Problèmes de contact unilatéral avec frottement de Coulomb en élastostatique et élastodynamique. Etude mathématique et résolution numérique.

Houari Boumediène Khenous

To cite this version:

HAL Id: tel-00011873
https://tel.archives-ouvertes.fr/tel-00011873
Submitted on 9 Mar 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Mémoire de THÈSE
présenté en vue de l'obtention de grade de
Docteur de l'Institut National des Sciences Appliquées de Toulouse
Spécialité : Mathématiques Appliquées
présenté par
Houari Boumediène KHENOUS

Problèmes de contact unilatéral avec frottement de Coulomb en élastostatique et élastodynamique.
Etude mathématique et résolution numérique.

Thèse soutenue le 25 Novembre 2005

Composition du Jury :

M. Faker Ben Belgacem Maitre de conférence - UPS Toulouse 3 Examinateur
M. Abderrahmane Bendali Professeur - INSA de Toulouse Président
M. Jaroslav Haslinger Professeur - Université Charles, Prague Rapporteur
M. Ioan Ionescu Professeur - Université de Savoie Rapporteur
M. Patrick Laborde Professeur - UPS Toulouse 3 Directeur de thèse
M. Yves Renard Maitre de conférences - INSA Toulouse Directeur de thèse

Thèse préparée au sein du
Département de Génie Mathématique et Modélisation - INSA de Toulouse
Laboratoire Mathématiques pour l'Industrie et la Physique (UMR 5640)
Table des matières

Remerciements 7
Introduction générale 9

I Problème de contact statique 13
Introduction 15

1 Présentation du problème élastostatique 17
1.1 Préliminaires sur l'élasticité linéarisée 17
1.2 Conditions de contact unilatéral et de frottement de Coulomb 18
 1.2.1 Contact unilatéral 19
 1.2.2 Frottement de Coulomb 19
1.3 Formulations en inclusion 19
1.4 Problème statique de contact avec frottement 20

2 Formulation faible des équations 23
2.1 Formulation faible classique 23
2.2 Formulation faible directe 24
2.3 Formulation faible hybride 26
2.4 Le bipotentiel de De Saxcé 27

3 Discrétisation par éléments finis 31
 3.1 Discrétisation hybride par éléments finis 31
 3.1.1 Formulation matricielle 32
 3.1.2 Discrétisation de la formulation de De Saxcé 34
 3.1.3 Formulation en point fixe et existence et unicité de la solution pour le problème discret 35

4 Exemples de discrétisations 39
 4.1 Discrétisation presque conforme en déplacement 39
 4.2 Discrétisation hybride presque conforme en force 41
5 **Étude numérique**

<table>
<thead>
<tr>
<th>5.1 Méthodes de point fixe</th>
<th>44</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.1 Point fixe sur les forces de contact (PFF)</td>
<td>44</td>
</tr>
<tr>
<td>5.1.2 Point fixe sur le seuil de frottement (PFS)</td>
<td>48</td>
</tr>
<tr>
<td>5.2 Méthode itérative sur-relaxée (ISR)</td>
<td>49</td>
</tr>
<tr>
<td>5.3 Méthode de Newton Semi-régulière (NSR)</td>
<td>51</td>
</tr>
<tr>
<td>5.4 Comparaison entre les différentes formulations</td>
<td>55</td>
</tr>
<tr>
<td>5.4.1 Symétrisation partielle pour la méthode NSR</td>
<td>55</td>
</tr>
<tr>
<td>5.4.2 Comparaison entre la formulation de De Saxcé et la formulation standard</td>
<td>57</td>
</tr>
<tr>
<td>5.4.3 Comparaison entre la formulation presque conforme en force et la presque conforme en déplacement</td>
<td>59</td>
</tr>
</tbody>
</table>

Conclusion | 61 |

II **Problème de contact dynamique** | 63 |

Introduction | 65 |

6 **Analyse de la stabilité des schémas classiques** | 67 |

<table>
<thead>
<tr>
<th>6.1 Notions de stabilité</th>
<th>69</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2 La (\theta)-méthode</td>
<td>70</td>
</tr>
<tr>
<td>6.2.1 Formulation de la (\theta)-méthode pour le problème de contact</td>
<td>70</td>
</tr>
<tr>
<td>6.2.2 Analyse de stabilité</td>
<td>71</td>
</tr>
<tr>
<td>6.3 Le schéma de Newmark</td>
<td>75</td>
</tr>
<tr>
<td>6.3.1 Adaptation du schéma de Newmark pour le contact</td>
<td>75</td>
</tr>
<tr>
<td>6.3.2 Analyse de stabilité</td>
<td>76</td>
</tr>
<tr>
<td>6.3.3 Estimation en accélération</td>
<td>79</td>
</tr>
<tr>
<td>6.4 La méthode du point milieu (standard)</td>
<td>81</td>
</tr>
<tr>
<td>6.4.1 Formulation pour le contact</td>
<td>81</td>
</tr>
<tr>
<td>6.4.2 Analyse de stabilité</td>
<td>82</td>
</tr>
<tr>
<td>6.5 Point milieu en implicitant la force de contact</td>
<td>84</td>
</tr>
<tr>
<td>6.5.1 Adaptation de la méthode pour le contact</td>
<td>84</td>
</tr>
<tr>
<td>6.5.2 Analyse de stabilité</td>
<td>85</td>
</tr>
<tr>
<td>6.6 Conclusion</td>
<td>86</td>
</tr>
</tbody>
</table>

7 **Difficultés de la discrétisation** | 87 |

<table>
<thead>
<tr>
<th>7.1 Semi-discrétisation en espace et multiplicité de solutions</th>
<th>87</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2 La discrétisation totale et la dissipation de l’énergie</td>
<td>89</td>
</tr>
<tr>
<td>7.3 Conclusion</td>
<td>92</td>
</tr>
</tbody>
</table>

