. Dans-un-premier and . Temps, Pour une couche de fibres (s'agit-il d'un arrangement aléatoire bidimensionnel des fibres ?), le nombre de contacts par unité de surface noté N est proportionnel ` a la distance moyenne entre contacts notée ?. L'utilisation du terme " couche de fibres " nous conduitàconduit`conduità nous interroger sur le type d'arrangement de fibres modélisé ici. S'il s'agit d'une hypothèse introduite implicitement

A. Oberlin and M. Endo, Filamentous growth of carbon through benzene decomposition, Journal of Crystal Growth, vol.32, issue.3, pp.335-384, 1976.
DOI : 10.1016/0022-0248(76)90115-9

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.
DOI : 10.1038/354056a0

J. H. Hafner, C. L. Cheung, A. T. Woolley, and C. M. Lieber, Structural and functional imaging with carbon nanotube AFM probes, Progress in Biophysics and Molecular Biology, vol.77, issue.1, pp.73-110, 2001.
DOI : 10.1016/S0079-6107(01)00011-6

T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. Cheung et al., Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing, Science, vol.289, issue.5476, pp.94-97, 2000.
DOI : 10.1126/science.289.5476.94

J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng et al., Nanotube Molecular Wires as Chemical Sensors, Science, vol.287, issue.5453, pp.622-647, 2000.
DOI : 10.1126/science.287.5453.622

. Grimes, Gas sensing characteristics of multi-wall carbon nanotubes, Sensors and Actuators B, vol.81, pp.32-41, 2001.

B. J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas et al., Aligned Multiwalled Carbon Nanotube Membranes, Science, vol.303, issue.5654, pp.62-65, 2004.
DOI : 10.1126/science.1092048

L. Vivien, P. Lançon, D. Riehl, F. Hache, and E. Anglaret, Carbon nanotubes for optical limiting, Carbon, vol.40, issue.10, pp.1789-97, 2002.
DOI : 10.1016/S0008-6223(02)00046-5

URL : https://hal.archives-ouvertes.fr/hal-00845087

N. Minamia, S. Kazaouia, R. Jacquemina, H. Yamawakia, K. Aokia et al., Optical properties of semiconducting and metallic single wall carbon nanotubes: effects of doping and high pressure, Synthetic Metals, vol.116, issue.1-3, pp.405-409, 2001.
DOI : 10.1016/S0379-6779(00)00447-1

Z. H. Yang, Y. H. Zhou, S. B. Sang, Y. Feng, and H. Q. Wu, Lithium insertion into multi-walled raw carbon nanotubes pre-doped with lithium, Materials Chemistry and Physics, vol.89, issue.2-3, pp.295-99, 2005.
DOI : 10.1016/j.matchemphys.2004.08.021

E. Frackowiak, S. Delpeux, K. Jurewicz, K. Szostak, D. Cazorla-amoros et al., Enhanced capacitance of carbon nanotubes through chemical activation, Chemical Physics Letters, vol.361, issue.1-2
DOI : 10.1016/S0009-2614(02)00684-X

J. Cumings and A. Zettl, Low-Friction Nanoscale Linear Bearing Realized from Multiwall Carbon Nanotubes, Science, vol.289, issue.5479, pp.602-604, 2000.
DOI : 10.1126/science.289.5479.602

M. Dequesnes, S. V. Rotkin, and N. R. Aluru, Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches, Nanotechnology, vol.13, issue.1, pp.120-131, 2000.
DOI : 10.1088/0957-4484/13/1/325

P. Kim and C. M. Lieber, Nanotube Nanotweezers, Science, vol.286, issue.5447, pp.2148-50, 1999.
DOI : 10.1126/science.286.5447.2148

B. Vigolo, A. Pénicaud, C. Coulon, C. Sauder, R. Pailler et al., Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes, Science, vol.290, issue.5495, pp.1331-1334, 2000.
DOI : 10.1126/science.290.5495.1331

B. G. Coleman, R. H. Kim, and . Baughman, Super-tough carbon-nanotube fibres, Nature, vol.423, p.703, 2003.

R. H. Hwang, J. E. Hauge, R. E. Fischer, and . Smalley, Macroscopic, neat, singlewalled carbon nanotube fibers, Science, vol.305, pp.1447-50, 2004.

M. Zhang, K. R. Atkinson, and R. H. Baughman, Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology, Science, vol.306, issue.5700, pp.1358-61, 2004.
DOI : 10.1126/science.1104276

Y. Baskin and L. Meyer, Lattice Constants of Graphite at Low Temperatures, Physical Review, vol.100, issue.2, p.544, 1955.
DOI : 10.1103/PhysRev.100.544

A. L. Hamon, ContributionàContribution`Contributionà l'´ etude des nanotubes de carbone, Thèse de doctorat, 2001.

D. Ugarte, Curling and closure of graphitic networks under electron-beam irradiation, Nature, vol.359, issue.6397, pp.707-716, 1992.
DOI : 10.1038/359707a0

T. C. , J. Rivì, and J. Delafond, A new technique for fullerene onion formation, J. Mater. Sci, vol.30, issue.19, pp.4787-92, 1995.

J. Lu, W. Yang-mordkovich, Y. Shiratori, H. Hiraoka, and Y. Takeuchi, The shape of bucky onions arXiv :cond-mat/9307031 Synthesis of multishell fullerenes by laser vaporization of composite carbon targets, Physics of the Solid State, vol.44, issue.4, pp.603-606, 1993.

B. W. Smith, D. E. Monthioux, and . Luzzi, Encapsulated c60 in carbon nanotubes, Nature, vol.396, issue.6709, pp.323-347, 1998.
DOI : 10.1038/24521

M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Physics of carbon nanotubes, Carbon, vol.33, issue.7, pp.883-891, 1995.
DOI : 10.1016/0008-6223(95)00017-8

N. Hamada, S. I. Sawada, and A. Oshiyama, New one-dimensional conductors: Graphitic microtubules, Physical Review Letters, vol.68, issue.10, pp.1579-81, 1992.
DOI : 10.1103/PhysRevLett.68.1579

C. T. White, D. H. Robertson, and J. W. Mintmire, Helical and rotational symmetries of nanoscale graphitic tubules, Physical Review B, vol.47, issue.9, pp.5485-88, 1993.
DOI : 10.1103/PhysRevB.47.5485

X. Zhao, Y. Liu, S. Inoue, T. Suzuki, R. O. Jones et al., in Diameter, Physical Review Letters, vol.92, issue.12, pp.125502-125503, 2004.
DOI : 10.1103/PhysRevLett.92.125502

L. X. Zheng, M. J. O-'connell, S. K. Doorn, X. Z. Liao, Y. H. Zhao et al., Ultralong single-wall carbon nanotubes, Nature Materials, vol.3, issue.10, pp.673-676, 2004.
DOI : 10.1021/nl035193d

C. H. Kiang, M. Endo, P. M. Ajayan, G. Dresselhaus, and M. S. Dresselhaus, Size Effects in Carbon Nanotubes, Physical Review Letters, vol.81, issue.9, pp.1869-1872, 1998.
DOI : 10.1103/PhysRevLett.81.1869

Y. Saito, T. Yoshikawa, S. Bandow, M. Tomita, and T. Hayashi, Interlayer spacings in carbon nanotubes, Physical Review B, vol.48, issue.3, pp.1907-1909, 1993.
DOI : 10.1103/PhysRevB.48.1907

C. Zhu, Z. Xie, and K. Guo, Formation of close-packed multi-wall carbon nanotube bundles, Diamond and Related Materials, vol.13, issue.1, pp.180-183, 2004.
DOI : 10.1016/j.diamond.2003.10.034

S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol.363, issue.6430, p.603, 1993.
DOI : 10.1038/363603a0

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. De-la-chapelle et al., Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature, vol.388, pp.756-758, 1997.

