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Abstract  
 

 
This thesis presents the results of a concerted effort to understand the complex array of 

physical properties exhibited by the BaVS3 family of materials. As a 3d1 system, BaVS3 
displays a unique collection of correlation-driven phenomena, including a metal-insulator 
transition driven by spin-density waves and or charge-density waves as well as a pressure-
dependent crossover between the non-Fermi-liquid and Fermi-liquid behaviors. In an attempt 
to better understand these and many other properties, we have undertaken a systematic 
experimental study of BaVS3 and related compounds.  

The primary measurements carried out were those of the transport properties, 
resistivity and thermoelectric power (TEP). Through the construction of specialized 
measuring apparatuses, we were able to measure simultaneously these transport properties 
under conditions of variable temperature (from 2 to 600 K), pressure (up to 3 GPa) and 
magnetic field (up to 12 T).  

At ambient pressure and in the range of 250 to 600K, BaVS3 shows nearly isotropic 
but poor metallic behavior with linear temperature dependences of resistivity and TEP and a 
Curie-like magnetic susceptibility. The nearly isotropic conductivity contrasts with the 1D 2kF 
fluctuations observed by lowering the temperature below 250 K (at which the first Jahn-Teller 
structural phase transition occurs) deep in the metallic phase. The fluctuations reveal the 1D 
aspects of the electronic character, originating from the chain like structure of the material. 
The salient feature of BaVS3 at ambient pressure is the second order metal-to-insulator (MI) 
transition at TMI = 69 K, accompanied by the tetramerization (doubling of the 2V unit cell in 
the chain direction). In addition to the transport measurements, the strong changes in the 
electrical and magnetic properties of the system around TMI were followed by magnetic 
susceptibility, angle-resolved photoelectron spectroscopy and frequency-dependent 
conductivity.  

By increasing the pressure, the three-dimensionality of BaVS3 is enhanced and the MI 
phase transition is suppressed to lower temperatures. TEP and magneto TEP measurements in 
this pressure range revealed the existence of polarons and of spin fluctuations in the metallic 
phase. The latter can be identified as precursors to the MI transition. Around 1.8 GPa, where 
TMI ~15 K, the system enters a strongly fluctuating regime, highly sensitive to the magnetic 
field, the amplitude and the frequency of the measuring current and to a further increase of the 
pressure. Closely related to these features, the phase boundary collapses and a hysteretic 
behavior appears in the transport properties and their magnetic-field-dependent counterparts. 
At a critical pressure of  ~2 GPa, a non-Fermi liquid (NFL) state arises (with n~1.5 in the Tn 
resistivity law between 1 and 15 K) in relation to the proximate Quantum Critical Point. The 
p-H-T phase diagram of BaVS3 in this region has been explored in some detail with particular 



  

emphasis placed upon the relevance of the spin degrees of freedom (on the insulator side) and 
the role of quantum fluctuations above the critical pressure. Finally, as the pressure is 
increased further, the conventional Fermi-liquid exponent of  n = 2 is obtained. 

In order to delve further into the subtleties of the MI transition and the NFL behavior, 
a comparative study was carried out on the sister compounds Bax-1SrxVS3 and BaVSe3 and on 
sulfur-deficient BaVS3. From this study it became apparent that the imposed chemical 
substitution manifests itself as an additional effective pressure. The inherent disorder of these 
samples was observed to affect the NFL behavior by reducing the exponent n towards a value 
of 1, while the apparent ferromagnetic order below 15 K was seemingly independent of 
pressure. 

All the observed features are consistent with a relatively simple two-band tight-
binding, vanadium-based, model consisting of a wide quasi one-dimensional band hybridized 
with a rather isotropic narrow band. Within this context, it is concluded that the MI transition 
is controlled by the Coulomb-interacting electrons of the wide quasi one-dimensional band. 
Based on this model a new description of the NFL regime has been proposed.  

 



Version abrégée  
 

 
 Cette thèse présente les résultats d’une étude approfondie des propriétés complexes 
des matériaux dérivés du BaVS3, système 3d1 qui présente une collection unique de 
phénomènes liés aux corrélations. Celle-ci inclue une transition métal-isolant (MI) induite par 
des corrélations type onde de densité de spin, onde de densité de charge, et un passage à haute 
pression d’un Non Liquides de Fermi (NLF) à un liquide Fermi. Afin de comprendre nombre 
de ces propriétés, une étude expérimentale systématique de BaVS3 et de certains de ses 
dérivés a été entreprise. 

L'étude est basée sur les mesures de propriétés de transport, résistivité et pouvoir 
thermoélectrique (PTE). La construction d’un appareillage spécialisé a permis de caractériser 
simultanément les effets de température (de 2 à 300 K), de pression (jusqu'à 3 GPa) et du 
champ magnétique (jusqu'à 12 T) sur les propriétés de transport. 
 A pression atmosphérique et pour des températures comprises entre 250 et 600 K, 
BaVS3 présente un comportement de mauvais métal, quasi isotrope avec une résistivité et un 
PTE linéaires en fonction de la température, ainsi qu’une susceptibilité magnétique de Curie. 
La conductivité quasi isotrope contraste avec des fluctuations 1D à 2kF , observées en-dessous 
de 250 K (température où une première transition structurelle de Jahn – Teller se produit) 
profondément dans l'état métallique. Ceci révèle les aspects 1D du caractère électronique, 
trouvant son origine dans la structure cristalline en chaînes. La principale propriété de BaVS3 
est la transition MI de second ordre à 69K à pression atmosphérique, qui s'accompagne d'une 
tétramérisation (dimérisation de la cellule élémentaire ayant 2V le long des chaînes). 
S'ajoutant aux mesures de transport, des variations importantes des propriétés électriques et 
magnétiques du système au voisinage de TMI ont été observées à l’aide de mesures de 
susceptibilité magnétique, d’ARPES et de dépendance en fréquence de la conductivité. 
 Par une augmentation de la pression, BaVS3 devient plus tridimensionnel et la 
température de transition MI diminue. Les mesures de PTE, dans cet intervalle de pressions et 
en fonction du champ magnétique, ont montré l'existence de polarons et de fluctuations de 
spin dans la phase métallique. Ces dernières sont liées aux effets pré-transitoires de la 
transition MI. Pour une pression proche de 1.8 GPa, où la température de transition MI est 
d’environ 15K, le système entre dans un régime de fluctuations fortes qui est très sensible au 
champ magnétique, à l’amplitude et à la fréquence du courant de mesure, ainsi qu’à une 
augmentation supplémentaire de la pression. La ligne de transition s’effondre, aussi 
accompagnée de comportements d'hystérésis de toutes les propriétés mesurées, c’est à dire la 
résistivité, la magnétorésistivité, le PTE et le magnéto-PTE. A une pression critique d’environ 
2GPa, un état de Non Liquides de Fermi (avec n≈1.5 dans la loi en Tn pour la résistivité), lié 



au Point Quantique Critique (PQC), est présent entre 1 à 15 K. L'ensemble du diagramme p-
H-T de BaVS3 a été étudié en détail au voisinage de cette pression critique. Deux aspects 
importants sont surtout considérés: les degrés de liberté de spin du côté isolant de la transition 
MI et le rôle des fluctuations quantiques au-dessus de la pression critique. Enfin, on retrouve 
pour des pressions supérieures (2.7 GPa) l'exposant conventionnel n=2 d'un liquide de Fermi.  

Une étude comparative a été effectuée pour les composés apparentés Ba1-xSrxVS3, 
BaVSe3, et BaVS3-δ déficient en soufre. Cette étude a révélé que la substitution chimique peut 
être considérée comme un effet de pression additionnel. L'effet de désordre sur le 
comportement LNF, fait diminuer n vers 1. De plus, l'existence d'un ordre ferro-magnétique, 
présent en-dessous de 15K et indépendant de la pression, est proposée. 
 Toutes les propriétés observées sont interprétées à partir d'un modèle de liaisons fortes 
à deux bandes basées sur le vanadium, qui fait intervenir une bande large quasi 1D en 
hybridation avec une bande étroite et quasi isotrope. En conclusion, la transition MI est 
contrôlée par les électrons de la bande large quasi 1D, soumis à l'interaction coulombienne. 
Une nouvelle description de LNF, basée sur ce modèle, est avancée. 
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An obvious question for a non-specialist reader to pose in the context of this thesis is: 
“Why would one study novel electronic materials in the 21st century, which seems to 
be dominated by the biological sciences?” Indeed, as more and more researchers from 
outside of biology turn towards the study of living matter, addressing questions such 
as DNA-conduction, oxidative stress, and neural networks (just to name a few), it is a 
very pertinent question. The physicist may well respond by pointing out that many of 
the aforementioned topics are studied with devices that owe their origin to solid state 
physics. As such, the responsibility for the improvement of such devices still rests 
heavily upon the solid state physicist, and will continue to do so for the foreseeable 
future. That said, it is important to point out that physics is much more than a mere 
service science for biology. Fundamental research in physics may be justifiably called 
the birthplace of development. 

But even insiders, who are well aware of the above arguments, may still ask the 
question: “What this study is good for?” Most of the materials we need, such as 
metals and semiconductors, are already well-understood. It is true that metals like 
copper, niobium, iron etc. are established materials in applications such as electric 
transport, superconducting magnets for magnetic resonance imaging, and magnetic 
bearings and their study is not the focus of fundamental research. A similar view can 
be taken for semiconductors like silicon which, through the MOSFET (metal-oxide 
semiconductor field-effect transistor) technology, gave us processors, very fast 
computers, light emitting diodes, powerful lasers etc. What else do we need? 

 
Figure 1.1: Schematic representation of two separate (as distinguished by an energy gap) classes of 
materials, metals and semiconductors with chosen examples of their applications. In the broad region in 
between these two classes, there is a variety of materials called novel conductors displaying a rich 
physics which is craving to be both understood and applied.  

 

 



8________________________Chapter 1: Materials with novel electronic properties 

_____________________________________________________________________ 
  

 

Actually, despite some belief to the contrary, there is still a pressing need for better 
and faster devices. One promising direction for research in this area started a few 
decades ago amongst materials with properties in between those of conventional 
metals and semiconductors. The materials from this class, including low-dimensional 
organic conductors, conducting polymers, manganites, charge density wave systems, 
heavy fermions, cuprates, fullerides and lately carbon nanotubes, were often named 
“bad metals”. In our vocabulary, we prefer to call them novel conductors (Fig. 1.1), a 
few representative structures of which can be found in Fig. 1.2. 

 

 
 
Figure 1.2: A few representative structures of materials with novel electronic properties: 
superconductor (cuprate), organic conductor ((BEDT-TTF)2I3), manganites (La0.5S1.5MnO4) and the 
material which is the subject of my thesis, BaVS3.  

 

It is generally believed among the specialists that by simply modulating the charge 
distribution in, for example MOSFETs, one can neither reduce the size nor increase 
the speed of the processors. In order to do so, one needs to modulate other degrees of 
freedom, like spins and orbitals. The manipulation of spin through spin valves and 
spin-dependent transport is already known to the market as spintronics. In terms of 
controlling the electronic orbitals, however, we are just in the learning phase and it is 
the aim of the present study to further our knowledge in this direction. There are many 
d-shell conductors where this phenomenon could be studied. Our choice of material is 
BaVS3 which, besides the orbital ordering, offers the following array of very rich 
physics: 
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Bad metallicity 

Metal Insulator transition 

Orbital order 

Charge order, CDW 

Spin order, SDW 

Frustrations 

Jahn-Teller distortion 

Non Fermi Liquid & Quantum Critical Point 

Magnetic ordering 

Role of disorder 

 

All of these issues will be addressed in my dissertation. In our opinion, if we 
understand the main parameters which control the interplay between lattice, charge, 
orbital, and spin interactions, we can start to manipulate them and engineer materials 
suitable for devices. Nevertheless, one may still say that the topics listed above belong 
to fundamental physics, without any possibility of application. From our point of 
view, however, every seriously executed piece of basic research will find application; 
the only question is the timescale. 



 

 
 

 

 



___________________________________________________________________11 

_____________________________________________________________________ 
 

Chapter 2  

 

ODYSSEY BaVS3 

 

  

 

 

2.1 THE DAWN OF BaVS3 12 
2.2 BEGINNING TO UNDERSTAND BaVS3 14 
2.2.1 MAGNETIC PROPERTIES AND THEIR IMPLICATIONS 15 
2.3 LAUSANNE IN SIGHT 19 
2.3.1 HIGH-QUALITY SINGLE CRYSTALS 19 
2.3.2 THE IMPORTANCE OF HIGH PRESSURE 21 
2.4 REFERENCES 23 
  
 
 
In this chapter we will present the state of the art in the research of BaVS3, indicate 
the main achievements thus far and present the problems identified in previous works.
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2.1 The dawn of BaVS3  

The odyssey BaVS3 started several years before my birth. To be more modest and not 
to relate the beginning of time to my own coordinate system, in fact it started much 
earlier. As is already well known, in the beginning God created the heavens and the 
earth, and probably some atoms of barium, vanadium, and sulfur too. Even if there is 
no direct proof, since it was too dark to see, we believe that it is a sound assumption 
supported by the early mention of sulfur (brimstone) in the Book of Genesis, 19:24. In 
the interests of simplicity, let me skip several millennia (barium was discovered in 
1808 by Sir Humphrey Davy, England, and vanadium in 1801 by Adres Manuel del 
Rio, Mexico, and Nils Safstöm, Sweden) and return to my epoch, to the year 1968 
when Gardner and co-workers announced, during the 70th annual meeting of the 
American ceramic society the synthesis of a new material, namely BaVS3 (Gardner et 
al., 1968). 

 
Figure 2.1: The structure of BaVS3 showing chains of face-sharing sulfur octahedra. The hexagonal 
unit cell is outlined with bold lines. Picture adopted from Gardner et al. (1969). 
 

Shortly afterwards, in 1969, they published their results (Gardner et al., 1969). From 
the single-crystal analysis, they were able to refine the room temperature crystal 
structure of BaVS3, which consists of linear chains of vanadium atoms, surrounded by 
face-sharing sulfur octahedra, running parallel to the c – axis. Barium ions serve as 
spacers, separating the chains (Fig. 2.1). The room temperature space group is 
P63/mmc with two formula units per cell. At lower temperatures (below 183 K) a 
transition from a hexagonal to an orthorhombic cell was observed. The separation 



Chapter 2: Odyssey BaVS3___________________________________________13 

_____________________________________________________________________ 
  

between the two nearest neighboring vanadium ions on the same chain at room 
temperature is 2.805 Å, which is close to the atomic distance (2.624 Å) in pure 
metallic (ρ = 20 µΩ cm) BCC vanadium. The much larger distance between the 
chains, 6.73 Å, suggests a quasi-one-dimensionality of the compound. As the 
electrical properties in the monocrystals were observed to be strongly affected by 
impurity content, the electrical resistivity, as a function of temperature from 80 to 350 
K, was determined on well-characterized sintered bars. It was also noted that BaVS3 
begins to lose sulfur at approximately 370 K under vacuum. The measurement of 
resistivity revealed a metallic behavior at high temperatures with an associated change 
of slope at approximately 130 K. This change was (incorrectly) assigned to be a 
transition from the metallic to the insulating (MI) state.  
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2.2 Beginning to understand BaVS3  

Ten years later, provoked by the magnetic susceptibility measurement of Takano and 
his coworkers (Takano et al., 1977), the compound began to receive heightened 
attention. In particular, these authors found a Curie-like (paramagnetic) susceptibility 
in the metallic phase, and a sharp peak around TMI = 70 K, below which the 
susceptibility decreases with decreasing temperature. This is accompanied by a sharp 
increase of resistivity, suggesting an antiferromagnetic (AFM) order of the localized 
spins. The structural change from hexagonal to orthorhombic was confirmed. It was 
found that the structural transition is of the second order, setting in at TS = 250 K. The 
temperature dependence of the cell dimensions was determined and showed a sharp 
change at TMI. These results were confirmed later by Sayetat et al. (1982), and are 
presented in Fig. 2.2. 

a) 

b) 

 
 
Figure 2.2: The thermal variation of unit cell parameters. The orthorhombic distortion appears at TS = 
250 K, and increases by cooling as seen from the different change of lattice parameters. Those in the a-
b plane (a) show a sharp change at TMI. On the contrary, the change of the c-axis lattice parameter (b) is 
moderate. Picture adopted from Sayetat et al. (1982). 
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By the end of the 70ies it was clear that pure BaVS3 undergoes (at least) three 
successive phase transitions as the temperature is decreased from 300 to 5 K. The 240 
K transition seems to be well understood; it corresponds to a change in the crystal 
structure and, as it will be shown later concerning the electrical properties of the 
system, it is accompanied by only a weak change in the slope of the resistivity. On the 
other hand, the origin of the two other transitions remained elusive and they remain a 
subject of discussion to this very day.  

2.2.1 Magnetic properties and their implications 

The first attempt to reconcile the high temperature paramagnetic behavior in the 
metallic phase and the vanishing susceptibility in the insulating phase, below TMI, 
came from the already mentioned work of Massnet en co-workers (Massnet et 
al.,1979). A two-band model, shown in Fig. 2.3 was proposed. In the octahedral 
environment, the fundamental d wave functions belong to the t2g triplet which, due to 
the non-perfect octahedral symmetry of the V site, is split into a fundamental e(t2g) 
doublet, corresponding to two orbitals extending principally in the x-y plane, and a 
higher energy singlet dz

2 pointing along the chain direction (this is discussed in more 
detail in Chapter 3). 

  

 
 

Figure 2.3: Left part of the figure shows the nearest neighbor sulfur ( ) environment at the vanadium  
( ) site. In the middle part, a possible d-electron level diagram for one vanadium site is shown with 
the consequential density of the states for the chain of vanadium sites, in the right part of the figure. 
Picture originates from Massenet et al. (1979). 
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The short distance separating nearest neighbor vanadium atoms along a single chain 
leads to a large overlap of the dz

2 orbitals. Consequently, in the actual crystal, the dz
2 

states should form a broad band. The e(t2g) orbitals which are actually tilted with 
respect to the x-y plane also overlap with the nearest neighbor e(t2g) orbitals, but to a 
lesser extent, and should form a narrow band with a high density of states. The 
essentially delocalized electrons in the broad, partially filled, dz

2 band, which were 
supposed to be at the origin of the quasi-metallic behavior of BaVS3 at room 
temperature, contribute very little to the magnetic susceptibility. 

The magnetic properties were attributed mainly to the more localized, and hence 
magnetic, electrons in states of e(t2g) symmetry, The rapid increase of the resistivity 
was attributed to the AFM ordering at 70 K, being explained on the basis of a model 
(Slater, 1951). Shortly thereafter, in 1980, Massenet et al. (1980) proposed another 
scenario at the MI phase transition. They suggested that the break in the magnetic 
susceptibility detected at this transition is not related to an antiferromagnetic order but 
results instead from a progressive transfer of electrons from localized magnetic states 
to a non-magnetic band. The magnetic and the diamagnetic states would be separated 
by a small energy gap. Therefore, at the MI transition, BaVS3, goes from a Curie-
Weiss paramagnetic metallic state to a diamagnetic non-metallic state. 

In 1980, Heidemann and Takano (1980) published the results of inelastic neutron 
scattering experiments performed at low temperature on stoichiometric BaVS3. These 
authors measured the hyperfine interaction at the V sites by means of high-resolution 
inelastic spin-flip scattering of neutrons. The V nuclei have a large spin-incoherent 
neutron scattering cross section and are, therefore, ideal probes for the detection of 
hyperfine fields with neutrons. By analyzing the energy spectra of neutrons scattered 
in BaVS3 at 10 and 40 K, Heidemann and Takano were able to conclude that a third 
phase transition must take place in this temperature range since magnetic order was 
found at 10 K. From the ratio of the total integrated inelastic intensity and under the 
assumption that the observed scattered intensity is only due to the spin-incoherent 
scattering from the V nuclei, they estimated that the fraction of V sites with an 
internal magnetic field of 75 kOe is ~ 45%. This indicates the coexistence of non-
magnetic and magnetic V sites in a magnetically ordered phase. The temperature of 
the magnetic phase transition was determined by measuring the total scattered 
intensity at energy transfer ħω = 0, as a function of temperature. The value of 31 ± 1 
K was obtained. Heidemann and Takano stated that from their measurements no 
information could be obtained about the nature of the magnetic order existing below 
31 K. 
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In 1981 Nishihara and Takano (1981) reported the results of pulsed Nuclear Magnetic 
Resonance (NMR) experiments at low and high frequencies carried out between room 
temperature and 1.3 K on polycrystalline samples of BaVS3. A weak single 
paramagnetic signal was observed from room temperature down to 229 K with no 
pronounced anomaly at the 240 K transition. The temperature dependence of the line 
shift, the line width and the decay time as deduced from spin-echo spectra of the 51V 
nuclei taken below 80 K, confirmed the existence of the 31 K transition. Furthermore, 
Nishihara and Takano argued that based on their data, the 70 K transition involved a 
gradual pairing of the vanadium atoms in linear chains as to form covalent non-
magnetic bonds with decreasing temperature. This gradual pairing would take place 
for only 81% of the vanadium atoms, while the remaining 19% would remain 
localized V4+ cations, which would not contribute to the NMR signal. These latter 
cations would order magnetically at the 31 K transition.  

Nishihara and Takano (1981) provided also a spin-echo spectrum at high frequencies. 
It was taken without an external field at 1.3 K by the use of a phase-incoherent pulsed 
NMR spectrometer, and revealed two resonance frequencies (106.0 MHz and 101.4 
MHz) which originated from the 51V nuclei. The magnitude of the fields at 1.3 K were 
determined to be 94.7 and 90.6 kOe, which are somewhat larger than the unresolved 
value of 75 kOe at 10 K determined by inelastic neutron scattering. This would 
indicate that at 1.3 K two independent magnetic sites for the V cations exist in the 
structure of BaVS3. The field dependence of the echo spectra at 1.3 K and the 
corresponding frequency-field diagrams show that the spin structure is 
antiferromagnetic. Complex spin structures such as helical structures are possible; 
however, Nishihara and Takano concluded that the observation of the modulation of 
the spin-echo decay envelope indicates that the spin structure should be 
commensurate with that of the crystal. No discontinuities in the specific heat 
(Massenet et a1., 1980) and in the lattice parameters (Sayetat et a1., 1982) were 
observed at 31 K.  

In 1991, Matsuura and his coworkers reported the first measurements of the magnetic 
and transport properties of BaVS3 (Matsuura et al. 1991). A few years later the first 
band calculations, carried out by Solovyev et al. (1994), showed that the Fermi level 
in BaVS3 lies at the narrow peak in the density of states, which indicates that the 
system is potentially sensitive to pressure changes. The band calculations were soon 
accompanied by the photoemission spectroscopy study of Nakamura et al. (1994). 
The strong suppression of TMI by increasing pressure was revealed in the work of Graf 
et al. (1995). 
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All of these aforementioned results will be completed by our much more detailed 
studies performed on high quality single crystals which will be presented and 
discussed in following chapters. But, to have a complete overview of the important 
events and ideas in the history of BaVS3, I will continue the presentation the model of 
Nakamura et al. (1994) in which the e(t2g) doublet lies lower in energy than the dz

2 
orbital. It was proposed that the gradual orthorhombic distortion of the Jahn-Teller 
type below TS lowers one of the e(t2g) levels and that below TMI, electrons are fully 
transferred to the lowest energy level making it half-filled, and resulting in the 
opening of a Mott-Hubbard gap (Mott, 1974). The authors argued that the effects of 
large fluctuations as a consequence of the one dimensionality of the system prevent 
the long-range magnetic order. Finally the suppression of the magnetic susceptibility 
below TMI was attributed to the growth of the antiferromagnetic spin correlation 
resulting with the magnetic order below Tx. If the proposed scenario is correct, the 
orbital degeneracy is quenched at the MI transition which inhibits the possibility of 
orbital order at lower temperatures. This is in contradiction with the Nuclear 
Quadruple Resonance (NQR) measurements by Nakamura et al. (1997), where a 
large electrical field gradient is observed below Tx.  
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2.3 Lausanne in sight 

In the 90ies, several important things happened which decided my future and lead me 
towards Lausanne and BaVS3. Besides the fact that these were the years when I 
entered the world of physics and significant progress was achieved in investigating 
BaVS3, as presented above, these were also the years when the research on the 
compound started in Lausanne. New questions arising from the work of my future 
group in Lausanne and its collaborators placed the material under a new spotlight of 
interest, uncovering even more intriguing physical properties of the material.  

2.3.1 High-quality single crystals 
 

The first step of this kind happened in 1995 when the Fukuoka-Lausanne 
collaboration (Kuriyaki et al., 1995) resulted in the new method of synthesis; single 
crystal growth of BaVS3 in melted tellurium as flux. The crystals were obtained in the 
form of large needles with typical dimensions of about 10 mm in length and 1 mm in 
width. For the first time it was found that a change in the slope of the temperature-
dependent resistivity occurs at TS, which indicated that the synthesized crystals were 
of high quality. Several further years passed until a breath of fresh air was given to 
these samples by taking them out of a drawer and into the daylight. In 2000, Mihàly et 
al. (2000) published the direction-dependent conductivity and susceptibility 
measurements preformed on the single crystals. The conduction anisotropy (shown in 
Fig. 2.4), defined as the ratio of the conductivities measured along and perpendicular 
to the chain direction, is surprisingly low above TMI, σc/σa ≈ 3, putting a question-
mark on the one-dimensional character of the system.  
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Figure 2.4: Temperature dependence of the conduction anisotropy σc / σab in BaVS3. The arrow 
indicates the MI transition temperature. Picture from Mihàly et al. (2000). 



20___________________________________________Chapter 2: Odyssey BaVS3 

_____________________________________________________________________ 
  

The anisotropy is temperature independent in the metallic phase and there is only a 
small jump at the MI transition. Below TMI, the anisotropy has the same small value 
over a broad temperature range down to about 30-40 K. Note that in this range of T, 
the resistivity increases by about six orders of magnitude in both directions. The low-
temperature upturn below TMI in Fig. 2.4 was attributed to the impurities. The dz

2 
orbitals have large overlap along the chain directions and, taking into account the 
wide separation of the vanadium chains, it is reasonable to expect a high anisotropy in 
electrical properties of the system. Since this is not the case, it was proposed that the 
hopping along more isotropic channels, resulting from the weak indirect overlaps of 
two e(t2g) orbitals, is the origin of electron propagation. 
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Figure 2.5: Temperature dependence of the c-axis magnetic susceptibility (χc), the derivative of the a-
axis susceptibility (dχa/dT), and susceptibility anisotropy (χc-χa). The inset clearly reveals the Curie 
susceptibility above TMI.  Data from Mihàly et al. (2000). 
 

The magnetic susceptibility measurement (results summarized in Fig. 2.5) confirmed 
the previous data on the stoichiometric samples: the Curie-Weiss behavior in the 
metallic phase is followed by the steep decrease at TMI showing that the number of 
polarizable moments drops drastically upon entering the insulating phase. In Fig. 2.5, 
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χc and χa look very similar, and are both fairly smooth at Tx. However, a sharp peak in 
the temperature derivative of the a-axis susceptibility dχa / dT, and a sudden break in 
the anisotropy χc - χa at Tx ≈ 30 K was found, giving another piece of evidence for the 
phase transition within the insulating phase.  

It was proposed that the MI transition involves both the spin and the orbital degrees of 
freedom in a similar manner as for V2O3, where the onset of orbital order leads to an 
insulating state whose magnetic ordering pattern cannot be anticipated from the short-
range order found in either of neighboring phases (Paolasini et al., 1999). Since, in 
BaVS3, the V chains form a triangular array, it was suggested that the frustration 
results in the intermediate (Tx < T < TMI) unordered magnetic phase. Instead, in this 
temperature range, the system has an overall nonmagnetic state with peculiar spin and 
orbital short-range order. Finally, by decreasing the temperature well below the MI 
transition, at Tx, a long- range order is established. 

2.3.2 The importance of high pressure  

Shortly afterwards, further exciting results from the work of Forró et al. (2000) made 
the material even more appealing. The phase diagram of BaVS3 was studied under 
hydrostatic pressure, up to 2.2 GPa, by resistivity measurements. As in the work of 
Graf et al. (1995), the suppression of the MI transition with temperature was 
observed. On this occasion, however, the observation was made on single crystals. In 
addition, it was found that at high enough pressure, the MI transition vanishes and the 
behavior is metallic in the whole of the measured temperature region (1.5 to 300 K). 
Interestingly, the low temperature behavior of the resistivity (over several decades of 
Kelvins) showed a power law temperature dependence of the form: ∆ρ = ρ – ρ0 ~ Tn, 
with 1 ≤ n < 2, (where ρ0 is the residual resistivity), differing from the n = 2 Fermi 
liquid law. The interpretation of this behavior usually invokes nearness to a quantum 
critical point (QCP). The critical pressure pcr was estimated to be 2 GPa and, for p < 
pcr, the resistivity in the metallic phase has a marked minimum which has been 
identified as an extended precursor regime to the insulating phase. As the overall 
result of the resistivity measurements under pressure, the p-T phase diagram, shown in 
Fig. 2.6, was proposed. 

On the eve of December 1st 2000, I came to Switzerland (not Lugano but Lausanne) 
overwhelmed by the colors of early autumn, and joined The Glass Beads Game 
(Hesse, 1945). My first task was to develop a self-clamped pressure cell with the 
possibility of simultaneous measuring of thermoelectric power (TEP), resistivity and 
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pressure. A year and several months were needed to solve related technical problems. 
The simultaneous measurement meant that the number of electric leads, passing from 
ambient pressure into the pressure cell, was supposed to be considerably augmented 
in comparison with the self-standing resistivity measurement.  

 
Figure 2.6: The p-T phase diagram of BaVS3, based on the early resistivity measurements. The solid 
red line indicates the MI phase boundary, by the dashed black line the precursor region is marked, and 
the blue columns indicate the region of ∆ρ ~ Tn  (1 ≤ n < 2) non-Fermi-liquid behavior. Picture from 
Kézsmárki, (2003). 

 

The biggest problem and the first step was mastering of feed-through production 
(Appendix 1). This is a wire passage which allows the change of pressure from the 
ambient pressure to several GPa without cutting the wires. The next step was to learn 
how to drive the wires in the cell. At high pressure, the liquid in the cell freezes and 
thereby breaks the wires. Finally, a homemade sample holder was designed, which 
fits in the pressure cell, enabling the measurement of TEP in the pressure medium. By 
solving the principal technical problems, the time came to deal with BaVS3.  

To return to the point and close the circle without taking a space ship to Saturn, as I 
was heading home for the Christmas and New Year break in 2001 with the sounds of 
An der schönen, blauen Donau, by J. Strauss II filling my car, I reflected. The 
experiment was ready. Those monocrystals of BaVS3 I was about to measure bore a 
strange resemblance to a monolith, and April 1968 was not only the premier month 
for BaVS3, but also for Kubrick’s film 2001: A space Odyssey. What sort of a journey 
was I embarking upon?  
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In this chapter we will discuss what one can learn about the electronic structure of 
BaVS3 from the crystal symmetry and its lowering due to structural phase transitions. 
Crystal symmetry is an important factor in band structure calculations which will be 
reviewed and compared to recent angle resolved photoemission measurements. 
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3.1 Crystal field splitting  

The Coulomb interaction between an electron of charge -e and a nucleus of charge 
+Ze is described with the attractive potential V(r) = - Ze2 / r. Solving the appropriate 
spherically symmetric atomic Hamiltonian Hat, neglecting spin-orbit coupling, 2l + 1 
(l = 2 for d- electrons) degenerate eigenvalues and eigenstates can be found. The 
degeneracy of the state is determined by the dimension of the irreducible 
representations of the 3D rotation group. On the other hand, an ion in a crystal is 
always surrounded by other ions which lead to a crystalline electric field, Hcf 
perturbing the atomic states. The new Hamiltonian is: 

 H = Hat + Hcf .  

Assuming that the crystal field is purely electrostatic the surrounding ions can be 
replaced by charge distributions giving the potential at the lattice site r expressed 
through the crystal field Hamiltonian: 

 ∑=
j

cf VH ( r – Rj ) ,  

where the Rj -s represent the positions of the ions. The above Hamiltonian has, as its 
important feature, a symmetry which is imposed by the crystal. As this symmetry is 
necessarily lower than the isolated atomic system, the degeneracy of the atomic states 
is lifted. The splitting scheme is characteristic of a given symmetry of a crystal field, 
and can be determined by the standard methods explained elsewhere (Abragam and 
Bleaney, 1970). In the present discussion, however, we will focus only on those 
aspects that are relevant for the case of BaVS3 (Ballhausen, 1962). The whole 
approach is meaningful as long as the local states, in the metallic state in particular, 
are well described by the atomic wave-functions and to the extent that the tight-
binding approximation is applicable. We will argue that both of these conditions are 
satisfied for BaVS3. However it should be kept in mind that while symmetry analysis 
through group theory is a tool that can qualitatively reveal how a given set of states 
will be split in a given environment, it cannot predict the quantitative energy and 
sequence of the resulting levels. Such a prediction requires much more detailed model 
calculations. 

Using the stoichiometric formula of BaVS3, and supposing a complete charge transfer 
it follows that 
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      BaVS3 → Ba2+ V4+ 3S2-     . 

