃n that was introduced

in the previous lemma. Let A = (aij)ij and B = (bij)ij be the (4k−4)×(k−1) sub-matrices

obtained by extracting the odd and even columns of the inverse of the matrix M given in

(2.13). We can write,

H̃n(t) =

2k−4∑

i=−(2k−1)




2k−3∑

j=0

(aijYn(τj) + bijY
′
n(τj))



Bi(t)

for all t ∈ [τ0, τ2k−3]. Fix t = τ̄ ∈ ∪2k−4
i=0 (τi, τi+1). From the inequality condition in the

characterization of the LSE , it follows that

2k−4∑

i=−(2k−1)




2k−3∑

j=0

(aijYn(τj) + bijY
′
n(τj))



Bi(τ̄) ≥ Yn(τ̄)
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or equivalently

2k−4∑

i=−(2k−1)




2k−3∑

j=0

(aijY0(τj) + bijY
′
0(τj))



Bi(τ̄) − Y0(τ̄) ≥ −En (2.14)

where Y0 is the k-fold integral of the true density g0 and En is given by

En =

2k−4∑

i=−(2k−1)




2k−3∑

j=0

(aij(Yn − Y0)(τj) + bij(Y
′
n − Y ′

0)(τj))



Bi(τ̄) + Y0(τ̄) − Yn(τ̄ ). (2.15)

Based on the working assumptions, the function Y0 is (2k)-times continuously differentiable

in a small neighborhood of x0. Using Taylor expansion of Y0(τj) and Y ′
0(τj) around τ̄ up to

the orders 2k and 2k − 1 respectively, the inequality in (2.14) can be rewritten as



2k−4∑

i=−(2k−1)






2k−3∑

j=0

aij




Bi(τ̄) − 1



 Y0(τ̄)

+




2k−4∑

i=−(2k−1)






2k−3∑

j=0

aij(τj − τ̄) + bij




Bi(τ̄ )



Y ′
0(τ̄)

...

+




2k−4∑

i=−(2k−1)






2k−3∑

j=0

aij
(τj − τ̄)2k

(2k)!
+ bij

(τj − τ̄)2k−1

(2k − 1)!




Bi(τ̄ )



Y
(2k)
0 (τ̄)

+ Rn

≥ −En (2.16)

where Rn is the remainder of the Taylor expansion and can be given in the integral form

Rn =

2k−4∑

i=−(2k−1)

( 2k−3∑

j=0

aij

∫ τj

τ̄

(τj − t)2k−1

(2k)!
(g

(k)
0 (t) − g

(k)
0 (x0))dt (2.17)

+ bij

∫ τj

τ̄

(τj − t)2k−2

(2k − 2)!
(g

(k)
0 (t) − g

(k)
0 (x0))dt

)
Bi(τ̄).

The remainder Rn can be viewed as the error of Hermite interpolation at the point τ̄ where

x 7→
∫ x

τ̄

(x− t)2k−1

(2k − 1)!
(g

(k)
0 (t) − g

(k)
0 (x0))dt

is the function being interpolated. The order of Rn will be determined in a coming subsec-

tion. Now, note that

2k−4∑

i=−(2k−1)




2k−3∑

j=0

aij



Bi(τ̄) − 1 = 0 (2.18)
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2k−4∑

i=−(2k−1)




2k−3∑

j=0

aij(τj − τ̄) + bij



Bi(τ̄ ) = 0

...
2k−4∑

i=−(2k−1)




2k−3∑

j=0

aij
(τj − τ̄)2k−1

(2k − 1)!
+ bij

(τj − τ̄)2k−2

(2k − 2)!



Bi(τ̄ ) = 0.

Indeed, since the space of splines of degree 2k−1 and with simple knots τ0, · · · , τ2k−3 includes

all the polynomials of degree ≤ 2k − 1, the solution of the Hermite problem when the

interpolated function is a polynomial of degree ≤ 2k− 1 is the polynomial itself. Therefore,

if we consider P0(t) = 1, P1(t) = t − τ̄ , · · · , P2k−1(t) = (t − τ̄)2k−1/(2k − 1)!, the previous

terms are identically zero since they are exactly equal to Pj(τ̄ ) = 0, j = 0, · · · , 2k − 1.

Now
2k−4∑

i=−(2k−1)

2k−3∑

j=0

(
aij

(τj − τ̄)2k

(2k)!
+ bij

(τj − τ̄)2k−1

(2k − 1)!

)
Bi(τ̄ )

can be recognized as the Hermite interpolation error at the point τ̄ when (y − τ̄)2k/(2k)! is

the function being interpolated at the knots τ0, · · · , τ2k−3. But this error is equal to ek(τ̄ ).

Indeed, using the binomial identity, we can write

2k−4∑

i=−(2k−1)




2k−3∑

j=0

aij
(τj − τ̄)2k

(2k)!
+ bij

(τj − τ̄)2k−1

(2k − 1)!



Bi(τ̄ )

=

2k−4∑

i=−(2k−1)




2k−3∑

j=0

aij
(τj)

2k

(2k)!
+ bij

(τj)
2k−1

(2k − 1)!



Bi(τ̄)

+
2k−1∑

r=1




2k−4∑

i=−(2k−1)




2k−3∑

j=0

aij

(
2k

r

)
(τj)

2k−r

(2k)!
+ bij

(
2k − 1

r

)
(τj)

2k−1−r

(2k − 1)!



Bi(τ̄ )



 (−1)r τ̄ r

+




2k−4∑

i=−(2k−1)




2k−3∑

j=0

aij



Bi(τ̄)



 τ̄2k

(2k)!
.

Using the identity
(

2k − 1

r

)
=

2k − r

2k

(
2k

r

)

for all r ∈ {0, · · · , 2k}, it follows that

2k−4∑

i=−(2k−1)




2k−3∑

j=0

aij

(
2k

r

)
(τj)

2k−r

(2k)!
+ bij

(
2k − 1

r − 1

)
(τj)

2k−1−r

(2k − 1)!



Bi(τ̄)
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=

(
2k

r

) 2k−4∑

i=−(2k−1)




2k−3∑

j=0

aij
(τj)

2k−r

(2k)!
+ bij(2k − r)

(τj)
2k−1−r

(2k)!



Bi(τ̄)

=

(
2k

r

)
τ̄2k−r

(2k)!

since for all t ∈ [τ0, τ2k−3] and 1 ≤ r ≤ 2k − 1

2k−4∑

i=−(2k−1)




2k−3∑

j=0

aij(τj)
2k−r + bij(2k − r)(τj)

2k−1−r



Bi(t) = t2k−r.

Therefore,

2k−4∑

i=−(2k−1)




2k−3∑

j=0

aij
(τj − τ̄)2k

(2k)!
+ bij

(τj − τ̄)2k−1

(2k − 1)!



Bi(τ̄)

=

2k−4∑

i=−(2k−1)




2k−3∑

j=0

aij
(τj)

2k

(2k)!
+ bij

(τj)
2k−1

(2k − 1)!



Bi(τ̄ )

+

(
2k∑

r=1

(−1)r

(
2k

r

))
τ̄2k

(2k)!

=
2k−4∑

i=−(2k−1)




2k−3∑

j=0

aij
(τj)

2k

(2k)!
+ bij

(τj)
2k−1

(2k − 1)!



Bi(τ̄ ) −
τ̄2k

(2k)!

= ek(τ̄)

since
∑2k−4

i=−(2k−1)

(∑2k−3
j=0 aij

)
Bi(τ̄ ) = 1 and

∑2k
r=0(−1)r

(2k
r

)
= 0 . We conclude that the

inequality in (2.16) can be rewritten as stated in the lemma. �

2.5.4 The order of the gap

In this subsection, we give the solution of the gap problem. We restrict here ourselves

to the LSE. For the MLE, the proof follows the same steps except that the notation is

much more cumbersome. The error ek(t) defined in the previous lemma can be recog-

nized as a monospline of degree 2k with 2k − 2 simple knots τ0, · · · , τ2k−3. For a defini-

tion of monosplines, see e.g. Michelli (1972), Bojanov, Hakopian and Sahakian (1993),

Nürnberger (1989), page 194 or DeVore and Lorentz (1993), page 136. As a first step,

we will derive an upper bound for the random error En. But before that, we need the

following lemma:
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Lemma 2.5.4 Let a = x0 < x1 < · · · < x2k−3 = b be 2k − 2 arbitrary points and 1 ≤ r ≤
2k − 1. Suppose that f that is a function that is r-times differentiable on [a, b] except for a

finite number of points. If Hf denotes the unique interpolating spline of degree 2k − 1 that

solves the Hermite problem:

Hf(xj) = f(xj), and (Hf)′(xj) = f ′(xj)

for j = 0, · · · , 2k − 3, then there exists a constant C > 0 (depending only on k) such that

sup
t∈[a,b]

|Hf(t) − f(t)| ≤ Cω(f (r); b− a) (b− a)r

where ω(f (r); ·) is the modulus of continuity of f (r) on [a, b]:

ω(h; δ) = sup{|h(t2) − h(t1)| : t1, t2 ∈ [a, b], |t2 − t1| ≤ δ}.

The above lemma still needs to be proved. In the case of quasi-interpolation, a similar result

is available and was proved by de Boor and Fix (1973); see e.g. Nürnberger (1989), page

189. However, we believe that such a result should also be true for our Hermite interpolation

problem. Although the literature seems to be more concerned with the approximation error

of other types of interpolating splines, we believe that there is no reason that our spline fails

to satisfy a similar property especially that it tries to “recover” better the original function

f by interpolating its tangent at the knots as well. Also, it should be mentioned that it is

known that, given an interval [a, b], the minimal deviation of a function f from the space of

splines Sm(x1, · · · , xp) satisfies

d∞(f, Sm(x1, · · · , xp)) ≤ Kδrω(f (r); δ)

if f (r) ∈ C[a, b] for some r ∈ {0, · · · ,m}, where K > 0 is a universal constant that depends

only on r and δ = max0≤i≤p |xi+1 − xi| with x0 = a and xp+1 = b (see e.g. Nürnberger

(1989), Theorem 4.27, page 159).

Lemma 2.5.5 If Lemma 2.5.4 holds, then the random error En satisfies

|En| = Op(n
−k/(2k+1)) + op((τ2k−3 − τ0)

2k).
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Proof. Let f be the function given by

f(t) =
2k−3∑

i=−(2k−1)




2k−4∑

j=0

(aij
(τj − t)k−1

(k − 1)!
+ bij

(τj − t)k−2

(k − 2)!
)1[τj ,τ̄ ](t)



Bi(τ̄),

where [τj, τ̄ ] ≡ [τ̄ , τj ] if τj > τ̄ . Then, the error En can be rewritten as

En =

∫ ∞

0
f(t)d(Gn(t) −G0(t)). (2.19)

Indeed, we found in the previous subsection that En is given by

En =

2k−4∑

i=−(2k−1)




2k−3∑

j=0

(aij(Yn − Y0)(τj) + bij(Y
′
n − Y ′

0)(τj))



Bi(τ̄) + Y0(τ̄) − Yn(τ̄ ).

Let us denote Dn = Yn − Y0. The error En can be rewritten as

En =

2k−4∑

i=−(2k−1)

(

2k−3∑

j=0

(aijDn(τj) + bijD
′
n(τj))Bi(τ̄) − Dn(τ̄ ).

Now for arbitrary x and y, we can write

Dn(y) = Dn(x) + (y − x)D′
n(x) + · · · +

∫ y

x

(y − t)k−1

(k − 1)!
d(Gn(t) −G0(t))

and similarly

D
′
n(y) = D

′
n(x) + (y − x)D′′

n(x) + · · · +
∫ y

x

(y − t)k−2

(k − 2)!
d(Gn(t) −G0(t)).

Taking x = τ̄ and y = τj for j = 0, · · · , 2k − 3 and using the identities in (2.18) up to the

order (k − 2), it follows that

En =

2k−4∑

i=−(2k−1)




2k−3∑

j=0

∫ τj

τ̄
(aij

(τj − t)k−1

(k − 1)!
+ bij

(τj − t)k−2

(k − 2)!
)d(Gn(t) −G0(t))



Bi(τ̄)

=

2k−4∑

i=−(2k−1)

( 2k−3∑

j=0

∫ ∞

0
(aij

(τj − t)k−1

(k − 1)!
+ bij

(τj − t)k−2

(k − 2)!
)1[τ̄ ,τj ](t)d(Gn(t) −G0(t))

)

Bi(τ̄)

=

∫ ∞

0

[ 2k−4∑

i=−(2k−1)

( 2k−3∑

j=0

(aij
(τj − t)k−1

(k − 1)!
+ bij

(τj − t)k−2

(k − 2)!
)1[τ̄ ,τj ](t)

)

Bi(τ̄)

]
d(Gn(t) −G0(t))
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which is the form claimed in (2.19).

Even if the function f is formally integrated on (0,∞), it is clear that we can assume that

f is compactly supported on [τ0, τ2k−3]. For a fixed t ∈ [τ0, τ2k−3], there are two possibilities:

t < τ̄ or t ≥ τ̄ . Suppose without loss of generality that t ≥ τ̄ . Then, f(t) which can be also

given by

f(t) =
2k−4∑

i=−(2k−1)






2k−3∑

j=0

(
aij

(τj − t)k−1

(k − 1)!
+ bij

(τj − t)k−2

(k − 2)!

)

 1[τj≥t]Bi(τ̄)

=

2k−4∑

i=−(2k−1)






2k−3∑

j=0

(
aijgt(τj) + bijg

′
t(τj)

)



Bi(τ̄)

with

gt(x) =
(x− t)k−1

(k − 1)!
1[x≥t],

is nothing but the error at the point τ̄ of the Hermite interpolation of gt at the points

τ0, · · · , τ2k−3. Note that gt is a spline of degree k − 1 that is (k − 1)-times differentiable

except at its unique knot t. By Lemma 2.5.4, there exists C > 0, such that

|f(t)| ≤ Cω(g
(k−1)
t , τ2k−3 − τ0)(τ2k−3 − τ0)

k−1.

But

ω(g
(k−1)
t , τ2k−3 − τ0) ≤ 1.

Therefore, it follows that

sup
t∈[τ0,τ2k−3]

|f(t)| ≤ C(τ2k−3 − τ0)
k−1. (2.20)

Now, since the function f(t) depends on the knots τ0, · · · , τ2k−3 and the point τ̄ (which

is a fixed point in ∪2k−4
j=0 (τj, τj+1), it can be viewed as an element of the class

Fx,r =
{
fx,y1,···,y2k−2

: x ≤ y1 ≤ x+ r1, · · · , y2k−3 ≤ y2k−2 ≤ y2k−3 + r2k−2

}
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where x > 0 and r = (r1, · · · , r2k−2) : rj > 0, j = 1, · · · , 2k− 2 is a fixed (2k− 2)-vector. To

make the link between the members of the class Fx,r and the function f(t), the latter can

be written as

f(t) = fτ0,τ1,···,τ̄ ,···,τ2k−3
(t), t ∈ [τ0, τ2k−3].

In this case, x = τ0, y1 = τ1, y2k−2 = τ2k−3 and {y1, · · · , y2k−2} = {τ1, · · · , τ2k−3} ∪ {τ̄}.
Let Q be an arbitrary measure on (0,∞). The collection Fx,r admits a finite covering

number with respect to L2(Q). In fact, any element fx,y1,···,y2k−2
∈ Fx,r is (k − 2)-times

differentiable on [x, y2k−2]. Therefore, for every ǫ > 0, the collection Fx,r admits a finite

bracketing number that is bounded by (K/ǫ)1/(k−2), for some 0 < K <∞. More specifically,

there exists a constant K > 0 depending only on k and R = r1 + · · · + r2k−2 (an upper

bound for the length of the interval [x, y2k−2]) such that

logN[](ǫ,Fx,r, L2(Q)) ≤ K

(
1

ǫ

) 1
k−2

(2.21)

(see e.g. van der Vaart and Wellner (1996), Corollary 2.7.2, page 157). It follows that
∫ 1

0

√
1 + logN[](ǫ,Fx,r, L2(G0))dǫ <∞.

On the other hand, using Lemma 2.5.4, we have

|fx,y1,···,y2k−2
(t)| ≤ C(y2k−2 − x)k−11[x,y2k−2](t)

(compare with the bound in 2.20) and hence the function Fx,R given by

Fx,R(t) = CRk−11[x,x+R](t).

is an envelope for the class Fx,r. On the other hand, if x belongs to a small neighborhood

[x0 − δ, x0 + δ] for some small δ > 0, then we can find some constant M > 0 depending only

on δ,R and g0(x0) such that 0 < supt∈[x0−δ,x0+δ+R] g0(t) < M . Therefore,

EF 2
x,R(X1) = C2R2(k−1)

∫ x+R

x
g0(x)dx ≤ C2MR2k−1.

By Theorem 2.14.2 in van der Vaart and Wellner (1996), page 240, it follows that

E






(

sup
fx,y1,···,y2k−2

∈Fx,r

∣∣(Gn −G0)(fx,y1,···,y2k−2
)
∣∣
)2



 ≤ K ′

n
EF 2

x,R(X1) = O(n−1R2k−1)

(2.22)
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for some constant K ′ > 0 depending only on x0, δ and R.

We denote

(Pn − P0)(fx,y1,···,y2k−2
) = (Gn −G0)(fx,y1,···,y2k−2

)

where fx,y1,···,y2k−2
is an element in Fx,r and define Mn as

Mn = inf

{
D > 0 :

∣∣∣∣(Pn − P0)(fx,y1,···,y2k−3,y)

∣∣∣∣ ≤ ǫ(y − x)2k

+ n−2k/(2k+1)D, for all y ∈ [x, x+R]

}
.

and Mn = ∞ if no D > 0 satisfies the required inequality. For 1 ≤ j ≤ ⌊Rn1/(2k+1)⌋ = jn,

we have

P (Mn > m)

≤
∑

1≤j≤jn

P

{
(j − 1)n−1/(2k+1) ≤ y − x ≤ jn−1/(2k+1),

∣∣∣∣(Pn − P0)(fx,y1,···,y2k−3,y)

∣∣∣∣ > ǫ(y − x)2k + n−2k/(2k+1)m

}

=
∑

1≤j≤jn

P

{
(j − 1)n−1/(2k+1) ≤ y − x ≤ jn−1/(2k+1),

∣∣∣∣(Pn − P0)(fx,y1,···,y2k−3,y)

∣∣∣∣ > ǫ(y − x)2k + n−2k/(2k+1)m

}

≤
∑

1≤j≤jn

P

{
(j − 1)n−1/(2k+1) ≤ y − x ≤ jn−1/(2k+1),

n2k/(2k+1)

∣∣∣∣(Pn − P0)(fx,y1,···,y2k−3,y)

∣∣∣∣ > ǫ(j − 1)2k +m

}

≤
∑

1≤j≤jn

n4k/(2k+1)

E

{(
supy:0≤y−x<jn−1/(2k+1)

∣∣(Pn − P0)(fx,y1,···,y2k−3,y)
∣∣
)2
}

(ǫ(j − 1)2k +m)
2

=
∑

1≤j≤jn

n4k/(2k+1)

E

{(
supfx,y1,···,y2k−3,y∈Fx,jn−1/(2k+1)

∣∣(Pn − P0)(fx,y1,···,y2k−3,y)
∣∣
)2
}

(ǫ(j − 1)2k +m)
2

≤ C
∑

1≤j≤jn

n4k/(2k+1)n−1n−(2k−1)/(2k+1) j2k−1

(ǫ(j − 1)2k +m)
2

= C
∑

1≤j≤jn

j2k−1

(ǫ(j − 1)2k +m)
2
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≤ C

∞∑

j=1

j2k−1

(ǫ(j − 1)2k +m)
2 ց 0 as mր ∞

where C > 0 is a constant that is independent of x ∈ [x0−δ, x0 +δ]. Therefore, Mn = Op(1)

and hence it follows that

∣∣(Pn − P0)(fx,y1,···,y2k−3,y)
∣∣ ≤ ǫ(y − x)2k +Op(n

−2k/(2k+1))

which holds for all fx,y1,···,y2k−3,y ∈ Fx,r and x in some small neighborhood [x0 − δ, x0 + δ]

of x0. It follows that

|En| = op((τ2k−3 − τ0)
2k) +Op(n

−2k/(2k+1)).

�

To show that τ2k−3 − τ0 = Op(n
−1/(2k+1)), we need the following result:

Lemma 2.5.6 The error ek(t) has no other zeros than τ0, · · · , τ2k−3 in [τ0, τ2k−3].

Proof. The result follows from Proposition 1 of Michelli (1972) and de Boor (2004).

�

Recall that ek(t) is a monospline of degree 2k with 2k − 2 simple knots τ0, · · · , τ2k−3.

Furthermore, by construction, these knots are also double zeros; i.e. ek(τj) = e′k(τj) = 0 for

j = 0, · · · , 2k − 3. Now, we state two preparatory lemmas that will help determine the sign

of the error ek(t) at any point t ∈ ∪2k−4
j=0 (τj , τj+1).

Lemma 2.5.7 Let k ≥ 2 be an integer. The monospline Mk of degree 2k with simple

knots ξ0 = −k + 3/2, ξ1 = −k + 5/2, · · · , ξ2k−4 = k + 1/2, ξ2k−3 = k − 3/2 and such that

Mk(ξj) = M ′
k(ξj) = 0 for j = 0, · · · , 2k − 3 has a constant sign: +1 (-1) if k is odd (even).

Proof. Let B2k be the Bernoulli monospline of degree 2k. The function B2k(t−1/2)−B2k(0)

is equal to the error of the Hermite interpolation of t2k/(2k)! at the equispaced knots

ξ0, · · · , ξ2k−3. By uniqueness, it follows that

Mk(t) = B2k(t− 1/2) − B2k(0)
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for all t ∈ [−k + 3/2, k − 3/2]. The Bernoulli monospline B2k is the 1-periodic extension of

the Bernoulli polynomial p2k of degree 2k which takes extreme values at 0 when considered

as a function on [0, 1]. It follows that Mk is of one sign on [−k+3/2, k−3/2]. Furthermore,

p2k(1/2) < p2k(0) if k is even and p2k(1/2) > p2k(0). Therefore, Mk is nonpositive if k is

even and nonnegative if k is odd. �

Lemma 2.5.8 If t ∈ ∪2k−4
j=0 (τj , τj+1), then

(−1)k−1ek(t) > 0;

i.e., ek(t) is nonnegative (nonpositive) if k is odd (even).

Proof. Let τ̄ be a fixed point in ∪2k−4
j=0 (τj, τj+1). We can assume without loss of generality

that τ̄ ∈ (τ0, τ1). There exists λ ∈ (0, 1) such that τ̄ = λτ0 + (1 − λ)τ1. Consider now the

function

(τ0, · · · , τ2k−3) 7→
ek(τ̄) + |ek(τ̄)|

2ek(τ̄ )
.

Note that it is possible to divide by ek(τ̄) since ek(τ̄ ) 6= 0 as τ̄ is different from the knots.

It is easy to see that the function is continuous in τ0, · · · , τ2k−3. Furthermore, it can only

take two possible values, 0 or 1, and therefore has to be constant. But, when the knots are

equally distant, we know from Lemma 2.5.7 that the constant is 1 (0) if k is odd (even). It

follows that (−1)k−1ek(τ̄) > 0. �

We can finally state the main result of this section:

Lemma 2.5.9 Let k ≥ 2. If g0 ∈ Dk satisfies g
(k)
0 (x0) 6= 0 and Lemma 2.5.4 holds, then

τ2k−3 − τ0 = Op(n
−1/(2k+1)).

Proof. Let j0 ∈ {0, · · · , 2k − 4} be such that [τj0, τj0+1] be the largest knot interval; i.e.,

τj0+1 − τj0 = max0≤j≤2k−4(τj+1 − τj). Let a = τ0, b = τ2k−3.

By Lemma 2.5.4, there exists a constant C > 0 depending only on k such that

|Rn| ≤ C sup
t∈[τ0,τ2k−3]

|g(k)
0 (t) − g

(k)
0 (x0)| (b− a)2k
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using the fact that if f is ∈ C2k[a, b], then

ω(f (2k−1), b− a) ≤ sup
t∈[a,b]

|f (2k)(t)| (b− a).

Therefore, it follows that

|Rn| ≤ C sup
t∈[τ0,τ2k−3]

|g(k)
0 (t) − g

(k)
0 (x0)|(τ2k−3 − τ0)

2k = op((τ2k−3 − τ0)
2k).

Using the result of Lemma 2.5.3 and since the bounds on Rn and En (see Lemma 2.5.5) are

independent of the choice of τ̄ in ∪2k−4
j=0 (τj, τj+1), it follows that

sup
τ̄∈(τj0

,τj0+1)
(−1)k−1ek(τ̄) ≤ Op(n

−2k/(2k+1)) + op((τ2k−3 − τ0)
2k).

Now, on the interval [τj0 , τj0+1], the Hermite interpolation spline is a polynomial of

degree 2k − 1. On the other hand, the best uniform approximation of the function t2k on

[τj0, τj0+1] from the space of polynomials of degree ≤ 2k − 1 is given by the polynomial

t 7→ t2k −
(
τj0+1 − τj0

2

)2k 1

22k−1
T2k

(
2t− (τj0 + τj0+1)

τj0+1 − τj0

)
, (2.23)

where T2k is the Chebyshev polynomial of degree 2k (defined on [−1, 1]), see, e.g., Nürnberger

(1989), Theorem 3.23, page 46 or DeVore and Lorentz (1993), Theorem 6.1, page 75. It

follows that

(−1)k−1ek(τ̄) ≥
∥∥∥∥

T2k

24k−1(2k)!

∥∥∥∥
∞

(τj0+1 − τj0)
2k (2.24)

=
1

24k−1(2k)!
(τj0+1 − τj0)

2k

since ‖T2k‖∞ = 1. But,

τ2k−3 − τ0 =

2k−4∑

j=0

(τj+1 − τj) ≤ (2k − 3)(τj0+1 − τj0).

It follows that

(−1)k−1ek(τ̄) ≥
1

(2k − 3)2k24k−1(2k)!
(τ2k−3 − τ0)

2k.

Combining the results obtained above, we conclude that

(−1)kg
(k)
0 (x0)

(2k − 3)2k24k−1(2k)!
(τ2k−3 − τ0)

2k ≤ Op(n
−2k/(2k+1)) + op((τ2k−3 − τ0)

2k)

which implies that τ2k−3 − τ0 = Op(n
−1/(2k+1)). �
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2.6 Rates of convergence of the estimators

Now, we are going to use the result of the previous section to derive the rates of convergence

of ḡ
(j)
n , j = 0, · · · , k − 1 at a fixed point x0 > 0.

Consider the event Jn = J
(1)
n ∩ J (2)

n where J
(i)
n , i = 1, 2, are defined by

J (1)
n ≡ J (1)

n (x0, k,M)

= {there exist (k + 1) jump points τn,1, · · · , τn,k+1

(not necessarily successive) satisfying

x0 − n−1/(2k+1) ≤ τn,1 < · · · < τn,k+1 ≤ x0 +Mn−1/(2k+1)

kn−1/(2k+1) ≤ τn,k+1 − τn,1 ≤Mn−1/(2k+1)
}
,

and

J (2)
n ≡ J (2)

n (j, k, cj) =

{
inf

t∈[τn,1,τn,k+1]

∣∣∣ḡ(j)
n (t) − g

(j)
0 (t)

∣∣∣ ≤ cjn
−(k−j)/(2k+1)

}
.

Proposition 2.6.1 Suppose that (−1)kg
(k)
0 (x0) > 0 and g

(k)
0 is continuous in a neighbor-

hood of x0. Let ḡn be either the MLE ĝn or the LSE g̃n and let 0 ≤ j ≤ k−1. Suppose also

that the hypothesis of Proposition 2.3.2 holds. Then, if the conjectured Lemma 2.5.4 holds,

for any ǫ > 0, there exists M > 0 and cj > 0 such that P (Jn) > 1 − ǫ for all sufficiently

large n.

Proof. Fix ǫ > 0. We will consider first the LSE and we will start with j = 0. Fix

ǫ > 0. For ease of notation, we will write the jump points of g̃
(k−1)
n without the subscript n.

Let τ1 be the first jump point of g̃
(k−1)
n after x0 − n−1/(2k+1), τ2 the first jump point after

τ1 + n−1/(2k+1), . . . , τk+1 the first jump point after τk + n−1/(2k+1). By Lemma 2.5.9, there

exists M > 0 such that

0 ≤ τk+1 − τ1 ≤Mn−1/(2k+1)

with probability > 1− ǫ. Note that by construction τk+1 − τ1 ≥ kn−1/(2k+1). Fix c > 0 and

consider the event

inf
t∈[τ1,τk+1]

|g̃n(t) − g0(t)| > cn−k/(2k+1). (2.25)
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On this set and for any nonnegative function g on [τ1, τk+1], we have

∣∣∣∣

∫ τk+1

τ1

(g̃n(t) − g0(t)) g(t)dt

∣∣∣∣ ≥ cn−k/(2k+1)

∫ τ+
n

τ−

n

g(t)dt. (2.26)

Now, let B be the B-spline of degree k − 1 and with support [x1, xk+1]. Recall from (2.10)

in Section 5 that B can be given by

B(t) = [τ1, · · · , τk+1]k (· − t)k−1
+

where [x1, · · · , xm]g denotes the divided difference of degree m with respect to the points

x1, · · · , xm. After some algebra, we find that B can be given by

B(t) = (−1)kk

(
(t− τ1)

k−1
+∏

j 6=1(τj − τ1)
+ · · · + (t− τk)

k−1
+∏

j 6=k(τj − τk)

)

.

for all t ∈ [τ1, τk+1].

Let |η| > 0 and consider the perturbation function

p(t) =
∏

1≤i<j≤k+1

(τj − τi) ×B(t).

It is easy to check that for |η| small enough, the perturbed function

g̃η,n(t) = g̃n(t) + ηp(t)

is k-monotone on (0,∞). Indeed, p was chosen so that it satisfies p(j)(τ1) = p(j)(τk+1) = 0

for 0 ≤ j ≤ k−2, which guarantees that the perturbed function g̃η,n belongs to Ck−2(0,∞).

For 0 ≤ j ≤ k−3, the properties of strict convexity and monotonicity of (−1)j g̃
(j)
n on (0,∞)

are preserved by g̃
(j)
η,n as long as |η| is small enough. For k − 2, (−1)k−2g̃

(k−2)
n is piecewise

linear and hence not strictly convex on (0,∞). Since p is a spline of degree k − 1, the

function (−1)k−2g̃
(k−2)
η,n is also piecewise linear and one can check that it is nonincreasing

and convex for very small values of η. It follows that

lim
η→0

Qn(g̃η,n) −Qn(g̃n)

η
= 0 .

This implies that

∫ τk+1

τ1

p(t)d(G̃n − Gn)(t) = 0.
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The previous equality can be rewritten as

∫ τk+1

τ1

p(t) (g̃n(t) − g0(t)) dt =

∫ τk+1

τ1

p(t)d(Gn(t) −G0(t)).

Taking g ≡ p in (2.26), we obtain

∣∣∣∣
∫ τk+1

τ1

p(t)d(Gn(t) −G0(t))

∣∣∣∣ ≥ cn−k/(2k+1)

∫ τk+1

τ1

p(t)dt

= cn−k/(2k+1)
∏

1≤i<j≤k+1

(τj − τi) (2.27)

≥ cn−k/(2k+1)
(
n−1/(2k+1)

)k(k+1)/2
(2.28)

= cn−(3+k)k/(2(2k+1))

where in (2.27), we used the fact that B-splines integrate to 1, whereas in (2.28) we used

the facts that there are k(k + 1)/2 terms in the product
∏

1≤i<j≤k+1(τj − τi) and that

τj − τi ≥ n−1/(2k+1), 1 ≤ i < j ≤ k + 1.

Let 0 < x < y1 < · · · < yk−1 < y be (k + 1) points in (0,∞) and consider the function

fx,y1,···,yk−1,y defined by

fx,y1,···,yk−1,yk
(t) = (−1)kk

∏

0≤i<j≤k

(yj − yi)

(
(y0 − t)k−1

+∏
j 6=0(yj − y0)

+ · · · + (yk−1 − t)k−1
+∏

j 6=k−1(yj − yk−1)

)

where y0 = x. Let r = (r1, · · · , rk), ri > 0 for i = 1, · · · , k, be a fixed k-vector and consider

the collection of functions

Fx,r =

{
fx,y1,···,yk−1,yk

: x < y1 ≤ x+ r1, · · · , yk−1 < yk ≤ yk−1 + rk

}
.

For a fixed x > 0 and r, the collection Fx,r has a finite covering number with respect to

L2(Q) where Q is an arbitrary probability measure. In fact, denote

αj = (−1)kk

∏
0≤l<l′≤k(yl′ − yl)∏

j′ 6=j(yj′ − yj)

and consider the collections of functions

Fx,Rj =

{
t 7→ αj(yj − t)k−1

+ 1[x,yk](t), x ≤ yj ≤ x+Rj, x ≤ yk ≤ x+R

}
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where Rj = r1 + · · ·+ rj for j = 1, · · · , k and R = Rk. By Lemmas 2.6.16 and 2.6.18 in van

der Vaart and Wellner (1996), the collections Fx,Rj , j = 1, · · · , k − 1 are VC-subgraph

classes. Furthermore, the function

Fx,R(t) = kRk(k−1)/2(x− t)k−1
+ 1[x,x+R](t)

is a common envelope for these classes. To see that, notice that for j = 0, · · · , k, the product
∏

j′ 6=j(yj′ − yj) contains k terms and hence αj is a product of k(k + 1)/2 − k = k(k − 1)/2

that are at most R distant from one another. It follows that

αj ≤ kRk(k−1)/2, for j = 0, · · · , k.

For an arbitrary probability measure Q, we have

‖Fx,R‖2
Q,2 = k2Rk(k−1)

∫ x+R

x
(t− x)2k−2dQ(t) ≤ k2Rk(k+1)−2

which is independent of Q. By Theorem 2.6.7 in van der Vaart and Wellner (1996),

there exist a universal constant K > 0, two constants Dj > 0 and Vj > 0 that depend only

on x, Rj and R such that the ǫ‖Fx,R‖2
Q,2-covering number of Fx,Rj with respect to L2(Q)

is given by

N
(
ǫ‖Fx,R‖2

Q,2,Fx,Rj , L2(Q)
)
≤ KDj

(
1

ǫ

)Vj

.

It follows that the collection Fx,r admits a finite ǫ-covering number with respect to L2(Q).

Furthermore, it is easy to see that the function k × Fx,R is an envelope for this collection.

Therefore, there exist a universal constant K > 0, D > 0 and V > 0 depending only on x

and Rj , j = 1, · · · , k such that

N
(
ǫ‖Fx,R‖2

Q,2,Fx,r, L2(Q)
)
≤ KD

(
1

ǫ

)V

and therfore

sup
Q

∫ 1

0

√
1 + log(N

(
ǫ‖Fx,R‖2

Q,2,Fx,r, L2(Q)
)
dǫ <∞.

On the other hand, if x is in a small neighborhood [x0 − δ, x0 + δ] for some small δ > 0,

there exists some constant C > 0 depending only on δ, R and g0(x0) such that 0 < g0 < C
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on [x, x+R] for all x ∈ [x0 − δ, x0 + δ]. It follows that

EF 2
x,R(X1) ≤ k2Rk(k−1)

∫ x+R

x
(t− x)2k−2g0(x)dx

≤ k2C

2k − 1
Rk(k−1)R2k−1 =

k2C

2k − 1
Rk(k+1)−1.

Therefore, by the Theorem 2.14.1 in van der Vaart and Wellner (1996), we have

E

{(
sup

fx,y1,···,yk
∈Fx,r

∣∣∣∣(Gn −G0)(fx,y1,···,yk
)

∣∣∣∣

)2}

≤ K ′

n
EF 2

x,R(X1) = O(n−1Rk(k+1)+1), (2.29)

for some constant K ′ depending only on x0, δ and R.

We denote

(Pn − P0)(fx,y1,···,yk−1,y) = (Gn −G0)(fx,y1,···,yk−1,y)

where fx,y1,···,yk−1,y ∈ Fx,R and define Mn as

Mn = inf

{
D > 0 :

∣∣∣∣(Pn − P0)(fx,y1,···,yk−1,y)

∣∣∣∣ ≤ ǫ(y − x)(3k+1)k/2

+ n−(3+k)k/(2(2k+1))D, for all y ∈ [x, x+R]
}

;

note that Mn is possibly equal to infinity if no D > 0 satisfies the required inequality. Let

n > N . For 1 ≤ j ≤ ⌊Rn1/(2k+1)⌋ = jn, we have

P (Mn > m)

≤
∑

1≤j≤jn

P

{
∃ y : (j − 1)n−1/(2k+1) ≤ y − x ≤ jn−1/(2k+1),

∣∣∣∣(Pn − P0)(fx,y1,···,yk−1,y)

∣∣∣∣ > ǫ(y − x)(3+k)k/2 + n−(3+k)k/(2(2k+1)) m

}

≤
∑

1≤j≤jn

P

{
∃ y : 0 ≤ y − x ≤ jn−1/(2k+1),

n(3+k)k/(2(2k+1))

∣∣∣∣(Pn − P0)(fx,y1,···,yk−1,y)

∣∣∣∣ > ǫ(j − 1)(3+k)k/2 + m

}

≤
∑

1≤j≤jn

n(3+k)k/(2k+1)

E

{(
supy:0≤y−x<jn−1/(2k+1)

∣∣∣∣(Pn − P0)(fx,y1,···,yk−1,y)

∣∣∣∣

)2
}

(
ǫ(j − 1)(3+k)k/2 +m

)2
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=
∑

1≤j≤jn

n(3+k)k/(2k+1)

E

{(
supfx,y1,···,yk−1,y∈Fx,jn−1/(2k+1)

∣∣∣∣(Pn − P0)(fx,y1,···,yk−1,y)

∣∣∣∣

)2
}

(
ǫ(j − 1)(3+k)k/2 +m

)2

≤ C
∑

1≤j≤jn

n(3+k)k/(2k+1)n−1n−(k(k+1)−1)/(2k+1) jk(k+1)−1

(
ǫ(j − 1)(3+k)k/2 +m

)2

= C
∑

1≤j≤jn

jk(k+1)−1

(
ǫ(j − 1)(3+k)k/2 +m

)2

≤ C

∞∑

j=1

jk(k+1)−1

(
ǫ(j − 1)(3+k)k/2 +m

)2 , ց 0 as m→ ∞,

where C > 0 is a constant independent of x ∈ [x0 − δ, x0 + δ]. Therefore, Mn = Op(1) and

hence

∣∣∣∣(Pn − P0)(fx,y1,···,yk−1,y)

∣∣∣∣ ≤ ǫ(y − x)(3+k)k/2 +Op

(
n−(3+k)k/(2(2k+1))

)

uniformly in x, y. It follows that

∣∣∣∣

∫ τk+1

τ1

p(t)d(Gn −G0)(t)

∣∣∣∣ = Op

(
n−(3+k)k/(2(2k+1))

)

and we can choose c0 = c to be large enough so that the probability of the event (2.25) is

arbitrarily small. This proves the result for j = 0.

Now let 1 ≤ j ≤ k−1. This time we will need (k+1+ j) jump points τ1 < · · · < τk+1+j.

As for j = 0, τ1 is taken to be the first jump point of g̃
(k−1)
n after x0−n−1/(2k+1), τ2 the first

jump point after τ1 + n−1/(2k+1) and so on. Notice that the existence of at least k + 1 + j

jump points is guaranteed by the fact that g
(k)
0 (x0) 6= 0 which implies that with probability

1, the number of jump points tends to infinity with increasing sample size n. Consider the

function

qj(t) =
∏

1≤i<j≤k+j+1

(τj − τi) ×Bj(t)

where Bj is the B-spline of degree k + j − 1 with support [τ1, τk+1+j]; i.e.,

Bj(t) = (−1)k+j(k + j)

(
(τ1 − t)k+j−1

+∏
j 6=1(τj − τ1)

+ · · · +
(τk+j − t)k+j−1

+∏
j 6=k+j(τj − τk+j)

)
.
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It is easy to check that pj = q
(j)
j is a valid perturbation function (it is a spline of degree

k − 1) since for |η| small enough, the function

g̃η,n,j = g̃n + ηpj

is k-monotone. It follows that

lim
η→0

Qn(g̃η,n,j) −Qn(g̃n)

η
= 0

which implies that

∫ τk+1+j

τ1

pj(t)(g̃n(t) − g0(t))dt =

∫ τk+1+j

τ1

pj(t)d(Gn(t) −G0(t))dt

By successive integrations by parts and using the fact that q
(i)
j (τ1) = q

(i)
j (τk+1+j) = 0 for

i = 0, · · · , k + j − 2, we obtain

∫ τk+1+j

τ1

(−1)jqj(t)(g̃
(j)
n (t) − g

(j)
0 (t))dt =

∫ τk+1+j

τ1

pj(t)d(Gn(t) −G0(t))dt.

Therefore, if we assume that there exists c > 0 such that

inf
t∈[τ1,τk+1+j ]

∣∣∣g̃(j)
n (t) − g

(j)
0 (t)

∣∣∣ > c n−(k−j)/(2k+1) (2.30)

then
∣∣∣∣

∫ τk+1+j

τ1

pj(t)d(Gn(t) −G0(t))dt

∣∣∣∣

≥ c n−(k−j)/(2k+1)

∫ τk+1+j

τ1

qj(t)dt

≥ c (k + j) n−(k−j)/(2k+1)
(
n−1/(2k+1)

)(k+1+j)(k+2+j)/2

= c (k + j) n−((2(k−j)+(k+j)(k+j+1))/(2(2k+1))

= c (k + j) n−(3k−j+(k+j)2)/(2(2k+1)).

Using similar empirical process arguments as in the proof for j = 0 it can be shown that
∣∣∣∣

∫ τk+1+j

τ1

pj(t)d(Gn(t) −G0(t))dt

∣∣∣∣ = Op

(
n−(3k−j+(k+j)2)/(2(2k+1))

)

and the result for 1 ≤ j ≤ k − 1 follows. For the MLE, the result can be proved similarly

by using the same perturbation functions and also consistency of the MLE. �
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Proposition 2.6.2 Let x0 > 0 and g0 a k-monotone density such that (−1)kg
(k)
0 (x0) > 0.

Let ḡn denote either the MLE ĝn or the LSE g̃n. If the conjectured Lemma 2.5.4 holds, then

for each M > 0 we have,

sup
|t|≤M

∣∣∣ḡ(k−1)
n (x0 + n−1/(2k+1)t) − g

(k−1)
0 (x0)

∣∣∣ = Op(n
−1/(2k+1)) (2.31)

and

sup
|t|≤M

∣∣∣ḡ(j)
n (x0 + n−1/(2k+1)t) −

k−1∑

i=j

n−(i−j)/(2k+1)g
(i)
0 (x0)

(i− j)!
ti−j

∣∣∣ = Op(n
−(k−j)/(2k+1))

(2.32)

for j = 0, · · · , k − 2.

Proof. To prove (2.32), we will use induction starting from the highest order of differenti-

ation k− 1. The techniques used here are very much analogous to the ones used in the case

k = 2 in Groeneboom, Jongbloed, and Wellner (2001b). But this was possible mainly

because of the result established in the previous lemma.

We begin by establishing (2.31). Let M > 0 and 0 < ǫ < 1. We consider two sequences

of (k + 1) jump points τ1,1, · · · , τk+1,1 and τ1,2, · · · , τk+1,2 as described in the previous

theorem, where τ1,1 is the first jump point of ḡ
(k−1)
n after x0 +Mn−1/(2k+1) and τ1,2 is the

first jump after τk+1,1+n
−1/(2k+1). Similarly, we define two other sequences τ1,−1 · · · , τk+1,−1

and τ1,−2, · · · , τk+1,−2 to the left of x0. By the previous theorem, we can find c > 0 so that,

inf
t∈[τ1,i,τk+1,i]

|ḡ(k−2)
n (t) − g

(k−2)
0 (t)| < cn−2/(2k+1)

for i = −2,−1, 1, 2 with probability greater than 1 − ǫ. Let ξ1 and ξ2 be the minimizer of

|ḡ(k−2)
n − g

(k−2)
0 | on [τ1,1, τk+1,1] and [τ1,2, τk+1,2] respectively. Define ξ−1 and ξ−2 similarly

to the left of x0. For all t ∈ [x0 −Mn−1/(2k+1), x0 +Mn−1/(2k+1)], we have with probability

greater than 1 − ǫ

(−1)k−2ḡ(k−1)
n (t−) ≤ (−1)k−2ḡ(k−1)

n (t+)

≤ (−1)k−2ḡ
(k−2)
n (ξ2) − (−1)k−2ḡ

(k−2)
n (ξ1)

ξ2 − ξ1

≤ (−1)k−2g
(k−2)
0 (ξ2) − (−1)k−2g

(k−2)
0 (ξ1) + 2cn−2/(2k+1)

ξ2 − ξ1

≤ (−1)k−2g
(k−1)
0 (ξ2) + 2cn−1/(2k+1)
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since ξ2 − ξ1 ≥ n−1/(2k+1). Similarly, with probability greater than 1 − ǫ, we have that

(−1)k−2ḡ(k−1)
n (t+) ≥ (−1)k−2ḡ(k−1)

n (t−) ≥ (−1)k−2g
(k−1)
0 (ξ−2) − 2cn−1/(2k+1).

Now, using the fact that ξ±2 = x0 + Op(n
−1/(2k+1)) and differentiability of g

(k−1)
0 at the

point x0, we obtain (2.31).

Using similar arguments in the proof of Lemma 4.4 in Groeneboom, Jongbloed, and

Wellner (2001b), we can show (2.32) for j = k − 2 which specializes to

sup
|t|≤M

∣∣∣ḡ(k−2)
n (x0 + n−1/(2k+1)t) − g

(k−2)
0 (x0) − n−1/(2k+1)tg

(k−1)
0 (x0)

∣∣∣ = Op(n
−2/(2k+1))

for all M > 0. Indeed, since the jump points τj,i, j = 1, · · · , k + 1, i = −2,−1, 1, 2 are

at distance from x0 that is Op(n
−1/(2k+1)), we can find with probability exceeding 1 − ǫ,

K > M such that ξ1 and ξ2 are in [x0 + Mn−1/(2k+1), x0 + Kn−1/(2k+1)], ξ−2 and ξ−1 in

[x0 − Kn−1/(2k+1), x0 − Mn−1/(2k+1)]. But we know that, with probability greater than

1 − ǫ, we can find c > 0 such that

|ḡ(k−2)
n (ξ±1) − g

(k−2)
0 (ξ±1)| ≤ cn−2/(2k+1).

Also, with probability greater than 1 − ǫ, we can find c′ > 0 such that

sup
t∈[x0−Kn−1/(2k+1),x0+Kn−1/(2k+1)]

∣∣∣ḡ(k−1)
n (t) − g

(k−1)
0 (x0)

∣∣∣ ≤ c′n−1/(2k+1).

Hence, with probability greater than 1 − 3ǫ, we have for any t ∈ [x0 −Mn−1/(2k+1), x0 +

Mn−1/(2k+1)]

(−1)k−2ḡ(k−2)
n (t)

≥ (−1)k−2ḡ(k−2)
n (ξ1) + (−1)k−2ḡ(k−1)

n (ξ1)(t− ξ1)

≥ (−1)k−2g
(k−2)
0 (ξ1) − cn−2/(2k+1) + ((−1)k−2g

(k−1)
0 (x0) + c′n−1/(2k+1))(t− ξ1)

≥ (−1)k−2g
(k−2)
0 (x0) + (ξ1 − x0)(−1)k−2g

(k−1)
0 (x0) + (t− ξ1)(−1)k−2g

(k−1)
0 (x0)

−cn−2/(2k+1) − c′n−1/(2k+1)(ξ1 − t) (2.33)

≥ (−1)k−2g
(k−2)
0 (x0) + (t− x0)(−1)k−2g

(k−1)
0 (x0) − (c+ 2Kc′)n−2/(2k+1).
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where in (2.33), we used convexity of (−1)k−2g
(k−2)
0 “from below”. On the other hand,

using convexity of (−1)k−2g
(k−2)
0 but this time “from above”, we have

(−1)k−2ḡ(k−2)
n (t)

≤ (−1)k−2ḡ(k−2)
n (ξ−1) +

(−1)k−2ḡ
(k−2)
n (ξ1) − (−1)k−2ḡ

(k−2)
n (ξ−1)

ξ1 − ξ−1
(t− ξ−1)

≤ (−1)k−2ḡ
(k−2)
0 (ξ−1) + cn−2/(2k+1)

+
(−1)k−2g

(k−2)
0 (ξ1) − (−1)k−2g

(k−2)
0 (ξ−1) + 2cn−2/(2k+1)

ξ1 − ξ−1
(t− ξ−1)

≤ (−1)k−2g
(k−2)
0 (x0) + (ξ−1 − x0)(−1)k−2g

(k−2)
0 (x0) +

1

2
(ξ−1 − x0)

2(−1)k−2g
(k)
0 (ν)

+ (−1)k−2g
(k−1)
0 (ξ1)(t− ξ−1) + 2cn−2/(2k+1) (t− ξ−1)

ξ1 − ξ−1

≤ (−1)k−2g
(k−2)
0 (x0) + (ξ−1 − x0)(−1)k−2g

(k−2)
0 (x0) +

1

2
(ξ−1 − x0)

2(−1)k−2g
(k)
0 (ν)

+
(
(−1)k−2g

(k−1)
0 (x0) + c′n−1/(2k+1)

)
(t− ξ−1) + 2cn−2/(2k+1) (t− ξ−1)

ξ1 − ξ−1

≤ (−1)k−2g
(k−2)
0 (x0) + (t− x0)(−1)k−2g

(k−1)
0 (x0) +

(
D1

2
+ 2c+ 2Kc′

)
n−2/(2k+1)

where ν ∈ (ξ−1, x0), D1 = supx∈[x0−δ,x0+δ] |g(k)
0 (x)| and [x0−δ, x0+δ] can be taken to be the

largest neighborhood where g
(k)
0 exists and is continuous. In all the previous calculations,

n is taken sufficiently large so that [x0 −Kn−1/(2k+1), x0 +Kn−1/(2k+1)] ⊆ [x0 − δ, x0 + δ].