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Catalytic growth of single-walled manotubes by laser vaporization, Chemical Physics Letters, vol.243, issue.1-2, pp.49-54, 1995.
DOI : 10.1016/0009-2614(95)00825-O

A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit et al., Crystalline Ropes of Metallic Carbon Nanotubes, Science, vol.273, issue.5274, pp.483-487, 1996.
DOI : 10.1126/science.273.5274.483

M. Jose-yacaman, M. Miki-yoshida, L. Rendon, and J. G. Santiesteban, Catalytic growth of carbon microtubules with fullerene structure, Applied Physics Letters, vol.62, issue.2, p.202, 1993.
DOI : 10.1063/1.109315

]. R. Sen, A. Govindaraj, and C. N. Rao, Carbon nanotubes by the metallocene route, Chemical Physics Letters, vol.267, issue.3-4, pp.276-80, 1997.
DOI : 10.1016/S0009-2614(97)00080-8

M. M. Treacy, T. W. Ebbesen, and J. M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, vol.381, issue.6584, pp.678-680, 1996.
DOI : 10.1038/381678a0

E. W. Wong, P. E. Sheehan, and C. M. Lieber, Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes, Science, vol.277, issue.5334, pp.1971-1975, 1997.
DOI : 10.1126/science.277.5334.1971

D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert et al., Elastic strain of freely suspended single-wall carbon nanotube ropes, Applied Physics Letters, vol.74, issue.25, pp.3803-3808, 2004.
DOI : 10.1063/1.124185

J. Salvetat, A. J. Kulik, J. Bonard, G. A. Briggs, T. Stockli et al., Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes, Advanced Materials, vol.11, issue.2, pp.161-165, 1999.
DOI : 10.1002/(SICI)1521-4095(199902)11:2<161::AID-ADMA161>3.0.CO;2-J

J. Salvetat, G. A. Briggs, J. Bonard, R. R. Bacsa, A. J. Kulik et al., Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes, Physical Review Letters, vol.82, issue.5, pp.944-947, 1999.
DOI : 10.1103/PhysRevLett.82.944

B. T. Kelly, Physics of graphite, Applied Science, 1981.

P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. Deheer, Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes, Science, vol.283, issue.5407, pp.1513-1529, 1999.
DOI : 10.1126/science.283.5407.1513

M. F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties, Physical Review Letters, vol.84, issue.24, pp.5552-55, 2000.
DOI : 10.1103/PhysRevLett.84.5552

M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly et al., Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science, vol.287, issue.5453, pp.637-640, 2000.
DOI : 10.1126/science.287.5453.637

. Zhang, Tensile tests of ropes of very long aligned multiwall carbon nanotubes App

H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai et al., Direct Synthesis of Long Single-Walled Carbon Nanotube Strands, Science, vol.296, issue.5569, pp.884-886, 2002.
DOI : 10.1126/science.1066996

A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. Treacy, Young???s modulus of single-walled nanotubes, Physical Review B, vol.58, issue.20, pp.14013-14032, 1998.
DOI : 10.1103/PhysRevB.58.14013

S. Govindjee and J. L. Sackman, On the use of continuum mechanics to estimate the properties of nanotubes, Solid State Communications, vol.110, issue.4, pp.227-230, 1999.
DOI : 10.1016/S0038-1098(98)00626-7

H. J. Qi, K. B. Teo, K. K. Lau, M. C. Boyce, W. I. Milne et al., Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation, Journal of the Mechanics and Physics of Solids, vol.51, issue.11-12
DOI : 10.1016/j.jmps.2003.09.015

D. Bozovic, M. Bockrath, J. H. Hafner, C. M. Lieber, H. Park et al., Plastic deformations in mechanically strained single-walled carbon nanotubes, Physical Review B, vol.67, issue.3, pp.33407-33408, 2003.
DOI : 10.1103/PhysRevB.67.033407

URL : http://arxiv.org/abs/cond-mat/0210420

F. Willaime, Introduction aux simulations numériquesnumériques`numériquesà l'´ echelle atomique : application aux nanotubes (propriétés structurales), Ecole Nanotubes : science et applications, 2003.

S. Iijima, C. H. Brabec, A. Maiti, and J. Bernholc, Structural flexibility of carbon nanotubes, The Journal of Chemical Physics, vol.104, issue.5, pp.2089-2092, 1996.
DOI : 10.1063/1.470966

B. I. Yakobson, M. P. Campbell, C. J. Brabec, and J. Bernholc, High strain rate fracture and C-chain unraveling in carbon nanotubes, Computational Materials Science, vol.8, issue.4, pp.341-348, 1997.
DOI : 10.1016/S0927-0256(97)00047-5

J. Lu, Elastic Properties of Carbon Nanotubes and Nanoropes, Physical Review Letters, vol.79, issue.7, pp.1297-1300, 1997.
DOI : 10.1103/PhysRevLett.79.1297

J. Lu, Elastic properties of single and multilayered nanotubes, Journal of Physics and Chemistry of Solids, vol.58, issue.11, pp.1649-52, 1997.
DOI : 10.1016/S0022-3697(97)00045-0

C. F. Cornwell and L. T. Wille, Elastic properties of single-walled carbon nanotubes in compression, Solid State Communications, vol.101, issue.8, pp.555-558, 1997.
DOI : 10.1016/S0038-1098(96)00742-9

C. F. Cornwell and L. T. Wille, Simulations of the elastic response of single-walled carbon nanotubes, Computational Materials Science, vol.10, issue.1-4, pp.42-45, 1998.
DOI : 10.1016/S0927-0256(97)00136-5

C. Goze, L. Vaccarini, L. Henrard, P. Bernier, E. Hernandez et al., Elastic and mechanical properties of carbon nanotubes, Synthetic Metals, vol.103, issue.1-3, pp.2500-2501, 1999.
DOI : 10.1016/S0379-6779(98)01071-6

T. C. ¸-a?gina?gin, J. Che, Y. Qi, Y. Zhou, E. Demiralp et al., Computational materials chemistry at the nanoscale, J. Nanoparticle Res, vol.1, pp.51-69, 1999.

D. Srivastava, M. Menon, and K. Cho, Nanoplasticity of Single-Wall Carbon Nanotubes under Uniaxial Compression, Physical Review Letters, vol.83, issue.15, pp.2973-76, 1999.
DOI : 10.1103/PhysRevLett.83.2973

]. T. Ozaki, Y. Iwasa, and T. Mitani, Stiffness of Single-Walled Carbon Nanotubes under Large Strain, Physical Review Letters, vol.84, issue.8, pp.1712-1727, 2000.
DOI : 10.1103/PhysRevLett.84.1712

Y. I. Prylutskyy, S. S. Durov, O. V. Ogloblya, E. V. Buzaneva, and P. Scharff, Molecular dynamics simulation of mechanical, vibrational and electronic properties of carbon nanotubes, Computational Materials Science, vol.17, issue.2-4, pp.352-355, 2000.
DOI : 10.1016/S0927-0256(00)00051-3

A. Maiti, Mechanical deformation in carbon nanotubes ??? bent tubes vs tubes pushed by atomically sharp tips, Chemical Physics Letters, vol.331, issue.1, pp.21-25, 2000.
DOI : 10.1016/S0009-2614(00)01138-6

G. Vanlier, C. Vanalsenoy, V. Vandoren, and P. Geerlings, Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene, Chem. Phys

X. Zhou, J. Zhou, and Z. Ou-yang, Strain energy and young's modulus of singlewall carbon nanotubes calculated from electronic energy-band theory, Phys. Rev. B, vol.62, issue.20, pp.13692-96, 2000.