Barium and sulfur ions have full electron shells while one electron remains in the 
vanadium 3d levels. It is this electron that is primarily responsible for the electronic 
properties of the compound, 

 V4+ → 3d1. 

At room temperature, the vanadium site in BaVS3 feels a hexagonal rather than cubic 
crystal field because the surrounding sulfur octahedron is stretched along the c 
direction. The symmetry at the vanadium site is lowered to orthorhombic at TS 
through a second order phase transition (Takano et al., 1977). Let us examine how 
this affects the 3d levels: 

 

 
Figure 3.1: The shape of the five-fold degenerate 3d orbitals. For each, the yellow zones signify 
regions in which the wave functions have negative values whereas the blue zones denote positive 
values. Picture from: http://www.shef.ac.uk/chemistry/orbitron/AOs/3d/wave-fn.html. 
 

In an isotropic environment, the 3d subshell is 5-fold degenerate (Fig. 3.1) with the 
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orbital is different and has two conical nodes.  
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Figure 3.2: Directions in space of d orbitals of an atom in an octahedral site. The arrow signifies the 
difference in energy between the low lying 3-fold degenerate dxy, dxz, dyz, (pointing in between ligands) 
and higher-energy doubly-degenerate orbitals dyz, and dx

2
-y

2 (pointing towards ligands). 
 

Through an "octahedral crystal field" the six sulphur atoms, on either side of all three 
octahedral axes (x',y',z') shown in Fig. 3.2, repel the electron in the d orbitals that lie 
on the axes (dyz, and dx

2
-y

2) and lift the 5-fold degeneracy. The law of conservation of 
energy says that if these orbitals are destabilized (higher in energy), the other orbitals 
(dxy, dxz, dyz) must be stabilized (lower in energy) so that the net effect is no change in 
energy. The energy difference between the 3-fold degenerate t2g level and the 2-fold 
degenerate eg level is the crystal field splitting energy. The magnitude of the splitting 
depends on the type of ion whose levels are being split and the type of ion which 
produces the splitting. 

Further lowering of the crystal symmetry, from the octahedral to trigonal (hexagonal) 
has the effect of splitting the 3-fold degenerate t2g level while preserving the 
degeneracy of the higher-energy eg level. In order to see this, it is convenient to use a 
coordinate system (x, y, z) parallel to the (a, b, c) axes of the crystalline Bravais lattice 
of the crystal (Fig. 3.3). In this coordinate system the three, presumably lowest 
energy, orbitals can be chosen as: 
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These orbitals are linear combinations of the three orbitals which are degenerate in the 
octahedral environment, i.e. the forms of dex and dey are obtained under the 
assumption that the octahedral splitting is large. Their directions with respect to 
crystal lattice are shown in Fig. 3.3. It is noteworthy that, in the trigonal lattice, dz

2 
optimizes the overlap between V – ions along the chain. The fact that the V – S 
octahedra form a chain affects the site energy of the dz

2 orbital (looking along the 
chains) in a manner different than that of the dex, dey (with eg symmetry) manifests 
itself by causing the splitting of the t2g level into a single dz

2 level and a doubly-
degenerate e(t2g) level. Finally, sliding the xy planes of the crystal decreases the 
symmetry to orthorhombic, completely lifting the degeneracy of the d levels.  

 

 

 

dz
2 

 

e(t2g) 
 
 

Figure 3.3: Orientation of three lowest lying orbitals with respect to the principal crystallographic 
axes.  
 

The sequence and the magnitude of the splitting between the dz
2 level and the doubly-

degenerate e(t2g) level in BaVS3 are still subject to discussion. One possible splitting 
scheme is presented in Fig. 3.4. It is based on the fact that the measured electrical 
conductivity along and perpendicular to the chains shows a low anisotropy, 

 3.4  / =abc σσ  (Mihály et al., 2000). As the dz
2 orbital is highly anisotropic with large 

overlap only along the V - V chains, the electrical conductivity ratio suggests that the 
electron transport along the a and b axes comes mainly from the two other orbitals. 
Since the conduction electrons sit at the Fermi level, the assumption is that at least 
one of those two orbitals is present at the Fermi level, in addition to dz

2. This picture 
is supported by the latest angle resolved photoemission spectroscopy (ARPES) 
experiments (vide infra) that clearly demonstrate the existence of the dz

2 band below 
the Fermi level. 
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Isotropic  →  Octahedral  →   Trigonal    →     Orthorombic   .    .  . 
 

 
Figure 3.4: Possible energy scheme of the 3d orbitals as the symmetry of the vanadium site is reduced 
from isotropic to orthorhombic. 
 

After discussing the basic crystallographic data and considering the dominant crystal 
field effects, two different paths could be followed. The first one is the localized limit, 
handy for interpretation of the insulating phase, in which all intra-ionic interaction 
terms are taken into account through Hund’s rules. The band effects are considered 
only in the sense that they mediate the inter-site couplings of the local variables. The 
second limit is the itinerant limit in which the influence of the crystal field is taken 
into account in the calculation of the tight-binding electronic bands. Once the bands 
are obtained, the interactions (particularly the intra – atomic interactions in the d 
levels) are treated explicitly. When small in magnitude compared to the band 
energies, these processes (centered about the Fermi level and thereby determining the 
properties of the system) can be treated perturbatively in the corresponding 
calculations. 
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3.2 Symmetry analysis 

At ambient pressure, BaVS3 undergoes two successive second-order phase transitions. 
Landau proposed a phenomenological theory for describing such phase transitions 
introducing the concept of the order parameters (Landau, 1980). He used the fact that 
the system has a higher symmetry at high temperatures than it does at low 
temperatures. At the phase transition, the symmetry is thus lowered. The symmetry of 
the crystal, at a certain temperature, is described by a set of symmetry group 
generators. In the case of a second order phase transition, this set is decreased by only 
one symmetry group generator. This is reflected through the appearance of a non-zero 
order parameter at the transition. In order to determine a suitable order parameter, 
associated with the correct symmetry breaking, it is necessary to find the symmetries 
of the crystal above and below the transition. In this way it is possible to identify 
which of the symmetry group generators is missing in the low temperature phase. In 
the following discussion magnetic effects are not taken in account. 

 

P      63/m      2/m      2/c 

 

 

      Primitive        axis 1                axis 2           axis 3 

Figure 3.5: Meaning of the space group notation for BaVS3 at ambient pressure and temperature. 
 

BaVS3 crystallizes in a hexagonal structure. The space group of the structure is 
P63/m2/m2/c (a = 6.719 Å and c = 5.619 Å) at room temperature, which is 
characterized by VS3 chains running along the c axis. The name of the space group is 
composed of four parts (Fig. 3.5). The P indicates that the unit cell is primitive. The 
63/m notation is related to the symmetries of the highest symmetry axis and, in the 
case of BaVS3, it is the c axis. The number 6 stands for the 60o rotations, but after 
every rotation a translation for a half the length of the unit cell along the c direction 
should be performed to transform the crystal into itself. Repeating these screw 
rotations 6 times shifts the unit cell by three c lattice vectors, and that is the meaning 
of the index 3. The m indicates a mirror plane perpendicular to the c axis. The other 
two axes have a 2 fold rotational axis. One mirror plane (labeled by m) is 
perpendicular to the a-axis and one glide plane (labeled by c) is perpendicular to the 
b-axis. 
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            a)           b)  
  
 

 

c) 
 

Figure 3.6: Ball and stick representation of BaVS3 crystal oriented in three suitable directions (a), b) 
and c)) for studying symmetries of the lattice. Vanadiums are green, Bariums are violet (light at ¼ c 
dark at ¾ c) and Sulfurs are blue (light at ¼ c dark at ¾ c). Picture made by use the of  
www.crystalmaker.com.  
 

The 24 symmetry operations for this space group are listed in International tables for 
crystallography (Hahn, 2002). In the subsequent discussion, we utilize the same 
notation as that outlined therein. 

It should be noted that symmetry operations containing a translation by ½ of the 
Bravais vector along the c direction, i.e. the so called screw axes and glide plane 
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symmetry operations, imply the equivalence of vanadium sites and/or of bonds 
(repeating such operations twice has the effect of shifting one unit cell into the 
adjacent one). 

The 24 symmetry operations fall in 12 conjugated classes which are generated by 
combining eight generators, (four of them are trivial, identity and translations t for a 
lattice vector) and the remaining four are: 

 (2) – three fold axis, 120o rotations around the vanadium chain  
(Fig. 3.6a). 
 

(4) – conjugated class for itself, 1800 rotation around the vanadium 
chain + a translation by ½ in c direction (Fig. 3.6a). 
 

(7) – fold axis, 1800 rotation around the a axis (Fig. 3.6c). 
 

(13) – inversion around vanadium (only possible if the vanadium atoms 
form straight chains, see Fig. 3.6b). 
 

At the second order phase transition (TS), the symmetry is decreased and one of these 
generators is excluded. Consequently, the group of symmetry operations is reduced to 
the one of the subgroups. There are several possible reductions, listed in Hahn (2002), 
and one which is appropriate for the phase of BaVS3 below TS should be chosen. 

The new crystal lattice has C2/m2/c21/m group symmetry, where C stands for a face 
centered unit cell. There is no longer a 120o rotation around c axis and therefore (2) 
has ceased to be a symmetry operation generator. Consequently the order parameter at 
the TS removes this symmetry. At the transition, the vanadium chains remain straight 
while the sulfur octahedra become deformed (Fig. 3.7) in a zig-zag manner, causing 
the (additional) splitting of the eg levels. It should be emphasized that (13) is still a 
generator of C2/m2/c21/m group and importantly, the screw axis symmetry remains 
below TS (which will lead to ¼ and not ½ filing of the bands below TS). 

Below TMI, based on X-ray-diffraction measurements of the BaVS3 single crystal, 
Inami et al. (2002) reported the existence of superlattice reflections which double the 
lattice constant c. They postulated the Imm2 group, where I stands for a body centered 
unit cell, to be most probable space group below TMI. In agreement with the NMR 
data they found that the low-temperature insulator phase contains two inequivalent 
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vanadium sites within the doubled unit cell aligned along the c axis in an alternating 
manner:  

VA - VB - VB - VA - VA - VB - VB 

 

 

 
(a) 

 
(b) 

Figure 3.7: Projection view, along the c-direction, of the crystal structure of BaVS3 (a) in the 
hexagonal structure at room temperature (b) in the orthorhombic structure at 100 K. Vanadium atoms 
are green, barium atoms are violet (light at ¼ c dark at ¾ c) and sulfurs atoms are blue (light at ¼ c 
dark at ¾ c). The vanadium-sulfur distance is marked by black numbers. The in-plane distances of 
sulfur are denoted by brown numbers. All the distances are given in Angstroms. The red numbers refer 
to in-plane angles between sulfur or vanadium atoms. 
 

It should be noted that, using the analysis of the homogenous group-subgroup 
relations between space groups that lead to Fig. 3.8, it is not possible to support the 
assumption of the Imm2 symmetry in the insulating state. As seen on group-subgroup 
chain (Fig. 3.8), there are necessarily three steps between the high temperature 
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P63/m2/m2/c phase and Imm2. This comes from the fact that the aforementioned 
symmetry analysis treats only the homogeneous (q = 0) deformations (generators) and 
not, e.g., the doubling of the unit cells (4 V). In other words, the Imm2 symmetry can 
be achieved with one intermediate phase transition (at TS) only by allowing for an 
order parameter with a finite wavevector Q (here Qc= π/c). 

 
Figure 3.8: A graphic representation of the P63/m2/m2/c to Imm2 group-subgroup chain obtained from 
the SUBGROUPGRAPH program (Ivantchev et al., 2000). 
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3.3 Localized limit 

Instead of the detailed symmetry analysis of the observed phase transitions (for which 
we would need more specific experimental data), it is also interesting to retain only 
the main symmetry properties of single electron along with the electron-electron 
interactions (above either TS or TMI), and consider the nature of the resulting electronic 
instabilities. It is this approach that underpins the following discussion, in which we 
attempt to define the minimal theoretical model capable of rationalizing the observed 
behavior.  

As already discussed, the crystal field results in the splitting of the 5-fold degenerate 
d-level into a doubly-degenerate e(t2g) level and a single dz

2 level above TS (see Fig. 
3.4). At TS, the zigzag displacement of the sulfur triangles, which could be considered 
as a Jahn-Teller distortion supplementary to the a/b distortion, lifts the degeneracy of 
the eg levels. From the ARPES data (vide infra) it can be seen that these levels form 
narrow eg (0.1 eV) bands in addition to the broad dz

2 band (5 eV). The width of this 
latter band is significant, with a correspondingly low density of states at the Fermi 
level. The (anti)crossing of the eg and dz

2 is observed in the Brillouin zone and the 
Fermi level is pinned by the high density of e(t2g) states, leaving approximately half of 
the electrons in the low lying dz

2 band while the remainder of them are in the e(t2g) 
bands. On the other hand, the Hubbard U is typically of the order of 1eV for 3d 
electrons (Fang and Terakura, 2002), i.e., it is larger than the width of the e(t2g) bands 
but smaller or close to the width of the dz

2 band. This is why, in the absence of the 
theoretical results for the intermediate regime, the strong (localized) and weak 
(extended) coupling limits will now be briefly addressed. 

3.3.1 Construction of the model 

In the localized limit, appropriate for strong couplings, it is possible to construct four 
different states for the two electrons in the following way (Kiss and Fazekas, private 
communication): 
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where 1,2 denote the position of the electron within the unit cell, and a, b and d 
indicate the respective orbitals (two e(t2g) and one dz

2). Vanadium-sulfur octahedral 
are sketched as squares. This treatment results in a Hilbert space, containing four 
elements, which is just large enough to describe the ordering at both second-order 
phase transitions. In this vector basis, pseudo spin operators τ = ½ and η = ½, acting 
separately on the dz

2 and e(t2g) orbitals, can be introduced. Using these pseudo spin 
operators, we can construct 15 independent local order parameters. For example, three 
of them are: 

 gg
z ee ,

2
1

2
1,

2
1

±±=±τ  
- determines if the dz

2 orbital is on the left 
or the right of vanadium 

gg
x ee ,

2
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2
1,

2
1

m+=±τ  
 - transforms   into   

gg
y e,

2
1

i2
1e,

2
1

±±=±τ  
 and back again, 

 

acting only on the dz
2 orbitals. Similarly, the operator ηz determines if the electron is 

in the ega or egb orbital and the operators ηx, ηy transfer an electron from one e(t2g) 
orbital to the other. It is possible to construct the remaining 9 parameters, from these 
6, by mixing the τ and η operators. For example: 
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In order to find the basis of the irreducible representations, the way in which the states 
and order parameters (defined above) respect the presented symmetries of the crystal, 
should be determined. At the second order phase transition the symmetry is reduced 
and the number of the irreducible representations is lowered. All of the operators, 
which form the basis of the irreducible representations that drop out at the phase 
transition, are appropriate to realize the corresponding symmetry reduction. In the 
case of the transition at TS, the order parameter can be constructed as a linear 
combination of ηx and ηz. That type of order parameter will cause a ferro-orbital order 
(one of the eg orbitals is selected) removing the 120o rotations around the c axis. 

At TMI, the order parameter τz can simultaneously realize the tetramerization (doubling 
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of the unit cell) and the VA - VB - VB - VA order. This transition is analyzed here in 
more detail as it gives dramatic changes in the electronic properties of the BaVS3. 
Considering the interactions between two unit cells through the formation of spin 
singlets below TS, there are four different situations: 

 

 

 

 

 

  
The direction of the spins is irrelevant for the two formations on the right, and 
therefore the spins are not shown. The ones on the left are energetically more 
favorable than those on the right due to the negative contribution arising from the spin 
pairing. When two eg electrons are nearest neighbors, it corresponds to the antiferro-
type ordering of the τz orbital order parameter. 

This type of ordering may assist the formation of the spin pairs through the direct S1S2 
coupling. We can also consider direct interactions between the orbital parameters 
described with the coefficient K, and write down the Hamiltonian expressing all of the 
interactions outlined in this section: 
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3.3.2 Testing and interpretation of the model 

 

To verify that the obtained Hamiltonian is appropriate for our system, the calculated 
values of physical properties should be compared with the measured data. For 
example, Fig. 3.9 shows the magnetic susceptibility obtained using the above 
Hamiltonian. In good agreement with the experimental measurements, the calculated 
susceptibility has a Curie-like temperature dependence at high temperature and a cusp 
at TMI. 
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Figure 3.9: The calculated spin susceptibility as a function of temperature for J = 0.8 and K = 2. 

 

Based on the above discussion, the following model, schematically presented in     
Fig. 3.10, can be proposed: The unit cell contains two and four octahedra above and 
below TMI, respectively. The crystal field and the Jahn-Teller distortion split the five-
fold degenerate d-level, resulting in a doubly-degenerate e(t2g) level and a single dz

2 
level (see as well Fig. 3.4). At TS, the breaking of the C3 symmetry lifts the 
degeneracy and allows the system to occupy only the lower energy e(t2g) orbital, thus 
resulting in ferro-orbital order. Below TS, the unit cells start to interfere by forming 
local spin singlets. The interactions will produce a unit cell containing four vanadium 
atoms, with two different vanadium sites (one with an electron in the eg level and the 
other with an electron in the dz

2 orbital), ordered in an alternating fashion along the c 
direction: dz

2-eg-eg-dz
2. Finally, at TMI, inter-chain correlations synchronize the 4 V 

unit cells and produce a 3D order, and the system undergoes the MI transition. These 
conclusions are in agreement with the experimentally observed four-vanadium unit 
cell below TMI.  

As a final point, let us recall that, at Tx = 30 K, the system undergoes a third second-
order phase transition, which is a magnetic one. The neutron diffraction experiments 
by Nakamura et al. (1999) revealed magnetic reflections below Tx. The propagation 
vector is determined to be incommensurate (0.226, 0.266, 0) in the hexagonal index, 
which means a ferromagnetic (FM) order along the chain. Since the overall spin 
susceptibility signal is antiferromagnetic, the magnetic moment in-between the chains  
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Figure 3.10: Microscopic model. Schematic representation of possible electron arrangements, above 
and below TS or TMI, considering the length of unit cell along the c axis and orbital degrees of freedom 
involved. The vanadium-sulfur octahedra are sketched by squares while the ovals represent the 
formation of spin singlets. 

 

must be turning over in order to compensate the ferromagnetic signal. This statement 
is in agreement with the above wave-vector. We shall refer to this type of order in 
later sections as interchain-compensated FM or simply ICFM. The ordered moment is 
estimated to be approximately 0.5 µB/V. At ambient pressure this transition is deep in 
the insulating phase making it impossible to follow by measuring transport properties. 
This is in stark contrast with the high-pressure behavior around and above pcr. The 
measured ferromagnetic order along the V-chains suggests that J is negative in H12 

(Eq. (3.1)), i.e., that direct interactions between localized moments tend to order them 
ferromagnetically. 

Although the model presented in this section completely neglects the electron 
hopping, except possibly in J of H12, some of its properties are probably relevant for 
the low-T behavior of BaVS3. Especially interesting in this sense is its behavior below 
15K at ambient pressure when giant charge-density waves, CDW (Fagot et al., 2003), 
possibly accompanied by the orbital ordering of the type described above, develops in 
the system. However, this requires further experimental confirmation, in particular by 
NQR measurements of the electric field gradients at the V-sites.  
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3.4 Itinerant limit 

The band theory of solids starts from the analysis of the electronic levels in a periodic 
potential within the independent electron approximation, which neglects the 
interactions between electrons. That is, an electron is assumed to be acted upon only 
by the field of the fixed atomic cores plus an appropriately chosen field (e.g., Hartree 
or Wigner-Seitz field) arising from the charge distribution of all the outer-shell 
electrons. There are several approaches to calculate the band structure in this way. 
One such method that is widely used is the linear augmented plane wave (LAPW) 
method (Singh, 1994). 

3.4.1 Ab initio calculation of the band structure  

Two slightly different LAPW calculations have been carried out for the room 
temperature structure of BaVS3 (Mattheiss (1995), Whangbo et al., (2002)). In both 
cases the reported dispersion relations are quite similar (vide infra Fig. 3.12a and Fig. 
3.13a). The S(3p)-V(3d) valence-conduction-band manifold spans an energy range of 
roughly 9 eV which extends from about -6eV to +3 eV. The approximate positions 
and widths of the individual subband complexes, in the AHL plane of the Brillouin 
zone (Fig. 3.11), are shown in Fig. 3.12a. 

 

 
Figure 3.11: 1/8 of the Brillouin zone (solid lines) unfolded (dashed lines) along the c (z) directions of 
the hexagonal Bravais lattice. Primitive vectors in the plane of the reciprocal space are marked by A1 
and A2. Unfolding is introduced to stress that due to the screw axis symmetry (there are 2 equivalent V-
sites along the length c) no Bragg reflection is associated with the point A. 
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   (a)      (b) 

Figure 3.12: Band structure of BaVS3 calculated for the hexagonal phase at 300 K by LAPW 
calculations, EF = 0. (a) Band dispersion relations along symmetry lines in the Brillouin zone. The 
band in which the dz

2 orbital has the dominant contribution is marked by a blue line. No gap is present 
at A. On the right side are shown the approximate positions and widths of the individual subband 
complexes. (b) Total and muffin-tin-projected density-of-states plots. Data from Mattheiss (1995). 
 

 

                (a) 

 

 

        (b) 

 

 

 

 

 

 

Figure 3.13: Band structure of BaVS3 calculated for the hexagonal phase at 300 K by full-potential-
LAPW calculations. (a) Band dispersion relations along symmetry lines in the Brillouin zone. The 
weight of the dz

2 orbital contribution is shown by the circle size. The blue line is the result of the 
LAPW calculation shown in Fig. 3.12. (b) Total and partial density-of-states plots. Data from 
Whangbo et al., (2002). 
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The Fermi level EF is pinned by the high density of states of the four relatively narrow 
(~ 0.7 eV) t2g (dz

2 and eg ) bands. The short V-V distance along the c direction yields a 
broad (~ 3 eV) dz

2 band which crosses the Fermi level. Using the tight binding 
language, the overlaps (hoppings) producing this band have two components, direct 
and indirect (via intermediate S(3p) orbitals). These contributions are clearly seen in 
Fig. 3.13 a, wherein the weight of the dz

2 orbital in the structure of the band is marked 
by the difference in the circle size. The band filling is such that the lowest t2g (dz

2) 
band is close to full (there are 0.14 holes per cell), while the compensating electrons 
occupy the eg band (0.14 electrons per cell) thus predicting the metallic behavior of 
the BaVS3. 

The corresponding band results for the orthorhombic phase (T = 100 K) are shown in 
Fig. 3.14a, revealing only minor changes in the electronic band structure. Probably the 
most important difference between the two structurally different phases is the factor-
of-two increase in the number of carriers at EF. This can be easily observed in the 
density-of-states (DOS) calculations in Fig. 3.12b and Fig. 3.14b. The Fermi level is 
pinned by the large DOS peak essentially related to the eg levels. In the hexagonal 
phase, the Fermi level falls on the low-energy shoulder while in the orthorhombic 
phase it coincides with the peak resulting in the increase of the carrier number. 

 

                
          (a)      (b) 

Figure 3.14: Band structure of BaVS3 calculated for the orthorhombic phase at T = 100 K by LAPW 
calcu-lations. (a) Band dispersion relations plotted along symmetry lines in the Brillouin zone. The 
band in which the dz

2 orbital has the dominant contribution is marked by blue line. (b) Total and 
muffin-tin-projected density-of-states plots. Picture adopted from Mattheiss (1995). 
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3.4.2 The tight binding approximation 

In order to get a better physical insight into the nature of the bands of BaVS3 in the 
region of the Fermi level, it is useful to analyze them in the tight binding 
approximation (Friedel, 1969; Kittel, 1953) and calculate the bands analytically 
(Kupčić et al., in preparation). Indeed, the DOS calculations show that the majority of 
the vanadium atom orbital weight is found above the Fermi level, suggesting weak 
V(3d) - S(3p) hybridization effects at the Fermi level. The Ba component in the 
valence band energy range is small, showing that Ba is essentially an ionic donor. 
Overall, these results suggest that the ionic model (i.e., Ba2+, V4+, S2-, also our starting 
point for the localized model) is a reasonable starting point for the tight binding band 
calculation for both hexagonal and orthorhombic BaVS3. 

 

   (a)           (b) 
Figure 3.15: (a) A building block of (Ba)VS3 chains presented schematically. It is formed from two V 
atoms centered within two face-shared S octahedral units, marked by 0 and 1. The vanadium and sulfur 
are represented by grey and white circles, respectively. One vanadium and one sulfur orbital are 
explicitly shown. (b) The octahedral t2g orbitals compared to the dz

2 and e(t2g) orbitals.  
 

The tight binding approximation (TB) begins with the single atom wave functions and 
exploits the description of bonds by overlap integrals. The bonds split the atomic 
energy levels depending on k and form the band. The width of the band is 
proportional to the strength of the bonds (overlap integrals). In BaVS3 the bonding 
orbitals of interest are the three octahedral vanadium t2g orbitals (or the three 
hexagonal orbitals, dz

2 and 2-fold degenerate e(t2g) orbitals) and one molecular orbital 

1

0

0

0 
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constructed from three 2pz sulfur states (πz) (see Fig. 3.15). There are two formula 
units per unit cell and therefore a total of eight orbitals should be taken in account. 
The orbitals of interest are denoted in the following way: 
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where nR
r

 is the Bravais lattice vector giving the position of the lower vanadium, cr̂  is 
a primitive vector along c direction, sr

r  is position of the molecular sulfur orbital, λ = 
0 or 1 for the lower or upper block, respectively.  

Once the relevant orbitals are chosen (omitting all others) the corresponding selection 
is done for overlap integrals, keeping only the largest contributions. The primary 
effect of the crystal field Hcf on the site energies in the hexagonal phase comes from 
the S6 octahedra surrounding the V site in question. These contributions are diagonal 
in the representation chosen above: 

 zyxlRHRE nxcfnxl ,,, ==
rr

λλλ ,  

and determine the energy of the t2g triplet relative to the energy of the eg doublet as 
illustrated in Fig. 3.4. In the same way, the site energy of the πz sulfur orbital is equal 
to ncfn RHRE

rr
ππ

λ
π λλ= . The rest of the lattice contributions appear in the off-

diagonal site energies:  

 ','' llRHR nlcfnxll ≠=∆
rr

λλλ ,  

resulting in the splitting of the triply degenerate t2g into a doubly-degenerate e(t2g) and 
asingle  dz

2 as shown in (Fig. 3.4.)  

Let us first consider the corresponding inter-chain bondings. Since the distance 
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between the neighboring vanadium ions in the plane perpendicular to the c axis is 
much larger than along the chain, it is natural for the intra-plane bond energies to 
retain only the σ overlaps between two in-plane neighboring vanadium ions (as shown 
in Fig. 3.16): 

 zyxlamanRHRt nlcfnlxy ,,,ˆˆ 21 =±±=
rr

λλ .  

Here n or m (either -1 or 1), together with the primitive vectors ( 1â , 2â , perpendicular 
to the c axis), serve to describe the positions of all six neighboring vanadium ions. 

 
   (a)          (b) 

 
Figure 3.16: (a) The xy plane projection of the 0-V and 0-BaS3 layers in the hexagonal lattice. 
According to Fig. 3.15 the intra-plane and the upper and lower out-of-plane lobes of the e(t2g) orbitals 
are labeled by light grey, dark grey and white, respectively. (b) The difference between the σ and π 
type overlap illustrated on the example of p type orbitals. 
 

The electron propagation along the chains is more complex as the hopping may occur 
either directly between adjacent vanadium ions (V-V hopping) or via sulfur as an 
intermediate state (V-S-V hopping). If the site energies λ

lE  and λ
πE  are similar, these 

two processes tend to be equally important. However, in the simplest case λ
lE  - λ

πE  is 
the largest energy parameter in the model. The πz sulfur band is completely occupied 
and can be safely disregarded, reducing the problem from four artificially dimerized 

σ

π 
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bands (the c axis is the screw symmetry axis in the hexagonal phase) to three (six) 
vanadium bands intersecting the Fermi level. This could be a poor approximation for 
BaVS3 but it is a good starting point for our discussion. 

The solution of the simplified three band model is already non-trivial as it involves a 
high number of overlap integrals in order to describe the electron propagation. In the 
hexagonal phase, the electron propagation is described by following overlap integrals: 
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For the orthorhombic phase, due to the distortion of the S6 octahedra, additional 
contributions should be regarded, such as: 
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which introduce the mixing between three (six) bands of the hexagonal phase. The 
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 hoppings enter through two combinations 'll
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represe-nting the σ overlaps between the dz
2 and e(t2g) orbitals, respectively. 

3.4.2.1 Analysis of the three-band model  

Once the model is defined, by determining all the interesting terms of the 
Hamiltonian, the appropriate values for the overlap integrals should be chosen. This 
can be accomplished, e.g., in such a way as to obtain the best agreement with the 
LAPW calculations presented earlier. The result of this type of elaboration of the 
three band model presented above is shown in Fig. 3.17. All three bands are 
artificially dimerized in the z direction: there is no gap in the A point, as required by 
the screw-axis symmetry of the lattice. The most noticeable feature is the quasi one 
dimensionality of the antibonding bands, dispersive primarily in the kz direction 
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(along AΓ line). The bonding sub-bands have a significant dispersion in the kxky plane 
and the Fermi level is pinned by the high density of e(t2g) levels (EF ≠ 0 in all TB 
graphs). 

 

                          

 

 

 

 

 

 

          (a)              (b) 

Figure 3.17: Electronic band structures for the three (six) band model, (a) along the symmetry lines in 
the Brillouin zone of Fig. 3.11, (b) in the kz direction along the AΓ, HK and LM lines. No gap is 
present at A. The calculation is carried out with the following set of parameters: dz

2 - dz
2 overlap 

ll
at 3ˆ

(l=z) = -0.4 eV,  e(t2g) – e(t2g) overlap ll
at 3ˆ

(l=x,y) = 0.1 eV, in-plane overlaps which mix dz
2 and e(t2g) 

txy = -0.05 eV, diagonal-out-of plane overlaps ll
nmat 3ˆ

= -0.02 eV, and the dz
2 - e(t2g) splitting 3∆ = 0.3 eV. 

It should be noted that the zero of energy is taken arbitrarily (EF is pinned by the high density of the 
e(t2g) bands).  
 

With such a model in hand, it is possible to tune the strength of a particular overlap 
integral or the magnitude of a splitting between energy levels and investigate the 
resulting influence on the electronic band structure. Implicit is the idea that tuning of 
this kind includes the single particle effects of the correlations not included in LAPW 
or LDA schemes. For example, if the splitting between the dz

2 and e(t2g), 3∆, is not 
too large in comparison with zz

at 3ˆ , the bonding dz
2 band in Fig. 3.17 is almost 

completely occupied. Consequently, the contributions to various response functions 
associated with the e(t2g) states are very small in this limit. On the contrary, if the 3∆ 
is larger than zz

at 3ˆ , the antibonding e(t2g)-like bands are half-filled, as shown in Fig. 
3.18. This opens the tempting possibility to explain the anomalous physics in this 
material in terms of the intra and inter-band scattering processes in these two narrow 
e(t2g) bands. However, this alternative is not in agreement with the LAPW 
calculations. 
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Figure 3.18: Electronic dispersion, for the three (six) band model, in the kz direction for the same set of 
parameters as used to generate Fig. 3.17, except that the parameter describing the dz

2 - e(t2g) splitting is 
now set to be 3∆ = 1 eV. The zero of energy is taken arbitrarily.  

 

Actually, to understand the electronic properties of the system it is necessary to know 
the shape of the Fermi surface for the energy scales of interest which are typically of 
the order kBT (0.025 eV for T =300 K). The band calculations described above are 
meant to be good approximations for BaVS3 giving an insight into the high 
temperature band structure in this narrow energy window. However, properties such 
as the SDW/CDW fluctuations, the ARPES spectra and the conductivity, together 
with its anisotropy ratio are associated with different response functions. Therefore, in 
order to shed some light on these properties, it is necessary to have some degree of 
flexibility present in the calculations. The LAPW approach is unsuitable in this 
respect as the only degree of freedom available is the choice of the muffin tin 
potential. In contrast, the potential versatility of the tight binding calculations has 
already been demonstrated in the context of the dz

2- e(t2g) splitting. As will be shown 
below, the further exploitation of the flexibility inherent in the TB approach is a very 
informative exercise.  

Before putting this analysis into practice, it is worthwhile to mention the hopping txy. 
In the hexagonal phase, this overlap results in the anticrossing of bands along the LM 
line (Fig. 3.17 and Fig. 3.18). In the orthorhombic phase, this phenomenon is 
additionally apparent along the AГ line. In the latter case, the two e(t2g) bands are split 
and the lower one anticrosses the dz

2 band. With such an anticrossing close to the 
Fermi level, this matrix element may be of qualitative importance in lowering the 
anisotropy of the transport properties to the observed values, as will be discussed 
elsewhere (Kupčić et al., in preparation). 
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   (a)       (b) 

Figure 3.19: Electronic dispersions for the three (six) band model (a) along the symmetry lines in the 
Brillouin zone and (b) in the kz direction. The calculations are carried out with the same set of 
parameters as used to generate Fig. 3.17 except that the hopping between the dz

2-like band and the e(t2g) 
block is neglected. The zero of energy is taken arbitrarily.  
 