We conclude that (2.32) holds for j = k − 2.

Now, suppose that (2.32) is true for all j ′ > j − 1; i.e., for all M > 0

sup
|t|<M

∣∣∣ḡ(j′)
n (x0 + n−1/(2k+1)t) −

k−1∑

i=j′

n−(i−j′)/(2k+1)g
(i)
0 (x0)

(i− j′)!
ti−j′

∣∣∣ = Op(n
−(k−j′)/(2k+1)).

We are going to prove (2.32) for j − 1. We assume without loss of generality that k and

j − 1 are even. In what follows, ξ±1 denotes the same numbers introduced before but this

time there are associated with ḡ
(j−1)
n ; i.e., for any 0 < ǫ < 1, there exist c > 0 and K > M

such that

|ḡ(j−1)
n (ξ±1) − g

(j−1)
0 (ξ±1)| ≤ cn−(k−j+1)/(2k+1)

with probability greater than 1 − ǫ and where ξ1 ∈ [x0 + Mn−1/(2k+1), x0 + Kn−1/(2k+1)]

and ξ−1 ∈ [x0 −Kn−1/(2k+1), x0 −Mn−1/(2k+1)].
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Now, using the induction assumption, we know that we can find c′ > 0 such that, with

probability greater than 1 − ǫ,

−c′n−(k−j′)/(2k+1) ≤ ḡ(j′)
n (x0 + n−1/(2k+1)t) −

k−1∑

i=j′

n−(i−j′)/(2k+1)g
(i)
0 (x0)

(i− j′)!
ti−j′

≤ c′n−(k−j′)/(2k+1) (2.34)

for all |t| ≤M and j ′ > j − 1.

Using convexity of ḡ
(j−1)
n “from below”, we have for all |t − x0| ≤ Mn−1/(2k+1) with

probability greater than 1 − 2ǫ,

ḡ(j−1)
n (t)

≥ ḡ(j−1)
n (ξ1) + ḡ(j)

n (ξ1)(t− ξ1) + · · · + 1

(k − j)!
ḡ(k−1)
n (ξ1)(t− ξ1)

k−j

≥ g
(j−1)
0 (ξ1) − cn−(k−j+1)/(2k+1) +




k−1∑

i=j

g
(i)
0 (x0)

(i − j)!
(ξ1 − x0)

i−j(t− ξ1)





+




k−1∑

i=j+1

g
(i)
0 (x0)

(i− j − 1)!
(ξ1 − x0)

i−j−1



 (t− ξ1)
2

2!
+ · · · + g

(k−1)
0 (x0)

(t− ξ1)
k−j

(k − j)!

+ c′n−(k−j)/(2k+1)(t− ξ1) − c′n−(k−j−1)/(2k+1) (t− ξ1)
2

2!

+ · · · − c′n−1/(2k+1) (t− ξ1)
k−j

(k − j)!
. (2.35)

Using Taylor expansion of g
(j−1)
0 (ξ1) around g

(j−1)
0 (x0), we can write

g
(j−1)
0 (ξ1) = g

(j−1)
0 (x0) + g

(j)
0 (x0)(ξ1 − x0) + · · · + g

(k−1)
0 (x0)

(k − j)!
(ξ1 − x0)

k−j

+
g
(k)
0 (ν)

(k − j + 1)!
(ξ1 − x0)

k−j+1

where ν ∈ (x0, ξ1). Using this expansion and the fact that

|t− ξ1| ≤ Kn−1/(2k+1),

the right side of (2.35) can be bounded below by

k−1∑

i=j−1

g
(i)
0 (x0)

(i− j + 1)!
(ξ1 − x0)

i−j+1 +

k−1∑

i=j

g
(i)
0 (x0)

(i− j)!
(ξ1 − x0)

i−j(t− ξ1)
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+

k−1∑

i=j+1

g
(i)
0 (x0)

(i− j − 1)!
(ξ1 − x0)

i−j−1 (t− ξ1)
2

2!
+ · · · + g

(k−1)
0 (x0)

(t− ξ1)
k−j

(k − j)!

−



c+ c′
k−j∑

p=1

Kp

p!



n−(k−j+1)/(2k+1) +
g
(k)
0 (ν)

(k − j + 1)!
(ξ1 − x0)

k−j+1

= g
(j−1)
0 (x0) + g

(j)
0 (x0)(t− x0)

+
g
(j+1)
0 (x0)

2!

(
(ξ1 − x0)

2 + 2(ξ1 − x0)(t− ξ1) + (t− ξ1)
2
)

+ · · · + g
(k−1)
0 (x0)

(k − j)!

k−j∑

p=0

(k − j)!

(k − j − p)!p!
(ξ1 − x0)

k−j−p(t− ξ1)
p

−



c+ c′
k−j∑

p=1

Kp

p!



n−(k−j+1)/(2k+1) +
g
(k)
0 (ν)

(k − j + 1)!
(ξ1 − x0)

k−j+1

= g
(j−1)
0 (x0) + g

(j)
0 (x0)(t− x0) + · · · + g(k−1)(x0)

(k − j)!
(t− x0)

k−j

−



c+ c′
k−j∑

p=1

Kp

p!



n−(k−j+1)/(2k+1) − D1K
k−j+1

(k − j + 1)!
n−(k−j+1)/(2k+1)

since 0 ≤ ξ1 − x0 ≤ Kn−1/(2k+1).

Now, we use convexity of ḡ
(j−1)
n “from above”. We first need to establish a useful

inequality. Since ḡ
(k−2)
n is convex, we have for all t′ ∈ [x0 −Mn−1/(2k+1), x0 +Mn−1/(2k+1)]

and

ḡ(k−2)
n (t′) ≤ ḡ(k−2)

n (ξ−1) +
ḡ
(k−2)
n (ξ1) − ḡ

(k−2)
n (ξ−1)

ξn,1 − ξ−1
(t′ − ξ−1).

By successive integrations of the last inequality between ξ−1 and t, we obtain that

ḡ(j−1)
n (t) − ḡ(j−1)

n (ξ−1) ≤ ḡ(j)
n (ξ−1)(t− ξ1) + ḡ(j+1)

n (ξ−1)
(t− ξ−1)

2

2!

+ · · · + ḡ
(k−2)
n (ξ1) − ḡ

(k−2)
n (ξ−1)

ξ1 − ξ−1

(t− ξ−1)
k−j

(k − j)!
.

It follows that with probability greater than 1 − 2ǫ, we have

ḡ(j−1)
n (t)

≤ ḡ(j−1)
n (ξ−1) + ḡ(j)

n (ξ−1)(t− ξ−1) + ḡ(j+1)
n (ξ−1)

(t− ξ−1)
2

2!

+ · · · + g
(k−2)
0 (ξ1) − g

(k−2)
0 (ξ−1) + 2cn−2/(2k+1)

ξ1 − ξ−1

(t− ξ−1)
k−j

(k − j)!
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≤ g
(j−1)
0 (ξ−1) + cn−(k−j+1)/(2k+1)

+




k−1∑

i=j

g
(i)
0 (x0)

(i − j)!
(ξ−1 − x0)

i−j + c′n−(k−j)/(2k+1)



 (t− ξ−1)

+




k−1∑

i=j+1

g
(i)
0 (x0)

(i− j − 1)!
(ξ−1 − x0)

i−j−1 + c′n−(k−j−1)/(2k+1)



 (t− ξ−1)
2

2!

+ · · · +
(
g
(k−1)
0 (ξ1) +

c

K
n−1/(2k+1)

) (t− ξ−1)
k−j

(k − j)!

≤
k−1∑

i=j−1

g
(i)
0 (x0)

(i− j + 1)!
(ξ−1 − x0)

i−j+1 +
g(k)(ν)

k!
(ξ−1 − x0)

k−j+1

+




k−1∑

i=j

g
(i)
0 (x0)

(i − j)!
(ξ−1 − x0)

i−j



 (t− ξ−1)

+ · · · +




k−1∑

i=j+1

g
(i)
0 (x0)

(i− j − 1)!
(ξ−1 − x0)

i−j−1



 (t− ξ−1)
2

2!

+
(
g
(k−1)
0 (x0) + cn−1/(2k+1)

) (t− ξ−1)
k−j

(k − j)!

+



c(1 +Kk−j) + c′
k−j∑

p=1

Kp

p!
+
D1K

k−j+1

k!



n−(k−j+1)/(2k+1)

= g
(j−1)
0 (x0) + g

(j)
0 (x0)(t− x0) + · · · + g

(k−j)
0 (x0)

(t− x0)
k−j

(k − j)!
+K ′n−(k−j+1)/(2k+1)

with K ′ = c(1 +Kk−j) + c′
∑k−j

p=1
Kp

p! + D1Kk−j+1

k! . It follows that (2.32) holds for j − 1. �

2.7 Asymptotic distribution

Recall that the characterization of the LSE g̃n involved the processes Yn and H̃n defined by

Yn(x) =

∫ x

0

∫ tk−1

0
· · ·
∫ t2

0
Gn(t1)dt1dt2 · · · dtk−1, x ≥ 0,

and

H̃n(x) =

∫ x

0

∫ tk

0
· · ·
∫ t2

0
g̃n(t1)dt1dt2 · · · dtk. x ≥ 0,

Since we are interested in estimating the true density or its l-th derivative (l ≤ k − 1)
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at a point x0 > 0, we need to define a local version of these processes. We define the local

Yn and H̃n-processes respectively by

Y
loc
n (t) = n

2k
2k+1

∫ x0+tn−1/(2k+1)

x0

∫ vk−1

x0

· · ·
∫ v2

x0

{
Gn(v1) − Gn(x0) −

∫ v1

x0

k−1∑

j=0

(u− x0)
j

j!
g
(j)
0 (x0)du

}
Πk−1

i=1 dvi,

and

H̃ loc
n (t) = n

2k
2k+1

∫ x0+tn−1/(2k+1)

x0

∫ vk

x0

· · ·
∫ v2

x0

{
g̃n(v1) −

k−1∑

j=0

(v1 − x0)
j

j!
g
(j)
0 (x0)

}
dv1 · · · dvk

+ Ã(k−1)nt
k−1 + Ã(k−2)nt

k−2 + · · · + Ã1nt+ Ã0n,

where

Ã(k−1)n =
n(k+1)/(2k+1)

(k − 1)!

(
H̃(k−1)

n (x0) − Y
(k−1)
n (x0)

)
=
n(k+1)/(2k+1)

(k − 1)!

(
G̃n(x0) − Gn(x0)

)

Ã(k−2)n =
n(k+2)/(2k+1)

(k − 2)!

(
H̃(k−2)

n (x0) − Y
(k−2)
n (x0)

)

...

Ã1n = n(2k−1)/(2k+1)

(
H̃ ′

n(x0) − Y
′
n(x0)

)

Ã0n = n2k/(2k+1)

(
H̃n(x0) − Yn(x0)

)
,

and G̃n(x) =
∫ x
0 g̃n(y)dy.

Example 2.7.1 k = 3

Y
loc
n (t) = n6/7

∫ x0+tn−1/7

x0

∫ w

x0

{
Gn(v) − Gn(x0)

−
∫ v

x0

(
g0(x0) + (u− x0)g

′
0(x0) +

1

2
(u− x0)

2g′′0 (x0)

)
du

}
dvdw,
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and

H̃ loc
n (t) = n6/7

∫ x0+tn−1/7

x0

∫ w

x0

∫ v

x0

{
g̃n(u) − g0(x0) − (u− x0)g

′
0(u)

− 1

2
(u− x0)

2g′′0 (x0)

}
dudvdw + Ã2nt

2 + Ã1nt+ Ã0n

where

Ã2n =
n4/7

2

(
G̃n(x0) − Gn(x0)

)
,

Ã1n = n5/7

(
H̃ ′

n(x0) − Y
′
n(x0)

)
,

and

Ã0n = n6/7

(
H̃n(x0) − Yn(x0)

)
.

In the following lemma, we will give the asymptotic distribution of the local process Y
loc
n in

terms of the (k−1)-fold integral of two-sided Brownian motion, g0(x0), and g
(k)
0 (x0) assuming

that the true density g0 is k-differentiable at x0 and continuous in an open neighborhood

around x0.

Lemma 2.7.1 Let x0 be a point where g0 is k-differentiable and g
(k)
0 is continuous at x0.

Then

Y
loc
n (t) ⇒






√
g0(x0)

∫ t
0

∫ sk−1

0 · · ·
∫ s2

0 W (s1)ds1 · · · dsk−1 + 1
2k!t

2kg
(k)
0 (x0), t ≥ 0

√
g0(x0)

∫ 0
t

∫ 0
sk−1

· · ·
∫ 0
s2
W (s1)ds1 · · · dsk−1 + 1

2k! t
2kg

(k)
0 (x0), t < 0

in D[−K,K] for every K > 0 and where W is standard Brownian motion starting at 0.

Proof. Fix K > 0. We will prove the lemma for t ≥ 0 and similar arguments can be used

for t ∈ [−K, 0). We have

Y
loc
n (t) = n2k/(2k+1)

∫ x0+tn−1/(2k+1)

x0

∫ vk−1

x0

· · ·
∫ v2

x0

{
Gn(v1) − Gn(x0)

−
∫ v1

x0

(
g0(x0) + (u− x0)g

′
0(x0) + · · · + 1

(k − 1)!
(u− x0)

k−1g
(k−1)
0 (x0)

)
du

}

dv1dv2 · · · dvk−1

= An +Bn,
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where

An = n2k/(2k+1)

∫ x0+tn−1/(2k+1)

x0

∫ vk−1

x0

· · ·
∫ v2

x0{
Gn(v1) − Gn(x0) − (G0(v1) −G0(x0))

}
dv1dv2 · · · dvk−1,

and

Bn = n2k/(2k+1)

∫ x0+tn−1/(2k+1)

x0

∫ vk−1

x0

· · ·
∫ v2

x0{
G0(v1) −G0(x0) −

∫ v1

x0

(
g0(x0) + (u− x0)g

′
0(x0)

+ · · · + 1

(k − 1)!
(u− x0)

k−1g
(k−1)
0 (x0)

)
du

}

dv1dv2 · · · dvk−1.

But, with Un denoting
√
n(Γn − I), Γn(t) = n−1

∑n
i=1 1[ξi≤t] where ξ1, · · · , ξn are i.i.d.

U(0, 1) random variables, we have

An
d
= n2k/(2k+1)−1/2

∫ x0+tn−1/(2k+1)

x0

∫ vk−1

x0

· · ·
∫ v2

x0

(
Un(G0(v1)) − Un(G0(x0)

))

dv1dv2 · · · dvk−1

= n
2k−1

2(2k+1)

∫ x0+tn−1/(2k+1)

x0

∫ vk−1

x0

· · ·
∫ v2

x0

(
Un(G0(v1)) − Un(G0(x0)

))

dv1dv2 · · · dvk−1,

and using Taylor expansion of G0(v1) in the neighborhood of x0,

Bn = n
2k

2k+1

∫ x0+tn−1/(2k+1)

x0

∫ vk−1

x0

· · ·
∫ v2

x0

(v1 − x0)
k+1

(k + 1)!

(
g
(k)
0 (v∗1) − g

(k)
0 (x0)

) k−1∏

i=1

dvi

+ n
2k

2k+1

∫ x0+tn−1/(2k+1)

x0

∫ vk−1

x0

· · ·
∫ v2

x0

(v1 − x0)
k+1

(k + 1)!
g
(k)
0 (x0)

k−1∏

i=1

dvi

= Bn1 +Bn2,

where |v∗1 − x0| ≤ |v1 − x0|. Now,
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Bn2 = n
2k

2k+1
1

(k + 1)!
g
(k)
0 (x0)

∫ x0+tn−1/(2k+1)

x0

∫ vk−1

x0

· · ·
∫ v3

x0

1

k + 2
(v2 − x0)

k+2dv2 · · · dvk−1

= n
2k

2k+1
1

(k + 3)!
g
(k)
0 (x0)

∫ x0+tn−1/(2k+1)

x0

∫ vk−1

x0

· · ·
∫ v4

x0

(v3 − x0)
k+3dv4 · · · dvk−1

...

= n
2k

2k+1
1

(2k − 1)!
g
(k)
0 (x0)

∫ x0+tn−1/(2k+1)

x0

(vk−1 − x0)
2k−1dvk−1

= n
2k

2k+1 g
(k)
0 (x0)

1

(2k)!

(
t

n1/2k+1

)2k

=
1

(2k)!
g
(k)
0 (x0)t

2k.

Furthermore, by continuity of g
(k)
0 at x0, we deduce that Bn1(t) = o(1) uniformly in 0 ≤

t ≤ K and hence

Bn → 1

(2k)!
g
(k)
0 (x0)t

2k, (2.1)

as n→ ∞ uniformly in 0 ≤ t ≤ K.

Using the identity

U(G0(v)) − U(G0(x0))
d
= W (G0(v)) −W (G0(x0)) − (G0(v) −G0(x0))W (1),

where W is two-sided Brownian motion process, we have

An
d
= n

2k−1
2(2k+1)

∫ x0+tn−1/(2k+1)

x0

∫ vk−1

x0

· · ·
∫ v2

x0(
Un(v1) − U(v1) − (Un(x0) − U(x0)

)
dv1 · · · dvk−1

+ n
2k−1

2(2k+1)

∫ x0+tn−1/(2k+1)

x0

∫ vk−1

x0

· · ·
∫ v2

x0

(
W (G0(v)) −W (G0(x0))

)

−W (1)n
2k−1

2(2k+1)

∫ x0+tn−1/(2k+1)

x0

∫ vk−1

x0

· · ·
∫ v2

x0

(G0(v1) −G0(x0))dv1 · · · dvk−1

= An1 +An2 +An3.
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But,

An1 ≤ 2n
2k−1

2(2k+1) ‖Un − U‖∞
∫ x0+tn−1/(2k+1)

x0

∫ vk−1

x0

· · ·
∫ v2

x0

dv1 · · · dvk−1

= 2n
2k−1

2(2k+1) ‖Un − U‖∞
∫ x0+tn−1/(2k+1)

x0

∫ vk−1

x0

· · ·
∫ v3

x0

(v2 − x0)dv2 · · · dvk−1

= 2n
2k−1

2(2k+1) ‖Un − U‖∞
∫ x0+tn−1/(2k+1)

x0

∫ vk−1

x0

· · ·
∫ v4

x0

1

2
(v3 − x0)

2dv3

...

= 2n
2k−1

2(2k+1) ‖Un − U‖∞
1

(k − 2)!

∫ x0+tn−1/(2k+1)

x0

(vk−1 − x0)
k−2dvk−1

= 2n
2k−1

2(2k+1) ‖Un − U‖∞
1

(k − 1)!

(
t

n1/(2k+1)

)k−1

= 2tk−1n
1/2

2k+1O

(
log(n)2

n1/2

)

= 2tk−1O

(
log(n)2

nk/(2k+1)

)
(2.2)

since ‖Un − U‖∞ = O
(
n−1/2 (log(n))2

)
via Komlós, Major and Tusnády (1975); see e.g.

Shorack and Wellner (1986), page 494.

On the other hand, using the fact that g0 is nonincreasing, we have

An3 ≤ |W (1)|g0(x0)n
2k−1

2(2k+1)

∫ x0+tn−1/(2k+1)

x0

∫ vk−1

x0

· · ·
∫ v2

x0

(v1 − x0)dv1 · · · dvk−1

= |W (1)|g0(x0)n
2k−1

2(2k+1)

∫ x0+tn−1/(2k+1)

x0

∫ vk−1

x0

· · ·
∫ v3

x0

1

2
(v1 − x0)

2dv2

...

= |W (1)|g0(x0)n
2k−1

2(2k+1)
1

(k − 1)!

∫ x0+tn−1/(2k+1)

0
(vk−1 − x0)

k−1dvk−1

= |W (1)|g0(x0)n
2k−1

2(2k+1)
1

k!

(
t

n1/(2k+1)

)k

= |W (1)|g0(x0)t
kn

− 1
2(2k+1) →p 0, (2.3)

as n→ ∞ uniformly in 0 ≤ t ≤ K.

Finally, using the change of variables sj = n1/(2k+1)(vj − x0) for j = 1, . . . , k − 1, we
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have

An2 = n
2k−1

2(2k+1)

∫ x0+tn
−1

2k+1

x0

∫ vk−1

x0

· · ·
∫ v2

x0

(
W (G0(v1)) −W (G0(x0))

)
dv1 · · · dvk−1

= n
2k−1

2(2k+1)n
− (k−1)

(2k+1)

∫ t

0

∫ sk−1

0
· · ·
∫ s2

0

(
W (G0(n

−1
2k+1 s1 + x0)) −W (G0(x0))

)

ds1 · · · dsk−1

d
= n

1
2(2k+1)

∫ t

0

∫ sk−1

0
· · ·
∫ v2

0
W

(
G0(n

−1
2k+1 s1 + x0) −G0(x0)

)
ds1 · · · dsk−1

d
=

∫ t

0

∫ sk−1

0
· · ·
∫ s2

0
W

(
n

1
2k+1 (G0(n

−1
2k+1 s1 + x0) −G0(x0))

)
ds1 · · · dsk−1

→
∫ t

0

∫ sk−1

0
· · ·
∫ s2

0
W (s1g0(x0))ds1 · · · dsk−1 as n→ ∞

d
=

√
g0(x0)

∫ t

0

∫ sk−1

0
· · ·
∫ s2

0
W (s1)ds1 · · · dsk−1. (2.4)

Therefore, combining (2.1), (2.2), (2.3) and (2.4) yields

Y
loc
n (t) ⇒

√
g0(x0)

∫ t

0

∫ sk−1

0
· · ·
∫ s2

0
W (s1)ds1 · · · dsk−1 +

1

(2k)!
t2kg

(k)
0 (x0)

for 0 ≤ t ≤ K. A similar argument for −K ≤ t < 0 yields the conclusion. �

We will now rescale this limiting process to obtain a “canonical” version. In the case

of k = 2, Groeneboom, Jongbloed and Wellner (Groeneboom, Jongbloed, and Wellner

(2001b)) chose the “canonical process” to be

Y (t) =

∫ t

0
W (y)dy + t4,

and one can establish a link between estimating a non-decreasing convex density and the

following Gaussian problem:

dX(t) = f0(t)dt+ dW (t) (2.5)

where f0 is convex. Integrating (2.5) twice and choosing f0(t) = 12t2, we have
∫ t

0
X(y)dy =

∫ t

0
W (y)dy + t4 = Y (t).

Similarly, one can establish a link between the k-monotone density estimation problem

and the Gaussian problem:

dX(t) = f0(t)dt+ dW (t)
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where (−1)kf0 has a convex (k− 2)-th derivative. If we choose f0(t) = tk and integrate the

previous stochastic differential equation k − 1 times, we get

X(t) =
1

k + 1
tk+1 +W (t)

X1(t) =

∫ t

0
X(s)ds =

1

(k + 1)(k + 2)
tk+2 +

∫ t

0
W (s)ds

X2(t) =

∫ t

0

∫ s2

0
X(s1)ds1ds2 =

k!

(k + 3)!
tk+3 +

∫ t

0

∫ s2

0
W (s1)ds1ds2

...

Xk−1(t) =
k!

(2k)!
t2k +

∫ t

0

∫ sk−1

0
· · ·
∫ s2

0
W (s1)ds1ds2 · · · dsk−1

d
= Yk(t).

Here we will rescale the limiting process so that we obtain the “canonical process”

Yk(t) =

∫ t

0

∫ sk−1

0
· · ·
∫ s2

0
W (s1)ds1ds2 · · · dsk−1 + (−1)k k!

(2k)!
t2k, t ≥ 0.

Let us denote by σ and a, the multiplicative term
√
g0(x0) and (−1)kg

(k)
0 (x0)/k!, the leading

coefficient of the drift term in the limiting process

Ya,σ(t) =
√
g0(x0)

∫ t

0

∫ sk−1

0
· · ·
∫ s2

0
W (s1)ds1 · · · dsk−1 +

(−1)k

k!
g
(k)
0 (x0)(−1)k k!

(2k)!
t2k

respectively. In the following, we are going to find constants r1 and r2 such that

r1Ya,σ(r2t)
d
= Yk(t).

We have,

Ya,σ(t) = a(−1)k k!

(2k)!
t2k + σ

∫ t

0

∫ sk−1

0
· · ·
∫ s2

0
W (s1)ds1 · · · dsk−1

d
= a(−1)k k!

(2k)!
t2k + α−1/2σ

∫ t

0

∫ sk−1

0
· · ·
∫ s2

0
W (αs1)ds1 · · · dsk−1

d
= a(−1)k k!

(2k)!
t2k + α−1/2σ

∫ t

0

∫ sk−1

0
· · ·
∫ αs2

0

1

α
W (s1)ds1 · · · dsk−1

d
= a(−1)k k!

(2k)!
t2k + α−1/2σ

∫ t

0

∫ sk−1

0
· · ·
∫ αs3

0

∫ s2

0

1

α2
W (s1)ds1 · · · dsk−1

...

d
= a(−1)k k!

(2k)!
t2k + α−1/2σ

∫ αt

0

∫ sk−1

0
· · ·
∫ s2

0
W (s1)

1

αk−1
ds1 · · · dsk−1

d
= a(−1)k k!

(2k)!
t2k + α1/2−kσ

∫ αt

0

∫ sk−1

0
· · ·
∫ s2

0
W (s1)ds1 · · · dsk−1.
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Therefore,

r1Ya,σ(r2t)
d
= a(−1)k k!

(2k)!
r1(r2t)

2k + r1α
1/2−kσ

∫ r2αt

0

∫ sk−1

0
· · ·
∫ s2

0
W (s1)ds1 · · · dsk−1,

and





ar1r
2k
2 = 1,

r1α
1/2−kσ = 1,

r2α = 1.

Solving the previous system of equations yields

α =
(a
σ

)2/(2k+1)

and therefore

r1 =
1√
g0(x0)

(
(−1)kg

(k)
0 (x0)

k!
√
g0(x0)

)(2k−1)/(2k+1)

and (2.6)

r2 =

( √
g0(x0)

(−1)kg
(k)
0 (x0)

k!

)2/(2k+1)

. (2.7)

Thus,

Ya,σ(t)
d
=

1

r1
Yk

(
t

r2

)

=
√
g0(x0)

(
k!
√
g0(x0)

(−1)kg
(k)
0 (x0)

)(2k−1)/(2k+1)

Yk

((
k!
√
g0(x0)

(−1)kg
(k)
0 (x0)

)−2/(2k+1)

t

)
.

Note that (2.6) specializes to A.9 in Groeneboom, Jongbloed, and Wellner (2001a), page

1651 when k = 2.

Let us now have a closer look at the difference of the two local processes Y
loc
n and H̃ loc

n .

The asymptotic behavior of this difference, as we will show later, will have a crucial role in

establishing the asymptotic theory of the LSE.

We have,

H̃ loc
n (t) − Y

loc
n (t)

= n
2k

2k+1

∫ x0+tn
−

1
2k+1

x0

∫ vk−1

x0

. . .

∫ v2

x0

{(
(G̃n(v1) − G̃n(x0)) − (Gn(v1) − Gn(x0))

)
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dv1 · · · dvk−1

}
+ Ã(k−1)nt

k−1 + · · · + Ã1nt+ Ã0n

= n
2k

2k+1

∫ x0+tn
−

1
2k+1

x0

∫ vk−1

x0

· · ·
∫ v2

x0

(
G̃n(v1) − Gn(v1)

)
dv1 · · · dvk−1

− n(k+1)/(2k+1)

(k − 1)!

(
G̃n(x0) − Gn(x0)

)
tk−1 + Ã(k−1)nt

k−1 + · · · + Ã1nt+ Ã0n

= n
2k

2k+1

∫ x0+tn
−

1
2k+1

x0

∫ vk−1

x0

· · ·
∫ v2

x0

(
G̃n(v1) − Gn(v1)

)
dv1 · · · dvk−1

− Ã(k−1)nt
k−1 + Ã(k−1)nt

k−1 + · · · + Ã1nt+ Ã0n

= n
2k

2k+1

∫ x0+tn
−

1
2k+1

x0

∫ vk−1

x0

· · ·
∫ v2

x0

(
G̃n(v1) − Gn(v1)

)
dv1 · · · dvk−1

+ Ã(k−2)nt
k−2 + · · · + Ã1nt+ Ã0n

= n
2k

2k+1

∫ x0+tn
−

1
2k+1

x0

∫ vk−1

x0

· · ·
∫ v2

0

(
G̃n(v1) − Gn(v1)

)
dv1 · · · dvk−1

− n
2k

2k+1

∫ x0+tn
−1

2k+1

x0

∫ vk−1

x0

· · ·
∫ v3

x0

dv2 · · · dvk−1 ×
∫ x0

0

(
G̃n(v1) − Gn(v1)

)
dv1

+ Ã(k−2)nt
k−2 + · · · + Ã1nt+ Ã0n

= n
2k

2k+1

∫ x0+tn
−1

2k+1

x0

∫ vk−1

x0

· · ·
∫ v2

0

(
G̃n(v1) − Gn(v1)

)
dv1 · · · dvk−1

− n(k+2)/(2k+1) tk−2

(k − 2)!
×
∫ x0

0

(
G̃n(v1) − Gn(v1)

)
dv1 + Ã(k−2)nt

k−2

+ Ã(k−3)nt
k−3 + · · · + Ã1nt+ Ã0n

= n
2k

2k+1

∫ x0+tn
−1

2k+1

x0

∫ vk−1

x0

· · ·
∫ v2

0

(
G̃n(v1) − Gn(v1)

)
dv1 · · · dvk−1

− Ã(k−2)nt
k−2 + Ã(k−2)nt

k−2 + · · · + Ã1nt+ Ã0n

= n
2k

2k+1

∫ x0+tn
−1

2k+1

x0

∫ vk−1

x0

· · ·
∫ v2

0

(
G̃n(v1) − Gn(v1)

)
dv1 · · · dvk−1

+ Ã(k−3)nt
k−2 + · · · + Ã1nt+ Ã0n

...

= n
2k

2k+1

(
H̃n(x0 + tn

−1
2k+1 ) − Yn(x0 + tn

−1
2k+1 )

)
≥ 0,

by the first Fenchel condition satisfied by the LSE.

A natural thing to do is to rescale the processes Y
loc
n (t) and H̃ loc

n (t) so that the rescaled
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Y
loc
n (t) converges to the process Yk we defined already. Since the scaling of Y

loc
n (t) will be

exactly the same as the one we used for Yk, we define H̃ l
n as

H̃ l
n(t) = r1H̃

loc
n (r2t)

where

r1 =
1√
g0(x0)

(
(−1)kg

(k)
0 (x0)√

g0(x0)k!

)(2k−1)/(2k+1)

, r2 =

(
(−1)kg

(k)
0 (x0)√

g0(x0)k!

)−2/(2k+1)

.

Now, we can write

(H̃ l
n)(k)(0) = r1r

k
2(H̃ loc

n )(k)(0) = nk/(2k+1)ck(g0)(g̃n(x0) − g0(x0))

(H̃ l
n)(k+1)(0) = r1r

k+1
2 (H̃ loc

n )(k+1)(0) = n(k−1)/(2k+1)ck−1(g0)(g̃
′
n(x0) − g′0(x0))

(H̃ l
n)(k+2)(0) = r1r

k+2
2 (H̃ loc

n )(k+2)(0) = n(k−2)/(2k+1)ck−2(g0)(g̃
′′
n(x0) − g′′0 (x0))

...

(H̃ l
n)(2k−1)(0) = r1r

2k−1
2 (H̃ loc

n )(2k−1)(0) = n1/(2k+1)c1(g0)(g̃
(k−1)
n (x0) − g

(k−1)
0 (x0)).

Now, let us consider the MLE ĝn. Recall that the characterization of this estimator

involves the process Ĥn given by

Ĥn(t) =

∫ t

0

(t− u)k−1

ĝn(u)
dGn(t), for all t ≥ 0

and that

Ĥn(t)





≤ tk

k , t ≥ 0

= tk

k , when t is a jump point of ĝ
(k−1)
n

is a necessary and sufficient condition for ĝn to be the MLE. Note that Ĥn and Ĥn defined

in Lemma 2.2.5 in Section 2 are different: Ĥn = (tk/k)Ĥn.

We define the local processes Ŷ loc
n and Ĥ loc

n as

Ŷ loc
n (t) = n2k/(2k+1)g0(x0)

∫ x0+tn−1/(2k+1)

x0

∫ vk−1

x0

· · ·
∫ v1

x0

g0(v) −
∑k−1

j=1
(v−x0)j

j! g
(j)
0 (x0)

ĝn(v)

dvdv1 · · · dvk−1

+ n2k/(2k+1)g0(x0)

∫ x0+tn−1/(2k+1)

x0

∫ vk−1

x0

· · ·
∫ v1

x0

1

ĝn(v)
d(Gn −G0)(v)

dv1 · · · dvk−1
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and

Ĥ loc
n (t) = n2k/(2k+1)g0(x0)

∫ x0+tn−1/(2k+1)

x0

∫ vk−1

x0

· · ·
∫ v1

x0

ĝn(v) −∑k−1
j=1

(v−x0)j

j! g
(j)
0 (x0)

ĝn(v)

dvdv1 · · · dvk−1 + Â(k−1)nt
k−1 + · · · + Â0n

where for 0 ≤ j ≤ k − 1

Âjn = −n
(2k−j)/(2k+1)

(k − 1)!j!
g0(x0)

(
Ĥ(j)

n (x0) −
(k − 1)!

(k − j)!
xk−j

0

)
.

With this particular choice of Âjn, 0 ≤ j ≤ k − 1, we have

Ĥ loc
n (t) − Ŷ loc

n (t)

= n2k/(2k+1)g0(x0)

∫ x0+tn−1/(2k+1)

x0

∫ vk−1

x0

· · ·
∫ v1

x0

ĝn(v) − g0(v)

ĝn(v)
dvdv1 · · · dvk−1

− n2k/(2k+1)g0(x0)

∫ vk−1

x0

· · ·
∫ v1

x0

1

ĝn(v)
d(Gn −G0)(v)dv1 · · · dvk−1

+ Â(k−1)nt
k−1 + · · · + Â0n

= n2k/(2k+1)g0(x0)

(
tk

k!
n−k/(2k+1) −

∫ x0+n−1/(2k+1)

x0

∫ vk−1

x0

· · ·
∫ v1

x0

1

ĝn(v)
dGn(v)

k−1∏

i=1

dvi

)

+ Â(k−1)nt
k−1 + · · · + Â0n.

But notice that for any t ≥ 0

∫ t

0

1

ĝn(u)
dGn(u) =

1

(k − 1)!
Ĥ(k−1)

n (t).

It follows that

∫ x0+tn−1/(2k+1)

x0

∫ vk−1

x0

· · ·
∫ v1

x0

1

ĝn(v)
dGn(v)dv1 · · · dvk−1

=
1

(k − 1)!

∫ x0+n−1/(2k+1)

x0

∫ vk−1

x0

· · ·
∫ v1

x0

(
Ĥ(k−1)

n (v1) − Ĥ(k−1)
n (x0)

)
dv1 · · · dvk−1

=
1

(k − 1)!



Ĥn(x0 + tn−1/(2k+1)) −
k−1∑

j=0

tjn−j/(2k+1)

j!
Ĥ(j)

n (x0)



 .

Therefore,

Ĥ loc
n (t) − Ŷ loc

n (t)
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= n2k/(2k+1)g0(x0)

{
− Ĥn(x0 + tn−1/(2k+1))

(k − 1)!
+
tk

k!
n−k/(2k+1) +

k−1∑

j=0

tjn−j/(2k+1)

(k − 1)!j!
Ĥ(j)

n (x0)

}

+ Â(k−1)nt
k−1 + · · · + Â0n

= n2k/(2k+1) g0(x0)

k!

{
− kĤn(x0 + tn−1/(2k+1)) + tkn−k/(2k+1)

+

k−1∑

j=0

tjn−j/(2k+1)

j!
k

(
Ĥ(j)

n (x0) −
1

k

k!

(k − j)!
xk−j

0

)
+

k−1∑

j=0

k!

j!(k − j)!
tjn−j/(2k+1)xk−j

0

}

+ Â(k−1)nt
k−1 + · · · + Â0n

= n2k/(2k+1) g0(x0)

k!

{
− kĤn(x0 + tn−1/(2k+1)) + (x0 + tn−1/(2k+1))k

}

by replacing the coefficients Âjn, 0 ≤ j ≤ k − 1 by their expressions. It follows that

Ĥ loc
n (t) − Ŷ loc

n (t) = n2k/(2k+1) g0(x0)

(k − 1)!

(
1

k
(x0 + tn−1/(2k+1))k − Ĥn(x0 + tn−1/(2k+1))

)
≥ 0.

As for the LSE, we define Ŷ l
n and Ĥ l

n by

Ŷ l
n(t) = r1Ŷ

loc
n (r2t)

and

Ĥ l
n(t) = r1Ĥ

loc
n (r2t).

Lemma 2.7.2 Let K > 0. Then

Ŷn ⇒ Yk

in D[−K,K].

Proof. We apply the same arguments in the proof of Lemma 2.7.1 in the case of the LSE.

�

Now, let H̄ l
n denote either H̃ l

n or Ĥ l
n. Recall that

Ãjn =
n(2k−j)/(2k+1)

j!

(
H̃(j)

n (x0) − Y
(j)
n (x0)

)
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and

Âjn = −n
(2k−j)/(2k+1)

(k − 1)!j!
g0(x0)

(
Ĥ(j)

n (x0) −
(k − 1)!

(k − j)!
xk−j

0

)
.

To show that the derivatives of H̄ l
n are tight, we need the following lemma.

Lemma 2.7.3 For all j ∈ {0, . . . , k−1}, let Ājn denote either Ãjn or Âjn. If the conjectured

Lemma 2.5.4 holds, then

Ājn = Op(1). (2.8)

Proof. We will show the lemma only for the LSE as the arguments are very similar for the

MLE. Let j ∈ {0, . . . , k−1} and denote ∆̃n(x) = H̃n(x)−Yn(x) for all x ≥ 0. We will start

by proving (2.8) for j = k − 1 and k − 2 and then use induction for 2 ≤ j ≤ k − 3. Proving

(2.8) for j = k− 1 would have been sufficient but we wanted to show it for j = k− 2 to give

a better idea about how the proof works.

Now consider k successive jump points, τ1, · · · , τk, of g̃
(k−1)
n where τ1 is the first jump

after x0. By the mean value theorem, there exist τ
(1)
1 ∈ (τ1, τ2), τ

(1)
2 ∈ (τ2, τ3), . . . , τ

(1)
k−1 ∈

(τk−1, τk) such that ∆̃′
n(τ

(1)
i ) = 0 for 1 ≤ i ≤ k − 1. Also, by the same theorem there exist

τ
(2)
1 ∈ (τ

(1)
1 , τ

(1)
2 ), . . . , τ

(2)
k−2 ∈ (τ

(1)
k−2, τ

(1)
k−1) such that ∆̃′′

n(τ
(2)
i ) = 0 for 1 ≤ i ≤ k − 2. It is

easy to see that we can carry on this reasoning up to the (k − 1)-st level of differentiation

and so there exists τ (k−1) such that

∆̃(k−1)
n (τ (k−1)) = 0.

Denote τ = τ (k−1). We can write

∆̃(k−1)
n (x0) = ∆̃(k−1)

n (x0) − ∆̃(k−1)
n (τ).

But since

∆̃(k−1)
n (x) =

∫ x

0
d(G̃n(t) − Gn(t)), for x ≥ 0,



90

we can write,

|∆̃(k−1)
n (x0)| =

∣∣∣∣

∫ τ

x0

d(G̃n(t) − Gn(t))

∣∣∣∣

≤
∣∣∣∣

∫ τ

x0

d(G̃n(t) −G0(t))

∣∣∣∣+
∣∣∣∣

∫ τ

x0

d(Gn(t) −G0(t))

∣∣∣∣

=

∣∣∣∣
∫ τ

x0

(g̃n(t) − g0(t))dt

∣∣∣∣ +
∣∣∣∣
∫ τ

x0

d(Gn(t) −G0(t))

∣∣∣∣

≤
∫ τ

x0

|g̃n(t) − g0(t)| dt+

∣∣∣∣
∫ τ

x0

d(Gn(t) −G0(t))

∣∣∣∣ .

Fix 0 < ǫ < 1. By Lemma 2.5.9 and Proposition 2.6.2, we can find M > 0 and c > 0 such

that with probability greater than 1 − ǫ

x0 ≤ τ ≤ x0 +Mn−1/(2k+1)

and
∣∣∣∣∣g̃n(t) − g0(x0) − g′0(x0)(t− x0) − · · · − g

(k−1)
0 (x0)

(k − 1)!
(t− x0)

k−1

∣∣∣∣∣ ≤ cn−k/(2k+1)

for x0 −Mn−1/(2k+1) ≤ t ≤ x0 +Mn−1/(2k+1). On the other hand, using Taylor expansion,

we can find d > 0 that
∣∣∣∣∣g0(t) − g0(x) + g′0(x0)(t− x0) − · · · − g

(k−1)
0 (x0)

(k − 1)!
(t− x0)

k−1

∣∣∣∣∣ ≤ d (t− x0)
k

≤ c′n−k/(2k+1)

for x0 −Mn−1/(2k+1) ≤ t ≤ x0 +Mn−1/(2k+1) and where c′ = dMk. It follows that

∫ τ

x0

|g̃n(t) − g0(t)| dt ≤ (c+ c′)n−k/(2k+1)

∫ τ

x0

dt

= (c+ c′)n−k/(2k+1) × (τ − x0)

≤ (c+ c′)Mn−(k+1)/(2k+1).

To finish off the proof, we only need to check that

∣∣∣∣
∫ τ

x0

d(Gn(t) −G0(t))

∣∣∣∣ = Op(n
−(k+1)/(2k+1)).
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But this can be shown using similar arguments to those in the proof of Proposition 2.6.1.

Indeed,

∫ τ

x0

d(Gn(t) −G0(t)) =

∫ ∞

0
1[x0,τ ](t)d(Gn(t) −G0(t))

is an empirical process indexed by the point τ ∈ [x0, x0 +Mn−1/(2k+1)].

Consider now the empirical process

Un(y, z) =

∫ ∞

0
1[y,z](t)d(Gn(t) −G0(t))

for 0 < y ≤ z and the class of functions

Fy,R =
{
fy,z : fy,z(t) = 1[y,z](t), y ≤ z ≤ y +R

}

for a fixed y > 0 and R > 0. One can prove that there exist, δ > 0 and R > 0 such that

|Un(y, z)| ≤ ǫ(z − y)k+1 +Op(n
−(k+1)/(2k+1))

for all |y − x0| ≤ δ, z ∈ [y, y +R] and for all ǫ > 0. It follows that
∣∣∣∣

∫ τ

x0

d(Gn(t) −G0(t))

∣∣∣∣ = op

(
(τ − x0)

k+1
)

+Op(n
−(k+1)/(2k+1))

= Op((n
−(k+1)/(2k+1))

and the result follows for j = k − 1. Note that we obtain the same result if we replace x0

by any x in an neighborhood of x0 of the form ]x0 −Mn−1/(2k+1), x0 +Mn−1/(2k+1)], for

some constant K > 0; i.e., we can find K > 0 indenpendent of x such that
∣∣∣∣∆̃

(k−1)
n (x)

∣∣∣∣ ≤ Kn−(k+2)/(2k+1)

with large probability.

Now, let j = k − 2. We have,

∆̃(k−2)
n (x0) =

∫ x0

0
(x0 − t)d(G̃n(t) − Gn(t)).

Let τ be a zero of ∆̃
(k−2)
n (we can find such a zero the same way as we did for ∆̃

(k−1)
n ). We

can write

∆̃(k−2)
n (x0) = ∆̃(k−2)

n (x0) − ∆̃(k−2)
n (τ)
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=

∫ x0

0
(x0 − t)d(G̃n(t) − Gn(t)) −

∫ τ

0
(τ − t)d(G̃n(t) − Gn(t))

= −
∫ τ

x0

(x0 − t)d(G̃n(t) − Gn(t)) − (τ − x0)

∫ τ

0
d(G̃n(t) − Gn(t))

= −
∫ τ

x0

(x0 − t)d(G̃n(t) − Gn(t)) − (τ − x0)∆̃
(k−1)
n (τ).

Let M > 0 be such that x0 ≤ τ ≤ x0 +Mn−1/(2k+1). By the previous result, there exists

c > 0 such that

∣∣∣∣(τ − x0)∆̃
(k−1)
n (τ)

∣∣∣∣ ≤ cn−2/(2k+1)

with large probability.

Now,

∣∣∣∣
∫ τ

x0

(x0 − t)d(G̃n(t) − Gn(t))

∣∣∣∣ ≤
∫ τ

x0

(t− x0)|g̃n(t) − g0(t)|dt+

∣∣∣∣
∫ τ

x0

(t− x0)d(Gn(t) −G0(t))

∣∣∣∣.

We can find d > 0 such that

∣∣∣∣g̃n(t) − g0(x0) − g′0(x0)(t− x0) − · · · − g
(k−1)
0 (x0)

(k − 1)!
(t− x0)

k−1

∣∣∣∣ ≤ dn−k/(2k+1)

and

∣∣∣∣g0(t) − g0(x0) − g′0(x0)(t− x0) − · · · − g
(k−1)
0 (x0)

(k − 1)!
(t− x0)

k−1

∣∣∣∣ ≤ dn−k/(2k+1)

for all t ∈ [x0 −Mn−1/(2k+1), x0 +Mn−1/(2k+1)] with large probability. It follows that

∫ τ

x0

(t− x0)|g̃n(t) − g0(t)|dt ≤ 2d n−k/(2k+1)

∫ τ

x0

(t− x0)dt

= d n−k/(2k+1)(τ − x0)
2

≤ 4dM2 n−(k+2)/(2k+1).

with large probability. Finally, using again empirical processes arguments, we can show

that

∣∣∣∣

∫ τ

x0

(t− x0)(Gn(t) −G0(t))

∣∣∣∣ = Op(n
−(k+2)/(2k+1))

and the result follows for j = k − 2. The same result holds if we replace x0 by any

x ∈ [x0 −Mn−1/(2k+1), n−1/(2k+1), x0 + Mn−1/(2k+1)], for some M > 0; i.e., we can find
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K > 0 indenpendent of x such that
∣∣∣∣∆̃

(k−2)
n (x)

∣∣∣∣ ≤ Kn−(k+2)/(2k+1)

with large probability.