K. N. Kudin, G. E. Scuseria, and B. I. Yakobson, computations, Physical Review B, vol.64, issue.23, pp.235406-235416, 2001.
DOI : 10.1103/PhysRevB.64.235406

Z. Yao, C. C. Zhu, M. Cheng, and J. Liu, Mechanical properties of carbon nanotube by molecular dynamics simulation, Computational Materials Science, vol.22, issue.3-4, pp.180-184, 2001.
DOI : 10.1016/S0927-0256(01)00187-2

T. Belytschko, S. P. Xiao, G. C. Schatz, and R. S. Ruoff, Atomistic simulations of nanotube fracture, Physical Review B, vol.65, issue.23, pp.235430-235431, 2002.
DOI : 10.1103/PhysRevB.65.235430

G. Dereli and C. Ozdo?ganozdo?gan, Structural stability and energetics of single-walled carbon nanotubes under uniaxial strain, Physical Review B, vol.67, issue.3, pp.35416-35417, 2003.
DOI : 10.1103/PhysRevB.67.035416

K. M. Liew, X. Q. He, and C. H. Wong, On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation, Acta Materialia, vol.52, issue.9, pp.2521-2528, 2004.
DOI : 10.1016/j.actamat.2004.01.043

Y. Wang, X. Wang, X. Ni, and H. Wu, Simulation of the elastic response and the buckling modes of single-walled carbon nanotubes, Computational Materials Science, vol.32, issue.2, pp.141-146, 2005.
DOI : 10.1016/j.commatsci.2004.08.005

M. B. Nardelli, J. L. Fattebert, D. Orlikowski, C. Roland, Q. Zhao et al., Mechanical properties, defects and electronic behavior of carbon nanotubes, Carbon, vol.38, issue.11-12, pp.1703-1714, 2000.
DOI : 10.1016/S0008-6223(99)00291-2

M. R. Falvo, G. J. Clary, R. M. Taylor, V. Chi, F. P. Brooks et al., Bending and buckling of carbon nanotubes under large strain, Nature, vol.389, pp.582-84, 1997.

M. F. Yu, T. Kowalewski, and R. S. Ruoff, Investigation of the Radial Deformability of Individual Carbon Nanotubes under Controlled Indentation Force, Physical Review Letters, vol.85, issue.7, pp.1456-59, 2000.
DOI : 10.1103/PhysRevLett.85.1456

J. R. Wood, Q. Zhao, M. D. Frogley, E. R. Meurs, A. D. Prins et al., Carbon nanotubes:???From molecular to macroscopic sensors, Physical Review B, vol.62, issue.11
DOI : 10.1103/PhysRevB.62.7571

T. Natsuki and M. Endo, Stress simulation of carbon nanotubes in tension and compression, Carbon, vol.42, issue.11, pp.2147-51, 2004.
DOI : 10.1016/j.carbon.2004.04.022

J. W. Mintmire, B. I. Dunlap, and C. T. White, Are fullerene tubules metallic?, Physical Review Letters, vol.68, issue.5, pp.631-634, 1992.
DOI : 10.1103/PhysRevLett.68.631

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical properties of carbon nanotubes . Imperial college press, 1998.

J. W. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Electronic structure of atomically resolved carbon nanotubes, Nature, vol.391, issue.6662, pp.59-62, 1998.
DOI : 10.1038/34139

S. Frank, P. Poncharal, Z. L. Wang, and W. A. Deheer, Carbon Nanotube Quantum Resistors, Science, vol.280, issue.5370, pp.1744-1790, 1998.
DOI : 10.1126/science.280.5370.1744

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.485.1769

P. Poncharal, C. Berger, Y. Yi, Z. L. Wang, and W. A. Deheer, Room Temperature Ballistic Conduction in Carbon Nanotubes, The Journal of Physical Chemistry B, vol.106, issue.47, pp.12104-12122, 2002.
DOI : 10.1021/jp021271u

H. Kajiura, H. Huang, and A. Bezryadin, Quasi-ballistic electron transport in double-wall carbon nanotubes, Chemical Physics Letters, vol.398, issue.4-6, pp.476-79, 2004.
DOI : 10.1016/j.cplett.2004.09.115

H. Kajiura, A. Nandyala, and A. Bezryadin, Quasi-ballistic electron transport in as-producedand annealed multiwall carbon nanotubes, Carbon, vol.in press, 2005.

Y. A. Kim, T. Hayashi, K. Osawa, M. S. Dresselhaus, and M. Endo, Annealing effect on disordered multi-wall carbon nanotubes, Chemical Physics Letters, vol.380, issue.3-4, pp.319-324, 2003.
DOI : 10.1016/j.cplett.2003.09.027

J. N. Israelachvili, Intermolecular and surface forces, 1991.

F. London, The general theory of molecular forces, Transactions of the Faraday Society, vol.33, p.8, 1937.
DOI : 10.1039/tf937330008b

H. B. Casimir and D. Polder, The Influence of Retardation on the London-van der Waals Forces, Physical Review, vol.73, issue.4, pp.360-372, 1948.
DOI : 10.1103/PhysRev.73.360

J. E. Lennard-jones and B. M. Dent, Cohesion at a crystal surface, Transactions of the Faraday Society, vol.24, p.92, 1928.
DOI : 10.1039/tf9282400092

H. C. Hamaker, The London???van der Waals attraction between spherical particles, Physica, vol.4, issue.10, p.1059, 1937.
DOI : 10.1016/S0031-8914(37)80203-7

W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal dispersions, 1988.
DOI : 10.1017/CBO9780511608810

L. A. Girifalco, M. Hodak, and R. S. Lee, Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential, Physical Review B, vol.62, issue.19, pp.13104-13110, 2000.
DOI : 10.1103/PhysRevB.62.13104

D. Porezag, T. Frauenheim, and T. Köhler, Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon, Physical Review B, vol.51, issue.19, pp.12947-57, 1995.
DOI : 10.1103/PhysRevB.51.12947

J. Furthmüller, J. Hafner, and G. Kresse, Ab initio calculation of the structural and electronic properties of carbon and boron nitride using ultrasoft pseudopotentitals

M. Hodak and L. A. Girifalco, Fullerenes inside carbon nanotubes and multi-walled carbon nanotubes: optimum and maximum sizes, Chemical Physics Letters, vol.350, issue.5-6, pp.405-411, 2001.
DOI : 10.1016/S0009-2614(01)01339-2

L. A. Girifalco and R. A. Lad, Energy of Cohesion, Compressibility, and the Potential Energy Functions of the Graphite System, The Journal of Chemical Physics, vol.25, issue.4, p.693, 1956.
DOI : 10.1063/1.1743030