In contrast to the anisotropy of the transport properties, the anisotropy of the SDW 
and/or CDW fluctuations, seen in the X-ray spectroscopy through diffuse lines with 
the wave vector Qc= ½ c* (Fagot et al., 2003), is large. Therefore, it is appealing to 
investigate the effect of the mixing between the dz

2- like band and the e(t2g)-block on 
the nesting properties of the ¼ filled dz

2 band, important for CDW/SDW fluctuations. 
The simplest way to accomplish this is by switching off the overlap txy between the 
orbitals dz

2 and e(t2g). As seen by comparing Fig. 3.18 and Fig. 3.19, this does not 
cause a significant change in the intraband nesting properties of the dz

2 band. In 
particular, the small mixing effect which occurs on the AГ line in the orthorhombic 
phase can be safely neglected in this context. 

In addition, or as an alternative, to the nesting of the intraband type, it is also possible 
to have nesting in between the bands (interband nesting). The system will adopt the 
type of nesting which, in the presence of interactions, minimizes the overall (free) 
energy. As it is difficult to rigorously determine, on theoretical grounds, which 
nesting will be preferred, one can only speculate on the basis of indirect arguments. 
Indeed, there are models which attribute the MI transition in BaVS3 to nesting in 
between the dz

2 and eg bands (Mitrovic et al., submited). It is, however, unlikely that 
such nesting can produce the small energy scales (below 100K) necessary to explain 
the SDW/CDW excitations observed in BaVS3. On the other hand, the intraband 
nesting in the dz

2 band is nearly one-dimensional and will therefore be discussed in 
more detail below. When one is interested primarily in such nesting effects, the 
hopping between the two e(t2g) orbitals can be set equal to zero. The result of this 
simplification is shown in Fig. 3.20. 
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Figure 3.20: Electronic dispersions of the three band model, along the symmetry lines, with all off-
diagonal elements set to zero. Other parameters are same as those used to generate Fig. 3.17. The zero 
of energy is taken arbitrarily.  
 

Inspection of Fig. 3.20, in the context of the above discussion, shows that the mixing 
between the dz

2 orbital and the e(t2g) block can be roughly ignored in the discussion of 
the (intraband) nesting properties of the ¼ filled dz

2 band. This in stark contrast to d.c. 
conductivity where this mixing is quite probably crucial. In the case that the mixing is 
neglected, the three-band Hamiltonian can be decoupled into two separated subspaces, 
with the e(t2g) states serving mostly as the reservoir of electrons. However, before 
turning to this discussion let us briefly mention the role of sulfur.  

3.4.2.2 The influence of sulfur and the four band model  

The inclusion of the sulfur π orbital leads to the four band model. The results from 
such a treatment, which best illustrate the possible importance of the πz contribution, 
are shown in Fig. 3.21. The curves displayed therein show that, for the chosen set of 
parameters, the dispersion of the e(t2g) bands depends only weakly on the details 
describing the sulfur πz band. On the other hand, the width and the position of the dz

2 
band exhibit dramatic changes, reflecting the fact that both the πz and dz

2 bands are 
characterized by (strong) σ overlaps in the z direction. The corresponding bond 
energies are thus competing. 
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Figure 3.21: Electronic band structures of the four-band model in the unfolded zone of Fig. 3.11, 
demonstrating the importance of the sulfur in BaVS3. Overlaps determined for the three band model 
shown in Fig. 3.17 remain unchanged. New parameters, describing the function of the πz orbital, are: πz 
-πz overlap ππ

3ât  = 0.4 eV, site energies zE  = 0.2 eV and πE = -0.8 eV, and overlap πz - dz
2 equals either 

(a) 0
3ˆ

=πz
at  eV or (b) 15.0

3ˆ
=πz

at  eV. The zero of energy is taken arbitrarily.  
 

In the case of a small overlap between the dz
2 and the πz, 0

3ˆ →πz
at , the πz band is 

completely filled, leading to the closed outer subshell of the sulfur ions (resulting in 
S2-). The vanadium bonding dz

2 band is almost completely filled. The increase of the 
bond energy πz

at 3ˆ  introduces mixing between the two bands. For large enough bond 
energy, the upper band moves above the e(t2g) bands, and there is a complete transfer 
of electrons between the bonding dz

2 and e(t2g) antibonding bands. The latter ones are 
again half-filled, as was the case for large 3∆ (in the 3-band model shown in Fig. 
3.18). However, irrespective of the mechanism responsible for the half-filling, there is 
no experimental evidence to support such a situation. Nevertheless it should be 
stressed that the variation of the overlap between the πz - dz

2 can change dramatically 
the band dispersion in BaVS3. This result reveals the possible importance of sulfur in 
this compound, in analogy with the role of oxygen in high-Tc cuprates. As a 
consequence, it can be expected that the system would be very sensitive to the sulfur 
stoichiometry. Further analysis of the electronic band structure as a function of the    

πz

πz
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πz - dz
2 overlap is performed by Whangbo et al. (2002) and the reader is referred to 

that work for more detail. In the ensuing discussion, however, the explicit 
contribution of sulfur will be omitted and its effect will be implicitly manifested in the 
simple 3-band (quasi-1D) model by way of the sulfur-enhanced inverse effective mass 
(of the dz

2 band) along the chain direction. It is this model that will be used in the 
discussion of the formation of SDW/CDW correlations through the nesting properties 
of the dz

2 band of Fig. 3.20, and of their effect on the measured ARPES spectra.  

3.4.3 ARPES and tight binding: A synergistic cooperation 

It is pertinent to recall, once again, that the 1D lattice fluctuations of the vanadium 
chains were observed in the high temperature range between TS and TMI. The most 
prominent candidates for the tetramerization, Qc = π/c, of the vanadium unit cell are 
the vanadium electrons of the ¼ filled dz

2 band (2kF = π/c = 0.5c*). The effect is 
related to the high temperature band structure discussed above. As is well known for 
weak electron-electron couplings, the enhancement of the charge and/or spin 
fluctuations occurs when the bands, such as dz

2 in BaVS3 , have 1D nesting properties. 
It is at that point that the screw axis symmetry conservation, that we insisted so much 
upon, enters explicitly: it makes the dz

2 band ¼ filled (no gap in the A point of Fig. 
3.20). The direct Umklapp, proportional to the gap in the A point (which would make 
the band ½ filled at constant number of electrons), is thus absent from the weak 
coupling theory. In the absence of Umklapp scattering, the CDW and SDW 
fluctuations are equally enhanced (Riera and Poilblanc, 2000). This enhancement is 
accompanied in turn by the Luttinger liquid behavior of the electron spectral density, 
as measured by ARPES. When SDW/CDW 2kF fluctuations are coupled to the 
(heavy) lattice, or when 3-dimensionality arises, as is the case in BaVS3, the Luttinger 
liquid behavior tends to be replaced by a pseudogap in the electron spectral density at 
the Fermi level. 

As an example of an experimental measurement that can be qualitatively explained in 
terms of the simple band structure from Fig. 3.20, the ARPES observed at 40 K is 
presented in Fig. 3.22. The spectrum shown therein was obtained using an 
experimental setup with a total energy and momentum resolution of ∆E = 15 meV and 
∆k = 0.04 Å-1. The intensity map taken in the Γ-Z direction, parallel to the chains, 
reveals two bands: a dispersive band with bandwidth of few eV, identified as a one-
dimensional dz

2 band; and a rather non-dispersive structure located at ~ -0.4 eV, 
associated with the e(t2g) states. Due to the strong electron-electron interactions the 
measured spectral weight is renormalized, as it is often the case, masking the quasi 
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particle peak. From the saturation of the leading edge shift the charge gap was 
estimated to ∆ch = 60-70 meV, which is in good agreement with the value obtained 
from transport measurements below TMI (presented in Chapter 4). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22: ARPES intensity map taken in the direction parallel to chains at 40 K. The zone 
boundaries are plotted from the calculated value. The Z point of the orthorhombic zone corresponds to 
the A point of the hexagonal zone. The spectrum is normalized and a background subtracted to enhance 
the features.  

 

From the curvature at the bottom of the wide band around -1eV, in the point Г of          
Fig. 3.22, it appears that this band would cross the Fermi level at kF  ≈ π/2c, if there 
were no gap of some 80 meV. This determination of kF agrees with the idea that the 
gap is produced by the evolution of 1D 2kF = π/c fluctuations, independently observed 
by x-ray scattering (Fagot et al., 2003), into the 3D long-range order characterized by 
the 3D wavevector [1, 0, 0.5]. The 3D order itself is consistent with the full 3D 
nesting properties of the high temperature dz

2 band of Fig. 3.20. If, following the 
arguments of the above discussion, the dz

2 vanadium site energies of Fig. 3.20 are 
taken to be modulated by a deformation potential (with an amplitude of 80 meV) 
along the aforementioned wavevector, the gap opens at the Fermi level (Fig 3.23). 

The X-ray experiments also show that a 4kF (additional to the 2kF) deformation of the 
orthorhombic lattice appears below TMI, although the corresponding precursor is not 
seen. It develops not as a harmonic of the 2kF deformation but independently of it. 
The screw axis symmetry is thus removed, which completes the lattice transformation 
in the Imm2 phase. The corresponding effect in the band structure is the appearance of 
the gap at the A point. This gap is far above the Fermi level and thus it is not included 
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in Fig. 3.23. By analogy with organic conductors, it can only act on the physics at the 

 
Figure 3.23: Electronic dispersions of the three band model, along the symmetry lines, modulated by 
the deformation potential with the wavevector [1, 0, 0.5] and the amplitude of 80 meV. The e(t2g), dz

2 
band and its 2kF shadow are indicated by yellow, blue and red lines respectively. Parameters of the 
model are: dz

2 - dz
2 overlap ll

at 3ˆ (l=z) = -1.4 eV, e(t2g) – e(t2g) overlap ll
at 3ˆ (l=x,y) = 0.1 eV, in-plane 

overlaps which mix dz
2 and e(t2g) txy = -0.05 eV, diagonal-out-of plane overlaps ll

nmat 3ˆ = 0.02 eV, the dz
2 

- e(t2g) splitting 3∆ = 1.935 eV, and the 2∆(2kF) = 80 meV (Kupčić et al., in preparation.) 
 

 

 

 

 

 

 

 

 
Figure 3.24: The ARPES intensity map, shown in Fig. 3.22, taken at 40 K. is compared with 
theoretical results from Fig. 3.23 (blue and red lines). The intensity of the shadow bands is proportional 
to the square ratio of the 2kF deformation potential so that the band width is hardly visible. 
 

Fermi level indirectly, by activating the appropriate Umklapp interactions. The latter 
are presumably included through the empirical value (80 meV) of the 2kF deformation 
potential. The e(t2g) band is kept undistorted in Fig. 3.23 in order to emphasize its 
small overall width; too small to produce under distortion the effects which can be 
resolved by the present state-of-the-art ARPES measurements. This also holds for the 
2kF shadow bands (red in Fig. 3.20) whose spectral weight is proportional to the small 
amplitude of the deformation potential, i.e., to the magnitude of the gap. With this in 

dz
2
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mind, the comparison of the theoretical modeling (of Fig. 3.23) with the relevant 
experimental results (shown in Fig. 3.24), reveals a remarkable agreement. 
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3.5 Concluding remarks 

In conclusion to this chapter, we have seen the important role played by symmetry 
operations in understanding the consequence of the structural phase transitions on the 
electronic structure of our compound. In addition, these notions constitute important 
inputs for the various theoretical models presented herein. In the localized limit, a 
reasonably general qualitative description of electronic instabilities can be obtained by 
consideration of a single vanadium electron in the crystal field. Such an approach 
obviously masks the complexity of the situation somewhat. Ab initio calculations, 
using the LAPW formalism, provide a more quantitative description of the electronic 
structure of the various phases of the material. At the same time they validate, to some 
extent, the assumptions made in the localized model and provide a framework from 
which to obtain values for the overlap integrals for use in the tight binding 
calculations. However, in contrast to the TB approach, the LAPW methodology lacks 
the flexibility required for understanding those properties of the material which are 
associated with different kinds of response functions. 

Significant synergistic effects can be realized by combining the LAPW and TB 
calculations with the ARPES and X-ray diffuse scattering measurements. In 
particular, we were able to use this combination to derive the minimal band model, 
which, after including the interactions in the wide band, can produce quasi-degenerate 
CDW/SDW fluctuations of the commensurability 4. The predicted long-range orders 
at TS and TMI are also in good agreement with observations. The remaining question 
that has only been alluded to in this chapter is that of the (magnetic) coupling between 
the wide and the narrow band electrons. This question will be taken up in more detail 
in Chapter 5, where further discussion of the non-Fermi liquid aspects of the problem 
will be presented. 

Despite the elucidation of the minimal model capable of describing the electronic 
instabilities present at the phase transitions, the details of the behavior of the material 
in the narrow energy range around the Fermi level remain obscure. In order to shed 
light upon those aspects and to enable further cooperation between experiment and 
theory, one needs to employ techniques that directly probe this energy range. From 
the experimental side, this involves the careful measurement of properties such as the 
electrical resistivity, magnetotransport and thermoelectric power. The remainder of 
this thesis is dedicated to exactly this goal.  
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In this chapter, I present the low pressure part of the p-T phase diagram. Although this 
is a well-studied part of the phase diagram, several refinements of known results, such 
as the importance of the stoichiometry and the pressure dependence of TS, etc., are 
obtained. This chapter also serves as an introduction to the exciting behavior of the 
studied material at pressures above 1.7 GPa, which will be presented in subsequent 
chapters.  
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4.1 Ambient pressure  

The band structure calculations of BaVS3 discussed in the Chapter 3 were shown to 
give reasonable predictions for the shape of the bands on the eV scale. However, in 
the narrow energy window of the order of 0.01 eV (~ 100 K) around the Fermi level, 
they do not account for the detailed behavior. One property that is particularly useful 
in gaining an overview of this low energy physics is the electrical resistivity. 
Therefore, in the following material, we present the results of the electrical resistivity 
measurements along the c-axis, in broad temperature and pressure ranges. Before 
continuing, let us stress the fact that the conductivity ratio of BaVS3 above TMI at 
ambient pressure is surprisingly low (σc/σa ≈ 3). In addition, for these low pressures, 
this ratio is almost independent of the temperature, as discussed in Chapter 2. 

In an attempt to clarify the transport properties above TS =240 K, where the structural 
phase transition occurs, the electrical resistivity was measured in an extended 
temperature range at ambient pressure (Fig. 4.1). The measurement was performed in 
a homemade sample holder (Appendix 1) which allows transport measurements up to 
1000 K. BaVS3 is very sensitive to heat treatments (Gardner et al., 1969) since it 
starts to lose sulfur at high temperatures. Therefore, the measurements were carried 
out only up to 600 K. 

In this regime, the electrical resistivity exhibits a linear, metallic-like, temperature 
dependence. The resistivity has a high absolute value, e.g., ρ ~ 0.7 mΩcm at 300 K 
with a corresponding mean free path of l ~ 5-8 Å (Forró et al., 2000). This fact 
classifies BaVS3 in a relatively new class of materials known as bad metals or novel 
conductors (Emery and Kivelson, 1995). In these materials, with a short mean free 
path (often even shorter than the lattice spacing), the Ioffe-Regel criterion (IRC) is 
violated. This criterion determines the maximum resistivity below which one can 
speak about metals. Beyond this value, the system is an insulator. However, materials 
which exhibit resistivities with a metallic temperature dependence beyond the IRC, 
such as BaVS3, have recently been discovered (Emery and Kivelson. (1995), 
Takenaka et al., (2002)). The IRC is based on the concept of a propagating 
quasiparticle that is valid provided the mean free path is longer than the 
corresponding de Broglie wavelength: λ > λF =2π/kF. In a solid, this condition may 
not be violated until l is roughly equal to the lattice spacing a. 
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Figure 4.1:  Black lines describe the temperature dependence of electrical resistivity of BaVS3 shown 
on: (a) the linear scale in the in the 0-600 K range revealing the linear temperature dependence above 
TS, (b) the Arrhenius plot giving insight into the electrical properties of the insulating phase. Red scales 
are related to (a) temperature derivative and (b) logarithmic derivative of the electrical resistivity 
disclosing the weak change of slope of resistivity at TS, and the temperature of the MI transition, 
respectively. The green and the blue lines are guides to the eye. 
 

The weak change of the slope at 240 K indicates the onset of the structural transition. 
The zigzagging and the deformation of the chain of sulfur octahedra lift the 
degeneracy of the e(t2g) orbitals (Chapter 3) at TS (maintaining the screw axis 
symmetry). Below this temperature, the derivative of the electrical resistivity 
gradually changes its slope, and at even lower temperatures its sign. This latter 
change, however, occurs well above TMI = 69 K (shown in Fig.1a). The derivative of 
resistivity clearly demonstrates that TS does influence the electronic structure, a fact 
which was overlooked in previous studies. Therefore, instead of attributing the upper 
boundary of the MI precursor region to TS , the previous studies attributed it to the 
temperature defined by the minimum of the resistivity (dρ/dT = 0). At TMI (derived 
from the peak in the logarithmic derivative of electrical resistivity (Forró et al., 2000), 
shown in Fig. 4.1b), the system undergoes the MI phase transition. The Arrhenius plot 
in Fig. 4.1b gives insight into the nature of the insulating state. After an abrupt jump, 
of about 3 orders of magnitude, the resistivity becomes activated and approximately 
follows the relation: 

     ( ) )exp(0 Tk
T

B

ch∆
= ρρ    ,  
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where ∆ch is the charge gap, estimated as 700 K. If one assumes that the charge gap is 
related to TMI by the BCS (Bardeen, Cooper and Schrieffer) relationship, ∆ch/kBTMI, an 
unusually large ratio of ≈ 10 is obtained. This value is particularly striking when 
compared to the predicted BCS mean field ratio of 3.76. 

4.1.1 Sample characterization 

In the context of the first work on BaVS3 by (Gardner et al., 1969) it was already 
noted that the electrical properties depend strongly on the purity of the crystals. More 
extensive work on the sample purity was presented in the paper of (Massenet et al., 
1979) The resistivity and the magnetic susceptibility on stoichiometric and sulfur 
deficient single crystals were reported. The stoichiometric samples, obtained by 
heating and cooling the grown crystals in a saturated sulfur atmosphere (hereafter this 
procedure is called the “sulfur treatment”), had antiferromagnetic behavior with a 
maximum of magnetic susceptibility close to TMI =70 K. The sulfur deficient crystals 
were ferromagnetic with an ordering temperature of 16 K. The reported resistivity for 
both types of crystals was, as previously observed for the pressed powders, metallic 
like from room temperature down to 150 K. For the antiferromagnetic crystal, there 
was a steep increase of resistivity below 70 K. On the contrary, the resistivity of 
ferromagnetic crystals increases regularly below 150 K. 

Because of the above variability, we used the measured transport properties of BaVS3 
crystals as a means of identifying the high quality ones. More than hundred crystals 
were characterized until the proper method for sample synthesis and sulfur treatment 
was found. The aim was to obtain single crystals which satisfy the following criteria, 
which we believe to be indicative of high quality BaVS3 samples:  

¾ metallic behavior at high temperatures,  

¾  a well defined change of the slope at TS,  

¾ a sharp MI transition,  

¾ no sign of saturation of resistivity in the insulating phase (attributed to an impurity 
band).  

Several examples of typical characterization curves are shown in Fig. 4.2. For easier 
comparison, all the recorded data are normalized by their room temperature 
resistance. From the presented set of samples, the one marked as No: 00 (shown in 
red) best satisfies the aforementioned criteria and was therefore selected for further 
investigations. Its quality was also verified by anisotropy measurement of magnetic 
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susceptibility in 4 to 80 K temperature range, shown in the inset in Fig. 4.2. In 
contrast with earlier measured samples (see, for example, Mihály et al., (2000)), the 
low temperature anisotropy does not show any sign of saturation or upturn, attributed 
to impurities. In addition, the changes in the anisotropy attributed to the phase 
boundaries, TMI and Tx are sharper and better defined. 
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Figure 4.2: Temperature dependence of the electrical resistivity of different samples of BaVS3. (a) 
Linear plot of normalized resistivity focusing on the metallic phase. (b) Recorded and normalized data 
shown in the Arrhenius plot making apparent the sharpness of the MI transition and the details of the 
insulating phase. Inset shows the anisotropy of the magnetic susceptibility for the best quality 
(hereafter called No: 00) sample. Each color corresponds to one sample and the sample No: 00 is 
marked in red. 
 

Our recent resistivity measurements on impure or sulfur deficient single crystals of 
BaVS3 under pressure, Chapter 5, have sparked a new interest for this kind of sample 
since, in contrast to the pure samples, they do not show hysteresis in the proximity of 
the quantum critical point (QCP), They become even more intriguing if magnetic 
susceptibility and resistivity measurements of 15 % Sr substituted Ba1-xSrxVS3 single 
crystals, Chapter 6, are taken into account. The interesting aspect of this particular 
material is that the MI transition is observable in the electronic properties of the 
system while the magnetic susceptibility remains Curie-like down to low temperatures 
(~ 15 K), where the system undergoes the FM transition. Therefore, it is of interest to 
determine if a similar behavior can be observed in sulfur deficient samples. To this 
end, a more detailed study of the off-stoichiometric BaVS3 samples, shown in        
Fig. 4.2, is currently in progress. 

25 50 75
-0.6

-0.3

0.0

TMI
TX

 ∆
χ 

[m
 e

m
u/

m
ol

]

T [K]



68_________________Chapter 4: Following the MI phase boundary by resistivity 

_____________________________________________________________________ 
  

4.2 Intermediate pressures (1bar< p <1.7GPa)  

The band structure calculations mentioned in Chapter 1 (Solovlyev et al. (1994), etc.) 
predicted that BaVS3 would be sensitive to the change of pressure. Indeed, this is 
consistent with the measurements of Graf et al. (1995) and Forró et al. (2000) that 
reveal a strong suppression of the MI transition by pressure. Fig. 4.3a shows 
temperature dependence of the resistivity for various pressures for our cleanest 
sample, No: 00. 
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Figure 4.3: (a) Temperature dependence of resistivity for various pressures revealing the electronic 
properties of the metallic phase. (b) Arrhenius plot uncover the low temperature insulating behavior. 
 

As expected, the TMI is shifted to lower temperatures by the increase of pressure, thus 
extending the temperature range in which the metallic state is observed. The low 
temperature part of resistivity retains the activated temperature dependence           
(Fig. 4.3b). By increasing pressure, the charge gap decreases in such a way as to 
maintain a roughly constant value of the relation ∆ch/kBTMI ≈ 10. The pressure 
dependence of the MI transition temperature was determined from the spikes of the 
logarithmic derivative, d(log ρ)/d(1/T), as shown in Fig. 4.4a. The narrowness of the 
spikes indicates that the transition remains sharp under pressure. As seen in Fig 4.4b, 
the value of TMI decreases linearly with pressure. The negative shift of the metal-
insulator transition temperature, in the pressure range of 1bar to 1.75 GPa, varies as 

   29.15 - 70  pTMI ⋅= . Extrapolation of this relation to zero indicates the TMI transition 
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would disappear at ∼ 2.4 GPa. 
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Figure 4.4: (a) Logarithmic derivative, d (log ρ) / d (1/T), for several pressures. The position of the 
spike defines the MI transition temperature. (b) The MI phase boundary as a function of pressure. The 
red line is a guide for eye. The linear high pressure extrapolation of TMI with pressure is marked by a 
green dashed line. The results obtained on sample No: 00 are marked by open red circles. The black 
circles indicate the results of the measurements on a second sample.  

 

Finally, let us mention that resistivity measurements under pressure on high purity 
samples (No: 00) revealed that increasing the pressure shifts the structural phase 
transition (TS) to higher temperatures and, by 0.65 GPa, is already out of our 
experimentally accessible temperature range (300 K). These observations mean that 
the phase on the high temperature side of TMI is associated with the orthorhombic 
structure, stabilized to higher temperatures by hydrostatic pressure. 
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4.3 Magnetoresistivity (1bar < p < 1.7GPa)  

At the MI transition, the sharp change in behavior of the magnetic susceptibility is 
observed in clean single crystals of BaVS3. It is therefore of interest to determine how 
the magnetic field affects the properties of the system. The first measurements of the 
high field magnetoresistance in the single crystals were reported by Booth et al., 
(1999). These authors also reported the measurements of the low-field Hall effect and 
the high field magnetization of polycrystalline samples of BaVS3. The 
magnetoresistance varies quadratically with the increasing magnetic field, as α(T) H2, 
and within the experimental error (10-20%), it is independent of the field direction. 
An analogous observation was reported by Kézsmárki et al. (2001) but under 
hydrostatic pressures up to 1.5 GPa. In both works, similar analyses of the recorded 
data were used. As a result, the pressure dependence of the spin gap was determined 
(up to 1.5 GPa). In the following section, the main results of magnetoresistivity 
measurements are presented, and the principal steps of the associated analysis are 
discussed. 
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Figure 4.5:  (a) The normalized logarithmic plot of the resistivity. The red curves, measured in 12 T, 
are shifted due to the magnetic field with ∆TMI = 0.35; 0,7; 0,9 K relative to the zero field ones (black 
curves) for p = 1bar; 0.75 GPa; 1.5 GPa, respectively. (b) The logarithmic derivative of the same 
resistivity curves with a sharp peak at the phase transition. (Kézsmárki, 2003). 
 

Figure 4.5a. summarizes the results of the resistivity measurements, at various 
pressures, in the presence of magnetic field strengths of H = 0 and H = 12 T 
(Kézsmárki et al. 2001). It turns out that the influence of the applied magnetic field is 
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not to change the shape of the resistivity curves but to shift them to lower 
temperatures with a concomitant shift of the phase transition (clearly seen in          
Fig. 4.5b). In other words, the magnetic field merely acts to shift the temperature 
range of the curves by ∆TMI. The value of TMI itself can be determined, with high 
accuracy, from the logarithmic derivative of the resistivity (Fig. 4.5b). Since the 
temperature dependence of the resistivity, for fixed pressure, is shifted in temperature 
(T → T - ∆TMI) by switching on the magnetic field (0 → H), the resistivity can be 
expressed as: 

 ( ) ( )p),p,H(TTp,0H,T MI∆−== ρρ .  

Given that ∆TMI is relatively small (0.35; 0,7; 0,9 K at 1bar; 0.75 GPa; 1.5 GPa, 
respectively), and taking into account the above equation, the relative change of the 
magnetoresistance, ∆ρ = ρ(T ,H ,p)  – ρ(T ,0 ,p) , can be expanded as a power series: 
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is calculated directly from the temperature dependence of resistivity in zero field. The 

results of the first and second order expansion in ∆TMI are compared with the 

recorded, subtracted resistivity data from 0 and 12 T, shown in Fig. 4.6. Already, the 

first order expansion gives a good approximation, except in the narrow region in the 

vicinity of the TMI, where the second order correction is needed to achieve acceptable 

accuracy. As the approximation with only the linear term in TMI agrees relatively well 

with the measured results over the broad temperature range, we will, in the interests of 

simplicity, neglect the higher powers terms in the following calculation. 
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Figure 4.6: Analysis of the temperature dependence of the relative magnetoresistance at three 
pressures. The red circles indicate the measured relative resistivity. The dashed line and the blue open 
circles indicate the results of the first and second order approximation, respectively. By the open green 
triangles, the results of the magnetic-field sweeps, at selected temperatures, are indicated (Kézsmárki, 
2003). 
 

Experiments, in which the value of the magnetic field was swept from 0 to 12 T for 
each pressure, (shown in Fig. 4.7) at constant temperature, revealed that the 
magnetoresistance is very weak (at the limit of detection) at high temperatures (of the 
order of 2TMI). As the temperature is decreased, magnetoresistance becomes larger 
and larger as well as adhering to quadratic field dependence: 

Equations (4.1) and (4.2) are in fact equal (only dependent on the field, H) and after 
dividing them by TMI we get: 
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Figure 4.7: Magnetic-field dependence of the resistivity at various temperatures at p = 1 bar, and 1.5 
GPa. The dashed curves indicate the quadratic fit to the data. Note the different scales in the upper 
panel.(Kézsmárki, 2003). 
 

implying that the relative shift of the MI transition ∆TMI / TMI has a quadratic 
magnetic field dependence. Assuming that the observed phase boundary behavior, in 
the low magnetic field range of 12 T, is also valid at higher fields, a critical field 
(Hc=H(∆TM I=TM I)=1/β½),which completely suppresses the MI transition, can be 
deduced. At the ambient pressure, the critical field has a rather high value, Hc ≈ 170T, 
which is to be expected as the shift of TMI is small. By increasing the pressure, the 
value of this critical field decreases and has the same scaled pressure dependence as 
TMI. 

Equation (4.3) may be rewritten in its dimensionless form as: 
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which, with S = ½ and g = 2, is equivalent to the relationship which describes the 
suppression of the spin-Peierls transition by the magnetic field. The sensitivity of the 
transition to the applied field is described by the constant γ. The experimentally 
established value is universal both for organic (Northby et al., 1982) and inorganic 
(Hase et al., 1993) compounds and agrees well with the predicted value of 0.44 
(Bulaevskii et al., 1978) and 0.38 (Cross, 1979). In BaVS3, the magnetoresistance 
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data yield a value of γ = 0.45, independent of the value of the applied pressure.  

Another dimensionless form of equation (3) is obtained by introducing the pressure 
dependent spin gap ∆S(p) = 2gSµB  Hc(p): 
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assuming that it is related to a critical magnetic field Hc via the corresponding 
Zeeman energy. The ambient pressure value of the spin gap based on this assumption 
is ∆S(1bar)≈250K is identical with that obtained from NMR measurements by 
(Nakamura et al., 1997). The spin gap of the insulating phase scales with the 
transition temperature according to the BCS relation ∆S(p) ≈  3.6 kBTMI.  

In addition, Kézsmárki et al. (2001) discussed the properties of the thermodynamic 
potential and predicted that, at 1bar, the MI transition is of second order. This 
prediction was independently confirmed several years later by Inami at al., (2002) and 
Fagot et al., (2003). They carried out X-ray diffraction measurements of BaVS3 single 
crystals and observed superlattice reflections, which double the lattice constant c, 
appearing at the MI transition temperature. The increase in intensity of the new Bragg 
peaks, in a mean field manner, associated with a further decrease of temperature 
provides evidence of the second order character of the MI transition. As the character 
of the shift of the MI transition with magnetic field remains the same with increase of 
pressure, it is plausible that the character of the MI transition remains unchanged in 
the 1 bar to 1.5 GPa region.  



Chapter 4: Following the MI phase boundary by resistivity_________________75 

_____________________________________________________________________ 
  

4.4 Concluding remarks  

In summary, the measurements of the resistivity under conditions of varying pressure 
and magnetic field, over the specified ranges, reveal several important features in the 
behavior of BaVS3. In the absence of a magnetic field, the temperature at which the 
MI transition takes place (TMI) is inversely related, in a linear fashion, to the applied 
hydrostatic pressure. The magnetoresistance is observed to obey a quardratic field 
dependence while the relative shift of TMI, in response to the applied field, is found to 
be analogous to that of the spin-Peierls transition. The fact that the magnetic 
dependence of the resistivity at TMI does not change in response to an increase of 
pressure, combined with the conclusions of previous studies, suggests that the second-
order nature of the MI transition remains unaltered over the pressure range discussed 
herein. 

When taken at face value, the above results could be understood to mean that the MI 
phase boundary in the T-p-H phase diagram of BaVS3 is relatively simple. However, 
it is safe to say that this is not the case. As the hydrostatic pressure is increased 
beyond 1.7 GPa, the relatively simple behavior outlined in this chapter breaks down 
and the description of the phase diagram becomes much more complicated. The 
details of how this takes place are the subject of the following chapter.  
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1In OPAL, as a consequence of a phase transition, a strong reflection of light is observed due to the 

fluctuations in its index of refraction on length scales comparable to the wavelengths of a visible light. 
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In this chapter, we see how the behavior of the system at high pressures is governed 
by the proximity of a quantum critical point. The implications of this observation to 
the understanding of the physics of BaVS3 are discussed in some detail. 
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5.1 Collapse of the insulating phase 

In the previous chapter we have seen that the metal-insulator (MI) transition is 
sensitive to pressure. Based on the phase boundary analysis, it was found that the 
transition is of the second order in the pressure range of 1 bar to 1.5 GPa (hereafter 
referred to as the “low pressure range”). The negative shift of the TMI was established 
to be linear with pressure. 
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Figure 5.1: MI phase boundary as a function of pressure. The red line is a guide for the eye. The linear 
extrapolation of TMI to high pressure is marked by a green dashed line. The results for two samples, 
marked by black and open red circles, are presented. The ICFM transition at 30 K is indicated by the 
yellow spot.  
 

The metal-insulator transition temperature (TMI), shown in Fig. 5.1, varies as 
[ ] GPa  29.15 - 70  pTMI ⋅=  and extrapolates to zero at ∼ 2.4 GPa. This linear 

suppression of TMI with pressure is followed up to ∼ 1.75 GPa (TMI (p =1.75 GPa) ~ 
18.5 K). However, as the pressure is increased beyond this value, the TMI phase 
boundary does not reach its extrapolated zero value at ∼ 2.4 GPa. Instead, within the 
space of 0.2 GPa, the TMI falls rapidly from ~15 K to zero and the phase boundary 
collapses. 