Now let 0 ≤ j ≤ k− 3 and fix ǫ > 0. Suppose that for all j ′ > j and M > 0, there exists

c > 0 such that for all z ∈ [x0 −Mn−1/(2k+1), x0 +Mn−1/(2k+1)],

(k − 1 − j′)!|∆̃(j′)
n (z)| ≤ cn−(2k−j′)/(2k+1).

with probability greater than 1 − ǫ. We can write,

(k − 1 − j)!∆̃(j)
n (y)

=

∫ y

0
(y − t)k−1−jd(G̃n(t) − Gn(t))

=

∫ y

0
((y − x) + (x− t))k−1−j d(G̃n(t) − Gn(t))

=

k−1−j∑

l=0

(
k − 1 − j

l

)
(y − x)l

∫ y

0
(x− t)k−1−j−ld(G̃n(t) − Gn(t))

=

k−1−j∑

l=1

(
k − 1 − j

l

)
(y − x)l

∫ y

0
(x− t)k−1−j−ld(G̃n(t) − Gn(t))

+

∫ y

0
(x− t)k−1−jd(G̃n(t) − Gn(t))

=

k−1−j∑

l=1

(
k − 1 − j

l

)
(y − x)l∆̃(j+l)

n (y) + ∆̃(j)
n (x) +

∫ y

x
(x− t)k−1−jd(G̃n(t) − Gn(t))

Take x to be a zero of ∆̃
(j)
n (such zero can be constructed using the mean value theorem as

we did for j = k−2 and j = k−1). Thus there exists M > 0 such that x0−Mn−1/(2k+1) ≤
x ≤ x0 +Mn−1/(2k+1). Now by applying the induction hypothesis, there exists c > 0 such

that we have for all y ∈ [x0 −Mn−1/(2k+1), x0 +Mn−1/(2k+1)], we have

∣∣∣∣(k − 1 − j)!∆̃(j)
n (y)

∣∣∣∣ ≤ c

k−1−j∑

l=1

(
k − 1 − j

l

)
|y − x|ln−(2k−(j+l))/(2k+1)

+

∣∣∣∣

∫ y

x
(x− t)k−1−jd(G̃n(t) − Gn(t))

∣∣∣∣.

But,

k−1−j∑

l=1

(
k − 1 − j

l

)
|y − x|ln−(2k−(j+l))/(2k+1) ≤

(
k−1−j∑

l=1

(
k − 1 − j

l

)
(2M)l

)

n−(2k−j)/(2k+1)
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and
∣∣∣∣
∫ y

x
(x− t)k−1−jd(G̃n(t) − Gn(t))

∣∣∣∣ = Op(n
−(2k−j)/(2k+1))

by using empirical processes arguments. Therefore, the result holds for j and hence for all

j = 0, · · · , k − 1. �

Theorem 2.7.1 For all k ≥ 1, let Yk denote the same stochastic process defined before;

i.e.,

Yk(t) =






∫ t
0

(t−s)k−1

(k−1)! dW (s) + (−1)kk!
(2k)! t

2k, t ≥ 0
∫ 0
t

(t−s)k−1

(k−1)! dW (s) + (−1)kk!
(2k)! t

2k, t < 0.

There exists an almost surely uniquely defined stochastic process Hk characterized by the

three following conditions:

(i) The process Hk stays everywhere above the process Yk:

Hk(t) ≥ Yk(t), t ∈ R.

(ii) (−1)kHk is 2k-convex; i.e. (−1)kH
(2k−2)
k exists and convex.

(iii) The process Hk satisfies
∫ ∞

−∞
(Hk(t) − Yk(t)) dH

(2k−1)
k (t) = 0.

(iv) If k is even, lim|t|→∞(H
(2j)
k (t) − Y

(2j)
k (t)) = 0 for j = 0, · · · , (k − 2)/2; if k is

odd, limt→∞(Hk(t) − Yk(t)) = 0 and lim|t|→∞(H
(2j+1)
k (t) − Y

(2j+1)
k (t)) = 0 for j =

0, · · · , (k − 3)/2.

Proof. Existence of the processes Hk follows from Corollary 3.2.1 in Chapter 3. �

Lemma 2.7.4 Let 0 ≤ j ≤ 2k − 1 and c > 0. Let H̄ l
n denote either Ĥ l

n or H̃ l
n. Then

(H̄ l
n)(j) ⇒ H

(j)
k

in D[−c, c] for j = 0, · · · , 2k − 1 and where Hk is the stochastic process defined in Theorem

2.7.1.
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Proof. The arguments are very similar to the ones used in Groeneboom, Jongbloed and

Wellner (Groeneboom, Jongbloed, and Wellner (2001b)). We show the lemma for H̃ l
n as

the arguments are similar for Ĥ l
n. Let c > 0. On [−c, c], define the vector-valued stochastic

process

Zn(t) =
(
H̃ l

n(t), · · · , (H̃ l
n)(2k−2)(t),Yl

n(t), · · · , (Yl
n)(k−2)(t), (H̃ l

n)(2k−1)(t), (Yl
n)(k−1)(t)

)
.

This stochastic process belongs to the space

Ek[−c, c] = (C[−c, c])3k−2 × (D[−c, c])2

where C[−c, c] and D[−c, c] are respectively the space of continuous and right-continuous

functions on [−c, c]. We endow the space Ek[−c, c] with the product topology induced by

the uniform topology on C[−c, c] and the Skorohod topology on D[−c, c].
By Lemma 2.7.3, we know that (H̃ l

n)(j) is tight in C[−c, c] for j = 0, · · · , 2k − 2. It

follows from the same lemma together with the monotonicity of (H̃ l
n)(2k−1) that the latter is

tight in D[−c, c]. On the other hand, since the processes
(
Y

l
n, · · · , (Yl

n)(k−2)
)

and (Yl
n)(k−1)

converge weakly, they are tight in (C[−c, c])k−1 and D[−c, c] respectively. Now, for a fixed

ǫ > 0, there exists an M > 0 such that with probability greater than 1 − ǫ, the process Zn

belongs to Ek,M [−c, c] where Ek,M = (CM [−c, c])3k−2 × (DM [−c, c])2 , and CM [−c, c] and

DM [−c, c] are respectively the subset of functions in C[−c, c] and the subset of monotone

functions in D[−c, c] that are bounded by M . Since the subspace Ek,M [−c, c] is compact, we

can extract from any arbitrary sequence {Zn′} a further subsequence {Zn′′} that is weakly

converging to some process

Z0 =
(
H0, · · · ,H(2k−1)

0 , Y0, · · · , Y (k−2)
0 ,H

(2k−1)
0 , Y

(k−1)
0

)
(2.9)

in Ek[−c, c] and where Y0 = Yk.

Now, consider the functions φ1 and φ2 : Ek[−c, c] 7→ R defined by

φ1(z1, · · · , z3k) = inf
t∈[−c,c]

(z1(t) − z2k(t)) ∧ 0

and

φ2(z1, · · · , z3k) =

∫ c

−c
(z1(t) − z2k(t))dz3k−1(t).
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It is easy to check that the functions φ1 and φ2 are both continuous. By the continuous

mapping theorem, it follows that φ1(Z0) = φ2(Z0) = 0 since φ1(Zn′′) = φ2(Zn′′) = 0 and

therefore,

H0(t) ≥ Yk(t),

for all t ∈ [−c, c] and

∫ c

−c
(H0(t) − Yk(t))dH

(2k−1)
0 (t) = 0.

It is easy to see check that (−1)kH
(2k−2)
0 is convex. Since c > 0 is arbitrary, we see that H0

satisfies conditions (i) and (iii) of Theorem 2.7.1. Furthermore, outside the interval [−c, c]
we can take H̃ l

n and Y
l
n to be identically 0. With this choice, the condition (iv) of Theorem

2.7.1 is satisfied. By uniqueness of the process Hk, it follows that H0 = Hk. Since the

limit is the same for any subsequence {Znl
}, we conclude that the sequence {Zn} converges

weakly to

Zk =
(
Hk, · · · ,H(2k−1)

k , Yk, · · · , Y (k−2)
k ,H

(2k−1)
k , Y

(k−1)
k

)

and in particular Zn(0) →d Zk(0) and (H̃ l
n)(j)(0) →d H

(j)
k (0) for j = 0, · · · , 2k − 1. �

Now we are able to state the main result of this chapter:

Theorem 2.7.2 Let x0 > 0 and g0 be a k-monotone density such that g0 is k-times differ-

entiable at x0 with (−1)kg
(k)
0 (x0) > 0 and assume that g

(k)
0 is continuous in a neighborhood

of x0. Let ḡn denote either the LSE, g̃n or the MLE ĝn and let F̄n be the corresponding

mixing measure. If the conjectured Lemma 2.5.4, then





n
k

2k+1 (ḡn(x0) − g0(x0))

n
k−1
2k+1 (ḡ

(1)
n (x0) − g

(1)
0 (x0))

...

n
1

2k+1 (ḡ
(k−1)
n (x0) − g

(k−1)
0 (x0))




→d





c0(g0)H
(k)
k (0)

c1(g0)H
(k+1)
k (0)
...

ck−1(g0)H
(2k−1)
k (0)





and

n
1

2k+1 (F̄n(x0) − F (x0)) →d
(−1)kxk

0

k!
ck−1(g0)H

(2k−1)
k (0)



97

where

cj(g0) =

{
(g0(x0))

k−j

(
(−1)kg

(k)
0 (x0)

k!

)2j+1} 1
2k+1

,

for j = 0, · · · , k − 1.

Proof. For the direct problems, we apply Lemma 2.7.4 at t = 0 together with the fact that

for j = 0, · · · , k − 1,

(H̃ l
n)k+j(0) = cj(g0)n

(k−j)/(2k+1)(g̃n(x0) − g0(x0))

and

(Ĥ l
n)k+j(0) − cj(g0)n

(k−j)/(2k+1)(ĝn(x0) − g0(x0)) →p 0 as n→ ∞

which follow from the respective definitions of H̃ l
n and Ĥ l

n, and also strong consistency of

the MLE (for Ĥ l
n). For the inverse problem, the claim follows from Lemma 2.7.4 and the

inverse formula in (2.3). �
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Chapter 3

LIMITING PROCESSES:

INVELOPES AND ENVELOPES

3.1 Introduction

In the previous chapter, it is claimed that the limiting distribution of the MLE and LSE

and their derivatives involves a particular stochastic process Hk. This chapter is completely

devoted to proving the existence of such a process. If W is two-sided Brownian motion

starting at 0 and k is an integer greater or equal to 1, we define Yk as the (k−1) fold integral

of W +(k!/(2k)!)t2k . The process Hk is characterized by: (i) Hk stays above (below) Yk if

k is even (odd), (ii) Hk is 2k-convex; i.e., H
(2k−2)
k exists and convex and (iii) Hk touches Yk

if H
(2k−2)
k changes its slope, (iv) lim|t|→∞(H

(2j)
k (t) − Y

(2j)
k (t)) = 0 for j = 0, · · · , (k − 2)/2,

if k is even, and limt→∞(Hk(t) − Yk(t)) = 0, lim|t|→∞(H
(2j+1)
k (t) − Y

(2j+1)
k (t)) = 0 for

j = 0, · · · , (k − 3)/2 if k is odd. In the particular cases k = 1 and 2, it takes only a change

of scale to see that the processes H1 and H2 are very closely related to the greatest convex

minorant ofW+t2 (Groeneboom (1985), Groeneboom (1989)) and to the “invelope” of the

first integral of W +t4 (Groeneboom, Jongbloed, and Wellner (2001a)) respectively. To

have more intuition about the process Hk, one might think first about the drift (k!/(2k)!)t2k

as the k-fold integral of the “canonical” function tk. We can then define the following

Gaussian problem:

dXk(t) = tkdt+ dW (t), t ∈ R.

It is an estimation problem that goes in parallel with the original one where the k-monotone

density g0 is replaced by the k-convex function tk and dXk(t) plays the role of the observed

data X1, · · · ,Xn. Note that the process Yk is nothing but the k-fold integral of dXk. How

could we “estimate” tk? As in the original problem of estimation of a k-monotone density,

one can define a Least Squares problem whose solution would be the “closest” k-convex
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function in the L2-norm to the function tk plus Gaussian noise, on a finite interval [−c, c].
By construction, the process Hk is the limit (in an appropriate sense) of the k-fold integral

of the LS solution, Hc,k say, as c→ ∞.

As it was mentioned in the introdution, the process Hk is a random spline of degree

2k−1 whose knots are exactly the points where it touches Yk. This fact is certainly true for

k = 1 (Groeneboom (1989)). However, it is still conjectured for k ≥ 2. In the particular

case k = 2, Groeneboom, Jongbloed, and Wellner (2001a) could only prove that the

points of touch between Hk and Yk form a set a Lebesgue measure 0 and conjectured that

they are isolated.

The proof of existence and uniqueness of the process Hk relies heavily on showing the

following fact: For any point t ∈ (−c, c), if τ−c (τ+
c ) is the last (first) point of touch between

Hc,k and Yk before (after) t, then τ+
c − τ−c = Op(1) as c→ ∞. This problem is very similar

to the problem of determining the stochastic order of the distance between two knot points

of the MLE or LSE, when these knots are in a small neighborhood of x0. Our results show

that the above “fact” is indeed true if the conjectured Lemma 2.5.4 holds.

3.2 The Main Result

Suppose that k ≥ 1 and let W be a two-sided Brownian motion starting from 0 at 0. Define

the Gaussian processes {Yk(t) : t ∈ R} by

Yk(t) =






∫ t
0

∫ sk−1

0 · · ·
∫ s2

0 W (s1)ds1 · · · dsk−1 + k!
(2k)! t

2k, t ≥ 0 ,
∫ 0
t

∫ 0
sk−1

· · ·
∫ 0
s2
W (s1)ds1 · · · dsk−1 + k!

(2k)! t
2k , t < 0 ,

and set Xk(t) ≡ Y
(k−1)
k (t) = W (t) + (k + 1)−1tk+1 for t ∈ R. Thus

dXk(t) = tkdt+ dW (t) ≡ fk,0(t)dt+ dW (t)

where fk,0 is monotone for k = 1, convex for k = 2, and, for k ≥ 3 the (k− 2)-th derivative

f
(k−2)
k,0 (t) = (k!/2)t2 is convex. Thus we can consider “estimation” of the function fk,0 in

Gaussian noise dW (t) subject to the constraint of convexity of f (k−2) (or monotonicity of

f in the case k = 1).
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Here is our main result.

Theorem 3.2.1 If the conjectured Lemma 2.5.4 holds, then for all k ≥ 1, there exists

an almost surely uniquely defined stochastic process Hk characterized by the four following

conditions:

(i) (−1)k(Hk(t) − Yk(t)) ≥ 0, t ∈ R.

(ii) Hk is 2k-convex; i.e. H
(2k−2)
k exists and is convex.

(iii) For any t ∈ R, Hk(t) = Yk(t) if and only if H
(2k−2)
k changes slope at t;

equivalently,

∫ ∞

−∞
(Hk(t) − Yk(t)) dH

(2k−1)
k (t) = 0 .

(iv) If k is even, lim|t|→∞(H
(2j)
k (t) − Y

(2j)
k (t)) = 0 for j = 0, · · · , (k − 2)/2; if k is

odd, limt→∞(Hk(t) − Yk(t)) = 0 and lim|t|→∞(H
(2j+1)
k (t) − Y

(2j+1)
k (t)) = 0, for j =

0, · · · , (k − 3)/2.

Note that Hk is below Yk for k odd (and hence is an “envelope”), while Hk lies above Yk

for k even (and hence is an “invelope”, a term that was coined by Groeneboom, Jongbloed,

and Wellner (2001a) to describe the situation in the case k = 2). One can view H
(k)
k ≡ fk

as an “estimator” of fk,0, and H
(k+j)
k as estimators of f

(j)
k,0, j = 1, . . . , k − 1.

Note that in Chapter 2, Section 7, the drift term in the limiting process is equal to

(−1)k (k!/(2k)!) t2k and hence a slightly different version of Theorem 3.2.1 is needed:

Corollary 3.2.1 Let k ≥ 1 and suppose that Lemma 2.5.4 holds. If Zk is the (k − 1)-fold

integral of two-sided Brownian motion + (−1)k (k!/(2k)!) t2k, then there exists an almost

surely uniquely defined stochastic process Gk characterized by the four following conditions:

(i) Gk(t) ≥ Zk(t) ≥ 0, t ∈ R.

(ii) (−1)kGk is 2k-convex.
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(iii) For any t ∈ R, Gk(t) = Zk(t) if and only if G
(2k−2)
k changes slope at t;

equivalently,

∫ ∞

−∞
(Gk(t) − Zk(t)) dH

(2k−1)
k (t) = 0 .

(iv) If k is even, lim|t|→∞(G
(2j)
k (t) − Z

(2j)
k (t)) = 0 for j = 0, · · · , (k − 2)/2; if k is

odd, limt→∞(Gk(t) − Zk(t)) = 0 and lim|t|→∞(G
(2j+1)
k (t) − Z

(2j+1)
k (t)) = 0, for j =

0, · · · , (k − 3)/2.

Proof. Since for all k ≥ 1, (−1)kW
d
= W , it follows that (−1)kZk

d
= Yk, or Zk

d
= (−1)kYk.

From Theorem 3.2.1, it follows that the process Gk =a.s. (−1)kHk is almost surely uniquely

defined by the conditions (i)-(iv) of Corollary 3.2.1. �

Our proof of Theorem 3.2.1 proceeds along the general lines of the proof for the case

k = 2 in Groeneboom, Jongbloed, and Wellner (2001a). We first establish the existence

and give characterizations of processes Hc,k on [−c, c], we then show that these processes

are tight and converge to the limit process Hk as c → ∞. But there are a number of new

difficulties and complications. For example, we have not yet found analogues of the “mid-

point relations” given in Lemma 2.4 and Corollary 2.2 of Groeneboom, Jongbloed, and

Wellner (2001a). Those arguments are replaced by new more general results involving

perturbations by B-splines. Several of our key results for the general case involve the theory

of splines as given in Nürnberger (1989) and DeVore and Lorentz (1993). Some of

the arguments sketched in Groeneboom, Jongbloed, and Wellner (2001a) are given in

more detail (and greater generality) here. Throughout the remainder of this Chapter we

assume that the conjectured Lemma 2.5.4 holds. The tightness claims in this Chapter are

all dependent of the validity of Lemma 2.5.4.

This chapter is organized as follows: In section 3 we establish existence and give charac-

terizations of processes Hc,k on compact intervals [−c, c] as solutions of certain minimization

problems that can be viewed in terms of “estimation” of the “canonical” k−convex function

tk and its derivatives in Gaussian white noise dW (t). These problems are slightly different

for k even and k odd due to the different boundary conditions involved, and hence are

treated separately for even and odd k’s. In section 4 we establish tightness of the processes
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Hc,k and derivatives H
(j)
c,k for j ∈ {1, . . . , 2k − 1} as c → ∞. These arguments rely on the

crucial fact that two successive changes of slope τ+
c and τ−c of H

(2k−2)
c,k to the right and left

of a fixed point t satisfy τ+
c − t = Op(1) and t − τ−c = Op(1) as c → ∞. In section 5 we

combine the results from sections 3 and 4 to complete the proof of Theorem 3.2.1.

3.3 The processes Hc,k on [−c, c]

To prepare for the proof of Theorem 3.2.1, we first consider the problem of minimizing the

criterion function

Φc(f) =
1

2

∫ c

−c
f2(t)dt−

∫ c

−c
f(t)dXk(t) (3.1)

over the class of k-convex functions on [−c, c] and which satisfy two different sets of boundary

conditions depending on the parity of k. We will start by considering the case k even, k > 2.

3.3.1 Existence and Characterization of Hc,k for k even

Throughout this subsection k is assumed to be an even integer, k > 2 (since the case k = 2

is covered by Groeneboom, Jongbloed, and Wellner (2001a)). Let c > 0 and m1 and

m2 ∈ R
l, where k = 2l. Consider the problem of minimizing Φc over Ck,m1,m2

the class of

k-convex functions satisfying

(f (k−2)(−c), · · · , f (2)(−c), f(−c)) = m1 and (f (k−2)(c), · · · , f (2)(c), , f(c)) = m2.

Proposition 3.3.1 The functional Φc admits a unique minimizer in Ck,m1,m2
.

We preface the proof of the proposition by the following lemma:

Lemma 3.3.1 Let g be a convex function defined on [0, 1] such that g(0) = k1 and g(1) = k2

where k1 and k2 are arbitrary real constants. If there exists t0 ∈ (0, 1) such that g(t0) < −M ,

then g(t) < −M/2 on the interval [tL, tU ] where

tL =
k1 +M/2

k1 +M
t0, tU =

(k2 +M/2)t0 +M/2

k2 +M
.
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Proof. Since g is convex, it is below the chord joining the points (0, k1) and (t0,−M) and

the chord joining the points (t0,−M) and (1, k2). We can easily verify that these chords

intercept the horizontal line y = −M/2 at the points (tL,−M/2) and (tU ,−M/2) where tL

and tU are the ones defined in the lemma. �

Proof of Proposition 3.3.1 We first prove that we can restrict ourselves to the class of

functions

Ck,m1,m2,M =

{
f ∈ Ck,m1,m2

, f (k−2) > −M
}

for some M > 0. Without loss of generality, we assume that f (k−2)(−c) ≥ f (k−2)(c); i.e.,

m1,1 ≥ m1,2. Now, by integrating f (k−2) twice (k ≥ 4), we have

f (k−4)(x) =

∫ x

−c
(x− s)f (k−2)(s)ds + α1(x+ c) + α0, (3.2)

where

α0 = f (k−4)(−c) = m1,2

and

α1 =

(
f (k−4)(c) − f (k−4)(−c) −

∫ c

−c
(c− s)f (k−2)(s)ds

)
/(2c)

=

(
m2,2 −m1,2 −

∫ c

−c
(c− s)f (k−2)(s)ds

)
/(2c).

Using the change of variable x = (2t− 1)c, t ∈ [0, 1], and denoting

dk−2(t) = f (k−2) ((2t− 1)c) −m1,1

we can write, for all t ∈ [0, 1]

f (k−4) ((2t− 1)c)

= (2c)2
(∫ t

0
(t− s)dk−2(s)ds − t

∫ 1

0
(1 − s)dk−2(s)ds

)

+ (2c)2m1,1

(∫ t

0
(t− s)ds− t

∫ 1

0
(1 − s)ds

)
+ (m2,2 −m1,2)t+m1,2

= (2c)2
(

(t− 1)

∫ t

0
s dk−2(s)ds− t

∫ 1

t
(1 − s)dk−2(s)ds

)

+ (2c)2m1,1

(
t2 − t

2

)
+ (m2,2 −m1,2)t+m1,2.
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If there exists x0 ∈ [−c, c] such that −3M/2 +m1,1 < f (k−2)(x0) < −M +m1,1 for M > 0

large, then −3M/2 < dk−2(t0) < −M where x0 = (2t0 − 1)c. Let tL and tU be the same

numbers defined in Lemma 3.3.1.

Now, since dk−2 ≤ 0 on [0, 1] (recall that it was assumed that f (k−2)(−c) > f (k−2)(c)),

we have for all 0 ≤ t ≤ 1

f (k−4) ((2t− 1)c) ≥ (2c)2m1,1

(
t2 − t

2

)
+ (m2,2 −m1,2)t+m1,2

and in particular, if t ∈ [tL, tU ], we have

f (k−4) ((2t− 1)c) ≥ (2c)2(1 − t)

∫ t

tL

s (−dk−2)(s)ds (3.3)

+ (2c)2m1,1

(
t2 − t

2

)
+ (m2,2 −m1,2)t+m1,2

≥ M(2c)2

2
(1 − t)

∫ t

tL

s ds + (2c)2m1,1

(
t2 − t

2

)

+ (m2,2 −m1,2)t+m1,2

=
M(2c)2

4
(1 − t)(t2 − t2L) + (2c)2m1,1

(
t2 − t

2

)

+ (m2,2 −m1,2)t+m1,2.

Hence, if k = 4, this implies that
∫ tU
tL
f2 ((2t− 1)c) dt is of the order of M 2. In fact, if M is

chosen to be large enough so that the term in (3.3) is positive for all t ∈ [tL, tU ], it is easy

to establish that, using the fact that 1 − t ≥ 1 − tU and t+ tL ≥ 2tL
∫ tU

tL

f2 ((2t− 1)c) dt ≥ α2M
2 + α1M

where

α2 = c4(1 − tU)2(2tL)2(tU − tL)3/3,

and

α1 =
1

2

(
m1,1(2c)

2

2

∫ tU

tL

(1 − t)(t2 − t2L)(t2 − t)dt

+ (m2,2 −m1,2)

∫ tU

tL

t(1 − t)(t2 − t2L)dt+m1,2

∫ tU

tL

(1 − t)(t2 − t2L)dt

)
.
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But α2 does not vanish as M → ∞ since tL → t0/2, tU → (t0 + 1)/2 and tU − tL → 1/2.

Therefore, for k = 4, if there exists x0 such that f (2)(x0) < −M , then we can find real

constants c2 > 0, c1 and c0 such that

Φc(f) =
1

2

∫ c

−c
f2(t)dt−

∫ c

−c
f(t)dX4(t)

≥ c

∫ tU

tL

f2 ((2t− 1)c) dt−
∫ c

−c
f(t)dX4(t) (3.4)

≥ c2M
2 + c1M + c0,

since the second term in (3.4) is of the order of M . Indeed, using integration by parts, we

can write

∫ c

−c
f(t)dX4(t) = X4(c)f(c) −X4(−c)f(−c) −

∫ c

−c
f ′(t)X4(t)dt

where for all t ∈ (−c, c)

f ′(t) =

∫ t

−c
f (2)(s)ds+

(
m2,2 −m1,2 −

∫ c

−c
(c− s)f (2)(s)ds

)
/(2c).

Hence,

|f ′(t)| ≤ 3M

2

∫ t

−c
ds+

(
|m2,2 −m1,2| +

3M

2

∫ c

−c
(c− s)ds

)
/(2c)

≤ 6M c+
|m2,2 −m1,2|

2c

and

∣∣∣∣
∫ c

−c
f(t)dX4(t)

∣∣∣∣ ≤ (12Mc + |m2,2 −m1,1| + |m1,2| + |m2,2|) sup
[−c,c]

|X4(t)|.

This implies that the functions in Ck,m1,m2
have to be bounded in order to be possible can-

didates for the minimization problem.

Suppose now that k > 4. In order to reach the same conclusion, we are going to show

that in this case too, there exist constants c2 > 0, c1, and c0 such that

1

2

∫ c

−c
f2(t)dt−

∫ c

−c
f(t)dXk(t) ≥ c2M

2 + c1M + c0.
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For this purpose we use induction. Suppose that for 2 ≤ j < k/2, there exists a polynomial

P1,j whose coefficients depend only on c and the first j components of m1 and m2 such that

we have for all t ∈ [0, 1]

(−1)jf (k−2j) ((2t− 1)c) ≥ P1,j(t),

and suppose that there exists a polynomial Qj depending only on tL and c such that Qj > 0

on (tL, tU ) and lastly P2,j a polynomial whose coefficients depend on tL, c and the first j

components of m1 and m2 such that for all t ∈ [tL, tU ], we have

(−1)jf (k−2j) ((2t− 1)c) ≥MQj(t) + P2,j(t).

By integrating f (k−2j) twice, we have

f (k−2j−2)(x) =

∫ x

−c
(x− s)f (k−2j)(s)ds+ α1,j(x+ c) + α0,j,

where

α0,j = f (k−2j−2)(−c) = m1,j+1

and

α1,j =

(
f (k−2j−2)(c) − f (k−2j−2)(−c) −

∫ c

−c
(c− s)f (k−2j−2)(s)ds

)
/(2c)

=

(
m2,j+1 −m1,j+1 −

∫ c

−c
(c− s)f (k−2j−2)(s)ds

)
/(2c).

For 2 ≤ j < k/2, we denote

dk−2j(t) = f (k−2j) ((2c− 1)t) , for t ∈ [0, 1].

By the same change of variable we used before, we can write for all t ∈ [0, 1]

(−1)jf (k−2j−2)(c(2t − 1))

= (2c)2
(∫ t

0
(t− s)(−1)jdk−2j(s)ds− t

∫ 1

0
(1 − s)(−1)jdk−2j(s)ds

)

+ (m2,j+1 −m1,j+1)t+m1,j+1

= (2c)2
(

(t− 1)

∫ t

0
s(−1)jdk−2j(s)ds − t

∫ 1

t
(1 − s)(−1)jdk−2j(s)ds

)

+ (m2,j+1 −m1,j+1)t+m1,j+1.



107

Hence, by using the induction hypothesis, we have for all t ∈ [0, 1]

(−1)jf (k−2j−2) ((2t− 1)c) ≤ (2c)2
(

(t− 1)

∫ t

0
sP1,j(s)ds− t

∫ 1

t
(1 − s)P1,j(s)ds

)

+ (m2,j+1 −m1,j+1)t+m1,j+1

which is equivalent to

(−1)j+1f (k−2j−2) ((2t− 1)c) ≥ (2c)2
(

(1 − t)

∫ t

0
sP1,j(s)ds+ t

∫ 1

t
(1 − s)P1,j(s)ds

)

− (m2,j+1 −m1,j+1)t−m1,j+1 = P1,j+1(t),

and if t ∈ [tL, tU ]

(−1)jf (k−2j−2) ((2t− 1)c)

≤ (2c)2
(

(t− 1)

∫ tL

0
sP1,j(s)ds + (t− 1)

∫ t

tL

s(MQj(s) + P2,j(s))ds

− t

∫ 1

t
(1 − s)P1,j(s)ds

)
+ (m2,j+1 −m1,j+1)t+m1,j+1.

This can be rewritten

(−1)j+1f (k−2j−2) ((2t− 1)c) ≥ (2c)2
(
M(1 − t)

∫ t

tL

sQj(s)ds+ (1 − t)

∫ tL

0
sP1,j(s)ds

+ (1 − t)

∫ t

tL

P2,j(s)ds+ t

∫ 1

t
(1 − s)P1,j(s)ds

)

− (m2,j+1 −m1,j+1)t−m1,j+1

= MQj+1(t) + P2,j+1(t),

where P1,j+1, P1,j+1 and Qj+1 satisfy the same properties assumed in the induction hypoth-

esis. Therefore, there exist two polynomials P and Q such that for all t ∈ [tL, tU ],

(−1)k/2f ((2t− 1)c) ≥MQ(t) + P (t)

and Q > 0 on (tL, tU ). Thus, for M chosen large enough

Φc(f) ≥M2

∫ tU

tL

Q2(t)dt+Op(M)

since it can be shown using induction and similar arguments as for the case k = 4 that

∣∣∣∣
∫ c

−c
f(t)dXk(t)

∣∣∣∣ = Op(M).
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We conclude that there exists some M > 0 such that we can restrict ourselves to the space

Ck,m1,m2,M while searching for the minimizer of Φc.

Let us endow the space Ck,m1,m2,M with the distance

d(g, h) = ‖g(k−2) − h(k−2)‖∞ = sup
t∈[−c,c]

|g(k−2)(t) − h(k−2)(t)|.

d is indeed a distance since d(g, h) = 0 if an only if g(k−2) and h(k−2) are equal on [−c, c] and

hence g = h using the boundary conditions; i.e., g(k−2p)(±c) = h(k−2p)(±c), for 2 ≤ p ≤ k/2.

Consider a sequence (fn)n in Ck,m1,m2,M . Denote

gn = f (k−2)
n .

Since (gn)n is uniformly bounded and convex on the interval [−c, c], there exists a sub-

sequence (gk)k of (gn)n and a convex function g such that g(−c) = m1,1, g(c) = m2,1,

g ≥ −M and (gk)k converges uniformly to g on [−c, c] (e.g. Roberts and Varberg

(1973), pages 17 and 20). Define f as the (k − 2)-fold integral of the limit g that sat-

isfies f (k−4)(−c) = m1,2, · · · , f(−c) = m1,k−2 and f (k−4)(c) = m2,2, · · · , f(c) = m2,k−2.

Then, f belongs to Ck,m1,m2,M and

d(fk, f) → 0, as k → ∞.

Thus, the space
(
Ck,m1,m2,M , d

)
is compact. It remains to show now that Φc is continuous

with respect to d and that the minimizer is unique. Fix a small ǫ > 0 and consider f and g

two elements in Ck,m1,m2,M .

|Φc(g) − Φc(f)| =

∣∣∣∣
1

2

∫ c

−c

(
g2(t) − f 2(t)

)
dt−

∫ c

−c
(g(t) − f(t)) dXk(t)

∣∣∣∣

≤ 1

2

∣∣∣∣

∫ c

−c

(
g2(t) − f 2(t)

)
dt

∣∣∣∣+
∣∣∣∣

∫ c

−c
(g(t) − f(t)) dXk(t)

∣∣∣∣.

Suppose that k = 4. By using the expression obtained in (3.2), we can write

g(t) − f(t) =

∫ t

−c
(t− s)

(
g(2)(s) − f (2)(s)

)
ds+ α1(t+ c), t ∈ [−c, c]

where

α1 = −
∫ c

−c
(c− s)

(
g(2)(s) − f (2)(s)

)
ds/(2c)
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since f(±c) = g(±c) and f (2)(±c) = g(2)(±c). Therefore, for all t ∈ [−c, c], we have

|g(t) − f(t)| ≤
(∫ t

−c
(t− s)ds

)
d(f, g) +

(∫ c
−c(c− s)ds

2c

)
(t+ c)d(f, g)

=

(
(t+ c)2

2
+

(2c)2

2

(t+ c)

2c

)
d(f, g)

≤
(

(2c)2

2
+

(2c)2

2

)
d(f, g)

= (2c)2d(f, g).

Also, we obtain using the same expression

|f(t)| ≤
(∫ t

−c
(t− s)ds+

∫ c

−c
(c− s)ds

)
max (|m1,1|, |m2,1|,M) + |m1,2| + |m2,2|

≤ 4 c2 max (|m1,1|, |m2,1|,M) + |m1,2| + |m2,2|

for all t ∈ [−c, c] and the same inequality holds for g. By denoting

K0 = 4 c2 max (|m1,1|, |m2,1|,M) + |m1,2| + |m2,2|,

it follows that

1

2

∣∣∣∣

∫ c

−c

(
g2(t) − f 2(t)

)
dt

∣∣∣∣ ≤ 1

2

∫ c

−c
|g(t) + f(t)| · |g(t) − f(t)|dt

≤ K0

∫ c

−c
|g(t) − f(t)|dt

≤ (2c)K0 sup
t∈[−c,c]

|g(t) − f(t)|

≤ (2c)3K0 d(f, g). (3.5)

Now, using integration by parts and again the fact that f(±c) = g(±c), we can write

∫ c

−c
(g(t) − f(t)) dXk(t) = −

∫ c

−c

(
g′(t) − f ′(t)

)
Xk(t)dt (3.6)

But,

(
g′(t) − f ′(t)

)
−
(
g′(−c) − f ′(−c)

)
=

∫ t

−c

(
g(2)(s) − f (2)(s)

)
ds (3.7)

for all t ∈ [−c, c]. On the other hand, we obtain using integration by parts

−
∫ c

−c
(c− s)

(
g(2)(s) − f (2)(s)

)
ds/(2c) = g′(−c) − f ′(−c). (3.8)
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By the triangle inequality, we obtain

|g′(t) − f ′(t)| ≤ |g′(−c) − f ′(−c)| +
∫ t

−c
|g(2)(s) − f (2)(s)|ds

≤
∫ c

−c
(c− s)|g(2)(s) − f (2)(s)|ds/(2c) +

∫ t

−c
|g(2)(s) − f (2)(s)|ds

≤ 2c

2
d(f, g) + (t+ c)d(f, g)

≤
(

2c

2
+ 2c

)
d(f, g)

= (3c) d(f, g). (3.9)

Combining (3.5) and (3.9), it follows that

|Φc(g) − Φc(f)| ≤
(

(2c)3K0 + (3c)

∫ c

−c
|Xk(t)|dt

)

d(f, g).

Now, let k > 4 be an even integer. We have

g(k−4)(t) − f (k−4)(t) =

∫ t

−c
(t− s)

(
g(k−2)(s) − f (k−2)(s)

)
ds+ α1(t+ c), t ∈ [−c, c]

where

α1 = −
∫ c

−c
(c− s)

(
g(k−2)(s) − f (k−2)(s)

)
ds/(2c)

we obtain, applying the same techniques used for k = 4, that

∣∣∣∣g
(k−4)(t) − f (k−4)(t)

∣∣∣∣ ≤ (2c)2 d(f, g), t ∈ [−c, c].

By induction and using the fact that for j = 3, · · · , k/2

g(k−2j)(t) − f (k−2j)(t) =

∫ t

−c
(t− s)

(
g(k−2j+2)(s) − f (k−2j+2)(s)

)
ds+ α1,j(t+ c),

for t ∈ [−c, c] where

α1,j = −
∫ c

−c
(c− s)

(
g(k−2j+2)(s) − f (k−2j+2)(s)

)
ds/(2c),

it follows that

sup
t∈[−c,c]

|g(k−2j)(t) − f (k−2j)(t)| ≤ (2c)2j−2 d(f, g),
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and in particular

sup
t∈[−c,c]

|g(t) − f(t)| ≤ (2c)k−2 d(f, g).

Now, notice that the identities in (3.6), (3.7), (3.8), and the inequality in (3.9) continue

to hold. It follows that there exist constants Kk−2j > 0, j = 2, · · · , k/2 such that for all

t ∈ [−c, c]

|f (k−2j)(t)|, |g(k−2j)(t)| ≤ Kk−2j

where for j = 3, · · · , k/2

Kk−2j ≤ 4 c2Kk−2j+2 + |m2,j −m1,j| + |m1,j|.

On the other hand, we have

|g′(t) − f ′(t)| ≤ |g′(−c) − f ′(−c)| +
∫ t

−c
|g(2)(s) − f (2)(s)|ds

≤
∫ c

−c
(c− s)|g(2)(s) − f (2)(s)|ds/(2c) +

∫ t

−c
|g(2)(s) − f (2)(s)|ds

≤ 2c

2
(2c)k−4 d(f, g) + (t+ c)(2c)k−4 d(f, g)

≤
(

(2c)k−3

2
+ (2c)k−3

)
d(f, g)

=
3

2
(2c)k−3 d(f, g)

and hence

|Φc(g) − Φc(f)| ≤
(

(2c)k−1K0 + (3/2)(2c)k−3

∫ c

−c
|Xk(t)|dt

)

d(f, g).

We conclude that the functional Φc admits a minimizer in the class Cm1,m2,M and hence in

Cm1,m2
. This minimizer is unique by the strict convexity of Φc. �

The next proposition gives a characterization of the minimizer.

Proposition 3.3.2 The function fc,k ∈ Ck,m1,m2
is the minimizer of Φc if and only if

Hc,k(t) ≥ Yk(t), t ∈ [−c, c], (3.10)
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and
∫ c

−c
(Hc,k(t) − Yk(t)) df

(k−1)
c,k (t) = 0, (3.11)

where Hc,k is the k-fold integral of fc,k satisfying

Hc,k(−c) = Yk(−c),H(2)
c,k (−c) = Y

(2)
k (−c), · · · ,H (k−2)

c,k (−c) = Y
(k−2)
k (−c),

and

Hc,k(c) = Yk(c),H
(2)
c,k (c) = Y

(2)
k (c), · · · ,H(k−2)

c,k (c) = Y
(k−2)
k (c).

Our proof of Proposition 3.3.2 will use the following lemma.

Lemma 3.3.2 Let t0 ∈ [−c, c]. The probability that there exists a polynomial P of degree

k such that

P (t0) = Yk(t0), P
′(t0) = Y ′

k(t0), · · · , P (k−1)(t0) = Y
(k−1)
k (t0) (3.12)

and satisfies P ≥ Yk or P ≤ Yk in a small neighborhood of t0 (right (resp. left) neighborhood

if t0 = −c (resp. t0 = c)) is equal to 0.

Proof. Without loss of generality, we assume that 0 ≤ t0 < c. As a consequence of

Blumenthal’s 0-1 law and the Markov property of a Brownian motion, the probability that

a straight line intercepting a Brownian motion W at the point (t0,W (t0)) is above or below

W in a neighborhood of t0 is equal to 0 since W crosses the horizontal line y = W (t0)

infinitely many times in such neighborhood with probability 1 (see e.g. Durrett (1984),

(5), page 14). Suppose that there exist δ > 0 and a polynomial P satisfying the condition

in (3.12) and P (t) ≥ Yk(t) for all t ∈ [t0, t0 + δ] (the case P ≤ Yk can be handled similarly).

Denote ∆ = P − Yk. Using the condition in (3.12) and successive integrations by parts, we

can establish for all t ∈ R the identity

P (t) − Yk(t) =

∫ t

t0

(t− s)k−2

(k − 2)!
∆(k−1)(s)ds.

Moreover, we have for all t ∈ [t0, t0 + δ]
∫ t

t0

(t− s)k−2

(k − 2)!
∆(k−1)(s)ds ≥ 0. (3.13)
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This implies that there exists a subinterval [t0 + δ1, t0 + δ2] ⊂ [t0, t0 + δ] such that

∆(k−1)(t) = P (k−1)(t) − Y
(k−1)
k (t) ≥ 0, t ∈ [t0 + δ1, t0 + δ2] (3.14)

since otherwise, the integral in (3.13) would be strictly negative. But a polynomial P of

degree k satisfying (3.12) can be written as

P (t) = Yk(t0) + Y ′
k(t0)(t− t0) + · · · + Y

(k−1)
k (t0)

(t− t0)
k−1

(k − 1)!
+ P (k)(t0)

(t− t0)
k

k!
,

and therefore, it follows from the inequality in (3.14) that

Y
(k−1)
k (t0) + P (k)(t0)(t− t0) ≥ Y

(k−1)
k (t), t ∈ [t0 + δ1, t0 + δ2] ,

or equivalently

W (t0) +
1

k + 1
tk+1
0 + P (k)(t0)(t− t0) ≥W (t) +

1

k + 1
tk+1, t ∈ [t0 + δ1, t0 + δ2].

The latter event occurs with probability 0 since the law of the process {W (t)+ tk+1

k+1 : t ∈ [0, c])

is equivalent to the law of the Brownian motion process {W (t) : t ∈ [0, c]}, and the result

follows. �

Proof of Proposition 3.3.2. Let fc,k be a function in Ck,m1,m2
satisfying (3.10) and (3.11).

To avoid conflicting notations, we replace fc,k by f . For an arbitrary function g in Ck,m1,m2
,

we have

g2 − f2 = (g − f)2 + 2f(g − f) ≥ 2f(g − f), (3.15)

and therefore

Φc(g) − Φc(f) ≥
∫ c

−c
f(t) (g(t) − f(t)) dt−

∫ c

−c
(g(t) − f(t)) dXk(t) .

Using the fact that H
(j)
c,k is the (k − j)-fold integral of f for j = 1, · · · , k,

g(2i)(±c) = f (2i)(±c), for i = 0, · · · , (k − 2)/2

and

H
(2j)
c,k (±c) = Y

(2j)
k (±c), for j = 0, · · · , (k − 2)/2 ,
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we obtain, using successive integrations by parts,
∫ c

−c
f(t) (g(t) − f(t)) dt−

∫ c

−c
(g(t) − f(t)) dXk(t)

=
[ (
H

(k−1)
c,k (t) − Y

(k−1)
k (t)

)
(g(t) − f(t))

]c
−c

−
∫ c

−c

(
H

(k−1)
c,k (t) − Y

(k−1)
k (t)

) (
g′(t) − f ′(t)

)
dt

= −
∫ c

−c

(
H

(k−1)
c,k (t) − Y

(k−1)
k (t)

) (
g′(t) − f ′(t)

)
dt

= −
[ (
H

(k−2)
c,k (t) − Y

(k−2)
k (t)

)
(g′(t) − f ′(t))

]c
−c

+

∫ c

−c

(
H(k−2)

c (t) − Y
(k−2)
k (t)

) (
f ′′(t) − f ′′c (t)

)
dt

=

∫ c

−c

(
H

(k−2)
c,k (t) − Y

(k−2)
k (t)

) (
g′′(t) − f ′′(t)

)
dt

...

=

∫ c

−c
(Hc,k(t) − Yk(t))

(
dg(k−1)(t) − df (k−1)(t)

)

which yields, using the condition in (3.11),
∫ c

−c
f(t) (g(t) − f(t)) dt−

∫ c

−c
(g(t) − f(t)) dXk(t)

=

∫ c

−c
(Hc,k(t) − Yk(t)) dg

(k−1)(t).

Using condition (3.10) and the fact that g(k−1) is nondecreasing, we conclude that

Φc(g) ≥ Φc(f).

Since g was arbitrary, f is the minimizer. In the previous proof, we used implicitly the fact

that f (k−1) and g(k−1) exist at −c and c. Hence, we need to check that such an assumption

can be made. First, notice that with probability 1, there exists j ∈ {1, · · · , k− 1} such that

H
(j)
c,k(c) 6= Y

(j)
k (c). If such a j does not exist, it will follow that there exists a polynomial P

of degree k such that

P (i)(c) = Y
(i)
k (c), for i = 0, · · · , k − 1

and P (t) ≥ Yk(t), for t in a left neighborhood of c. Indeed, using Taylor expansion of Hc,k

at the point c, we have for some small δ > 0 and u ∈ [c− δ, c)

Hc,k(u)
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= Hc,k(c) +H ′
c,k(c)(u − c) + · · · +

H
(k−1)
c,k (c)

(k − 1)!
(u− c)k−1 +

H
(k)
c,k (c)

k!
(u− c)k

+ o((u− c)k)

= Yk(c) + Y ′
k(c)(u − c) + · · · + Y

(k−1)
k (c)

(k − 1)!
(u− c)k−1 +

H
(k)
c,k (c)

k!
(u− c)k

+ o((u− c)k)

≥ Yk(u).

Hence, there exists δ0 > 0 such that the polynomial P given by

P (u) = Yk(c) + Y ′
k(c)(u − c) + · · · + Y

(k−1)
k (c)

(k − 1)!
(u− c)k−1 +

H
(k)
c,k (c) + 1

k!
(u− c)k

satisfies P ≥ Yk on [c − δ0, c). But by Lemma 3.3.2, we know that the probability of the

latter event is equal to 0.

Consider j0 the smallest integer in {1, · · · , k − 1} such that H
(j0)
c,k (c) 6= Y

(j0)
k (c). Notice

first that j0 has to be odd. Besides, since Hc,k ≥ Yk, H
(j0)
c,k (c) 6= Y

(j0)
k (c) implies H

(j0)
c,k (c) <

Y
(j0)
k (c), and by continuity there exists a left neighborhood [c−δ, c) of c such that H

(j0)
c,k (t) <

Y
(j0)
k (t) for all t ∈ [c − δ, c). Hence, if we suppose that g(k−1)(t) → ∞ as t ↑ c, where

g ∈ Ck,m1,m2
then

∫ u

c−δ
g(k−1)(t)

(
H

(j0)
c,k (t) − Y

(j0)
k (t)

)
dt→ −∞ as u ↑ c.

Now, if j0 = k − 1 we have

∫ c

c−δ
g(k−1)(t)

(
H

(k−1)
c,k (t) − Y

(k−1)
k (t)

)
dt

=

[
g(k−2)(t)

(
H

(k−1)
c,k (t) − Y

(k−1)
k (t)

) ]c

c−δ

−
∫ c

c−δ
g(k−2)(t)f(t)dt+

∫ c

c−δ
g(k−2)(t)dXk(t)

and hence

lim
u↑c

∫ c

c−δ
g(k−1)(t)(Hc,k(t) − Yk(t))dt = g(k−2)(c)(H

(k−1)
c,k (c) −Xk(c))

−g(k−2)(c− δ)(H
(k−1)
c,k (c− δ) −Xk(c− δ))

−
∫ c

c−δ
g(k−2)(t)f(t)dt+

∫ c

c−δ
g(k−2)(t)dXk(t)

> −∞.
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Therefore, when t ↑ c, g(k−1)(t) converges to a finite limit and we can assume that g(k−1)(c)

is finite. Using a similar arguments, we can show that limt↓−c g
(k−1)(t) > −∞. The same

conclusion is reached when j0 < k − 1.

Now, suppose that f minimizes Φc over Ck,m1,m2
. Fix a small ǫ > 0 and let t ∈ (−c, c).

We define the function ft,ǫ on [−c, c] by

ft,ǫ(u) = f(u) + ǫ

(
(u− t)k−1

+

(k − 1)!
+ αk−1

(u+ c)k−1

(k − 1)!

+ αk−3
(u+ c)k−3

(k − 3)!
+ · · · + α1(u+ c)

)

= f(u) + ǫpt(u)

satisfying

p
(2i)
t (±c) = 0, for i = 0, · · · , (k − 2)/2. (3.16)

For this choice of a perturbation function, we have for all u ∈ [−c, c]

f
(k−2)
t,ǫ (u) = f (k−2)(u) + ǫ ((u− t)+ + αk−1(u+ c)) .

Thus, for any ǫ > 0, f
(k−2)
t,ǫ is the sum of two convex functions and so it is convex. The

condition (3.16) ensures that ft,ǫ remains in the class Ck,m1,m2
and the parameters αj ,

j = 1, 3, · · · , k − 1 are uniquely determined:

αk−1 = −(c− t)

2c

αk−3 = −αk−1
(2c)3

3!
− (c− t)3

3!
...

α1 = −αk−1
(2c)k−1

(k − 1)!
− · · · − α3

(2c)3

3!
− (c− t)k−1

(k − 1)!
.

Since f is the minimizer of Φc, we have

lim
ǫց0

Φc(fǫ,t) − Φc(f)

ǫ
≥ 0.