8 **Nouvelles stratégies** | 93 |

<table>
<thead>
<tr>
<th>8.1 Schéma de Paoli et Schatzman</th>
<th>93</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2 Modification du schéma de Paoli et Schatzman</td>
<td>94</td>
</tr>
<tr>
<td>8.2.1 Présentation du schéma</td>
<td>94</td>
</tr>
</tbody>
</table>
TABLE DES MATIÈRES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.2</td>
<td>Analyse de stabilité</td>
<td>95</td>
</tr>
<tr>
<td>8.3</td>
<td>Point milieu avec une condition de contact modifiée</td>
<td>97</td>
</tr>
<tr>
<td>8.4</td>
<td>Elimination de la masse sur le bord</td>
<td>100</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Construction de la nouvelle matrice de masse</td>
<td>100</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Analyse de stabilité</td>
<td>102</td>
</tr>
<tr>
<td>8.5</td>
<td>Conclusion</td>
<td>105</td>
</tr>
<tr>
<td>9</td>
<td>Tests numériques</td>
<td>107</td>
</tr>
<tr>
<td>9.1</td>
<td>La θ-méthode</td>
<td>109</td>
</tr>
<tr>
<td>9.2</td>
<td>La méthode de Newmark</td>
<td>112</td>
</tr>
<tr>
<td>9.3</td>
<td>La méthode du point milieu</td>
<td>115</td>
</tr>
<tr>
<td>9.4</td>
<td>La méthode du point milieu modifiée</td>
<td>116</td>
</tr>
<tr>
<td>9.5</td>
<td>Le schéma de Paoli et Schatzman</td>
<td>117</td>
</tr>
<tr>
<td>9.6</td>
<td>Le schéma de Paoli et Schatzman modifié</td>
<td>118</td>
</tr>
<tr>
<td>9.7</td>
<td>Le schéma avec la condition de contact équivalente</td>
<td>119</td>
</tr>
<tr>
<td>9.8</td>
<td>La méthode de la matrice de masse équivalente</td>
<td>121</td>
</tr>
<tr>
<td>9.8.1</td>
<td>La θ-méthode</td>
<td>121</td>
</tr>
<tr>
<td>9.8.2</td>
<td>La méthode de Newmark</td>
<td>122</td>
</tr>
<tr>
<td>9.8.3</td>
<td>Le schéma de point milieu</td>
<td>123</td>
</tr>
<tr>
<td>9.9</td>
<td>Conclusion</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Conclusion et perspectives</td>
<td>127</td>
</tr>
</tbody>
</table>
A mes parents Fatma et Daho, qui sont la graine de mon existence, pour leurs encouragements et leurs sacrifices, à mes frères Mohammed et Boubakeur et ma soeur Fatima-Zohra. Je vous remercie pour votre confiance, votre soutien. Je ne sais comment vous remercier pour tout ce que je vous dois.

A toi Sarah pour ton réconfort, ta compréhension, ton soutien moral surtout dans les moments difficiles durant cette thèse, de m’avoir poussé et encouragé à aller au delà de mes capacités et surtout d’avoir été présente à chaque fois que j’ai eu besoin de toi et surtout je te remercie pour tes sacrifices et ta patience.

Je rends hommage à tous mes maîtres et professeurs à partir du primaire, celles et ceux qui m’ont donné goût aux études et en particulier pour les Mathématiques, je leur dis du fond du cœur merci et j’espère que ce travail leur soit aussi dédié comme fruit de leur travail.
Remerciements

Je remercie messieurs Jaroslav Haslinger et Ioan Ionescu d’avoir accepté de rapporter mon mémoire de thèse, ce fut un grand honneur pour moi.

Je remercie aussi messieurs Faker Benbelgacem et Abderrahmane Bendali d’avoir été membre du jury et d’avoir examiner ce travail.

J’exprime ma reconnaissance à Messieurs Patrick Laborde et Yves Renard, mes directeurs de thèse, interlocuteurs disponibles et attentifs. Je les remercie pour tous les conseils et suggestions qu’ils m’ont apporté lors de l’encadrement de ma thèse.

Je n’oublie pas Julien Pommier qui m’a beaucoup aidé surtout dans le calcul numérique, je le remercie très sincèrement pour tout et aussi de m’avoir supporté avec mes questions qui se répétaient.

Je remercie Charef et Chakib, mes deux premiers copains de France avec qui j’ai passé de bons moments surtout pendant le DEA. Je remercie aussi Mokhtar, Abed, Salah mes copains pour les merveilleux moments de complicité. Je n’oublie pas Abdelkader, F. Thomas, Yannick, Moustapha, M. Thomas … mes amis et collègues de bureau avec qui j’ai partagé les trois années de thèse.

Au Vice-Consul d’Algérie à Toulouse chargé des boursiers et son adjoint sans que j’oublie les membres du CROUS (service boursiers étrangers) qui m’ont accompagnés durant ces quatre années et qui m’ont facilité les tâches administratives concernant ma bourse.

Mes remerciements vont également à tous mes camarades du Département de Génie Mathématique de l’INSA qui ont contribué à créer une ambiance cordiale, et à l’ensemble du Département.
Remerciements
Introduction générale

Dans la plupart des systèmes de la mécanique des structures, il existe des situations dans lesquelles un corps déformable entre en contact avec d’autres corps. La problématique du contact est essentiellement de savoir comment les forces sont appliquées sur une structure et comment réagissent ces structures lorsqu’elles subissent ces forces.

Il est évident que le caractère de ce contact peut jouer un rôle fondamental dans le comportement de la structure : sa déformation, son mouvement, la distribution des efforts, etc... En dépit du rôle fondamental du contact dans les mécanismes des solides et des structures, les efforts de contacts sont rarement pris en considération dans l’analyse des structures. La raison est que modéliser des phénomènes de contact pose de sérieuses difficultés : conceptuelles, mathématiques et informatiques qui sont bien plus complexes que celles qui proviennent de la mécanique des structures linéaire classique. Les problèmes de contact sont en soi non linéaires.

Avant l’application de forces à un corps, la surface de contact réelle sur laquelle les corps se touchent est inconnue. Les conditions de frontière sur cette surface inconnue fait intervenir des efforts et des déplacements inconnus. En conséquence, les modèles mathématiques de contact impliquent des systèmes d’inégalités ou d’équations non linéaires. D’ailleurs, quand le frottement est présent, des solutions multiples de ces équations décrivant le contact peuvent exister, et la description du mouvement des corps en contact devient extrêmement complexe. Néanmoins, il y a des formulations spécifiques de certaines classes de problèmes de contact dans lesquelles ces difficultés classiques sont réduites au minimum et qui fournissent la base pour une méthode d’analyse élégante. Ce travail est consacré à l’étude de certaines de ces formulations et méthodes.

S’il existe une difficulté à formuler les problèmes de contact impliquant le frottement, leur résolution numérique est plus difficile encore, car ils sont décrit par une loi multivoque qui ne dérive pas d’un potentiel naturel (même non différentiable). Aussi, ils ne peuvent pas être formulés en tant que problèmes standards d’optimisation (avec contraintes inégalité).

Dans ce travail, on s’intéresse aux problèmes de contact unilatéral dans le cas de petites déformations d’un corps élastique glissant avec frottement sur une fondation rigide plane.