The Interchain-Compensated-Ferro-Magnetic (ICFM) transition at 30 K corresponds 
to the appearance of the FM order along the V-chains, which is compensated over 
large distances transverse to the chains (Nakamura et al., 1999). Noteworthy in this 
respect is the 2D lattice of the chain magnetic moments, in which the interchain AF 
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interactions are frustrated up to small orthorhombic deformations of the crystal lattice. 
The behavior of this transition with pressure is unknown, as indicated by the question 
mark in Fig 5.1. In addition, large charge redistribution is observed at ambient 
pressure below some 15 K which, importantly, is not related to any additional change 
of the lattice symmetry (Fagot et al., 2004). 

In this chapter, the high pressure part of the phase diagram, up to 2.7 GPa, will be 
discussed. It will be shown that, in the pressure range slightly above p ∼ 1.75 GPa in 
the critical region around pcr, the physical properties of the BaVS3 are governed by 
the proximity of the quantum critical point. In this region of pressures, the physical 
properties are very sensitive to the external magnetic field, doping (or impurities), and 
an applied current. All of these aspects are reflected in the electrical resistivity which 
exhibits non-Fermi liquid behavior described by ∆ρ ∝ Tn with n < 2. 
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5.2  Quantum Critical Point (QCP) 

Above the critical pressure, pc r=1.97GPa, the insulating state is completely 
suppressed and a metallic behavior is observed in the whole temperature range     
(Fig. 5.2). The resistivity decreases monotonically with temperature from the room 
temperature value of ρ (300 K, 2.03 GPa) = 580 µΩcm to the value of 63 µΩcm at 
20 K. This result suggests that, within this range of conditions, there is no phase 
transition which affects the conduction electrons. 

0 100 200 300
0

200

400

600

 

 

ρ 
[µ

Ω
cm

]

T [K]

 2.04 GPa

BaVS3 
No: 00

 
Figure 5.2: The resistivity at the pressure of 2.04 GPa shows a metallic behavior in the whole 
measured temperature range. The MI transition is completely suppressed. 
 

Closer examination of the low temperature resistivity (Fig. 5.3), however, reveals a 
weak shoulder around 15-20 K and a power-law temperature dependence in the 
temperature range from 2 to 15 K (lower temperatures are beyond the reach of our 
experimental technique): 

 nAT+= 0ρρ . (5.1)  

The strength of the shoulder (see Appendix 2) and the values of the exponent n, as 
well as the coefficients A and ρ0, at pcr, are found to vary between samples (e.g., the 
power law coefficient varies from 1.1 to 1.5). For a sample with high purity and good 
stoichiometry (as is the case for the sample shown in Fig. 5.3), n = 1.5. This power 
law dependence of the resistivity in the vicinity of the second order phase transition is 
probably related to the proximity of a quantum critical point (QCP) (Sachdev, 1999). 
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Figure 5.3: The low temperature (up to 40 K) part of the resistivity at 2.04 GPa is presented in a log-
log plot, which reveals the existence of a shoulder around 15 K and the power-law temperature 
dependence of the resistivity below 15 K. The power-law fit for this sample (red curve) gave a 
coefficient of n=1.5 (although for a range of samples it is found to vary between 1 and 1.5). The green 
dashed line indicates the Fermi liquid behavior for n = 2. 
 

The Landau-Fermi liquid theory for the metallic state asserts that, at low energies, the 
electrons in a metal behave essentially as a collection of weakly interacting particles 
and that the resistivity thus exhibits a power-law temperature dependence with n = 2 
(Kittel, 1953). At high pressures (see, e.g., Fig. 5.3) BaVS3 violates this condition. 
This, non-Fermi-liquid (NFL) physics is related to the presence of a phase transition 
at the temperature of absolute zero, which is achieved by changing (by means of 
increased pressure) the parameters in the Hamiltonian of the system. The crossing of 
the phase boundary at T=0 means that the quantum ground state of the system 
changes in some fundamental way. The parameters of the system can also be tuned by 
applying external perturbations such as magnetic field or doping. (However, doping 
or even imperfect annealing is associated with disorder which influences the system 
and therefore should be handled with care). Such control parameters can cause the 
system to pass from an ordered ground state, at T=0 into a non-ordered one, thereby 
crossing a critical point in which quantum effects, if ever, are important. Although 
this definition of a QCP is strictly valid only for T=0, for regions of the phase 
diagram that are sufficiently close to the critical point, the temperature and pressure 
dependences of the system are still determined by the nature of the QCP. 

In order to better understand this behavior in the context of BaVS3, it is worthwhile to 
discuss some general aspects of phase transitions. Second order phase transitions are 
characterized by a correlation length and a correlation time (τ) which diverge as the 
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critical temperature TC is approached. The order parameter (e.g., the magnetization in 
a ferromagnet) fluctuates more coherently and slowly over increasing distances, 
implying the existence of a frequency scale (ω ~ 1/τ) associated with the critical 
fluctuations that vanishes at the transition. A quantum system behaves classically if 
the temperature exceeds the frequency of interest. If the transition happens at the 
finite temperatures, hω << kBT close to the transition and the critical fluctuations 
therefore behave classically. However, quantum phase transitions (QPTs), where TC = 
0, are qualitatively different and in the case hω > kBT, their critical fluctuations must 
be treated quantum mechanically. It should be noted in this respect that the function 
hω(T) can tend to zero slower than linearly with T. In this case, the transition will be 
"classical" even if TC ≈ 0. By a similar reasoning we can conclude that, in the system 
with finite TC, we can expect to find a quantum regime above TC if, in this regime, 
hω(T) is a faster than linear function of Tr = T-TC. 

 
Figure 5.4: An example of a scaling analysis in the case of a classical phase transition. Experimental 
magnetization M(H,T) data for five completely different materials (CrBr3, EuO, Ni, YIG, and Pd3Fe) 
plotted in their scaled forms. Despite their differences, the data for all materials fall onto a single 
scaling function, which is that calculated for the d = 3 Heisenberg model (Milošević and Stanley, 
1976).  
 

Quantum critical phenomena were initially investigated using a scaling analysis, 
based on an extension of the Landau theory of phase transitions (Landau and Lifshitz, 
1980) which, in the classical version, describes the classical critical behavior near a 
second order phase transition at TC. All scaling theories (see the reviews by Fisher 
(1967) and Kandanoff et al. (1967)) for the continuous phase transitions give the so-
called scaling laws, which serve to relate the various critical exponents. For example, 
the magnetization (M), the constant-field specific heat (CH), and the isothermal 



86____Chapter 5: Crossover from the Non-Fermi liquid to the Fermi liquid state 

_____________________________________________________________________ 
  

susceptibility (χT) have the following power law temperature dependences: M ~ Tr
β , 

CH ~ Tr
-α, χT ~ Tr

-γ, where Tr = (T - TC) / TC is the reduced temperature (in quantum 
phase transitions, Tr is replaced by T since TC = 0). The classical critical exponents 
were shown to be related by simple scaling laws such as α + 2β + γ =2 (Stanley, 
1999). 

The scaling analysis can be used to make universal plots of the data. For example, in 
the case of magnetization M (H, Tr), where H is the magnetic field, M can be 
represented graphically (as M vs Tr) for a sequence of different values of H. If all the 
curves of this family are properly rescaled, the scaling hypothesis predicts that they 
fall onto a single curve (Fig. 5.4 shows an example of the classical phase transition). 
The fact that the rescaled dependence is the same (apart from two material-dependent 
scale factors) for all five different materials shown is truly remarkable. It allows the 
classification of the critical systems into “universality classes”. Two systems with the 
same values of critical-point exponents and hence the same scaled functions are said 
to belong to the same universality class. Furthermore, using the procedure called 
renormalization; the critical point can (in general) be associated with the fixed point 
of a suitable chosen transformation upon the system’s Hamiltonian. This latter 
association can be used as a tool for obtaining the values of the various critical-point 
exponents. In the case of a quantum phase transition, the situation becomes 
complicated above the critical dimension and the classical scaling relations (in 
general) break down. There are, however, scaling relationships at QCPs that have no 
classical analogue. These identities follow from the scaling equivalence of energy, 
inverse time, and temperature.  

The application of ideas such as those presented above, to the problem of BaVS3, will 
paraphrase the recent review (Coleman, 1999) of the behavior of the heavy fermion 
systems in the proximity of a quantum criticality. This review develops some of early 
(Doniach, 1977) ideas (Fig. 5.5) in describing dense Kondo systems (Schlottmann, 
1989). In some respects, BaVS3 can be considered in a similar manner. Taking two 
(equivalent) V per unit cell, two electrons are available for the vanadium d-states. As 
already mentioned in Chapter 3, it appears that these two electrons are shared equally 
between the dz

2 and eg orbitals. If, as a consequence of the Jahn-Teller lifting of the 
level degeneracy at TS, only one eg orbital per V-site is present at the Fermi level, it is 
¼ filled. At the other extreme, when both eg orbitals are equally occupied, they are 
each ⅛ filled. While the case of a ½ filled local state, usually considered in the Kondo 
context, has been previously addressed by various methods, with the result that local 
Coulomb interactions tend to favor such occupation (Grilli et al., 1990; Mrkonjić and 
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Barišić, 2003; Koga et al., 2004), the case of higher commensurabilities, such as ¼ or 
⅛, is more intricate. The question of the commensurability ¼ was discussed in the 
weak-coupling limit for the 1D band, such as dz

2, and it was shown (Barišić, 1985; 
Giamarchi and Millis, 1992) that the build-up of the 2kF correlations in this band 
favors the ¼ commensurability (see also Chapter 3). Alternatively, it was argued 
using dynamic mean field theory (DMFT) (Georges et al., 1996) which takes care of 
local Coulomb induced correlations, moreover specifically for BaVS3 (Lechermann et 
al., 2004), that large local interaction on the V-site tends to share the electron equally 
between the dz

2 and the eg states. The required value for the local interaction was 
estimated to be of the order of 5-7 eV, which is quite large for the V-ion (Friedel, 
1969). 

 
Figure 5.5: Doniach’s (Fazekas, 1999) phase diagram for the Kondo lattice problem. Left: the 
magnetic-non magnetic phase boundary (bold line) obtained from the interaction dependence of the 
characteristic temperatures (thin lines) for the Kondo singlet and RKKY phase. Right: the pressure 
dependence of the Curie temperature of CePdSb (cicles) showing a good agreement with theoretical 
predictions (bold line) (Cornelius et al., 1997). 
 

Regradless of which correlations are dominant, the experimental situation is one in 
which an equal number of local and conducting electrons are present in the system. 
Assuming that the local eg moment interacts via an some coupling (JK) with the spin 
of any conduction dz

2 band electron, the situation is roughly analogous to the standard 
Kondo lattice theory (Stewart, 2001). In this context, we can therefore extend the 
minimal model (used to investigate the effect of SDW fluctuations on the spectrum of 
the dz

2 band, presented in Chapter 3), in which the dz
2 and eg electron systems were 

kept practically independent, in order to discuss the consequences of the coupling JK 
in between them. Of course, the structure and in particular the sign of JK, remain to be 
determined in terms of the band and interaction parameters of the dz

2/eg model. 

Actually, there are two important magnetic scales to be taken into account (Coleman, 
1999). In addition, there are also scales related to charge correlations, but the latter are 
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not expected to be critical for the behavior in the vicinity of the magnetic phase 
transition. On the other hand, these scales may be related to the main correlation 
effects deep in the conducting phase, as exemplified by the behavior of the behavior 
of the tJ models (Anderson, 1997). Coming back to magnetic effects with this in 
mind, the Kondo temperature (TK) sets the scale below which an isolated local 
moment is screened (taking, e.g., JK>0) by the spin of the conducting electrons. 
Above TK, on the other hand, the Ruderman - Kittel – Kasuya – Yosida (RKKY) 
interaction (Ruderman and Kittel, 1954; Yosida, 1957; Kasuya, 1956; Stearns and 
Wilson, 1964) characterizes the coupling induced between two local moments 
promoted by the spin correlations of the conduction electrons (which tend to have an 
ordering effect on the former). When the ratio of the single-ion Kondo temperature TK 
to the RKKY interaction scale TRKKY exceeds a critical value, intercell magnetism 
vanishes since the magnetic moment of the localized electron is screened within the 
unit cell. The ratio TK/TRKKY is tuned, for example, by the interactions within the 
conducting band (the Hubbard U etc.). These interactions single out the periodicity of 
the RKKY interaction between local moments through the choice of the wavevector Q 
of the dominant intraband magnetic correlations. The RKKY effect on local moments 
is the largest when the interactions in the conduction band are strong enough to 
produce the long-range order, e.g. intraband SDW with the wavevector Q. Through 
the interaction JK, this SDW orders the local moments, also with the wave vector Q.  

 
Figure 5.6: Schematic scaling diagram for the Kondo lattice competition of the two low temperature 
phases on the example of AFM - FL. QCP is marked by the white point at the end of the separatrix 
between two different types of trajectories. (Coleman, 1999) 
 

If, following Coleman (1999), we think of the above order among magnetic moments 
as one extreme and the Fermi liquid of Kondo-like particles (relevant when the SDW 
correlations in the conduction band are weak), as the other, we can identify the two as 
competing attractive fixed points in the renormalization scheme. Such a theory tells us 
that, in this situation, these two fixed points are linked by a branching fixed point 
(Fig. 5.6). As the temperature is lowered, the effective Hamiltonian evolves away 
from the high-temperature behavior, in which the local moments and the Fermi gas of 
conduction electrons are decoupled, to one of two alternate attractive fixed points. By 
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tuning the conduction band interactions to the critical value of TK / TRKKY, the system 
is forced to evolve along a separatrix to the QCP. More importantly, a wide range of 
renormalization lines, close to this critical separatrix, will pass close to this new fixed 
point and, over a large temperature range. Their properties, excitations and 
interactions will therefore be dominated by the physics of this QCP. 

The peculiarity of BaVS3 is that, unlike in the 3D case, it is not necessary to go to the 
limit of strong interactions in the conduction band to trigger the magnetic (SDW) 
instability. The conduction band in BaVS3 in the above sense is the quasi-1D (Q1D) 
dz

2 band and, even if the intraband interactions are small to intermediate (as might be 
more appropriate for the vanadium-based physics), it still produces the Qc = 2kF 
magnetic instability by its nesting properties. In this limit, it is important that the 
broad band is considered as ¼ rather than ½ filled, i.e., that the screw axis is 
(approximately) conserved in the crystal structure below the MI transition. The direct 
Umklapp scattering is then unimportant (Barišić and Brazovskii, 1981; Emery et al., 
1982) and the 2kF SDW is degenerate with the 2kF CDW (Bychkov et al., 1966; 
Solyom, 1979; Emery, 1979). As will become apparent later, this effect turns out to be 
relevant for the discussion of nonmagnetic MI transitions observed in some 
compounds of the wider BaVS3 family. 

It is important to note that it is the change in the degree of the Q1D in the first place 
that controls the magnetic SDW instability in BaVS3. This is in contrast to the change 
in the ratio of the interactions and the overall bandwidth that are usually assumed in 
the 3D case. As the hydrostatic (or chemical) pressure in the system is increased, we 
are carried from our starting point of a Q1D dz

2 band to a more isotropic, Q3D dz
2 

band, where the 2kF correlations are wiped out and (close to T=0) one ends up in the 
more or less correlated Fermi-liquid limit of Fig. 5.6, with more or less pronounced 
local charge and spin correlations. 

In summary, the scaling diagram of Fig. 5.6 puts forward two different viewpoints of 
the same problem of a critical magnetic fluid. The first approach starts on the 
magnetic side where the system is considered as a structure of localized moments 
which (for JK>0) get screened out when the single-ion Kondo temperature is large 
enough to develop a dense Kondo effect (for JK<0 a singlet is replaced by a triplet). In 
this scheme, the quasiparticles are composite states formed between local moments 
and conduction electrons. These states form a renormalized Fermi liquid. At the QCP 
the locally correlated states, which characterize the Kondo lattice, disintegrate to 
reveal the underlying lattice of magnetic moments interacting through the RKKY 
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interaction. The second approach, the so-called spin fluctuation limit, starts from the 
Fermi gas (FG) side and regards the QCP as a magnetic transition of the local 
moments mediated by the conducting electrons, which in turn affects the Fermi 
surface. From the point of view of the FG side, the non–Fermi liquid behavior 
develops because of infinitely long-range and retarded interactions between 
quasiparticles at the QCP. 
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5.3 Fermi Liquid versus Non-Fermi Liquid behavior 

“Proximity to magnetism” in the phase diagram is not an unusual condition for many 
d- and f- electron systems which display non–Fermi liquid physics. Therefore it 
should not be surprising if this also turns out to be the case for BaVS3. This is 
especially true if we keep in mind the existence of the ICFM (or FM) phase below 
TX = 30 K at 1 bar and its possible extension to high pressures. Unfortunately, for low 
pressures, this phase lies deep in the insulating phase which makes impossible to 
follow its evolution under pressure by electrical transport measurements. 
Consequently, we can only speculate about the evolution of ICFM (or FM), in the 
insulating phase, in the vicinity of the QCP. However, if the pressure is increased 
beyond pcr we can obtain some insight into the competing state on the high pressure 
side of the QCP.  Based on the temperature and magnetic dependences of resistivity in 
the proximity of pcr, we can then decide upon the nature of the ground state in the 
insulating phase. 
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Figure 5.7: Possible scheme for the p-T phase diagram of BaVS3 in case that the insulating phase and 
the magnetic order are related. 

 

Taking into account that, in the “low pressure” region, the MI transition does not 
change its character (see Chapter 4), it is reasonable to presume that the insulating 
behavior and the related SDW magnetic order go simultaneously to zero at pcr. On the 
other hand, it seams that the ICFM/FM order is not a consequence of RKKY 
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interactions between eg moments and dz
2 electrons but rather of the direct interactions 

between the eg moments. This can be rationalized on the basis that the FM order along 
the chains is established at TX in spite of the imposed 4 V periodicity in the unit cell. 
Thus, as a working hypothesis, it can be assumed that TMI and TX are unrelated; 
consequently TX should not have a crucial role in the behavior of resistivity at pcr. 
This assumption leads to the phase diagram shown in Fig. 5.7, where the TX phase 
boundary is disregarded. Actually it will be argued later, in section 5.5, that TMI and 
TX probably cross each other at some value of the applied pressure. 

Proceeding along the lines indicated in Fig. 5.7, it should be noted that by increasing 
the pressure to 2.7 GPa, the exponent of the power law coefficient reaches n = 2, (Fig. 
5.8) revealing the Fermi liquid side of the phase diagram (FL in Fig. 5.7). Based on 
this observation, the spin fluctuation theory is applied to discuss the experimental 
results. 
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Figure 5.8: Logarithmic plot of the resistivity in BaVS3 for a pressure close to the QCP (black points), 
and in the FL phase (red points).  

 

QCPs have been studied by many authors in the framework of the spin fluctuation 
model. In the pioneering paper, Hertz (1976) showed that in quantum systems at T = 
0, static and dynamical properties are inextricably mixed. Therefore, that in contrast 
to the classical T > ω phase transitions, the value of the dynamic exponent z affects 
the static critical behavior. Technically this implies that one cannot solve the 
thermodynamic properties of the phase transition without also solving the dynamics. 
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At the QCP, the correlation time τ diverges more rapidly than the correlation length ξ 
according to the relation: 

 τ ∝ ξz   .  

Hertz identified z as an anomalous scaling dimension of time [τ] = [ξ] z, raising the 
effective dimensionality of the QCP from D + 1 to Deff = D + z, where D is the 
dimensionality of the system. 
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FM, z = 3 

D = 3  

 

T  
 

T 5 / 3  
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Table 5.1: Temperature dependence of the resistivity in the spin fluctuation theories of Hertz (1976), 
Millis (1993), Moriya and Takimoto (1995), and Loncarich (2004) for the NFL behavior as a function 
of z, the dynamical scaling dimension and D, the dimensionality of the system. 

 

There are number of ways to see the coupling between the static and dynamical 
properties at QCPs. From a general scaling point of view one may argue that, as the 
temperature is increased from zero, the system is taken away from the QCP in much 
the same way as increasing the frequency from zero takes the system away from 
either a quantum or a classical phase transition. The frequency and temperature have 
the same dimensions (at kB = ћ = 1) which implies that if the system is at a QCP, 
going to a finite frequency will affect the system in the same way as increasing the 
temperature. The two processes will be thus characterized by the same critical 
exponent z. Since the thermodynamic observables depend on the temperature, this 
further implies that the scaling relations (or homogeneity laws) for these quantities 
will also depend on z. The corresponding low-T dependences of the resistivity, for the 
spin-fluctuation models, are given in Table 5.1. 

Since spin-fluctuation theory predicts that z adopts the values of 2 and 3 at 
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antiferromagnetic and ferromagnetic QCPs, respectively, it should be possible to use z 
as self-consistent descriptor to distinguish between the AFM or FM nature of QCPs in 
three dimensions (D = 3). In addition, the results of various models are known to 
depend upon the dimension D, the dynamic exponent z, the reduced temperature (t 
=T/T*, where T* is a characteristic temperature), and a control parameter s, which is 
related to a Hamiltonian parameter such as pressure, doping or magnetic field. 
However, any kind of microscopic disorder, such as that present in all doped systems, 
is not included in these theories. In this sense, the interplay between the spin 
fluctuations and the disorder present within such systems tends to average some of the 
fine effects. For this very reason, we will begin our investigation of the QCP in 
BaVS3 with a discussion of the low quality samples (measured as ρ(300K)/ ρ(T → 0) 
at pcr). Subsequently, we will present the detailed of measurements of high quality 
samples. Throughout the course of both of these discussions we will discover some 
new, unexpected and non-standard physics in BaVS3.  

5.3.1 Disorder and the QCP 

In the last 10 years, a considerable theoretical effort has been applied to achieve a 
better understanding of the role of disorder. Independently of the precise nature of the 
QCP, it is known that the critical behavior at the quantum phase transition must be 
substantially modified if one adds quenched, nonmagnetic or magnetic disorder to the 
system. Some examples of this phenomenon are presented below.  

Works by Bhatt and Fisher (1992), Dobrosavljević et al. (1992) and Miranda et al. 
(1995) proposed that, near the metal-insulator transition, the disordered correlated 
metals contain localized moments. The change in the interactions between the 
impurity sites and the host spins can be considered as a modification of the 
characteristic energy scale, the Kondo temperature TK. The random distribution of the 
magnetic impurity Kondo temperatures may be connected with either the randomness 
of the itinerant-electron exchange couplings with local moments (Dobrosavljević et 
al., 1992), or with the randomness in the densities of conduction electron states (Bhatt 
and Fisher (1992). Indeed, both types of randomness affect the single universal 
parameter – the Kondo temperature – which characterizes the state of the single 
magnetic impurity.  

The interplay of nonmagnetic disorder and spin fluctuations near the QCP, where 
magnetism has been suppressed to T → 0 has been studied by Rosch (1999, 2000). He 
claimed that the strongly anisotropic scattering from critical spin fluctuations is 
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appreciably influenced by weak but isotropic scattering from small amounts of 
disorder. The anisotropic scattering from spin waves affects only small areas of the 
Fermi surface and therefore the transport properties strongly depend on how other 
scattering mechanisms redistribute quasiparticles and scatter them into those small 
regions. As a result of his calculations, it was determined that, in high purity-systems 
near the AFM QCP, the power-law coefficient (n) changes from 1.5 to 1 upon going 
from dirty to clean systems. 

In the model of Belitz and Kirkpatrick (2002) the QCP in itinerant ferromagnets was 
investigated. They showed that the correlation effects in the underlying itinerant-
electron system lead to an effective long range interaction between the spin 
fluctuations. It was pointed out that, in sufficiently clean systems and at sufficiently 
low temperatures the, transition should always be of the first order. The role of 
quenched non-magnetic disorder was also discussed and it was concluded that, in the 
sufficiently disordered systems, the first-order phase transition is suppressed and is 
replaced by a continuous transition. 

The purpose of this short overview of models was to point out that all of them, 
regardless of the details of the particular model, predict considerable changes in 
physical properties of the system in the proximity of QCP due to the disorder. 
Therefore, it should not be a surprise if this is also the case of BaVS3. 

One way to quantify the disorder in the system is by measuring the residual resistivity 
ratio (RRR) defined as R(300 K) / R(T≈0) when TMI is suppressed by pressure. 
Roughly, it is inversely proportional to the relative strength of impurity scattering. 

The first group of BaVS3 samples were associated with values of the RRR around 10 
at high pressures (above pcr). These samples are considered to be of low quality due to 
impurities and/or sulfur off-stoichiometry. They all display a power-law temperature 
dependence for p > pcr (in the metallic part of the phase diagram) at temperatures 
below 15 K. However, the power-law exponent n is found to be sample dependent 
and varies from 1.1 to 1.25. The data concerning this set of samples can be found in 
Appendix 2. 
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Figure 5.9: Temperature dependence of the normalized resistivity of Ba1-xSrxVS3 , x = 0.15, at three 
different pressures above pcr = 1.15 GPa.  

 

The second group of samples, in which the barium is partially substituted by the 
isoelectronic strontium, is interesting from another point of view. We have found, as 
will be discussed in detail in Chapter 6, that this substitution reduces the MI 
transitions significantly, in much the same way as the pressure does. As a result, the 
critical pressure for these compounds is lowered. However, as the substitution is 
isoelectronic, the electronic properties of the strontium-substituted compounds are 
expected to be comparable with those of impure BaVS3 (with RRRs of around 10). 
Three different concentrations of Sr (x = 0.06, 0.10 and 0.15 with RRRs ranging 
between 5 and 15), were examined and indeed, above pcr, showed the expected, low 
temperature power-law behavior. The coefficient (n) for these samples was found to 
vary from 1.13 to 1.33. The results for the highest concentration of Sr (x =0.15, RRR 
=4.4 at 1.42 GPa and 6.6 at 1.72 GPa) are shown in Fig. 5.9. Interestingly n is weakly 
pressure dependent and there is no palpable shoulder in the resistivity around 15 K; 
instead the resistivity follows the power-law behavior in temperature up to 35 K. 

As an example of a high purity sample of BaVS3, the one shown in Fig. 5.3 has, at a 
pressure just above pcr, an RRR of higher than 50 and a power-low exponent (n) equal 
to 1.5. Since both of the aforementioned groups of samples with low RRRs showed 
similar tendencies (in the high p / low T range), it can be concluded that the increase 
of disorder changes the power-low exponent from 1.5 towards lower values (~ 1.1). A 
wider study which attempts (i) to distinguish the consequences of sulfur off-
stoichiometry and the disorder due to the isoelectronic substitution on the power-low 
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exponent, and (ii) to find the functional dependence of the power-law exponent and 
the RRR, is currently in progress. 

5.3.2 Magnetic field and the QCP 

The magnetic field is another parameter which is expected to have an 
important influence on the behavior of the system. Therefore the resistivity has been 
measured as a function of both the field strength and the temperature. The sample 
chosen for the presentation of the results in this section belongs to the first group of 
samples, mentioned above, associated with RRRs (p>pcr) of around 10. The reason 
for this choice, which was alluded to earlier, is that the disorder present in the impure 
samples tends to average some of the fine features of the measured data and hence 
simplifies their initial interpretation. 
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Figure 5.10: The Arrhenius plot of the resistivity at 1.91 GPa for several magnetic fields shows the 
suppression of the insulating phase by increase of the field.  
 

The most spectacular consequence, independent of the sample quality, is observed at 
the pressures just below pcr, when the system is still in the insulating phase. By 
applying a magnetic field under these conditions, the insulating behavior is “switched 
off”. The results for one of the measured samples, at the pressure of 1.91 GPa, are 
shown in Fig. 5.10. The resistivity changes by two orders of magnitude upon 
increasing the magnetic field from 0 to 8 T. The suppression of the insulating phase 
is not accompanied by the suppression of the MI transition temperature to 0 K. As 
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shown on Fig. 5.11a, at these pressures in the presence of a magnetic field, the MI 
transition becomes ill defined. That is, the peak in the logarithmic derivative of the 
resistivity (whose position defines TMI), becomes weaker and weaker with the increase 
of the magnetic field. However, the value of TMI, as well as the width of the peak, is 
almost independent of the applied magnetic field. 
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Figure 5.11: (a) The logarithmic derivative of the resistivity at 1.91 GPa for four magnetic fields. By 
applying the magnetic field, the peak is diminished without changing its position or its width (in 
temperature). (b) Low temperature part of the 12 T and 1.91 GPa resistivity curve reveals the power-
law temperature dependence below the shoulder which persists at 15 K.  

 

The interpretation of the behavior of the insulating phase in the magnetic field would 
require a detailed microscopic description of the phase transition, which is still 
lacking. Nevertheless, based on analogy with organic conductors that exhibit a spin-
Peierls transition that also disappears in high magnetic fields, Kezsmarki (2003) has 
suggested the same mechanism for BaVS3. This analogy is also consistent with the 
leading role given here to the SDW correlations in the quais-1D dz

2 band. 

At 8 T (and 1.91 GPa) the system is metallic in the whole temperature range. The low 
temperature part of the resistivity in a magnetic field of 12 T, at this same pressure, is 
shown in Fig. 5.11b. The power-law temperature dependence of the resistivity is 
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observed in the range of 2 to 15 K with the coefficient n ~ 1.1, which corresponds to 
values measured with zero field above pcr. Closer examination of the low temperature 
behavior of the resistivity clearly reveals the shoulder around 15 K.  

The suppression of the insulating phase can be also followed by measuring 
magnetoresistance at low temperatures (Fig. 5.12). At the lowest measured 
temperatures (2.6 and 4.4 K), the system is still in the insulating phase while the 
applied field is absent. Increasing the magnetic field to ~ 8 - 9 T causes the resistivity 
drop for 99 % and 96 % respectively, transforming the system into a metal. Above 8 - 
9 T the magnetoresistance shows a well pronounced upturn at temperatures above TMI 
(~ 7.5 K at 1.91 GPa). A similar behavior, although much less pronounced, is 
observed at 10 and 15 K with the minimum occurring at fields of 8.5 and 10 T, 
respectively. At temperatures higher than 15 K (the highest measured temperature 
was 45 K) the resistance is decreasing with B in the whole of the measured field 
range. It should be noted that all measured samples have a comparable suppression of 
the insulating phase by magnetic field but some of them do not show a positive upturn 
in the magnetoresistance at higher fields (around 9 T), see Appendix 2. 
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Figure 5.12: Magnetoresistance for several temperatures at a pressure of 1.91 GPa. The left scale 
(black) corresponds to the two lowest temperatures (2.6 and 4.4 K marked by theblack legend) while 
the right (brown) scale is related to temperatures (denoted by brown legend) above TMI (~ 7.5 at this 
pressure). The magnetic field was swept in both directions as indicated by the arrows. 
 

As described above, the dominant effect of the magnetic field at pressures just below 
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pcr is the modification and the suppression of the long range order characterizing the 
insulating phase. If however, the pressure is increased above pcr the 
magnetoresistance reveals the scattering processes in the NFL regime. In general, a 
simple way to distinguish spin from orbital effects is by the sign of the 
magnetoresistance. The suppression of the spin scattering of the conduction dz

2 
electrons (and in particular of their 2kF backward scattering), by ordering the spins 
with the homogeneous external magnetic field, reduces the amount of scattering and 
the resistivity decreases. On the contrary, the positive contribution to the resistivity is 
usually due to orbital effects. Here we shall adopt this point of view noting that the 
interplay of the spin and orbital effects can also lead to more complicated effects, 
which will be ignored in the discussions that follow. 
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Figure 5.13: (a) The relative change of resistivity at 2.03 GPa as a function of the magnetic field for 
three different temperatures. Arrows indicate the direction of the change of the magnetic field. (b) 
Resistivity as a function of temperature at 2.035 GPa for several magnetic fields. The low temperature 
part of the resistivity obeys the power-law temperature dependence R = R0 +ATn. 
 

In Fig. 5.13a, the low temperature (2, 5 and 7 K) magnetoresistance measured at 2.03 
GPa (just above pcr) is shown. The behavior observed therein discloses what we 
believe to be the competition between the spin and orbital contributions. At low fields 
the main contribution comes from impeding the scattering on spins. At fields around 
6.5 T the curves pass through minima due to the appearance of the positive orbital 
term. The magnetic field was varied in both directions as marked by arrows. At 12 K 
a weak minimum is still present in the magnetoresistance (data not shown in Fig.5.13) 
but further increase of the temperature weakens the positive orbital contribution to the 
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magnetoresistance and the effect of the magnetic field on the resistivity is always 
negative in the measured field range. The temperature at which the minimum 
disappears can be estimated from the temperature dependence of the resistivity for 
several fields shown in Fig. 5.13b. The 12 T curve crosses all the other curves at the 
temperature of 15 K, which means that below this temperature there is a minimum 
but above it the magnetoresistance is always negative. It should be pointed out that in 
the temperature range 1.5 - 15 K the coefficient n is around 1.23, varying by less then 
5% as a function of magnetic field. This variation is within the error bar of the 
measurement.  