On the other hand,

lim
ǫց0

Φc(fǫ,t) − Φc(f)

ǫ
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=

∫ c

−c
f(u)pt(u)du−

∫ c

−c
pt(u)dXk(u)

=

[(
H

(k−1)
c,k (u) − Y

(k−1)
k (u)

)
pt(u)

]c

−c

−
∫ c

−c

(
H

(k−1)
c,k (u) − Y

(k−1)
k (u)

)
p′t(u)du

= −
[(
H

(k−2)
c,k (u) − Y

(k−2)
k (u)

)
p′t(u)

]c

−c

+

∫ c

−c

(
H

(k−2)
c,k (u) − Y

(k−2)
k (u)

)
p
(2)
t (u)du

=

∫ c

−c

(
H

(k−2)
c,k (u) − Y

(k−2)
k (u)

)
p
(2)
t (u)du

...

=

∫ c

−c
(Hc,k(u) − Yk(u)) dp

(k−1)
t (u)du

= Hc,k(t) − Yk(t) ,

and therefore the condition in (3.10) is satisfied.

Similarly, consider the function fǫ defined as

fǫ(u) = f(u) + ǫ

(
f(u) + βk−1

(u+ c)k−1

(k − 1)!
+ βk−2

(u+ c)k−2

(k − 2)!

+ · · · + β1(u+ c) + β0) .

= f(u) + ǫh(u)

Notice first that,

f (k−2)
ǫ (u) = (1 + ǫ)f (k−2)(u) + ǫβk−1(u+ c)

which is convex for |ǫ| > 0 sufficiently small. In order to have fǫ in the class Cǫ,m1,m2
, we

choose βk−1, βk−2, · · · , β0 such that

h(2i)(±c) = 0, for i = 0, · · · , (k − 2)/2.

It is easy to check that the latter conditions determine βk−1, · · · , β0 uniquely. Thus, we have

0 = lim
ǫ→0

Φc(fǫ) − Φc(f)

ǫ
=

∫ c

−c
f(u)h(u)du −

∫ c

−c
h(u)dXk

=

∫ c

−c

(
H

(k−1)
c,k (u) − Y

(k−1)
k (u)

)
h′(u)du

...
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=

∫ c

−c
(Hc,k(u) − Yk(u)) dh

(k−1)(u)

=

∫ c

−c
(Hc,k(u) − Yk(u)) df

(k−1)(u)

and hence condition (3.11) is satisfied. �

3.3.2 Existence and Characterization of Hc,k for k odd

In the previous section, we proved that the minimization problem for k = 2 studied in

Groeneboom, Jongbloed, and Wellner (2001a) can be generalized naturally for any even

k > 2. For k odd, the problem remains to be formalized. For the particular case k = 1, it is

very well known that the stochastic process involved in the limiting distribution of the MLE

of a monotone density at a fixed point x0 (under some regularity conditions) is determined

by the slope at 0 of the greatest convex minorant of the process (W (t) + t2, t ∈ R). In

this case, a “switching” relationship was exploited as a fundamental tool to derive the

asymptotic distribution of the MLE. It is based on the observation that if ĝn is the MLE

(the Grenander estimator); i.e., the left derivative of the greatest concave majorant of the

empirical distribution Gn based on an i.i.d. sample from the true monotone density, then

for a fixed a > 0
[

sup

{
s ≥ 0 : Gn(s) − as is maximal

}]
=

[
ĝn(t) ≤ a

]

(see Groeneboom (1985)). A similar relationship is currently unknown when k > 1. The

difficulty is apparent already for k = 2 and hence there was a need to formalize the problem

differently.

As we did for even integers k ≥ 2, we need to pose an appropriate minimization problem

for odd integers k > 1. Wellner (2003) revisited the case k = 1 and established a neces-

sary and sufficient condition for a function in the class of monotone functions g such that

‖g‖∞,[−c,c] ≤ K to be the minimizer of the functional

Ψc(g) =
1

2

∫ c

−c
g2(t)dt−

∫ c

−c
g(t)d(W (t) + t2)

(see Theorem 3.1 in Wellner (2003)). However, the characterization involves two Lagrange

parameters which makes the resulting optimizer hard to study. Wellner (2003) pointed
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out that when K = Kc → ∞, the Lagrange parameters will vanish as c → ∞. Here we

define the minimization problem differently. Let k > 1 be an odd integer, c > 0, m0 ∈ R and

m1 and m2 ∈ R
l where k = 2l + 1. Consider the problem of minimizing the same criterion

function Φc introduced in (3.1) over the class Ck,m0,m1,m2
of k-convex functions satisfying

(f (k−2)(−c), · · · , f (1)(−c)) = m1 and (f (k−2)(c), · · · , f (1)(c)) = m2,

and f(c) = m0.

Proposition 3.3.3 Φc defined in (3.1) admits a unique minimizer in the class Ck,m0,m1,m2
.

Proof. The proof is very similar to the one we used for k even. �

The following proposition gives a characterization for the minimizer. Although the

techniques are similar to those developed for k even, we prefer to give a detailed proof in

order to show clearly the differences between the cases k even and k odd.

Proposition 3.3.4 The function fc,k ∈ Ck,m0,m1,m2
is the minimizer of Φc if and only if

Hc,k(t) ≤ Yk(t), t ∈ [−c, c] (3.17)

and

∫ c

−c
(Hc,k(t) − Yk(t)) df

(k−1)
c,k (t) = 0, (3.18)

where Hc,k is the k-fold integral of fc,k satisfying

Hc,k(−c) = Yk(−c),H(2)
c,k (−c) = Y

(2)
k (−c), · · · ,H (k−3)

c,k (−c) = Y
(k−3)
k (−c),

Hc,k(c) = Yk(c),H
(2)
c,k (c) = Y

(2)
k (c), · · · ,H(k−3)

c,k (c) = Y
(k−3)
k (c),

and

H
(k−1)
c,k (−c) = Y (k−1)(−c).
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Proof. To avoid conflicting notations, we replace fc,k by f . Let f be a function in

Ck,m0,m1,m2
satisfying (3.17) and (3.18). Using the inequality in (3.15), we have for an

arbitrary function g in Ck,m0,m1,m2

Φc(g) − Φc(f) ≥
∫ c

−c
f(t) (g(t) − f(t)) dt−

∫ c

−c
(g(t) − f(t)) dXk(t).

Using the fact that H
(j)
c,k is the (k − j)-fold integral of f for j = 1, · · · , k and the fact that

g(c) = f(c), H
(k−1)
c,k (−c) = Y

(k−1)
k (−c) ,

g(2i+1)(±c) = f (2i+1)(±c), for i = 0, · · · , (k − 3)/2 ,

and

H
(2j)
c,k (±c) = Y

(2j)
k (±c), for j = 0, · · · , (k − 3)/2 ,

we obtain by successive integrations by parts
∫ c

−c
f(t) (g(t) − f(t)) dt−

∫ c

−c
(g(t) − f(t)) dXk(t)

=

[(
H

(k−1)
c,k (t) − Y

(k−1)
k (t)

)
(g(t) − f(t))

]c

−c

−
∫ c

−c

(
H

(k−1)
c,k (t) − Y

(k−1)
k (t)

)(
g′(t) − f ′(t)

)
dt

= −
∫ c

−c

(
H

(k−1)
c,k (t) − Y

(k−1)
k (t)

)(
g′(t) − f ′(t)

)
dt

= −
[(
H

(k−2)
c,k (t) − Y

(k−2)
k (t)

)(
g′(t) − f ′(t)

) ]c

−c

+

∫ c

−c

(
H

(k−2)
c,k (t) − Y

(k−2)
k (t)

)(
g′′(t) − f ′′(t)

)
dt

=

∫ c

−c

(
H

(k−2)
c,k (t) − Y

(k−2)
k (t)

)(
g′′(t) − f ′′(t)

)
dt

...

= −
∫ c

−c

(
Hc,k(t) − Yk(t)

)(
dg(k−1)(t) − df (k−1)(t)

)
.

This yields, using the condition in (3.18),
∫ c

−c
f(t) (g(t) − f(t)) dt−

∫ c

−c
(g(t) − f(t)) dXk(t)

= −
∫ c

−c

(
Hc,k(t) − Yk(t)

)
dg(k−1)(t) .
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Now, using condition (3.17) and the fact that g(k−1) is nondecreasing, we conclude that

Φc(g) ≥ Φc(f)

and that f is the minimizer of Φc.

Conversely, suppose that f minimizes Φc over the class Ck,m0,m1,m2
. Fix a small ǫ > 0

and let t ∈ (−c, c). We define the function ft,ǫ on [−c, c] by

ft,ǫ(u) = f(u) + ǫ

(
(u− t)k−1

+

(k − 1)!
+ αk−1

(u+ c)k−1

(k − 1)!
+ αk−3

(u+ c)k−3

(k − 3)!

+ · · · + α2
(u+ c)2

2!
+ α0

)

= f(u) + ǫpt(u)

satisfying

p
(2i+1)
t (±c) = 0, for i = 0, · · · , (k − 3)/2 (3.19)

and

pt(c) = 0. (3.20)

For this choice of a perturbation function, we have for all u ∈ [−c, c]

f
(k−2)
t,ǫ (u) = f (k−2)(u) + ǫ((u− t)+ + αk−1(u+ c)).

Thus, ft,ǫ is convex for any ǫ > 0 as a sum of two convex functions. The conditions

(3.19) and (3.20) ensures that ft,ǫ remains in the class Ck,m0,m1,m2
and the parameters

αk−1, αk−3, · · · , α0 are uniquely determined:

αk−1 = −(c− t)

2c

αk−3 = − 1

2c

(
αk−1

(2c)3

3!
+

(c− t)3

3!

)

...

α2 = − 1

2c

(
αk−1

(2c)k−2

(k − 2)!
+ · · · + α4

(2c)3

3!
+

(2c)k−2

(k − 2)!

)

α0 = −
(
αk−1

(2c)k−1

(k − 1)!
+ · · · + α2

(2c)2

2!
+

(c− t)k−1

(k − 1)!

)
.
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Since f is the minimizer of Φc, we have

lim
ǫց0

Φc(fǫ) − Φc(f)

ǫ
≥ 0.

But

lim
ǫց0

Φc(fǫ) − Φc(f)

ǫ

=

∫ c

−c
f(u)pt(u)du −

∫ c

−c
pt(u)dXk(u)

=

[(
H

(k−1)
c,k (u) − Y

(k−1)
k (u)

)
pt(u)

]c

−c

−
∫ c

−c

(
H

(k−1)
c,k (u) − Y

(k−1)
k (u)

)
p′t(u)du

= −
[(
H

(k−2)
c,k (u) − Y

(k−2)
k (u)

)
p′t(u)

]c

−c

+

∫ c

−c

(
H

(k−2)
c,k (u) − Y

(k−2)
k (u)

)
p
(2)
t (u)du

...

= −
∫ c

−c

(
Hc,k(u) − Yk(u)

)
dp

(k−1)
t (u)

= − (Hc,k(t) − Yk(t)) ,

and therefore the condition in (3.17) is satisfied. Similarly, consider the function fǫ defined

as

fǫ(u) = f(u) + ǫ

(
f(u) + βk−1

(u+ c)k−1

(k − 1)!
+ βk−2

(u+ c)k−2

(k − 2)!
+ · · · + β1(u+ c) + β0

)

= f(u) + ǫh(u).

Notice first that,

f (k−2)
ǫ (u) = (1 + ǫ)f (k−2)(u) + ǫβk−1(u+ c)

which is convex for |ǫ| small enough. In order to have fǫ in the class Cm0,m1,m2
, we choose

the coefficients βk−1, βk−2, · · · , β0 such that

h(2i+1)(±c) = 0, for i = 0, · · · , (k − 3)/2 ,

and h(c) = 0. It is easy to check that the previous equations admit a unique solution. Thus,

we have

0 = lim
ǫ→0

Φc(fǫ) − Φc(f)

ǫ
=

∫ c

−c
f(u)h(u)du −

∫ c

−c
h(u)dXk(u)
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=

∫ c

−c

(
H

(k−1)
c,k (u) − Y

(k−1)
k (u)

)
h′(u)du

...

= −
∫ c

−c
(Hc,k(u) − Yk(u)) dh

(k−1)(u)

= −
∫ c

−c
(Hc,k(u) − Yk(u)) df

(k−1)(u),

and hence condition (3.18) is satisfied. �

3.4 The tightness problem

3.4.1 Existence of points of touch

Although the characterizations given in Propositions 3.3.2 and 3.3.4, indicate that f
(k−2)
c,k is

piecewise linear and the k-fold integral of fc,k touches Yk whenever f
(k−2)
c,k changes its slope,

they do not provide us with any information about the number of the jump points of f
(k−1)
c,k .

It is possible, at least in principle, that f
(k−1)
c,k does not have any jump point, in which case

f
(k−2)
c,k is a straight line. However, if we take

m1 = m2 =

(
k!

2!
c2,

k!

4!
c4, · · · , ck

)

when k is even, and

m0 = ck , m1 = m2 =

(
k!

2!
c2,

k!

4!
c4, · · · , k!

(k − 1)!
ck−1

)

when k is odd, then with an increasing probability, Hc,k and Yk have to touch each other

in (−c, c) as c→ ∞. The next proposition establishes this basic fact.

Proposition 3.4.1 Let ǫ > 0 and consider m1, m2, and m0 as specified above according to

whether k is even or odd. Then, there exists c0 > 0 such that the probability that Hc,k and

Yk have at least one point of touch is greater than 1 − ǫ for c > c0; i.e.,

P (Yk(τ) = Hc,k(τ) for some τ ∈ [−c, c]) → 1, as c→ ∞ .
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Proof. We start with k even. If Hc,k and Yk do not touch each other at any point in (−c, c),
it follows that Hc,k is a polynomial of degree 2k − 1 in which case Hc,k is fully determined

by

H
(2i)
c,k (±c) = Y

(2i)
k (±c), for i = 0, · · · , (k − 2)/2

H
(2i)
c,k (±c) =

k!

(2k − 2i)!
c2k−2i, for i = k/2, · · · , (2k − 2)/2.

If we write the polynomial Hc,k as

Hc,k(t) =
α2k−1

(2k − 1)!
t2k−1 +

α2k−2

(2k − 2)!
t2k−2 + · · · + α1t+ α0,

then α2k−1 = 0 since H
(2k−2)
c,k (−c) = H

(2k−2)
c,k (c). Because of the same symmetry, α2k−3 =

α2k−5 = · · · = αk+1 = 0. Furthermore, it is easy to establish after some algebra that the

coefficients α2k−2, α2k−4, · · · , αk are given by

α2k−2 =
k!

2!
c2,

and for j = 2, · · · , k/2.

α2k−2j =
k!

(2j)!
c2j −

(
α2k−2

(2j − 2)!
c2j−2 + · · · + α2k−2j+2

2!
c2
)

For αk−1, · · · , α0, we have different expressions:

αk−1 =
Y

(k−2)
k (c) − Y

(k−2)
k (−c)

2c
,

αk−2 =
Y

(k−2)
k (−c) + Y

(k−2)
k (c)

2
−
(α2k−2

k!
ck + · · · + αk

2!
c2
)

which can be viewed as the starting values for αk−2j−1 and αk−2j−2 given by

αk−2j−1 =
Y

(k−2j−2)
k (c) − Y

(k−2j−2)
k (−c)

2c
−
(

αk−1

(2j + 1)!
c2j + · · · + αk−2j+1

3!
c2
)
,

and

αk−2j−2 =
Y

(k−2j−2)
k (c) + Y

(k−2j−2)
k (−c)

2
−
(

α2k−2

(k + 2j)!
ck+2j + · · · + αk−2j

2!
c2
)
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for j = 1, · · · , (k − 2)/2.

Let Vk denote the (k − 1)-fold integral of two-sided Brownian motion; i.e.,

Yk(t) = Vk(t) +
k!

(2k)!
t2k, t ∈ R.

We also introduce a2k−2j , for j = 1, · · · , k defined by

a2k−2j = α2k−2j, for j = 1, · · · , k/2 (3.1)

and

a2k−2j = α2k−2j −
V

(2k−2j)
k (−c) + V

(2k−2j)
k (c)

2
, for j = (k + 2)/2, · · · , k. (3.2)

The coefficients a2k−2j , for j = 2, · · · , k are given by the following recursive formula

a2k−2j =
k!

(2j)!
c2j −

(
a2k−2

(2j − 2)!
c2j−2 + · · · + a2k−2j+2

2!
c2
)
,

with

a2k−2 =
k!

2!
c2.

Now, using the expressions in (3.1) and (3.2), we can write the value of Hc,k at the point 0,

Hc,k(0), as a function of the derivatives of Vk at the boundary points −c and c and the aj ’s:

Hc,k(0) = α0

=
Yk(c) + Yk(−c)

2
−
(

α2k−2

(2k − 2)!
c2k−2 + · · · + α2

2!
c2
)

−
(

a2k−2

(2k − 2)!
+ · · · + ak

k!

)

−
(
V

(2)
k (c) + V

(2)
k (−c)

2
+

ak−2

(k − 2)!

)
ck−2

− · · · −
(
V

(k−2)
k (c) + V

(k−2)
k (−c)

2
+
a2

2!

)
c2

=
Vk(c) + Vk(−c)

2
−
(
V

(2)
k (c) + V

(2)
k (−c)

2

)
c2

2!

− · · · −
(
V

(k−2)
k (c) + V

(k−2)
k (−c)

2

)
ck−2

(k − 2)!
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+
k!

2!
c2k −

(
a2k−2

(2k − 2)!
c2k−2 +

a2k−4

(2k − 4)!
c2k−4 + · · · + a2

2!

)

=
Vk(c) + Vk(−c)

2
−
(
V

(2)
k (c) + V

(2)
k (−c)

2

)
c2

2!

− · · · −
(
V

(k−2)
k (c) + V

(k−2)
k (−c)

2

)
ck−2

(k − 2)!
+ a0.

By going back to the definition of a2k−2j for j = 0, · · · , k, we can see that a2k−2j is propor-

tional to c2j . Hence, there exists λk such that a0 = λkc
2k. One can verify numerically that

λk is negative. The plot in Figure 3.1 shows the curve of log(−λk) versus k = 4, · · · , 170.
The reason for taking the logarithmic transformation is that |λk| becomes very large for

increasing values of k, e.g. for k = 100, λk = −7.094 × 10118.

Table 3.1: Table of λk and log(−λk) for some values of even integers k.

k λk log(−λk)

4 -0.82440 -0.19309

20 −4.42832 × 1010 24.51387

30 −5.77268 × 1020 47.80483

48 −2.35131 × 1042 97.56354

100 −7.09477 × 10118 273.66439

Now, denote

Sk(c) =
Vk(c) + Vk(−c)

2
−
(
V

(2)
k (c) + V

(2)
k (−c)

2

)
c2

2!

− · · · −
(
V

(k−2)
k (c) + V

(k−2)
k (−c)

2

)
ck−2

(k − 2)!
.

However, we have

Sk(c) = Op

(
ck−1/2

)
as c→ ∞.
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Figure 3.1: The plot of log(−λk) versus k for k = 4, 8, · · · , 170.

Indeed, for 0 ≤ j ≤ k − 2,

V
(j)
k (c)

d
=

∫ c

0

(c− t)k−1−j

(k − 1 − j)!
dW (t).

By using the change of variable u = ct and W (cu)
d
=

√
cW (u), we have

V
(j)
k (c)

d
= ck−j−1

∫ 1

0

(1 − u)k−1−j

(k − 1 − j)!
dW (cu)

d
= ck−j−1/2

∫ 1

0

(1 − u)k−1−j

(k − 1 − j)!
dW (u).

Therefore, V
(j)
k (c) = Op

(
ck−j−1/2

)
as c → ∞. Similarly, V

(j)
k (−c) = Op

(
ck−j−1/2

)
and

therefore Sk(c) = Op

(
ck−1/2

)
. But since λk < 0, it follows that

P (Hc,k(0) ≥ Yk(0)) = P (Sk(c) + λkc
2k ≥ 0)

= P (Sk(c) ≥ −λkc
2k) → 0 as c→ ∞,

that is, with probability converging to 1, Hc,k and Yk have at least one point of touch as

c→ ∞.
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Now, suppose that k is odd. The proof is similar but involves a different “starting

polynomial”. Let us assume again that Hc,k and Yk do not have any point of touch in

(−c, c). Then, Hc,k would be a polynomial of degree 2k − 1 which can be fully determined

by the boundary conditions

H
(2i)
c,k (±c) =

k!

(2k − 2i)!
c2k−2i, for i = (2k − 2)/2, · · · , (k + 1)/2 , (3.3)

H
(k)
c,k (c) = ck , (3.4)

H
(k−1)
c,k (−c) = Y

(k−1)
k (−c) , (3.5)

and

H
(2i)
c,k (±c) = Y

(2i)
k (±c), for i = (k − 3)/2, · · · , 0. (3.6)

There exist coefficients α2k−1, α2k−2, · · · , α1, α0 such that

Hc,k(t) =
α2k−1

(2k − 1)!
t2k−1 +

α2k−2

(2k − 2)!
t2k−2 + · · · + α1t+ α0, t ∈ [−c, c].

The boundary conditions in (3.3) imply that α2k−1 = α2k−3 = · · · = αk+2 = 0. Also, using

the same conditions we obtain that

α2k−2 =
k!

2!
c2

and for 2 ≤ j ≤ (k − 1)/2

α2k−2j =
k!

(2j)!
c2j −

(
α2k−2

(2j − 2)!
+ · · · + α2k−2j+2

2!
c2
)
.

The “one-sided” conditions (3.4) and (3.5) imply that for j = 1, · · · , (k − 1)/2

αk = ck −
(
α2k−2

(k − 2)!
ck−2 + · · · + αk+3

(k + 3)!
c3 + αk+1c

)

and

αk−1 = Y
(k−1)
k (−c) −

(
α2k−2

(k − 1)!
ck−1 + · · · + αk+1

2!
c2 − αkc

)
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respectively. Finally, using the boundary conditions in (3.6) we obtain that

αk−2j =
Y

(k−2j−1)
k (c) − Y

(k−2j−1)
k (−c)

2c
−
(

αk

(2j + 1)!
c2j + · · · + αk−2j+2

3!
c3
)

and

αk−2j−1 =
Y

(k−2j−1)
k (−c) + Y

(k−2j−1)
k (c)

2
−
(

α2k−2

(k + 2j − 1)!
ck+2j−1 + · · · + αk−2j+1

2!
c2
)

for j = 1, · · · , (k − 1)/2.

Let Vk continue to denote the (k − 1)-fold integral of two-sided Brownian motion and

consider a2k−2, a2k−4, · · · , ak+1, ak, ak−1, · · · , a0 given by

a2k−2j = α2k−2j, for j = 1, · · · , (k − 1)/2

ak = ck −
(

a2k−2

(k − 2)!
+ · · · + ak+3

3!
c3 + ak+1c

)

ak−1 =
k!

(k + 1)!
ck+1 −

(
a2k−2

(k − 1)!
ck−1 + · · · + αk+1

2!
c2 − akc

)
,

and

ak−2j−1 =
k!

(k + 2j + 1)!
ck+2j+1 −

(
a2k−2

(k + 2j − 1)!
ck+2j−1 + · · · + ak−2j+1

2!
c2
)

for j = 1, · · · , (k − 1)/2. It follows that

Hc,k(0) = α0

=
Yk(−c) + Yk(c)

2
−
(

α2k−2

(2k − 2)!
c2k−2 +

α2k−4

(2k − 4)!
c2k−4 + · · · + α2

2!
c2
)

=
Vk(−c) + Vk(c)

2
−
(
Vk(−c) + Vk(c)

2

)
c2

2!

− · · · −
(
Vk(−c) + Vk(c)

2

)
ck−2

(k − 2)!
+ a0

= Sk(c) + a0

where

a0 =
k!

(2k)!
c2k −

(
a2k−2

(2k − 2)!
c2k−2 + · · · + a2

2!
c2
)
.
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It is easy to see that the coefficients a2k−2, a2k−4, · · · , a0 are proportional to c2, c4, · · · , c2k

respectively. Therefore, there exists λk such that a0 = λkc
2k. We can verify numerically

that λk > 0 (see Figure 3.2 and Table 3.2). But since

Sk(c) = Op

(
ck−1/2

)
,

it follows that

P (Hc,k(0) ≤ Yk(0)) = P (Sk(c) + λkc
2k ≤ 0)

= P (Sk(c) ≤ −λkc
2k)

= P (−Sk(c) ≥ λkc
2k) → 0 as c→ ∞,

which completes the proof. �

Table 3.2: Table of λk and log(λk) for some values of odd integers k.

k λk log(λk)

3 1.50833 0.41100

19 1.63896 × 1010 23.51991

29 1.42435 × 1020 46.40541

57 6.79374 × 1054 126.25559

99 5.25169 × 10117 271.06100

Corollary 3.4.1 Fix ǫ > 0 and let t ∈ (−c, c). There exists c0 > 0 such that the probability

that the process Hc,k touches Yk at two points of touch τ− and τ+ before and after the point

t is larger than 1 − ǫ for c > c0.

Proof. We focus on k even as the arguments are very similar for k odd. Consider first

t = 0. We know by Proposition 3.4.1 that, with very large probability, there exists at least

one point of touch (before or after 0) as c → ∞. By symmetry of two-sided Brownian

motion originating at 0 and hence by that of the process Yk, there exist two points of touch
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Figure 3.2: Plot of log(λk) versus k for k = 3, 5, · · · , 169.

before and after 0 with very large probability as c → ∞. Now, fix t0 6= 0 and consider the

problem of minimizing

Φc,t0(f) =
1

2

∫ c+t0

−c+t0

f2(t)dt−
∫ c+t0

−c+t0

f(t)dXk(t)

=
1

2

∫ c+t0

−c+t0

f2(t)dt−
∫ c+t0

−c+t0

f(t)(tkdt+ dW (t))

over the class of k-convex functions satisfying

f (k−2)(−c+ t0) =
k!

2!
(−c+ t0)

2, f (k−4)(−c+ t0) =
k!

4!
(−c+ t0)

4, · · · , f(−c+ t0) = (−c+ t0)
k

and

f (k−2)(c+ t0) =
k!

2!
(c+ t0)

2, f (k−4)(c+ t0) =
k!

4!
(c+ t0)

4, · · · , f(c+ t0) = (c+ t0)
k.

Since adding any constant to −c and c is irrelevant to the original minimization problem,

all the above results hold and in particular that of existence of two points of touch τ − and

τ+ before and after 0 with increasing probability as c→ ∞.
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But using the change of variable u = t− t0, Φc,t0 can be rewritten as

Φc,t0(f) =
1

2

∫ c

−c
f2(u+ t0)du−

∫ c+t0

−c+t0

f(t)(tkdt+ dW (t))

=
1

2

∫ c

−c
f2(u+ t0)du−

∫ c

−c
f(u+ t0)((u+ t0)

kdt+ dW (u+ t0))

d
=

1

2

∫ c

−c
g2(u)du−

∫ c

−c
g(u)((u + t0)

kdt+ dW (u)) (3.7)

where in (3.7), we used stationarity of the increments of W and g(u) = f(u+ t0) is k-convex

satisfying the above boundary conditions at −c and c. From the latter form of Φc,t0, we can

see that the “true” k-convex is now (t+ t0)
k defined on [−c, c]. However, the “estimation”

problem is basically the same expect and hence there exist two points of touch before and

after t0 with increasing probability as c→ ∞. �

3.4.2 Tightness

One very important element in proving the existence of the process Hk is tightness of the

process Hc,k and its (2k−1) derivatives when c→ ∞. The process Hk can be defined as the

limit of Hc,k as c→ ∞ the same way Groeneboom, Jongbloed, and Wellner (2001a) did

for the special case k = 2. In the latter case, tightness of the process Hc,2 and its derivatives

H ′
c,k, H

(2)
c,k , and H

(3)
c,k was implied by tightness of the distance between the points of touch

of Hc,2 with respect to Y2. The authors could prove using martingale arguments, that for a

fixed ǫ > 0, there exists M > 0 independent of t such that for any fixed t ∈ (−c, c),

lim sup
c→∞

P
(
[t− τ− > M ] ∩ [τ+ − t > M ]

)
≤ ǫ (3.8)

where τ− and τ+ are respectively the last point of touch before t and the first point of touch

after t.

Before giving any further details about the difficulties of proving such a property when

k > 2, we explain the difference between the result proven in (3.8) and the one stated in

Lemma 3.4.4 and Corollary 3.4.2. By the first result, we only know that not both points of

touch τ− and τ+ are “out of control” whereas our result implies that they both stay within
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a bounded distance from the point t with very large probability as c → ∞. Therefore,

we are claiming a stronger result than the one proved by Groeneboom, Jongbloed, and

Wellner (2001a). Intuitively, tightness has to be a common property of both the points

of touch and this can be seen by using symmetry of the process Yk. Indeed, since the latter

has the same law whether the Brownian motion W “runs” from −c to c or vice versa, it is

not hard to be convinced that tightness of one point of touch implies tightness of the other.

It should be mentioned here that for proving the existence of two points of touch before and

after any fixed point t, the authors claimed that this follows from arguments that are similar

to the ones used to show existence of at least one point of touch. We tried to reproduce

such arguments but we found the situation somehow different. In fact, we found that the

arguments used in the proof of Lemma 2.1 in Groeneboom, Jongbloed, and Wellner

(2001a) cannot be used similarly to prove the existence of two points of touch unless one

of these points of touch is “under control”. More formally, we need to make sure that the

existing point of touch is tight; i.e., there exists some M > 0 independent of t such that

the distance between t and this point of touch is bounded by M with a large probability

as c → ∞. We find that it is simpler to use a symmetry argument as in Corollary 3.4.1 to

make the conclusion.

As mentioned before, proving tightness was the most crucial point that led in the end to

showing the existence of the process H2. Groeneboom, Jongbloed, and Wellner (2001a)

were able to prove it by using martingale arguments but more importantly the fact that

the process Hc,2, which is a cubic spline, can be explicitly determined on the “excursion”

interval [τ−, τ+]. Indeed, in the special case of k = 2, the four conditions Hc,2(τ
−) = Y2(τ

−),

Hc,2(τ
+) = Y2(τ

+) and H ′
c,2(τ

−) = Y ′
2(τ

−), H ′
c,2(τ

+) = Y2(τ
+), implied by the fact that

H2,c ≥ Y2, yield a unique solution. The same conditions hold true for k > 2 but are

obviously not enough to determine the (2k−1)-th spline Hc,k. To do so, it seems inevitable

to consider the whole set of points of touch along with the boundary conditions at −c and

c, which is rather infeasible since, in principle, the locations of the other points of touch are

unknown. However, we shall see that we only need 2k−2 points to be able to determine the

spline Hc,k completely. For k > 2, it seems that the Gaussian problem becomes less local

as we need more than one excursion interval in order to study the properties of Hc,k and
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its derivatives at a fixed point. Although the special case k = 2 gives a lot of insight into

the general problem, the arguments by Groeneboom, Jongbloed, and Wellner (2001a)

cannot be readapted directly for the general case of k > 2. In the proof of Lemma 3.4.4, we

skip many technical details as the tightness problem is very similar to the gap problem for

the LSE and MLE studied in great detail in Chapter 2. We will also restrict ourselves to k

even as the case k odd can be handled similarly.

In order to make use of the techniques developed in Chapter 2 for solving the gap

problem, it is very beneficial to first change the minimization problem from its current

version to the slightly different one where we minimize,

1

2

∫ c
1

2k+1

−c
1

2k+1

g2(t)dt−
∫ c

1
2k+1

−c
1

2k+1

g(t)(tkdt+ dW (t)) (3.9)

over the class of k-convex functions on [−c1/(2k+1), c1/(2k+1)] satisfying

g(c
1

2k+1 ) = c
k

2k+1 , g′′(c
1

2k+1 ) =
k!

(k − 2)!
c

k−2
2k+1 , · · · , g(k−2)(c

1
2k+1 ) =

k!

(2)!
c

2
2k+1 .

Now using the change of variable t = c1/(2k+1)u, we can write

1

2

∫ c
1

2k+1

−c
1

2k+1

g2(t)dt−
∫ c

1
2k+1

−c
1

2k+1

g(t)dXk(t)

d
= c

1
2k+1

1

2

∫ 1

−1
g2(c

1
2k+1u)du−

∫ 1

−1
g(c

1
2k+1u)(c

k+1
2k+1ukdu+ dW (c

1
2k+1u))

d
= c

1
2k+1

1

2

∫ 1

−1
g2(c

1
2k+1u)du−

∫ 1

−1
g(c

1
2k+1u)

(
c

k+1
2k+1ukdu+ c

1
2(2k+1) dW (u)

)

d
= c

1
2k+1

1

2

∫ 1

−1
g2(c

1
2k+1u)du−

∫ 1

−1
g(c

1
2k+1u)

(
c

k+1
2k+1ukdu+ c

1
2(2k+1)

√
c
dW (u)√

c

)

d
= c

1
2k+1

1

2

∫ 1

−1
g2(c

1
2k+1u)du−

∫ 1

−1
g(c

1
2k+1u)

(
c

k+1
2k+1ukdu+ c

k+1
2k+1

dW (u)√
c

)

d
= c

1
2k+1

(
1

2

∫ 1

−1
g2(c

1
2k+1u)du−

∫ 1

−1
g(c

1
2k+1u)c

k
2k+1

(
ukdu+

dW (u)√
c

))
.

If we set

g(c
1

2k+1u) = c
k

2k+1h(u)

then the problem is equivalent to minimizing
(

1

2

∫ 1

−1
c

2k
2k+1h2(u)du −

∫ 1

−1
c

2k
2k+1h(u)

(
ukdu+

dW (u)√
c

))
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or simply minimizing

1

2

∫ 1

−1
h2(u)du−

∫ 1

−1
h(u)

(
ukdu+

dW (u)√
c

)
, (3.10)

over the class of k-convex function on [−1, 1] satisfying

h(±1) = 1, h′′(±1) =
k!

(k − 2)!
, · · · , h(k−2)(±1) =

k!

2!
. (3.11)

With this new criterion function, the situation is very similar to the “finite sample” one.

Indeed, as the Gaussian noise vanishes away at a rate of 1/
√
c as c → ∞, one can view

tkdt+dW (t)/
√
c as a “continuous” analogue to dGn(t) (Gn being the empirical distribution)

where the true k-monotone density is replaced by the k-convex function tk. Existence and

characterization of the minimizer of the criterion function in (3.10) follow from arguments

that are very similar to the ones used in the original problem. Furthermore, if h̃c denotes the

minimizer, we claim that the number of jump points of h̃
(k−1)
c that are in the neighborhood

of a fixed point t increases to infinity, and the distance between two successive jump points

is of the order c−1/(2k+1) as c→ ∞. To establish this result, we need the following definition

and lemma:

Definition 3.4.1 Let f be a sufficiently differentiable function on a finite interval [a, b], and

t1 ≤ · · · ≤ tm be m points in [a, b]. The Lagrange interpolating polynomial is the unique

polynomial P of degree m−1 which passes through (t1, f(t1)), · · · , (tm, f(tm)). Furthermore,

P is given by its Newton form

P (t) =
m∑

j=1

f(tj)
m∏

k=1
k 6=j

(t− tk)

(tj − tk)

or Lagrange form

P (t) = f(t1) + (t− t1)[t1, t2]f + · · · + (t− t1) · · · (t− tm)[t1, · · · , tm]f

where [x1, · · · , xp]g denotes the divided difference of g of order p (see, e.g., de Boor (1978),

Nürnberger (1989), DeVore and Lorentz (1993)).
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Lemma 3.4.1 Let g be an m-convex function on a finite interval [a, b]; i.e., g(m−2) exists

and is convex on (a, b), and let lm(g, x, x1, · · · , xm) be the Lagrange polynomial of degree

m− 1 interpolating g at the points xi, 1 ≤ i ≤ m, where a < x1 ≤ x2 ≤ · · · ≤ xm < b. Then

(−1)m+i (g(x) − lm(g, x, x1, · · · , xm)) ≥ 0, x ∈ [xi, xi+1], i = 1, · · · ,m− 1.

Proof. See, e.g., Ubhaya (1989), (a), page 235 or Kopotun and Shadrin (2003), Lemma

8.3, page 918. �

The following lemma states consistency of the LS solution. It is very crucial for proving

tightness of the distance between successive points of touch of Hc,k and Yk.

Lemma 3.4.2 For j ∈ {0, · · · , k − 1}, we have
∣∣∣∣h̃

(j)
c (t) − k!

(k − j)!
tk−j

∣∣∣∣→ 0, almost surely as c→ ∞.

Proof. We will prove the result for t = 0 as the arguments are similar in the general case.

Let us denote

ψc(h) =
1

2

∫ 1

−1
h2(t)dt−

∫ 1

−1
h(t)dHc(t)

where

dHc(t) = tkdt+
dW (t)√

c
.

Since h̃c is the minimizer of ψc, then

lim
ǫ→0

ψ(h̃c + ǫh̃c) − ψ(h̃c)

ǫ
= 0

implying that

∫ 1

−1
h̃2

c(t)dt =

∫ 1

−1
h̃c(t)dHc(t). (3.12)

Also, for any k-convex function g defined on (−1, 1) that satisfies the boundary conditions

in (3.11), we have

lim
ǫց0

ψ((1 − ǫ)h̃c + ǫg) − ψ(h̃c)

ǫ
≥ 0
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and therefore
∫ 1

−1
(g(t) − h̃c(t))h̃c(t)dt−

∫ 1

−1
(g(t) − h̃c(t))dHc(t) ≥ 0. (3.13)

Let us denote h0(t) = tk, dH0(t) = h0(t)dt, and dH̃c(t) = h̃c(t)dt. If we take g = h0 in

(3.13), it follows that
∫ 1

−1
(h̃c(t) − h0(t))d(H̃c(t) − Hc(t)) ≤ 0. (3.14)

Now the equality in (3.12) can be rewritten as
√∫ 1

−1
h̃2

c(t)dt =

∫ 1

−1
ũc(t)dHc(t)

where ũc = h̃c/‖h̃c‖2 is a k-convex function on [−1, 1] such that

‖ũc‖2 = 1, and ũ(2j)
c (±1) =

k!

(k − 2j)!‖h̃c‖2

for j = 0, · · · , (k − 2)/2.

We want to show that the function limc→∞ h̃c(t) = h0(t) for all t ∈ (−1, 1). Let us take

c = c(n) = n. We start by showing that the sequence (h̃n)n is uniformly bounded on (−1, 1);

i.e., there exists a constant M > 0 independent of n such that ‖h̃n‖∞ < M for all n ∈ N.

Suppose it is not. This implies that (h̃
(k−2)
n )n is not bounded because if it was, we can find

M > 0 such that for all n > 0,

|h̃(k−2)
n (t)| ≤M,

for t ∈ (−1, 1). By integrating h̃
(k−2)
n twice and using the boundary conditions at −1 and

1, it follows that

h̃(k−4)
n (t) =

∫ t

−1
(t− s)h(k−2)

n (s)ds−
(

1

2

∫ 1

−1
(1 − s)h̃(k−2)

n (s)ds

)
(t+ 1) +

k!

2!

and therefore

‖h̃(k−4)
n ‖∞ ≤ 2M + 2M +

k!

2!
= 4M +

k!

2!
.

By induction, it follows that (h̃n)n has to be bounded. We conclude that h̃
(k−2)
n is not

bounded. Now, using convexity of h̃
(k−2)
n and the same arguments of Proposition 3.3.1, this

implies that we can find a subsequence (h̃n′)n′ such that limn′→∞ ‖h̃n′‖2 = ∞. Therefore,

lim
n′→∞

ũ
(2j)
n′ (−1) = lim

n′→∞
ũ

(2j)
n′ (1) = 0.
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for j ∈ {0, · · · , (k − 2)/2}.
In the limit, the derivatives of ũn′ are “pinned down” at ±1 and this implies that for

large n′, ũ(2j)
n′ (±), j = 0, · · · , (k − 1)/2 stay close to 0. On the other hand, we know that

‖ũn′‖∞ = 1. Therefore, the convex function ũ
(k−2)
n has to be uniformly bounded by the same

arguments of Proposition 3.3.1. It follows that there exists M > 0 such that ‖ũn′‖∞ < M .

By Arzelà-Ascoli’s theorem, we can find a subsequence (ũn′′)n′′ and a function ũ such that

lim
n′′→∞

ũn′′(t) = ũ(t)

for all t ∈ (−1, 1). But since
∫ 1
−1 |ũ|dH0(t) ≤ 2M/(k + 1) <∞, it follows that

lim
n′′→∞

∫ 1

−1
ũn′′(t)dHn′′(t) =

∫ 1

−1
ũ(t)dH0(t) <∞. (3.15)

But recall that
∫ 1

−1
ũn′′(t)dHn′′(t) = ‖h̃n′′‖2

2 → ∞

as n′′ → ∞. Since this contradicts the result in (3.15), it follows that there exists M > 0

such that ‖h̃n‖∞ < M .

Now, we can find a subsequence (h̃nl
)nl

and a function h̃ such that

lim
nl→∞

h̃nl
(t) = h̃(t)

for t ∈ (−1, 1). By Fatou’s lemma, we have
∫ 1

−1
(h̃(t) − h0(t))

2dt ≤ lim inf
nl→∞

∫ 1

−1
(h̃nl

(t) − h0(t))
2dt.

On the other hand, it follows from (3.14) that
∫ 1

−1
(h̃nl

(t) − h0(t))d(H̃nl
(t) − Hnl

(t)) ≤ 0.

Thus we can write
∫ 1

−1
(h̃nl

(t) − h0(t))
2dt

=

∫ 1

−1
(h̃nl

(t) − h0(t))d(H̃nl
(t) −H0(t))

=

∫ 1

−1
(h̃nl

(t) − h0(t))d(H̃nl
(t) − Hnl

(t)) +

∫ 1

−1
(h̃nl

(t) − h0(t))d(Hnl
(t) −H0(t))

≤
∫ 1

−1
(h̃nl

(t) − h0(t))d(Hnl
(t) −H0(t)) →a.s. 0, as nl → ∞,
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since h̃nl
−h0 is bounded and

∫ 1
−1 h0(t)dt <∞ (which implies that h̃nl

−h0 has an envelope

∈ L1(H0)). We conclude that
∫ 1

−1
(h̃(t) − h0(t))

2dt ≤ 0

and therefore h̃ ≡ h0 on (−1, 1). Since the choice c(n) = n is irrelevant for the arguments

above, we make the same conclusion with any other increasing sequence cn such that cn →
∞. It follows that limc→∞ h̃c(t) = h0(t) . What should also be retained from the above

arguments is the uniform boundedness of the derivatives of h̃
(l)
c , l = 1, · · · , k − 2. This

is not guaranteed in general but k-convexity plays together with the fact that h̃
(2j
c , j =

1, · · · , (k − 2)/2 have fixed values at −1 and 1 play a crucial role. A proof of this fact

follows from using induction and arguments that are similar to the ones used in the proof

of Proposition 3.3.1.

Now, fix t = 0. We will show that we have also consistency of the derivatives of h̃c. For

that, consider x0, x1, · · · , xk−1 < 1 to be k points such that 0 = x0 ≤ x1 ≤ · · · ≤ xk−1. By

taking m = k and i = 2 in Lemma 3.4.1, we have for all t ∈ [x1, x2]

h̃c(t) ≥ h̃c(x0) + (t− x0)h̃c[x0, x1]

+ · · · + (t− x0)(t− x1) · · · (t− xk−2)h̃c[x0, x1, · · · , xk−1]. (3.16)

If we take x0 = x1, then the inequality in (3.16) can be rewritten as

h̃c(t) ≥ h̃c(x0) + (t− x0)h̃
′
c(x0) + (t− x0)

2h̃c[x0, x0, x2]

+ · · · + (t− x0)
2(t− x2) · · · (t− xk−2)h̃c[x0, x0, x2 · · · , xk−1]

or equivalently

h̃′c(x0) ≤ h̃c(t) − h̃c(x0)

t− x0
− (t− x0)

(
h̃c[x0, x0, x2]

+ · · · + (t− x2) · · · (t− xk−2)h̃c[x0, x0, x2 · · · , xk−1]

)
.

since t ≥ x0. Furthermore, since |h̃′c(x0)| is bounded, we can find a sequence (h̃n)n such that

the divided differences h̃n[x0, x0, x2], · · · , h̃n[x0, x0, x2, · · · , xk−1] converge to finite limits as

n→ ∞. For instance, we have

h̃n[x0, x0, x2] =
1

x2 − x0

(
h̃n(x2) − h̃n(x1)

x2 − x0
− h̃′n(x0)

)
.
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If we denote l(x0) = limn→∞ h̃′n(x0), then

lim
n→∞

h̃n[x0, x0, x2] =
1

x2 − x0

(
h̃0(x2) − h̃0(x1)

x2 − x0
− l(x0)

)

.

The same reasoning can be applied for the remaining divided differences. By letting n→ ∞
and then tց x0, it follows that

lim sup
n→∞

h̃′n(x0) ≤ h′0(x0); i.e.,

lim sup
n→∞

h̃′n(0) ≤ h′0(0).

Now, we need to exploit the inequality from above and for that consider x−1 ≤ x0 ≤ x1 ≤
· · · ≤ xk−2 to be k points, where x0 = 0 and x1, · · · , xk−2 can be taken to be the same as

before. For all t ∈ [x1, x2], we have

h̃c(t) ≤ h̃c(x−1) + (t− x−1) h̃c[x−1, x0]

+ · · · + (t− x−1)(t− x0) · · · (t− xk−3) h̃c[x−1, x0 · · · , xk−2].

In this case, we have i = 3 (see Lemma 3.4.1). If we take x−1 = x0 = x1, then for all

t ∈ [x0, x2] we have

h̃′c(x0) ≥ h̃c(t) − h̃c(x0)

t− x0
− (t− x0)

(
(t− x0)

h̃′′c (x0)

2

+ · · · + (t− x0)
2 · · · (t− xk−3) h̃c[x0, x0, x0 · · · , xk−2]

)
.

Using the fact that |h′′c (x0)| is bounded and the same reasoning as before, we obtain that

lim inf
n→∞

h̃′n(x0) ≥ h′0(x0); i.e.,

lim inf
n→∞

h̃′n(0) ≥ h′0(0).

Combining both inequalities, we can write

h′0(0) ≤ lim inf
n→∞

h̃′n(0) ≤ lim sup
n→∞

h̃′n(0) ≤ h′0(0)
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and hence limc→∞ h̃′c(0) = h′0(0). An induction argument can be used to show that con-

sistency holds true for h̃
(j)
c (0), j = 2, · · · , k − 2. As for the last derivative, we apply the

well-known chord inequality satisfied by convex functions: For all h > 0, we have

h̃
(k−2)
c (0) − h̃

(k−2)
c (−h)

−h ≤ h̃(k−1)
c (0−) ≤ h̃(k−1)

c (0+) ≤ h̃
(k−2)
c (h) − h̃

(k−2)
c (0)

h
.

We obtain the result by letting c→ ∞ and then hց 0. �

Before we state the main lemma of this section, we give first a characterization for the

minimizer h̃c:

Lemma 3.4.3 Let Y 1
c be the process defined on [−1, 1] by

Y 1
c (t)

d
=






1√
c

∫ t
0

(t−s)k−1

(k−1)! dW (s) + k!
(2k)! t

2k, if t ∈ [0, 1]

1√
c

∫ 0
t

(t−s)k−1

(k−1)! dW (s) + k!
(2k)! t

2k, if t ∈ [−1, 0)

and H1
c be the k-fold integral of h̃c that satisfies the boundary conditions

d2jH1
c

dt2j
|t=±c =

d2jY 1
c

dt2j
|t=±c,

for j = 0, · · · , (k − 2)/2. The minimizer h̃c is characterized by the conditions:

H1
c (t) ≥ Y 1

c (t), for all t ∈ [−1, 1]

and

∫ 1

−1

(
H1

c (t) − Y 1
c (t)

)
dh̃(k−1)

c (t) = 0.

Proof. The arguments are very similar to those used in the proof of Lemma 3.3.2. �

Lemma 3.4.4 Let t be a fixed point in (−1, 1) and suppose that the conjectured Lemma

2.5.4 holds. If τ−c and τ+
c are the last (first) point of touch between of H 1

c and Y 1
c before

(after) t, then

τ+
c − τ−c = Op(c

−1/(2k+1)).
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Proof. As the minimization problem was changed so that the setting is very similar to that

of the LS problem for estimating a k-monotone density (see Chapter 2), we can apply the

result obtained in Lemma 2.5.9. In fact, consistency of h̃
(k−1)
c at the point t and the fact that

h0(t) = tk is k-times differentiable with h
(k)
0 (t) = k! > 0 force the number of points of change

of slope of h̃
(k−2)
c to increase to infinity almost surely as c → ∞. If τc,0 < · · · < τc,2k−3 are

2k− 2 jump points of h̃
(k−1
c that are in a small neighborhood of t, then H 1

c is a polynomial

spline of degree 2k − 1 and simple knots τc,0, · · · , τc,2k−3. Furthermore, H̃c is the unique

solution of the following Hermite problem:

H1
c (τj) = Y 1

c (τj), and (H1
c )′(τj) = (Y 1

c )′(τj)

for j = 0, · · · , 2k − 3. By Lemma 2.5.9, it follows that

τc,2k−3 − τc,0 = Op(c
−1/(2k+1)).

