Skip to Main content Skip to Navigation
Theses

Logarithme de Perrin-Riou pour des extensions associées à un groupe de Lubin-Tate

Abstract : In 1994, Perrin-Riou described a generic construction of p-adic L-functions of motives, given a system of "global" elements. Part of this construction is the definition of a map, the "Perrin-Riou exponential", which interpolates Bloch-Kato exponentials for twists of the representation by powers of the cyclotomic character. This work has been extended by Colmez, who among other things proved the explicit reciprocity law conjectured by Perrin-Riou. Recent works suggest that these results can be generalized by replacing cyclotomic extensions by Lubin-Tate extensions. This thesis demonstrates such a generalization for Colmez's construction of the "Perrin-Riou logarithm".
Document type :
Theses
Complete list of metadatas

Cited literature [31 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00011919
Contributor : Lionel Fourquaux <>
Submitted on : Friday, March 10, 2006 - 2:46:07 PM
Last modification on : Wednesday, December 9, 2020 - 3:13:12 PM
Long-term archiving on: : Saturday, April 3, 2010 - 9:25:48 PM

Files

Identifiers

  • HAL Id : tel-00011919, version 1

Citation

Lionel Fourquaux. Logarithme de Perrin-Riou pour des extensions associées à un groupe de Lubin-Tate. Mathématiques [math]. Université Pierre et Marie Curie - Paris VI, 2005. Français. ⟨tel-00011919⟩

Share

Metrics

Record views

367

Files downloads

320