La thèse se décompose en deux parties :

La première partie concerne le problème de contact unilatéral (dit de Signorini) qui est issu de la mécanique des structures et où les inéquations portent sur la frontière. La condition de
contact a été formulée par Signorini [45] en 1959. La formulation variationnelle associée à ce type de condition a été étudiée mathématiquement par Fichera [15] en 1964. Ensuite, viennent les travaux de G. Duvaut et J.L. Lions [14] qui ont rajouté le frottement aux problèmes de contact et ils ont pu écrire ce problème sous forme d'un problème de minimisation de fonctionnelle quadratique dans le cas d'un frottement de Tresca (i.e. avec un seuil de frottement fixe qui ne dépend pas de la contrainte normale). Dans [14], on peut trouver aussi des résultats d'existence et d'unicité pour le problème dit de Signorini (sans frottement).

L'approximation par la méthode des éléments finis a été discutée par nombreux auteurs. En particulier, on trouvera dans [25] une synthèse concernant le cas d'un solide déformable en contact avec un socle rigide.

Le premier résultat d'existence de solutions pour le problème de Signorini avec frottement a été établi au début des années 80. Necas, Januzek et Haslinger [37] ont prouvé un résultat d'existence pour une barre élastique en dimension deux sous la condition d'un coefficient de frottement assez petit. Dernièrement, Y. Renard [44] a donné un critère d'unicité de solution pour le problème de contact avec frottement. Ce résultat est très important pour la recherche de solutions multiples.

Le but de cette partie est de présenter dans un cadre plus général la discrétisation hybride du problème de contact unilatéral avec frottement de Coulomb dans le cas élastostatique. Une formulation en projection est développée. Nous prouvons un résultat d'existence et d'unicité pour le problème discret. Ensuite, on donne des méthodes de résolution (Newton, méthode itérative, points fixes, Uzawa) qui seront comparées en termes de nombre d'itérations et en termes de robustesse par rapport au coefficient de frottement.

La deuxième partie concerne le problème en élastodynamique. En effet, le caractère évolutif du phénomène de contact implique souvent l'utilisation d'un modèle dynamique. D'autre part, l'intégration du système élastodynamique en présence du contact nécessite des algorithmes spécialement adaptés. Les schémas classiques, qui supposent une certaine régularité de la variable d'état, donnent souvent des résultats erronés dans le cas de changements rapides de l'état de contact.

De nombreuses complications surgissent quand les effets dynamiques sont rajoutés aux modèles de contact avec frottement. Les mécanismes physiques des forces sur les interfaces de contact durant le phénomène dynamique sont extrêmement complexes ; ils sont responsables des effets dynamiques de frottement et ont été le centre d'importantes recherches expérimentales pendant plusieurs décennies et sont encore le sujet de plusieurs études.

Plusieurs schémas classiques seront présentés dans cette partie. Ensuite, on donnera de nouvelles stratégies pour venir à bout des différents problèmes rencontrés avec les premiers schémas. Les nouvelles méthodes sont conservatrices et permettent de prouver l'existence d'une solution lipschitzienne pour le problème de contact élastodynamique [24].
Première partie

Problème de contact statique
Introduction

Cette partie, dans laquelle on étudiera le problème de contact avec frottement en statique, contient cinq chapitres. Dans le premier chapitre, nous présentons le problème d'élasticité linéarisée. Ensuite nous définissons les conditions aux limites de contact unilatéral et frottement de Coulomb et nous donnons la formulation du problème de contact statique.

Dans le deuxième chapitre, on commence par la formulation faible de Duvaut et Lions [14] qu'on reformulera en un problème avec inclusions. Cette formulation est de très grande importance dans la compréhension du choix général de la discrétisation du problème. On présentera aussi la formulation de De Saxcé dans laquelle on couple la condition de contact et de frottement en une seule inclusion.

Le troisième chapitre concerne la discrétisation hybride par éléments finis du problème statique. On montrera que le problème discret admet une et une seule solution pour un coefficient de frottement suffisamment petit et un \(r > 0 \) assez petit [23].

Dans le chapitre suivant, on donnera des exemples de discrétisation conforme en déplacement et conforme en force.

Dans le dernier chapitre de cette partie, deux cas tests sont considérés : un disque pour le cas bidimensionnel et un tore pour le cas tridimensionnel. Les corps sont soumis à leur propre poids et sont en contact frottant avec une fondation rigide plane. L'efficacité de différentes méthodes numériques pour la résolution du problème discret est comparée. On conclura que la méthode semi-régulière de Newton apparaît comme la plus robuste pour résoudre les problèmes de contact avec frottement de Coulomb pour des corps déformables.
Chapitre 1

Présentation du problème élastostatique

Dans ce chapitre, nous présentons les équations du problème statique d’élasticité linéarisée avec conditions aux limites de contact unilatéral avec frottement de Coulomb. Nous commençons par présenter le problème sans contact ni frottement, ensuite nous définissons les deux conditions de contact et de frottement tout d’abord d’une manière classique puis à l’aide d’inclusions. Finalement, nous donnons le problème complet qui sera la base de toute la suite.

1.1 Préliminaires sur l’élasticité linéarisée

Pour la simplicité de la présentation, nous nous limitons au cas d’un solide élastique frottant sur une surface rigide plane immobile. L’introduction de géométries plus complexes fait apparaître des problèmes délicats dans la déterminations de la surface de contact. Une approche de ce problème est étudiée dans N. Kikuchi et J.T Oden [25] par exemple.

![Fig. 1.1 – Corps élastique Ω en contact frottant avec une fondation rigide plane.](image)

Soit $\Omega \subset \mathbb{R}^d$ ($d = 2$ ou 3) un domaine borné représentant la configuration de référence d’un corps élastique soumis à son poids, à une condition de Neumann sur Γ_N, une condition de Dirichlet sur Γ_D et une condition de contact unilatéral avec frottement de Coulomb sur Γ_C entre le corps et une fondation rigide plane. Les ensembles Γ_N, Γ_D et Γ_C forme une partition disjoints de $\partial \Omega$, le bord de Ω.