As we are free to choose τc,2k−3 and τc,0 to be located to the left and right of t (as long as

they are in a small neighborhood of t), it follows that

τ+
c − τ−c = Op(c

−1/(2k+1)).

�

Corollary 3.4.2 Let t be a fixed point in (−c, c). If τ−c and τ+
c now denote the last (first)

point of touch between of Hc and Yc before (after) t, then

τ+
c − τ−c = Op(1),

and hence for any ǫ > 0 there exists M = M(ǫ) > 0 such that

lim sup
c→∞

P (τ+
c − t > M or t− τ− > M) ≤ ǫ.

Proof. Recall that

g(c1/(2k+1)t) = ck/(2k+1)h(t), for all t ∈ [−1, 1]
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where g and h belong to the k-convex class defined in the original and new minimization

problems respectively. Therefore, if t−c and t+c are two successive jump points of h̃
(k−1)
c in the

neighborhood of some fixed point t ∈ (−1, 1), then τ−c = c1/(2k+1)t−c and τ+
c = c1/(2k+1)t+c

are successive jump points of g̃
(k−1)
c . Therefore,

τ+
c − τ−c = c1/(2k+1)(t+c − t−c ) = Op(1).

�

Remark 3.4.1 Despite the complexity of the tightness problem for k > 2, we can view it

in a simple heuristic way. Recall that in the original Gaussian problem defined in (2.5), we

want to “estimate” the k-convex function t 7→ tk. The Least Squares estimate on a finite

interval [−c, c] is a spline of degree k − 1 whose knots are exactly the points of touch of the

process Hc,k with respect to Yk. As c → ∞, we expect that the Least Squares estimator to

be close to the estimated function. Since the latter is infinitely differentiable, the knots of

the estimator need to stay tight in order to “compensate” the difference of smoothness.

Lemma 3.4.5 Let c > 0 and Hc,k be the k-fold integral of fc,k the minimizer of Φc over the

class Ck,m1,m2
(resp. Ck,m0,m1,m2

) with m1 = m2 =
(
(k!/2!)c2 , · · · , (k!/(k − 2)!)ck−2

)
(resp.

m0 = ck, m1 = m2 =
(
(k!/2!)c2, · · · , (k!/(k − 1)!)ck−1

)
) if k is even (resp. odd) . Then, for

a fixed t ∈ R, the collections {f (j)
c,k (t) − f

(j)
0 (t)}c,k≥|t|, j = 0, · · · , k − 1 are tight; here f

(k−1)
c,k

can either be the right or left (k − 1)-st derivative of fc.

Proof. We will prove the lemma for k is even and t = 0 (the cases k odd or t 6= 0

can be handled similarly). We start with j = 0. Fix ǫ > 0 and denote ∆ = Hc − Yk.

By Corollary 3.4.2 and for c large enough, there exist M > 0 and a point of touch of

τ1 ∈ [M, 3M ] with probability greater than 1 − ǫ. Applying the same reasoning, there

exists M > 0 (maybe at the cost of increasing M) such that we can find points of touch

τ2 ∈ [4M, 6M ], τ3 ∈ [7M, 9M ], · · ·, τ2k−1 ∈ [
(
3 · 2k−1 − 2

)
M, 3 · 2k−1M ] with probability

greater than 1 − ǫ. Since at any point of touch τ , ∆′(τ) = 0, then by the mean value
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theorem, there exist τ
(2)
1 ∈ (τ1, τ2), τ

(2)
2 ∈ (τ3, τ4), · · ·, τ (2)

2k−2 ∈ (τ2k−1−1, τ2k−1) such that

∆(2)(τ
(2)
j ) = 0, j = 1, · · · , 2k−2. By applying the mean value theorem successively k−3 more

times, we can find τ
(k−1)
1 < τ

(k−1)
2 ∈ [M, 3 · 2k−1M ] such that ∆(k−1)(τ

(k−1)
i ) = 0, i = 1, 2

and τ
(k−1)
2 − τ

(k−1)
1 ≥M . Finally, there exists τ (k) = ξ1 ∈ (τ

(k−1)
1 , τ

(k−1)
2 ) such that

f
(k)
c,k (ξ1) = H(k)

c (ξ1)

=
H

(k−1)
c,k (τ

(k−1)
2 ) −H

(k−1)
c,k (τ

(k−1)
1 )

τ
(k−1)
2 − τ

(k−1)
1

=
Y

(k−1)
k (τ

(k−1)
2 ) − Y

(k−1)
k (τ

(k−1)
1 )

τ
(k−1)
2 − τ

(k−1)
1

=
W (τ

(k−1)
2 ) −W (τ

(k−1)
1 )

τ
(k−1)
2 − τ

(k−1)
1

+
1

k + 1

(
τ

(k−1)
2

)k+1
−
(
τ

(k−1)
1

)k+1

τ
(k−1)
2 − τ

(k−1)
1

and therefore

|f (k)
c,k (ξ1)| ≤

∣∣∣W (τ
(k−1)
2 ) −W (τ

(k−1)
1 )

∣∣∣
M

+
(
3 2k−1M

)k

≤ C

M
+
(
3 · 2k−1M

)k

for some constant C = C(M) > 0 by tightness of W and stationarity of its increments, and

using the fact that yk+1−xk+1 = (y−x)(xk +xk−1y+ · · ·+yk). In general, we can find k−2

points ξ1 < · · · < ξk−2 to the right of 0 such that ξ1 ∈ [M, 3M ], the distance between any ξi

and ξj, i 6= j is at least M and fc,k(ξi) is tight for i = 1, · · · , k−2. Similarly and this time to

the left of 0, we can find two points of touch ξ−2 < ξ−1 such that ξ−1 ∈ [−3 · 2k−1M,−M ],

ξ−1 − ξ−2 ≥ M and fc,k(ξ−1) and fc(ξ−2) are tight. In total, we have k points that are at

least M -distant from each other and we are ready to apply Lemma 3.4.1. Hence, if we take

g = fc,k, m = k, i = 2, and x1 = ξ−2, x2 = ξ−1, x3 = ξ1, · · ·, xk = ξk−2, we have for all

t ∈ (ξ−1, ξ1)

fc,k(t) ≥ fc,k(ξ−2) + (t− ξ−2) [ξ−2, ξ−1]fc,k + (t− ξ−2)(t− ξ−1) [ξ−2, ξ−1, ξ1]fc,k

+ · · · + (t− ξ−2)(t− ξ−1) · · · (t− ξk−3) [ξ−2, ξ−1 · · · , ξk−2]fc,k.
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In particular, when t = 0 we have

fc,k(0) ≥ fc,k(ξ−2) − ξ−2 [ξ−2, ξ−1]fc,k + ξ−2ξ−1 [ξ−2, ξ−1, ξ1]fc,k

+ · · · + (−1)k−1ξ−2ξ−1 · · · ξk−3 [ξ−2, ξ−1, · · · , ξk−2]fc,k

which is tight by construction of ξi, i = −2,−1, 1, · · · , k−2. Now, by adding a point ξk−1 to

the right and ξk−2 such that ξk−1 − ξk−2 ≥M and considering the points ξ−1, ξ1, · · · , ξk−1,

we apply Lemma 3.4.1 (with i = 1) to bound fc,k(0) by above:

fc,k(0) ≤ fc,k(ξ−1) − ξ−1 [ξ−1, ξ1]fc,k + ξ−1ξ1[ξ−1, ξ1, ξ2]fc,k

+ · · · + (−1)k−1ξ−1ξ1 · · · ξk−2[ξ−1, ξ1, · · · , ξk−1]fc,k

which is again tight.

Now if j = 1, · · · , k − 3, the argument is entirely similar where k − j is the number of

points of touch needed to prove tightness. For j = k − 2, we can bound f
(k−2)
c,k (0) from

above by considering two points of touch ξ−1 ≤ −M and M ≤ ξ1 and using convexity of

f
(k−2)
c,k (which follows also from Lemma 3.4.1 in the particular case where g is convex). To

bound f
(k−2)
c,k (0) from below, we use a similar argument as in the proof of Proposition 3.3.1.

Finally, for j = k − 1, consider again ξ−1 and ξ1. By convexity of f
(k−2)
c,k , we have

f
(k−2)
c,k (0) − f

(k−2)
c,k (ξ−1)

ξ−1
≤ f

(k−1)
c,k (0−) ≤ f

(k−1)
c,k (0+) ≤

f
(k−2)
c,k (ξ1) − f

(k−2)
c,k (0)

ξ1

hence,

|f (k−1)
c,k (0)| ≤ max

{∣∣∣∣
f

(k−2)
c,k (0) − f

(k−2)
c,k (ξ−1)

ξ−1

∣∣∣∣,
∣∣∣∣
f

(k−2)
c,k (ξ1) − f

(k−2)
c,k (0)

ξ1

∣∣∣∣

}

which is bounded with large probability by tightness of f
(k−2)
c,k (t), t ∈ (−c, c) and construc-

tion of ξ−1 and ξ1. �

3.5 Proof of Theorem 3.2.1

We use similar arguments as in the proof of Theorem 2.1 in Groeneboom, Jongbloed,

and Wellner (2001a) and for convenience, we adopt their notation. We assume here that
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k is even since the arguments are very similar for k odd. For m > 0 fixed, consider the

semi-norm

‖H‖m = sup
t∈[−m,m]

{|H(t)| + |H ′(t)| + · · · + |H (2k−2)(t)|}

on the space of (2k − 2)−continuously differentiable functions defined on R. By Lemma

3.4.5, we know if we take c(n) = n that the collection {f (k−2)
n,k (t) − f

(k−2)
0 (t)}n>M is tight

for any fixed t ∈ [−M,M ], in particular for t = 0. Furthermore, by the same lemma, we

know that the collections {f (k−1)
n,k (t−)} and {f (k−1)

n,k (t+)} are also tight for t ∈ [−M,M ].

By monotonicity of f
(k−1)
n,k , it follows that the sequence

(
f

(k−2)
n,k

)
has uniformly bounded

derivatives on [−M,M ]. Therefore, by Arzelà-Ascoli, the sequence
(
f

(k−2)
n,k |[−M,M ]

)
has a

subsequence
(
f

(k−2)
nl,k

|[−M,M ]
)
≡
(
H

(2k−2)
nl,k

|[−M,M ]
)

converging in the supremum metric

on C[−M,M ] to a bounded convex function on [−M,M ]. By the same theorem, we can find

a further subsequence
(
H

(2k−3)
np,k |[−M,M ]

)
converging in the same metric to a bounded func-

tion on [−M,M ]. Applying Arzelà-Ascoli (2k− 3) times, we can find a further subsequence
(
Hnq,k|[−M,M ]

)
that converges in the supremum metric on C[−M,M ].

Now, fix m in N and let n > m. For any sequence (Hn,k), we can find a subsequence

(Hnj ,k) so that (Hnj ,k|[−m,m]) converges in the metric ‖H‖m to a limit H
(m)
k that is

(2k)−convex on [−m,m]; i.e., its (2k−2)-th derivative, f
(m)
k , is convex on [−m,m]. Finally,

by a diagonal argument, we can extract from any sequence (Hn,k) a subsequence (Hnj ,k)

converging to a limit Hk in the topology induced by the semi-norms ‖H‖m,m ∈ N. The limit

Hk is clearly 2k-convex. Besides, it preserves by construction the properties (3.10) and (3.11)

in the characterization of Hn,k ≡ Hc(n),k. On the other hand, since H
(j)
n,k(±c) = Y

(j
k (±c) for

j = 0, 2, · · · , k, it follows that lim|t|→∞H
(j)
k (t) − Y

(j)
k (t) = 0 for j = 0, 2, · · · , k. Thus Hk

satisfies the conditions (i)-(iv) of Theorem 3.2.1. It remains only to show that this process

is unique. �

To prove uniqueness of Hk, we need the following lemma:

Lemma 3.5.1 Let Gk be a 2k-convex function on R that satisfies

lim
|t|→∞

(G
(k−2)
k (t) − Y

(k−2)
k (t)) = 0
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if k is even, and

lim
|t|→∞

(G
(k−3)
k (t) − Y

(k−3)
k (t)) = 0

if k is odd. Let gk = G
(k)
k and fix ǫ > 0. Then,

(i) For any fixed M2 ≥ M1 > 0, and a and b such that |a| < |b| are large enough and

M2 ≥ |b| − |a| ≥M1, we can find a positive constant K = K(ǫ,M1,M2) such that

P (‖G(j)
k − Y

(j)
k ‖[a,b] > K) ≤ ǫ

for j = 0, · · · , k − 1.

(ii) For any fixed M2 ≥ M1 > 0, and a and b such that |a| < |b| are large enough and

M2 ≥ |b| − |a| ≥M1, we can find a positive constant K = K(ǫ,M1,M2) such that

P (‖g(j)
k − f

(j)
0,k‖[a,b] > K) ≤ ǫ

for j = 0, · · · , k − 1, where f0,k(t) = tk.

Proof. We develop the arguments only in the case of k even (k odd can be handled

similarly). We start by proving (ii) and for that we fix δ > 0. Without loss of generality, we

can take M1 = M2 = M . Since limt→∞(G
(k−2)
k (t)− Y

(k−2)
k (t)) = 0, then there exists A > 0

such that

|G(k−2)
k (t) − Y

(k−2)
k (t)| < δ

for all t > A. Let t0 > A and t1 = t0 + M , and t2 = t0 + 2M , where M is some positive

constant. By the mean value theorem, there exists ξ ∈ (t0, t1) such that

G
(k−1)
k (ξ) − Y

(k−1)
k (ξ) =

(G
(k−2)
k (t1) − Y

(k−2)
k (t1)) − (G

(k−2)
k (t0) − Y

(k−2)
k (t0))

t1 − t0
(3.17)

and hence

∣∣∣∣G
(k−1)
k (ξ) − Y

(k−1)
k (ξ)

∣∣∣∣ ≤
2δ

M
.



148

From now on, we take δ = 1. For all t ∈ [t1, t2], we can write

G
(k−2)
k (t) − Y

(k−2)
k (t) = G

(k−2)
k (t1) − Y

(k−2)
k (t1) +

∫ t

t1

(G(k−1)(s) − Y
(k−1)
k (s))ds

= G
(k−2)
k (t1) − Y

(k−2)
k (t1) +

∫ t

t1

∫ s

ξ
d(G(k−1)(u) − Y

(k−1)
k (u))ds

+(t− t1)(G
(k−1)
k (ξ) − Y

(k−1)
k (ξ))

= G
(k−2)
k (t1) − Y

(k−2)
k (t1) +

∫ t

t1

∫ s

ξ
(gk(u) − f0,k(u))duds

+

∫ t

t1

∫ s

ξ
dW (u)ds + (t− t1)(G

(k−1)
k (ξ) − Y

(k−1)
k (ξ))

(3.18)

and hence

inf
t∈[t0,t2]

|gk(t) − f0,k(t)| <
8(6 +M C/2)

M2
(3.19)

where C = C(M, ǫ) such that

P (|W (t)| < C, t ∈ [0, 2M ]) > 1 − ǫ.

Indeed, from (3.18), we have for all t ∈ [(t1 + t2)/2, t2]

∣∣∣∣

∫ t

t1

∫ s

ξ
(gk(u) − f0,k(u))duds

∣∣∣∣

≤
∣∣∣∣G

(k−2)
k (t) − Y

(k−2)
k (t)

∣∣∣∣+
∣∣∣∣G

(k−2)
k (t1) − Y

(k−2)
k (t1)

∣∣∣∣

+

∫ t

t1

|W (s) −W (ξ)|dsdu+ (t− t1)

∣∣∣∣G
(k−1)
k (ξ) − Y

(k−1)
k (ξ)

∣∣∣∣

≤ 2 + (t− t1) C + 2M
2

M
, using stationarity of the increments of W

= 6 +M C/2 (3.20)

with probability greater than 1 − ǫ. Now, since

inf
y∈[t0,t2]

|gk(y) − f0,k(y)| ≤
∣∣∣∣

∫ t

t1

∫ s

ξ
(gk(u) − f0,k(u))duds

∣∣∣∣/
∫ t

t1

∫ s

ξ
duds

≤
∣∣∣∣

∫ t

t1

∫ s

ξ
(gk(u) − f0,k(u))duds

∣∣∣∣/
∫ t

t1

∫ s

t1

duds, since ξ ≤ t1

= 2

∣∣∣∣
∫ t

t1

∫ s

ξ
(gk(u) − f0,k(u))duds

∣∣∣∣/(t− t1)
2



149

≤ 8

M2

∣∣∣∣
∫ t

t1

∫ s

ξ
(gk(u) − f0,k(u))duds

∣∣∣∣, since t− t1 ≥M/2,

(3.21)

the inequality in (3.19) follows by combining (3.20) and (3.21).

Now, consider two other points to the left of t2, t3 = t0 + 3M and t4 = t0 + 4M . By

using similar arguments, we can find ξ0 ∈ [t0, t2] and ξ1 ∈ (t2, t3) such that

∣∣∣∣g0(ξ0) − f0,k(ξ0)

∣∣∣∣ = inf
u∈[t0,t2]

∣∣∣∣g0(u) − f0,k(u)

∣∣∣∣

and

G
(k−1)
k (ξ1) − Y

(k−1)
k (ξ1) =

(G
(k−2)
k (t3) − Y

(k−2)
k (t3)) − (G

(k−2)
k (t2) − Y

(k−2)
k (t2))

t3 − t2
.

For t ∈ [(t3 + t4)/2, t4], we can write

G
(k−2)
k (t) − Y

(k−2)
k (t) = G

(k−2)
k (t3) − Y

(k−2)
k (t3) +

∫ t

t3

∫ s

ξ1

∫ u

ξ0

(g′k(y) − f ′0,k(y))dyduds

+(g′k(ξ0) − f ′0,k(ξ0))

∫ t

t3

∫ s

ξ1

duds +

∫ t

t3

∫ s

ξ1

dW (u)ds

+(t− t3)(G
(k−1)
k (ξ1) − Y

(k−1)
k (ξ1)).

As argued above, we can find a constant D > 0 depending on M and ǫ such that

inf
u∈[t0,t4]

∣∣∣∣g
′
k(u) − f ′0,k(u)

∣∣∣∣ < D

with probability greater than 1 − ǫ. By induction, we can show that there exist an integer

pk > 0 and a constant Dk > 0 depending on M and ǫ such that

inf
u∈[t0,tpk

]

∣∣∣∣g
(k−2)
k (u) − f

(k−2)
0,k (u)

∣∣∣∣ < Dk

with probability greater than 1 − ǫ and where tpk
= t0 + pkM .

By repeating the arguments above, we can find ξk,1 ∈ [t0, tpk
] and and ξk,2 ∈ [tpk

+

M, t2pk
+M ] (maybe at the cost of increasing t0) such that

∣∣∣∣g
(k−2)
k (ξk,1) − f

(k−2)
0,k (ξk,1)

∣∣∣∣ = inf
u∈[t0,tpk

]

∣∣∣∣g
(k−2)
k (u) − f

(k−2)
0,k (u)

∣∣∣∣
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and
∣∣∣∣g

(k−2)
k (ξk,2) − f

(k−2)
0,k (ξk,2)

∣∣∣∣ = inf
u∈[tpk

+M,t2pk
+M ]

∣∣∣∣g
(k−2)
k (u) − f

(k−2)
0,k (u)

∣∣∣∣.

On the other hand, we can assume (at the cost of increasing t0) that t0 − M > A. By

assumption, Gk is 2k-convex and hence g
(k−2)
k is convex. It follows that, for t ∈ [t0 −M, t0],

we have

g
(k−1)
k (t) ≤ g

(k−2)
k (ξk,2) − g

(k−2)
k (ξk,1)

ξk,2 − ξk,1

≤
f

(k−2)
0,k (ξk,2) − f

(k−2)
0,k (ξk,1) + 2Dk

ξk,2 − ξk,1

≤ f
(k−1)
0,k (ξk,2) +

2Dk

M
,

where g
(k−1)
k is either the left or left (k − 1)-st derivative. Therefore,

g
(k−1)
k (t) − f

(k−1)
0,k (t) ≤ f

(k−1)
0,k (ξk,2) − f

(k−1)
0,k (t) +

2Dk

M

= k!(ξk,2 − t) +
2Dk

M

= k!(ξk,2 − t0 + t0 − t) +
2Dk

M

≤ k!(pk + 1) M +
2Dk

M
.

Similarly, at the cost of increasing t0 or Dk (or both), we can find t−pk
, and ξk,−2 < ξk,−1

to the left of t0 −M such that
∣∣∣∣g

(k−2)
k (ξk,−1) − f

(k−2)
0,k (ξk,−1)

∣∣∣∣ = inf
u∈[t−pk

,t0]

∣∣∣∣g
(k−2)
k (u) − f

(k−2)
0,k (u)

∣∣∣∣ < Dk

and
∣∣∣∣g

(k−2)
k (ξk,−2) − f

(k−2)
0,k (ξk,−2)

∣∣∣∣ = inf
u∈[t−2pk

,t−pk
−M ]

∣∣∣∣g
(k−2)
k (u) − f

(k−2)
0,k (u)

∣∣∣∣ < Dk.

It follows that,

g
(k−1)
k (t) ≥ g

(k−2)
k (ξk,−1) − g

(k−2)
k (ξk,−2)

ξk,−1 − ξk,−2

≥
f

(k−2)
0,k (ξk,−2) − f

(k−2)
0,k (ξk,−1) − 2Dk

ξk,−1 − ξk,−2

≥ f
(k−1)
0,k (ξk,−2) −

2Dk

M
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and therefore,

g
(k−1)
k (t) − f

(k−1)
0,k (t) ≥ f

(k−1)
0,k (ξk,−2) − f

(k−1)
0,k (t) − 2Dk

M

= k!(ξk,−2 − t) − 2Dk

M

= −k!(−ξk,−2 + (t0 −M) − (t0 −M) + t) − 2Dk

M

≥ −k!(pk + 1) M − 2Dk

M
.

It follows that

‖g(k−1)
k − f

(k−1)
0,k ‖[t0−M,t0] ≤ k!(pk + 1) M +

2Dk

M

with probability greater than 1 − ǫ.

By applying the same arguments above (maybe at the cost of increasing either pk or t0),

we can find a constant Ck > 0 depending only on M and ǫ such that

‖g(k−1)
k − f

(k−1)
0,k ‖[t−pk

−M,tpk
+M ] < Ck.

But, we can write

g
(k−2)
k (t) − f

(k−2)
0,k (t) = g

(k−2)
k (ξk,−1) − f

(k−2)
0,k (ξk,−1) +

∫ t

ξk,−1

(g
(k−1)
k (s) − f

(k−1)
0,k (s))ds

for all t ∈ [t−pk
−M, tpk

+M ]. It follows that

∣∣∣∣g
(k−2)
k (t) − f

(k−2)
0,k (t)

∣∣∣∣ ≤ Dk + (t− ξk,−1)Ck

≤ Dk + 2M(1 + pk)Ck

for t ∈ [t−pk
−M, tpk

+M ], or

‖g(k−2)
k − f

(k−2)
0,k ‖[t−pk

−M,tpk
+M ] < Dk + 2M(1 + pk)Ck

with probability greater than 1 − ǫ. By induction, we can prove that there exists Kk > 0

depending only on M and ǫ such that

‖g(j)
k − f

(j)
0,k‖[t−pk

−M,tpk
+M ] < Kk

for j = 0, · · · , k − 3.
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Now to prove (i) for j = k− 1, we consider again [t0, t1] and ξ ∈ (t0, t1) given by (3.17).

We write

G
(k−1)
k (t) − Y

(k−1)
k (t) = G

(k−1)
k (ξ) − Y

(k−1)
k (ξ) +

∫ t

ξ
d(G

(k−1)
k (s) − Y

(k−1)
k (s))

= G
(k−1)
k (ξ) − Y

(k−1)
k (ξ) +

∫ t

ξ
(gk(s) − f0,k(s))ds +W (t) −W (ξ),

for t ∈ [t0, t1]. It follows that

‖G(k−1)
k (t) − Y

(k−1)
k ‖[t0,t1] ≤ 2

M
+K(t− ξ) + C

≤ 2δ

M
+KM + C,

with probability greater than 1− ǫ, where K is the constant given in (i) and C > 0 satisfies

P (|W (u)| > C, u ∈ [0,M ]) ≤ ǫ.

For 0 ≤ j ≤ k − 2, the result follows using induction. �

When Gk ≡ Hk, then we can prove a result that is stronger than that of Lemma 3.5.1:

Lemma 3.5.2 Let Hk be the stochastic process constructed in the proof of Theorem 3.2.1.

Let f0,k be again the function defined on R by

f0,k(t) = tk,

and a < b in R. Then for any fixed 0 < ǫ < 1):

(i) There exists an M = Mǫ independent of t such that

P (t− τ− > M, τ+ − t > M) < ǫ

where τ− and τ+ are respectively the last point of touch of Hk and Yk before t and the

first point of touch after t.

(ii) There exists an M depending only on b− a and ǫ such that for j = 0, · · · , k − 1

P (‖H(j)
k − Y

(j)
k ‖[a,b] > M) < ǫ, (3.22)
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(iii) There exists an M depending only on b− a and ǫ such that for j = k, · · · , 2k − 1

P (‖H(j)
k − f

(j)
0,k‖[a,b] > M) < ǫ, (3.23)

where H
(2k−1)
k denotes either the left or the right (2k− 1)-th derivative of Hk. When j = k,

(3.23) specializes to

P (‖fk − f0,k‖[a,b] > M) < ǫ,

where fk = H
(k)
k .

To prove the above lemma, we need the following result:

Lemma 3.5.3 Let ǫ > 0 and x ∈ R. We can find M > 0, K > 0, D > 0 independent of x

and (k + 1 + j) points of touch of Hk with respect to Yk, x < τ1 < · · · < τk+1+j < x + K

such that τi′ − τi > M, 1 ≤ i < i′ ≤ k + 1 + j, and the event

inf
t∈[τ1,τk+1+j ]

|f (j)
k (t) − f

(j)
0,k(t)| ≤ D

occurs with probability greater than 1− ǫ for all j = 0, · · · , k−1 (for j = k−1, f
(k−1)
k should

be read either as the left or right (k − 1)-st derivative).

Proof. We restrict ourselves to the case of k even. We start by proving the same result for

fc,k, the solution of the LS problem.

Let j = 0. For ease of notation, we omit the subscripts k in fc,k and f0,k. Fix x > 0

(the case x < 0 can be handled similarly) and let c > 0 be large enough so that we can find

(k + 1) points of touch after the point x, τ1,c, · · · , τk+1,c, that are separated by at least M

from each other. Consider the event

inf
t∈[τ1,c,τk+1,c]

|fc(t) − f0(t)| ≥ D (3.24)

and let B be the B-spline of order k − 1 with support [τ1,c, τk+1,c]; i.e., B is given by

B(t) = (−1)kk

(
(t− τ1,c)

k−1
+∏

j 6=1(τj,c − τ1,c)
+ · · · +

(t− τk,c)
k−1
+∏

j 6=k(τj,c − τk,c)

)
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(see Lemma 2.5.1 in Chapter 2). Let |η| > 0 and consider the perturbation function p = B.

Recall that p ≡ 0 on (−∞, τ1,c) ∪ (τk+1,c,∞). It is easy to check that for |η| small enough,

the perturbed function

fc,η(t) = fc(t) + ηp(t)

is in the class Cm1,m2
, with

m1 = m2 =

(
ck, · · · , k!

2!
c2
)
.

Indeed, p was chosen so that it satisfies p(j)(τ1,c) = p(j)(τk+1,c) = 0 for 0 ≤ j ≤ k− 2, which

guarantees that the perturbed function fc,η belongs to Ck−2(−c, c). Also, the boundary

conditions at −c and c are satisfied since p is equal to 0 outside the interval [τ1,c, τk+1,c].

Finally, since p is a spline a degree k−1, the function f
(k−2)
c,η is also piecewise linear and one

can check that it is nonincreasing and convex for very small values of |η|. It follows that

lim
η→0

Φc(fc,η) − Φc(fc)

η
= 0

which yields

∫ τk+1,c

τ1,c

p(t)fc(t)dt−
∫ τk+1,c

τ1,c

p(t)(dW (t) + f0(t)dt) = 0 ,

or equivalently

∫ τk+1,c

τ1,c

p(t)(fc(t) − f0(t))dt =

∫ τk+1,c

τ1,c

p(t)dW (t).

For any ω in the event (3.24), we have

∣∣∣∣∣

∫ τk+1,c

τ1,c

p(t)dW (t)

∣∣∣∣∣ ≥ D

∫ τk+1,c

τ1,c

p(t)dt = D (3.25)

where in (3.25), we used the fact that B integrates to 1. But we can find D > 0 large

enough such that the probability of the previous event is very small. Indeed, let Gx0,M,K be

the class of functions g such that

g(t) =

{
(t− y1)

k−1
+∏

j 6=1(yj − y1)
+ · · · + (t− y1)

k−1
+∏

j 6=k(yj − yk)

}
1[y1,yk+1](t),
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where x0 ≤ y1 < · · · < yk+1 ≤ x0 +K and yj − yi ≥M for 1 ≤ i < j ≤ k+ 1 and M and K

are two positive constants independent of x0. Define

Wg =

∫ ∞

−∞
g(t)dW (t), for g ∈ Gx0,M,K .

The process {Wg : g ∈ Gx0,M,K} is a mean zero Gaussian process, and for any g and h in

the class Gx0,M,K , we have

V ar (Wg −Wh) = E (Wg −Wh)2 =

∫ ∞

−∞
(g(t) − h(t))2 dt.

and therefore, if we equip the class Gx0,M,K with the standard deviation semi-metric d given

by

d2(g, h) =

∫
(g(t) − h(t))2 dt,

the process (Wg, g ∈ Gx0,M,K) is sub-Gaussian with respect to d; i.e., for any g and h in

Gx0,M,K and x ≥ 0

P (|Wg −Wh| > x) ≤ 2e−
1
2
x2/d2(g,h).

In the following, we will get an upper bound of the covering number N(ǫ,Gx0,M,K , d) for the

class Gx0,M,K when ǫ > 0. For this purpose, we first note that for any g and h in Gx0,M,K

d2(g, h) ≤
∫ x0+K

x0

(g(t) − h(t))2 dt = K

∫ x0+K

x0

(g(t) − h(t))2 dQ(t)

whereQ is the probability measure corresponding to the uniform distribution on [x0, x0+K];

i.e.,

dQ(t) =
1

K
1[x0,x0+K](t)dt,

and therefore, it suffices to find an upper bound for the covering number of the class Gx0,M,K

with respect to L2(Q).

Any function in class Gx0,M,K is a sum of functions of the form

gj(t) =

{
(t− yj)

k−1
+∏

j′ 6=j(yj′ − yj)

}
1[y1,yk+1](t),
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over j ∈ {1, · · · , k}. Denote by Gx0,M,K,j the class of functions gj . Taking ψ(t) = tk+, we

have by Lemma 2.6.16 in van der Vaart and Wellner (1996) that the class of functions

{t 7→ ψ(t − yj), yj ∈ R} is VC-subgraph with VC-index equal to 2 and therefore the class

of functions {t 7→ ψ(t − yj), t, yj ∈ [x0, x0 +K]}, G1
x0,M,K,j say, is also VC-subgraph with

VC-index equal 2 and admits Kk−1 as an envelope. Therefore, by Theorem 2.6.7 of van

der Vaart and Wellner (1996), there exists C1 > 0 and K1 > 0 (here K1 = 2) such that

for any 0 < ǫ < 1 and for all j ∈ {1, · · · , k}

N(ǫ,G1
x0,M,K,j, L2(Q)) ≤ C1

(
1

ǫ

)K1

.

where C1 and K1 are independent of x0. On the other hand, since yj−yi ≥M , the functions

t 7→ 1∏
j′ 6=j(yj′ − yj)

1[y1,yk+1](t)

indexed by the yj’s are all bounded by the constant 1/M k and form a VC-subgraph class

with a VC-index that is smaller than 5 and more importantly that is independent of x0.

Denote this class by G2
x0,M,K,j. By the same theorem of van der Vaart and Wellner

(1996), there exist C2 > 0 and K2 (here K2 ≤ 8) also independent of x0 such that

N(ǫ,G2
x0,M,K,j, L2(Q)) ≤ C2

(
1

ǫ

)K2

for 0 < ǫ < 1. By Lemma 16 of Nolan and Pollard (1987), it follows there exists C3 > 0

and K3 > 0 independent of x0 such that

N(ǫ,Gx0,M,K , L2(Q)) ≤ C3

(
1

ǫ

)K3

for all 0 < ǫ < 1 and therefore

N(ǫ,Gx0,M,K , d) ≤ C3K
K3/2

(
1

ǫ

)K3

.

Using the fact that the packing number D(ǫ,Gx0,M,K , d) ≤ N(ǫ/2,Gx0,M,K , d) and Corollary

2.2.8 of van der Vaart and Wellner (1996), it follows that there exists a constant C > 0,

D > 0, and a (the diameter of the class) independent of x0 such that for

E sup
g∈Gx0,M,K

|Wg| ≤ E|Wg0| + C

∫ a

0

√

1 +D log

(
1

ǫ

)
dǫ
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where the integral on the right side converges and g0 is any element in the class Gx0,M,K

and we can take, e.g.,

g0(t) =
1

Mk

(
(t− x0)

k−1
+ + (t− x0 −M)k−1

+ + · · · + (t− x0 − (k − 1)M)k−1
+

)
1[x0,x0+kM ](t)

where y1 = x0, y2 = x0 +M, · · · , yk+1 = x0 + kM . By a change of variable, we have

E|Wg0 | =
1

Mk
E

∣∣∣∣
∫ kM

0

(
tk−1
+ + · · · + (t− (k − 1)M)k−1

+

)
dW (t)

∣∣∣∣

which is clearly independent of x0. Now, we can write

P (|Wp| > λ) ≤ P ( sup
g∈Gx0,M,K

|Wg| > λ)

≤ E sup
g∈Gx0,M,K

|Wg|/λ, by Markov’s inequality

≤
(

E|Wg0 | + C

∫ a

0

√

1 +D log

(
1

ǫ

)
dǫ

)

/λ → 0 as λ→ ∞.

Now, let c(n) = n and fn, and τ1,n, · · · , τk+1,n are the LS solution on [−n, n] and (k+ 1)

points of touch to the left of x. Also, let ξn ∈ [τ1,n, τk+1,n] the point where the infimum of the

function fn − f0 is attained. By tightness of the points of touch, we can find subsequences

(τ1,nl
, · · · , τk+1,nl

) and (ξnl
) that converge to (τ1, · · · , τk+1) and ξ respectively. By the same

arguments used in the construction of Hk, there exists a further subsequence (fnp) which

converges to fk in the supremum norm on the space of continuous functions on [−K,K].

On the other hand, it is easy to see that τ1, · · · , τk+1 are points of touch of Hk with respect

to Yk that are to the right of x and to the left of x + K. Furthermore, τi′ − τi ≥ M , for

1 ≤ i < i′ ≤ k + 1. For ease of notation, we replace np by n. We have

|fk(ξ) − f0(ξ)| ≤ |fn(ξn) − f0(ξn)| + |f0(ξn) − f0(ξ)|

+ |fn(ξn) − fk(ξn)| + |fk(ξn) − fk(ξ)|.

By the arguments used above, we know that there exists D > 0 independent of x that

bounds the first term from above with large probability as n → ∞. To control the second

and fourth terms, we use the fact that ξn → ξ and continuity of f0 and fk. Therefore, we

can find an integer N1 > 0 that might depend on x such that for all n ≥ N1, we have

max{|fk(ξn) − fk(ξ)|, |f0(ξn) − f0(ξ)|} ≤ D.
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Finally, using the fact that ξn ∈ [−K,K] and that fn converges uniformly to fk on [−K,K],

we can find an integer N2 > 0 that might depend on x such that for all n ≥ N2, we have

|fn(ξn) − fk(ξn)| ≤ D.

It follows that with large probability, there exists ξ ∈ [τ1, τk+1] such that

|fk(ξ) − f0(ξ)| ≤ 3D,

or equivalently

inf
t∈[τ1,τk+1]

|fk(t) − f0(t)| ≤ 3D.

For j > 1, we take the perturbation function pj to be

pj = q
(j)
j ,

where qj = Bj, the B-spline of degree k − 1 + j with k + 1 + j knots taken to be points of

touch that are at least M distant from each other; i.e.,

qj(t) = Bj(t)

= (−1)k+j(k + j)

(
(t− τ1,n)k+j−1

+∏
j 6=1(τj,n − τ1,n)

+ · · · +
(t− τk+j,n)k+j−1

+∏
j 6=k+j(τj,n − τk+j,n)

)
.

The function pj is a valid perturbation function and therefore we have

∫ τk+1+j,n

τ1,n

pj(t)(fn(t) − f0(t))dt =

∫ τk+1+j,n

τ1,n

pj(t)dW (t).

By successive integrations by parts and using the fact that q
(i)
j (τ1,n) = q

(i)
j (τk+1+j,n) = 0

for i = 0, · · · , j − 1 (note that is also verified for i = j, · · · , k + j − 2), we obtain

∫ τk+1+j,n

τ1,n

(−1)jqj(t)(f
(j)
n (t) − f

(j)
0 (t))dt =

∫ τk+1+j,n

τ1,n

pj(t)dW (t).

The proof follows from arguments which are similar to those used for j = 0. �

Proof of Lemma 3.5.2 Fix ǫ > 0 small. (i) follows from tightness of the points of

touch of Hc,k and Yk and the construction of Hk. Indeed, there exists M > 0 independent

of t and two points of touch τ−n and τ+
n between the processes Hn,k and Yk such that
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τ−n ∈ [t− 3M, t−M ] and τ+
n ∈ [t+M, t+ 3M ] with probability greater than 1 − ǫ. Then,

we can find a subsequence nj such that τ−nj
→ τ−, τ+

nj
→ τ+, ‖Hnj ,k −Hk‖[t−3M,t+3M ] → 0.

Therefore, we have

Hnj ,k(τ
−
nj

) → Hk(τ
−), and Hnj ,k(τ

+
nj

) → Hk(τ
+)

as nj → ∞. But by continuity of Yk, we have

Yk(τ
−
nj

) → Yk(τ
−) and Yk(τ

+
nj

) → Yk(τ
+).

It follows that Hk(τ
−) = Yk(τ

−) and Hk(τ
+) = Yk(τ

+); i.e., τ− and τ+ are points of touch

of Hk and Yk occurring before and after t respectively. Furthermore, we have t − 3M ≤
τ− ≤ t−M < t+M ≤ τ+ ≤ t+ 3M . These points of touch might not be successive but it

is clear that (i) will hold for successive points of touch.

Let [a, b] ⊂ R be a finite interval. We prove (ii) and (iii) only when k is even as the

arguments are very similar for k odd. We start with proving (iii) and for that we fix

t ∈ [a, b]. Using the same type of arguments used in proof of Lemma 3.5.3, we can find

D > 0 independent of t and a point ξ1 > b such that

|f (k−2)
k (ξ1) − f

(k−2)
0 (ξ1)| ≤ D.

with large probability. Using again the same kind of arguments, we can find another point

ξ2 such that ξ2 − ξ1 ≥M and

|f (k−2)
k (ξ2) − f

(k−2)
0 (ξ2)| ≤ D

maybe at the cost of increasing D and where M > 0 is a constant that is independent

of t. By tightness of the points of touch, we know that there exists K > 0 such that

0 ≤ ξ1 − b ≤ ξ2 − b ≤ K with large probability. By convexity of f
(k−2)
k , we have

f
(k−1)
k (t) ≤ f

(k−2)
k (ξ2) − f

(k−2)
k (ξ1)

ξ2 − ξ1

≤ f
(k−2)
0 (ξ2) − f

(k−2)
0 (ξ1) + 2D

ξ2 − ξ1

≤ f
(k−1)
0 (ξ2) +

2D

M
,
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where f
(k−1)
k is either the left or right (k − 1)st derivative. Therefore,

f
(k−1)
k (t) − f

(k−1
0 (t) ≤ f

(k−1)
0 (ξ2) − f

(k−1)
0 (t) +

2D

M

= k!(ξ2 − t) +
2D

M

= k!(ξ2 − b+ b− t) +
2D

M

≤ k! (K + b− a) +
2D

M
.

Similarly, we can find two points ξ−2 and ξ−1 this time to the left of a such that the events

ξ−1 − ξ−2 ≥ M , max{|f (k−2)
k (ξ−2) − f

(k−2)
0 (ξ−2)|, |f (k−2)

k (ξ−1) − f
(k−2)
0 (ξ−1)|} ≤ D and

a−K ≤ ξ−2 < ξ−1 <≤ a occur with very large probability maybe at the cost of increasing

one of the constants M , K or D. Then it follows that

f
(k−1)
k (t) ≥ f

(k−2)
k (ξ−1) − f

(k−2)
k (ξ−2)

ξ−1 − ξ−2

≥ f
(k−2)
0 (ξ−1) − f

(k−2)
0 (ξ−2) − 2D

ξ−1 − ξ−2

≥ f
(k−1)
0 (ξ−2) −

2D

M
,

and hence

f
(k−1)
k (t) − f

(k−1)
0 (t) ≥ f

(k−1)
0 (ξ−2) − f

(k−1)
0 (t) − 2D

M

= k!(ξ−2 − t) − 2D

M

= −k!(t− a+ a− ξ−2) −
2D

M

≥ −k! (b− a+K) − 2D

M
.

It follows that with large probability we have for all t ∈ [a, b]

|f (k−1)
k (t) − f

(k−1)
0 (t)| ≤ k! (K + b− a) +

2D

M

and it is clear that the bound in the inequality depends only on b− a. Thus by applying a

similar argument on [a, b+K], we can find a constant C > 0 depending only on b− a and

K such that

‖f (k−1)
k − f

(k−1)
0 ‖[a,b+K] < C.
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Now, by writing

(f
(k−2)
k (t) − f

(k−2)
0 (t)) − (f

(k−2)
k (ξ1) − f

(k−2)
0 (ξ1)) =

∫ t

ξ1

(
f

(k−1)
k (s) − f

(k−1)
0 (ds)

)
ds.

It follows that

|f (k−2)
k (t) − f

(k−2)
0 (t)| ≤ |f (k−2)

k (ξ1) − f
(k−2)
0 (ξ1)| + (ξ1 − t)‖f (k−1)

k − f
(k−1)
0 ‖[a,b+K]

≤ D + (K + b− a)C.

Using induction and Lemma 3.5.3, we can show (iii) for j = 0, · · · , k − 3.

Now to show (ii), we start with j = k − 1; i.e., for t ∈ [a, b] and ǫ > 0,we want to show

that we can find M = M(ǫ) > 0 such that

P (‖H(k−1)
k (t) − Y

(k−1)
k (t)‖[a,b] > M) ≤ ǫ.

But, we know that we can find M1 > 0 and K > 0 independent of any t ∈ [a, b] and two

points ξ1 ≤ ξ2 to the right of b such that ξ2 − ξ1 ≥M1, b ≤ ξ1 < ξ2 ≤ b+K and

H
(k−2)
k (ξ1) = Y

(k−2)
k (ξ1) and H

(k−2)
k (ξ2) = Y

(k−2)
k (ξ2).

The existence of such points follows from applying the mean value theorem repeatedly to a

number of points of touch and also using tightness. Using again the mean value theorem,

we can find ξ ∈ (ξ1, ξ2) such that

H
(k−1)
k (ξ) = Y

(k−1)
k (ξ).

Now, we can write for any t ∈ [a, b]

H
(k−1)
k (t) − Y

(k−1)
k (t)

=
(
H

(k−1)
k (t) − Y

(k−1)
k (t)

)
−
(
H

(k−1)
k (ξ) − Y

(k−1)
k (ξ)

)

=

∫ t

ξ
d(H

(k−1)
k (s) − Y

(k−1)
k (s))

=

∫ t

ξ
(fk(s) − f0(s))ds −

∫ t

ξ
dW (s)

=

∫ t

ξ
(fk(s) − f0(s))ds − (W (t) −W (ξ)).
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By stationarity of the increments of W and since 0 ≤ ξ − t ≤ b − a +K, the second term

can be bounded with large probability by a constant dependent of on K and b− a. As for

the first term, we know by (iii) that there exists M2 depending only on b − a such that

‖fk − f0‖[a,b+K] < M2 with large probability. Therefore,

∣∣∣∣
∫ t

ξ
(fk(s) − f0(s))ds

∣∣∣∣ ≤ M2(ξ − t) ≤M2(b− a+K).

It follows that, with large probability, we can find a constant C > 0, depending only on

b− a and K such that

‖H(k−1)
k − Y

(k−1)
k ‖[a,b+K] < C.

Now, by writing

H
(k−2)
k (t) − Y

(k−2)
k (t) = H

(k−2)
k (t) − Y

(k−2)
k (t) − (H

(k−2)
k (ξ1) − Y

(k−2)
k (ξ1))

=

∫ t

ξ1

(H
(k−1)
k (s) − Y

(k−1)
k (s))ds,

it follows that

‖H(k−2)
k − Y

(k−2)
k ‖[a,b] ≤ (b− a+K)C.

For 0 ≤ j ≤ k − 3, we use induction together with tightness of the distance between points

of touch and the mean value theorem. �

Now we use Lemma 3.5.1 to complete the proof of Theorem 3.2.1 by showing that Hk

determined by (i) - (iv) of Theorem 3.2.1 is unique. Suppose that there exists another

process Gk that satisfies the properties (i) - (iv) of Theorem 3.2.1. As the proof follows

along similar arguments for k odd, we only focus here on the case where k is even. Fix

n > 0 and let a−n,2 < a−n,1 be two points of touch between Hk and Yk to the left of −n,

such that a−n,1 − a−n,2 > M . Also, consider bn,1 < bn,2 to be two points of touch between

Hk and Yk to the right of n such that bn,2 − bn,1 > M . There exists K > 0 independent

of n such that −n − K < a−n,2 < a−n,1 < −n and n < bn,1 < bn,2 < n + K with large

probability. For a k-convex function f and real arbitrary points a < b , we define φa,b(f) by

φa,b(f) =
1

2

∫ b

a
f2(t)dt−

∫ b

a
f(t)dXk(t).
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For ease of notation, we omit the subscript k in Hk and Gk. Let h = H(k), g = G(k) and

a < b be two points of touch between H and Yk. Then we have

φa,b(g) − φa,b(h)

=
1

2

∫ b

a
(g(t) − h(t))2dt+

∫ b

a
(g(t) − h(t))h(t)dt −

∫ b

a
(g(t) − h(t))dXk(t)

=
1

2

∫ b

a
(g(t) − h(t))2dt+

∫ b

a
(g(t) − h(t))d(H (k−1) − Y

(k−1)
k ).

This yields, using successive integrations by parts,

φa,b(g) − φa,b(h)

=
1

2

∫ b

a
(g(t) − h(t))2dt

+
(
(H(k−1)(b) − Y

(k−1)
k (b))(g(b) − h(b))

− (H(k−1)(a) − Y
(k−1)
k (a))(g(a) − h(a))

)

−
(
(H(k−2)(b) − Y

(k−2)
k (b))(g′(b) − h′(b))

− (H(k−2)(a) − Y
(k−2)
k (a))(g′(a) − h′(a))

)

...

+
(
(H ′(b) − Y ′

k(b))(g
(k−2)(b) − h(k−2)(b))

− (H ′(a) − Y ′
k(a))(g(k−2)(a) − h(k−2)(a))

)
(3.26)

−
(
(H(b) − Yk(b))(g

(k−1)(b−) − h(k−1)(b−))

− (H(a) − Yk(a))(g
(k−1)(a+) − h(k−1)(a+))

)
(3.27)

+

∫ b

a
(H(t) − Yk(t))d(g

(k−1)(t) − h(k−1)(t))

where the terms in (3.26) and (3.27) are equal to 0 and last term can be rewritten as

∫ b

a
(H(t) − Yk(t))d(g

(k−1)(t) − h(k−1)(t)) =

∫ b

a
(H(t) − Yk(t))dg

(k−1)(t) ≥ 0

using the characterization of H. Now, if we take c and d to be arbitrary points (not

necessarily points of touch of H and Yk), we get

φc,d(h) − φc,d(g)
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=
1

2

∫ d

c
(h(t) − g(t))2dt

+
(
(G(k−1)(d) − Y

(k−1)
k (d))(h(d) − g(d)) − (G(k−1)(c) − Y

(k−1)
k (c))(h(c) − g(c))

)

−
(
(G(k−2)(d) − Y

(k−2)
k (d))(h′(d) − g′(d)) − (G(k−2)(c) − Y

(k−2)
k (c))(h′(c) − g′(c))

)

...