R. Zacharia, Desorption of gases from graphitic and porous carbon surfaces, Thèse de doctorat, 2004.

L. A. Girifalco and M. Hodak, Van der Waals binding energies in graphitic structures, Physical Review B, vol.65, issue.12, pp.125404-125405, 2002.
DOI : 10.1103/PhysRevB.65.125404

R. Setton, Carbon nanotubes???II. Cohesion and formation energy of cylindrical nanotubes, Carbon, vol.34, issue.1, pp.69-75, 1996.
DOI : 10.1016/0008-6223(95)00136-0

T. Hertel, R. E. Walkup, and P. Avouris, Deformation of carbon nanotubes by surface van der Waals forces, Physical Review B, vol.58, issue.20, pp.13870-73, 1998.
DOI : 10.1103/PhysRevB.58.13870

L. Henrard, E. Hernandez, P. Bernier, and A. Rubio, van der Waals interaction in nanotube bundles: Consequences on vibrational modes, Physical Review B, vol.60, issue.12, pp.8521-8545, 1999.
DOI : 10.1103/PhysRevB.60.R8521

G. Stan and M. W. Cole, Low coverage adsorption in cylindrical pores, Surface Science, vol.395, issue.2-3, pp.280-291, 1998.
DOI : 10.1016/S0039-6028(97)00632-8

C. Sun, L. Yin, F. Li, G. Lu, and H. Cheng, Van der Waals interactions between two parallel infinitely long single-walled nanotubes, Chemical Physics Letters, vol.403, issue.4-6, pp.343-349, 2005.
DOI : 10.1016/j.cplett.2005.01.030

I. V. Bondarev and P. Lambin, van der Waals energy under strong atom???field coupling in doped carbon nanotubes, Solid State Communications, vol.132, issue.3-4, 2004.
DOI : 10.1016/j.ssc.2004.07.039

URL : http://arxiv.org/abs/cond-mat/0404211

S. V. Rotkin and K. Hess, Many-body terms in van der waals cohesion energy of nanotubes, Journal of Computational Electronics, vol.1, issue.3, pp.323-329, 2002.
DOI : 10.1023/A:1020779020417

P. A. Dirac, La seconde quantification Annales de l'Institut Henri Poincaré, pp.15-47, 1949.

R. Tucknott and S. N. Yaliraki, Aggregation properties of carbon nanotubes at interfaces Energetics of multilayered carbon tubules, Chem. Phys. Phys. Rev. Lett, vol.281, issue.70 12, pp.455-63, 1993.

J. Charlier, X. Gonze, and J. Michenaud, Graphite Interplanar Bonding: Electronic Delocalization and van der Waals Interaction, Europhysics Letters (EPL), vol.28, issue.6, pp.403-408, 1994.
DOI : 10.1209/0295-5075/28/6/005

A. N. Kolmogorov and V. H. Crespi, Smoothest Bearings: Interlayer Sliding in Multiwalled Carbon Nanotubes, Physical Review Letters, vol.85, issue.22, pp.4727-4757, 2000.
DOI : 10.1103/PhysRevLett.85.4727

R. Saito, R. Matsuo, T. Kimura, G. Dresselhaus, and M. S. Dresselhaus, Anomalous potential barrier of double-wall carbon nanotube, Chemical Physics Letters, vol.348, issue.3-4, pp.187-193, 2001.
DOI : 10.1016/S0009-2614(01)01127-7

J. Charlier, X. Gonze, and J. Michenaud, First-Principles Study of Carbon Nanotube Solid-State Packings, Europhysics Letters (EPL), vol.29, issue.1, p.43, 1995.
DOI : 10.1209/0295-5075/29/1/008

T. Lenosky, X. Gonze, M. Teter, and V. Elser, Energetics of negatively curved graphitic carbon, Nature, vol.355, issue.6358, pp.333-338, 1992.
DOI : 10.1038/355333a0

X. Zhou, H. Chen, J. Zhou, and Z. Ou-yang, The structure relaxation of carbon nanotube, Physica B: Condensed Matter, vol.304, issue.1-4, pp.86-90, 2001.
DOI : 10.1016/S0921-4526(01)00556-7

A. H. Barber, S. R. Cohen, and H. D. Wagner, Static and Dynamic Wetting Measurements of Single Carbon Nanotubes, Physical Review Letters, vol.92, issue.18, pp.186103-186104, 2004.
DOI : 10.1103/PhysRevLett.92.186103

T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Benett, H. F. Ghaemi et al., Electrical conductivity of individual carbon nanotubes, Nature, vol.382, issue.6586, pp.54-55, 1996.
DOI : 10.1038/382054a0

E. Dujardin, T. W. Ebbesen, H. Hiura, and K. Tanigaki, Capillarity and Wetting of Carbon Nanotubes, Science, vol.265, issue.5180, pp.1850-52, 1994.
DOI : 10.1126/science.265.5180.1850

E. Dujardin, T. W. Ebbesen, A. Krishnan, and M. M. Treacy, Wetting of Single Shell Carbon Nanotubes, Advanced Materials, vol.10, issue.17, pp.1472-75, 1998.
DOI : 10.1002/(SICI)1521-4095(199812)10:17<1472::AID-ADMA1472>3.0.CO;2-R

Q. H. Yang, S. Bai, J. L. Sauvajol, and J. B. Bai, Large-Diameter Single-Walled Carbon Nanotubes Synthesized by Chemical Vapor Deposition, Advanced Materials, vol.15, issue.10, pp.792-795, 2003.
DOI : 10.1002/adma.200304567

J. Tersoff and R. S. Ruoff, Structural Properties of a Carbon-Nanotube Crystal, Physical Review Letters, vol.73, issue.5, pp.676-679, 1994.
DOI : 10.1103/PhysRevLett.73.676

M. J. López, A. Rubio, and J. A. Alonso, Deformations and Thermal Stability of Carbon Nanotube Ropes, IEEE Transactions On Nanotechnology, vol.3, issue.2, pp.230-236, 2004.
DOI : 10.1109/TNANO.2004.828522

A. M. Somoza, C. Sagui, and C. Roland, Liquid-crystal phases of capped carbon nanotubes, Physical Review B, vol.63, issue.8, pp.81403-81404, 2001.
DOI : 10.1103/PhysRevB.63.081403

H. Liang and M. Upmanyu, Self-dissembly of bulk carbon nanotube crystals, Nature

T. Young, An essay on the cohesion of fluids, Phil. Trans. Roy. Soc, vol.95, issue.65, p.1805

T. W. Ebbesen, Wetting, filling and decorating carbon nanotubes, Journal of Physics and Chemistry of Solids, vol.57, issue.6-8, pp.951-955, 1996.
DOI : 10.1016/0022-3697(95)00381-9

Z. Liang, J. Gou, C. Zhang, B. Wang, and L. Kramer, Investigation of molecular interactions between (10, 10) single-walled nanotube and Epon 862 resin/DETDA curing agent molecules, Materials Science and Engineering: A, vol.365, issue.1-2, pp.228-234, 2004.
DOI : 10.1016/j.msea.2003.09.032

K. Liao and S. Li, Interfacial characteristics of a carbon nanotube???polystyrene composite system, Applied Physics Letters, vol.79, issue.25, pp.4225-4252, 2001.
DOI : 10.1063/1.1428116

M. Wong, M. Paramsothy, X. J. Xu, Y. Ren, S. Li et al., Physical interactions at carbon nanotube-polymer interface, Polymer, vol.44, issue.25, pp.7757-64, 2003.
DOI : 10.1016/j.polymer.2003.10.011