19
Pour un problème d’élasticité sans contact ni frottement, le déplacement \(u \) du corps satisfait aux équations suivantes :

\[
\begin{align*}
- \text{div } \sigma(u) &= f \quad \text{dans } \Omega, \\
\sigma(u) &= A \varepsilon(u) \quad \text{dans } \Omega, \\
u &= U \quad \text{sur } \Gamma_D, \\
\sigma(u)n &= g \quad \text{sur } \Gamma_N,
\end{align*}
\]

(1.1)

où \(f \) représente la densité de forces volumiques, \(g \) désigne les forces surfaciques imposées sur \(\Gamma_N \), \(n \) la normale unitaire sortante de \(\Omega \) sur \(\partial \Omega \), \(\sigma(u) \) est le tenseur des contraintes, \(\varepsilon(u) \) est le tenseur linéarisé des déformations et \(A \) est le tenseur d’élasticité du quatrième ordre satisfaisant les conditions de symétrie et de coercivité suivantes :

- \(A_{ijkl} \in L^\infty(\Omega), \forall 1 \leq i, j, k, h \leq d, \)
- \(A \) est symétrique : \(A_{ijkl}(x) = A_{jikl}(x) = A_{klij}(x), \forall i, j, k, h, \ x \in \Omega, \)
- \(\exists \ c > 0 / \text{pp dans } \Omega : A_{ijkl} \varepsilon_{ij} \varepsilon_{kh} \geq c \varepsilon_{ij} \varepsilon_{ij}, \forall \varepsilon \text{ symétrique}, \)

où \(A_{ijkl} \) sont les composantes de \(A \) données par la loi de Hooke dans une base canonique comme suit :

\[
\sigma_{ij}(u) = A_{ijkl} \varepsilon_{kh}(u) = A_{ijkl} \partial_k u_h, \ \text{dans } \Omega.
\]

\textbf{Remarque.} On peut réécrire le problème (1.1) en un problème d’optimisation qui admet une et une seule solution. Pour plus de détails sur ce résultat classique, on peut se référer à [14] [25].

1.2 \textit{Conditions de contact unilatéral et de frottement de Coulomb}

Sur \(\Gamma_C \), on décompose le déplacement et le tenseur de contraintes en composante normale et tangentielle comme suit :

\[
\begin{align*}
u_{N} &= u.n, & u_{T} &= u - u_{N}n, \\
\sigma_{N}(u) &= (\sigma(u))n, & \sigma_{T}(u) &= \sigma(u) - \sigma_{N}(u)n.
\end{align*}
\]

Pour donner un sens à la décomposition précédente, on suppose que \(\Gamma_C \) est de régularité \(C^1 \). On suppose aussi qu’il n’y a pas de distance initiale entre le solide et la fondation rigide.
1.2.1 Contact unilatéral

La condition de contact unilatéral est exprimée par la relation de complémentarité suivante :

\[u_N \leq 0, \quad \sigma_N(u) \leq 0 \quad \text{et} \quad u_N \sigma_N(u) = 0. \] (1.2)

Cette condition exprime qu’en cas de contact c’est le corps qui se déforme et qu’il ne peut y avoir d’interpenetration entre le solide et la fondation.

1.2.2 Frottement de Coulomb

En notant \(F \) le coefficient de frottement, la condition de frottement de Coulomb est :

- si \(u_T = 0 \) alors \(|\sigma_T(u)| \leq -\sigma_N(u)F \),
- si \(u_T \neq 0 \) alors \(\sigma_T(u) = \sigma_N(u)F \frac{u_T}{|u_T|} \).

Cette condition représente deux situations physiques qui sont le collement ("stick") quand \(u_T = 0 \) et le glissement ("slip") quand \(u_T \neq 0 \).

1.3 Formulations en inclusion

On peut réexprimer ces deux conditions, d’une façon équivalente, en utilisant les fonctions multivoques suivantes :

\[J_N(\xi) = \begin{cases}
0, & \text{si } \xi < 0, \\
[0, +\infty], & \text{si } \xi = 0, \\
\emptyset, & \text{si } \xi > 0.
\end{cases} \]

\[\text{Dir}_T(v) = \begin{cases}
\{ v_T \over |v_T| \}, & \forall \ v \in \mathbb{R}^d, \text{ avec } v_T \neq 0, \\
\{ w \in \mathbb{R}^d; |w| \leq 1, w_N = 0 \}, & \text{si } v_T = 0.
\end{cases} \]

Les applications \(J_N \) et \(\text{Dir}_T \) sont maximales monotones représentants respectivement les sous-gradients de la fonction indicatrice de l'intervalle \(]-\infty, 0[\) et la fonction \(v \mapsto |v_T| \). Dans le cas d’un bord de dimension un \((n = 2) \) \(\text{Dir}_T \) est la fonction signe multivoque (voir Fig. 1.2).
Grâce à ces deux applications, les conditions de contact unilatéral et de frottement de Coulomb se réécrit comme suit :

\[
-\sigma_N(u) \in J_N(u_N), \quad (1.3)
\]
\[
-\sigma_T(u) \in -\mathcal{F}\sigma_N(u)\text{Dir}_T(u_T). \quad (1.4)
\]

Les dernières relations sont les formulations ponctuelles correspondantes aux relations faibles qui seront introduites dans la section suivante. Voir par exemple [34], [27], [38], [19] pour plus de détails sur les lois de contact et de frottement en termes de sous-gradients ou gradients généralisés.

1.4 Problème statique de contact avec frottement

Ayant tous les ingrédients nécessaires, on peut écrire le problème de contact statique avec frottement de Coulomb comme suit :

Trouver le déplacement \(u \) vérifiant :

\[
\begin{cases}
- \text{div} \ \sigma(u) = f & \text{dans } \Omega, \\
\sigma(u) = \mathcal{A} \varepsilon(u) & \text{dans } \Omega, \\
u = U & \text{sur } \Gamma_D, \\
\sigma(u)n = g & \text{sur } \Gamma_N, \\
-\sigma_N(u) \in J_N(u_N) & \text{sur } \Gamma_C, \\
-\sigma_T(u) \in -\mathcal{F}\sigma_N(u)\text{Dir}_T(u_T) & \text{sur } \Gamma_C,
\end{cases}
\] (1.5)
Ce problème a été introduit par G. Duvaut et J.L. Lions (voir [14]). Beaucoup de travaux traitant ce problème ont été publiés depuis. Pour ce qui concerne notre cas, on s'intéresse au cas général dans lequel les conditions sur le bord de contact ne sont ni pénalisées ni régularisées. L'étude est faite dans le chapitre suivant.
CHAPITRE 1. PRÉSENTATION DU PROBLÈME ÉLASTOSTATIQUE
Chapitre 2

Formulation faible des équations

Dans ce chapitre, on commence par la formulation faible de Duvaut et Lions [14] et on finira par donner les formulations par inclusions du problème. Ces formulations sont de très grande importance dans la compréhension du choix général de la discrétisation du problème. On présentera aussi les formulations de De Saxcé correspondantes à ces systèmes.