+
(
(G(d) − Yk(d))(h

(k−1)(d) − g(k−1)(d)) − (G(c) − Yk(c))(h
(k−1)(c) − g(k−1)(c))

)

+

∫ d

c
(G(t) − Yk(t))dh

(k−1)(t).

Now, let a = a−n,1, b = bn,1, c = a−n,2 and b = bn,2 and let Jn = [a−n,1, a−n,2] and

Kn = [bn,1, bn,2]. Then, we have

φa−n,1,bn,1(g) − φa−n,1,bn,1(h) + φa−n,2,bn,2(h) − φa−n,2,bn,2(g) (3.28)

≥ 1

2

∫ bn,1

a−n,1

(g(t) − h(t))2dt+
1

2

∫ bn,2

a−n,2

(g(t) − h(t))2dt

+
k−1∑

j=2

[(
H(j)(t) − Y

(j)
k (t)

)(
g(j−2)(t) − h(j−2)(t)

) ]bn,1

a−n,1

+
k−1∑

j=2

[(
G(j)(t) − Y

(j)
k (t)

)(
h(j−2)(t) − g(j−2)(t)

) ]bn,2

a−n,2

.

On the other hand,

φa−n,1,bn,1(g) − φa−n,1,bn,1(h) + φa−n,2,bn,2(h) − φa−n,2,bn,2(g) (3.29)

=
1

2

∫

Jn∪Kn

(
g2(t) − h2(t)

)
dt−

∫

Jn∪Kn

(g(t) − h(t)) dXk(t)

=
1

2

∫

Jn∪Kn

(g(t) − h(t)) (g(t) − f0(t)) dt

+
1

2

∫

Jn∪Kn

(g(t) − h(t)) (h(t) − f0(t)) dt−
∫

Jn∪Kn

(g(t) − h(t)) dW (t)

where f0(t) = tk.

As in Groeneboom, Jongbloed, and Wellner (2001a), we first suppose that

lim
n→∞

∫ n

−n
(g(t) − h(t))2 dt <∞. (3.30)

This implies that

lim
|t|→∞

(g(t) − h(t)) = 0.
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Since g and h are at least (k − 2) times differentiable, g − h is a function of uniformly

bounded variation on Jn and Kn. Therefore, using the fact that the respective lengths of

Jn and Kn are Op(1) which follows from Lemma 3.5.2 (i), and the same arguments in page

1640 of Groeneboom, Jongbloed, and Wellner (2001a), we get that

lim inf
n→∞

∫

Jn∪Kn

(g(t) − h(t)) dW (t) = 0

almost surely. The hypothesis in (3.30) implies that

lim
n→∞

∫ a−n,2

a−n,1

(g(t) − h(t))2 dt→ 0, as n→ ∞.

On the other hand, we can write using integration by parts,

∫ a−n,2

a−n,1

(
g′(t) − h′(t)

)2
dt

=

[
(g(t) − h(t))

(
g′(t) − h′(t)

) ]a−n,2

a−n,1

−
∫ a−n,2

a−n,1

(g(t) − h(t))
(
g′′(t) − h′′(t)

)
dt

and therefore

∫ a−n,2

a−n,1

(
g′(t) − h′(t)

)2
dt

≤ 2‖g − h‖[a−n,1,a−n,2] × ‖g′ − h′‖[a−n,1,a−n,2]

+(a−n,2 − a−n,1)‖g − h‖[a−n,1,a−n,2] × ‖g′′ − h′′‖[a−n,1,a−n,2]

which converges to 0 as n → ∞ with arbitrarily high probability since the length of Jn =

[a−n,1, a−n,2],

‖g′ − h′‖[a−n,1,a−n,2] and ‖g′′ − h′′‖[a−n,1,a−n,2]

are Op(1) uniformly in n by Lemma 3.5.1 (ii).

Consider now the sequence of functions (ψn)n defined on [0, 1] as

ψn(t) = g′((a−n,2 − a−n,1)t+ a−n,1) − h′((a−n,2 − a−n,1)t+ a−n,1), 0 ≤ t ≤ 1.

Using the same arguments above, it is easy to see that ‖ψn‖[0,1] and ‖ψ′
n‖[0,1] are Op(1) and

therefore, by Arzelà-Ascoli’s theorem, we can find a subsequence (n′) and ψ such that

‖ψn′ − ψ‖[0,1] → 0, as n→ ∞.
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But ψ ≡ 0 on [0, 1]. Indeed, first note that

∫ 1

0
ψ2

n(t)dt =
1

a−n,2 − a−n,1

∫ a−n,2

a−n,1

(
g′(t) − h′(t)

)2
dt→ 0, as n→ ∞.

Therefore, since

∫ 1

0
ψ2(t)dt ≤ lim inf

n→∞

∫ 1

0
ψ2

n(t)dt

it follows that

∫ 1

0
ψ2(t)dt = 0

and ψ ≡ 0, by continuity. We conclude that from every subsequence (ψn′)n′ , we can extract

a further subsequence (ψn′′)n′′ that converges to 0 on [0, 1]. Thus, limn→∞ ‖ψn‖[0,1] = 0. It

follows that

‖g′ − h′‖[a−n,1,a−n,2] → 0, as n→ ∞

with large probability. If k ≥ 5, we can show by induction that for all j = 4, · · · , k − 1 we

have

lim
n→∞

‖g(j−2) − h(j−2)‖[a−n,1,a−n,2] = 0

with large probability, and the same thing holds when (a−n,1, a−n,2) is replaced by (bn,2, bn,1).

On the other hand, by Lemma 3.5.1 (i), we know that there exists D > 0 such that

max

{
‖H(j) − Y

(j)
k ‖[a−n,1,a−n,2], ‖G(j) − Y

(j)
k ‖[a−n,1,a−n,2]

}
≤ D

with arbitrarily high probability, for j = 0, · · · , k − 1. To see that, consider the first term

(the second term is handled similarly) and fix ǫ > 0. There exist K > 0 (maybe different

from the one considered above) independent of n such that have

P ([a−n,1, a−n,2] ⊆ [−n−K,−n]) ≥ 1 − ǫ/2

and D > 0 depending only on K (and therefore independent of n) such that

P (‖H(j) − Y
(j)
k ‖[−n−K,−n] ≤ D) ≥ 1 − ǫ/2.
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It follows that

P (‖H(j) − Y
(j)
k ‖[a−n,1,a−n,2] > D)

= P (‖H(j) − Y
(j)
k ‖[a−n,1,a−n,2] > D, [a−n,1, a−n,2] ⊆ [−n−K,−n])

+P (‖H(j) − Y
(j)
k ‖[a−n,1,a−n,2] > D, [a−n,1, a−n,2] 6⊆ [−n−K,−n])

≤ P (‖H(j) − Y
(j)
k ‖[−n−K,−n] > D) + P ([a−n,1, a−n,2] 6⊆ [−n−K,−n])

< ǫ/2 + ǫ/2

= ǫ.

Using similar arguments, we can show

max

{
‖H(j) − Y

(j)
k ‖[bn,2,bn,1], ‖G(j) − Y

(j)
k ‖[bn,2,bn,1]

}
= Op(1)

uniformly in n. Therefore, we conclude that with large probability, we have

k−1∑

j=0

[(
H(j)(t) − Y

(j)
k (t)

)(
g(j−2)(t) − h(j−2)(t)

) ]bn,1

a−n,1

→ 0,

and

k−1∑

j=0

[(
G(j)(t) − Y

(j)
k (t)

)(
h(j−2)(t) − g(j−2)(t)

) ]bn,2

a−n,2

→ 0

as n→ ∞. Finally, by the same arguments used in Groeneboom, Jongbloed, and Wellner

(2001a), we have

lim inf
n→∞

∫

Jn∪Kn

(g(t) − h(t)) (g(t) − f0(t)) dt = 0,

and

lim inf
n→∞

∫

Jn∪Kn

(g(t) − h(t)) (h(t) − f0(t)) dt = 0.

almost surely. From (3.28) and (3.29), we have

1

2

∫ bn,1

a−n,1

(g(t) − h(t))2 dt+
1

2

∫ bn,2

a−n,2

(g(t) − h(t))2 dt→ 0, as n→ ∞,

which implies that

1

2

∫ bn,1

a−n,1

(g(t) − h(t))2 dt+
1

2

∫ bn,2

a−n,2

(g(t) − h(t))2 dt ≥
∫ n

−n
(g(t) − h(t))2 dt→ 0
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as n→ ∞. But the latter is impossible if g 6= h.

Now, suppose that

lim
n→∞

∫ n

−n
(g(t) − h(t))2 dt = ∞.

We can write

∫

Jn∪Kn

(g(t) − h(t)) dW (t)

=

∫

Jn∪Kn

((g(t) − f0(t)) − (h(t) − f0(t))) dW (t)

and by Lemma 3.5.1 (ii), we have

lim inf
n→∞

∫

Jn∪Kn

(g(t) − h(t)) dW (t) <∞

almost surely. By the same result and using the same techniques as in Groeneboom,

Jongbloed, and Wellner (2001a), we have

lim inf
n→∞

{∫

Jn∪Kn

(g(t) − h(t)) (g(t) − f0(t)) dt

}2

<∞

and

lim inf
n→∞

{∫

Jn∪Kn

(g(t) − h(t)) (h(t) − f0(t)) dt

}2

<∞.

Finally, we have

k−1∑

j=0

[(
H(j)(t) − Y

(j)
k (t)

)(
g(j−2)(t) − h(j−2)(t)

) ]bn,1

a−n,1

=

k−1∑

j=0

[ (
H(j)(t) − Y

(j)
k (t)

)((
g(j−2)(t) − f

(j−2)
0 (t)

)
−
(
h(j−2)(t) − f

(j−2)
0 (t)

))]bn,1

a−n,1

is tight and the same thing holds if we replace H by G and (a−n,1, bn,1) by (a−n,2, bn,2).

This implies that

lim
n→∞

∫ n

−n
(g(t) − h(t))2 dt <∞

which is in contradiction with the assumption made above.
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We conclude that for arbitrarily large n, g ≡ h on [−n, n] and hence g ≡ h on R. Using

condition (iv) satisfied by both processes H and G, the latter implies that H ≡ G on R.

Indeed, since H (k) ≡ G(k), there exist α and β such that

H(k−2)(t) −G(k−2)(t) = α+ βt, for t ∈ R.

But by condition (iv), lim|t|→∞(H(k−2)(t) − G(k−2)(t)) = 0 which implies that α = β = 0

and hence H(k−2) ≡ G(k−2). The result follows by induction.

�
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Chapter 4

COMPUTATION: ITERATIVE SPLINE ALGORITHMS

4.1 Introduction

The iterative (2k − 1)-st spline algorithm is an extension of the iterative cubic spline algo-

rithm, a term that was coined by Groeneboom, Jongbloed, and Wellner (2001a). The

latter was used to compute the “invelope” H of two-sided Brownian motion + t4 that is

involved in the limiting distribution of the LSE and MLE of a non-increasing and convex

density on (0,∞) (see Groeneboom, Jongbloed, and Wellner (2001a)). The algorithm is

described briefly in pages 1643 and 1644 of their article. However, more details about how

this algorithm works can be found in Groeneboom, Jongbloed, and Wellner (2003). Here,

we try to give a full description about how the iterative spline algorithms are implemented

to compute the LSE and MLE of a k-monotone density on (0,∞) for an arbitrary integer

k ≥ 2, and also to approximate the envelopes (“invelopes”) of the (k − 1)-fold integral of

two-sided Brownian motion + (k!/(2k)!) t2k when k is odd (even) on a finite interval [−c, c].
These algorithms belong to the family of vertex direction algorithms (see Groeneboom,

Jongbloed, and Wellner (2003)). They were around for many decades and their develop-

ment was motivated by problems in D-optimal design (see Fedorov (1972), Wynn (1970),

Böhning (1986)), estimation of random coefficients in regression models (see e.g. Mal-

let (1986)), and nonparametric estimation in mixture models (see Simar (1976), Böhning

(1982), Lesperance and Kalbfleisch (1992), Groeneboom, Jongbloed, and Wellner

(2003)), which will be the focus here. In mixture models, nonparametric estimation of the

mixing distribution or the mixed density yields a constrained, infinite dimensional opti-

mization (e.g. minimization) problem. Thus, an efficient computational method is needed.

Groeneboom, Jongbloed, and Wellner (2003) extended the algorithm that was imple-

mented by Simar (1976) to compute the MLE of a compound (mixed) Poisson distribution.
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Groeneboom, Jongbloed, and Wellner (2003) referred to this extension as the support

reduction algorithm. The same authors developed and used the iterative cubic spline algo-

rithm to compute the LSE of a non-increasing and convex density on (0,∞) and also to

approximate the process H. However, the authors seem to reserve the term only for the

second estimation problem.

In the support reduction algorithms, the support reduction step is very crucial and it

is the only step where it is ensured that one “stays” in the class of functions considered

in the optimization problem. In this chapter, we explain in detail why in our estimation

problems, such a step is always possible and we hope that this will shed more light on how

the iterative cubic spline algorithm works. In the following, we present the general set-up.

Let φ be a convex functional to be minimized over the class of functions

C =

{
g =

∫

Θ
fθdµ(θ), µ is a positive measure

}
.

The directional derivative of φ at the point g in the direction of fθ is denoted by Dφ(fθ, g)

and defined by

Dφ(fθ, g) = lim
ǫց0

φ(g + ǫfθ) − φ(g)

ǫ
.

Suppose that φ admits a unique minimizer, argming∈Cφ(g). Under the assumptions A1,

A2’ and A3, Groeneboom, Jongbloed, and Wellner (2003) showed that the support

reduction algorithm converges to argming∈Cφ(g). In the current estimation problems, these

assumptions are satisfied. The chapter will be organized as follows: In the first two sections,

we describe the iterative (2k−1)-st spline algorithm and explain how it works for calculating

the LSE of a k-monotone density and for approximating the stochastic process Hk. The

last section is reserved for calculating the MLE of a k-monotone density. In this case, the

algorithm is different as it involves a linearization step that is not required in the first two

estimation problems. However, the algorithm shares with the iterative (2k − 1)-st spline

algorithm the same basic structure.

Based on two samples of size n = 100 and n = 1000, the MLE and LSE of the Exponential

density, viewed respectively as a k-monotone density with k = 3 and k = 6, are computed.

For the same values of k, approximations of the process Hk and some of its derivatives, on

the interval [−4, 4], are calculated.
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4.2 Computing the LSE of a k-monotone density

Let X1, · · · ,Xn be n i.i.d. random variables from a k-monotone density g0 on (0,∞) and

let Gn denote their empirical distribution function. We know from Chapter 2 that the

functional

φ(g) =
1

2

∫ ∞

0
g2(t)dt−

∫ ∞

0
g(t)dGn(t)

defined on the space of square integrable k-monotone functions on (0,∞) admits a unique

minimizer g̃n. From Proposition 2.2.3, Chapter 2, we know that g̃n is a finite scale mixture

of Beta(1, k)’s ; i.e., there exist an integer m, θ̃1, · · · , θ̃m and w̃1, · · · , w̃m such that for all

t > 0

g̃n(t) = w̃1
k(θ̃1 − t)k−1

+

θ̃k
1

+ · · · + w̃m
k(θ̃m − t)k−1

+

θ̃k
m

where the weights w̃1, · · · , w̃m do not necessarily sum up to one for k > 2 (see Balabdaoui

(2004)). The directional derivative of the functional φ at a point g in the class

C =

{

g : g(t) =

∫ ∞

0

k(θ − t)k−1
+

θk
dµ(θ), µ is a positive measure

}

in the direction of fθ(t) =
k(θ−t)k−1

+

θk , θ ∈ Θ = (0,∞) is given by

Dφ(fθ, g) =

∫ ∞

0

k(θ − t)k−1
+

θk
g(t)dt −

∫ ∞

0

k(θ − t)k−1
+

θk
dGn(t)

=
k

θk
(H(θ, g) − Yn(θ))

where H(·, g) and Yn are respectively the k-fold integral of g and (k−1)-fold integral of the

empirical distribution function Gn. When g = g̃n, then H(·, g) is nothing but H̃n defined in

Chapter 2. It follows from the characterization of g̃n that Dφ(fθ, g̃n) ≥ 0 for all θ ∈ (0,∞)

and equal to zero if and only if θ belongs to the support of the mixing measure µ̃n associated

with the LSE g̃n. The support reduction algorithm consists of the following steps:

1. Given the current iterate g ∈ C with support S = {θ1, · · · , θp}, we find the minimizer

of θ 7→ Dφ(fθ, g) over (0,∞). If Dφ(fθ, g) ≥ 0 for all θ ∈ (0,∞), then we conclude

that g is the LSE g̃n. Otherwise, we denote the minimizer by θp+1. Since the rank
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of θp+1 in the set {θ1, · · · , θp} is not important for the description of the algorithm,

we can assume, without loss of generality, that θp+1 ≥ max(S). Thus, the new set of

support points is Snew = {θ1, · · · , θp, θp+1}.

2. We find the minimizer of φ over the class




g : g(t) =

p+1∑

j=1

σj
k(θj − t)k−1

+

θk
j

, σj ∈ R, j = 0, · · · , p+ 1.




 .

This means that some of the weights σ1, · · · , σp+1 can be negative. Let gmin denote

this minimizer.

3. If all the weights σj are nonnegative, then we move to the first step. Otherwise, we

need to “go back” to the original class of k-monotone functions and this is ensured by

finding a coefficient λ ∈ (0, 1) such that the function (1− λ)g + λgmin is k-monotone.

We will show that there exists always λ such that (1− λ)g+λgmin is k-monotone. This

operation is actually equivalent to deleting one point from the new support Snew. We find

the minimizer of φ over the class of k-monotone functions with the new reduced support.

This reduction is carried on until the obtained minimizer is a k-monotone function; that is,

the weights corresponding to its support points are all nonnegative.

Let S = {θ1, · · · , θm} be the current set of support points. The following lemma gives

the characterization of the minimizer of φ in the class of functions g given by

g(t) = σ1
k(θ1 − t)k−1

+

θk
1

+ · · · + σm
k(θm − t)k−1

+

θk
m

where 0 < θ1 < · · · < θm and σ1, · · · , σm ∈ R. This is also the class of polynomial splines

s of degree k − 1 that are (k − 2)-times continuously differentiable at the knots θ1, · · · , θm

and satisfy the boundary conditions s(j)(θm) = 0 for j = 0, · · · , k − 2 (for a definition of

polynomial splines, see e.g. Nürnberger (1989), Definition 1.15, page 94). We denote this

class by C′(θ1, · · · , θm).
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Lemma 4.2.1 A function g is the minimizer of φ over the class C ′(θ1, · · · , θm) if and only

if g is the k-th derivative of the polynomial spline P of degree 2k − 1 and knots θ1, · · · , θm

that satisfies

P (θi) = Yn(θi) for i = 1, · · · ,m, (4.1)

P (j)(0) = 0 for j = 0, · · · , k − 1, (4.2)

and

P (l)(θm) = 0 for l = k, · · · , 2k − 2. (4.3)

Proof. Let ǫ ∈ R and suppose that g is the minimizer of φ over the class C ′(θ1, · · · , θm).

We have for all j = 1, · · · ,m

Dφ(fθj
, g) = lim

ǫ→0

φ(g + ǫfθj
)) − φ(g)

ǫ
= 0.

Conversely, suppose that g ∈ C ′(θ1, · · · , θm) satisfies Dφ(fθj
, g) = 0 for all j = 1, · · · ,m. Let

h be any arbitrary function in C(θ1, · · · , θm). By convexity of φ, we have

φ(h) − φ(g) ≥ Dφ(h− g, g)

= Dφ




m∑

j=1

(σj,h − σj,g)fθj
, g





=
m∑

j=1

(σj,h − σj,g)D(fθj
, g)

= 0

which implies that g is the minimizer.

Now, notice that Dφ(fθj
, g) = 0, j = 1, · · · ,m, is equivalent to

H(θj , g) = Yn(θj), j = 1, · · · ,m,

where

H(θ, g) =

∫ θ

0
(θ − t)k−1g(t)dt.
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By noticing that H(·, g) is a spline of degree 2k− 1 and knots θ1, · · · , θm and satisfying the

boundary conditions in (4.1, 4.2 and 4.3), the results follows. �

The following lemma ensures that the reduction step is always possible.

Lemma 4.2.2 Let {θ1, · · · , θm−1} be the set of support points of the current iterate g. Let

θm = argminθ∈(0,∞)D(fθ, g) and suppose without loss of generality that θm > θm−1. Let

gmin be the minimizer of φ over the class C ′(θ1, · · · , θm). If gmin is not k-monotone, then

there exists λ ∈ (0, 1) such that the function

(1 − λ)g + λgmin

is k-monotone.

Proof. Since gmin minimizes φ over a bigger class , it follows that

φ(gmin) < φ(g).

The last inequality is strict because gmin 6= g. Using convexity of φ, we can write for any

ǫ > 0,

φ ((1 − ǫ)g + ǫgmin) − φ(g) ≤ (1 − ǫ)φ(g) + ǫφ(gmin) − φ(g)

= ǫ(φ(gmin) − φ(g))

< 0.

Now, there exist σ1,g, · · · , σm−1,g such that σj,g ≥ 0 for j = 1, · · · ,m−1 and σ1,gmin , · · · , σm,gmin ∈
R such that g and gmin can be written as

g(t) = σ1,gk
(θ1 − t)k−1

+

θk
1

+ · · · + σm−1,gk
(θm−1 − t)k−1

+

θk
m−1

and

g(t) = σ1,gmink
(θ1 − t)k−1

+

θk
1

+ · · · + σm,gmink
(θm − t)k−1

+

θk
m

.
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By passing ǫ to the limit, we obtain

lim
ǫց0

φ ((1 − ǫ)g + ǫgmin) − φ(g)

ǫ
= Dφ(gmin − g, g)

= σm,gminDφ(fθm , g) +
m−1∑

j=1

(σj,gmin − σj,g)Dφ(fθj
, g)

= σm,gminDφ(fθm , g)

where in the last equality we used the fact that D(fθj
, g) = 0 for j = 1, · · · ,m− 1. Since by

definition of θm, Dφ(fθm , g) < 0 it follows that σm,gmin > 0. Let λ be in [0, 1] and consider

gλ the weighted sum of g and gmin:

gλ = (1 − λ)g + λgmin.

We want to find the largest λ such that gλ is k-monotone. The parameter λ has to be chosen

such that

(1 − λ)σ1,g + λσ1,gmin ≥ 0

...

(1 − λ)σm−1,g + λσm−1,gmin ≥ 0

(1 − λ)σm,g + λσm,gmin ≥ 0.

Note that the last inequality is automatically satisfied since σm,gmin > 0 and hence we only

need to worry about the first m− 1 inequalities (it is implicitly assumed that m ≥ 2). Let

J be the set of integers j ∈ {1, · · · ,m− 1} such that

σj,gmin < 0.

For j ∈ J , define λj by

λj =
σj,g

σj,g − σj,gmin

.

Clearly, λj ∈ (0, 1). Now, if we consider j0 to be the index of the smallest λj; i.e.,

j0 = argminj∈Jλj ,
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then it is easy to verify that for all j ∈ J

(1 − λj0)σj,g + λj0σj,gmin ≥ 0

with equality if and only if j = j0 (we assume here that j0 is unique). To see that, notice

that if λ ∈ (0, 1) satisfies

(1 − λ)σj,g + λσj,gmin ≥ 0, for all j ∈ J (4.4)

then

λ ≤ λj , for all j ∈ J.

It follows that λ ≤ minj∈J λj = jj0 and that the maximal value of λ ∈ (0, 1) satisfying the

inequality in (4.4) is equal to λj0.

Since (1 − λj0)σj0,g + λj0σj0,gmin = 0, the knot θj0 is deleted from the set of knots

S = {θ1, · · · , θm}. The next step is to compute the (2k − 1)-th spline with the new set

of knots S\{θj0}. Notice that by moving from the previous step to the new one, the

monotonicity of the algorithm is maintained. Indeed, using again the convexity of φ, we

have

φ(gλj0
) = φ((1 − λj0)g + λj0gmin)

≤ (1 − λj0)φ(g) + λj0φ(gmin)

< (1 − λj0)φ(gmin) + λj0φ(gmin)

= φ(gmin).

Therefore, if gj0 is the minimizer of φ over the class of functions C(S\{θj0}), we should have

φ(gj0) ≤ φ(gλj0
)

which implies that φ(gj0) < φ(gmin). �
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Figure 4.1: The exponential density (in black) and the Least Squares estimator of the
(mixed) k-monotone density based on n = 100 and k = 3 (in red).

To start the algorithm, we fix some initial value θ(0) > X(n) and minimize the functional

φ over the cone

C(0) =

{
g : g(t) = C

k(θ(0) − t)k−1

(θ(0))k
, C > 0

}
.

For this purpose, we need to find the value C (0) that minimizes the quadratic function

C 7→ k2

2(2k − 1)θ(0)
C2 − 1

n

n∑

j=1

k
(θ(0) −X(j))

k−1

(θ(0))k
C

which yields

C(0) =

(
2k − 1

k

)
1

n

n∑

j=1

(θ(0) −X(j))
k−1

(θ(0))k−2
.

As in Groeneboom, Jongbloed, and Wellner (2003), we used an “alternative”directional

derivative. Using their notation, the “usual” directional derivative at a point g in the

direction of fθ, denoted before by Dφ(fθ, g), is equal to c1(θ), where

φ(g + ǫfθ) = φ(g) + ǫc1(θ) +
ǫ2

2
c2(θ)



179

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4.2: The cumulative distribution function of a Gamma(4, 1) (in black) and the Least
squares estimator of the mixing distribution based on n = 100 and k = 3 (in red).

with

c2(θ) =

∫ ∞

0
f2

θ (t)dt =
k2

(2k − 1)θ
.

The “alternative” directional derivative is given by

D̃φ(fθ, g) =
Dφ(fθ, g)√

c2(θ)
= k

H(θ, g) − Yn(θ)

θk−1/2
.

Remark 4.2.1 It should be mentioned here that the “gridless” step that was implemented

by Groeneboom, Jongbloed, and Wellner (2003) was not considered here. In practice,

we only consider a finite grid over which we minimize the directional derivative. The ob-

tained LSE is the minimizer of φ over the class of k-monotone functions whose support

points belong to the finite grid. The purpose of the “gridless” implementation is to obtain

a numerical solution that is closest to the theoretical one by perturbing the support points of

the solution. By performing this fine tuning, one can run the algorithm once again consid-

ering the new grid and obtain a new minimizer. This step is repeated until the gradient of
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Figure 4.3: The exponential density (the true mixed density), in black and its Least Squares
estimator based on n = 1000 and k = 3, in red.

the functional φ is sufficiently small.

Now we describe the preliminary simulations that we have performed. From a standard

Exponential, we simulated two samples of respective sizes n = 100 and n = 1000. The

Exponential density is completely monotone and therefore is k-monotone for all integers

k ≥ 1. This is actually the motivation behind considering nonparametric estimation of k-

monotone densities (see Chapter 1 for more details). The code of the algorithm was written

in S and can be found in Appendix C. To illustrate the asymptotic distribution theory

developed in Chapter 2 for any integer k ≥ 2, we computed the LSE based on n = 100 and

n = 1000 in two different cases: k = 3 and k = 6.

Note that if θ is a support point of the minimizing measure, then θ > X(1). This follows

from the simple fact that for all θ ∈ (0,X(1)), (θ−X(j))
k−1
+ = 0 for j = 1, · · · , n. Therefore,

adding θ ∈ (0,X(1)) to the set of support points does not effect the value of the sum
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Figure 4.4: The cumulative distribution function of a Gamma(4, 1) (the true mixing dis-
tribution), in black and the Least Squares estimator of the mixing distribution based on
n = 1000 and k = 3, in red.

n−1
∑n

j=1 g(Xj) whereas it increases the value of the integral
∫∞
0 g2(t)dt. The minimization

was performed on a finite grid such that, for given n and k, the maximal distance between

its points is taken to be 10−2. In practice, we found that it is enough to take 2kX(n) as an

upper bound for the largest support point as we obtained similar results with larger bounds.

The obtained estimates can be found in Table 4.1.

For k = 3, the plots in Figure 4.1 and Figure 4.3 show the LSE of the Exponential density

based on n = 100 and n = 1000 respectively. The “alternative” directional derivative

D̃φ(fθ, g̃n), for n = 1000, is plotted in Figure 4.5. In the inverse problem, plots of the

LSE of the true mixing distribution are shown in Figure 4.2 and Figure 4.4. In general,

the true mixing distribution that corresponds to a standard Exponential when viewed as a

k-monotone density is a Gamma(k + 1, 1). Indeed, note that

∫ ∞

x

1

Γ(k)
(t− x)k−1e−(t−x)dt = 1
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Figure 4.5: The directional derivative for the Least Squares estimator of the Exponential
density based on n = 1000 and k = 3.

for all x > 0. It follows that,

exp(−x) =

∫ ∞

x

(t− x)k−1

(k − 1)!
e−tdt

=

∫ ∞

0

(t− x)k−1
+

(k − 1)!
e−tdt

=

∫ ∞

0
k
(t− x)k−1

+

tk
1

k!
tke−tdt

=

∫ ∞

0
k
(t− x)k−1

+

tk
fk(t)dt (4.5)

where fk is the Gamma(k + 1, 1) density.

For k = 6, similar plots were produced for n = 100 and n = 1000: for the direct problem,

see Figure 4.6 and Figure 4.8, and for the inverse one, see Figure 4.7 and Figure 4.9.

The figures show consistency of the LSE and it is clear that convergence for estimating

the Exponential density is much faster than for estimating the Gamma distribution. This

is expected since in the direct problem, the rate of convergence is n−k/(2k+1) whereas it is
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Figure 4.6: The exponential density (the true mixed density), in black and its Least Squares
estimator based on n = 100 and k = 6, in red.

equal to n−1/(2k+1) in the inverse problem. Note also the rate n−1/(2k+1) is slower for larger

k and therefore, one should expect to see fewer support points as k → ∞. This fact is

confirmed in the numerical examples above (for n = 1000, there are 8 support points for

k = 3 and 4 for k = 6, see Table 4.1) and in many other simulations that we performed.

4.3 Approximation of the process Hk on [−c, c]

We will focus here on the case when k is even. When k is odd, the steps are very similar.

The goal of the algorithm is to find the minimizer of the functional

φ(g) =
1

2

∫ c

−c
g2(t)dt−

∫ c

−c
g(t)dXk(t)

where

dXk(t) = dW (t) + tkdt
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Figure 4.7: The cumulative distribution function of a Gamma(7, 1) (the true mixing distri-
bution), in black and its Least squares estimator based on n = 100 and k = 6, in red.

and W is two-sided Brownian motion starting at 0, over C the class of functions g that are

k-convex; i.e. g(k−2) exists and is convex, and satisfies the boundary conditions

(
g(k−2)(±c), · · · , g(2)(±c), g(±c)

)
=

(
k!

2!
c2, · · · , k!

(k − 2)!
ck−2, ck

)
. (4.6)

Recall that if Hc,k is the k-fold integral of gc,k determined by

Hc,k(c) = Yk(c),H
(2)
c,k (c) = Y

(2)
k (c), · · · ,H(k−2)

c,k (c) = Y
(k−2)
k (c), (4.7)

then gc,k is the minimizer if and only if

Hc,k(t) ≥ Yk(t), t ∈ [−c, c]

and
∫ c

−c
(Hc,k(t) − Yk(t)) dg

(k−1)
c,k (t) = 0,

where

Yk(t)
d
=






∫ t
0

(t−s)k−1

(k−1)! dW (s) + k!
(2k)! t

2k, t ≥ 0
∫ 0
t

(t−s)k−1

(k−1)! dW (s) + k!
(2k)! t

2k, t < 0
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Table 4.1: Table of the obtained LS estimates for k = 3, 6 and n = 100, 1000 and the
corresponding numbers of iterations Nit. A support point is denoted by ã and its mass by
w̃.

k, n Nit (ã, w̃)

k = 3, n = 100 13 (0.569, 0.0459), (1.829, 0.168), (1.909, 0.0347),

(2.839, 0.497), (7.939, 0.027), (7.989, 0.227)

k = 3, n = 1000 14 (0.814, 0.042), (1.674, 0.027), (2.124, 0.300), (3.254, 0.100),

(4.924, 0.450), (5.334, 0.001), (8.874, 0.037), (9.934, 0.039)

k = 6, n = 100 4 (2.109, 0.067), (4.999, 0.750), (17.449, 0.190)

k = 6, n = 1000 6 (2.625, 0.017), (3.615, 0.478), (6.575, 0.478), (11.375, 0.262)

The above characterization gives a necessary and sufficient condition for a function g in the

considered class to be the solution for the minimization problem. But it also implies that

this solution cannot have a strictly increasing (k − 1)-st derivative on a set with nontrivial

interior. Indeed, if we assume that there exists an open interval I ⊆ (−c, c) of positive length

on which g
(k−1)
c,k is strictly increasing, then this would imply that Yk = Hc,k on I and that

the (k − 1)-fold integral of Brownian motion is in C 2k−2(I). Therefore, the function g
(k−1)
c,k

has to increase on a set of Lebesgue measure zero. We conjecture that this set is finite and

consists of the discontinuity points of the monotone function g
(k−1)
c,k . For the particular case

of k = 2, there is still no proof available for this conjecture (see Groeneboom, Jongbloed,

and Wellner (2001a), Section 4). The main difficulty of this problem lies in the fact that

in principle, the monotone function g
(k−1)
c,k could be a Cantor-type function in which case,

the set on which it increases is Lebesgue measure zero and is uncountable (see e.g. Gelbaum

and Olmsted (1964), example 15, page 96). Based on this conjecture, Hc,k is a spline of

degree 2k − 1 that stays above Yk and touches it at the discontinuity points of g
(k−1)
c,k ; i.e.,

those points where H
(2k−2)
c,k = g

(k−2)
c,k changes its slope. Therefore, in order to obtain the

solution gc,k and its derivatives g′c,k, · · · , g
(k−1)
c,k , we first find Hc,k and then differentiate it

(k + j)-times for j = 0, · · · , k − 1.

The steps of the support reduction algorithm are very similar to those described in the
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Figure 4.8: The exponential density (the true mixed density), in black and its Least Squares
estimator based on n = 1000 and k = 6, in red.

previous section on calculating the LSE of a k-monotone density. In view of the conjecture,

we can restrict ourselves to the class of functions

C =




g : g(t) =

k−1∑

j=0

λj
tj

j!
+ µ1(t− θ1)

k−1
+ + · · · + µp(t− θp)

k−1
+ , p ∈ N\{0}






where λj ∈ R, µj ≥ 0 for 1 ≤ j ≤ p such that g satisfies the constraints in (4.6). Note that

any element g ∈ C is a spline of degree k− 1 and simple knots θ1, · · · , θp. This means that g

is (k − 2)-times continuously differentiable at these knots. From each iterate g ∈ C, we can

move in the direction of the function

fθ(t) =
(t− θ)k−1

+

(k − 1)!
+ αk−1(θ)

(t+ c)k−1

(k − 1)!
+ αk−3(θ) +

(t+ c)k−3

(k − 3)!
+ · · · + α1(θ)(u+ c)

where

αk−1(θ) = − (c− θ)

2c

αk−3(θ) = −αk−1(θ)
(2c)3

3!
− (c− θ)3

3!
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Figure 4.9: The cumulative distribution function of a Gamma(7, 1) (the true mixing dis-
tribution), in black and its Least squares estimator based on n = 1000 and k = 6, in
red.

...

α1(θ) = −αk−1(θ)
(2c)k−1

(k − 1)!
− · · · − α3(θ)

(2c)3

3!
− (c− θ)k−1

(k − 1)!
.

Indeed, for all θ ∈ [−c, c], the function fθ is a spline of degree k − 1 with θ as its unique

simple knot. Moreover, fθ satisfies the boundary conditions

f
(2j)
θ (±c) = 0, for j = 0, · · · , (k − 2)/2. (4.8)

For an arbitrary ǫ > 0, the function g + ǫfθ belongs to the class C and the directional

derivative of φ at g in the direction of fθ is given by

Dφ(g, fθ) = H(θ, g) − Yk(θ) (4.9)

where H(·, g) is the k-fold integral of g determined by the boundary conditions

H(2j)(±c, g) = Y
(2j)
k (±c), for j = 0, · · · , (k − 2)/2. (4.10)
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To see the equality in (4.9), note first that D(fθ, g) is given by

D(fθ, g) =

∫ c

−c
fθ(t)g(t)dt −

∫ c

−c
fθ(t)dXk(t)

=

∫ c

−c
fθ(t)d(H

(k−1)(t, g) − Y
(k−1)
k (t))

Thus, using successive integration by parts and the boundary conditions in (4.8) and (4.10),

we can write

Dφ(g, fθ)

=
[(
H(k−1)(t, g) − Y

(k−1)
k (t)

)
fθ(t)

]c
−c

−
∫ c

−c

(
H(k−1)(t, g) − Y

(k−1)
k (t)

)
f ′θ(t)dt

= −
∫ c

−c

(
H(k−1)(t, g) − Y

(k−1)
k (t)

)
f ′θ(t)dt

= −
[(
H(k−2)(t, g) − Y

(k−2)
k (t)

)
f ′θ(t)

]c
−c

+

∫ c

−c

(
H(k−2)(t, g) − Y

(k−2)
k (t)

)
f ′′θ (t)dt

=

∫ c

−c

(
H(k−2)(t, g) − Y

(k−2)
k (t)

)
f ′′θ (t)dt

...

=

∫ c

−c
(H(t, g) − Yk(t)) f

(k−1)
θ (t)dt

= H(θ, g) − Yk(θ).

Note that Yk plays here a role that is similar to that of the process Yn. Let S = {θ1, · · · , θm}
be the set of knots of the current iterate g. The function H(·, g) is a spline of degree 2k− 1

with simple knots −c, θ1, · · · , θm, c. If H(·, g) ≥ Yk, then g = H(k)(·, g) is the solution of the

minimization problem. Otherwise, we add θm+1 = argminθ∈[−c,c](H(·, g)(θ) − Yk(θ)) to the

support S. Without loss of generality, we can assume that θ1 < · · · < θm < θm+1. Now,

let C′(θ1, · · · , θm+1) be the class of polynomial splines of degree k − 1, with simple knots

θ1, · · · , θm+1 satisfying the boundary conditions in (4.6); i.e.,

C′(θ1, · · · , θm+1) =




g : g(t) =
k−1∑

j=0

λj
tj

j!
+ σ1(t− θ1)

k−1
+ + · · · + σm+1(t− θm+1)

k−1
+






where σj ∈ R and the λj’s are different from the ones used in the definition of the class C.

Consider Hmin to be the spline of degree 2k − 1 and simple knots θ1, · · · , θm+1 satisfying

Hmin(θj) = Yk(θj), for j = 1, · · · ,m+ 1.
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H
(2j)
min(±c) = Y

(2j)
k (±c), for j = 0, · · · , (k − 2)/2

and

H
(2j)
min(±c) =

k!

(2k − 2j)!
c2k−2j , for j = k, · · · , (2k − 2)/2.

The following lemma gives the solution of minimizing φ over the class C ′(θ1, · · · , θm+1).

Lemma 4.3.1 Let Hmin be the spline defined above. The function gmin = H
(k)
min is the

minimizer of the functional φ over the class C ′(θ1, · · · , θm+1).

Proof. The arguments are very similar to those used in the proof of Lemma 4.2.2. �

There exist λ0, · · · , λ2k−1, and σ1, · · · , σm+1 such that the spline Hmin can written as

Hmin = H(t, gmin) =

2k−1∑

j=0

λj
tj

j!
+ σ1(t− θ1)

2k−1
+ + · · · + σm+1(t− θm+1)

2k−1
+ .

To find the parameters λ2k−1, · · · , λ1, λ0 and σ1, · · · , σm+1, we solve a linear system of di-

mension (2k+m+1)×(2k+m+1) using the 2k+m+1 boundary conditions satisfied byHmin.

The reduction step is given by the following lemma:

Lemma 4.3.2 Let g be the current iterate in C with knots θ1, · · · , θm and gmin = H
(k)
min be

new minimizer of φ over the class C ′(θ1, · · · , θm+1). If gmin is not in the class C ′, then there

exists λ ∈ (0, 1) such that (1 − λ)g + λgmin ∈ C′.

Proof. The arguments are very similar to those used in the proof of Lemma 4.2.2. �

The steps of the algorithm can be summarized as follows:

1. Given the current iterate g with set of simple knots S = {θ1, · · · , θm}, we calculate

argminθ∈[−c,c]Dθ(fθ, g) = argminθ∈[−c,c](H(θ, g) − Yk(θ)). If Dθ(fθ, g) ≥ 0 for all

θ ∈ [−c, c], then g is the minimizer of φ over the class of splines C and its k-fold



190

integral H(·, g) is an approximation of the process Hk. Otherwise, we denote θm+1 =

argminθ∈[−c,c](H(θ, g) − Yk(θ)). If we assume without loss of generality that θm+1 >

θm, then Snew = {θ1, · · · , θm, θm+1} is the new set of knots.

2. We find gmin the minimizer of φ over the class C ′(θ1, · · · , θm+1).

3. If gmin ∈ C, we move the Step 1. Otherwise, we find the maximal value of λ ∈ (0, 1)

such that (1−λ)g+λgmin ∈ C. By finding such a λ, a point θj for some j ∈ {1, · · · ,m}
will be deleted from the current support. We find the minimizer over C ′(Snew\{θj}).
This will be repeated until the minimizer is in the class C.

The algorithm has to start somewhere and the most natural starting spline is the poly-

nomial H
(0)
c,k that was used in Chapter 3 to prove that Hc,k and Yk have at least a point of

touch with probability converging to 1 as c→ ∞. Recall that H
(0)
c,k is the unique polynomial

P of degree 2k − 2 that satisfies (4.6) and (4.7). To be conform with the notation used in

Chapter 2, we write the polynomial H
(0)
c,k (t) as

H
(0)
c,k (t) =

α2k−2

(2k − 2)!
t2k−2 +

α2k−4

(2k − 2)!
t2k−2 + · · · + αk

k!
tk +

αk−1

(k − 1)!
tk−1

+
αk−2

(k − 2)!
tk−2 · · · + α0,

where α2k−2, · · · , αk are given by

α2k−2 =
k!

2!
c2,

α2k−2j =
k!

(2j)!
c2j −

(
α2k−2

(2j − 2)!
c2j−2 + · · · + α2k−2j+2

2!
c2
)

for j = 2, · · · , k/2, whereas αk−1, αk−2, · · · , α0 are given by

αk−1 =
Y

(k−2)
k (c) − Y

(k−2)
k (−c)

2c
,

αk−2 =
Y

(k−2)
k (−c) + Y

(k−2)
k (c)

2
−
(α2k−2

k!
ck + · · · + αk

2!
c2
)
,
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αk−2j−1 =
Y

(k−2j−2)
k (c) − Y

(k−2j−2)
k (−c)

2c
−
(

αk−1

(2j + 1)!
c2j + · · · + αk−2j+1

3!
c2
)
,

and

αk−2j−2 =
Y

(k−2j−2)
k (c) + Y

(k−2j−2)
k (−c)

2
−
(

α2k−2

(k + 2j)!
ck+2j + · · · + αk−2j

2!
c2
)

for j = 1, · · · , (k − 2)/2.

Example 4.3.1 For k = 2, H
(0)
c,2 is given by

H
(0)
c,2 (t) =

α2

2!
t2 + α1t+ α0, t ∈ [−c, c]

with

α2 = c2, α1 =
Y2(c) − Y2(−c)

2c
, α0 =

Y2(−c) + Y2(c)

2
− c2.

Example 4.3.2 For k = 4, H
(0)
c,4 is given by

H
(0)
c,4 (t) =

α6

6!
t6 +

α4

4!
t4 +

α3

3!
t3 +

α2

2!
t2 + α1t+ α0, t ∈ [−c, c]

with

α6 =
4!

2!
c2, α4 =

(
1 − 4!

(2!)2

)
c4, α3 =

Y ′′
4 (c) − Y ′′

4 (−c)
2c

,

α2 =
Y ′′

4 (−c) + Y ′′
4 (−c)

2
−
(α6

4!
c4 +

α4

2!
c2
)

=
Y ′′

4 (−c) + Y ′′
4 (−c)

2
−
(

1 − 4!

(2!)3

)
c6

α1 =
Y4(c) − Y4(−c)

2c
− α3

3!
c2

=
Y4(c) − Y4(−c)

2c
− 1

3!

(
Y ′′

4 (c) − Y ′′
4 (−c)

2c

)
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and

α0 =
Y4(−c) + Y4(c)

2
−
(α6

6!
c6 +

α4

4!
c4 +

α2

2!
c2
)

=
Y4(−c) + Y4(c)

2
− 1

2!

(
Y ′′

4 (−c) + Y ′′
4 (c)

2

)
c2 −

(
4!

2!6!
+

1

4!

(
1 − 4!

(2!)2

)

− 1

2!

(
1 − 4!

(2!)3

))
c8.

The algorithm was run to obtain an approximation to the process Hk and some of the

derivatives H
(j)
k for k = 3 and k = 6 on the interval [−4, 4]. Furthermore, for k = 3 we

obtained similar approximations but on the bigger intervals [−6, 6] and [−8, 8]. The purpose

of these additional computations was to look at the effect of letting c→ ∞ on the locations

of the jump points and also on the heights of the jumps. A C program, implementing an

approximation to the processes Yk, Y
′
k, · · · , Y

(k−1)
k on any interval [−n, n] for n ∈ N\{0}

was developed and can be found in Appendix C. The approximation to Brownian motion

and its successive primitives on [0, 1] was based on the Haar function construction (see e.g.

Rogers and Williams (1994), Section 1.6). To obtain an approximation of these processes

on [−n, n], independent copies were generated on the intervals [j, j+1] for j = −n, · · · , n−1

and pasted “smoothly” at the boundaries. A detailed description of the method and related

formulas can be found in Appendix B. For both k = 3 and k = 6, we took a finite grid

with a mesh of size 2−11. The iterative 2k − 1-th spline algorithm was written in S and

the corresponding code can be found in Appendix C. The C program was used offline and

the obtained approximations to Yk, · · · , Y (k−1)
k were stored in a matrix that was thereafter

imported and used as an input for the iterative algorithm. For a given interval [−n, n],

the output is itself an approximation to the process Hn,k, the k-fold integral of the LS

solution of the Gaussian problem dXk(t) = tkdt+ dW (t) on [−n, n]. An approximation to

the derivatives H ′
n,k, · · · ,H

(2k−1)
n,k can be also obtained on the same chosen grid.

For both k = 3 and k = 6, the upper left plot in Figure 4.10 and Figure 4.11 shows the

difference −(Hn,k − Yk) and Hn,k − Yk on [−4, 4] respectively. The sign of Hn,k − Yk is as

expected: nonpositive (nonnegative) when k is odd (even). The curves touch the abscissa

axis at the points where the derivative H
(2k−2)
n,k changes its slope. In the upper right plots
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Figure 4.10: Plots of −(H4,3 − Y3), g4,3 = H
(3)
4,3 the LS solution (dashed red line) and t3

(solid black line), g′4,3 = H
(4)
4,3 (solid red line) and 3t2 (solid black line), and g′′4,3 = H

(5)
4,3

(solid red line) and 6t (solid black line).
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Figure 4.11: Plots of (H4,6 −Y6), g4,6 = H
(6)
4,6 the LS solution (dashed red line) and t6 (solid

black line), g
(4)
4,6 = H

(10)
4,6 (solid red line) and ((6!)/2!) t2 (solid black line), and g

(5)
4,6 = H

(11)
4,6

(solid red line) and 6! t (solid black line).
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are the graphs of gn,k = H
(k)
n,k (in red) and g0(t) = tk (in black). The difference between

the graphs is not very visible but the motivation behind plotting the functions instead their

difference was to show that the LS solution gn,k has the same “form” as the estimated

function g0. The lower right plots in Figure 4.10 and Figure 4.11 show the convex functions

Table 4.2: Table of set of touch points S between the processes Hn,k and Yk for k =
3, n = 4, 6, 8 and k = 6, n = 4, the value of the LS solution at the origin gn,k(0) and the
corresponding number of iterations Nit.

k, [−n, n] Nit S gn,k(0)

k = 3, [−4, 4] 19 {−3.9501,−2.0004,−2.0000,−1.0000, -0.6016

−0.1250, 1.7500, 3.9511}
k = 3, [−6, 6] 36 {−5.9501,−3.9238,−3.9213,−1.9995, -0.5990

-1.0000, -0.1250, 1.7500,4.0097,

4.0107, 4.0112}
k = 3, [−8, 8] 42 {−6.9985,−5.9995,−4.7495,−4.2500, -0.6004

-3.9892, -3.9873, -1.9995,-1.7500,

-1.0000, -0.1250, 1.7500, 4.0356,

4.0390, 6.3291, 6.6250}
k = 6, [−4, 4] 37 {−3.9941,−2.0478,−2.0385,−0.3886, -0.8203

1.3056, 1.3208, 2.7983, 2.8149,

2.8271}

H
(4)
4,3 and H

(10)
4,6 (in red) on [−4, 4] for k = 3 and k = 6 respectively. These derivatives

estimate the “true” convex functions 3t2 and (6!/2!)t2 (in black) respectively. The jump

processes H
(5)
4,3 and H

(11)
4,6 (in red) are shown in the lower left part. They both estimate

a linear function and are monotone since the slopes of H
(5)
4,3 and H

(11)
4,6 are increasing by

convexity.