All of the results presented thus far can be tentatively interpreted in the framework of 
the phase diagram shown in Fig. 5.7. In the region of pressures close to pcr, the QCP 
governs the behavior of the system. This can be described by the dz

2-eg models 
mentioned above, in which the behavior close to the QCP is tuned by pressure, 
magnetic field, and impurities. The impurities constitute discrete, random 
perturbations which confirm their importance in the physical properties of the system 
in close proximity to the QCP. Their presence tends to average some of the fine 
features so that measurements on impure samples can be quite informative. However, 
the treatment of the microscopic effects of the disorder, within the aforementioned 
theoretical methods, is difficult. In contrast, the magnetic field, like pressure, is a 
parameter of the system which changes in a continuous way (without inducing 
disorder in the system). In the context of experiments in which the strength of the 
field is varied, the only possible origin of a discontinuity/singularity in the physical 
properties of a pure sample is the system itself. As this situation is comparatively easy 
to handle theoretically, it becomes important to study (very) clean systems. 

5.3.3 Clean BaVS3 and the QCP 

Two samples, which fulfilled the criteria for the high quality samples based upon spin 
susceptibility and resistivity measurements, (discussed in Chapter 4), were chosen for 
the purpose of obtaining a deeper understanding of the nature of the QCP. Their high 
RRRs ~ 50 just above pcr confirm the high quality of the samples. Both samples exibit 
the shoulder around 15 K in the resistivtiy measurements preformed at 2.04 GPa 
(Figs. 5.2 and 5.3). In order to avoid possible confusion, all of the subsequent results 
presented in this chapter are for the sample denoted as Nr. 00. The reader may rest 
assured, however, that all facets of the measurements are reproducible. 

According to the results for models presented in Table 5.1, the system is 3 
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dimensional and AFM in the insulating phase. Notice that the fourfold SDW can be 
regarded, to some extent, as the AFM doubling of the high temperature unit cell with 
2 V sites. The 3 dimensionality of the resistivity in the metallic phase close to the 
QCP can be confirmed indirectly, at least above 15 K, by comparing the measured 
high temperature parts of the resistivity curves at 1 bar and 2.7 GPa (Chapter 7, Figs. 
7.1 and 7.2). This comparison shows that the high temperature behavior remains 
virtually unchanged in response to a strong increase in the pressure. The small 
difference in the resistivity slopes can be attributed to the change of the bandwidth as 
a function of pressure. The 2.7 GPa the resistivity curve is smooth in the whole 
temperature range (this is consistent with the TEP data under pressure as shown in 
Chapter 7) and there is no reason to suppose that this feature would change as the 
system is cooled. From the anisotropy measurement of the electrical resistivity at 1 
bar we know that at this pressure the electrical properties are fairly isotropic (ρab /ρc ∼ 
3.8) and by the above reasoning we may conclude that this anisotropy ratio remains 
essentially unchanged in response to increasing pressure (the experimental 
confirmation is in progress). On the other hand, given the absence of the MI transition 
at high pressures, it is presumably the case that the 3D nesting of the dz

2 band 
becomes imperfect under these conditions. 
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Figure 5.14: Pressure dependence of the resistivity exponent n. The dashed line is to guide the eye. 
 

Let us examine the pressure dependence of the low temperature resistivity coefficients 
n, A, ρ0 in more detail. The qualitative theoretical phase diagrams (Millis, 1993; 
Rosch, 2000; Continento, 1989; 1993; Continento et al., 1996; Ioffe, 1995) predict 
three different regions on the FL side of the phase diagram. In the first (low 
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temperature) region, the FL behavior appears. The boundary line with the second 
region varies as T1-2 = a1-2 (p-pcr)z/2, which implies a linear behavior as a function of 
pressure in the case of AFM. The second region is a quantum–classical crossover 
regime, where the energy of the fluctuations becomes comparable with kBT. In the 
third region, at temperatures above T2-3 = a2-3 (p-pcr)z/D+z-2 (also linear with pressure in 
case of a 3D AFM), the system is a NFL. The low temperature measurements and the 
resulting values of n(p) in BaVS3, shown in Fig. 5.14, suggest a rather different 
behavior. That is, it seems that the first (low temperature) region does not exist and 
the NFL is continuously transformed to the FL. At the pressure closest to the pcr of 
2.03 GPa, n is equal to 1.51 ± 0.01 and is monotonically increased, with increasing 
pressure, to the value of 2.00 ± 0.05 at 2.7 GPa. This behavior is not unique for 
BaVS3, it is also observed in other systems such as: U2Pt2In and U3Ni3Sn4 (Estrela et 
al., 2001a; 2001b), UGa3 (Nakashima et al., 2001), CeIn3 (Knebel et al., 2002), SmB6 

(Gabani et al., 2003). One possible reason for not seeing the FL at low temperatures is 
that it lies out of our experimental range; due to technical reasons the lowest measured 
temperature was limited to 1.7 K.   
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Figure 5.15: (a) Pressure dependence of the prefactor A (red squares) and the “residual” resistivity ρ0 
(black cirles) as the results of the fits ρ = ρ0 + ATn  in the temperature range 1.7 < T <15 K. (b) 
Quasiparticle- quasiparticle scattering cross section A2 = (ρ(T) - ρ0) / T2 vs. temperature for two 
pressures; the first at 2.04 GPa close to the critical pressure and the second at 2.7 GPa in the FL regime. 
The dashed lines are guides to eye. 
 

The crossover from the NFL to the FL regimes is also clear when seen through the 
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coefficient A(p), as shown in Fig. 5.15a. When the material is driven away from the 
QCP, the coefficient A decreases. The value of A at critical pressure is 0.42 µΩcm/Kn 
and as pressure is increased it saturates to the FL value of 0.14 µΩcm/K2. This latter 
value is comparable to the numbers found in other systems (e.g., CeRu2Ge2 at p = 9.1 
GPa A = 0.23 µΩcm/Kn or MnSi at p = 1.5 GPa, A = 0.18 µΩcm/Kn). Similar, strong 
pressure dependence of the prefactor A in the critical region is also found in the CeIn3 
(Knebel et al., 2000).  

The second way of analyzing the pressure data (p>pcr) is by fixing the value of the 
power law coefficient to n = 2 (FL) and fitting A2 as a function of pressure and 
temperature. In the FL (ρ = ρ0 + A2(T) T2), the coefficient A2 is a measure of the 
strength of electron-electron interactions. Just above the critical pressure towards the 
lower temperatures, A2(T, 2.03 GPa) exhibits a divergence (Fig. 5.15b), as predicted, 
for example, in spin-fluctuation theory, providing a clear indication of the NFL 
regime. Similar behavior is often found for the f-electron systems (Knebel et al., 
2002), but it is quite rare with 3d-electrons. In contrast to the 2.03 GPa data, the A2(T, 
2.7 GPa) at 2.7 GPa remains more or less constant in the low temperature region, as is 
expected in the FL regime. The value of A2 gives an estimate of the pressure variation 
of the effective mass m* assuming that m* ∝ A2

1/2 (∝ specific heat coefficient γ ), 
which is valid far from the critical pressure, pcr. The effective mass is increased by a 
factor of 2 as a consequence of the anomalous scattering observed in the NFL regime.  

Finally, the commonly ignored residual resistivity ρ0(p) certainly warrants our 
attention. In all models, to the best of our knowledge, its discussion is omitted. 
Importantly, however, it is a quantity which by its definition describes the behavior of 
the system at the temperature of absolute zero. In the Fermi gas, FL or some other 
model which describes a metallic state, ρ0 simply arises from the (local) changes of 
the periodic crystal potential caused by imperfections. It is certain that by some 
external parameter (e.g., pressure or magnetic field) it is impossible to change the 
number and/or configuration of the extrinsic defects in the material. However the 
results presented in Fig. 5.15a clearly reveal a strong pressure dependence of ρ0 and 
indicate that its origin is different than the scattering on static impurities. That is, there 
is an intrinsic, static or dynamical disorder in the system at low T. 

In the FL phase ρ0(2.7 GPa) = 7.25 µΩcm, and its value is related exclusively to the 
number of defects. Therefore, it is useful to check the RRR which is about 80 at this 
pressure confirming the high quality of the sample. As the QCP is approached from 
above, the system enters into the critical regime in which quantum fluctuations are 
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present at absolute zero. They provide extra scattering processes (at T =0) and 
therefore increase ρ0. It should be noted, in this respect, that the zero-point motion of 
harmonic modes does not contribute to ρ0. Thus for its large value in the vicinity of 
the QCP, anharmonic fluctuations should be taken into account. The scaling of ρ0 and 
A with pressure shows that the same physics is reflected in both parameters, 
supporting the idea of linking the intrinsic fluctuations with behavior of ρ0. It should 
be noted that the decrease of the ρ0 with pressure is also common for both the dirty 
BaVS3 samples and for Sr substituted samples (such as those shown in Fig. 5.9). 
Comparable behaviors of the ρ0 with pressure can be also found in other systems like 
CeIn3, U3Ni3Sn4, U2Pt2In, SmB6. Therefore, to understand the properties of the QCP 
it is of crucial importance to understand the origin of ρ0. The increase of ρ0 in the 
NFL regime can be used to determine the nature of the QCP. 
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5.4 New features in the vicinity of pcr 

Taking into account the results presented thus far, we could conclude that the phase 
diagram suggested in Fig. 5.7 provides a suitable general description of the basic 
properties of BaVS3. Naturally, based upon the latter part of the previous discussion 
we may wish to replace the question mark by a continuous crossover from the NFL to 
the FL, with n varying form 1.5 to 2, which would be in agreement with the scaling 
diagram of Fig. 5.6. In this scenario, the insulating phase and the magnetic order are 
related and, as a consequence, the collapse of the insulating phase means the magnetic 
QCP is positioned at pcr. The spin-Peierls coupling to the lattice is not explicitly 
invoked in this scenario. The indication that something more complicated than the 
simple scaling may take place is already visible in the transport properties of the 
system at 1.76 GPa (Fig. 5.16), the same pressure at which the MI boundary starts to 
collapse. 
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Figure 5.16: The logarithm of the resistance (left scale, black) and the thermoelectric power (right 
scale, pink) as a function of 1/T under a hydrostatic pressure of 1.76 GPa. The black scale corresponds 
to the logarithm of the resistance marked by black dots and lines while the pink scale is related to the 
thermoelectric power marked by the pink dots (the pink line is a guide to the eye). The logarithmic 
derivative of the resistance, marked by the solid green line, is used to determine TMI. The heating and 
cooling phases are denoted by red and blue arrows, respectively. 

As the MI transition is traversed in temperature at p=1.76 GPa, hysteresis appears in 
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both resistance and thermoelectric power (Fig. 5.16). Until the observation of this 
behavior, we had considered the transition to be of the second order, and associated 
with the magnetic QCP at pcr. However, the existence of hysteresis suggests that it 
becomes first order in the pure samples. The transition temperature at p=1.76 GPa, 
determined simultaneously from the logarithmic derivative of resistance and the 
upturn in the thermoelectric power, is TMI ~ 18.5 K. With further increase of pressure, 
the MI phase boundary collapses, within 0.2 GPa, as in the case of the impure 
samples, but remains first order. Indeed, in temperature dependent measurements, the 
hysteresis becomes more and more pronounced as pcr is approached and TMI is 
suppressed to lower temperatures. This is clearly seen by comparing the resistance 
curve at p=1.76  GPa (Fig. 5.16) with the corresponding resistivity curve at at p=1.9 
GPa (Fig. 5.17), when both are plotted over the same temperature range. 
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Figure 5.17: The Arrhenius plot of the resistivity at pressure of 1.9 GPa. From the logarithmic 
derivative (not shown), TMI is estimated to be 10 K. The red and blue arrows denote the envelope 
warming curve and envelope cooling curve, respectively. Green arrows indicate the temperatures at 
which the cooling was stopped and the heating was begun. 

 

The cooling - heating cycles were repeated several times from 17 K down to 4 K and 
each time the curves closed a loop (Fig. 5.17). If cooling is stopped before reaching 4 
K and heating is started (indicated by green arrows) the resistivity stays more or less 
unchanged until it joins the heating curve initiating a minor hysteresis loop in the 
absence of external magnetic field. This behavior (Chaddah et al., 1992) is 
characteristic for phase coexistence in the vicinity of a first order phase transition.  
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It is tempting to reconcile the two behaviors by the coupling of the magnetic SDW 
order to the lattice. On one hand, the hysteresis is a clear sign of the first order phase 
transition. On the other hand, the QCP at pcr, marked by the NFL behavior (both in 
pure and impure samples), is usually associated with a second order phase transition. 
It should be pointed out that in the disordered samples no trace of hysteresis was 
found and the phase boundary looks as if it were second order. However, before 
entering into considerations about the possible origin of the hysteresis, and their 
impact on the understanding of the physical properties of BaVS3, let us focus on some 
additional experimental facts revealing further relevant properties of the system.  

5.4.1 Hysteresis, relaxation times and non-linear transport  

5.4.1.1 Characteristic energies in the system 

In this section, we will present the results from the magnetotransport measurements 
on the high quality samples. The first feature discussed comes from the proximity of 
the QCP and the others follow from the relevant energies in the system. It is useful to 
rewrite Eq. (5.1) in a different form,  
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which allows the definition of a characteristic energy of the system 
kBT0=kB(ρ0/A)1 / n . T0 gives an idea of the electron energy scale involved in the NFL 
or the FL. The calculated value for T0 at the critical pressure is ~ 11 K, and it remains 
unchanged by increasing pressure (Fig. 5.18). The same order of the characteristic 
temperature ~ 15 K could be extracted from Fig. 5.15b (approximately corresponding 
to the beginning of the eye guide lines). At these temperatures, the strength of the 
electron-electron interactions, associated with A2 (see Fig. 5.15), shows an upturn or a 
saturation (NFL or FL), depending on the pressure. This temperature is of the same 
order as TMI (~ 18 K) at the 1.76 GPa where the phase boundary collapses with 
increasing pressure. It is also interesting that these temperatures are comparable with 
the temperatures (10 to 15 K) unto which the power law fits extend in the NFL phase, 
corresponding to the position of the shoulder in resistivity (Fig. 5.11b) or to the 
temperature at which the magnetoresistivity changes slope from negative to positive 
(Fig. 5.13). All these facts suggest us that at, low temperature, the behavior of the 
system in the magnetic field is characterized by energies of the order of 10 K, not 
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included in the straightforward spin-Peierls model. 
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Figure 5.18: Pressure dependence of the characteristic energy of the system T0 (red circles on the main 
figure). The dashed line is a guide to eye. The inset is the remainder of the phase diagram. Tx is marked 
by the yellow point, the MI phase boundary by the red line, and NFL-FL crossover by the squares 
changing the color from light to dark grey symbolizing the evolution of the power – law exponent n 
from 1.5 to 2. 

5.4.1.2 Hysteresis in the magnetic field and a characteristic time scale 

Since the characteristic spin (µBH) energy of a magnetic field of a few Tesla is of the 
same order (10T is approximately 8K) it is should be expected that such fields 
perturb the system. Pursuing this idea further, it should be recalled that, in impure 
samples, the moderate magnetic field of 8 T at 1.91 GPa suppresses the MI transition. 
This is accompanied by a reduction of the resistivity by two orders of magnitude (Fig. 
5.12) and, a sample-dependent positive upturn at higher fields (around 9T). Similar 
effects are also observed on high quality samples but, in those cases, the negative 
magnetoresistance is accompanied by a large hysteresis (Fig. 5.19).  

Several other interesting effects were also observed. In a manner reminiscent of the 
observed hysteresis as a function of temperature (e.g., Fig 5.17), minor hysteresis 
loops are also present in isothermal plots of resistivity vs magnetic field (an example 
is shown later in Fig 5.23) proving coexistence of the phases at fields below 9T. 
Above this field the magnetoresistance is positive and hysteresis is absent, 
indicating that the spins are ordered and only one phase is present. 
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Figure 5.19: Relative change of the resistivity at 1.9 GPa and at 4 K as a function of the magnetic field 
strength. The direction of the evolution of the magnetic field is indicated by green arrows. The field 
sweep was stopped several times as indicated by black, red and blue arrows and the relaxation with 
time of the system was observed. At places indicated by the red and blue arrows the time dependence 
of resistivity is presented in the two insets (red and blue curves, respectively).  

 

If the sweep of the magnetic field is stopped the system relaxes on time scales of ~50 
seconds. This is shown in the insets of Fig. 5.19, for two different magnetic fields, at 
7.15 T coming from the lower field and at 4.09 T after decrease of the field. These 
measurements uncover the kinetic aspects of the phase transition that are related to the 
movement of domains. This new time scale imposes the definition of the measuring 
protocol. All the measuring instruments need a fixed responding time and therefore it 
is important to know how a certain point was recorded. To keep the interpretation of 
the data consistent (and as simple as possible) the same protocol for resistivity 
measurement was consistently respected: after setting the desired value for the d.c 
current, a period of 2 seconds was allowed to elapse before the voltage was read. The 
polarity of the current was then changed and, after a further 2 seconds, the voltage 
was read again. From these two points in the I-V graph the resistivity was determined 
(more details are given in Appendix 1). 
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5.4.1.3 Current instability 

In addition to the system’s sensitivity to pressure, Sr substitution as well as impurities 
and magnetic fields, Fig. 5.20 depicts one more peculiarity. The results shown were 
obtained by driving the sample close to pcr by setting the pressure at 1.9 GPa and then 
fine-tuning it with the magnetic field, towards the metallic state. As expected (from 
Fig. 5.19) the MI transition is still present, with a decreased value of resistivity, at a 
magnetic field of 6T. At 12T the system is supposed to be metallic in the whole 
accessible temperature range, but this turns out to be only partially true.  
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Figure 5.20: Resistivity as a function of temperature and current for three magnetic fields, at a pressure 
of 1.9 GPa. For the two lowest fields, no current dependence was observed. At 12.7 T electrical 
properties differ if the resistivity was measured keeping the DC current as low as possible (20 - 200 
µA) or at higher current of 500 µA.  
 
If the resistivity is measured by a d.c current higher than 500µA, the recorded curve       
(Fig. 5.20) shows a shoulder around 15 K with the expected low temperature power-
law dependence. On the other hand, if the current is lowered as much as possible 
(held between 20 and 200 µA, fixed by a good signal to noise of the measurement), 
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the resistivity reveals a new feature. Around 25 K the recorded curve deviates from 
the metallic behavior with a broad upturn but never shows the singularity of the MI 
transition. It is unexpected that the 12 T low-current curve deviates from metallic 
behavior at higher temperatures shown by the curves taken at lower fields (Fig. 5.20). 
It is hard to connect this feature with any of the curves recorded earlier in BaVS3. It 
appears as if the system swings between the insulating and metallic state and is 
driven, by a high enough current, into the metallic state. 
The observed sensitivity to the strength of the direct current motivated the 
measurement of the dV/dI characteristic as a function of the applied current I for 
several values of the magnetic field B. In contrast to the d.c. measurements described 
in connection with Fig. 5.19, the a.c. method is used here. The frequency of the main 
a.c. current is taken to be in the range 2 Hz -10 Hz and superimposed to it is a much 
smaller current of 17.5 Hz. Both corresponding times are small with respect to the 
overall relaxation time of some 50 s, determined in Fig. 5.19 (as are the times 
involved in the d.c. measurements). However the time scales used in the two types of 
measurements cannot be brought in full correspondence and therefore the two sets of 
data should not be compared too closely. 
The results of the a.c. measurement are shown in Fig. 5.21. On the abscissa is the 
value I of the main current as it changes in time, while the small 17.5 Hz signal is 
used to determine dV/dI for the chosen mesh of I values. The corresponding mesh of 
dV/dI values is connected by fine black (red) lines. Surprisingly, already at 0 T the 
recorded curve does not show a constant Ohmic trace, but rather a V-shaped 
behavior. The second significant feature in Fig. 5.21 is the appearance of abrupt and 
random jumps in dV/dI for the fields between 0 T and 9 T. It is interesting that the 
jumps persist after a number of cycles in I and after a sufficient time the up and down 
jumps drive the system back, close to any value observed previously, "closing" the 
loop. Since the jumps are apparently stochastic the same loop is not expected to repeat 
twice. By increasing B, the deviation from the Ohmic behavior is observed to change 
character at around 9 T, the same field at which the hysteresis closes and the 
magnetoresistance shows an upturn (Fig. 5.19 and Fig. 5.23). The V shape in Fig.5.21 
is replaced by a peak centered at I = 0 A, and the jumps do not occur any more. As the 
appearance of jumps is apparently associated with the movement of the domains this 
indicates the absence of domains above 9 T. The strength and the frequency of the 
current thus appear to be powerful tools in the investigation of the structure and the 
dynamics associated with the first order transition in BaVS3. 
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Figure 5.21: The dV/dI characteristics, at T= 4 K, as a function of current for several magnetic fields, 
showing the instability of the system to the current. The black and red colors are related to the direction 
of the change of the field before recording the characteristic. 
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5.4.1.4 Memory effects 

The hystereses in temperature below 15 K, and in magnetic field below 8 T, 
correspond to behaviors of the system which are history dependent. Therefore, it is 
important to know at which temperature and in which direction (increasing or 
decreasing) the field has been changed before a curve is recorded. An example of this 
history dependence is shown for the resistivity at the pressure of 1.945 GPa, in        
Fig 5.22. Firstly, the system was cooled from high temperatures in the field of 12 T 
showing a metallic behavior in the whole measured temperature range, due to the 
suppression of the MI transition by the magnetic field. A shoulder in resistivity is 
observed at 15 K. Below this temperature, the resistivity at 12 T is higher than the 
resistivity at 9.88 T, which is in agreement with the upturn in magnetoresistance 
which occurs independently of the pressure at 4 K and 8T (Fig. 5.23 in shown Section 
5.4.1.5). 

The next three curves, marked by numbers 2, 3 and 4 in the upper panel of Fig. 5.22, 
were recorded after changing the field at a temperature above 15 K and measured only 
while the system was cooled. The only exception was the 9.88 T curves for which the 
full temperature cycles were repeated several times.  

All of the other curves in the lower panel of Fig. 5.22, denoted by numbers from 5 to 
16, were recorded after firstly, changing the magnetic field at low temperatures ( ~ 1.5 
K), heating to above 15 K and then cooling back to 1.5 K. The curves numbered from 
5 to 10 were taken after a decrease of the magnetic field, while the curves numbered 
from 11 to 16 were taken after an increase of the magnetic field. To clarify this 
somewhat complex protocol with an example we can follow the course of one 
particular cycle. After cooling the system to 1.5 K at 4 T (green curve marked by 
number 6) the magnetic field was decreased to 2 T (the jump in resistivity is indicated 
by the vertical green arrow). The temperature was then increased to 20 K (red curve 
number 7), reduced back to 1.5 K (red curve number 8) and, finally, the field was 
changed once more (indicated by the red vertical arrow). 

At low magnetic fields (up to 4 T) small jumps in the resistivity curves are noticeable. 
This is probably a consequence of domain kinetics and thus may be connected with 
the similar jumps observed in magnetoresistance measurements (Fig. 5.19) or current 
dependent measurements (Fig. 5.21). It should be pointed out that the temperature of 
the 15 K, temperature at which the hysteresis closes and the shoulder appears, resets 
the system anew for the history dependence. 
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Figure 5.22: The upper and lower panels show, on different scales, the same temperature dependence 
of resistivity for several magnetic fields at 1.945 GPa. The numbers on the curves, together with the 
matching colored arrows indicate the respective order and direction of the temperature change under 
which the correspondingly colored curve was recorded. The vertical arrows are guides for the eye, also 
indicating the temperature at which the magnetic field has been changed (the color of the arrow 
matches the color of the cooling curve and the arrow points to the beginning of the next heating curve). 
For easier orientation, the legend contains two numbers, the first bold one, indicates the strength of the 
magnetic field at which the temperature cycle was recorded and the second italic number (in 
parentheses) gives the strength of the preceding field. 
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5.4.1.5 Magnetoresistance as a function of pressure and temperature 

In Fig. 5.23, the magnetoresistance at 4 K (the temperature of liquid Helium which 
easy to realize and stably maintain) is shown for several pressures. The pressure range 
of interest starts at 1.76 GPa, where the MI phase boundary begins to collapse and the  
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Figure 5.23: The relative magnetoresistance at 4 K for the pressures below (upper panel) and above 
(lower panel) pcr. The minor hysteresis loop is shown at the pressure of 1.93 GPa (similar loops were 
also observed at other pressures). The magnetic field was changed in the direction indicated by arrows. 
For p>1.9GPa, the dashed area indicates the characteristic field (energy) of the system (independent 
of pressure) at which the hysteresis closes and the magnetoresistance has an upturn. 
 
hysteresis begins to emerge (either by increasing the pressure or by switching on the 



Chapter 5: Crossover from the Non-Fermi liquid to the Fermi liquid state____117 

_____________________________________________________________________ 
  

magnetic field) and extends to 2.7 GPa, where the resistivity, below 15 K, has a 
power law temperature dependence with the (FL) exponent n = 2. 

All the curves (except the 1.76 GPa curve for which the MI transition is not 
completely suppressed either at 8 T or 12.7 T) share a common behavior: an upturn 
between 8 and 9 T. (marked by the dashed area in Fig. 5.23). This is the very same 
value of the field at which the hystereses close, a fact that is independent of whether 
the magnetoresistance is related to the suppression of the insulating phase or is 
measured above pcr in the metallic phase. This indicates that the energy corresponding 
to ~ 8 T is the characteristic energy of the system both above and below pcr. 

Interestingly the hystereses also close at zero magnetic field which was checked by 
changing the polarity of the field and thereby measuring the magnetoresistance in the 
range of -12.7 to 12.7 T. The recorded curves (not shown) have a similar to shape the 
hysteresis reported in the magnetotransport study of the AFM-FM transition by Singh 
et al. (2002). The direction of the field variation in the hysteresis loop is indicated by 
arrows.  
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Figure 5.24: Isothermal magnetoresistance curve recorded at different temperatures and pressures. (a) 
The 2 and 4 K curves at 2.04 GPa. (b) Curves taken at 2.75 GPa for several temperatures. The cyan 
arrow indicates the position of the dip for various temperatures.  
 

The existence of the minor hysteresis loops within magnetic sweeps was checked at 
several different pressures. Since the recorded curves resemble each other, only one 
example in-between the envelopes of the 1.93 GPa (green) curve is shown in  
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Fig. 5.23. It is interesting to notice that, already at the pressure of 0.1 GPa above pcr, 
the magnetoresistance is positive and it does not show any sign of hysteresis. This 
behavior remains unchanged to the highest measured pressure of 2.75 GPa. 

The magnetoresistance was also recorded as a function of temperature at fixed 
pressure. Generally, the effects of the magnetic field are diminished as the 
temperature is increased (shown in Fig. 5.24b). Above 15 K the relative magneto-
resistance is small and negative for all pressures. The examples of the low 
temperature behavior (< 15 K) of the pressure just above pcr (2.04 GPa) and in the FL 
phase (2.75 GPa) are shown in Fig. 5.24. The 2.75 GPa curves reveal the broadening 
of the dip around 8 T and its shift to higher fields with increasing temperature (as 
indicated by the cyan-colored arrow). 
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5.4.1.6 Power law parameters and the magnetic field  

In Fig 5.25, the magnetic field dependences of all power-law parameters are presented 
for two pressures (2.04 and 2.14 GPa) in the proximity of pcr, in similar way to that 
done previously for the pressure dependences shown in Fig. 5.14 and Fig. 5.15. At 
2.14 GPa the parameters are weakly dependent on the magnetic field. On the contrary, 
just above pcr, the coefficient ρ0 (at 2.04 GPa) assumes a B dependence identical to 
that of ρ measured at a higher temperature (e.g. at 4 K, Fig. 5.24), nicely followed by 
the coefficient A (as was also the case for pressure). Already from the pressure 
dependence of the parameters it could be observed that the increase of the exponent n 
is accompanied by the decrease of the coefficients A and ρ0, in a similar fashion to 
that observed in their magnetic field dependencies. The presented curves were 
recorded only during the cooling of the system and therefore the existence of 
hystereses can not yet be commented upon. 
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Figure 5.25: Magnetic field dependencies of the resistivity power-law exponent n (left panel), 
prefactor A (squares, right panel) and the “residual” resistivity ρ0 (circles, right panel) resulting from 
the fits ρ = ρ0 + ATn  for two pressures (p=2.04 and 2.14 GPa). 
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5.5 Ferromagnetic versus Interchain-Compensated-Ferro-

Magnetic instabilities at lowT/high P 

Taking into account the high-pressure results, presented above, the phase diagram 
proposed in Fig. 5.7 should obviously be reconsidered. Importantly, the presence of 
hysteresis in the vicinity of pcr has important consequences on the possible scenarios 
for the transition. Interestingly, hysteretic behaviors in temperature and magnetic 
field, similar to those found at pcr in BaVS3, have also been observed in 
Ce(Fe0.96Al0.04)2 (Singh et al. 2002), a system with a first-order transition from 
ferromagnetism to antiferromagnetism. This gives a hint that something similar could 
also possibly take place in our system of interest. For example, the minor hysteretic 
loops as well as history dependent effects are similar between the two systems. In this 
respect, it should be remembered that the chain spins are nearly frustrated on the 
orthorhombic lattice in BaVS3 and that the transition therein thus probably concerns 
the ordering of the chain spins between chains (Mihaly et al. 2000).  

The possibility of the ICFM – FM first order transition at pcr is supported by the 
magnetic susceptibility measurements (Appendix 2, Yamasaki et al., 2000) at ambient 
pressure from which we know that the 30 K transition can be either FM or ICFM, 
depending on the sample quality. Even more, those results give the impression that 
any type of disorder or sulfur deficiency prefers the full FM arrangement. From all 
these arguments it seems reasonable to assume that these phases are energetically 
close to one another and that any kind of perturbation, such as magnetic or electric 
field, can switch the system from ICFM to FM through a first order phase transition. 
The lack of the hysteresis in the impure samples can be attributed to disorder, which 
already at ambient pressure can cause FM below 30K. For this reason, the ICFM - FM 
phase transition does not occur at pcr in the impure samples.  

An alternative explanation for the appearance of hysteresis at pcr could be the 
transition from the ICFM to the paramagnetic state. However, because of the shoulder 
in resistivity that is observed at pressures above pcr and at temperature around 15 K, 
this scenario is unlikely. That is, knowing that the high temperature phase is 
paramagnetic, the simplest explanation for this shoulder (for p ∼ pcr) is some kind of 
FM order below 15 K. Furthermore, as previously discussed, this is exactly the same 
temperature at which the MI phase boundary deviates from its linear pressure 
dependence and collapses. The logical conclusion is that the collapse of the insulating 
phase and the shoulder in resistivity for p > pcr, are connected. As long as there is a 
larger characteristic energy in the system, like the insulating charge gap, the FM order 
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is rearranged (only) between chains, driving the system to ICFM. This leads us to the 
conclusion that the ICFM order in pure samples is a consequence of the metal-
insulator transition. In its absence, the system prefers the full FM order. 

An additional argument for the FM order above pcr and below 15 K comes from the 
investigations of the sister compounds Ba1-xSrxVS3 and BaVSe3. The presence of Sr 
suppresses the TMI transition in a similar manner to the pressure (Chapter 6) and, for 
x=0.15, the transition temperature is 50 K at ambient pressure. Interestingly, this 
transition does not have a strong impact on the susceptibility, which remains Curie-
like close below the transition, and the system shows the FM order at 20 K. It was 
already shown that in these compounds are associated with quite high levels of 
disorder (RRR ≈ 10 like in the impure samples of BaVS3). Thus, as was the case for 
the impure BaVS3 samples, it is expected that the system finishes in the FM phase at 
low temperatures. In this sense, the chemical pressure does not affect the low 
temperature (15 K) FM order in the insulating phase. The other isoelectric 
substitution, where S is replaced by Se, seems to have a similar effect. Comparing 
resistivity and thermoelectric power measurements of BaVS3 at 2.7 GPa and BaVSe3 
at ambient pressure reveals a strikingly similar behavior for both systems. 
Furthermore, the measured susceptibility (Kelber et al., 1979) of BaVSe3 has a 
paramagnetic character at high temperatures similar to impure BaVS3 and undergoes 
the metal-to - FM metal transition at ≈ 40 K. Unfortunately, despite considerable 
effort over recent years, single crystals of the BaVSe3 are not yet available. Therefore 
the RRR ratio cannot be determined and the contribution of impurities cannot be 
analyzed. 

On the other hand, the pure and impure samples have a similar NFL behavior of the 
resistivity around pcr, showing comparable tendencies as functions of pressure, 
temperature and magnetic field. The main difference between them concerns the 
appearance of hysteresis. It is worthwhile mentioning that the NFL behavior is 
independent of whether the conducting system fluctuates towards the FM insulator 
(through the second order phase transition) or towards the ICFM insulator (through 
the first order phase transition). The common feature for both fluctuation regimes is 
therefore considered in what follows. 

The above discussion suggests that, in impure samples, the FM transition survives the 
collapse of the nonmagnetic MI phase with the 4V unit cell at pcr. This would imply 
that the FM boundary crosses the MI phase boundary and remains stable by further 
increase of pressure. This is supported by the high-pressure (up to 2 GPa) 
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measurements of the transport properties of BaVSe3 showing only a weak pressure 
dependence of the FM transition temperature. The crossing of the FM boundary and 
the MI boundary implies that the MI transition is no longer associated with the largest 
energy in the system, therefore the MI boundary collapses. Thus, the FM order below 
15 K, independent of pressure, is not intimately related to the MI transition. 