C. A. Cooper, S. R. Cohen, A. H. Barber, and H. D. Wagner, Detachment of nanotubes from a polymer matrix, Applied Physics Letters, vol.81, issue.20, pp.3873-75, 2002.
DOI : 10.1063/1.1521585

A. H. Barber, S. R. Cohen, S. Kenig, and H. D. Wagner, Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix, Composites Science and Technology, vol.64, issue.15
DOI : 10.1016/j.compscitech.2004.01.023

A. Allaoui, S. Bai, H. Cheng, and J. B. Bai, Mechanical and electrical properties of a MWNT/epoxy composite, Composites Science and Technology, vol.62, issue.15, pp.1993-98, 2002.
DOI : 10.1016/S0266-3538(02)00129-X

URL : https://hal.archives-ouvertes.fr/hal-00411072

A. Allaoui, J. B. Bai, and N. Rieux, Dielectric properties of composites of multiwalled carbon nanotubes in a resin matrix, Polymers and Polymer Composites, vol.11, issue.3, pp.171-178, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00411073

J. B. Bai and A. Allaoui, Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites???experimental investigation, Composites Part A: Applied Science and Manufacturing, vol.34, issue.8, pp.689-694, 2003.
DOI : 10.1016/S1359-835X(03)00140-4

URL : https://hal.archives-ouvertes.fr/hal-00411074

P. Bardonnet, RésinesRésines´Résinesépoxydes : Composants et propriétés Techniques de l'ingénieur, traité Plastiques et Composites, pp.465-466, 2003.

X. Buch, Dégradation thermique et fluage d'un adhésif structuraí epoxyde, Thèse de doctorat, 2000.

J. Halary, Structure-property relationships in epoxy-amine networks of wellcontrolled architecture, High Performance Polymers, vol.75, issue.1, pp.141-153, 2000.
DOI : 10.1021/ma9708306

F. R. Dammont and T. K. Kwei, Dynamic mechanical properties of aromatic, aliphatique , and partially fluorinated epoxy resins, Journal of Polymer Science Part A, vol.2, issue.5, pp.761-769, 1967.

R. P. Eustache, Etude par RMN 13 C haute résolution de la structure chimique des résines polyester et de la dynamique moléculaire dans les résinesrésines´résinesépoxy et dans les résines polyester, Thèse de doctorat, 1990.

C. Barrère and F. D. Maso, RésinesRésines´Résinesépoxy réticulées par des polyamines : structure et propriétés, pp.317-335, 1997.

. Li, Influence of physical aging and side group on the free volume of epoxy resins probed by positron, Polymer, vol.44, pp.4047-4052, 2003.

A. Lee and G. B. Mckenna, Effect of crosslink density on physical ageing of epoxy networks, Polymer, vol.29, issue.10, pp.1812-1829, 1988.
DOI : 10.1016/0032-3861(88)90396-5

J. R. Moraes-d-'almeida, G. W. , and S. Neves-monteiro, Ageing of the DGEBA/TETA epoxy system with off-stoichiometric compositions, Materials Research, vol.6, issue.3, pp.415-420, 2003.
DOI : 10.1590/S1516-14392003000300017

L. Barral, J. Cano, J. Lopez, I. Lopez-bueno, P. Nogueira et al., Physical aging of an epoxy/cycloaliphatic amine resin, European Polymer Journal, vol.35, issue.3, pp.403-411, 1999.
DOI : 10.1016/S0014-3057(98)00132-3

S. J. Frankland, A. Caglar, D. W. Brenner, and M. Griebel, Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube???Polymer Interfaces, The Journal of Physical Chemistry B, vol.106, issue.12, pp.3046-3048, 2002.
DOI : 10.1021/jp015591+

X. H. Chen, C. S. Chen, Q. Chen, F. Q. Cheng, G. Zhang et al., Non-destructive purification of multi-walled carbon nanotubes produced by catalyzed CVD, Materials Letters, vol.57, issue.3, pp.734-738, 2002.
DOI : 10.1016/S0167-577X(02)00863-7

P. X. Hou, S. Bai, Q. H. Yang, C. Liu, and H. Cheng, Multi-step purification of carbon nanotubes, Carbon, vol.40, issue.1, pp.81-85, 2002.
DOI : 10.1016/S0008-6223(01)00075-6

T. Abatemarco, J. Stickel, J. Belfort, B. P. Frank, P. M. Ajayan et al., Fractionation of Multiwalled Carbon Nanotubes by Cascade Membrane Microfiltration, The Journal of Physical Chemistry B, vol.103, issue.18
DOI : 10.1021/jp984020n

K. L. Lu, R. M. Lago, Y. K. Chen, M. L. Green, P. J. Harris et al., Mechanical damage of carbon nanotubes by ultrasound, Carbon, vol.34, issue.6, pp.814-816, 1996.
DOI : 10.1016/0008-6223(96)89470-X

J. L. Bahr, E. T. Mickelson, M. J. Bronikowski, R. E. Smalley, and J. M. Tour, Dissolution of small diameter single-wall carbon nanotubes in organic solvents?, Chemical Communications, issue.2
DOI : 10.1039/b008042j

J. Bonard, T. Stora, J. Salvetat, F. Maier, T. Stöckli et al., Purification and size-selection of carbon nanotubes, Advanced Materials, vol.66, issue.10, pp.827-831, 1997.
DOI : 10.1002/adma.19970091014

M. J. O-'connell, P. Boul, L. M. Ericsson, C. Huffman, Y. Wang et al., Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping, Chemical Physics Letters, vol.342, issue.3-4, pp.265-271, 2001.
DOI : 10.1016/S0009-2614(01)00490-0

I. Vesselényi, A. Siska, D. Méhn, K. Niesz, Z. Konya et al., Modification of multiwalled carbon nanotubes by different breaking processes, Journal de Physique IV (Proceedings), vol.12, issue.4
DOI : 10.1051/jp4:20020084

H. Hu, P. Bhowmik, B. Zhao, M. A. Hamon, M. E. Itkis et al., Determination of the acidic sites of purified single-walled carbon nanotubes by acid???base titration, Chemical Physics Letters, vol.345, issue.1-2, pp.25-28, 2001.
DOI : 10.1016/S0009-2614(01)00851-X

M. A. Hamon, H. Hu, P. Bhowmik, S. Niyogi, B. Zhao et al., End-group and defect analysis of soluble single-walled carbon nanotubes, Chemical Physics Letters, vol.347, issue.1-3
DOI : 10.1016/S0009-2614(01)01035-1

F. T. Fisher, R. D. Bradshaw, and L. C. Brinson, Effects of nanotube waviness on the modulus of nanotube-reinforced polymers, Applied Physics Letters, vol.80, issue.24, pp.4647-4696, 2002.
DOI : 10.1063/1.1487900

F. T. Fisher, Nanomechanics and the viscoelastic behavior of carbon nanotubereinforced polymers, Thèse de doctorat, 2002.