2.1 Formulation faible classique

Suivant la démarche de Duvaut et Lions [14], on introduit les espaces de Hilbert suivants :

\[V = \{ v \in H^1(\Omega; \mathbb{R}^d), v = 0 \text{ sur } \Gamma_D \} \]

\[X = \{ v|_{\Gamma_C} : v \in V \} \subset H^{1/2}(\Gamma_C; \mathbb{R}^d) \]

\[X_N = \{ v_N|_{\Gamma_C} : v \in V \}, \quad X_T = \{ v_T|_{\Gamma_C} : v \in V \} \]

et leurs espaces duaux topologiques \(V' \), \(X' \), \(X'_N \) et \(X'_T \). On suppose que \(\Gamma_C \) est suffisamment régulière de sorte que \(X_N \subset H^{1/2}(\Gamma_C, \mathbb{R}) \), \(X_T \subset H^{1/2}(\Gamma_C, \mathbb{R}^{d-1}) \), \(X'_N \subset H^{-1/2}(\Gamma_C, \mathbb{R}) \) et \(X'_T \subset H^{-1/2}(\Gamma_C, \mathbb{R}^{d-1}) \).

D’une manière classique, \(H^{1/2}(\Gamma_C) \) est l’espace des restrictions sur \(\Gamma_C \) des traces sur \(\partial \Omega \) de fonctions \(H^1(\Omega) \) et \(H^{-1/2}(\Gamma_C) \) est l’espace dual de \(H^{1/2}(\Gamma_C) \) qui est l’espace de restrictions sur \(\Gamma_C \) de fonctions \(H^{1/2}(\partial \Omega) \) qui s’annulent en dehors de \(\Gamma_C \). Pour plus de détails sur les opérateurs traces, le lecteur peut se référer à [1], [25].

L’ensemble des déplacements admissibles est défini par

\[K_0 = \{ v \in V : v_N \leq 0 \text{ sur } \Gamma_C \} \]

Les applications suivantes

\[a(u, v) = \int_\Omega A \varepsilon(u) : \varepsilon(v) dx, \]
CHAPITRE 2. FORMULATION FAIBLE DES ÉQUATIONS

\[l(v) = \int_{\Omega} f \cdot v \, dx + \int_{\Gamma_N} g \cdot v \, d\Gamma \]

et

\[j(\lambda_N, v_T) = -\langle F_{\lambda_N}, v_T \rangle_{X_N', X_N} \]

représentent respectivement le travail virtuel des forces élastiques, les chargements extérieurs et le travail virtuel des forces de frottement. On a les hypothèses usuelles suivantes :

\(a(., .) \) une forme bilinéaire symétrique continue coercitive sur \(V \times V \),

\[\exists \alpha > 0, \exists C_M > 0, a(u, u) \geq \alpha \|u\|^2_V \quad \text{et} \quad a(u, v) \leq C_M \|u\|_V \|v\|_V, \quad \forall u, v \in V \quad (2.1) \]

\(l(.) \) une forme linéaire continue sur \(V \), \(i.e. \quad \exists C_L > 0, \quad l(u) \leq C_L \|u\|_V \quad (2.2) \]

\(F \) une fonction positive Lipschitziennne sur \(\Gamma_C \). \((2.3) \)

Proposition 1 La formulation faible du problème (1.5) est donnée par :

\[
\begin{cases}
\text{Trouver } u \in K_0 \text{ satisfaisant} \\
 a(u, v - u) + j(\sigma_N(u), v_T) - j(\sigma_N(u), u_T) \geq l(v - u), \quad \forall v \in K_0.
\end{cases}
\]

(2.4)

Preuve. Pour la preuve, nous incitons le lecteur à consulter [14].

La grande difficulté avec (2.4) est que ce n’est pas une inéquation variationnelle parce qu’elle ne dérive pas d’un problème d’optimisation. Ceci est dû principalement au couplage entre le coefficient de frottement et la force de contact \(\sigma_N(u) \).

2.2 Formulation faible directe

Soient

\[K_N = \{ v_N \in X_N : v_N \leq 0 \}, \]

\[N_{K_N}(v_N) = \begin{cases}
\{ \mu_N \in X'_N : \langle \mu_N, w_N - v_N \rangle_{X'_N \times X_N} \leq 0, \quad \forall w_N \in K_N \}, & \text{si } v_N \in K_N, \\
\emptyset, & \text{si } v_N \notin K_N
\end{cases} \]

et

\[\partial_2 j(\lambda_N, u_T) = \{ f_T \in X'_T : j(\lambda_N, v_T) \geq j(\lambda_N, u_T) + \langle f_T, v_T - u_T \rangle_{X'_T \times X_T}, \quad \forall v_T \in X_T \}, \]

(2.5)
2.2. FORMULATION FAIBLE DIRECTE

respectivement le cône des déplacements normaux admissibles, son cône normal et le sous-gradient relatif à la deuxième composante de la fonctionnelle $j(\cdot, \cdot)$ définie dans la section 2.1.

Alors on a la proposition suivante :

Proposition 2 Le problème (2.4) est équivalent au problème suivant :

\[
\begin{cases}
\text{Trouver } u \in V, \lambda_N \in X'_N \text{ et } \lambda_T \in X'_T \text{ satisfaisant } \\
 a(u, v) = l(v) + \langle \lambda_N, v_N \rangle_{X'_N, X_N} + \langle \lambda_T, v_T \rangle_{X'_T, X_T}, \quad \forall v \in V, \\
 \lambda_N + N_K_N (u_N) \ni 0, \text{ dans } X'_N, \\
 \lambda_T + \partial_2 j(\lambda_N, u_T) \ni 0, \text{ dans } X'_T.
\end{cases}
\]

(2.5)

Preuve. En introduisant $\lambda_N \in X'_N$, $\lambda_T \in X'_T$ deux multiplicateurs représentant les forces sur le bord de contact, l'équilibre du corps élastique peut être écrit comme suit :

\[
a(u, v) = l(v) + \langle \lambda_N, v_N \rangle_{X'_N, X_N} + \langle \lambda_T, v_T \rangle_{X'_T, X_T}, \quad \forall v \in V.
\]

(2.6)

La formulation faible du contact unilatéral est

\[
u_N \leq 0, \quad \langle \lambda_N, v_N \rangle_{X'_N, X_N} \geq 0, \forall v \in K_0, \quad \langle \lambda_N, u_N \rangle_{X'_N, X_N} = 0.
\]

(2.7)

D’après la définition de K_0, on a $\langle \lambda_N, w_N \rangle_{X'_N, X_N} \geq 0, \forall w_N \in K_N$, d’où

\[
\langle -\lambda_N, w_N \rangle_{X'_N, X_N} \leq 0, \forall w_N \in K_N.
\]

D’autre part $\langle \lambda_N, u_N \rangle_{X'_N, X_N} = 0$, donc

\[
\langle -\lambda_N, w_N - u_N \rangle_{X'_N, X_N} \leq 0,
\]

ce qui nous donne à l’aide de la définition du cône normal de K_N que

\[
\lambda_N + N_K_N (u_N) \ni 0,
\]

i.e. $-\lambda_N$ reste dans le cône normal de K_N au point u_N. En fait, cette inclusion est une formulation faible de l’inclusion forte (1.3).