In the clean samples, the scenario is slightly different in the respect that the low 
temperature phase is ICFM and not FM. By the collapse of the magnetically active 
insulating phase in which the 4V unit cell is replaced by 2V, the system is perturbed, 
and it chooses the FM order through a first order phase transition. The FM gives the 
dominant energy scale in the system around pcr and the MI boundary collapses 
similarly for both pure and impure samples alike. As a consequence, the non-Fermi 
liquid behavior appears as the result of fluctuations between the FM metal and FM 
insulator (unit cell 2V and 4V). That is, the. FM is unessential for the NFL, except in 
the clean samples where the first order phase transition between the FM and ICFM 
insulator affects the conduction-electron properties at the Fermi level. It seems that, in 
turn, the ICFM order below 30 K and below pcr is imposed by the magnetic nature of 
the MI transition in the clean samples. 

With this we have presented the major experimental facts obtained on the BaVS3 
family of materials, in a broad temperature, pressure and magnetic field ranges, on 
both pure and disordered/chemically-substituted samples. In the next scetion we will 
give our final point of view concerning the physical scenario for the description of 
this unique material. 
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5.6 Summary of the physics of BaVS3 

Recently Fagot et al. (2003) reported X-ray scattering measurements with strong 
diffusive lines at the critical wave vector qc=0.5 c* above the MI transition at 
ambient pressure. This corresponds to a pretransitional structural fluctuation in which 
the chains fluctuate independently from one other with a periodicity along the chain 
of 4V. This periodicity cannot come from the dynamical q=0 Jahn-Teller or any other 
similar fluctuations but it must be imposed by electron correlations at finite q: The 
fluctuations of the 3D lattice are 1D, which means that their origin must be searched 
for in the phonon coupling with 1D electrons. Indeed, our recent ARPES results 
clearly demonstrate the existence of the quasi-1D dz

2 band. Associating qc with 2kF, 
this band is quarter-filled. At the MI transition the diffusive 1D lines condense into 
Bragg spots, which is a sign of a long-range 3D order. The diffusive lines at high 
temperatures suggest 1D instability, and consequently the TMI is ascribed to the 
Peierls (CDW) or spin-Peierls (SDW) transition. 

The ARPES measurements also showed the presence of the narrow eg band which 
pins the Fermi level. From the fact that the new 2kF periodicity is commensurable 
along c (having four V per unit cell), it is concluded that the electrons are shared 1 to 
1 between the dz

2 and eg bands. Koga et al. (2004) showed, in the case of a two band 
model with two electrons per site that, if the Coulomb interactions are larger then the 
width of one of the bands as well as the splitting between them, the occupation of the 
narrow band tends to be 1 electron, making the band half filled. A similar result is 
known in the physics of high-Tc materials (Mrkonjić and Barišić, 2003). In the case of 
the BaVS3, the screw axes symmetry is weakly broken below the MI transition, the 
Umklapp scattering is small, (Barišić and Brazovskii, 1981), and therefore even the 
bands may be roughly considered as quarter filled. The exact 1:1 sharing of 
electrons between such bands is probably due to the closeness of the bands in the 
absence of interactions and their fine tuning to the quarter filling by the fourfold 
commensurability effect of Coulomb interactions analogous to that in the case 
discussed for half filling. The quarter filling of the dz

2 band has an important 
consequence: a quarter filled quasi-1D band develops simultaneously strong 2kF 
SDW or CDW correlations (Emery, 1979; Solyom, 1979). On the other hand, the 
strong breaking of the screw axis symmetry along the c-axis would result in the 
pronounced dimerization of the cell, making bonds and/or sites quite different. As a 
consequence, the bands should be regarded as half filled, with appreciable Umklapp. 
In the case of the half filled band (Emery, 1979; Emery et al., 1982; Solyom, 1979, 
Fabrizio and Tosatti, 2004), the 2kF-SDW can be preferred then to the 2kF-CDW, 
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which is being inhibited by the Umklapp process (4kF  then coincides with the 
reciprocal vector G). However, there is no evidence that this process is important for 
the dominance of the SDW (i.e., spin Peierls) instability in the clean samples of 
BaVS3 . That is, the screw axis is preserved above TMI but the quasi-1D 2kF fourfold 
commensurability of the precursor lattice fluctuations is present although there is no 
trace of a 4kF quasi-1D precursor effects. The static 4kF component, which appears 
only below TMI, breaking the screw-axis symmetry, is small and behaves as the 
secondary order parameter (Fagot et al., 2004). The d.c. anisotropy measurements of 
the resistivity agree with the results of the band calculations in that the eg electrons 
play a part in the conductance. Therefore, it is necessary to open simultaneously an 
energy gap for both types of electrons when the system undergoes the MI transition. 

Actually, the 2kF CDW or SDW instability occurs in the broad 1D dz
2 band at the 

temperature of 70 K (gap of 0.05 eV, Mihaly et al. (2000), Graf et al. (1995)) and it 
corresponds to the dominant energy in the system which can be sufficient to rearrange 
the eg electrons. It seems that the bands (anti)cross close to the Fermi level, and at this 
point the opening of a gap in one of the bands introduces a new periodicity which 
automatically opens a gap for all electrons. 

For 1D systems, the CDW and the SDW transitions are energetically close (Riera, and 
Poilblanc, 2000). SDW may have a small advantage but even a small disorder in the 
system seems to be sufficient to switch the instability to the CDW. Accordingly, in 
the clean BaVS3 samples the transition appears to be SDW with a periodicity of 4V, 
accompanied by a decrease in susceptibility. The scenario of SDW transition is also 
supported by the phase boundary analysis of BaVS3 performed as a function of 
magnetic field by Kézsmárki (2003, p. 60). He determined the value of the 
dimensionless constant (γ) in the following relationship, which describes the 
suppression of the MI transition with the magnetic field, to be γ = 0.45 ± 0.04: 

 

( ) 2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

∆

MIB

B

MI

MI

Tk
SHg

T
HT µγ

  .  

This value is in good agreement with the value found in organic (Northby et al., 1982) 
and inorganic compounds (Hase et al., 1993), and with the theoretical predictions by 
Bulaevskii et al. (1978) and Cross (1979). The 2kF SDW dimerization of the 2 V 
"dimerized" unit cells along the chains and the associated magnetic order impose 
constrains on the narrow eg electrons. It is most likely that due to the SDW of the dz

2
 

band, and its local magnetic field to which the eg electrons couple induces the SDW 
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order on them as well. Consequently, the susceptibility is reduced. On the other hand, 
in the impure samples, the transition seems to be of the CDW nature, which imposes 
the periodicity of 4V with no constraints on the spins and therefore does not have a 
large impact on susceptibility. Thus, the magnetic susceptibility continues to be 
Curie-like across the MI phase boundary. 

The latest NQR, NMR (Nakamura, et al., 1997) and Muon Spin Realxation (µSR) 
(Higemoto et al., 2002) measurements on the clean samples have not found two types 
of local charges or magnetic sites close below the MI transition and this is in 
agreement with the above-described picture. It seems that at ~ 30 K, the system starts 
to order magnetically which is seen as a peak in the temperature derivative of the a-
axis susceptibility dχa / dT, and as a sudden break in the anisotropy χc - χa at Tx = 30 K 
(Mihaly et al., 2000) . By neutron diffraction experiments, a magnetic order with ~ 
0.5 µB/V moment was detected with the incommensurate wave-vector (0.226, 0.226, 
0) (Nakamura et al., 1999). The NQR measurements revealed a huge and markedly 
asymmetric electrical-field gradient (EFG) appearing at Tx which suggests the 
presence of orbital ordering in the spin-ordered state. This is supported by the 
observation of a slow muon spin relaxation time, suggesting the presence of two types 
of magnetic sites. The volume fraction of the magnetic sites gradually increases with 
decreasing temperature down to about 15 K where it saturates. This suggests that this 
is the temperature at which the system is magnetically ordered.  

Recent x-ray measurements of Fagot et al., (2004) have detected a strong increase of 
the 2kF satellite spots at 5 K with respect to that at 40 K. This suggests an important 
charge rearrangement between these two temperatures. This large CDW is probably 
accompanied by orbital reordering but accurate measurements especially those of 
NQR are lacking so far. It was already shown that the temperature scale of 15 K has 
an important role in the physics of BaVS3 at pcr but now we see that this may also be 
the case at ambient pressure. It should be noted, in this respect, that the V chains form 
a triangular lattice, frustrated when the magnetic order along the chains is 
ferromagnetic. Recently, Mihàly et al., (2000) carried out variational calculations on 
clusters, taking into account orbital-dependent hopping matrix elements and proposed 
the formation of a spin-pair liquid, which shows no static order between TMI and Tx. 
They suggested that the ordering below Tx is not accompanied by a considerable 
entropy change because of the pre-existing short-range order, which can explain why 
there is no appreciable anomaly in specific heat at Tx. We believe that this might be 
the correct scenario for BaVS3, but in a different temperature range (15 - 30 K and not 
between Tx and TMI) and with different (dz

2 and one eg) types of orbitals and therefore 
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different orbital-dependent hopping. 
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Figure 5.26: The proposed temperature-pressure phase diagram of BaVS3. Below pcr all the phases or 
phase boundaries have double names related to the pure or impure samples, respectively. The MI phase 
boundary is marked by the red line. The temperature at which the (new) magnetic order starts to appear 
(Tx ~ 30 K) is marked by the yellow spot while the temperature by which the magnetic order is 
completed (~ 15 K) is marked by a magenta spot. The probable extensions of these two points to high 
pressures are denoted by the dotted and dashed lines, respectively. The green spot symbolizes the QCP 
(at pcr), and the blue, the violet and the gray fields stand for the related fluctuation regions. The gray 
regions are related to crossover form NFL to FL marked by the power law temperature dependence of 
the resistivity. The increase of the value of n is represented by darker and darker gray color, the lightest 
gray symbolizing n =1.5 and the darkest n = 2.  
 

It was already mentioned earlier that in the impure samples, the MI transition is 
expected to be CDW and therefore the eg electrons remain paramagnetic. It seems that 
this determines the low-temperature behavior developing the ferromagnetic-like order 
below 25 K which is independent of the MI transition. There are only a few 
experiments concerning impure samples and therefore the discussion of the low 
temperature phase is limited. However, in the works of Masnett et al. (1978), and 
Yamasaki et al., (2000) it was found that the ferromagnetic order in sulfur-deficient 
samples takes place at TCurie = 15K and that 51V NMR experiments revealed the 
coexistence of the ferromagnetic and nonmagnetic phases. It seems to us that, in 
impure samples, the spin order is determined by intra and inter-chain FM interaction 
between the eg spins. In contrast to that, in pure samples, the SDW-induced RKKY 
interactions interfere with the direct FM interactions of the eg electrons and the overall 
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spin order is thus a result of the balance of the two. As the result of this discussion we 
propose a new phase diagram, which is presented in Fig. 5.26. 

It should be finally emphasized that the SDW/CDW line in Fig. 5.26 means that the 
2kF SDW/CDW is coupled to the (heavy) lattice displacements, and through this 
coupling produces the corresponding lattice transition. In the case of SDW coupling 
to the lattice it is a spin Peierls transition (Caron et al., 1987; Riera and Poilblanc, 
2000). The SDW/CDW correlations occur in the broad dz

2 band with a low density of 
states at EF, which raises the question of whether the nesting is sufficient to account 
for TMI ~70 K. This question has two aspects. The first concerns the Coulomb 
interactions, and it is precisely for that reason that the corresponding coupling 
constants, e.g. nFU, were considered as small, leading to the near degeneracy of SDW 
and CDW correlations (Emery, 1979; Solyom, 1979). On the other hand the lattice 
coupling constant λ scales as 1/nF rather than nF, when the coupling to the lattice is 
associated with the deformation-induced variation of the large overlap integrals, 
otherwise responsible for the large width of the band. Together with nesting, this is 
presumably sufficient to produce the lattice instability. This can be best illustrated on 
the example of the mean-field critical temperature associated with the free-fermion 
tight-binding gas coupled to the lattice. The free fermion gas is subject only to Pauli 
correlations in the CDW channel and the corresponding Peierls critical temperature is 
proportional to (Peierls, 1955; Pytte, 1974): 

 λ
1

e~
−

Fp ET ,  

where EF=2 t [1-cos (c kF)], overlap t ≥ 0, and the coupling constant λ is equal to:  
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This coupling constant defines the value of Tp. It depends of the density of states at 
the Fermi level nF, and of the electron-phonon coupling constant I(2kF). But as I(2kF) 
is proportional to vF  (Barišić et al., 1970) λ scales with nF

-1. The large band means a 
low density of states (nF

-1 = 2t sin (c kF) = vF/c). Therefore, it can be concluded that 
the low density of states gives a high mean-field critical temperature, further 
enhanced by Coulomb interactions, which is the case for BaVS3. 

From the expression for Tp, an increase of the Peierls phase transition temperatures 
upon applying hydrostatic pressure is expected, due to the increase of the overlap t 
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which reduces the density of states at EF. Instead, as the pressure is increased from 1 
bar towards the pcr the MI transition is linearly suppressed to lower temperatures. 
The main reason for the decrease of TMI with p is not attributed to the described intra-
chain effect but to the simultaneous increase of the 3 dimensionality of the system 
(Forro et al., 1990), leading to imperfect nesting (Horovitz, 1972; Gor'kov 1995). 
Finally, it is worthwhile noting that the coupling of the electronic instabilities to the 
(heavy) lattice makes the quantum effects less pronounced. 

Within the framework outlined above, the principal results of transport measurements 
on BaVS3, under pressure and in the presence of a magnetic field, are now briefly 
summarized below. 

 1) The presented phase diagram provides an explanation for the origin 
of the NFL behavior and the source of the hysteresis in the clean samples. As the 
FM order seems to survive the collapse of the MI transition at pcr, the origin of the 
instability of the system and its NFL behavior, is associated with the quantum 
fluctuations between the unit cell of 2V and 4V, with the latter being favored by the 
nesting in the dz

2 band. In the pure samples, the nesting favors the SDW whereas in 
the disordered samples the CDW is preferred. In clean systems, prior to the 
establishment of the 4 V order along the chains, there is a coexistence of both phases, 
probably combined with ICFM/FM mixing, seen in hysteresis loops.  

 2)  The quadratic magnetic field dependence of TMI at intermediate 
pressures is in agreement with the similar behaviors reported for other systems. An 
example is TTF-MBDT (M = Au and Cu), MEM (TCNQ)2 or (PER)2M(mnt) (M = Pt 
and Au) as suggested by Bonfait et al. (1991). In the BaVS3 family, the dependence is 
related to the SDW and/or CDW phase transition in the dz

2 band (0-1.7 GPa). The 
effects of the magnetic field on the MI transition in this pressure range are consistent 
with theoretical predictions for Peirels transitions by Tiedje et al. (1975), or Bray (1978).  

 3) The high pressure (around pcr) suppression of the MI transition with 
field and the enormous associated magnetoresistance is attributed to the collapse of 
the SDW or CDW 4V unit cell. The low - temperature order (< 15 K, seemingly 
independent of pressure) is associated with the eg electrons. 

 4) The negative magnetoresistance up to 8 T below 15K is related to the 
additional spin ordering of the eg electrons by the increase of the magnetic field. 
This order is also seen as a shoulder in resistivity in temperature-dependent 
measurements. 
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Chapter 6  

CHEMICAL PRESSURE 
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In this chapter we see how various types of isovalent chemical substitution manifest 
themselves as a chemical-pressure effect. This phenomenon thus provides a tool with 
which we can manipulate the accessible range of the p-T phase diagram.  
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6.1 Chemical pressure: The concept 

We have seen in the previous chapter that by changing the hydrostatic pressure, we 
are able to vary the relative atomic coordinates and hence modify parameters of the 
material such as the inter-ionic distances (through compression) or bond angles 
(through torsion). Such changes impact the properties of the material, in the first 
instance, by affecting the overlap integrals. In BaVS3, we were able to attribute the 
manifestation of this effect to the increase in the effective dimensionality of the 
system under pressure resulting in imperfect nesting of the Fermi surface. 
Consequently, at high enough pressures (above pcr) the metal-insulator transition is 
completely suppressed and the physical properties of the system are changed 
dramatically. 

An alternative means by which the inter-site distances can be modified is isovalent 
substation, which results in the so-called “chemical pressure” effect. This is the 
subject of the present chapter. The effect is already well known in, for instance, 
materials such as organic conductors (Yoshino et al., 2003), superconductors (Licci et 
al., 1998), and manganites (Subramanian et al., 1999). This approach is convenient 
since it often allows the measurement of the relevant physical properties at ambient 
pressure. However, changing the chemical composition of the material inevitably 
introduces a random element into the analysis. This is in contrast with variations in 
the hydrostatic pressure, which impact only the lattice structure, and hence constitute 
a “clean”, more controlled perturbation.  

Despite the “unclean” nature of chemical substitution, we have already seen how the 
investigation of impure, sulfur-deficient, samples of BaVS3 can give precious 
information about the physical properties of this system. For instance, we have 
exploited the results of measurements on the impure samples to better understand the 
SDW and/or the CDW origin of the MI transition. In these discussions we were not 
able to unambiguously distinguish between those effects arising from the sulfur 
deficiency and other types of disorder. Therefore, we can use the chemical 
substitution to our advantage in two distinct ways. Firstly, we can manipulate the 
chemical pressure so as to bring the system to the desired place of the pressure 
phase diagram and thus measure the properties of the system with ambient pressure 
experimental setups. Secondly, we can confidently investigate the impact of other 
defects by separating them from the sulfur deficiency effects.  

The low energy physics of BaVS3 is related to the one vanadium electron shared 
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between the vanadium t2g bands. The shape of these bands (particularly important 
around Fermi level) is determined by the crystal field and the overlaps between the 
ions (as shown in Chapter 3). Therefore, it is of interest to substitute either the barium 
or sulfur atoms and thereby change the surrounding of the vanadium atoms. These 
substitutions modify the overlap integrals and hence the effective dimensionality of 
the system. In this section we present the results of two different types of 
substitutions. The first concerns the effect of partial substitution of Ba by Sr in a 
series of compounds with structural formulae of the type Ba1-xSrxVS3. In the second 
type of substitution, S is entirely replaced by Se and the measurements are performed 
upon BaVSe3. 
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6.2 Ba-Sr isovalent substitution  

Ba1-xSrxVS3 single crystals with nominal compositions xn = 0.15, 0.30, 0.50, and 0.70 
were grown with a standard solid state synthesis method (Gauzzi et al., 2003). 
Stoichiometric powders of metallic V, BaS, and S were ground, intimately mixed for 
various times, and pressed into pellets. The pellets were then placed in sealed quartz 
tubes at 950o C for 72 hours. This procedure yielded needle shaped single crystals of 
0.1 - 0.3 mm in length, aligned along the c axis, as shown by optical microscopy. 
Hereafter such samples will be referred to as grown samples. The room temperature 
crystal structure, the Sr/Ba cation composition, and the sulfur content were refined by 
means of X - ray diffraction using a Philips PW 1100 single crystal diffractometer 
equipped with graphite monochromatized Mo Kα radiation. This analysis confirmed 
that, at high T, all Sr - substituted crystals investigated herein were in possession of a 
hexagonal structure of the CsCoCl3 type with the same P63/m2/m2/c space group as 
the clean BaVS3 phase. Attempts to grow unsubstituted or fully substituted crystals 
using the above method were unsuccessful. 

Table 6.1: Selected structural parameters and magnetic transition temperatures of the studied crystals. 
The data regarding the unsubstituted BaVS3 samples are averages of values taken from literature 
(Gardner et al. (1969), Massenet et. al (1978)). Below Tx, the order in the V-chains is FM in all 
samples but the inter-chain order changes from the Inter-chain Compensated FM (ICFM) to FM as x is 
increased.  
 

Sr content x 0.0 0.06 0.10 0.13 0.18 

nominal Sr content x 0.0 0.15 0.30 0.50 0.70 

cell volume [Å3] 219.972 219.932 218.538 217.329 216.862 

a [Å] 6.721 6.718 6.717 6.699 6.693 

c [Å] 5.623 5.633 5.593 5.592 5.590 

S coordinate x/a 0.1656 0.16544 0.16525 0.1657 0.16616 

V – S distance [Å] 2.385 2.385 2.377 2.380 2.380 

Tx 30 6 12.5 20.0 21.5 

Order below Tx ICFM ICFM FM FM FM 
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In Table 6.1, we report a summary of selected structural data on the single crystals 
studied here. It is apparent that the actual Sr concentration in the samples is much 
smaller than the nominal one. The maximum Sr content obtained is x = 0.18 for xn = 
0.70. As for the variations of the lattice parameters, one notes that the smaller Sr 
cation induces a sizeable shrinking of the unit cell, as expected. The shrinking effect 
is anisotropic in that it first takes place along the c - axis and then subsequently in the 
ab - plane.  

The study of the obtained crystals by means of resistivity under pressure, d.c. 
magnetization measurements, and anisotropy measurements of the magnetic 
susceptibility, are still in progress but the salient features of the principal results are 
already in sight and are therefore presented below. 

 

6.2.1 Resistivity under pressure 

The resistivity under variable pressures of up to 2 GPa was measured on the samples 
with Sr content x = 0.06, 0.1, 0.15 and 0.18. The needle – shaped crystals grow along 
the c – axis and therefore the resistivity was measured along this longest (0.1 - 0.3 
mm) axis. The samples with a Sr concentration of 0.18 are not included in the 
discussion since they exhibit a very broad MI transition and their residual resistivity 
ratio (RRR), defined as R(300K)/R(T→0K), at 2 GPa is less then 2, indicating the 
high disorder in the samples. On the other hand, the other samples have a well defined 
MI transition with the RRR around 10 which is comparable to the impure BaVS3 
samples. A typical result of the resistivity measurement under pressure of the Sr-
substituted samples is shown in Fig. 6.1. The results shown therein correspond to the 
sample with the highest concentration of Sr (x = 0.15) and the lowest RRR, among 
those discussed. Despite the high Sr content, this sample still exhibits a well defined 
TMI, as determined form the peak in the d(lnR)/d(1/T)  vs. 1/T plot. 

In a manner reminiscent of the unsubstituted samples (x = 0, Chapter 4 and Chapter 
5), we observe a metallic behavior in this material at high temperatures (Fig. 6.1a). 
There is no sign of the saturation of resistivity at low temperatures and low pressures 
(Fig. 6.1b). The MI transition is progressively suppressed (to lower temperatures) by 
increasing pressure and, finally, the resistivity follows a power law temperature 
dependence for low temperatures and sufficiently high pressures (above pcr). To 
ensure that the observed effects are not related to the off-stoichiometriy of sulfur in 
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the grown samples, one sample, of the two that were measured from each batch, was 
additionally enriched by sulfur (sealed in the quartz tube and reheated in the presence 
of S).  

              (a) 

(b)
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Figure 6.1: The results of the resistance measurements on Ba0.85Sr0.15VS3 under pressure presented. (a) 
Resistance as a function temperature of  reveals (i) the metallic behaviour at high temperatures, and (ii) 
the low temperature power law dependence for pressures above 1.42 GPa. (b) Logarithm of the 
resistance as a function of the inverse temperature demonstrates that there is no sign of the saturation of 
resistance at 1 bar and low temperatures, and that the MI transition is sharp. 

 

The results of the suppression of the MI transition, for different Sr concentrations and 
sulfur treatments, are summarized in the pressure – temperature (p–T) phase diagram 
in Fig. 6.2. Both samples of the same batch exhibit an identical pressure 
dependence. This result can be interpreted to mean that either the grown samples 
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possess a good sulfur stoichiometriy or that the TMI is insensitive to the small sulfur 
deficiency. In this context, it should be noted that all BaVS3 samples, with an       
RRR > 5 at 2 GPa, show a TMI ~ 70 K with identical pressure dependencies. This 
suggests that the MI transition temperature is relatively unaffected by defects or small 
sulfur deficiency. Therefore, it can be safely concluded that the Sr substitution is 
responsible for the observed manifestation of the chemical pressure in the crystal. 
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Figure 6.2: MI phase boundary as a function of pressure for four different concentrations of Sr. The 
lines are a guides for the eye. Samples from the same batch are marked by the identically colored open 
circles and full triangles. The former was additionally sulfur treated.  
 

The effect of the suppression of TMI with increasing x is monotonic at all measured 
pressures, as shown in Fig. 6.3. This suggests that, at least in terms of this property, 
the chemical pressure may simply be regarded as an addition to the hydrostatic 
pressure. By comparing the chemically induced suppression of TMI at ambient 
pressure to the suppression of the MI transition by hydrostatic pressure (in BaVS3 
samples) the content of Sr can be approximately expressed as an equivalent pressure: 

 [ ] [ ]
[ ] [ ]%
%1.0
GPa45.0 xGPapchemical ⋅=   . (6.1) 

This relation predicts a complete suppression of the MI transition around 1.3 GPa in 
the sample with x = 0.15 which is comparable with the value of 1.15 GPa determined 
from the resistance measurement under pressure. 
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Figure 6.3: The MI transition temperature as a function of Sr content x (bottom scale) at several 
pressures (1bar, 0.5 and 1 GPa, marked by black, red, and green triangles respectively). At the ambient 
pressure, the suppression of the MI transition by chemical pressure (black triangles) is compared with 
the effect of the hydrostatic pressure (pink scale), indicated by the pink line. 
 

The shift of the MI transition to lower temperatures with increase of the Sr content in 
Ba1-xSrxVS3 can be interpreted by taking into account the structural parameters from 
Table 6.1. One notes that the lattice parameter a, directly related to the inter-chain 
distance, scales with TMI. Its decrease, with increasing x, presumably augments the 
effective dimensionality of the system towards the more isotropic case. Therefore 
the MI transition temperature is shifted to lower values in response to an increase in 
Sr content in a similar fashion as that observed case of hydrostatic pressure. These 
observations provide support for the SDW-CDW scenario proposed in Chapter 5. 

6.2.2 Magnetic properties 

The study of the magnetic properties of the Sr-substituted samples, by means of 
magnetization and susceptibility measurements, are in progress. Already the first 
results show interesting features and are therefore presented below. Before presenting 
these results, we should recollect that the deficiency of sulfur in the BaVS3 samples 
changes the nature of the magnetic inter-chain correlations resulting in a full 
ferromagnetic order below Tx (as discussed in Chapter 1 and Chapter 3). For this 
reason, it is very important to distinguish the grown samples from those additionally 
enriched with sulfur. 
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The magnetization measurements were performed on the grown samples, in the 5-300 
K range, using a commercial RF SQUID apparatus. Each sample has been studied in 
the usual zero - field cooling (ZFC) and field - cooling (FC) modes by applying an 
external field of 10 Gauss. In Fig. 6.4, as an example, we show the magnetization 
curves of the heavily substituted (x = 0.18) sample indicating a clear ferromagnetic 
transition at 21.5 K. Measurements were repeated at all other available concentrations 
of Sr and the results are listed in Table 6.1. As the substitution level x progressively 
increases, the Interchain Compensated FM (ICFM) ordering temperature (Tx) is 
progressively decreased and the ICFM order is replaced by FM, at which point the 
ordering temperature begins to increase with increasing x. 

 
Figure 6.4: Zero – field cooled and the field cooled magnetization measurement performed with a field 
of 10 Gauss along the c - axis on the as grown x = 0.18 sample. The sample shows a ferromagnetic 
transition at 21.5 K.  
 

The fact that the FM order develops at the low temperature and high concentration of 
Sr is also evident from the anisotropy magnetic susceptibility measurement, carried 
out on a sensitive torque magnetometer (Miljak, private comunication), shown in Fig. 
6.5. At temperatures around 23 K, a strong change of anisotropy is observed which 
indicates that the system starts to develop the ferromagnetic order. The measured 
sample was the very same sulfur-treated single crystal of Ba0..85Sr0.15VS3 studied by 
the pressure-dependent resistance measurements shown in Fig. 6.1. It is apparent from 
these measurements that the resistivity shoulder, that could be expected to coincide 
with the FM transition, is not observed. The most plausible explanation for its absence 
is that it is smeared out by disorder. 
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Figure 6.5: Temperature dependence of the spin susceptibility anisotropy for the Ba0.85Sr0.15VS3. The 
kink around 50 K, marked by the blue arrow, is an artefact due to the change of the magnetic field from 
5 to 7 kG. 

6.2.3 Implications 

As mentioned above, the resistivities of the Ba1-xSrxVS3 samples under pressure have 
all the typical features of the BaVS3 samples (provided the RRRs (2GPa) of the 
former are larger than 5). The slight difference observed upon Sr substitution is that 
the chemical pressure shifts the MI phase boundary along the p axis of the p–T phase 
diagram, according to Eq. (6.1). On the contrary, the result for the susceptibility 
anisotropy for the Sr-substituted samples is qualitatively different from that reported 
by Mihály et al. (2000) for the pure BaVS3 single crystal. At the MI transition, there 
is no sign of a sudden break in the susceptibility anisotropy. Instead the behavior 
remains Curie like down to 23 K, where the FM order sets in.  

It is interesting to consider the above susceptibility results in the context of the 
SDW/CDW scenario, for the MI transition in BaVS3, proposed in the previous 
chapter, In the pure sample, the transition was associated with the SDW in the dz

2 

band (to which the eg electrons couple magnetically, causing the steep decrease in the 
overall susceptibility below TMI) while in the impure samples, it is expected to be the 
CDW transition (with no significant consequences on susceptibility, as it is indeed 
observed in the case of the Ba0..85Sr0.15VS3 sample). In addition, it should be noted 
that, in this respect, the disappearance of SDW does not have an important impact on 
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the MI transition temperature. 

Despite the above presented efforts to clarify experimentally the origin of the 
magnetic order at Tx it is still hard to be entirely conclusive. Additional measurements 
of magnetic properties on sulfur treated and untreated Ba1-xSrxVS3 compounds as well 
as sulfur deficient BaVS3-δ samples, combined with the other (e.g. resistivity) 
measurements, should be performed. This would help to understand whether the two 
magnetic orders below Tx are related to the SDW or the CDW nature of the MI 
transition or not. If these two transitions do turn out to be unrelated, it would assist in 
the separation of effects such as sulfur deficiency, other defects, chemical and 
hydrostatic pressure on the magnetic properties of the system.  
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6.3 S-Se isovalent substitution  

Another system which can help us to understand the properties of BaVS3 is the triply 
substituted BaVSe3. In contrast, to the Ba1-xSrxVS3 samples, where a fraction of the 
inter-chain Ba ion are exchanged with the smaller Sr, causing the chemical pressure, 
this system involves the complete replacement of the ligand sulfur ions by the larger, 
isovalent, ions of selenium. 

6.3.1 Previous studies 

Kelber and his co-workers first reported the synthesis of single crystals BaVSe3 
(Kelber et al., 1979). They solved its crystal structure at 283 K in the hexagonal space 
group P63/mmc (identical to the one of BaVS3), with a = 6.9990 Å and c = 5.8621 Å. 
From the scans (2Θ) of a polycrystalline sample it was concluded that the BaVSe3 
undergoes a structural transition to an orthorhombic unit cell (b’ ≈ 31/2 a, a’ ≈ a, c’ = 
c) at 303 K (in BaVS3 at ambient pressure the structural phase transition occurs at 240 
K, and with increasing the pressure it shifts to higher temperatures). Reported 
magnetic susceptibility measurements, between 4 and 300 K, indicate that BaVSe3 is 
paramagnetic down to 41 K, where ferromagnetic ordering takes place, with a 
magnetic moment in the ordered phase of 0.2 µB per vanadium atom.  

Table 6.2: Selected structural parameters and magnetic transition temperatures of the reported 
polycrystals (Kelber et al., 1979). 
 

Se content  BaVS3 BaVS2Se BaVS1Se2 BaVSe3 

cell volume [Å3] 218.905 227.962 237.043 248.084 

a [Å] 6.7065 6.8015 6.8906 6.9924 

c [Å] 5.6200 5.6901 5.7647 5.8588 

S/Se coordinate x/a 0.1641 0.1686 0.1669 0.1678 

Tx 23 40 45 47 

 

An extensive study on the impact of Se substitution in polycrystalline BaVS3-xSex was 
carried out by Poulsen (1998). Several different concentrations corresponding to x = 
0, 1, 2, 3 were synthesized and a detailed structural analysis was reported. Selected 
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structural parameters are shown in Table 6.2. The lattice parameters vary almost 
linearly with the increase of x. No change of lattice symmetry at room temperature 
was observed; therefore the enlargement of the unit cell is attributed to the larger size 
of Se, as compared to S. All samples are paramagnetic at high temperatures and 
ferromagnetic at low temperatures. The FM transition temperature Tx increases with 
the increase of the quantity of Se in the compound. Neither the role nor the quantity of 
disorder in the samples was commented upon by the authors of this work but the 
ferromagnetic order observed in the x = 0 sample (BaVS3) indicates that the quality of 
the measured samples was rather poor. 

 

6.3.2 Transport properties of BaVSe3 

 

Here we report the results of resistivity and thermoelectric power measurements on 
polycrystalline BaVSe3 under pressures of up to 2 GPa.. The results of these 
measurements are summarized in Fig 6. The resistivity has a metallic behavior in the 
whole measured temperature range (4 to 300 K). At the temperature of 40 K at which 
the magnetic susceptibility indicates a ferromagnetic order, a kink is visible in 
resistivity. The intercept due to the grain boundaries is decreased as the pressure is 
augmented. Similar features are also observed in the thermoelectric power except that 
latter transport coefficient is insensitive to the grain boundaries. The observed linear 
temperature dependence of thermoelectric power is a characteristic of metals. The low 
temperature hump is attributed to phonon drag, as discussed in Chapter 7. A small 
kink is also observed in the thermoelectric power at the temperature at which 
ferromagnetic order sets in. It should be noted that the thermoelectric power of 
BaVSe3 is almost pressure independent and exhibits a negative sign which is a 
characteristic of a metal with dominantly electron-like charge carriers. However, the 
absolute value of the thermoelectric power at T=300 K (S ≈ 35 µV/K) is one order of 
magnitude higher than that usually found in ordinary metals (around 2 µV/K). 