Y. H. Liao, O. Marietta-tondin, Z. Liang, C. Zhang, and B. Wang, Investigation of the dispersion process of SWNTs/SC-15 epoxy resin nanocomposites, Materials Science and Engineering A, vol.385, issue.1-2
DOI : 10.1016/S0921-5093(04)00857-3

D. Puglia, L. Valentini, I. Armentano, and J. Kenny, Effects of single-walled carbon nanotube incorporation on the cure reaction of epoxy resin and its detection by Raman spectroscopy, Diamond and Related Materials, vol.12, issue.3-7, pp.827-832, 2003.
DOI : 10.1016/S0925-9635(02)00358-8

F. H. Gojny and K. Schulte, Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites, Composites Science and Technology, vol.64, issue.15, pp.2303-2311, 2004.
DOI : 10.1016/j.compscitech.2004.01.024

F. H. Gojny, M. H. Wichmann, U. K?-opke, B. Fiedler, and K. Schulte, Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content, Composites Science and Technology, vol.64, issue.15, pp.2363-71, 2004.
DOI : 10.1016/j.compscitech.2004.04.002

J. M. Park, D. S. Kim, J. R. Lee, and T. W. Kim, Nondestructive damage sensitivity and reinforcing effect of carbon nanotube/epoxy composites using electro-micromechanical technique, Materials Science and Engineering: C, vol.23, issue.6-8, pp.971-75, 2003.
DOI : 10.1016/j.msec.2003.09.131

J. Gou, B. Minaie, B. Wang, Z. Liang, and C. Zhang, Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites, Computational Materials Science, vol.31, issue.3-4
DOI : 10.1016/j.commatsci.2004.03.002

K. Imam, E. V. Lozano, and . Barrera, Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes, Adv. Funct. Mater, vol.14, pp.643-651, 2004.

D. Stauffer and A. Aharony, Introduction to percolation theory. Taylor and Francis, 1994.

S. Kirkpatrick, Percolation and Conduction, Reviews of Modern Physics, vol.45, issue.4, pp.574-588, 1973.
DOI : 10.1103/RevModPhys.45.574

Y. Song, T. W. Noh, S. I. Lee, and J. R. Gaines, Experimental study of the three-dimensional ac conductivity and dielectric constant of a conductor-insulator composite near the percolation threshold, Physical Review B, vol.33, issue.2, pp.904-908, 1986.
DOI : 10.1103/PhysRevB.33.904

D. J. Bergman and J. Imry, Critical Behavior of the Complex Dielectric Constant near the Percolation Threshold of a Heterogeneous Material, Physical Review Letters, vol.39, issue.19, pp.1222-1225, 1977.
DOI : 10.1103/PhysRevLett.39.1222

J. H. Du, J. B. Bai, and H. Cheng, The present status and key problems of carbon nanotube based polymer composites, SoumisàSoumis`Soumisà Comp. Sci. Tech, 2005.
DOI : 10.3144/expresspolymlett.2007.39

URL : https://hal.archives-ouvertes.fr/hal-00268326

J. Njuguna and K. Pielichowski, Polymer Nanocomposites for Aerospace Applications: Fabrication, Advanced Engineering Materials, vol.6, issue.4, pp.193-203, 2004.
DOI : 10.1002/adem.200305111

O. Breuer and U. Sundararaj, Big returns from small fibers: A review of polymer/carbon nanotube composites, Polymer Composites, vol.62, issue.6, pp.630-645, 2004.
DOI : 10.1002/pc.20058

J. K. Sandler, J. E. Kirk, I. A. Kinloch, M. S. Shaffer, and A. H. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites, Polymer, vol.44, issue.19, pp.5893-99, 2003.
DOI : 10.1016/S0032-3861(03)00539-1

C. A. Martin, J. K. Sandler, M. S. Shaffer, M. K. Schwarz, W. Bauhofer et al., Formation of percolating networks in multi-wall carbon-nanotube???epoxy composites, Composites Science and Technology, vol.64, issue.15, pp.2309-2325, 2004.
DOI : 10.1016/j.compscitech.2004.01.025

Y. S. Song and J. R. Youn, Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites, Carbon, vol.43, issue.7, 2005.
DOI : 10.1016/j.carbon.2005.01.007

C. A. Martin, J. K. Sandler, A. H. Windle, M. Schwarz, W. Bauhofer et al., Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites, Polymer, vol.46, issue.3, pp.877-886, 2005.
DOI : 10.1016/j.polymer.2004.11.081

B. Kim, J. Lee, and I. Yu, Electrical properties of single-wall carbon nanotube and epoxy composites, Journal of Applied Physics, vol.94, issue.10, pp.6724-6752, 2003.
DOI : 10.1063/1.1622772

J. Sandler, M. S. Shaffer, T. Prasse, W. Bauhofer, K. Schulte et al., Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties, Polymer, vol.40, issue.21, pp.5967-5971, 1999.
DOI : 10.1016/S0032-3861(99)00166-4

S. J. Park, S. T. Lim, M. S. Cho, H. M. Kim, J. Joo et al., Electrical properties of multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposite, Current Applied Physics, vol.5, issue.4, pp.302-306, 2005.
DOI : 10.1016/j.cap.2004.02.013

O. Chauvet, J. Benoit, and B. Corraze, Electrical, magneto-transport and localization of charge carriers in nanocomposites based on carbon nanotubes, Carbon, vol.42, issue.5-6, pp.949-952, 2004.
DOI : 10.1016/j.carbon.2003.12.020

J. Benoit, B. Corraze, and O. Chauvet, Localization, Coulomb interactions, and electrical heating in single-wall carbon nanotubes/polymer composites, Physical Review B, vol.65, issue.24
DOI : 10.1103/PhysRevB.65.241405

J. Benoit, B. Corraze, S. Lefrant, W. J. Blau, P. Bernier et al., Transport properties of PMMA-Carbon Nanotubes composites, Synthetic Metals, vol.121, issue.1-3, pp.1215-1231, 2001.
DOI : 10.1016/S0379-6779(00)00838-9

S. B. Kharchenko, J. F. Douglas, J. Obrzut, E. A. Grulke, and K. B. Migler, Flow-induced properties of nanotube-filled polymer materials, Nature Materials, vol.25, issue.8, pp.564-68, 2004.
DOI : 10.1122/1.549645

M. K. Seo and S. J. Park, Electrical resistivity and rheological behaviors of carbon nanotubes-filled polypropylene composites, Chemical Physics Letters, vol.395, issue.1-3, pp.44-48, 2004.
DOI : 10.1016/j.cplett.2004.07.047

R. Andrews, D. Jacques, M. Minot, and T. , Fabrication of Carbon Multiwall Nanotube/Polymer Composites by Shear Mixing, Macromolecular Materials and Engineering, vol.287, issue.6, pp.395-403, 2002.
DOI : 10.1002/1439-2054(20020601)287:6<395::AID-MAME395>3.0.CO;2-S

B. Zhang, R. W. Fu, M. Q. Zhang, X. M. Dong, P. L. Lan et al., Preparation and characterization of gas-sensitive composites from multi-walled carbon nanotubes/polystyrene, Sensors and Actuators B: Chemical, vol.109, issue.2, 2005.
DOI : 10.1016/j.snb.2004.12.066

A. Dufresne, M. Paillet, J. Putaux, R. Canet, F. Carmona et al., Processing and characterization of carbon nanotube-poly(styrene-co-butyl acrylate) nanocomposites, Journal of Materials Science, vol.37, issue.18, pp.3915-3938, 2002.
DOI : 10.1023/A:1019659624567