The set of points of touch between Hn,k and Yk for k = 3, n = 4, 6, 8 and k = 6, n = 4

are provided in Table 4.2. For k = 3, we generated first the process Y3 and its derivatives
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Y ′
3 and Y ′′

3 on the interval [−8, 8]. Then, we obtained the envelopes H8,3,H6,3 and H4,3

using the appropriate boundary conditions at the points −8, 8, −6, 6 and −4, 4 (see Section

2 of Chapter 3 for more details on the construction of the invelope Hk when k is odd). It

is clear that the obtained points of touch are different and this fact was already noticed

by Groeneboom, Jongbloed and Wellner (2001A) in the problem of estimating a convex

function (k = 2). The authors also compared the value of the LS solution at the origin and

found that it does not change very much as n increases. We notice the same fact for k = 3

(compare the values of gn,3(0) in Table 4.2). This stability is expected and follows from the

fact that limn→∞ gn,k(0) = H
(3)
3 (0).

4.4 Computing the MLE of a k-monotone density on (0,∞)

Let X1, · · · ,Xn be n i.i.d random variables from a k-monotone density g0 and Gn be their

empirical distribution function. Consider the functional

φ(g) = −
∫ ∞

0
log g(t)dGn(t) +

∫ ∞

0
g(t)dt

where g belongs to C, the class of integrable k-monotone functions on (0,∞). In Section 2

of Chapter 2, it was established that φ admits a minimizer ĝn of the form

ĝn(t) = ŵ1
k(θ1 − t)k−1

+

θk
1

+ · · · + ŵm
k(θm − t)k−1

+

θk
m

where m ≤ n and ŵ1 + · · · + ŵm = 1, since this minimizer is nothing but

the Maximum Likelihood estimator (ĝn maximizes −φ). Note that in addition to the

log-likelihood term, the functional φ is also composed of the “penalty” term
∫∞
0 g(t)dt.

Without this term, the minimization problem will not be proper since for any nontrivial

function g ∈ C, we would have limc→∞ φ(cg) = − limc→∞ log(c) = −∞. In the particular

case of k = 2, Groeneboom, Jongbloed, and Wellner (2001b) proved that the MLE is

unique. For k > 2, we were able to prove the MLE is unique when k = 3 (see Lemma 2.2.5

in Chapter 2) and we conjecture that this holds true for k > 3. Groeneboom, Jongbloed,

and Wellner (2003) noticed that the support reduction algorithm is more efficient when it

is based on a Newton-type procedure instead of applying it directly to the objective function

φ. This entails an additional linearization step based on the well-known approximation
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Figure 4.12: The exponential density (the true mixed density), in black and its Maximum
Likelihood estimator based on n = 100 and k = 3, in red.

log(1 + x) ≃ x− x2

2

in the neighborhood of 0. Let ḡ be the current iterate and g ∈ C such that

g − ḡ

ḡ

is very small. Then, we can write

φ(g) = φ(ḡ) +

∫ ∞

0
−g(t) − ḡ(t)

ḡ(t)
dGn(t)

+

∫ ∞

0

1

2

(
g(t) − ḡ(t)

ḡ(t)

)2

dGn(t) +

∫ ∞

0
(g(t) − ḡ(t))dt.

If we delete the terms that do not depend on f , we can define the following local objective

function (see Groeneboom, Jongbloed, and Wellner (2003))

φq(g) = −2

∫ ∞

0

g(t)

ḡ(t)
dGn(t) +

∫ ∞

0

1

2

(
g(t)

ḡ(t)

)2

dGn(t) +

∫ ∞

0
g(t)dt.
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Figure 4.13: The cumulative distribution function of a Gamma(4, 1) (the true mixing dis-
tribution), in black and the its Maximum Likelihood estimator based on n = 100 and k = 3
(in red).

Let ǫ > 0 and fθ(t) = k(t− θ)k−1
+ /θk, θ > 0. We have

φq(g + ǫfθ) = φq(g) + ǫ

(∫ ∞

0
−2

fθ(t)

ḡ(t)
dGn(t) +

∫ ∞

0

g(t)fθ(t)

(ḡ(t))2
dGn(t) +

∫ ∞

0
fθ(t)dt

)

+
ǫ2

2

∫ ∞

0

(
fθ(t)

ḡ(t)

)2

dt

= φq(g) + ǫc1(θ, g) +
ǫ2

2
c2(θ, g).

The “alternative”directional derivative of φq at the point g in the direction of fθ is given by

D̃φq(fθ, g) =
c1(θ, g)√
c2(θ, g)

.

The algorithm consists of an outer and inner loops. Given a fixed finite grid Θf (note

that the subsript f is for “finite” and that Θf corresponds to Θδ used in Groeneboom,

Jongbloed, and Wellner (2003)) and the current iterate ḡ, the inner loop is set up to find

ḡq = argmin{φq(g) : g ∈ cone(fθ, θ ∈ Θf )}. The next iterate is taken to be (1 − λ)ḡ + λḡq,
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Figure 4.14: The exponential density (the true mixed density), in black and its Maximum
Likelihood estimator based on n = 1000 and k = 3, in red.

where λ ∈ (0, 1] is appropriately chosen to ensure monotonicity of the algorithm. A reduction

step is needed to construct a starting value g(0) which will depend of course on the current

iterate ḡ. To enter the outer loup, the minimal value minθ∈Θf
D̃φq(fθ, ḡ) needs to be bigger

than some fixed tolerance −η, otherwise we stop. Let S̄ = {θ̄1, · · · , θ̄p} denote the set of

support points of the current iterate ḡ. We proceed as follows:

1. We calculate minθ∈Θf
D̃φq(fθ, ḡ). If it is smaller than −η, we stop. Otherwise, we

move to the second step.

2. We minimize the local objective function φq (which depends on ḡ) over the cone

C(Θf ) =

{
g : g(t) =

∫

θ∈Θf

fθ(t)dµ(θ), where µ is a positive measure on Θf

}
.

For that, we need to find a starting function g(0). The current iterate ḡ is not nec-

essarily a good choice and therefore we need to construct one. This can be done as
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Figure 4.15: The cumulative distribution function of a Gamma(4, 1) (the true mixing distri-
bution), in black and the its Maximum Likelihood estimator based on n = 1000 and k = 3
(in red).

follows: We first minimize the quadratic function

ψ(α1, · · · , αp) = φq(

p∑

j=1

αjfθ̄j
)

where α1, · · · , αp ∈ R. Finding this minimum is achieved by finding the solution of

the linear system

(DY )tDY α = 2Y td− np (4.1)

where Y = (fθ̄j
(Xi))i,j is a n × p-matrix, D is the n × n diagonal matrix given by

Dii = 1/ḡ(Xi), d
t = (1/ḡ(X1), · · · , 1/ḡ(Xn)), np and α are the p× 1 vectors given by

np
t = (n, · · · , n) and αt = (α1, · · · , αp) respectively.

Let gmin =
∑p

j=1 αj,minfθ̄j
be this minimum. Next, if gmin is k-monotone; i.e.,

αj,min > 0 for all j = 1, · · · , p, then we take g(0) = gmin. Otherwise, we find λ ∈ (0, 1)

such that (1− λ)ḡ+ λgmin is k-monotone. Such a λ ∈ (0, 1) will always exist and this
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Figure 4.16: The exponential density (the true mixed density), in black and its Maximum
Likelihood estimator based on n = 100 and k = 6, in red.

follows from the same arguments of Lemma 4.2.2. We repeat the reduction and min-

imization steps till we find a minimizer that is k-monotone. We take this minimizer

to be the starting function g(0). The support of g(0) is in general smaller than S̄ as a

consequence of successive deletions of support points in the reduction steps.

In the inner loop, we proceed as we did for computing the LSE and the process Hn,k

(see the Section 1 and Section 2). Let m be an integer strictly smaller than p and let

us denote the current iterate and its support by ḡinner and S̄inner. We assume without

loss of generality that S̄ = {θ̄1, · · · , θ̄m}. Let θ̄m+1 = argminθ∈Θf
Dφq(fθ, ḡinner). If

Dφq(fθ̄m+1
, ḡinner) ≤ −η, we stop. Otherwise, we assume without loss of generality

that θ̄m+1 > θ̄m and find the minimizer of φq over the class

C′(θ̄1, · · · , θ̄m+1) =




g : g =

m+1∑

j=1

αjfθ̄j
, αj ∈ R, j = 1, · · · ,m+ 1





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Figure 4.17: The cumulative distribution function of a Gamma(7, 1) (the true mixing dis-
tribution), in black and the its Maximum Likelihood estimator based on n = 100 and k = 6
(in red).

by solving the linear system given in (4.1). If the minimizer, gmin, is k-monotone,

then we take it as the next iterate. Otherwise, we find λ ∈ (0, 1) such that (1 −
λ)ḡinner +λgmin is k-monotone and take the first minimizer that is k-monotone as the

next iterate.

3. Let gmin = argmin{φq(g) : g ∈ C(Θf )} obtained in the previous step. Since there

is no guarantee that φ(gmin) ≤ φ(ḡ), we apply the Armijo rule; that is, we find the

smallest λ ∈ (0, 1] such that

φ((1 − λ)ḡ + λgmin) ≤ φ(ḡ).

We take (1 − λ)ḡ + λgmin to be the new iterate for the outer loop.

For k = 3 and k = 6, we calculated the MLE of a standard Exponential based on the same

samples of size n = 100 and n = 1000 used in the Least Squares estimation (see Section 2).
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Figure 4.18: The exponential density (the true mixed density), in black and its Maximum
Likelihood estimator based on n = 1000 and k = 6, in red.

The algorithm was coded in S and can be found in Appendix C. To start the algorithm, we

calculate θ(0) the minimizer of the nonlinear function

θ 7→ − 1

n

n∑

j=1

log

(
k(θ −Xj)

k−1

θk

)

for θ ≥ X(n)+a, where a is some fixed positive number. This minimization can be performed

using the S function nlminb. Different values of a yield different starting values but the

numerical results remained unchanged for many different values which supports our conjec-

ture about uniqueness of the MLE in the general case k > 3. As for we did for the LSE, we

took a finite grid ⊆ [X(1), 2kX(n)] with a maximal mesh equal to 0.01. The ML estimation

in the direct is illustrated by the plots in Figure 4.12 and Figure 4.14 for k = 3, and in

Figure 4.16 and Figure 4.18 for k = 6. The “alternative” directional derivative D̃φ(fθ, ĝn),

for n = 1000 and k = 6, is plotted in Figure 4.20. For the inverse problem, see Figure 4.13

and Figure 4.15 for k = 3, and Figure 4.17 and Figure 4.19 for k = 6. Consistency of the

MLE is proved in Chapter 2 and it can be clearly seen in these figures. As for the LSE,
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Figure 4.19: The cumulative distribution function of a Gamma(7, 1) (the true mixing distri-
bution), in black and the its Maximum Likelihood estimator based on n = 1000 and k = 6
(in red).

convergence in the inverse problem is much slower than in the direct one and the difference

becomes more pronounced when k is large. Finally, it should be mentioned here that even

if the MLE and LSE of the Exponential density show very small visible differences in the

direct problem, it can be easily checked by comparing the locations of jump points or the

heights of the jumps that these estimators are different (compare Table 4.1 and Table 4.3).

4.5 Future work and open questions

4.5.1 The MLE of a mixture of Exponentials

As it was already mentioned in the introduction, this work was motivated in part by going

beyond consistency of the nonparametric Maximum Likelihood estimator of a scale mixture

of Exponentials (see Jewell (1982)). As the class of scale mixtures of Exponentials is the

intersection of the classes of k-montone densities for k ≥ 1, a scale mixture of Exponentials
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Figure 4.20: The directional derivative for the Maximum Likelihood estimator of the Ex-
ponential density based on n = 1000 and k = 6.

can be viewed as a limit of a sequence of k-monotone densities when k → ∞. More formally,

let g be a mixture of Exponentials. There exists a distribution function F such that

g(x) =

∫ ∞

0
t exp(−xt)dF (t), for all x > 0.

Let gk be the k-monotone density given by

gk(x) =

∫ ∞

0

k(y − x)k−1
+

yk
dFk(y)

where Fk is a distribution function to be defined. The density gk can be rewritten

gk(x) =

∫ ∞

0

k

y

(
1 − x

y

)k−1

+

dFk(y)

=

∫ ∞

0

1

z

(
1 − x

kz

)k−1

+
dFk(kz) by the change of variable y = kz

→
∫ ∞

0

1

z
exp(−x/z)dF ∗(z)

if Fk(k·) →d F
∗. By the change of variable t = 1/z, we have for all x > 0

gk(x) → −
∫ ∞

0
t exp(−xt)dF ∗(1/t) =

∫ ∞

0
t exp(−xt)d(1 − F ∗(1/t)).
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Table 4.3: Table of the obtained ML estimates for k = 3, 6 and n = 100, 1000. A support
point is denoted by â and its mass by ŵ.

k, n (â, ŵ)

k = 3, n = 100 (0.549, 0.040), (1.259, 0.051), (1.819, 0.072),

(2.579, 0.027), (2.589, 0.492), (6.839, 0.314)

k = 3, n = 1000 (0.684, 0.025), (1.664, 0.120), (2.114, 0.184),

(3.164, 0.141)

(4.794, 0.236), (4.824, 0.184), (8.304, 0.107)

k = 6, n = 100 (3.839, 0.428), (3.849, 0.165), (10.479, 0.405)

k = 6, n = 1000 (3.042, 0.186), (6.452, 0.300), (6.482, 0.267),

(11.072, 0.018), (11.102, 0.226)

If the distribution functions Fk, k ∈ N, are chosen such that, for all continuity points t > 0

of F , Fk(kt) → 1 − F (1/t) as k → ∞, then g is the pointwise limit of the sequence (gk)k.

Based on n i.i.d. random variables from the density g, let the completely monotone

density ĝn be the MLE of g. Recall that the MLE of the mixing distribution F̂n is discrete

with at most n jump points and hence the density ĝn is a finite mixture of Exponentials

with at most n components (see Jewell (1982), Lindsay (1983a), Lindsay (1983b), Lindsay

(1995)). Now, for a fixed integer k ≥ 1, we can also consider ĝn,k to be the MLE of g in the

class of k-monotone densities. At any fixed point x0 > 0, the mixed density g satisfies the

working assumptions of the asymptotic distribution theory developed in this thesis. Thus,

as n→ ∞, we have





n
k

2k+1 (ĝn,k(x0) − g(x0))

n
k−1
2k+1 (ĝ

(1)
n,k(x0) − g(1)(x0))

...

n
1

2k+1 (ĝ
(k−1)
n,k (x0) − g(k−1)(x0))




→d





c0(g)H
(k)
k (0)

c1(g)H
(k+1)
k (0)
...

ck−1(g)H
(2k−1)
k (0)




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and

n
1

2k+1 (F̂n,k(x0) − F (x0)) →d
(−1)kxk

0

k!
ck−1(g)H

(2k−1)
k (0)

where F̂n,k is the MLE of the mixing distribution corresponding to g viewed as a k-monotone

density, Hk is the envelope (“invelope”) of the (k − 1)-fold integral of two-sided Brownian

motion + ((k!)/(2k)!) t2k when k is odd (even) and the constants cj(g), j = 0, · · · , k − 1 are

given in Theorem 2.7.2.

Under this perspective, the problem of deriving an asymptotic distribution theory for

the MLE ĝn depends not only on the sample size n in the limit, but also on the smoothness

parameter k. Here, we list some of the natural questions that we would like to answer in

the future:

• For fixed i.i.d. random variables X1, · · · ,Xn from g, what is the limit of ĝn,k when

k → ∞? Do we have

lim
k→∞

ĝn,k(x) = ĝn(x), for x > 0

for n maybe sufficiently large ?

• If the above does not necessarily hold, but g is completely monotone, can we change

the order of the limits on n and k? That is, do we have

g(x) = lim
k→∞

lim
n→∞

ĝn,k(x) = lim
n→∞

lim
k→∞

ĝn,k(x),

for almost surely all x > 0? The first limit follows from the strong consistency of ĝn,k

for any fixed k ≥ 1. Indeed, for k ≥ 1, the density g is k-monotone and hence by

Theorem 2.3.1

lim
n→∞

ĝn,k = g, uniformly on [c,∞),

for c > 0. Therefore,

lim
k→∞

lim
n→∞

ĝn,k = g, uniformly on [c,∞).
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• What is the rate of convergence of ĝ
(j)
n (x0) for a fixed integer j ≥ 0 and that of F̂n(x0)?

Can these rates be obtained from the rates n−(k−j)/(2k+1) proved for ĝ
(j)
n,k(x0), j =

0, · · · , k − 1 in the direct problems and n−1/(2k+1) for F̂n,k(x0) in the inverse problem

with k fixed?

• Suppose that the limiting distributions of ĝ
(j)
n (x0), j ≥ 0, and F̂n depend on a process

H∞. How is this process defined? Can it be obtained as the limit (in an appropriate

sense) of some scaled version of the sequence (Hk)k? Is it related, as in the k-monotone

case, to some Gaussian problem?

4.5.2 Further related problems

But independently of the completely monotone problem, there are still many other problems

left in connection with k-monotone densities, for a fixed k. We present in the following some

of them that can be investigated in the future:

1. Another mixture form. The integral representation of k-monotone densities,

that has been used here, is only one of two possible mixture forms: We can also write a

k-monotone density g as

g(x) =
1

µk

∫ ∞

0
(t− x)k−1

+ dF (t), x > 0 (4.2)

where we assume that F is a distribution function with

µk =

∫ ∞

0
tkdF (t) <∞.

Then F can be given by the following inversion formula:

F (x) = 1 − g(k−1)(x)

g(k−1)(0)
. (4.3)

The integral representation in (4.2) and the inversion formula in (4.3) can be established

using similar arguments as in the proof of Theorems 1 and 3 in Williamson (1956). To

estimate F of a fixed point x0, we need to estimate g(k−1) at both the points 0 and x0. For

the special case of monotone densities (k = 1), Woodroofe and Sun (1993) showed that the

MLE ĝn is not a consistent estimator at the point 0 and constructed a penalized MLE to
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obtain consistency. Kulikov (2002) proposed another approach based on ĝ(αn, 0) = ĝn(n−α)

as an estimator of g(0), and proved that ĝ(n−1/3, 0) has a smaller mean squared error than

that of the estimator proposed by Woodroofe and Sun (1993).

We conjecture that the inconsistency problem becomes even more severe for k ≥ 2. We

would like to investigate this fact in the future and generalize the method developed by

Woodroofe and Sun (1993) or Kulikov (2002).

2. Estimating a smooth functional. In this thesis, we focused only on estimating

a k-monotone density g0 and its derivatives at a fixed point x0 > 0. If νj is the func-

tional defined on Dk by νj(g) = g(j)(x0), g ∈ Dk, then under our working assumptions, the

nonparametric MLE of νj, ν̂j,n, converges at the rate n−(k−j)/(2k+1), j = 0, · · · , k − 1 (see

Theorem 2.7.2).

Can we obtain the rate n−1/2 for some other functionals? If yes, can we find a simple

characterization for these functionals? If we consider only the k-monotone densities with

finite second moment, then the answer for the first question is yes. Indeed, take for example

ν ≡ µ to be the mean of the mixing distribution F . If X ∼ g0 ∈ Dk, then there exist two

independent random variables Y and Z such that X = Y Z, Y ∼ Beta(1, k) and Z ∼ F .

Therefore, E(Y ) (k + 1)−1 = E(X); i.e., µ = (k + 1) E(X). Since g0 was assumed to have

a finite second moment, the estimator (k + 1)X converges at the rate n−1/2 by the central

limit theorem.

3. Testing problems. Consider the testing problem:

H0 : g0(x0) = θ0 versus H1 : g0(x0) 6= θ0, (4.4)

where g0 is a monotone density. Banerjee and Wellner (2001a) considered the asymptotic

distribution of the log-likelihood ratio statistics in a related monotone function problem

under the null hypothesis and also under a fixed alternative. Banerjee and Wellner

(2001a) found that, under the null this asymptotic distribution is universal and can be

characterized as a functional of standard two-sided Brownian motion with parabolic drift.

They conjecture that this similar asymptotic behavior carries over to the testing problem

in (4.4).
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If g0 is a k-monotone density, we can consider the more general testing problems

H0,j : g
(j)
0 (x0) = θ0,j versus H1,j : g

(j)
0 (x0) 6= θ0,j, j = 0, · · · , k − 1.

If we still consider the log-likelihood ratio as the test statistic, then what is its asymptotic

distribution under the null? Under a fixed alternative? Under local aternatives?

4.5.3 Some starting points for the transition to completely monotone

In the previous section, it was stated that if Fk, k ≥ 0, and F are distribution functions on

(0,∞) such that limk→∞ Fk(kt) = 1 − F (1/t) for any continuity point t > 0 of F , then

∫ ∞

0

k(t− x)k−1
+

tk
dFk(t) →

∫ ∞

0
t exp(−tx)dF (t), as k → ∞

for all x > 0. But in Section 2, we established that the exponential density is theGamma(k+

1, 1) scale mixture of Beta(1, k)’s and hence we can write

exp(−x) =

∫ ∞

0

k

t

(
1 − x

t

)k−1

+
dFk(t)dt

=

∫ ∞

0

1

t

(
1 − x

kt

)k−1

+
dFk(kt)dt (4.5)

with Fk is Gamma(k + 1, 1) distribution function. But note that Fk(kt) → 1[1,∞)(t), t 6=
1. Indeed, it is known that if Y1, · · · , Yk+1 are i.i.d. random variables from a standard

Exponential, then Sk+1 = Y1+· · ·+Yk+1 ∼ Gamma(k+1, 1). On the other hand, Sk+1/k →p

1 by the weak law of large numbers. As Fk(kt) is the cumulative distribution of Sk+1/k, it

follows that Fk(kt) → 1[1,∞)(t) for all t 6= 1. This fact is not surprising as

lim
k→∞

1

t

(
1 − x

kt

)k−1

+
→ 1

t
exp(−x/t)

for all t > 0 and hence the limit of the sequence (Fk)k is expected to degenerate at 1 in

view of (4.5).

Thus it would be interesting to have a family of distributions to study in which the

mixing distribution is nontrivial and has a positive density. For example what happens if

we take

g(x) = αxα−1 exp(−xα),
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the Weibull density with shape parameter α < 1; or

g(x) =
1

(1 + x)2
?

Example 4.5.1 It is known that the Weibull(1/2, 1) distribution function G can be written

as

1 −G(x) = exp(−x1/2) =

∫ ∞

0
exp(−yx)f(y)dy

where

f(y) =
1

2
√
πy3

exp

(
− 1

4y

)
,

and hence the corresponding density can be written as

g(x) =
1

2
x−1/2 exp(−x1/2) =

∫ ∞

0
y exp(−yx)f(y)dy.

This example is interesting because
∫∞
0 g2(x)dx = ∞, and we might expect the Least

Squares estimator to break down or perform badly. (The Weibull densities with α < 1/2

should be even worse!) Now by the change of variable t = 1/y, 1 −G can be rewritten as

1 −G(x) = exp(−x1/2) =

∫ ∞

0
exp(−x/t)m(t)dt

where

m(t) =
1

2
√
π
t−1/2 exp(−t/4).

What is the corresponding sequence (fk)k that goes with the kernel (1−x/t)k
+? That is, fk

would solve

exp(−x1/2) =

∫ ∞

0

(
1 − x

t

)k

+
fk(t)dt

and we should have

fk(x) =
(−1)k

k!
xkG(k+1)(x) =

(−1)k

k!
xkg(k)(x).
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We can calculate

f1(x) = −xg(1)(x) = x

(
1

4x3/2
+

1

4x

)
exp(−x1/2) =

1

4
(1 + x−1/2) exp(−x1/2),

f2(x) =
x2

2
g(2)(x) =

x2

2

(
3

8x5/2
+

3

8x2
+

1

8x3/2

)
exp(−x1/2),

and so forth. Furthermore, it is the case that

kfk(kx) →
1

2
√
π
x−1/2 exp(−x/4) ≡ f∞(x) as k → ∞.

Example 4.5.2 When

g(x) =
1

(1 + x)2

we have for all x ≥ 0

1 −G(x) =

∫ ∞

x

1

(1 + t)2
dt =

1

1 + x
,

and hence

1 −G(x) =
1

1 + x
=

∫ ∞

0
exp(−yx) exp(−y)dy

=

∫ ∞

0
exp(−x/t)t−2 exp(−1/t)dt.

Thus f∞(x) = x−2 exp(−1/x), x ≥ 0. Correspondingly for finite k, we have

fk(x) =
(−1)k

k!
xkg(k)(x) =

(−1)k

k!
xk (k + 1)!(−1)k

(1 + x)k+2
= (k + 1)

xk

(1 + x)k+2
,

and hence

kfk(kx) = k(k + 1)
(kx)k

(1 + kx)k+2

=
k(k + 1)

(kx)2
(kx)k+2

(1 + kx)k+2

=
k + 1

k
x−2 1

(1 + 1/(kx))k+2

→ x−2 exp(−1/x) = f∞(x) as k → ∞.

This example is interesting because g is bounded but heavy-tailed. The fk’s converge to 0

at the origin, but are also heavy-tailed.
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Böhning, D. (1986). A vertex exchange method in D-optimal design theory. Metrika 33,

337 - 347.

Bojanov, B. D., Hakopian, H. A. and Sahakian, A. A. (1993). Spline Functions and Mul-

tivariate Interpolations. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Carroll, R.J. and Hall, P. (1988). Optimal rates of convergence for deconvolving a density.

J. Amer. Statist. Assoc. 83, 1184 - 1186.

de Boor, C. and Fix G. J. (1973). Spline approximation by quasi-interpolants. J. Approx.

Theory 8, 19 - 45.

de Boor, C. (1974). Bounding the error in spline interpolation. SIAM Rev. 16, 531 - 544.

de Boor, C. (1978). A Practical Guide to Splines. Springer-Verlag, New York.

de Boor, C. (2004). http://www.cs.wisc.edu/ deboor/toast/pages09.html.

DeVore, R. A. and Lorentz, G. G. (1993). Constructive Approximation. Springer-Verlag,

Berlin.



214

Donoho, D. L. and Liu, R. C. (1987). Geometrizing rates of convergence, I. Technical

Report 137, Dept. of Statistics, Univ. California, Berkeley.

Donoho, D. L. and Liu, R. C. Geometrizing rates of convergence, II, III. Ann. Statist.

19, 633 - 667, 668 - 701.

Durrett, R. (1984). Brownian Motion and Martingales in Analysis. Wadsworth and Soft-

ware.

Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution

problems. Ann. Statist. 19, 1257 - 1272.

Fedorov, V. V. (1972). Theory of Optimal Experiments. Academic Press, New York.

Feller, W. (1939). Completely monotone functions and sequences. Duke Math. J. 5, 662

- 674.

Feller, W. (1971) An Introduction to Probability Theory and Its Applications. Vol. 2,

2nd ed. Wiley, New York.

Gelbaum, B. R. and Olmsted, J. M. (1964). Counterexamples in Analysis. Holden-Day,

San Francisco.

Ghosal, S. and Van der Vaart, A. W. (2001). Entropies and rates of convergence for

maximum likelihood and Bayes estimation for mixtures of normal densities. Ann.

Statist. 29, 1233 - 1263.

Gneiting, T. (1998). On the Bernstein-Hausdorff-Widder conditions for completely

monotone functions. Exposition. Math. 16, 181 - 183.

Gneiting, T. (1999). Radial positive definite functions generated by Euclid’s hat. J. Mul-

tivariate Analysis 69, 88 - 119.

Grenander, U. (1956). On the theory of mortality measurement, Part II. Skand. Actuar.

39, 125 - 153.

Groeneboom, P. (1983). The concave majorant of Brownian motion. Ann. Probab. 11,

1016 - 1027.



215

Groeneboom, P. (1985). Estimating a monotone density. Proceedings of the Berkeley

Conference in Honor of Jerzy Neyman and Jack Kiefer, Vol. II. Lucien M. LeCam

and Richard A. Olshen eds. Wadsworth, New York. 529 - 555.

Groeneboom, P. (1989). Brownian motion with a parabolic drift and Airy functions.

Probab. Th. Rel. Fields 81, 79 - 109.

Groeneboom, P. and Wellner, J. A. (1992). Information Bounds and Nonparametric Max-

imum Likelihood Estimation. Birkhäuser, Boston.
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Appendix A

GAUSSIAN SCALING RELATIONS

Let W be a two-sided Brownian motion process starting from 0, and define the family

of processes {Yk,a,σ : a > 0, σ > 0} for k a nonnegative integer

Yk,a,σ(t) = σ

∫ t

0
· · ·
∫ s2

0
W (s1)ds1 · · · dsk−1 + at2k

when t ≥ 0 and analogously when t < 0. Let Hk,a,σ be the envelope/invelope process

corresponding to Yk,a,σ. In this paper we have taken Yk,k!/(2k)!,1 ≡ Yk to be the standard

or “canonical” version of the family of processes {Yk,a,σ : a > 0, σ > 0}, and we have

defined the envelope or invelope processes Hk in terms of this choice of Yk. Since the usual

choice in the previous literature has been to take Yk,1,1 as the canonical process (see e.g.

Groeneboom, Jongbloed, and Wellner (2001a) for the case k = 2 and Groeneboom

(1989) for the case k = 1), it is useful to relate the distributions of these different choices

of “canonical” via Brownian scaling arguments.

Proposition A.1 (Scaling of the processes Yk,a,σ and the invelope or envelope processes

Hk,a,σ).

Yk,a,σ(t)
d
= σ

(σ
a

) 2k−1
2k+1

Yk,1,1

((a
σ

) 2
2k+1

t

)

as processes for t ∈ R, and hence also

Hk,a,σ(t)
d
= σ

(σ
a

) 2k−1
2k+1

Hk,1,1

((a
σ

) 2
2k+1

t

)

as processes for t ∈ R.

Corollary A.1 For the derivatives of the invelope/envelope processes Hk,a,σ it follows that

(
H

(j)
k,a,σ(t), j = 0, . . . , 2k − 1

)

d
=

(
σ
(σ
a

) 2k−1−2j
2k+1

H
(j)
k,1,1

((a
σ

) 2
2k+1

t

)
, j = 0, . . . , 2k − 1

)
.
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In particular,

(
H

(k)
k,a,σ(t), . . . ,H

(2k−1)
k,a,σ (t)

)

d
=

(
σ

2k
2k+1 a

1
2k+1H

(k)
k,1,1

((a
σ

) 2
2k+1

t

)
, . . . , σ

2
2k+1 a

2k−1
2k+1H

(2k−1)
k,1,1

((a
σ

) 2
2k+1

t

))
.

Corollary A.2 For the particular choice a = k!/(2k)! and σ = 1,

(
H

(j)
k,k!/(2k)!,σ(t), j = 0, . . . , 2k − 1

)

d
=

(

σ

(
(2k)!

k!

) 2k−1−2j
2k+1

H
(j)
k,1,1

((
k!

(2k)!

) 2
2k+1

t

)

, j = 0, . . . , 2k − 1

)

.

Corollary A.3 (i) When k = 1 and j = 1,

H
(1)
1 (t) ≡ H

(1)
1,1/2,1(t)

d
= 2−1/3H

(1)
1,1,1(t/2) ≡ 2−1/3H̃

(1)
1 (t/2)

where H̃1 ≡ H1,1,1.

(ii) When k = 2, j = 2, 3,

(H
(2)
2 (t),H

(3)
2 (t)) ≡

(
H

(1)
2,1/12,1(t),H

(3)
2,1/12,1(t)

)

d
=

(
(12)−1/5H

(1)
2,1,1((12)

−2/5t), (12)−3/5H
(3)
2,1,1((12)

−2/5t)
)

≡
(
(12)−1/5H̃

(1)
2 ((12)−2/5t), (12)−3/5H̃

(3)
2 ((12)−2/5t)

)

where H̃2 ≡ H2,1,1.
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Appendix B

APPROXIMATING PRIMITIVES OF BROWNIAN MOTION ON

[−N, N ]

B.1 Approximating Brownian motion on [0, 1]

Let n be an integer. Consider the functions hnj, j = 0, · · · , 2n − 1 defined by

h00(t) =






t if 0 ≤ t ≤ 1/2

1 − t 1/2 ≤ t ≤ 1

0 otherwise

and

hnj(t) = 2−n/2h (2nt− j) , for j = 0, · · · , 2n − 1.

The functions hnj are called the Schauder functions. Let Znj , j = 0, · · · , 2n − 1 inde-

pendent identically distributed standard Gaussians defined on the same probability space

([0, 1],B([0, 1], λ). Now define the processes

Vn(t, ω) =
2n−1∑

j=0

hnj(t)Znj(ω)

and

Um(t, ω) =

m∑

n=0

Vn(t, ω).

It can be shown that Um(t, ω) converges uniformly as m → ∞ with probability one to the

process

U(t, ω) =
∞∑

n=0

Vn(t, ω).

which is a Brownian Bridge. To construct a standard Brownian motion, let Z be an ad-

ditional standard Gaussian independent of all the Znj, j = 0, · · · , 2n − 1 and n ∈ N. The
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process W defined by

W(t, ω) = U(t, ω) + tZ(ω), t ∈ [0, 1].

is a Brownian motion. For m large enough, the process

Wm(t, ω) =
m∑

n=0

Vn(t, ω) + tZ(ω)

=

m∑

n=0

2n−1∑

j=0

hnj(t)Znj(ω) + tZ(ω)

is a good approximation to standard Brownian motion on [0, 1].

B.2 Approximating the (k − 1)-fold integral of Brownian motion on [0, n]

Let k ≥ 2 be an integer. Suppose that we want to approximate Ik−1W(t), the (k − 1)-fold

integral of Brownian motion given by

Ik−1W(t) =

∫ t

0

(t− s)k−1

(k − 1)!
dW (s), t ∈ [0, 1].

Using integration by parts, Ik−1 can be rewritten

Ik−1W(t) =

∫ t

0

(t− s)k−2

(k − 2)!
W (s)ds.

The Schauder functions can be used again to approximate Ik−1W. For m large enough,

Ik−1 can be approximated by

Ik−1Wm(t) =
m∑

n=0

2n−1∑

j=0

∫ t

0

(t− s)k−2

(k − 2)!
hnj(s)ds Znj +

tk

k!
Z (B.1)

where Znj , j = 0, · · · , 2n − 1 and Z are independent identically distributed N(0, 1) defined

on the same probability space ([0, 1],B([0, 1[), λ). Thus, Ik−1 can be given in a closed form

once the integrals in the left side of the expression in (B.1) are evaluated analytically.

Lemma B.1 Let t ∈ [0, 1], n an integer and j = 0, · · · , 2n − 1. If p is an integer larger or

equal to 2, then the (p− 1)-fold integral of the Schauder function hnj is given by

Ip−1hnj(t)



224

= 0, if t ∈ [0, 2−nj]

=
2

n
2

p!
(t− 2−nj)p, if t ∈

[
2−nj, 2−n(j +

1

2
)

]

=
2

n
2

p!
(2−(n+1)p − (t− 2−n(j +

1

2
))p), if t ∈

[
2−n(j +

1

2
), 2−n(j + 1)

]

+
2−(n

2
+1)

(p− 1)!
(t− 2−n(j +

1

2
))p−1

=
1

(p− 1)!
2−(n

2
+1+(n+1)(p−1)), if t ∈ [2−n(j + 1), 1].

Proof. The function hnj can be rewritten as

hnj(t) = 2−n/2






0, if t ∈ [0, 2−nj]

2nt− j, if t ∈
[
2−nj, 2−n(j + 1

2 )

]

1 − (2nt− j), if t ∈
[
2−n(j + 1

2 ), 2−n(j + 1)

]

0, if t ∈ [2−n(j + 1), 1].

If t ∈ [0, 2−nj], it is clear that Ik−1hnj(t) = 0. If 2−nj ≤ t ≤ 2−n(j + 1/2), we have

∫ t

0
(t− s)p−2hnj(s)ds

=

∫ t

2−nj
(t− s)p−2hnj(s)ds

=

∫ t

2−nj
(t− s)p−2

(
2−n/2(2ns− j)

)
ds

= 2−n/2+n

∫ t

2−nj
(t− s)p−2(s− 2−nj)ds

= 2n/2

(
−
∫ t

2−nj
(t− s)p−1ds+ (t− 2−nj)

∫ t

2−nj
(t− s)p−2ds

)

= 2n/2

(
−1

p
(t− 2−nj)p +

1

p− 1
(t− 2−nj)p

)

=
2n/2

(p− 1)p
(t− 2−nj)p

and hence for all 2−nj ≤ t ≤ 2−n(j + 1/2)

Ip−1hnj(t) =
1

(p− 2)!

∫ t

0
(t− s)p−2hnj(s)ds
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=
2n/2

p!
(t− 2nj)p.

In particular,

Ip−1hnj(2
−n(j + 1/2)) =

2n/2

p!
2−(n+1)p.

Now, for 2−n(j + 1
2) ≤ t ≤ 2−n(j + 1), we have

Ip−1hnj(t) = Ip−1hnj(2
−n(j + 1/2)) +

∫ t

2−n(j+1/2)

1

(p− 2)!
(t− s)p−2hnj(s)ds

=
2n/2

p!
2−(n+1)p +

∫ t

2−n(j+1/2)

1

(p− 2)!
(t− s)p−2hnj(s)ds, (B.2)

where

∫ t

2−n(j+1/2)
(t− s)p−2hnj(s)ds

= 2−n/2

∫ t

2−n(j+1/2)
(t− s)p−2(1 − (2ns− j))ds

= 2−n/2

(∫ t

2−n(j+1/2)
(t− s)p−2ds−

∫ t

2−n(j+1/2)
(t− s)p−2(2ns− j)ds

)

= 2−n/2

(
1

p− 1

(
t− 2−n(j + 1/2)

)p−1 − 2n

∫ t

2−n(j+1/2)
(t− s)p−2(s− j2−n)ds

)

=
2−n/2

p− 1

(
t− 2−n(j + 1/2)

)p−1

− 2n/2

(

−
∫ t

2−n(j+1/2)
(t− s)p−1ds+ (t− 2−nj)

∫ t

2−n(j+1/2)
(t− s)p−2ds

)

=
2−n/2

p− 1

(
t− 2−n(j + 1/2)

)p−1
+

2n/2

p

(
t− 2−n(j + 1/2)

)p

− 2n/2

p− 1

(
t− 2−nj

) (
t− 2−n(j + 1/2)

)p−1

=
2−n/2

p− 1

(
t− 2−n(j + 1/2)

)p−1
+

2n/2

p

(
t− 2−n(j + 1/2)

)p

− 2n/2

p− 1

(
t− 2−n(j + 1/2)

) (
t− 2−n(j + 1/2)

)p−1

− 2n/2

p− 1
2−n−1

(
t− 2−n(j + 1/2)

)p−1

=
2−n/2

p− 1

(
t− 2−n(j + 1/2)

)p−1 − 2n/2

(p− 1)p

(
t− 2−n(j + 1/2)

)p
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− 2−(n/2+1)

p− 1

(
t− 2−n(j + 1/2)

)p−1

=
2−(n/2+1)

p− 1

(
t− 2−n(j + 1/2)

)p−1 − 2n/2

(p− 1)p

(
t− 2−n(j + 1/2)

)p
. (B.3)

By combining (B.2) and (B.3), we obtain that

Ip−1hnj(t) =
2n/2

p!

(
2−(n+1)p −

(
t− 2−n(j + 1/2)

)p)
+

2−(n/2+1)

(p− 1)!

(
t− 2−n(j + 1/2)

)p−1

for all t ∈ [2−n(j + 1/2), 2−n(j + 1)]. Finally, let t ∈ [2−n(j + 1), 1]. We have,

Ip−1hnj(t) = Ip−1hnj(2
−n(j + 1)) +

∫ t

2−n(j+1)

1

(p− 2)!
(t− s)p−2hnj(s)ds

= Ip−1hnj(2
−n(j + 1))

since hnj(t) = 0 for t ≥ 2−n(j + 1). Hence,

Ip−1hnj(t) =
2n/2

p!

(
2−(n+1)p − (2−n(j + 1) − 2−n(j + 1/2))p

)

+
2−(n/2+1)

(p− 1)!

(
2−n(j + 1) − 2−n(j + 1/2)

)p−1

=
2−(n/2+1)

(p− 1)!
2−(n+1)(p−1)

=
1

(p− 1)!
2−(n

2
+1+(n+1)(p−1))

for all t ∈ [2−n(j + 1), 1]. �

B.3 Approximating the (k − 1)-fold integral of Brownian motion on [−n, n]

Let n > 1 be an integer. A Brownian motion defined on [0, n] can be obtained by generating

n independent copies of standard Brownian motion on the intervals [i, i+1], i = 0, 1, · · · , n−1

and “pasting ” them together at the junction points. More explicitly, for i = 1, · · · , n, let

Wi be independent copies of standard Brownian motion on [0, 1], and let Bi be the resulting

Brownian motion on the interval [0, i]. We have,

B1(t) = W1(t), t ∈ [0, 1]



227

and

Bi(t) =





Bi−1(t), t ∈ [0, i − 1]

Bi−1(i− 1) + Wi(t− (i− 1)), t ∈ [i− 1, i]

for i = 2, · · · , n.

Now, suppose we want to approximate successive primitives of Brownian motion on

[0, n]. For example, take n = 2 and suppose we want to find an approximation to the first

primitive of B2 on [0, 2]. For t ∈ [0, 2], we have

∫ t

0
B2(s)ds =






∫ t
0 W1(s)ds, if 0 ≤ t ≤ 1
∫ 1
0 W1(s)ds + (t− 1)W1(1) +

∫ t−1
0 W2(s)ds, if 1 ≤ t ≤ 2

Similarly, for any integer k ≥ 2, we can establish that the (k−1)-fold integral of B2 on [0, 2]

is given by

∫ t

0

(t− s)k−1

(k − 1)!
dB2(s) =






∫ t
0

(t−s)k−1

(k−1)! dW1(s), if 0 ≤ t ≤ 1
∑k−1

j=0
(t−1)j

j!

∫ 1
0

(1−s)k−1−j

(k−1−j)! dW1(s), if 1 ≤ t ≤ 2

+
∫ t−1
0

(t−1−s)k−1

(k−1)! dW2(s).

The last expression also shows that the (k − 1)-fold integral of B2 involves the (k − 1)-fold

integral of both the independent processes W1 and W2, and the j-fold integral of W2 at the

point t = 1 (boundary point), for j = 0, · · · , k − 1. This example can be generalized easily

to any n > 1:

∫ t

0

(t− s)k−1

(k − 1)!
dBn(s)

=

∫ t

0

(t− s)k−1

(k − 1)!
dW1(s), if 0 ≤ t ≤ 1

=

k−1∑

j=0

(t− 1)j

j!

∫ 1

0

(1 − s)k−1−j

(k − 1 − j)!
dB1(s) +

∫ t−1

0

(t− 1 − s)k−1

(k − 1)!
dW2(s), if 1 ≤ t ≤ 2

...

=
k−1∑

j=0

(t− (i− 1))j

j!

∫ i−1

0

(i− 1 − s)k−1−j

(k − 1 − j)!
dBi−1(s)

+

∫ t−(i−1)

0

(t− (i− 1) − s)k−1

(k − 1)!
dWi(s), if i− 1 ≤ t ≤ i
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...

=
k−1∑

j=0

(t− (n − 1))j

j!

∫ n−1

0

(n − 1 − s)k−1−j

(k − 1 − j)!
dBn−1(s)

+

∫ t−(n−1)

0

(t− (n− 1) − s)k−1

(k − 1)!
dWn(s), if n− 1 ≤ t ≤ n.

The method described above can be used to get an approximation to the (k−1)-fold integral

of two independent copies of Brownian motion on [0, n]. An approximation on [−n, n] is

then obtained by “pasting” these copies at the point 0.
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Appendix C

PROGRAMS

C.1 C code for generating the processes Yk, · · · , Y (k−1)
k

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

#define M_SQRT2 (1.414213562373095)

double SchauderFunc(double);

double IntSchauderFunc(int l, int p, int i, double x);

void IntBrownFunc(double* IntBrown, int K, int m);

void IntBrown0C(double* Output, int K, double C,int m);

double inverse_normal_func(double p);

FILE*ifp;

double normals[256][8];

int half,col=0;

int main(void){

int i,j;

int fact;



230

double a,b;

int K=4,m=12;

double C=4.0;

int Lg = (int)pow(2.0,(double)(m))*C+1;

double* Output = calloc((Lg+1)*(K+1),sizeof(double));

IntBrown0Cdrift(Output, K, C,m);

return 0;

}

void IntBrown0C(double* Output, int K, double C,int m) {

int k,y,i,j;

double val;

double twoMinp = pow(2.0,(double)(-m));

int Lg = (int)pow(2.0,(double)(m))+1;

double* grid = calloc((Lg+1),sizeof(double));

int* vecBound=calloc(C,sizeof(int));

double* Wi = calloc((Lg+1)*(K+1),sizeof(double));

double* Matgrid = calloc((Lg+1)*(K+1),sizeof(double));

//double* Bi = calloc((Lg+1)*(K+1),sizeof(double));

double* Bi=Output;

double* BiMinus1 = calloc((K+1),sizeof(double));

int stride = (int)pow(2.0,(double)(m))*C+1+1;

i=1; ////////

val=0.0;

while(val<=1) {

grid[i]=val;

val += twoMinp; // equivalent to val = val+twoMinp;
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i++; // i=i+1;

}

if(C>1)

for(i=1;i<=C-1;++i)

vecBound[i]=Lg;

for(i=1;i<=C;++i) {

if(half==0) col=C-i;

else col=C+i-1;

IntBrownFunc(Wi,K,m);

/////// for debugging /////////

/*

printf("\nIntBrown i= %d \n\n",i);

for(k=1;k<=K;++k) {

for(y=1;y<=Lg;++y)

printf("%e ",*(Wi + k*(Lg+1) + y));

printf("\n");

}

*/

///////////////////////////////

for(k=1;k<=K;++k) {

for(j=1;j<=k;++j) {

for(y=1;y<=Lg;++y) {

Matgrid[j*(Lg+1)+y]=pow(grid[y],(double)(k-j))/factorial(k-j);

}

}

matMulAdd(Bi,Wi,BiMinus1,Matgrid,k,Lg,stride);

}
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for(k=1;k<=K;++k) {

BiMinus1[k]=Bi[k*(stride)+Lg];

}

Bi+=Lg-1;

}

/*

printf("\nIntBrown0C = \n\n");

for(k=1;k<=K;++k) {

for(y=1;y<=stride-1;++y)

printf("%e ",*(Output + k*(stride) + y));

printf("\n");

}

*/

}

void IntBrownFunc(double* IntBrown, int K, int m) {

int i,y,k,n,j;

double val;

int twon;

double twoMinp = pow(2.0,(double)(-m));

int twomPlus1Min1 = (int) pow(2.0,(double)(m+1))-1;

int Lg = (int)pow(2.0,(double)(m))+1;

double* grid = calloc(Lg+1,sizeof(double));

double* Zv = calloc(twomPlus1Min1+1,sizeof(double));

double* IntUm = calloc((Lg+1)*(K+1),sizeof(double));

double Z;
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i=1; ////////

val=0;

while(val<=1) {

grid[i]=val;

val += twoMinp; // equivalent to val = val+twoMinp;

i++; // i=i+1;

}

//Z=inverse_normal_func(drand48());

Z=inverse_normal_func((double)rand()/RAND_MAX);

//Z=normals[255][col];

for (i = 0; i < twomPlus1Min1+1; i++ ) ///

//Zv[i] = inverse_normal_func(drand48());

Zv[i] = inverse_normal_func((double)rand()/RAND_MAX);

//Zv[i] = normals[i][col];

// for debugging

//for (i = 0; i < twomPlus1Min1+1; i++ )

// printf("%f ", Zv[i]);

//printf("\n");

////////////////

for(y=2;y<=Lg;++y)

for(k=1;k<=K;++k)

for(n=0;n<=m;++n) {

twon=(int)pow(2.0,(double)n);
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for(j=0;j<=twon-1;++j)

*(IntUm + k*(Lg+1) + y) += Zv[twon + j] * IntSchauderFunc(k,n,j,grid[y]);

}

for(k=1;k<=K;++k)

for(y=1;y<=Lg;++y)

*(IntBrown + k*(Lg+1) + y)= *(IntUm + k*(Lg+1) + y)

+ Z*pow(grid[y],(double)k)/factorial(k);

// IntBrown

}

double IntSchauderFunc(int l, int p, int i, double x) {

double IntSchauder=0.0;

double twop = pow((double)2,(double)p);

double twopMin1 = twop -1;

double twoMinp = pow((double)2,-(double)p);

double twoHalfp = pow((double)2,(double)p/2.0);

double twoMinHalfp = pow((double)2,-(double)p/2.0);

double twoMinpPlus1l = pow((double)2,-(double)(p+1)*l);

double twoMinpPlus1lMin1 = pow((double)2,-(double)(p+1)*(l-1));

//double twoMinpIPlus1 = twoMinp*(i+1);

double twoMinHalfpPlus1 = twoMinHalfp/2.0;

double factlMin1 = factorial(l-1);

double factl = factlMin1*l;

if(i < 0 || i > twopMin1) {

fprintf(stderr,"i (%d) has to be between 0 and 2^p-1

(%d)\n",i, (int)twopMin1);
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exit(-1);

}

if(l==1) {

IntSchauder = twoMinHalfp*SchauderFunc((double) twop*x-i);

}

else {

if(x >= twoMinp * i) {

// Case 1

if( x <= twoMinp*(i + 1/2.0))

IntSchauder = twoHalfp /factl * pow((double)(x- twoMinp*i),(double)l);

// Case 2

else {

// Subcase1

//if( x <= twoMinpIPlus1 )

if( x <= twoMinp*(i + 1))

IntSchauder = twoHalfp/factl*(twoMinpPlus1l - pow((double) x

- twoMinp*(i+1/2.0),(double) l)) +

(twoMinHalfpPlus1/factlMin1)*pow((double) x-twoMinp*(i+1/2.0),(double) l-1);

// Subcase2

else

IntSchauder = twoMinHalfpPlus1*twoMinpPlus1lMin1/factlMin1;

} //else

} //if(x >= twoMinp * i)

}//else

return IntSchauder;

}

double SchauderFunc(double x) {
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double Schauder= 0.0;

if(x >= 0 && x <= 0.5)

Schauder = x;

else if(x > 0.5 && x <= 1)

Schauder = 1-x;

return Schauder ;

}

int factorial(int n) {

int fact=1;

int i;

for(i=2; i <= n; ++i)

fact *= i;

return fact;

}

double inverse_error_func(double p) {

/*

Source: This routine was derived (using f2c) from the

FORTRAN subroutine MERFI found in

ACM Algorithm 602 obtained from netlib.