The main reason for our interest in the measurements on BaVSe3 is derived from their 
striking resemblance to the curves recorded at 2.7 GPa, in the Fermi liquid phase of 
BaVS3, discussed in more detail in Chapter 7. This resemblance suggests that the 
isovalent substitution of S by Se can also be regarded as a chemical pressure. The 
bigger Se ion decreases the direct overlap of V ions along the c axis by increasing 
their mutual distance. At the same time, however, the ligand-mediated overlap 
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between chains is increased. Therefore the system becomes more 3D and 
consequently never undergoes the MI transition, having at 1 bar properties similar to 
those of BaVS3 at 2.7 GPa. 
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Figure 6.6: (a) Resistivity and (b) thermoelectric power of BaVSe3 in the temperature range 4 – 300 K, 
under pressures up to 2 GPa. 
 

It should be noted that the pure BaVSe3 does not have substitutional disorder, which 
is renders additional confidence to the reported results. The 1 bar measurements of 
magnetic susceptibility performed on BaVSe3 by the standard method, revealed the 
ferromagnetic order below 40 K. This implies that the FM order found along the V-
chains at ambient pressure below 30K in BaVS3 is a good candidate for explaining the 
shoulder in resistivity observed above pcr at 15 K.  
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6.4 Concluding Remarks  

In summary, the results presented in this chapter strongly support the fact that 
substitution by both Sr and Se results in a chemical pressure effect. We have used 
these results to infer several important facts about the unsubstituted material that is 
the major focus of the present study, BaVS3. Firstly, different measurements on the 
Sr-substituted samples combine to show that the MI transition is not necessarily 
accompanied by a change in the magnetic properties of the system. Such a conclusion 
is supportive of the basic SDW-CDW scenario proposed in Chapter 5. Secondly, the 
magnetization measurements on the Se-substituted samples identify the FM along the 
V-chains (with an unspecified inter-chain ordering) as the best candidate for the 
possible magnetic behavior of BaVS3 at high pressures, in the absence of direct 
experimental evidence. 

Another interesting aspect of the measurements on BaVSe3 is the behavior of the 
thermoelectric power (TEP) at ambient pressure. As will become apparent during the 
course of the subsequent chapter, the behavior of TEP under different conditions can 
be used to uncover many interesting properties of BaVS3. For example, it will be 
shown that the temperature dependence of the latter compound’s TEP is profoundly 
different above and below pcr. Importantly, as alluded to above, the behavior of the 
TEP in BaVSe3 at ambient pressure closely resembles that of BaVS3 above pcr. This 
can be taken as proof of the ability of chemical substitution to advantageously 
influence the position of the system on the pressure phase diagram. 
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In this chapter we see how the measurement of a different transport property 
(termoelectric power) can give us an alternative window through which to view the 
narrow energy range around the Fermi level. 
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7.1 Thermoelectric power  

The thermoelectric power (TEP), also known as the Seebeck coefficient, is another 
transport coefficient which, in addition to the resistivity discussed in Chapters 4-6, 
provides information about the behavior of the conduction electrons in the narrow 
energy window of the order 0.01 eV (~ 100 K) around the Fermi level. The simplest 
means by which one can conceptually grasp TEP is to consider it as the ratio of the 
electronic heat current to the charge current divided by temperature. Its magnitude 
and temperature dependence tell us whether we are dealing with metallic or non-
metallic materials. In addition, TEP can reveal correlation effects, the peculiarity of 
scattering events, polaron formations, and many other related properties.  

For example, in the case of metals, assuming that the band electrons carry the charge 
as well as all of the heat current, the Boltzmann transport theory leads to Mott’s well-
known expression for the Seebeck coefficient (Dugdale, 1977): 

        ( )
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where ( )Eσ  is the electrical d.c. conductivity of the fermions characterized by the 
chemical potential E=EF and the partial derivative with respect to E is taken with all 
other (e.g. band) parameters in σ constant. On the other hand, for semiconductors with 
the charge gap ch∆  the expression for the Seebeck coefficient takes the following 
form: 
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If the carriers belong to different bands, as seems to be the case in BaVS3, the 
resulting signal is the sum of the individual bands weighted by their respective 
conductivities (Ziman (1960), MacDonald (1967)).  
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Thermoelectric power measurement is a very rich tool for characterizing the charge 
degrees of freedom. We have performed the measurements of S for BaVS3 as a 
function of pressure and temperature in the hope to learn more about the main 
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ingredients which determine its electronic properties. Furthermore, since the Non-
Fermi liquid behaviour extends over a broad temperature range, we were especially 
curious as to whether S would exhibit a special temperature dependence, as did 
resistivity, in this phase. 
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7.2 The case of BaVS3  

Thermoelectric power measurements in BaVS3 were performed at 1 bar in a broad 
temperature range (up to 600 K), simultaneously with resistivity, and the results are 
shown in Fig. 7.1a. In this regime, both the thermoelectric power and the electrical 
resistivity exhibit linear, metallic-like temperature dependences with large intercepts, 
estimated by extrapolating from high temperatures to 0 K. In comparison to ordinary 
metals (Blatt et al., 1976), the thermoelectric power and the electrical resistivity in 
BaVS3 are large, e.g., S ~ -40 µV/K and ρ ~ 1mΩcm at 600 K. Furthermore, magnetic 
susceptibility in the metallic regime is Curie-like (indicative of localized spins) 
(Mihály et al., 2000). All three of these properties are characteristic for a bad metal. 
The high temperature thermoelectric power is negative, signifying that the charge 
carriers are electrons and, if BaVS3 were an ordinary metal, one could easily use the 
data to determine that EF = 0.32 eV. 
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   (a)         (b) 
Figure 7.1 (a) Thermoelectric power and electrical resisistivity of BaVS3 in the 0-600 K range. Above 
Ts = 240 K, both the electrical resistivity and the thermoelectric power show linear temperature 
dependence indicated by blue and green eye-guide lines. (b) The pressure dependence of the relative 
change of the resistivity (black circles) and of the thermoelectric power (red circles) at room 
temperature. Note the difference between the right and left hand scales. 
 

At TS = 240 K the zig-zagging and the distortion of the sulfur octahedra lift the 
degeneracy of the eg orbitals (Mihály et al. 2000) while maintaining the screw axis 
symmetry. This fact is also reflected in Fig. 7.1a where, below TS, the resistivity starts 
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to increase towards the MI transition, (see also Chapter 4). At the same time, 
however, S does not show any dramatic change. Using the single band expression  
give in Eq. (7.1) it should be noticed that σ(E) my change due to the variation of band 
parameters at T-1∂lnσ(E)/∂E (i.e., at a constant value of T-1SMott). Similar reasoning 
can be applied to the multiband models but as it is not feasible to distinguish between 
the various possibilities on the basis of S alone, we will defer such a discussion until a 
more opportune moment. 

In the earlier chapters, it was already shown that BaVS3 is a system which is sensitive 
to pressure. It is, therefore, only mildly surprising that the Seebeck coefficient shows 
pressure dependence (Fig 7.1b). What is unusual for a conductor is the strong 
variation of S with pressure, which goes well beyond the pressure-induced changes of 
the band-width. As it can be seen in Fig 7.1b, both transport coefficients, ρ and S, 
decrease with pressure with respective (sample independent) rates of ~ 4.2 µV/KGPa 
and 90 µΩcm/GPa. All of the pressure-dependent measurements presented below 
were performed on the pure BaVS3 sample No: 00.  

 

7.2.1 Main features of TEP below pcr and above TMI 

 

The observed linear temperature dependence of S, over a large temperature range 
(Fig. 7.1) already required the evocation of Mott’s formula for diffusion 
thermoelectric power. From the large intercept of S as T→0 (and from the high value 
of the electrical resistivity), it is clear that we are not dealing with an ordinary metal. 
A constant, temperature-independent, contribution to the thermoelectric power (S0) is 
characteristic for systems such as those exhibiting low density polaronic physics, as 
has been elaborated by Emin (1999) for a semiconducting case. However, the case of 
the analogous metal, with rather dense charge carriers strongly coupled to lattice, has 
never been discussed in the literature. 

 

 



160_______________Chapter 7: Thermoelectric power of BaVS3 under pressure 

_____________________________________________________________________ 
  

0 100 200 300

-16

-8

0

 

 2.04 GPa
 2.34 GPa
 2.70 GPa

 1 bar
 0.15 GPa
 0.65 GPa
 1.00 GPa
 1.42 GPa

 1.76 GPa
 1.81 GPa
 1.89 GPa
 1.93 GPa

 T [K]

S 
[µ

V/
K

]

 
0,0

0,2

0,4

0,6

0,8

 

ρ 
[m

Ω
cm

]

 
Figure 7.2: Temperature dependence of the resisistivity and the thermoelectric power for various 
pressures. The black line indicates the approximate temperature below which the Sfluc contribution to S 
starts to develop (see text).  
 

In the following discussion, we present a qualitative argument based on the polaronic 
picture. In this context, one should keep in mind that Kondo singlets bear some 
"polaronic" analogies. The adiabatic dynamics of the electron, which is coupled to the 
lattice degrees of freedom by the short-range interaction, results in the softening of the 
local lattice vibrational modes that are associated with the polaronic lattice 
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deformation. In particular, this affects the value of the Seebeck coefficient through the 
change in the local lattice vibrational entropy. As the temperature is increased, the 
corresponding contribution to the Seebeck coefficient rises, from its zero-temperature 
value, to a temperature-independent value which is realized above the Debye 
temperature (ΘD). The expression for this latter temperature may be written as: 

∑ ∆
i

i

iB

e
k

ω
ω

, 

where iω∆  are the carrier-induced changes of the vibrational frequencies. In other 
words, the change of the lattice vibrational entropy, induced by the electrons, is 
carried from the hot to the cold end of the sample. This phenomenon gives rise to an 
additional contribution to S, denoted herein as S0. 

Since the lowest two e(t2g) levels are sensitive to the Jahn-Teller distortion, there is an 
interesting possibility that the Jahn-Teller polarons are directly present in the system, 
and also give rise to a contribution to the thermoelectric power. This idea is consistent 
with our recent optical studies, presented in Chapter 8. Furthermore, Fig. 7.2 shows 
that the Seebeck coefficient is strongly pressure dependent, which is also in 
agreement with the polaronic picture. Namely, the pressure increases the lattice spring 
constants and the electron overlap integrals and hence strengthens the adiabatic 
softening of the local lattice vibrational modes ( iω∆ ). We wish to stress that, 
although it is possible to explain the pressure dependence of S at room temperature 
(Fig. 7.1b) within the context a 2 band model (Section 3.4.2), the existence of S0 
necessitates the consideration of the polaronic nature of the charge carriers. 

7.2.2 Fine features of TEP - Magneto-TEP 

The above discussion of the linear temperature dependence and the offset of S was 
presented within the standard model of TEP. However, in Fig. 7.2., we can observe a 
departure from linearity at around T=100 K, and a spiky contribution just above TMI. 
These latter aspects can be considered as fine features of TEP and their interpretation 
is much more difficult. The material presented in this section is therefore intended to 
simply indicate some possibilities for the description of these fine features. It is 
important to stress that a single band model is used for the description of the observed 
changes in S. That is, the electrons are progressively dressed with new interactions as 
the temperature is decreased. We symbolize the new contributions as components in a 
sum that constitutes the total thermopower although, for a complete treatment, a more 
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detailed analysis would be required. 

Increasing the pressure in the region of ~10 K above the metal-insulator transition, 
introduces a new, unusually strong, spiky contribution to S: 

 spikeMott SSSS ++= 0  . . 

The spikeS  is an increasingly negative contribution as the temperature decreases, which 
is truncated by the opening of a charge gap at TMI and the concomitant sign change of 

spikeS  is manifested in the spiky character of the overall S. The position of this upturn 
gives a very precise determination of TMI, as can be verified from the logarithmic 
derivative of the corresponding electrical resistivity curve (Forro et al. 2000). One 
should notice that the spikeS is followed by a strong increase of the resistivity in the 
precursor regime to TMI. Inspection of Eq. (7.1) reveals that the most likely sources of 
the anomalous behavior of S are the variations in the density of states as well as the 
spin-disorder scattering (if the phase transition has a magnetic character). Both of 
these parameters affect the conductivity and thereby the thermoelectric power. The 
heightened charge localization that occurs upon approaching the phase transition 
could be interpreted as a progressive band narrowing which considerably increases 
the thermoelectric power. As the pressure is increased towards pcr, the spike in S is 
reduced since higher pressure acts against charge localization. 

One possible contribution to the subtle changes in the electronic properties, mentioned 
above, may arise from the effect of electron scattering on the spins in the system. 
Some clue as to the importance of the contribution from spin-disorder scattering may 
be derived from the introduction of a new parameter. In particular, the presence of a 
magnetic field should affect the spin disorder and hence potentially alter the 
thermoelectric power. 

The magneto-thermoelectric power was measured (simultaneously with the 
magnetoresistivity) for several pressures and the curves taken at 1.76 GPa are shown 
in Fig. 7.3. Although the both the shape and the maximum of the knee remain 
unchanged in response to the applied field, the behavior of S itself is profoundly 
altered by this perturbation (Fig. 7.3). A negative contribution to S is monotonically 
enhanced in a broad range of temperature as the field is increased from 0 to 12.7 T. 
We believe that this is the temperature range in which a spin fluctuation, related to the 
formation of short-range spin order, occurs. This measurement is the first indication 
of the existence of magnetic fluctuations above TMI, in the precursor region. 
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Figure 7.3:  (a) The temperature dependence of the Seebeck coefficient under a hydrostatic pressure of 
1.76 GPa in several magnetic fields, revealing the magnetic spin fluctuations. These fluctuations result 
in Sfluct which starts to develop around 100 K (vertical black line). At ~ 10 K above TMI (vertical violet 
line) Sfluct is replaced by Sspike. (b) The relative magnetoresistance at 50 K (upper panel) and the 
absolute magnetoresistance in the temperature range of 10 to 90 K (lower panel) at a pressure of 1.76 
GPa for several magnetic field strengths. 
 

In keeping with our stated aim for this section, we present and discuss two distinct 
possibilities for the interpretation of this behavior. The first one of these treats the 
spin fluctuations through the change in the scattering time. Taking into account that 

( )Eσ ( ) ( ) ( )ENEvEτ∝ , i.e., that the conductivity varies as the product of the 
relaxation time, the mean velocity and the density of states at the Fermi level, MottS  
from Eq. (7.1) can be written in a general form: 
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It should be noticed that, in contrast to σ, the scattering time (τ(E)) affects SMott only 
through its energy dependence. The introduction of a magnetic field tends to align the 
spins in the system. In turn, this should decrease the electron spin scattering and result 
in a negative magnetoresistance (Fig. 7.3b upper panel). On the other hand, the 
presence of a magnetic field increases the absolute value of the thermoelectric power 
(Fig. 7.3a). Although this may seem counterintuitive at first, it can be described 
within the framework of Eq. (7.3), by considering the nontrivial evaluation of the 
∂lnσ(E)/∂E term. While the calculation of σ itself is difficult; the calculation of its 

-0,6

-0,3

0,0

0 3 6 9 12

1.76 GPa    50 K

 

 B [T]

∆
R

/R
0 [%

]



164_______________Chapter 7: Thermoelectric power of BaVS3 under pressure 

_____________________________________________________________________ 
  

energy dependence is even more so. Even if this is able to be successfully performed, 
for suitable applicability, one still needs to determine the derivation on the Fermi 
surface. This latter task is also far from trivial. 

The second interpretation for the measured results is based on the following 
observations: (i) the magnetoresistance (Fig. 7.3b lower panel) starts to be significant 
only marginally above TMI, suggesting a rather small change in the scattering time 
with B at higher temperatures (ii) the temperature dependence of TEP above TMI can 
be separated into three ranges. The first range corresponds to temperatures larger than 
100 K and is the region in which the standard model of TEP is largely applicable. The 
second range covers the temperatures from ~100K down to ~10K above TMI (Fig. 7.2) 
and is associated with a negative, field-dependent, contribution (Sfluct) to TEP        
(Fig. 7.3a). The third range, in which the contribution to S was already denoted as 

spikeS , covers the remaining 10 K down to TMI. As a consequence of this behavior, 
TEP can be decomposed in the following manner: 
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Since the change of Sfluct in response to the increase of the magnetic field is relatively 
large, especially if compared to the change in resistivity, it opens the following 
appealing explanation of this contribution. Assuming that magnetic fluctuations 
participate in the heat transport, the thermoelectric power, which is defined as the 
ratio between the heat and the charge current, will depend on the magnetic field. On 
the contrary, no radical change is expected in the charge transport under these 
circumstances. 

From Fig. 7.3a, it appears that the increase of the magnetic filed does not alter spikeS . 
On the other hand, the width of the spike, in this temperature range, is pressure 
independent. A simple interpretation of these features is to attribute them to the 
precursor region of the 3D order, which takes place at TMI. This is in agreement with 
the finding of Fagot et al. (2003) that, at 10 K above the MI transition temperature, 
the interchain correlation length is of the same order as the interchain distance.  

Finally, it should be noticed that the 1 bar curve (Fig. 7.2) does not show the spiky 
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contribution seen for higher pressures. The discussion of its absence would probably 
necessitate the introduction of further fine phenomena, which are beyond the scope of 
this chapter. 

7.2.3  Main features of TEP above pcr  

The phonon-drag contribution is not specific to BaVS3. In any crystalline solid, a 
thermal gradient will induce a transport of heat via lattice vibrations. As a result of 
phonon current and electron-phonon coupling, electrons will be "dragged" and a new 
contribution to S will arise (Dugdale, 1977). With increasing temperature, this 
contribution initially increases as the number of phonons becomes larger. At higher 
temperatures, where phonon-phonon scattering becomes more and more important, 
the phonon-drag contribution to S begins to decrease. The maximal value of pdS  is 
usually at ΘD/5. Using the approximate (ambient pressure) value of 180 K for ΘD in 
BaVS3, yields a good order-of-magnitude estimate for the position of the hump 
maximum in S, which is at around 20K at 2.7 GPa.  
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Figure 7.4: The relative change of the thermoelectric power for two pressures (2.3 and 2.7 GPa) 
approaching the Fermi liquid phase with respect to the curve taken at 2.03 GPa just above pcr, in the 
Non-Fermi liquid regime. 
 

Zhou and his colaborators demonstrated, for Pt as a representative example, that the 
phonon-drag is essentially pressure independent in a conventional d-metal (Zhou et al. 
1960). This is not the case for BaVS3. As illustrated in the difference plots in Fig. 7.4., 
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the magnitude of pdS  increases with increasing pressure. 

We interpret this reduced pdS  near pcr as the manifestation of the NFL behavior in the 

thermopower. In Chapter 5, we saw that the ρ = ATn + ρ0  (n = 1.5) variation of the 
electrical resistivity near pcr is a consequence of the fluctuations at the quantum 
critical point. Despite the existence of scattering with such temperature dependence, 
SMott is not observed to be characterized by a power law. This is due to the fact that 
σ(E) affects S only through its energy dependence on the Fermi level, which seems to 
be relatively weak. Nevertheless, the fluctuations do scatter the phonons and thereby 
reduce the drag contribution to S. By increasing the pressure to 2.7 GPa, the 
fluctuations are suppressed and n gradually approaches 2 (for the resistivity), while 
the phonon-drag of a Fermi-liquid is recovered (for the thermopower). 
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7.3 Concluding remarks  

In conclusion to this chapter, we have shown that the measured results can be 
qualitatively understood by decomposing the total thermoelectric power into a sum of 
parameter-dependent quantities. As mentioned in the discussion, this decomposition is 
not always without problems but, in our opinion, the clarity conveyed by its evocation 
outweighs its deficiencies. The first, and largest, contribution to S is denoted as SMott. 
This is simply the standard expression Eq. (7.1) for S given by the application of the 
Boltzmann transport theory to metals. It is always present.  

We have shown, however, that when the electron coupling to the local (e.g., the Jahn-
Teller) modes in BaVS3 is strong, a bad metallicity in electrical transport results. This, 
in turn, gives rise to a constant polaronic contribution to the thermoelectric power, 
denoted as S0. As higher pressures tend to act against polaron formation, S0 is strongly 
reduced in response to increasing p. 

The observed deviation of S from linearity at around T=100 K and the spiky structure 
just above TMI, can be considered as fine features of the thermoelectric power. The 
spiky feature can be rationalized by the introduction of an additional contribution 
(Sspike) which is only important at temperatures just above the magnetic-insulator 
transition. We can hypothesize that this contribution arises from the progressive band 
narrowing that occurs as a result of the heightened charge localization present on the 
high-T side of the MI phase boundary.  

At pressures below pcr (e.g., 1.75 GPa), three temperature ranges can be clearly 
discerned in the magneto-thermoelectric power measurements (Fig. 7.3). The 
behavior observed in the two exterior ranges is virtually independent of the magnetic 
field and can be rationalized by the appropriate inclusion of SMott, S0, and Sspike. The 
fact width of the spike arising from this later contribution is pressure independent 
under these conditions may be attributable to the precursor region of the 3D order. 
The behavior in the central region ( K100K10 <<+ TTMI ), however, is strongly 
influenced by the strength of the applied field. As the explanation of this phenomenon 
is complex, we have offered two alternative interpretations. The first supposes that the 
introduction of the magnetic field affects the scattering time (τ(E)) and hence 
∂lnσ(E)/∂E (see Eq. (7.3)). Unfortunately, this alternative is quite difficult to quantify. 
The second possibility extends the decomposition approach by introducing an 
additional field-dependent component (Sfluct), reliant on the magnetic fluctuations. 
Naturally, the quantification of this component is also associated with difficulty. 
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Nevertheless, its introduction can account for the observed field-dependence of the 
thermopower, through the modification of the heat transport while imparting 
relatively little effect onto the charge transport properties of the system.  

When the pressure becomes high enough to suppress the insulating phase a broad 
peak appears in S which is derived from the phonon drag effect ( pdS ). The newly 
born metallic phase is known to exhibit the characteristics of a NFL through the 
power-law temperature dependence observed for the electrical resistivity. The 
corresponding behavior of the thermoelectric power is, however, masked by the 
strong phonon-drag contribution. Nevertheless, we suspect the unusual pressure 
dependence of Spd is derived from the same quantum fluctuations which produce the 
NFL state.  
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In this final chapter, I briefly discuss the results of optical conductivity measurements 
and indicate their relevance for the underlying physical picture presented in previous 
chapters.  
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8.1 Introduction to optical measurements 

Optical experiments are well-known tools for obtaining information about the 
electrodynamic response and the electronic structure of a given material. The typical 
wavelengths of the light used to illuminate the samples are in the range of 10-5-10-1 
cm, which corresponds to an energy scale of 1 meV - 10 eV. Due to the small moment 
and high energy of the incident light (ω = ck) only “vertical processes” can be probed. 
This implies that information concerning the frequency dependences of the excitations 
can be gathered but their k dependences are concealed. Since the wavelengths are 
much larger than the lattice constant, the electromagnetic field is considered as being 
uniform on the atomic scale.  

The energies of electronic excitations are in the far infrared range. Conventional light 
sources are inappropriate to investigate this energy range on small single crystals. 
Therefore, to obtain a higher brightness in this energy range, the measurements were 
performed at the National Synchrotron Light Source of the Brookhaven National 
Laboratory. We have studied the optical response in reflectance and the frequency-
dependent conductivities were calculated by the Kramers-Kroning transformations.  

Although the data are preliminary, mainly due to the lack of availability of the large 
single crystals needed for the measurements, the results obtained thus far are coherent 
with our understanding of the main features of BaVS3. In this chapter, therefore, the 
most important of our results on BaVS3 are briefly summarized in an attempt to give a 
broader view of the underlying physics. An extensive version of the high-pressure 
data has already been prepared by Kezsmarki et al. (2003). 
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8.2 Ambient pressure measurements 

The reflectivity data as a function of frequency, for selected temperatures, are 
presented in Fig. 8.1. The curves measured above the MI transition temperature 
(T=300K and 70 K) tend to 1 as the frequency approaches the d.c. range. This 
behavior is typical for metallic systems. The Hagen-Rubens law was applied to 
calculate the d.c. conductivity σ0 = σ (ω → 0). The obtained values are 710 Ω-1cm-1 
and 370 Ω-1cm-1 at 300 and 70K, respectively. The room temperature data are 
comparable with the d.c. transport values measured along the c direction, σdc = 1400 
Ω-1cm-1. The lower value reported here may be due to the anisotropy ratio (σc /σa ~ 
3.4) and the fact that the measurements with unpolarized light constitute averages 
over all directions.  

Recent measurements at 300 K with polarized light in the b-c plane have confirmed 
that not only is the d.c. transport almost isotropic, but the frequency-dependent 
conductivity, in the 50 -800 cm-1 range, is also devoid of anisotropy. 

 

 
 
Figure 8.1: The reflectivity (upper panel) and conductivity (lower panel) spectra of BaVS3 at ambient 
pressure for selected temperatures. The position of the gap is indicated by arrow. To test the reliability 
of the high-pressure data (see below), the 60 K curve was also measured in the pressure cell at ambient 
pressure.  
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Besides the isotropic response of the conductivity in the metallic phase, the most 
remarkable aspect of the results is the dip in reflectance around 30 cm-1. This dip is 
broad and tends to fade out at lower temperatures. This behavior means that we are 
not dealing with a conventional infrared-active phonon. If that were the case, the dip 
in the signal would sharpen and increase in intensity upon decreasing temperature. 
Especially below TMI, when the screening by the conduction electrons vanishes, the 
infrared-active phonon should pop-up, as is the case with the one at 100 cm-1. This 
suggests that this 30 cm-1 mode is intimately linked to the conduction electrons and, 
possibly, to their interaction with a special localized mode. We tentatively ascribe it to 
a Jahn-Teller (JT) phonon mode, since we know of the presence of static and 
dynamical JT distortions from the structural data (Chapter 3.). Generally speaking, 
however, the interaction of the continuum with a localized mode gives a Fano 
lineshape and not a dip. Nevertheless, within the resolution of our measurements, and 
considering the small size of the single crystal, it is conceivable that the feature at 30 
cm-1 is compatible with a Fano lineshape (Fano, 1961), and hence a Jahn-Teller (JT) 
phonon mode. 

The overall features of the reflectivity can be fitted in a simple model where the 
conduction electrons interact with the “heavy mass” phonon mode. This is given by 
the formula (Damascelli, 1997): 

     ( ) ( ) 12
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−+−= )xi()iq(i ωσωσ     , 
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where n, m* and τ correspond to the electron number, the effective mass, and the 
relaxation time, respectively. 

This crude (single-band model) description already gives some feeling about the mass 
enhancement and the relaxation time of the conduction electrons. If we take 1 electron 
per site, m* is 12, which shows the tendency of the JT mode to enhance the electronic 
mass and thereby slow the charge propagation. This fact, together with the very short 
relaxation time of 10-15s, could give some clue as to the source of the bad metallicity 
of BaVS3. 
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Figure 8.2: The charge gap, ∆ch, (solid circles), determined from optical conductivity data, shows an 
abrupt change (solid line is a guide for the eye) at TMI. On the contrary, the order parameter of the 
structural deformation (Inami et al. (2002) increases in a mean field manner. 
 

As one goes below TMI, the low-frequency spectral weight vanishes as the energy gap 
opens. The wavenumber of the separation of the optical conductivity data below and 
above TMI, i.e. the maximum in σ1 below TMI, determines the charge gap to be ∆ch = 
700K. A detailed analysis of the temperature dependence of the optical conductivity 
in the insulating phase results in the temperature dependence of the charge gap (as 
shown in Fig. 8.2. A remarkable observation is that, below the MI transition 
temperature, within the precision of the experimental method; all of the recorded data 
(for various temperatures) fall onto a single curve. This means that the charge gap, as 
defined above, opens to its full value precisely at TMI, and does not vary in the mean-
field manner ordinarily associated with a second order phase transition (Fig. 8.2). In 
contrast, as shown in Fig. 8.2, the order parameter of the structural deformation 
(measured in X-ray diffraction experiments, by Inami et al. (2002)) does change in a 
mean-field manner. It is, however, interesting to note that for frequencies below 500 
cm-1 (~700 K) the conductivity is temperature dependent in the whole temperature 
range above TMI. 
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8.3 Pressure dependent optical conductivity measurements 

The determination of the pressure dependence of the optical conductivity in the far 
infrared range is very a challenging experiment. One has to collect low frequency data 
which necessities a large, transparent optical window. At the same time, this window 
has to be able to support high pressures. In our laboratory, Gaál et al. (in preparation) 
have succeeded in developing an optical cell with these unique properties. It was 
through the use of this cell that we addressed the high-pressure optical response of 
BaVS3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.3: The reflectivity (upper panel) and conductivity (lower panel) spectra of BaVS3 at a 
temperature lower than TMI for selected pressures. The position of the gap at each pressure is indicated 
by the appropriately colored arrow. 
 

The goals were threefold: (i) study the evolution of the 30 cm-1 dip, attributed to JT 
polaron, with pressure; (ii) follow the suppression of TMI as a function of p; and (iii) to 
check for the presence of non-Fermi liquid features in the frequency dependent 
conductivity.  

In this very ambitious endeavor, the first results concern the TMI versus p behavior. 



Chapter 8: Optical conductivity of BaVS3 in the infrared region____________177 

_____________________________________________________________________ 
  

Again, as was the case for the temperature variation, the conductivity is pressure 
dependent only for frequencies below 500cm-1

 (~700 K). The charge gap, as measured 
by the maximum in the optical conductivity, shifts progressively down with 
increasing pressure. This is in agreement with the resistivity measurements presented 
in Chapter 4. Unfortunately, due to the curvature of lnρ in the Arrhenius plot (see 
Chapter 4), it was not possible to unambiguously determine the value of the gap from 
the d.c. resistivity data. From the data displayed in Fig. 8.3 the deduced charge gap 
follows nicely the 2∆/kBTMI = 12 relation, independently of pressure (already 
mentioned in Chapter 4). The verification of the high value of this ratio, together with 
the first-order character of its temperature dependence will, however, require further 
theoretical and experimental investigations. 
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8.4 Concluding remarks 

In concluding this brief chapter, it is clear that a significant amount of additional work 
is required to be able to exploit the full potential available through the optical 
conductivity data. As it stands, we were already able to make several contributions to 
the understanding of the behavior of BaVS3. However, due to the preliminary nature 
of the measurements and their analysis, some caution should be exercised in 
extrapolating the conclusions too far.  

The ambient pressure measurements of the reflectance identified an unusual feature at 
around 30 cm-1. The response of the signal in this region to decreased temperatures 
clearly shows that this feature is not a conventional infrared-active phonon. We have 
suggested that this feature to can be ascribed to a JT phonon mode. A crude (single-
band) model indicates that this could possibly be connected with the bad-metalicity in 
BaVS3.  

Interestingly, the charge gap, as measured by the maximum in the conductivity, is 
found to undergo an abrupt change at the MI phase transition. This is in stark contrast 
to the expected mean-field manner in which the order parameter of the structural 
deformation responds to the presence of the second order phase transition. On the 
other hand it was found that the value of the frequency below which the conductivity 
is pressure and temperature dependent, is constant and equal to 700 cm-1; this 
frequency can be tentatively associated with the width of the pseudogap.  

Finally, the very preliminary data presented for increased pressures indicate that the 
charge gap follows the 2∆/kBTMI = 12 relation. However, this and several other aspects 
associated with the optical conductivity, still require additional investigation.  
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In concluding the thesis, I summarize the results of the measurements taken and their 
relationship to the way in which we have come to understand BaVS3.
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9.1 The journey: From the beginning to the end 

The work presented in this thesis was undertaken with the aim of both measuring and 
understanding the properties of the BaVS3 family of materials. This task has been 
achieved progressively and heuristically, by combining specific measurements and 
conceptual analysis to advance, step-by-step, towards the physical picture finally 
proposed for these materials. 

The journey began with an analysis of the symmetry changes associated with the 
sequence of structural and/or magnetic transitions observed in those materials (section 
3.2). The results were then used in the development of two minimal models, designed 
to provide an adequate description of the observed transport, optical, magnetic and 
structural properties of the material. The first model began from the point of view of 
low pressures and temperatures, with localized electrons (section 3.3). In contrast, the 
second is derived from the high temperature and/or high-pressure side, with extended 
electrons (section 3.4). The review of the band calculations, in this latter case, led to 
the tight-binding picture of the relevant bands. Importantly, this picture, with the 
addition of the appropriate interactions, provides a natural connection between the 
high and low temperature models. The bands in question are related to three vanadium 
states, per vanadium site, along the vanadium chain. 