URL : https://hal.archives-ouvertes.fr/hal-00307318

H. J. Barraza, F. Pompeo, E. A. O-'rear, and D. E. Resasco, SWNT-Filled Thermoplastic and Elastomeric Composites Prepared by Miniemulsion Polymerization, Nano Letters, vol.2, issue.8, pp.797-802, 2002.
DOI : 10.1021/nl0256208

B. Safadi, R. Andrews, and E. A. Grulke, Multiwalled carbon nanotube polymer composites: Synthesis and characterization of thin films, Journal of Applied Polymer Science, vol.14, issue.14, pp.2660-69, 2002.
DOI : 10.1002/app.10436

P. Pötschke, A. R. Bhattacharyya, and A. Janke, Melt mixing of polycarbonate with multiwalled carbon nanotubes: microscopic studies on the state of dispersion, European Polymer Journal, vol.40, issue.1, pp.137-148, 2004.
DOI : 10.1016/j.eurpolymj.2003.08.008

P. Pötschke, A. R. Bhattacharyya, and A. Janke, Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene, Carbon, vol.42, issue.5-6, pp.965-69, 2004.
DOI : 10.1016/j.carbon.2003.12.001

P. Pötschke, M. Abdel-goad, I. Alig, S. Dudkin, and D. Lellinger, Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites, Polymer, vol.45, issue.26, pp.8863-70, 2004.
DOI : 10.1016/j.polymer.2004.10.040

P. Pötschke, S. M. Dudkin, and I. Alig, Dielectric spectroscopy on melt processed polycarbonate???multiwalled carbon nanotube composites, Polymer, vol.44, issue.17, pp.5023-5053, 2003.
DOI : 10.1016/S0032-3861(03)00451-8

J. C. Grunlan, A. R. Mehrabi, M. V. Bannon, and J. L. Bahr, Water-Based Single-Walled-Nanotube-Filled Polymer Composite with an Exceptionally Low Percolation Threshold, Advanced Materials, vol.16, issue.2, pp.150-153, 2004.
DOI : 10.1002/adma.200305409

M. S. Shaffer and A. H. Windle, Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites, Advanced Materials, vol.11, issue.11, pp.937-941, 1999.
DOI : 10.1002/(SICI)1521-4095(199908)11:11<937::AID-ADMA937>3.0.CO;2-9

E. Kymakis, I. Alexandou, and G. A. Amaratunga, Single-walled carbon nanotube???polymer composites: electrical, optical and structural investigation, Synthetic Metals, vol.127, issue.1-3, pp.59-72, 2002.
DOI : 10.1016/S0379-6779(01)00592-6

J. N. Coleman, S. Curran, A. B. Dalton, A. P. Davey, B. Mccarthy et al., Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite, Physical Review B, vol.58, issue.12, pp.7492-95, 1998.
DOI : 10.1103/PhysRevB.58.R7492

S. Bai, F. Li, Q. H. Yang, H. Cheng, and J. B. Bai, Influence of ferrocene/benzene mole ratio on the synthesis of carbon nanostructures, Chemical Physics Letters, vol.376, issue.1-2
DOI : 10.1016/S0009-2614(03)00959-X

S. V. Terekhov, E. D. Obraztsova, A. S. Lobach, and V. I. Konov, Laser heating method for estimation of carbon nanotube purity, Applied Physics A: Materials Science & Processing, vol.74, issue.3, pp.393-396, 2002.
DOI : 10.1007/s003390201285

G. E. Pike and C. H. Seager, Percolation and conductivity: A computer study. I, Physical Review B, vol.10, issue.4, pp.1421-1434, 1976.
DOI : 10.1103/PhysRevB.10.1421

I. Balberg, N. Binenbaum, and N. Wagner, Percolation Thresholds in the Three-Dimensional Sticks System, Physical Review Letters, vol.52, issue.17, pp.1465-1468, 1984.
DOI : 10.1103/PhysRevLett.52.1465

A. Celzard, E. Mcrae, C. Deleuze, M. Dufort, G. Furdin et al., Critical concentration in percolating systems containing a high-aspect-ratio filler, Physical Review B, vol.53, issue.10
DOI : 10.1103/PhysRevB.53.6209

I. Balberg, C. H. Anderson, S. Alexander, and N. Wagner, Excluded volume and its relation to the onset of percolation, Physical Review B, vol.30, issue.7, pp.3933-3943, 1984.
DOI : 10.1103/PhysRevB.30.3933

H. D. Wagner, Nanotube-polymer adhesion : a mechanics approach, Chem. Phys

U. D. Venkateswaran, A. M. Rao, E. Richter, M. Menon, A. Rinzler et al., Probing the single-wall carbon nanotube bundle: Raman scattering under high pressure, Physical Review B, vol.59, issue.16, pp.10928-10962, 1999.
DOI : 10.1103/PhysRevB.59.10928

J. W. Hearle, Mechanics of flexible fibre assemblies, Alphen aan den Rijn, 1980.
DOI : 10.1007/978-94-011-9774-8

M. I. Alkhagen, Nonlinear elasticity of fiber masses, Thèse de doctorat, 2002.

J. Schofield, 21???RESEARCHES ON WOOL FELTING, Journal of the Textile Institute Transactions, vol.29, issue.10, pp.239-252, 1938.
DOI : 10.1080/19447023808658850

C. M. Vanwyk, 20???NOTE ON THE COMPRESSIBILITY OF WOOL, Journal of the Textile Institute Transactions, vol.49, issue.12, pp.285-292, 1946.
DOI : 10.1080/19447023008661503

N. Pan and G. A. Carnaby, Micromechanics of wool fiber assemblies in compression, Proceedings of Advanced Workshop on Maths/Physics Application in the Wool Industry, pp.181-192, 1988.

G. Kozyreff, G. Wake, H. Ockendon, and R. M. Sumner, Core bulk of wool fibres as a function of their curvature and diameter, Physics Letters A, vol.314, issue.5-6, pp.428-461, 2003.
DOI : 10.1016/S0375-9601(03)00943-5

M. Baudequin, G. Ryschenkow, and S. Roux, Non-linear elastic behavior of light fibrous materials, The European Physical Journal B, vol.12, issue.1, pp.157-162, 1999.
DOI : 10.1007/s100510050990

F. C. Mackintosh, J. Käs, and P. A. Janmey, Elasticity of semiflexible pokymers, Phys. Rev. E, vol.75, issue.24, pp.4425-4453, 1995.

M. L. Gardel, J. H. Shin, F. C. Mackintosh, L. Mahadevan, P. Matsudaira et al., Elastic Behavior of Cross-Linked and Bundled Actin Networks, Science, vol.304, issue.5675, pp.1301-1306, 2004.
DOI : 10.1126/science.1095087

M. F. Ashby and L. J. Gibson, Cellular Solids Structure and Properties, 1997.

D. Lee and J. K. Lee, Objective Measurement : Applications to product design and process control, ch. Initial compressional behaviour of a fibre assembly, pp.613-622

J. I. Dunlop, 62???CHARACTERIZING THE COMPRESSION PROPERTIES OF FIBRE MASSES, The Journal of The Textile Institute, vol.62, issue.10, pp.532-536, 1974.
DOI : 10.1080/00405007408630141

J. I. Dunlop, 14???THE DYNAMIC BULK MODULUS OF FIBRE MASSES, The Journal of The Textile Institute, vol.70, issue.4, pp.154-161, 1981.
DOI : 10.1080/00405008108631644

N. B. Beil and W. W. Roberts, Modeling and computer simulation of the compressional behaviour of fiber assemblies, part i : comparison to van wyk's theory

D. Durville, Numerical simulation of entangled materials mechanical properties, Journal of Materials Science, vol.40, issue.22
DOI : 10.1007/s10853-005-5061-2

URL : https://hal.archives-ouvertes.fr/hal-00114864

J. Besson, G. Cailletaud, and S. Forest, Comportement mécanique non-linéaire des matériaux. Cours du DEA " Modélisation et simulation des matériaux, 2001.