Il reste à trouver la formulation faible directe de la condition de frottement. D’après la relation (2.6), on a

\[
a(u, v - u) = l(v - u) + \langle \lambda_N, v_N - u_N \rangle_{X'_N, X_N} + \langle \lambda_T, v_T - u_T \rangle_{X'_T, X_T}, \quad \forall v \in K_0.
\]
Alors (2.4) est équivalent à
\[\langle \lambda_N, v_N - u_N \rangle_{X'_N, X_N} + \langle \lambda_T, v_T - u_T \rangle_{X'_T, X_T} + j(\lambda_N, v_T) - j(\lambda_N, u_T) \geq 0, \forall v \in K_0. \]
Mais on a \(\langle \lambda_N, v_N - u_N \rangle_{X'_N, X_N} \geq 0, \forall v_N \in K_N \) parce que \(-\lambda_N \in N_{K_N}(u_N)\) et on choisissant \(v_N = u_N \) on obtient la relation
\[\langle \lambda_T, v_T - u_T \rangle_{X'_T, X_T} - \langle F\lambda_N, |v_T| - |u_T| \rangle_{X'_N, X_N} \geq 0, \forall v_T \in X_T, \]
qui est équivalente à
\[\lambda_T + \partial_2 j(\lambda_N, u_T) \ni 0, \quad (2.9) \]
car \(j(., .) \) est convexe en \(u_T \). Cette inclusion est une formulation faible de (1.4). Plus de détails peuvent être retrouvés dans [19].

2.3 Formulation faible hybride

Soient
\[\Lambda_N = -K_N^* = \{ f_N \in X'_N : \langle f_N, v_N \rangle_{X'_N, X_N} \geq 0, \forall v_N \in K_N \} \]
et
\[\Lambda_T(F\lambda_N) = \{ \lambda_T \in X'_T : -\langle \lambda_T, w_T \rangle_{X'_T, X_T} + \langle F\lambda_N, |w_T| \rangle_{X'_N, X_N} \leq 0, \forall w_T \in X_T \} \]
respectivement les ensembles des forces normales et tangentielles admissibles.

Proposition 3 Le problème (2.4) est équivalent au problème suivant :

\[
\begin{cases}
\text{Trouver } u \in V, \lambda_N \in X'_N \text{ et } \lambda_T \in X'_T \text{ satisfaisant } \\
a(u, v) = l(v) + \langle \lambda_N, v_N \rangle_{X'_N, X_N} + \langle \lambda_T, v_T \rangle_{X'_T, X_T}, \quad \forall v \in V; \\
-u_N \in N_{\Lambda_N}(\lambda_N), \\
-u_T \in N_{\Lambda_T(F\lambda_N)}(\lambda_T).
\end{cases}
\]

(2.10)

Preuve. Les deux inclusions (2.8) et (2.9) peuvent être inversées. Pour la condition de contact, inverser \(N_{K_N} \) est facile parce que c’est le cône normal de \(K_N \) qui est aussi un cône, d’où \((N_{K_N})^{-1}(\lambda_N) = N_{K_N}^*(\lambda_N) = N_{\Lambda_N}(-\lambda_N) \). Alors, la condition de contact est inversée en
\[u_N + N_{\Lambda_N}(\lambda_N) \ni 0. \]
2.4. LE BIPOTENTIEL DE DE SAXCÉ

Pour la condition de frottement, inverser $\partial j(\lambda_N, u_T)$ est possible en calculant la conjugué de Fenchel de $j(\cdot, \cdot)$ relative à la seconde variable parce qu’on a $(\partial f)^{-1} = \partial(f^*)$ pour une fonction convexe propre semi-continue inférieurement (voir [9], [28]). On a

$$j^*(\lambda_N, \lambda_T) = I_{\Lambda_T(F\lambda_N)}(\lambda_T),$$

où $I_{\Lambda_T(F\lambda_N)}$ est la fonction indicatrice de $\Lambda_T(F\lambda_N)$. Alors, la condition de frottement peut être exprimée comme suit :

$$u_T + N_{\Lambda_T(F\lambda_N)}(\lambda_T) \ni 0,$$

parce que $\partial_{\lambda_T} I_{\Lambda_T(F\lambda_N)}(\lambda_T) = N_{\Lambda_T(F\lambda_N)}$.

Proposition 4 La formulation (2.10) est aussi équivalente à la formulation hybride suivante

$$\begin{cases}
\text{Trouver } u \in V, \lambda_N \in X'_N \text{ et } \lambda_T \in X'_T \text{ satisfaisant }
\end{cases}$$

$$a(u, v) = l(v) + \langle \lambda_N, v_N \rangle_{X'_N, X_N} + \langle \lambda_T, v_T \rangle_{X'_T, X_T}, \forall v \in V,$$

$$\lambda_N \in \Lambda_N, \quad \langle \mu_N - \lambda_N, u_N \rangle_{X'_N, X_N} \geq 0, \quad \forall \mu_N \in \Lambda_N,$$

$$\lambda_T \in \Lambda_T(F\lambda_N), \quad \langle \mu_T - \lambda_T, u_T \rangle_{X'_T, X_T} \geq 0, \quad \forall \mu_T \in \Lambda_T(F\lambda_N).$$

(2.11)

Preuve. Découle directement de la démonstration précédente de la proposition 3 et des définitions des cônes normaux $N_{\Lambda_N}, N_{\Lambda_T(F\lambda_N)}$.

2.4 Le bipotentiel de De Saxcé

Dans la formulation (2.10), le contact et le frottement sont couplés parce que l’ensemble $\Lambda_T(F\lambda_N)$ dépend de λ_N. Au début des années 90, De Saxcé [12] a proposé une nouvelle formulation dans laquelle le contact et le frottement sont exprimés par une seul inclusion. Dans cette partie, on présentera cette formulation ainsi que les outils nécessaires.