The main paradox in the high temperature properties of BaVS3 is the appearance of 
the electron-driven one-dimensional lattice fluctuations, fourfold commensurate along 
the vanadium chain direction, simultaneously with the only weakly anisotropic 
electric conductivity. These properties have served as main criteria in the choice of 
the minimal (three or two) band model, consisting finally of a wide quasi one-
dimensional band hybridized with (one or two) narrow, rather isotropic band(s). The 
Peierls coupling of these bands to the lattice is already sufficient to capture the correct 
structural and transport behaviors in the broad sense, and is consistent with the 
electronic structure observed by ARPES (section 3.4.3). 

The examination of the magnetic properties of the system shows, however, that 
Coulomb interactions play an important role in the observed behavior. The MI 
transition at ambient pressure is not only structural but also magnetic, resulting in the 
sharp decrease of the uniform magnetic susceptibility (section 1.1). Combining this 
information with the knowledge that the precursors of the MI transition are the one-
dimensional electronically-driven lattice fluctuations, it is concluded that this 
transition is controlled by the Coulomb-interacting electrons of the wide quasi one-
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dimensional band (section 3.4.3). It is here that the whole rich body of physics 
associated with the (quasi) one-dimensional non-Fermi liquid enters the problem. For 
the weak to moderate interactions appropriate for vanadium-based states, the nesting 
feature of the wide band enhances the intraband SDW correlations, which, when 
coupled to the lattice, lead to an instability of the spin-Peierls type. At the same time, 
through local coupling between the itinerant and localized spins, this order is imposed 
(via the effective RKKY interaction between localized spins) also upon the latter. 

Pressure is expected, and shown by measurements of resistivity and thermoelectric 
power (chapters 4, 5 and 7), to have a dramatic effect on the MI phase transition. It 
does not only influence the overall width of the band, through the Coulomb coupling 
constants as in the three dimensional case, but additionally and more importantly, 
increased pressure affects the nesting properties of the wide band, making them 
imperfect. The pressure thus progressively removes the quasi one-dimensional 
enhancement of the SDW correlations, and so decreases the corresponding spin-
Peierls transition temperature. Thus, when the MI transition temperature reaches zero 
at the critical pressure, pcr ≈ 2 GPa, the system tends to be three-dimensional and 
metallic, although anisotropic. In our original model, which retains the interactions 
between the itinerant and local spins but neglects the direct (intra narrow band) 
interactions between the local moments, and which becomes three dimensional with 
pressure, the zero temperature transition corresponds in some respects to the Quantum 
Critical Point (QCP) of the 3D Kondo lattice (section 5.2). It is common knowledge 
that such a model shows a non-Fermi liquid behavior in the vicinity of the QCP.  

When the system is driven away from the QCP to the high pressure side, probably by 
further reducing the nesting effects in the wide band, the fourfold charge and spin 
correlations in the wide band become unimportant with respect to the formation of the 
local charge and spin correlations, the latter through the remaining local interaction of 
itinerant and local spins. The local correlations move as particles and ultimately form 
the correlated Fermi liquid. This effect was studied by measuring carefully the low 
temperature Tn dependence of the resistivity as a function of pressure (section 5.3). In 
BaVS3, above the critical pressure and for temperatures below 15 K, the power law 
exponent n (consistently with other quantities which parameterize the resistivity) 
changes from the manifestly non-Fermi liquid value n < 2 close to QCP (section 5.2) 
tending to the conventional n = 2 at high pressures, in qualitative agreement with the 
predictions of the model. 

This picture is, however, incomplete, in particular because it neglects the direct 
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interactions between the local moments additional to the RKKY interactions, or, in 
the band language, the magnetic intraband intersite Coulomb correlations in the 
narrow band(s). That the latter might be important is suggested at ambient pressure by 
the reordering of the magnetic moments found in BaVS3, deep in the insulating phase. 
The order, ferromagnetic (FM) along the vanadium chains, appears below 30K. 
Transverse to the vanadium chains the interchain order is incommensurate, seen in 
susceptibility as interchain compensated FM (ICFM). It is presumably a weak order, 
probably because the interchain AF coupling of the chain magnetic moments, entirely 
frustrated in the hexagonal phase, is approximately so in the orthorhombic one. 
Further on, the (full) ferromagnetic order is found in the samples in which the 
chemical substitution, partial with Sr and entire with Se, acts equivalently to the 
pressure (chapter 6). In the samples containing Sr, the nonmagnetic (presumably 
fourfold CDW) insulating phase is removed by pressure and/or further doping. In Se 
samples the MI transition is already eliminated at ambient pressure. Nevertheless, the 
full FM order is present in the metallic phase of Sr and Se samples at low 
temperature. It is thus reasonable to attribute it to the direct magnetic interactions 
between local spins in the whole BaVS3 family. 

It is then also reasonable to expect that the intrachain FM order occurs in the metallic 
phase of BaVS3. Thus, although the ICFM order in BaVS3 cannot be examined by the 
transport measurements in the insulating phase, these measurements, now at high 
pressure, are well suited to investigate the possible occurrence of some interchain 
kind of ordering of the intrachain FM ordered magnetic moments in the metallic 
phase. The corresponding measurements of the low temperature behavior of the linear 
and non-linear (current-dependent) electrical resistivity, of the infrared conductivity 
and of the thermopower in the uniform magnetic field (itself conjugated to the (full) 
FM ordering) represent the experimental focal point of this thesis. 

First, it was found that when the critical temperature of the MI transition is (linearly) 
decreased by applying pressure close to 15 K (chapter 4), a small additional increase 
of pressure makes it collapse to zero at pcr (section 5.1). Next, for pressures higher 
than pcr  a shoulder, which marks the upper bound of the low T, Tn, regime, is 
observed, again around 15K (section 5.3.3). This same temperature scale has its 
counterpart in the magnetic scale (fields around 9T) in the measurements of the 
magnetoresistivity at fixed low temperature (section 5.4.1.4). Taking all of this into 
account it is reasonable to associate 15 K with the critical temperature of the 
intrachain FM ordering. The nature of the concomitant (probably weak) transverse 
ordering is, of course, entirely out of reach of the methods in use here. 



Chapter 9: Conclusions__________________________________________185 

_____________________________________________________________________ 
  

The collapse of the MI phase, which occurs when the transition temperatures of the 
fourfold and uniform magnetic ordering come together under pressure, shows 
however that the two magnetic orderings are not decoupled. Recall, however, that this 
is apparenty not the case at ambient pressure, when their characteristic temperatures 
are split. It is likely that the SDW order couples to the probably weak transverse 
ordering of the intrachain FM moments (section 5.5). This is why in the vicinity of pcr 
it was interesting to measure carefully, on small energy scales, the transport properties 
for clean mono-crystalline samples of BaVS3. Not surprisingly, for inherently 
metastable situations, well developed hystereses were observed in the temperature-
dependent behaviors (below 15 K) of the resistivity, the thermoelectric power, and the 
magnetoresistivity (chapter 5). The resistivity in the magnetic field also turns out to be 
strongly current dependent, showing random jumps in this dependence (section 
5.4.1.3). These jumps disappear for fields larger than 9 T. The combination of these 
results suggests that, for the clean samples of BaVS3 in the vicinity of pcr, there is a 
domain structure for temperatures below 15 K and magnetic fields below 9 T. The 
nature of those domains is out of reach of the transport measurements, but apparently 
they have to do with the interplay between the SDW and ICFM instabilities. On the 
other hand, the extrinsic disorder of the impure samples wipes out (or blocks) the 
domain structure, probably upon replacing ICFM by the full FM. In this case, the 
conducting behavior in the vicinity of pcr is decoupled from the (transverse) ordering 
of local spins, and the previous QCP analysis of the Tn laws, which ignores this 
ordering effect, can be applied with some confidence. 

The question of fluctuations in the QCP regime was also addressed by thermoelectric 
power but no corresponding power law temperature dependences were observed due 
to masking by the strong phonon-drag contribution (chapter7). Nevertheless, we 
suspect the unusual pressure dependence of the phonon-drag is related to the same 
quantum fluctuations, which produce the NFL state. As for the high-temperature 
thermoelectric power, it is marked by a contribution, which depends on the pressure 
but not the temperature, that can be ascribed to the Jahn-Teller polarons. We have 
shown, in addition that the strong electron coupling to the local modes in BaVS3 
results in a bad metallicity of the electrical transport. This idea is consistent with our 
recent optical studies, presented in chapter 8. 

In the context of the present intense theoretical and experimental efforts to understand 
the behavior of systems with strongly correlated electrons, BaVS3 is thus a very 
interesting material. Many aspects of the non Fermi-liquid physics are interlaced in 
the properties of this material. First, at ambient pressure it shows the fluctuative 
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behavior characteristic of the one dimensional Luttinger liquid. However, below the 
critical temperature for orbital ordering, the minimal model for this material may 
involve two bands rather than one. The second band, which enters the model in 
addition to the essential quasi-one dimensional one, is quasi-isotropic but narrow, and 
is responsible for introducing the aspects of the heavy-fermion physics into the 
problem. The latter becomes in some respects analogous to that of the Anderson-
Kondo 3D lattice embedded into the sea of quasi-one-dimensional Luttinger electrons. 
The commensurate 2kF and 4kF CDWs and 2kF SDW are therefore either interfering 
with the local correlations or defining the nature of the RKKY interaction between the 
localized spins. However, in addition to the RKKY interaction, it appears that the 
direct (intraband) interaction between the localized (narrow-band) spins is required to 
describe the physics of BaVS3. The advantage of studying these phenomena in BaVS3 
is that, by applying large pressures, the quasi one-dimensional enhancement of the 
RKKY interaction can be decreased and the quasi-isotropic correlated regime studied 
separately. This leads to a better understanding of the intricate high-pressure behavior 
of the Quantum Critical Point or of the first order phase transition in clean BaVS3, 
which, at low temperature, separates the two regimes. 

To return to the point then and close the overall circle, let us stress the primary 
interest that led us to BaVS3 in the first place (at the end we should not forget how 
this journey started). As said earlier, it is of crucial importance for future 
development, to understand the main parameters that control the interplay between 
lattice, charge, orbital, and spin correlations, and to learn how to manipulate them in 
order to be able to engineer materials suitable for devices. Although BaVS3 is 
probably not yet directly ready for use in new devices, it is indeed a very nice 
example of a material in which we can understand and manipulate the important 
parameters of interest. Throughout this thesis we have seen how, by applying 
pressure, magnetic field, and chemical substitutions, the properties of the system 
could be modified in a substantial way. Careful interpretation of the resulting 
responses of the material provided us with an insight into the underlying physical 
background, in particular by uncovering the fine interplay between the electrons in the 
dz

2 and eg orbitals.  
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9.2 Future perspectives 

In closing, I would like to take the liberty of including a few, more personal, words. 
Working with BaVS3 was by no means an easy task. The samples are small, fragile, 
and hard to contact, not to mention the fact that high pressure measurements are not 
the gentlest available (the relevant forces on the crystal are measured in tons). Indeed, 
several times during my doctoral studies, especially during those sleepless nights 
spent bending over BaVS3 (when I should have been home watching Casablanca), I 
thought to myself why: 

 
of all the lab joints in all the towns in all the world, "she" walks into mine ? 

 

But every process of learning has its price and, as the time passed by, I changed my 
tune. Now, at the end, I’d rather say:  

 
BaVS3, I think this is the beginning of a beautiful friendship. 

 

As a small token of my appreciation for all this material has done for me, I would like 
to record my list of wishes of things that could be done for "her": 

  NMR and NQR in the low temperature phase 
  Magnetic susceptibility under pressure 
  Neutron scattering study under pressure (on ceramic samples) 
  Conduction anisotropy measurements under pressure 
  Anisotropy of the frequency-dependent conductivity  
  Magnetic susceptibility and resistivity of substituted or doped 
   or irradiated or sulfur deficient samples under pressure 
 

Whether it is me or someone else who will have the honor of bestowing these 
insights, I believe that their accomplishment will bring us all closer to unlocking the 
plethora of intricacies and mysteries that, by their combination, comprise “her” 
essence.  
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Appendix A  

HOW TO MEASURE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is dedicated to those readers interested in mastering the techniques of 
measuring transport properties under pressure. In an effort to make the explications as 
simple as possible while still transmitting the important tricks and know how, the step 
by step procedures are given in the form of the cook book. We will start from the very 
beginning with the 1-bar transport measurements and describe how to contact the 
BaVS3 sample and related compounds. Thereafter, we will show how to overcome the 
problems associated with the high pressure measurements. 



190______________________________________Appendix A: How to measure 

_____________________________________________________________________ 
  

A.1 A.I.1 Resistivity and thermopower for beginners 

Electrical resistivity ρ is calculated from the measured resistance R of a sample of a 
known length L and uniform cross section A by the following expression: 

 ρ =RA/L      .   

In the case of BaVS3, the dimensions of the crystals were measured by the use of an 
optical microscope equipped with an ocular micrometer. The resistance measurements 
were performed in the standard four probe configuration as shown in Fig. A.1. This 
method gives the real sample resistance since the current and voltage contacts are 
separated (this is not the case with the two point configuration where the 
measurements are influenced by a serial contact resistance). The procedure for 
measuring resistance is: 

a)  Set the desired current (be sure that the sample is not heated by the chosen 
measuring current). 

b)  Wait several seconds (until the voltage stabilizes), and read the voltage. 

c)  Change the polarity of the current, wait several seconds, and read the 
voltage. 

d)  The slope of the line connecting the two measured points in the I-V graph 
gives the value of R (that way the parasitic thermal voltage, Vtherm, does not 
influence the measurement, V = IR + Vtherm). 

 

 
 
Figure A.1: Schematic presentation of the geometry for the resistance measurements. 
 

To prevent the heating of the sample by the measuring current and to ensure a low 
noise (due to parasitic thermal voltages), it is important to have low resistance 
contacts. Unfortunately, this property is sometimes difficult to obtain. If the contacts 
are of differing quality, the usual choice is to connect the best one to the current 
source. This allows the highest possible measuring current, limited by the Joule heat 
of the current contact. One of our goals was to measure the electrical properties of 
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BaVS3 and related compounds, in the high pressure and low-temperature region 
where the resistivity has a metallic character. In this region, the typical sample 
resistance is ~0.1 Ω. Since the standard silver paint contacting techniques gave a 
contact resistance of ~100 Ω, considerable efforts were invested in order to reduce 
this value. The following method resulted in contacts with a resistance of ~10 Ω:  

a)  Mask the sample with mylar, leaving the places for future contacts 
uncovered. 

b)  Evaporate ~ 500 Å of chrome and then continue with evaporating ~ 500 Å 
of gold. 

c)  Take the mask away, and fix wires (if measuring TEP use high purity gold 
wires, see TEP measurements) by conducting silver epoxy: DuPont 6838. 

d)  Heat it at 3500C for 10 min under vacuum. (This is the lowest temperature 
at which the epoxy becomes conducting. On the other hand, at higher 
temperatures the material degrades by releasing sulfur, which reacts with 
silver epoxy and devastates the contacts. Vacuum prevents the oxidation of 
the epoxy). 

Recent interest for parallel studies of susceptibility and transport properties has 
motivated another approach, which does not introduce magnetic impurities (like 
chrome, epoxy, etc.). The solution is found in spot welding which gives good 
preliminary results having the contact resistance of several Ohms. Their resistance to 
high pressures should be still tested.  

Once the samples are contacted, the resistivity can be measured as explained above 
or, alternatively, mounted on the sample holder for thermoelectric power 
measurements (TEP). 
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If the sample is placed in a temperature 
gradient, the charge carriers will move 
from the hot to the cold side of samples. 
This will induce a voltage drop across the 
sample, as shown schematically in Fig. 
A.2. The coefficient, which connects the 
voltage drop and the imposed 
temperature gradient, is known as the 
Seebeck coefficient, S: 

    V = S ∆ T    . 

The technical problem of this experime-
ntal method is the precise determination 
of the temperature gradient 

 
Figure A.2: Scheme of the TEP measurements 
 

between two voltage contacts. Since the intention was to use the same setup at 1 bar 
and in the pressure cell, a homemade sample holder of small dimensions was 
developed. The principal steps involved in its preparation are described below. 

a) Make flat a surface on a metal field resistor (Fig. 3) of ~500 Ω by 
polishing it along the longest dimension (where the resistor color code is 
placed). 

b) Completely remove the remaining paint and metallic film from the side of 
the resistor leaving the top and the bottom of it (where the resistor 
connecting wires are) untouched. (Use the flat surface to glue (with 
Cyanolite) the resistor on the edge of a microscope glass slide and polish 
its body along the longest side. During this procedure, the connecting wire 
will probably detach, leaving free the metallic film below it. This is our 
future 50-100 Ω heater so be careful about it). 

c) Take away the two connecting wires from the top and the bottom, if they 
are still in place.  

d) At each side (top/bottom) connect two wires, by silver epoxy DuPont 
6838, to the metallic films side (do not bake the epoxy yet). 

e) Make a differential thermocouple (e.g., chromel-constant-chromel) by 
welding the wires (wire diameter ~ 0.2 mm). The middle wire should have 
the approximate length of the voltage contact distance.  

f) Fix the differential thermocouple by silver epoxy DuPont 6838 in the 
middle of the polished flat surface (ceramic body of the resistor). 

g) Bake the whole construction for several (~ 10) minutes at 400-600 0C 
under vacuum. (Air would oxidize the metallic films and thereby destroy 
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the epoxy contacts) 

h) Position the sample parallel to the thermocouple. Use the sample wires to 
fix the sample to the ceramic surface by gluing them with epoxy DuPont 
4929 to the flat surface. To obtain a good thermal contact between the 
body of resistor and the sample, ensure that the part of the wire between 
the sample and the body of resistor is as short as possible.  

 

 

                    
 (a)      (b)     (c) 

 
Figure A.3: (a) Metallic film resistor. Dark blue arrows indicate the connecting wires and the red one 
the longest resistor dimension. (b) Top/bottom side of resistor (sample holder) in the final stage. The 
light blue arrows indicate the two silver epoxy contacts on the remaining metallic film, which now 
serves as a heater to produce a temperature gradient (all other facets are cleaned from the paint and the 
metallic film exposing the white ceramic body of the resistor). (c) Flat surface of the resistor with the 
mounted sample (black arrow) and thermocouple (green arrow). The meanings of the light blue and red 
arrows are the same as in a) and b). The size of the sample holder is compared to a matchstick.  
 

The obtained sample holder, including the mounted sample, should resemble the one 
shown in Fig. A.3. 

Once the sample holder is ready, the wires coming out of it should be connected to the 
measuring instruments as shown schematically in Fig. A.4. The next procedure 
explains how to measure the thermoelectric power (TEP). 

a) Set the temperature gradient by setting the current, IHeat, (~10 mA) through 
one of the heaters. Wait several seconds (τ ~ 10 sec) until the temperature 
gradient stabilizes.  

b)  Read the voltage, Vthc, on the differential thermocouple (this gives the 
temperature difference, ∇ T = Vthc/Sthc, between the voltage contacts of the 
sample) 

c) Read the voltage on the sample, VS. 
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VS

Vthc

IHeat IHeat

IS
VS

Vthc

IHeat IHeat

IS
 

Figure A.4: Scheme for the TEP measurement. One of the heaters makes a temperature gradient, ∇ T, 
across the ceramic sample holder measured at the place of the sample voltage contacts by a differential 
thermocouple (~ Vthc). The same temperature gradient causes the voltage drop, VS, on the sample. 
(Additionally in this arrangement resistance of the sample can be measured by setting the current IS and 
the reading the voltage VS.) 
 

d) Set the IHeat, zero, wait τ and read the voltages Vthc and VS. (Both of them 
are non-zero due to the parasitic thermal voltages) 

e) The slope of the line connecting the measured points, in the (VS, ∇ T), 
graph gives the Seebeck coefficient of the sample SS. (Actually, what is 
measured is the SS-Swire, were Swire describes the thermoelectric power of 
the wires connected to the sample, usually made from high purity gold. 
How to deal with this aspect is described below)  

f) To obtain a more precise result, it is practical to measure several points 
with different IHeat, between the minimal and maximal heating powers, by 
recording the results during a cycle of increasing and decreasing IHeat. 
(Keep in mind that the heating power varies as ~ IHeat

2. Therefore, to 

diminish it by a factor of 2, the current should be divided by 2 ).  

 

Several problems can occur while measuring the TEP in this way and may be easily 
spotted by monitoring measured voltages during one cycle. Problems could be related 
to either (i) a different heat transport between the sample holder and the sample or the 
thermocouple, or (ii) a too short time interval τ, between the change of IHeat and the 
moment of reading the voltages (the system is not in equilibrium). An example of a 
representative measurement and the typical signatures of both problems are shown in 
Fig. A.5a,b,c respectively. 
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Vthc~ ∆T [a.u.]

V S [a
.u

.]

Vthc~ ∆T [a.u.]

V S [a
.u

.]

 

Vthc~ ∆T [a.u.]

V S [a
.u

.]

 
  (a)    (b)    (c) 

Figure A.5: a) Representative cycle of TEP measurement measured by two heaters. The slope of the fit 
(green line) gives the Seebeck coefficient of the sample. b) The effect of a weaker heat transport 
between the sample and the ceramic holder. c) Hysteresis due to the insufficiently long waiting time τ. 
The blue line marks the order in which the data were collected. The offset of both measured voltages is 
attributed to the parasite thermal voltages.  
 

There is one more problem which can appear even if the aforementioned setup is 
functioning well and is properly executed. If the IHeat is too high it will result, not only 
in a temperature gradient ∆T, but it will heat the entire sample and thereby change its 
Seebeck coefficient. This problem is particularly inconvenient if SS has strong 
temperature dependence. In this case, the measured voltage curve will resemble to the 
one shown in Fig. A.5b).  

As already mentioned, the previously described method actually results in values for 
SS-Swire as opposed to SSe. This is easy to understand if we look on the sample and the 
connected wires as a differential thermocouple. The measured drop of voltage is equal 
to:  

 V = Swire (Troom – (T + ∆T)) + SS ((T + ∆T) - T) + Swire (T – Troom) = 

     = ∆T (SS - Swire) 

where Troom is the room temperature and T and T+∆T are the temperatures of the cold 
and the hot part of the sample.  

There are three ways in which to overcome the contribution of the wires to the 
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measured Seebeck coefficient. The first is to simply neglect its existence, which is 
justified if SS >> Swire. The second way is to use high purity gold wires (>99.99%) and 
read Swire from existing tables. However, this procedure is not highly reliable since 
even a small quantity of magnetic impurities in the wires will result in a Kondo hump 
at low temperatures (below 100 K, which is quite inconvenient in the case of BaVS3 
given that at 2 GPa it has a metallic behaviour and an accordingly low Seebeck 
coefficient). 

Finally, the TEP of wires can be directly measured and added to the measured S (be 
careful with the signs). The measured sample should be cautiously removed from the 
holder, by leaving the wires in places (cut them just at the edge of the sample). This 
procedure involves the replacement of the sample by BISCO and high purity Pb. 
BISCO is superconductive below 90 K (SBISCO = 0 V/K) and therefore the measured 
drop in voltage is related only to the Swire. Pb is also convenient since SPb can be found 
in the tables but in contrast to gold it is very easy to obtain it in the pure state. (To 
simplify the determination of Swire, and to avoid the problems associated with Kondo 
humps, it is nevertheless recommended to connect the sample with high purity gold 
wires). 

 

A.2 High temperature measurements 

The sample holder described above is particularly convenient as it can be (i) easily 
plugged in to different experimental setups without touching the sample and, (ii) 
allows simultaneous measurement of the resistivity and TEP. These two properties 
serve to facilitate the comparison of the obtained results. In the subsequent discussion, 
several experimental setups, used to cover following temperature and pressure ranges, 
are described: 

 high temperatures (300- 1000 K) at ambient pressure 

 low temperatures (1.5 to 300 K) at ambient pressure 

 high pressures, up to 3 GPa, in the 2-300 K temperature region. 

 

The experimental setups for the latter two ranges were designed to fit in the 
superconducting magnet, to enable the possible application of high strength magnetic 
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fields (up to 12.7 T). In such a way, a large volume of the T-p-H phase diagram can 
be covered without moving the sample from the sample-holder. 

 

 
 
Figure A.6: High temperature setup (2) with its principle components. The measuring head, and its cap 
(a), marked by the white circle, are enlarged in the right-upper part of the figure. The position of the Pt 
resistance thermometer placed in the body of the measuring head is indicated by a blue arrow. A 
vacuum feed-through (b) is used to make a hermetic passage for the wires. Once the setup is introduced 
in the glass tube (1) the joint is sealed by an o-ring (c). The possible gas flow is indicated by yellow 
arrows. 
 
 

To investigate the high temperature transport properties, the sample holder was 
plugged into the home-made experimental setup shown in Fig. A.6. The sample 
holder is placed in the hole of the measuring head, connected to the gold wires by 
silver epoxy DuPont 6838, and covered by the small ceramic plate (a), to ensure a 
good thermalisation. The temperature is measured by a Pt resistance thermometer 
placed in the body of the measuring head and connected to the gold wires. To prevent 
shortcuts, the gold wires are guided through ceramic tubes to a vacuum feed-through 
(b) from where the signal is brought by the copper wires to the measuring 
instruments. The whole setup (2) is placed in the glass tube with two entrances for the 
gases (1) to allow the possibility of exposing the system to various atmospheric 
conditions. (If a vacuum is desired, simply close one of the (yellow) entrances and 
pump on the other.) The o-ring (c) seals the joint between the elements (1) and (2). 
With everything assembled thus, the setup is introduced to an oven of length similar 
to that of the aluminum paper wrapped around the glass tube. Bigger ovens could 

1 

2 

a 

b 

c 
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overheat the sensitive part of the setup (e.g., the feed-through). Aluminum paper 
ensures a low temperature gradient along the tube and thereby reduces the parasitic 
thermal voltage. 

 

A.3 High pressure measurements 

The measurement of low temperature resistivity at ambient pressure is a standard 
experimental method found in many laboratories and therefore won’t be discussed in 
detail herein. In principle, the setup is similar to that used for the high temperature 
measurements. The presence of more than 6 wires in the measuring head brings with 
it the opportunity to plug in the sample holder and measure the TEP (one heater can 
be enough for the measurement. For the simultaneous measurement of the resistivity, 
at least 8 wires are needed). The remaining aspects have already been outlined above. 
Therefore, let us continue with more exciting (and more difficult) prospect of 
pressure measurements. 

The main idea is to use a pressure cell which has enough wires entering the cell and 
then plug in the sample holder and repeat the logic of the 1 bar measurement. We 
started with a commercially available self-clamping pressure cell (Polish, shown in 
Fig. A.7.) with less than 10 wires. To measure TEP, resistivity and the pressure in the 
cell at least 12 (6 + 2 + 4) wires are needed which are not on our disposition. Thus, 
the difficulty is to make a feed-through, shown in Fig. A.8, which will survive 
extreme forces (to have 2 GPa in the cell, on the surface of the feed-through, with a 
diameter of 7 mm, force of several tons is applied).  
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Figure A.7: The self-clamping pressure cell. 1- cell body, 2- fixing nut (with a passage for the wires), 
3- feed-through, 4- nut to fix the feed-through, 5 -fixing nut (with a hole for the force transmitting 
piston (7) and disc (8), 6- piston. Appropriate rubber and brass rings are encircled by white lines. The 
arrows point to the final position of a particular component. 
 

 

                    
     (a)         (b)            (c) 

Figure A.8: (a) and (b) the back and the front view on the feed-through, small cone (1) and a holder 
(2) in the first and last phase of preparation. (c) The positions of the sample-holder and the pressure 
gauge are marked by yellow and red arrow, respectively. 

 

The following steps explain how to successfully prepare the apparatus for assembly:  

a) Sonificate the wires, small cone and the feed-through in ethanol (the 
LakeShore phosphorous bronze wires are strongly recommended, because 
of their strength) 

b) Place the wires in the feed-through, and arrange them in such way that 
they do not cross each other, and that they closely follow the surface of the 
feed-through hole. (It is convenient to twist the wires at both exits of the 
feed-through and fix them by GM-varnish, preventing their further 

1 
2 

3 4 

6 7 

5 

8 

5 mm 

1 

2 
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movement.) 

c) Mix the EMERSON&CUMING Stycast 2850 FT with the Catalyst 11, 
degas it in a desiccator, fill the feed-through hole (to ensure a good filling 
use a pump to suck in the Stycast) with the resulting mixture, plug in the 
small cone, clean the wires and the feed-through from the excess Stycast 
excess and apply the heat treatment as indicated in the Stycast instructions. 
(During the heat treatment Stycast becomes liquid and to prevent its 
leaking on the bottom side, a small paper ball can be used as a cork.) 

d) Once the feed-through is ready a holder (for the sample-holder and a 
pressure gauge) it is screwed on the small cone and the wires are placed in 
the desired positions. 

e) Finally the sample-holder and the pressure gauge are connected to the 
wires. 

Now everything is ready and the pressure cell should be assembled as shown in     
Fig. A.7. The instruments should be connected according to the Fig. A.4. We chose to 
use kerosene as a pressure medium, although alternatives are possible. Measurements 
can be performed directly in the helium tank or in a glass cryostat. The cooling rate of 
0.5-1 K/min still gives low noise results. (If a magnetic field is to be used, care should 
be exercised with the choice of materials in that they should be non-magnetic., e.g. 
CuBe for the pressure cell). 

In closing this section, we record two more tricks. While increasing the pressure in 
the cell above ~1 GPa the gold wires have a tendency to break. This is due to the 
frizzing of the pressure medium (kerosene). There is a simple way to reduce the risk 
of this problem by arranging the wires in such way that they follow some bigger 
surface (if it is not possible glue them to a thicker wire (insulated copper wire with 
1mm diameter will suffice)).  

In the case that contacts are required for the InSb pressure gauge, the following 
procedure has enjoyed proven success. Simply mask the guage (as explained above 
for BaVS3), evaporate pure In, and heat it above the melting point of In (160 Co). 
Connect the wires (50 µm gold wires are still soft enough) with a silver epoxy. Be 
sure to handle InSb with care, since it is very fragile. 

By arming yourself with an acceptably sized portion of luck and carefully following 
the above procedures, you should be able to reproduce the measurements presented in 
this thesis. Naturally, the contents of this section also provide the basis for variations 
on the theme and even the material under study. Should you choose to head down 
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this, or a related path, you can consider yourself warned that the successful 
development of the measuring protocol represents merely the beginning of a torrid 
odyssey. From there you are on your own. As HAL 9000 would put it: “Well I don’t 
think there is any question about it. It can only be attributable to human error. This 
sort thing has cropped up before, and it has always been due to human error.” “This 
conversation can serve no purpose any more. Goodbye.” 

 
 

On the other hand, just because HAL “can’t do that” doesn’t rule out the possibility 
that you can.  
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Appendix B  

CATALOG OF SAMPLES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As this appendix is meant to serve persons familiar with the subject, all of the relevant 
information is given within the figures and not commented upon in the captions; the 
figures are left to speak for themselves. It is hoped that this approach will leave the 
objectivity of the observer unspoiled, enabling him to identify either the universal 
phenomena or the differences in-between the samples, as he so chooses. 



204__________________________________Appendix B: Catalog of samples 

_____________________________________________________________________ 
  

B.1 Preamble 

One of the most exploited features of BaVS3, during the course of this work, was its 
sensitivity to pressure. The most interesting area of the p-T diagram is located at low 
temperatures (below 30 K), in the region close to the critical pressure (pcr ~ 2 GPa), 
where the MI phase boundary collapses. Because of the proximity of the Quantum 
Critical Point (QCP) in this region, the physical properties of the system can also be 
tuned by a magnetic field, disorder, or sulfur off-stoichiometry. In addition, it was 
shown in chapter 5 that the observed low-temperature behavior is strongly dependent 
on the magnetic properties of the system. Therefore, we present the results of ambient 
pressure susceptibility and high-pressure resistivity measurements, on several 
samples, in the form of a catalog. The aim in doing so is to enable a facile comparison 
of the quality of the different samples.  
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B.1.2 Sample No: 02 
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B.1.3 Sample No: 03 
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List of abbreviations  
 
 
 
a*, b*, c* primitive vectors of the reciprocal lattice  
a', b', c' primitive vectors of the hexagonal unit cell 
a, b, c vectors of the orthorhombic unit cell 
a.c.  alternating current 
AFM antiferromagnetic 
ARPES Angle Resolved Photoemission Spectroscopy 
BCS   Bardeen, Cooper and Schrieffer 
CDW  charge-density wave 
d.c.  direct current 
DMFT  dynamic mean field theory 
DOS  density-of-states  
EF The Fermi level 
FC field-cooling 
FL Fermi liquid 
FM ferromagnetic 
ICFM  interchain-compensated FM  
IRC Ioffe-Regel criterion 
JT Jahn-Teller 
kF Fermi wave vector 
LAPW  linear augmented plane waves 
LDA Local density approximation 
MI  metal-insulator transition  
nF density of states at the Fermi level 
NFL non-Fermi liquid 
NMR Nuclear Magnetic Resonance 
NQR Nuclear Quadrupole Resonance 
pcr critical pressure 
QCP quantum critical point 
RF SQUID  radio frequency superconducting quantum interference device 
RKKY Ruderman-Kittel-Kasuya-Yosida 
RRR residual resistivity ratio 
SDW spin-density wave 
TB  tight binding approximation  
TEP thermoelectric power 
TMI metal-insulator transition temperature 
TS critical temperature for a structural transition 
Tx long range magnetic ordering temperature 
U Hubbard U 
ZFC zero-field cooling 
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