R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Anderson, Models of Hierarchically Constrained Dynamics for Glassy Relaxation, Physical Review Letters, vol.53, issue.10, pp.958-61, 1984.
DOI : 10.1103/PhysRevLett.53.958

R. Kohlrausch, Theorie des elektrischen rückstandes in der leidener flasche

J. Kubát, Stress Relaxation in Solids, Nature, vol.6, issue.4969, pp.378-79, 1965.
DOI : 10.1016/0001-6160(62)90070-6

T. Boutreux and P. G. Degennes, Compaction of granular mixtures: a free volume model, Physica A: Statistical Mechanics and its Applications, vol.244, issue.1-4, pp.59-67, 1997.
DOI : 10.1016/S0378-4371(97)00236-7

F. Lekarp and A. Dawson, Modelling permanent deformation behaviour of unbound granular materials, Construction and Building Materials, vol.12, issue.1, pp.9-18, 1998.
DOI : 10.1016/S0950-0618(97)00078-0

J. J. Arenzon, Y. Levin, and M. Sellitto, Slow dynamics under gravity: a nonlinear diffusion model, Physica A: Statistical Mechanics and its Applications, vol.325, issue.3-4, pp.3-4, 2003.
DOI : 10.1016/S0378-4371(03)00251-6

K. Trachenko, M. T. Dove, V. V. Brazhkin, and J. Phillips, Rigidity and logarithmic relaxation in network glasses, Journal of Physics: Condensed Matter, vol.15, issue.49, pp.743-791, 2003.
DOI : 10.1088/0953-8984/15/49/L02

R. B. Mckenna and R. J. Gaylord, Relaxation of crosslinked networks: theoretical models and apparent power law behaviour, Polymer, vol.29, issue.11, pp.2027-2059, 1988.
DOI : 10.1016/0032-3861(88)90176-0

M. J. Kubát, P. Ríha, R. Rychwalski, and J. Kubát, Stochastic approach to cooperative relaxation processes in solids, Europhysics Letters (EPL), vol.50, issue.4, pp.507-512, 2000.
DOI : 10.1209/epl/i2000-00298-x

H. Hertz, The contact of elastic bodies, J. Reine Angew. Math, vol.92, pp.156-171

K. L. Johnson, K. Kendall, and A. D. Roberts, Surface Energy and the Contact of Elastic Solids, Proc. Roy. Soc. London A, pp.301-310, 1971.
DOI : 10.1098/rspa.1971.0141

B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, Effect of contact deformations on the adhesion of particles, Journal of Colloid and Interface Science, vol.53, issue.2, pp.314-326, 1975.
DOI : 10.1016/0021-9797(75)90018-1

D. Tabor, Surface forces and surface interactions, Journal of Colloid and Interface Science, vol.58, issue.1, pp.2-13, 1977.
DOI : 10.1016/0021-9797(77)90366-6

X. Shi and Y. Zhao, Comparison of various adhesion contact theories and the influence of dimensionless load parameter, Journal of Adhesion Science and Technology, vol.66, issue.1, pp.55-68, 2004.
DOI : 10.1163/156856194X00627

A. N. Kolmogorov, V. H. Crespi, M. H. Schleier-smith, and J. C. Ellenbogen, Nanotube-Substrate Interactions: Distinguishing Carbon Nanotubes by the Helical Angle, Physical Review Letters, vol.92, issue.8, pp.85503-85504, 2004.
DOI : 10.1103/PhysRevLett.92.085503

K. Miura, N. Sasaki, and S. Kamiya, Friction mechanisms of graphite from a single-atomic tip to a large-area flake tip, Physical Review B, vol.69, issue.7, pp.75420-75421, 2004.
DOI : 10.1103/PhysRevB.69.075420

A. Buldum and J. Lu, Atomic Scale Sliding and Rolling of Carbon Nanotubes, Physical Review Letters, vol.83, issue.24, 1999.
DOI : 10.1103/PhysRevLett.83.5050

M. R. Falvo, J. Steele, A. Buldum, J. Schall, R. M. Taylor et al., Observation of nanometer-scale rolling motion mediated by commensurate contact, 2004.

F. Wakaya, K. Katayama, and K. Gamo, Contact resistance of multiwall carbon nanotubes, Microelectronic engineering, pp.67-68, 2003.
DOI : 10.1016/S0167-9317(03)00147-3

A. Buldum and J. Lu, Contact resistance between carbon nanotubes, Physical Review B, vol.63, issue.16
DOI : 10.1103/PhysRevB.63.161403

URL : http://arxiv.org/abs/cond-mat/0005523

J. Choi, S. G. Ihm, A. Louie, P. L. Zettl, and . Mceuen, Crossed nanotube junctions, Science, vol.288, pp.494-500, 1998.

S. Paulson, M. R. Falvo, N. Snider, A. Helser, T. Hudson et al., resistance measurements of strained carbon nanotubes, Applied Physics Letters, vol.75, issue.19, pp.2936-2974, 1999.
DOI : 10.1063/1.125193

S. Paulson, A. Helser, M. B. Nardelli, R. M. Taylor, M. Falvo et al., Tunable Resistance of a Carbon Nanotube-Graphite Interface, Science, vol.290, issue.5497, pp.1742-1746, 2000.
DOI : 10.1126/science.290.5497.1742

D. Bozovic, M. Bockrath, J. H. Hafner, C. M. Lieber, H. Park et al., Electronic properties of mechanically induced kinks in single-walled carbon nanotubes, Applied Physics Letters, vol.78, issue.23, pp.3693-95, 2001.
DOI : 10.1063/1.1377316

Y. G. Yoon, M. S. Mazzoni, H. J. Choi, J. Ihm, and S. G. Louie, Structural Deformation and Intertube Conductance of Crossed Carbon Nanotube Junctions, Physical Review Letters, vol.86, issue.4
DOI : 10.1103/PhysRevLett.86.688

J. S. Andrade, A. M. Auto, Y. Kobayashi, Y. Shibusa, and K. Shirane, Percolation conduction in vapour grown carbon fibre, Physica A: Statistical Mechanics and its Applications, vol.248, issue.3-4, pp.227-234, 1998.
DOI : 10.1016/S0378-4371(97)00568-2

A. Madroñero, C. Merino, and A. Hendry, Characterisation of carbon fibres grown from carbonaceous gases by measurements of their density and oxidation resistance, European Journal of Solid State and Inorganic Chemistry, vol.35, issue.10-11
DOI : 10.1016/S0992-4361(99)80012-5

L. Liu, Y. Yang, and Y. Zhang, A study on the electrical conductivity of multi-walled carbon nanotube aqueous solution, Physica E: Low-dimensional Systems and Nanostructures, vol.24, issue.3-4, pp.343-351, 2004.
DOI : 10.1016/j.physe.2004.06.046

G. E. Archie, The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics, Transactions of the AIME, vol.146, issue.01, p.54, 1942.
DOI : 10.2118/942054-G