Définition 1 Soit la fonction $b(\cdot, \cdot)$ définie par

$$b(\xi, x) : H' \times H \leftrightarrow \bar{\mathbb{R}}$$

On dira que $b(\cdot, \cdot)$ est un bipotentiel si et seulement si :

1. elle est convexe, semi-continue inférieurement par rapport à ces deux variables,
2. elle vérifie l’inégalité généralisée de Fenchel suivante

$$b(\xi, y) \geq \langle \mu, v \rangle_{H', H}, \forall \mu \in H', \forall v \in H.$$

(2.12)
Dans [28], une définition un peu plus restrictive est introduite. Le Bipotentiel \(b(.,.) \) doit vérifier les deux relations suivantes:

\[
\inf_{y \in H} \left(b(\zeta, y) - \langle \zeta, y \rangle_{H',H} \right) \in \{0, +\infty\}, \quad \forall \zeta \in H', \quad (2.13)
\]

\[
\inf_{\xi \in H'} \left(b(\xi, x) - \langle \mu, x \rangle_{H',H} \right) \in \{0, +\infty\}, \quad \forall x \in H. \quad (2.14)
\]

En effet, (2.13) et (2.14) impliquent (2.12). La valeur +\(\infty \) ne peut être évitée car le bipotentiel contient des fonctions indicatrices. Ces conditions sont naturellement vérifiées par le bipotentiel représentant la loi de frottement de Coulomb.

Définition 2 Un couple \((\zeta, x) \) est dit extrémal s’il vérifie la relation suivante :

\[
b(\zeta, x) = \langle \zeta, x \rangle_{H',H}. \quad (2.15)
\]

Proposition 5 Si un couple \((\zeta, x) \) est extrémal alors on a les deux relations équivalentes suivantes :

\[
-\zeta \in \partial_x b(\zeta, x), \quad (2.16)
\]

\[
-x \in \partial_\zeta b(\zeta, x). \quad (2.17)
\]

Preuve. En retranchant (2.15) de (2.12), on obtient :

\[
b(\zeta, y) - b(\zeta, x) \geq \langle \zeta, y - x \rangle_{H',H}, \quad \forall y \in H.
\]

Ceci est équivalent à

\[
-\zeta \in \partial_x b(\zeta, x).
\]

Un calcul similaire donne

\[
-x \in \partial_\zeta b(\zeta, x).
\]

Dû à (2.13), on a (2.16) est équivalente à (2.15) et dû à (2.14), on a (2.17) est équivalente à (2.15). Ce qui fait que les deux relations (2.16) et (2.17) sont équivalentes.

Remarque. La relation (2.12) n’aurait pas permis d’obtenir la proposition 5 et c’est pour cette raison que les relations (2.13) et (2.14) ont été introduites.

Après avoir donné toutes les notions nécessaires, on peut maintenant définir le bipotentiel de la loi de frottement de Coulomb donnée par De Saxcé.
Définition 3
Le bipotentiel de la loi de frottement de Coulomb est

\[b(-\lambda, u) = (-\lambda_N, \mathcal{F}|u_T|)_{X'_N, X'_N} + I_{\Lambda_F}(-\lambda) + I_{\Lambda_N}(u_N), \]

(2.18)

où

\[\Lambda_F = \{ (\lambda_N, \lambda_T) \in X'_N \times X'_T : -\langle \lambda_T, v_T \rangle + \langle \mathcal{F}\lambda_N, |v_T| \rangle \leq 0, \forall v_T \in X_T \} \]

\[= \{ (\lambda_N, \lambda_T) \in X'_N \times X'_T : \lambda_N \in \Lambda_N, \lambda_T \in \Lambda_T(\lambda_N) \}, \]

est le cône de frottement au sens faible.

Lemme 1
On a \(b(-\lambda, u) \) est un bipotentiel.

Preuve.
Elle est immédiate. Pour plus de détails, le lecteur peut se referer à [28].

Une conséquence de ce lemme est que d’après la proposition 5, on obtient :

\[(u_N - \mathcal{F}|u_T|, u_T) \in N_{\Lambda_F}(\lambda_N, \lambda_T). \]

(2.19)

Grâce au bipotentiel de De Saxcé (voir [12]), il est possible de réexprimer le problème (2.10) comme suit :

\[
\begin{cases}
\text{Trouver } u \in V, \lambda_N \in X'_N \text{ et } \lambda_T \in X'_T \text{ satisfaisant} \\
\quad a(u, v) = l(v) + \langle \lambda_N, v_N \rangle_{X'_N, X_N} + \langle \lambda_T, v_T \rangle_{X'_T, X_T}, \quad \forall v \in V; \\
\quad -\left(\frac{u_N - \mathcal{F}|u_T|}{u_T} \right) \in N_{\Lambda_F}(\lambda_N, \lambda_T), \quad \forall (\mu_N, \mu_T) \in \Lambda_F.
\end{cases}
\]

(2.20)

Le problème (2.20) est aussi équivalent au problème suivant :
Trouver $u \in V$, $\lambda_N \in X'_N$ et $\lambda_T \in X'_T$ satisfaisant

$$a(u,v) = l(v) + \langle \lambda_N, v_N \rangle_{X'_N,X_N} + \langle \lambda_T, v_T \rangle_{X'_T,X_T}, \quad \forall v \in V,$$

(2.21)

$$\begin{align*}
(\lambda_N, \lambda_T) & \in \Lambda_F, \\
\langle \mu_N - \lambda_N, u_N - F|u_T| \rangle_{X'_N,X_N} + \langle \mu_T - \lambda_T, u_T \rangle_{X'_T,X_T} & \geq 0, \quad \forall (\mu_N, \mu_T) \in \Lambda_F.
\end{align*}$$

Pour plus de détail, voir [28] et [12].
Chapitre 3

Discrétisation par éléments finis

Ce chapitre concerne la discrétisation hybride par éléments finis du problème statique. On donnera un résultat d’existence et d’unicité pour un coefficient de frottement suffisamment petit et un \(r > 0 \) assez petit [23].

3.1 Discrétisation hybride par éléments finis

Soit \(V^h \subset V \) une famille de sous espaces de dimension fini, indexés par \(h \) provenant de la discrétisation régulière par éléments finis du domaine \(\Omega \) (\(h \) représente le rayon du plus large élément). On définit

\[
X^N_N = \{ v^h_N|_{\Gamma_C} : v^h \in V^h \},
\]

\[
X^T_T = \{ v^h_T|_{\Gamma_C} : v^h \in V^h \},
\]

\[
X^h = \{ v^h|_{\Gamma_C} : v^h \in V^h \} = X^N_N \times X^T_T.
\]

On note aussi \(X^N_N' \subset X^N_N \) et \(X^T_T' \subset X^T_T \) les discrétisations respectives de \(X^N_N \) et de \(X^T_T \), telle que la condition inf-sup discrète de Babuška-Brezzi soit vérifiée

\[
\inf_{\lambda^h_N \in X^N_N'} \sup_{v^h \in V^h} \frac{\langle \lambda^h_N, v^h \rangle}{\|v^h\|_V \|\lambda^h_N\|_{X^N_N'}} \geq \gamma > 0, \tag{3.1}
\]

\[
\inf_{\lambda^h_T \in X^T_T'} \sup_{v^h \in V^h} \frac{\langle \lambda^h_T, v^h \rangle}{\|v^h\|_V \|\lambda^h_T\|_{X^T_T'}} \geq \gamma > 0, \tag{3.2}
\]

avec \(\gamma \) indépendant de \(h \) (voir [3]).