MDNRIS code contains the 1978 Copyright

by IMSL, INC. . Since MERFI has been

submitted to netlib, it may be used with

the restriction that it may only be

used for noncommercial purposes and that
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IMSL be acknowledged as the copyright-holder

of the code.

*/

/* Initialized data */

static double a1 = -.5751703;

static double a2 = -1.896513;

static double a3 = -.05496261;

static double b0 = -.113773;

static double b1 = -3.293474;

static double b2 = -2.374996;

static double b3 = -1.187515;

static double c0 = -.1146666;

static double c1 = -.1314774;

static double c2 = -.2368201;

static double c3 = .05073975;

static double d0 = -44.27977;

static double d1 = 21.98546;

static double d2 = -7.586103;

static double e0 = -.05668422;

static double e1 = .3937021;

static double e2 = -.3166501;

static double e3 = .06208963;

static double f0 = -6.266786;

static double f1 = 4.666263;

static double f2 = -2.962883;

static double g0 = 1.851159e-4;

static double g1 = -.002028152;
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static double g2 = -.1498384;

static double g3 = .01078639;

static double h0 = .09952975;

static double h1 = .5211733;

static double h2 = -.06888301;

/* Local variables */

static double a, b, f, w, x, y, z, sigma, z2, sd, wi, sn;

x = p;

/* determine sign of x */

if (x > 0)

sigma = 1.0;

else

sigma = -1.0;

/* Note: -1.0 < x < 1.0 */

z = fabs(x);

/* z between 0.0 and 0.85, approx. f by a

rational function in z */

if (z <= 0.85) {

z2 = z * z;

f = z + z * (b0 + a1 * z2 / (b1 + z2 + a2

/ (b2 + z2 + a3 / (b3 + z2))));

/* z greater than 0.85 */
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} else {

a = 1.0 - z;

b = z;

/* reduced argument is in (0.85,1.0),

obtain the transformed variable */

w = sqrt(-(double)log(a + a * b));

/* w greater than 4.0, approx. f by a

rational function in 1.0 / w */

if (w >= 4.0) {

wi = 1.0 / w;

sn = ((g3 * wi + g2) * wi + g1) * wi;

sd = ((wi + h2) * wi + h1) * wi + h0;

f = w + w * (g0 + sn / sd);

/* w between 2.5 and 4.0, approx.

f by a rational function in w */

} else if (w < 4.0 && w > 2.5) {

sn = ((e3 * w + e2) * w + e1) * w;

sd = ((w + f2) * w + f1) * w + f0;

f = w + w * (e0 + sn / sd);

/* w between 1.13222 and 2.5, approx. f by

a rational function in w */

} else if (w <= 2.5 && w > 1.13222) {

sn = ((c3 * w + c2) * w + c1) * w;
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sd = ((w + d2) * w + d1) * w + d0;

f = w + w * (c0 + sn / sd);

}

}

y = sigma * f;

return(y);

}

double inverse_normal_func(double p) {

/*

Source: This routine was derived (using f2c) from the

FORTRAN subroutine MDNRIS found in

ACM Algorithm 602 obtained from netlib.

MDNRIS code contains the 1978 Copyright

by IMSL, INC. . Since MDNRIS has been

submitted to netlib it may be used with

the restriction that it may only be

used for noncommercial purposes and that

IMSL be acknowledged as the copyright-holder

of the code.

*/

/* Initialized data */

static double eps = 1e-10;

static double g0 = 1.851159e-4;

static double g1 = -.002028152;

static double g2 = -.1498384;

static double g3 = .01078639;
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static double h0 = .09952975;

static double h1 = .5211733;

static double h2 = -.06888301;

static double sqrt2 = M_SQRT2; /* 1.414213562373095; */

/* Local variables */

static double a, w, x;

static double sd, wi, sn, y;

double inverse_error_func(double p);

/* Note: 0.0 < p < 1.0 */

/* assert ( 0.0 < p && p < 1.0 ); */

/* p too small, compute y directly */

if (p <= eps) {

a = p + p;

w = sqrt(-(double)log(a + (a - a * a)));

/* use a rational function in 1.0 / w */

wi = 1.0 / w;

sn = ((g3 * wi + g2) * wi + g1) * wi;

sd = ((wi + h2) * wi + h1) * wi + h0;

y = w + w * (g0 + sn / sd);

y = -y * sqrt2;

} else {

x = 1.0 - (p + p);

y = inverse_error_func(x);

y = -sqrt2 * y;

}
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return(y);

}

C.2 S codes for generating the processes Yk, · · · , Y (k−1)
k

SchauderFunc <- function(x){

Schauder <- NULL

if( x < 0 | x > 1)

Schauder <- 0

else{

if(x >= 0 & x <= 1/2)

Schauder <- x

if(x > 1/2 & x <= 1)

Schauder <- 1- x

}

Schauder

}

IntSchauderFunc <- function(l, p, i, x){

if( i < 0 | (i > 2^p -1))

print("i has to be between 0 and 2^p -1")

if(l < 1)

print("l has to be greater or equal to 1")

IntSchauder <- NULL

if(l == 1){

IntSchauder <- 2^{-p/2}*SchauderFunc(2^p *x - i)
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}

else{

if(x < (2^{- p}* i))

IntSchauder <- 0

else {

if((x >= 2^{- p} * i) & (x <= 2^{- p} * (i + 1/2)))

IntSchauder <- (2^{p/2}/factorial(l)) * (x - 2^{- p}*i)^{l}

if((x >= 2^{- p} * (i + 1/2)) & (x <= 2^{- p} * (i + 1)))

IntSchauder <- (2^{p/2}/factorial(l)) * (2^{-(p + 1) * l}-

(x - 2^{- p} * (i + 1/2))^{l}) + (2^{- (p/2 + 1)}/factorial(l-1))

* (x - 2^{- p} * (i + 1/2))^{l-1}

if(x > 2^{- p} * (i + 1))

IntSchauder <- 2^{ - (p/2 + 1 + (l-1) * (p + 1))}/factorial(l-1)

}

}

IntSchauder

}

IntBrownFunc <- function(K,m){

grid <- seq(0, 1, 2^{- m})

L.g <- length(grid)

Zv <- rnorm(2^{m + 1} - 1, 0, 1)

Z <- rnorm(1, 0, 1)

IntUm <- matrix(0, nrow=K,ncol=L.g)

IntBrowm <- matrix(0, nrow=K,ncol=L.g)

for(y in 2:L.g) {
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for(k in 1:K){

for(n in 0:m) {

for(j in 0:(2^n - 1)) {

IntUm[k,y] <- IntUm[k,y]

+ Zv[2^n + j] * IntSchauderFunc(k, n, j, grid[y])

}

}

}

}

for(k in 1:K){

IntBrowm[k,] <- IntUm[k,] + Z*( (grid)^{k})/factorial(k)

}

IntBrowm

}

IntBrown0C <- function(K,C,m){

grid <- seq(0,1,2^{-m})

L.g <- length(grid)

vec.bound <- NULL

if(C > 1){

vec.bound <- (1:(C-1))*L.g

}

B.iminus1 <- matrix(0,nrow=K,ncol=L.g)

B.i <- matrix(0,nrow=K,ncol=L.g)

Output <- matrix(0,nrow=K,ncol=L.g)
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for(i in 1:C){

print(i)

W.i <- IntBrownFunc(K,m)

for(k in 1:K){

Matgrid <- rep(0,L.g)

for(j in 1:k){

Matgrid <- rbind(Matgrid,grid^{(k-j)}/factorial(k-j))

}

Matgrid <- Matgrid[-1,]

B.i[k,] <- W.i[k,] + matrix(B.iminus1[1:k,L.g],nrow=1,ncol=k)%*%Matgrid

}

B.iminus1 <- B.i

Output <- cbind(Output,B.i)

}

Output <- Output[,-(1:L.g)]

Output <- Output[,-vec.bound]

Output

}

IntBrownCCdrift <- function(C,m,K){

# This function calculates the successive integral

# of a two sided Brownian Motion on [-C,C] + the drift

# on the specified grid.
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grid <- seq(-C,C,2^{-m})

# We generate two independent copies to the right and left of 0.

Output1 <- IntBrown0C(C,m,K)

Output2 <- IntBrown0C(C,m,K)

L.g <- length(grid)

for(k in 1:K){

Output2[k,] <- rev(Output2[k,-1])

}

Output <- cbind(Output2,Output1)

# We add the drift.

for(k in 1:K){

Output[k,] <- Ouput[k,] + (-1)^K *(factorial(2*K)/factorial(K+k))*(grid)^{K+k}

}

Output

}

C.3 S codes for generating the processes Hc,k, · · · ,H(2k−1)
c,k when k is even

# This code calcules an approximation to the process H_K,

# the invelope of Y_K the (k-1)-fold integral of

# two sided Brownian Motion + t^{2K} when K is even (K >=2).

# m is the precision of the Brownian motion approximation using

# the Haar function construction.

IterativeSHk <- function(K=6,C=4,m=11,eps=10^{-7},p=20,p1=10,p2=16365){
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grid <- seq(-C,C,2^{-m})

IntBr <- intbrownk6c4m11

IntBr <- t(IntBr)

Mat0 <- matrix(0,nrow=2*K + p, ncol=2*K+p)

L.g <- length(grid)

# 1 is the location of the successive derivative of Y

# at -C, L.g is that of ...of at C.

Yd <- rbind(IntBr[,1],IntBr[,L.g])

# Select only the even derivatives of Y at -C and C.

Yd <- Yd[,seq(2,K,2)]

# this vector stores in the first row:

# Y^{(k-1)}(-c),Y^{(k-2)}(-c),...,Y(-c)

# and Y^{(k-1)}(c),Y^{(k-2)}(c),...,Y(c).

S0 <- c(-C,C)

Alpha0 <- StartingSplineHk(K,C,Yd)

Coef0 <- Alpha0[1]

H <- EvaluateGrid(K,Alpha0,S0,grid)

Diff <- H - IntBr[K,]

# For later, we need to have the initial conditions

#in the "right form" (as it is required in ComputeSplineHk)

# hence, we need to reverse the components of Yd so that

#we start from Y(-/+ c) and finish with Y^{(k-2)}(-/+ c).

Yd.rev <- Yd

Yd.rev[1,] <- rev(Yd[1,])
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Yd.rev[2,] <- rev(Yd[2,])

# Check whether H >= Y.

min.Diff <- min(Diff[p1:p2])

print(min.Diff)

Count <- 0

while(min.Diff < -eps){

Count <- Count + 1

cat("Main Loup numb = ", Count, "\n")

Diff.sort <- rank(Diff[p1:p2])

min.rank <- min(Diff.sort)

min.pos <- match(min.rank,Diff.sort)

thetamin <- grid[p1:p2][min.pos] # locate t*.

valmin <- Diff[p1:p2][min.pos]

print(c(thetamin,valmin))

# Compute the new spline for the new set of knots.

S <- c(S0,thetamin)

S <- sort(S)

print(S)

#locate the knots in the grid.

positions <- match(S,grid)

Y <- InitialCondHk(K,C,Yd.rev,IntBr,positions)

p <- length(S)-2

Alpha <- ComputeSplineHk(K=K,Y=Y,S=S,Mat0)
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Alpha <- as.numeric(Alpha)

Coef <- c(Alpha[1],Alpha[(2*K+1):(2*K+p)])

Coef <- cumsum(Coef)

min.C <- min(diff(Coef))

count <- 0

while(min.C < 0){

count <- count+1

cat("Sub loup numb = ",count," of the main loop numb=", Count, "\n")

index <- IndexFuncHk(S0=S0,S=S,Coef0=Coef0,Coef=Coef)

S <- S[-index]

p <- length(S)-2

positions <- match(S,grid)

Y <- InitialCondHk(K,C,Yd.rev,IntBr,positions)

Alpha <- ComputeSplineHk(K=K,Y=Y,S=S,Mat0)

Alpha <- as.numeric(Alpha)

Coef <- c(Alpha[1],Alpha[(2*K+1):(2*K+p)])

Coef <- cumsum(Coef)

min.C <- min(diff(Coef))

}#while min.C < 0

H <- EvaluateGrid(K,Alpha,S,grid)

Diff <- H - IntBr[K,]

min.Diff <- min(Diff[p1:p2])

S0 <- S

Coef0 <- Coef

}#while min.Diff < -eps

print(Alpha)
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print(positions)

Mat.H <- H

for(d in 1:(2*K-2)){

Mat.H <- rbind(Mat.H,EvaluateGridDer(K,Alpha,S,grid,d))

}

Mat.H

}#end of the function

#This code calculates the coefficients of the "starting" spline

#which is of degree 2k-2.

# Yd is a matrix of dimension 2x(K/2) containing

#the derivatives of the (K-1)-integral of a two sided

#Brownian motion (Y) + t^{2K} at the boundary points -C and C.

#It starts with the (K-2)th

#derivative of Y at -C and C, (K-4)th,...,0.

StartingSpline <- function(K,C,Yd){

C <- 2

K <- 4

Yd <- rbind(-1,2)

if((K-2*floor(K/2))!=0){

print("Enter please an even K !")

}

#This part gives the coefficients when K=2.

if(K==2){

Coef <- c(6*C^2,(Yd[2,1]-Yd[1,1])/(2*C),(Yd[2,1]+Yd[1,1])/2 - 6*C^4)
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}

#This part of the code calculates the coefficients when K > 2 (and even).

if(K > 2){

d <- 2*K-2

a.d <- (factorial(2*K)/factorial(2))*C^2

Coef <- a.d

for(i in (d-1):0){

p <- 2*K-i

if(p <= K){

if((p-2*floor(p/2))!=0){

Coef <- c(Coef,0)

}

else{

Coef <- c(Coef,(factorial(2*K)/factorial(2*i))*C^{2*i}-

sum(Coef[Coef!=0]*(1/factorial(2*((i-1):1)))*C^{2*((i-1):1)}))

}

}

if(p > K){

if((p-2*floor(p/2))!=0){

Coef <- c(Coef, (Yd[2,(p-K+1)/2]-Yd[1,(p-K+1)/2])/(2*C))

}

else{

i <- p/2

Coef <- c(Coef,(Yd[2,(p-K)/2]+Yd[1,(p-K)/2])/2

- sum(Coef[2*((i-1):1)]*(1/factorial(2*((i-1):1)))*C^{2*((i-1):1)}))

}
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}

}

}

Coef <- Coef/factorial((2*K-2):0)

Coef

}

EvaluateGrid <- function(K,Alpha,S,grid){

if(length(S)==2){

#grid <- seq(-C,C,2^{-m})

#H <- rep(0,length(grid))

H <- grid

for(i in 1:length(H)){

H[i] <- sum(Alpha*(grid[i])^{(2*K-2):0})

}

}

if(length(S) > 2){

p <- length(S)-2

Alpha.1 <- Alpha[1:(2*K)]

Alpha.2 <- Alpha[(2*K+1):(2*K+p)]

nr <- length(S) -1

C <- S[length(S)]

pos <- match(S,grid)
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#Seq.1 <- seq(S[1],S[2],2^{-m})

Seq.1 <- grid[pos[1]:pos[2]]

l.1 <- length(Seq.1)

#H.1 <- rep(0,l.1)

H.1 <- Seq.1

for(j in 1:l.1){

H.1[j] <- sum((Alpha.1/factorial((2*K-1):0))*(Seq.1[j])^{(2*K-1):0})

}

H <- H.1[-l.1]

for(i in 2:nr){

#Seq.i <- seq(S[i],S[i+1],2^{-m})

Seq.i <- grid[pos[i]:pos[(i+1)]]

l.i <- length(Seq.i)

#H.i <- rep(0,l.i)

H.i <- Seq.i

for(j in 1:l.i){

H.i[j] <- sum((Alpha.1*(Seq.i[j])^{(2*K-1):0})/factorial((2*K-1):0))

+ sum(Alpha.2[1:(i-1)]*(Seq.i[j]-S[2:i])^{2*K-1}/factorial(2*K-1))

}

H <- c(H,H.i[-l.i])

}

Lastval <- sum(Alpha.1*C^{(2*K-1):0}/factorial((2*K-1):0) )

+ sum((Alpha.2*(C-S[2:nr])^{2*K-1})/factorial(2*K-1))

H <- c(H,Lastval)

}
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H

}

EvaluateGridDer <- function(K,Alpha,S,grid,d){

if(d > 2*K -2)

print("enter d less than or equal to 2*K-2")

else{

if(length(S)==2){

grid <- seq(-C,C,2^{-m})

#H.d <- rep(0,length(grid))

H.d <- grid

for(i in 1:length(H.d)){

H.d[i] <- sum(Alpha[1:(2*K-1-d)]*(grid[i])^{(2*K-2-d):0})

}

}

if(length(S) > 2){

p <- length(S)-2

Alpha.1 <- Alpha[1:(2*K-d)]

Alpha.2 <- Alpha[(2*K+1):(2*K+p)]

nr <- length(S) -1

C <- S[length(S)]

pos <- match(S,grid)

#Seq.1 <- seq(S[1],S[2],2^{-m})
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Seq.1 <- grid[pos[1]:pos[2]]

l.1 <- length(Seq.1)

#H.1 <- rep(0,l.1)

H.1 <- Seq.1

for(j in 1:l.1){

H.1[j] <- sum((Alpha.1/factorial((2*K-1-d):0))*(Seq.1[j])^{(2*K-1-d):0})

}

H.d <- H.1[-l.1]

for(i in 2:nr){

Seq.i <- grid[pos[i]:pos[(i+1)]]

l.i <- length(Seq.i)

H.i <- Seq.i

for(j in 1:l.i){

H.i[j] <- sum((Alpha.1*(Seq.i[j])^{(2*K-1-d):0})/factorial((2*K-1-d):0))

+ sum(Alpha.2[1:(i-1)]*(Seq.i[j]-S[2:i])^{2*K-1-d}/factorial(2*K-1-d))

}

H.d <- c(H.d,H.i[-l.i])

}

Lastval <- sum(Alpha.1*C^{(2*K-1-d):0}/factorial((2*K-1-d):0) )

+ sum((Alpha.2*(C-S[2:nr])^{2*K-1-d})/factorial(2*K-1-d))

H.d <- c(H.d,Lastval)

}

}

H.d
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}

InitialCondHk <- function(K,C,Yd.rev,IntBr,positions){

p <- length(positions)

Y.pos <- rep(0,p-2)

for(j in 2:(p-1)){

Y.pos[(j-1)] <- IntBr[K,positions[j]]

}

seq.K <- seq(K,2*K-2,2)

Y1 <- (factorial(K)/factorial(2*K-seq.K))*(-C)^{2*K - seq.K}

Y2 <- (factorial(K)/factorial(2*K-seq.K))*(C)^{2*K - seq.K}

Y <- c(Yd.rev[1,],Y1, Y.pos, Yd.rev[2,], Y2)

Y

}

ComputeSplineHk <- function(K,Y,S,Mat0){

p <- length(S)-2

#Mat <- matrix(0,nrow=2*K + p, ncol=2*K+p)

Mat <- Mat0[1:(2*K+p),1:(2*K+p)]

for(i in 1:K){
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Mat[i,1:(2*K-2*(i-1))] <- (S[1])^{(2*K-1-2*(i-1)):0}

/factorial((2*K-1-2*(i-1)):0)

}

for(i in 2:(p+1)){

Mat[K+i-1,1:(2*K+ i-1)] <- c((S[i])^{(2*K-1):0}

/factorial((2*K-1):0),

(S[i]-S[2:i])^{2*K-1}/factorial(2*K-1))

}

for(i in 1:K){

Mat[i+K+p,1:(2*K-2*(i-1))] <- (S[p+2])^{(2*K-1-2*(i-1)):0}

/factorial((2*K-1-2*(i-1)):0)

Mat[i+K+p,(2*K+1):(2*K+p)] <- (S[p+2]-S[2:(p+1)])^{2*K-1-2*(i-1)}

/factorial(2*K-1-2*(i-1))

}

rcond.Mat <- rcond.svd.Matrix(svd.Matrix(Mat))

Alpha <- solve.svd.Matrix(svd.Matrix(Mat),Y,tol=rcond.Mat*0.5)

Alpha

}

IndexFuncHk <- function(S0,S,Coef0,Coef){

C0 <- diff(Coef0)

C <- diff(Coef)

L0 <- length(S0)

L <- length(S)

S0 <- S0[-c(1,L0)]

S <- S[-c(1,L)]
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S.merge <- c(S0,S)

S.merge <- unique(sort(S.merge))

C0.rep <- rep(0,length(S.merge))

C.rep <- rep(0,length(S.merge))

for(i in 1:length(S.merge)){

match.S0 <- match(S.merge[i],S0)

if (!is.na(match.S0))

C0.rep[i] <- C0[match.S0]

else

C0.rep[i] <- 0

}

for(i in 1:length(S.merge)){

match.S <- match(S.merge[i],S)

if (!is.na(match.S))

C.rep[i] <- C[match.S]

else

C.rep[i] <- 0

}

Lambda <- NULL

for(i in 1:length(C.rep)){

if(C.rep[i] < 0)

Lambda <- c(Lambda,C0.rep[i]/(C0.rep[i]-C.rep[i]))

if(C.rep[i] == 0)

Lambda <- Lambda

if(C.rep[i] > 0)
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Lambda <- c(Lambda,1)

}

lambda <- min(Lambda)

index <- match(lambda,Lambda)

index <- index +1

index

}

C.4 S codes for generating the processes Hc,k, · · · ,H(2k−1)
c,k when k is odd

Since many of the programs developed for k even can be used with some minor modifications,

we include only the S functions that were specifically written for k odd.

StartingSplineHkOdd <- function(K,C,Yd){

if((K-2*floor(K/2))==0)

print("enter K odd")

else{

if(K==3){

Coef5 <- 0

Coef4 <- (factorial(3)/factorial(2))*C^2

Coef3 <- C^3-Coef4*C

Coef2 <- Yd[1,1] - ((Coef4/factorial(2))*C^2-Coef3*C)

Coef1 <- (Yd[2,2]-Yd[2,1])/(2*C) - (Coef3/factorial(3))*C^2

Coef0 <- (Yd[2,2]+Yd[2,1])/2 - ((Coef4/factorial(4))*C^4

+ (Coef2/factorial(2))*C^2)
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Coef.res <- c(Coef5,Coef4,Coef3,Coef2,Coef1,Coef0)

}

if(K > 3){

Seq <- seq(K+1,2*K-4,2)

Seq <- rev(Seq)

Coef <- (factorial(K)/factorial(2))*C^2

for(i in 1:length(Seq)){

Seq.new <- seq(2,2*K-Seq[i],2)

Seq.new <- rev(Seq.new)

len <- length(Seq.new)

Coef <- c(Coef,(factorial(K)/factorial(Seq.new[1]))*C^{Seq.new[1]}

-sum((Coef*C^{Seq.new[2:len]})/factorial(Seq.new[2:len])))

}

Seq1.k <- seq(1,K-2,2)

Seq1.k <- rev(Seq1.k)

Coefk <- C^K -sum((Coef*C^{Seq1.k})/factorial(Seq1.k))

Seq2.k <- seq(2,K-1,2)

Seq2.k <- rev(Seq2.k)

Coefkm1 <- Yd[1,1]-sum((Coef*C^{Seq2.k})/factorial(Seq2.k))+Coefk*C

Coef <- c(Coef,Coefkm1)

Seq2 <- seq(K+3,2*K,2)

for(j in 1:length(Seq2)){

Seq.new <- seq(2,Seq2[j]-2,2)

Seq.new <- rev(Seq.new)

Coef <- c(Coef,(Yd[1,j+1] + Yd[2,j+1])/2

-sum((Coef*C^{Seq.new})/factorial(Seq.new)))

}
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Coef0 <- Coef

Seq3 <- seq(3,K,2)

Coef1 <- Coefk

for(j in 1:length(Seq3)){

Seq.new <- seq(3,Seq3[j],2)

Seq.new <- rev(Seq.new)

Coef1 <- c(Coef1,(Yd[2,j+1] - Yd[1,j+1])/(2*C)

- sum((Coef1*C^{Seq.new-1})/factorial(Seq.new)))

}

Coef.res <- rep(0,2*K)

Coef.res[seq(2,2*K,2)] <- Coef0

Coef.res[seq(K,2*K-1,2)] <- Coef1

}

}

Coef.res/factorial((2*K-1):0)

}

ComputeSplineHkOdd <- function(K,Y,S,Mat0){

p <- length(S)-2

Mat <- Mat0[1:(2*K+p),1:(2*K+p)]

for(i in 1:K){

Mat[i,1:(2*K-2*(i-1))] <- (S[1])^{(2*K-1-2*(i-1)):0}

/factorial((2*K-1-2*(i-1)):0)

}
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for(i in 2:(p+1)){

Mat[K+i-1,1:(2*K+ i-1)] <- c((S[i])^{(2*K-1):0}

/factorial((2*K-1):0),

(S[i]-S[2:i])^{2*K-1}/factorial(2*K-1))

}

for(i in 1:K){

if(i == 1+(K-1)/2){

Mat[i+K+p,1:K] <- (S[p+2])^{(K-1):0}/factorial((K-1):0)

Mat[i+K+p,(2*K+1):(2*K+p)] <- (S[p+2]-S[2:(p+1)])^{K-1}/factorial(K-1)

}

else{

Mat[i+K+p,1:(2*K-2*(i-1))] <- (S[p+2])^{(2*K-1-2*(i-1)):0}

/factorial((2*K-1-2*(i-1)):0)

Mat[i+K+p,(2*K+1):(2*K+p)] <- (S[p+2]-S[2:(p+1)])^{2*K-1-2*(i-1)}

/factorial(2*K-1-2*(i-1))

}

}

rcond.Mat <- rcond.svd.Matrix(svd.Matrix(Mat))

Alpha <- solve.svd.Matrix(svd.Matrix(Mat),Y,tol=rcond.Mat*0.5)

Alpha

}

InitialCondHkOdd <- function(K,C,Yd.rev,IntBr,positions){

p <- length(positions)
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Y.pos <- rep(0,p-2)

for(j in 2:(p-1)){

Y.pos[(j-1)] <- IntBr[K,positions[j]]

}

Seq.K <- seq(2,K-1,2)

Seq.K <- rev(Seq.K)

l.K <- length(seq(1,K,2))

Y1 <- (factorial(K)/factorial(Seq.K))*(-C)^{Seq.K}

Y2 <- (factorial(K)/factorial(Seq.K))*(C)^{Seq.K}

Y <- c(Yd.rev[1,],Y1, Y.pos, Yd.rev[2,-l.K],C^K, Y2)

Y

}

C.5 S codes for calculating the MLE of a k-montone density

SuppReducAlgoMLE <- function(K,X,prec,eps,p1,p2){

n <- length(X)

#grid <- round(seq(min(X),theta0,by = prec),digits=6)

theta0 <- nlminb(start=max(X)+0.1,objective=minusloglik,

K=K,X=X,lower=max(X)+0.0001)$parameters

grid <- round(seq(p1*min(X),p2*K*max(X),by = prec),digits=6)

Mat0 <- matrix(0,nrow=n,ncol=20)

Vec0 <- rep(n,20)

print(theta0)

Cbar <- 1

Sbar <- theta0
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Matfbar <- EvaluateMatf(Sbar,K=K,X=X,Mat0)

valfbar <- matrix(0,nrow=length(Sbar),ncol=n)

if(length(Sbar)==1){

valfbar <- Matfbar

}

else{

valfbar <- apply(Matfbar%*%diag(Cbar),1,sum)

}

valfbar <- as.vector(valfbar)

ResminOuter <- FindMinimMLE(valfbar,valfbar,K,X,prec,p1,p2,grid)

valminOuter <- ResminOuter[2]

#rm(ResminOuter)

CountOuter <- 0

while(valminOuter < - eps){

CountOuter <- CountOuter +1

cat("Main Outerloup numb = ",CountOuter,"\n")

#Problems can occur since fbar is not necessarily to the solution

# of the LS problem.

#Therefore, we need to apply again the support reduction step.

print(rbind(Sbar,Cbar))

C <- CalculateOptMLE(valfbar,S=Sbar,K=K,X=X,Vec0,Mat0)

C <- as.vector(C)

S <- Sbar

min.C <- min(C)

if(length(Sbar)==1 & min.C < 0)

print("Sbar is of length 1 and min(C) < 0 !")

l.Sbar <- length(Sbar)

l.Cbar <- length(Cbar)
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while(min.C < 0){

index <- IndexFuncMLE(S0=Sbar,S,C0=Cbar,C)

S <- S[-index]

C <- CalculateOptMLE(valfbar,S=S,K=K,X=X,Vec0,Mat0)

C <- as.vector(C)

min.C <- min(C)

}# while(min.C < 0)

Matg <- EvaluateMatf(S,K=K,X=X,Mat0)

valg <- matrix(0,nrow=length(S),ncol=n)

if(length(S)==1){

valg <- Matg

}

else{

valg <- apply(Matg%*%diag(C),1,sum)

}

valg <- as.vector(valg)

ResminInner <- FindMinimMLE(valfbar,valg,K,X,prec,p1,p2,grid)

thetaminInner <- ResminInner[1]

print(thetaminInner)

valminInner <- ResminInner[2]

l.S <- length(S)

l.C <- length(C)

print(valminInner)

CountInner <- 0

while(valminInner < - eps*10){

countInner <- CountInner + 1

cat("MainInnerLoup numb = ",CountInner,"of MainOuterLoup numb=",
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CountOuter,"\n")

thetaminInner <- ResminInner[1]

print(c(thetaminInner,valminInner))

S0 <- S

C0 <- C

S <- c(S,thetaminInner)

S <- sort(S)

C <- CalculateOptMLE(valfbar,S=S,K=K,X=X,Vec0,Mat0)

C <- as.vector(C)

min.C <- min(C)

countInner <- 0

while(min.C < 0){

countInner <- countInner +1

cat("SubInnerLoup numb = ",countInner,"of the MainInnerLoup numb = ",

CountInner, "\n")

index <- IndexFuncMLE(S0=S0,S,C0=C0,C)

S <- S[-index]

C <- CalculateOptMLE(valfbar,S=S,K=K,X=X,Vec0,Mat0)

C <- as.vector(C)

min.C <- min(C)

}# while(min.C < 0)

Matg <- EvaluateMatf(S,K=K,X=X,Mat0)

valg <- matrix(0,nrow=length(S),ncol=n)

if(length(S)==1){

valg <- Matg

}

else{

valg <- apply(Matg%*%diag(C),1,sum)

}

valg <- as.vector(valg)
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ResminInner <- FindMinimMLE(valfbar,valg,K,X,prec,p1,p2,grid)

valminInner <- ResminInner[2]

valminInner

} #while(valminInner < -eps*10)

#Here we need to ensure monotonicity of the algorithm

l.S <- length(S)

l.C <- length(C)

ind <- 0

max.S <- 1

max.C <- 1

ind <- 0

if((l.C==l.Cbar) & (l.S==l.Sbar)){

max.S <- max(abs(S-Sbar))

max.C <- max(abs(C-Cbar))

cat("max.S = ", max.S,"max.C=",max.C,"\n")

if(max.S ==0 & max.C == 0)

ind <- 1

}

if(ind ==1)

break

else{

likbar <- LoglikFunc(valfbar,Cbar)

print(likbar)

Sq <- S

Cq <- C

Merge.out <- MergeFunc(S0=Sbar,C0=Cbar,S=Sq,C=Cq)

S.m <- Merge.out[1,]

Cbar.m <- Merge.out[2,]

Cq.m <- Merge.out[3,]

Cbar <- as.vector(Cbar.m)
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Cq.m <- as.vector(Cq.m)

Mat.m <- EvaluateMatf(S.m,K=K,X=X,Mat0)

valfq.m <- apply(Mat.m%*%diag(Cq.m),1,sum)

valfq.m <- as.vector(valfq.m)

valfbar.m <- apply(Mat.m%*%diag(Cbar.m),1,sum)

valfbar.m <- as.vector(valfbar.m)

cat("diff in loglik =",likbar - LoglikFunc(valfq.m,Cq.m),"\n")

likfq <- LoglikFunc(valfq.m,Cq.m)

if(abs(likbar-likfq) <= eps*0.1)

break

else{

res.arj <- Armijo(Cq.m,Cbar.m,valfbar.m,valfq.m,likbar,K=K,X=X)

if(res.arj[2] >= 3000)

lam.arj <- 0

else

lam.arj <- res.arj[1]

cat("lambda=",lam.arj,"counts=",res.arj[2],"\n")

#Here, we obtain the new iterate fbar

Sbar <- S.m

Cbar <- (1-lam.arj)*Cbar.m + lam.arj*Cq.m

Cbar <- as.vector(Cbar)

#print(rbind(Sbar,Cbar))

f.bar <- cbind(Cbar,Sbar)

f.bar <- as.data.frame(f.bar)

names(f.bar) <- c("w","s")

Cbar <- f.bar$w[f.bar$w !=0]

Sbar <- f.bar$s[f.bar$w !=0]

print(rbind(Sbar,Cbar))

Matfbar <- EvaluateMatf(Sbar,K=K,X=X,Mat0)

valfbar <- apply(Matfbar%*%diag(Cbar),1,sum)
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valfbar <- as.vector(valfbar)

ResminOuter <- FindMinimMLE(valfbar,valfbar,K,X,prec,p1,p2,grid)

valminOuter <- ResminOuter[2]

cat("valminOuter", valminOuter, "\n")

}

}

}# while(valminOuter < -eps)

Output <- cbind(Sbar,Cbar)

Output

}

##This function calculates f_{theta_i}(Xj) where Xj

##is a data point and theta_i is a support point of the iterate f.

##and hence it retruns a matrix of dimension n = length(X) x m = length(S).

EvaluateMatf <- function(S,K,X, Mat0){

S <- sort(S)

m <- length(S)

n <- length(X)

#Xs <- sort(X)

#matrix(0,nrow=n,ncol=m)

if(m==1){

Matf <- matrix(0,nrow=n,ncol=1)

}

else{
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Matf <- Mat0[1:n,1:m]

}

for(i in 1:n){

Matf[i,] <- (K/S^{K})*ifelse(S >= X[i], (S-X[i])^{K-1},0)

}

Matf

}

#This function finds the minimum of the directional

#derivative for the ML estimation inside the quadratic

# approximation

# of - loglikelihood if we "move" away from the current iterate

#c_1*f_theta1 +...+ c_m*f_thetam.

FindMinimMLE <- function(valfbar,valg,K,X,prec,p1,p2,grid){

#grid <- round(seq(p1*min(X),p2*K*max(X),by = prec),digits=6)

#grid <- round(seq(min(X),theta0,by = prec),digits=6)

l.g <- length(grid)

DirecDer.vec <- grid

for(i in 1:l.g){

#print(i)

DirecDer.vec[i] <- DirecDerMLE(grid[i],valfbar,valg,K=K,X=X)

}

minval <- min(DirecDer.vec)

min.rank <- min(rank(DirecDer.vec))

index <- match(min.rank,rank(DirecDer.vec))

#print(cbind(DirecDer.vec,rank(DirecDer.vec)))

#cat("index",index,"\n")
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thetamin <- grid[index]

c(thetamin,minval)

}

# This function calculates the directional derivative

#of the quadratic approximation of -loglikelihood

#at some point theta.

#Sbar and Cbar are respectively the set of support points

# and the weights of the current iterate fbar (outside the quadratic

#approximation of -loglikelihood).

# valfbar, valg are respectively the vectors storing

#[fbar(X_(1)),...fbar(X_(n))] and [g(X_(1)),...g(X_(n))]

DirecDerMLE <- function(theta,valfbar,valg,K,X){

C1 <- NULL

C2 <- NULL

#Xs <- sort(X)

n <- length(X)

Vec.theta <- (K/(theta)^K)*ifelse(theta >= X,(theta-X)^{K-1},0)

C1 <- 1- 2*mean(Vec.theta/valfbar) + mean(valg*Vec.theta/valfbar^2)

C2 <- mean((Vec.theta/valfbar)^2)

DirecDer <- C1/sqrt(C2)

DirecDer

}

#This function solves a linear system

#in order to find the minimizer of -loglikelood
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##over a cone generated by a few active vertices.

CalculateOptMLE <- function(valfbar,S,K,X,Vec0,Mat0){

m <- length(S)

n <- length(X)

nm <- Vec0[1:m]

#rep(n,m)

valfbar <- as.vector(valfbar)

valfbar.inv <- 1/valfbar

Dfbar <- diag(valfbar.inv)

MatY <- EvaluateMatf(S=S,K=K,X=X,Mat0)

MatV <- t(Dfbar%*%MatY)%*%(Dfbar%*%MatY)

B <- 2*(t(MatY)%*%valfbar.inv)-nm

#Alpha <- solve.Matrix(MatV,B,tol=rcond.V*0.1)

#Alpha <- solve.Hermitian(MatV,B,tol=0)

rcond.V <- rcond.svd.Matrix(svd.Matrix(MatV))

cat("rcond=", rcond.V, "\n")

Alpha <- solve.svd.Matrix(svd.Matrix(MatV),B,rcond.V*0.1)

Alpha

}

#This function calculates -loglikelihood at a current iterate

# with set of support points=S and set of weights = C

#valf is a vector storing the values [f(X_(1)),...,f(X_(n))].

LoglikFunc <- function(valf,C){
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Loglik <- -mean(log(valf)) + sum(C)

Loglik

}

MergeFunc <- function(S0=Sbar,C0=Cbar,S=Sq,C=Cq){

S.merge <- c(S0,S)

S.merge <- unique(sort(S.merge))

C0.rep <- rep(0,length(S.merge))

C.rep <- rep(0,length(S.merge))

for(i in 1:length(S.merge)){

match.S0 <- match(S.merge[i],S0)

if (!is.na(match.S0))

C0.rep[i] <- C0[match.S0]

else

C0.rep[i] <- 0

}

for(i in 1:length(S.merge)){

match.S <- match(S.merge[i],S)

if (!is.na(match.S))

C.rep[i] <- C[match.S]

else

C.rep[i] <- 0

}

rbind(S.merge,C0.rep,C.rep)

}
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# This function looks for a lambda between 0 and 1 such

# that fbar + lambda*(fq-fbar) has a larger likelihood than that

#of fbar in order to ensure the monotonicity of the algorithm.

#Cbar is the vector weights of fbar

#(outside the quadratic approximation).

# Cq is the vector weights of fq the minimizer of the

quadratic approximation of -loglikelihood.

#likbar is -loglikelihood of fbar.

# we need to make some arrangements in order to be able use

# the function "LoglikFunc" as it is coded.

Armijo <- function(Cq,Cbar,valfbar,valfq,likbar,K=K,X=X){

lambda <- 1

sumfq <- sum(Cq)

sumfbar <- sum(Cbar)

likq <- LoglikFunc(valfq,Cq)

likfnew <- likq

#if(likfnew == likbar)

#lambda <- 1

count <- 0

while( likfnew >= likbar & count <= 2000){

count <- count +1

lambda <- lambda/2

valfnew <- valfbar + lambda *(valfq - valfbar)

Cfnew <- Cbar + lambda *(Cq - Cbar)

likfnew <- LoglikFunc(valfnew,Cfnew)

}

lambda
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}

C.6 S codes for calculating the LSE of a k-monotone density

LSESupReducAlgo <- function(K=3,X=X1000,prec=0.01,eps= 10^{-8},p1=1,p2=1){

#theta0 <- (2*K-1)*max(X)

grid <- round(seq(min(X)*p1,p2*K*max(X),prec),digits=6)

M.alpha <- matrix(0,nrow=K-1,ncol=K-1)

M0 <- matrix(0,nrow=30,30)

B0 <- rep(0,30)

#grid <- round(seq(min(X),2*K*max(X),prec),digits=6)

Rank <- rank(c(max(X),grid))[1]

theta0 <- grid[Rank]

#theta0 <- grid[length(grid)]

print(theta0)

C0 <- ((2*K-1)/(K*theta0^{K-1}))*mean((theta0-X)^{K-1})

#print(C0)

S0 <- theta0

Resmin <- FindMinFunc(X=X, S=S0,C=C0,K=K,prec=prec,grid)

valmin <- Resmin[2]

print(valmin)

Count <- 0

while(valmin < -eps){

Count <- Count + 1

cat("Main loup numb = ",Count,"\n")
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thetamin <- Resmin[1]

print(c(thetamin,valmin))

S <- c(S0,thetamin)

S <- sort(S)

B <- LSEInitialCond(S=S,K=K,X=X,B0)

C <- LSEComputeSpline(S=S,K=K,B=B,M.alpha,M0)

C <- ((-1)^K * S^K * factorial((2*K-1))/factorial(K))*C

print(S)

print(C)

min.C <- min(C)

count <- 0

while(min.C < 0){

count <- count+1

cat("Sub loup numb = ",count," of the main loop numb=", Count, "\n")

index <- IndexFunc(S0=S0,S=S,C0=C0,C=C)

S <- S[-index]

if(length(S)==1)

C <- ((2*K-1)/(K*S^{K-1}))*mean((S-X[X <= S])^{K-1})

else{

B <- LSEInitialCond(S=S,K=K,X=X,B0)

C <- LSEComputeSpline(S=S,K=K,B=B,M.alpha,M0)

C <- ((-1)^K * S^K * factorial((2*K-1))/factorial(K))*C

}

min.C <- min(C)

}# while(min.C < 0)

S0 <- S

C0 <- C

Resmin <- FindMinFunc(X=X, S=S0,C=C0,K=K,prec=prec,grid)
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valmin <- Resmin[2]

}# while(valmin < -eps)

Output <- cbind(S0,C0)

Output

}

#This function finds the minimum of

#the directional derivative if we "move" away

# from the current iterarte c_1*f_theta1 +...+ c_m*f_thetam.

FindMinFunc <- function(X,S,C,K,prec,grid){

l.g <- length(grid)

DirecDer.vec <- grid

for(i in 1:l.g){

#print(i)

DirecDer.vec[i] <- DirecDer(grid[i],X,S,C,K)

}

minval <- min(DirecDer.vec)

index <- match(1,rank(DirecDer.vec))

thetamin <- grid[index]

#free(DirecDer.vec)

c(thetamin,minval)

}

#This function calculates the directional

# derivative for the LS criterion.
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# X is an i.i.d. sample of size n generated

from a K-monotone density.

# Theta is the set of knots theta_1,...,theta_m.

# C is the vector of the weights C_1,...,C_m

#corresponding to f_{theta1},...f_{theta2}

#DirecDer <- function(theta,X,S,C,K){

Out <- NULL

J <- 0

for(i in 1:length(S)){

J <- J + C[i]*J.Func(theta,S[i],K)

}

Out <- (1/theta^{K-1/2})*(J-Integr.Fn(theta=theta,K=K,X=X))

Out

}

#This function calculates the (K-1)-fold integral of the function

#f_thetaj(x) = (K/(thetaj)^K)*(thetaj-x)_{+}^{K-1}.

J.Func <- function(theta,thetaj,K){

Out <- NULL

if(theta <= thetaj){

Out <- (factorial(K-1)/factorial(2*K-1))*(-1)^{K-1}

* sum(choose(2*K-1,0:(K-1))*(-1)^{0:(K-1)}*thetaj^{2*K-1-(0:(K-1))}

*theta^{0:(K-1)})

+ (-1)^{K}*(factorial(K-1)/factorial(2*K-1))*(thetaj-theta)^{2*K-1}
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}

else

Out <- (factorial(K-1)/factorial(2*K-1))*(-1)^{K-1}

* sum(choose(2*K-1,0:(K-1))*(-1)^{0:(K-1)}*theta^{2*K-1-(0:(K-1))}

*thetaj^{0:(K-1)})

+(-1)^{K}*(factorial(K-1)/factorial(2*K-1))*(theta - thetaj)^{2*K-1}

Out <- (K/thetaj^{K})*Out

Out

}

#This function calculates the (K-1)fold integral

#of the empirical distribution.

Integr.Fn <- function(theta,K,X){

X.s <- sort(X)

n <- length(X)

rank <- rank(c(theta,X.s))

if(rank[1] ==1)

Output <- 0

else

Output <- (1/factorial(K-1))*(1/n)

*sum((theta-X.s[1:(rank[1]-1)])^{K-1})

Output

}

LSEInitialCond <- function(K,S,X,B0){



280

m <- length(S)

S0 <- c(0,S)

#B <- rep(0,m)

B <- B0[1:m]

for(i in 1:m){

B[i] <- Integr.Fn(S0[i],K,X)-Integr.Fn(S0[m+1],K,X)

}

B

}

LSEComputeSpline <- function(S,K,B,M.alpha,M0){

m <- length(S)

S0 <- c(0,S)

#M.alpha <- matrix(0,nrow=K-1,ncol=K-1)

for(i in 1:(K-1)){

M.alpha[i,i:(K-1)] <- choose(i:(K-1),i)*(S[m])^{0:(K-i-1)}

}

M.alpha <- matrix(M.alpha,K-1,K-1)

#M.2 <- matrix(0,nrow=K-1,ncol=m)

M.2 <- M0[1:(K-1),1:m]

M.2 <- matrix(M.2,K-1,m)

for(i in 1:(K-1)){

M.2[i,] <- choose(2*K-1,i)*S^{2*K-1-i}

}

#M.1 <- matrix(0,nrow=m,ncol=K-1)

M.1 <- M0[1:m,1:(K-1)]

M.1 <- matrix(M.1,m,K-1)
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for(j in 1:(K-1)){

M.1[,j] <- (S[m]-S0[1:m])^{j}

}

#M.3 <- matrix(0,nrow=m,ncol=m)

M.3 <- M0[1:m,1:m]

M.3 <- matrix(M.3,m,m)

for(i in 1:m){

M.3[i,i:m] <- (S0[(i+1):(m+1)]-S0[i])^{2*K-1}

}

M.alpha.inv <- solve.UpperTriangular(M.alpha)

Mat <- -M.1%*%M.alpha.inv%*%M.2 + M.3

rcond.Mat <- rcond.svd.Matrix(svd.Matrix(Mat))

#print(rcond.Mat)

Res <- solve.svd.Matrix(svd.Matrix(Mat),B,tol=rcond.Mat*0.5)

Res <- as.numeric(Res)

Res

}
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