Remarque. Pour une famille de triangulations régulières, il est possible de construire un opérateur d’extension de \(X^h \) dans \(V^h \) avec une norme indépendante de \(h \) (voir [8]). La conséquence est que ceci suffit pour avoir la condition inf-sup entre \(X^N_N' \) et \(X^N_N \) (respectivement entre \(X^T_T' \) et \(X^T_T \)). Des exemples d’éléments finis satis faisants la condition inf-sup peuvent être trouvés dans [5]. Le choix \(X^N_N' = X^N_N \) et \(X^T_T' = X^T_T \) (via l’identification entre \(L^2(\Gamma_C) \) et son espace dual) correspond à une discrétisation directe de (2.10) et assure toujours une condition inf-sup. Un
élément de Lagrange P_2 pour u et P_1 pour les multiplicateurs satisfait aussi la condition de Babuška-Brezzi. Par contre, cette condition n’est généralement pas satisfaite avec un élément de Lagrange P_1 pour u et P_0 pour les multiplicateurs.

Maintenant, avec un choix particulier de $\Lambda^h_N \subset X^h_N$ et $\Lambda^h_T(\mathcal{F} \lambda^h_N) \subset X^h_T$ les approximations convexes fermées respectives de Λ_N et de $\Lambda_T(\mathcal{F} \lambda_N)$ (les conditions $\Lambda^h_N \subset \Lambda_N$ et $\Lambda^h_T(\mathcal{F} \lambda^h_N) \subset \Lambda_T(\mathcal{F} \lambda_N)$ ne sont généralement pas satisfaites) la discrétisation par éléments finis du problème (2.11) s’écrit comme suit :

$$\left\{ \begin{array}{l}
\text{Trouver } u^h \in V^h, \lambda^h_N \in X^h_N \text{ et } \lambda^h_T \in X^h_T \text{ satisfaisant} \\
a(u^h, v^h) = l(v^h) + \int_{\Gamma_C} \lambda^h_N u_N^h d\Gamma + \int_{\Gamma_C} \lambda^h_T u_T^h d\Gamma, \forall v^h \in V^h, \\
\lambda^h_N \in \Lambda^h_N, \int_{\Gamma_C} (\mu^h_N - \lambda^h_N) u_N^h d\Gamma \geq 0, \forall \mu^h_N \in \Lambda^h_N, \\
\iff \lambda^h_N = P_{\Lambda^h_N} (\lambda^h_N - ru_N^h), \\
\lambda^h_T \in \Lambda^h_T(\mathcal{F} \lambda^h_N), \int_{\Gamma_C} (\mu^h_T - \lambda^h_T) u_T^h d\Gamma \geq 0, \forall \mu^h_T \in \Lambda^h_T(\mathcal{F} \lambda^h_N), \\
\iff \lambda^h_T = P_{\Lambda^h_T(\mathcal{F} \lambda_N)} (\lambda^h_T - ru_T^h),
\end{array} \right. \tag{3.3}$$

où les deux signes \iff indiquent que les inégalités peuvent être remplacées par des projections. Les applications $P_{\Lambda^h_N}$ et $P_{\Lambda^h_T(\mathcal{F} \lambda_N)}$ définissent des projections L^2 sur les convexes Λ^h_N et $\Lambda^h_T(\mathcal{F} \lambda_N)$ respectivement, et $r > 0$ est un paramètre d’augmentation arbitraire. Le lecteur peut se référer à [28] pour plus de détails sur les formulations en projections des conditions de contact unilatéral et de frottement.

3.1.1 Formulation matricielle

Introduisant maintenant les notations matricielles suivantes

$$u^h(x) = \sum_{i=1}^{k_1} u^i \varphi_i, \quad \lambda^h_N(x) = \sum_{i=1}^{k_2} \lambda^i_N \psi_i, \quad \lambda^h_T(x) = \sum_{i=1}^{k_3} \lambda^i_T \xi_i, \quad \tag{3.4}$$

$$U = (u_i)_{i=1 \ldots k_1}, \quad L_N = (\lambda^i_N)_{i=1 \ldots k_2}, \quad L_T = (\lambda^i_T)_{i=1 \ldots k_3}, \quad \tag{3.5}$$

$$(B_N)_{ij} = \int_{\Gamma_C} \psi_i \varphi_j d\Gamma, \quad (B_T)_{ij} = \int_{\Gamma_C} \xi_i \varphi_j d\Gamma, \quad (K)_{ij} = a(\varphi_i, \varphi_j), \quad \tag{3.6}$$

où φ_i, ψ_i et ξ_i sont les fonctions de bases de la méthode élément fini utilisée.
La condition de contact
\[\lambda_N^h \in \Lambda_N^h, \quad \langle \mu_N^h - \lambda_N^h, u_N \rangle_{X_N^0} \geq 0, \quad \forall \mu_N^h \in \Lambda_N^h, \]
peut être exprimée par la formulation matricielle suivante
\[(M_N - L_N)^T B_N U \geq 0, \quad \forall M_N \in \overline{\Lambda}_N^h, \]
(3.7)
ôù
\[\overline{\Lambda}_N^h = \left\{ L_N \in \mathbb{R}^{k_2} : \sum_{i=1}^{k_2} \lambda^i_N \psi_i \in \Lambda_N^h \right\} \]
est le convexe des forces normales \(L_N \) admissibles correspondantes. Cela est équivalent à \(B_N U \) dans le cône normal à \(\overline{\Lambda}_N^h \) en \(L_N \) ou encore
\[L_N = P_{\overline{\Lambda}_N^h}(L_N - rB_N U), \]
pour \(r > 0 \) et où \(P_{\overline{\Lambda}_N^h} \) est la projection dans \(\overline{\Lambda}_N^h \) suivant le produit scalaire euclidien. Avec un calcul similaire pour la force tangentielle, on peut exprimer la formulation matricielle du problème (3.3) comme suit
\[
\begin{cases}
\text{Trouver } U \in \mathbb{R}^{k_1}, \ L_N \in \mathbb{R}^{k_2} \text{ et } L_T \in \mathbb{R}^{k_3} \text{ satisfaisant} \\
KU = F + B_N^T L_N + B_T^T L_T \\
L_N = P_{\overline{\Lambda}_N^h}(L_N - rB_N U), \\
L_T = P_{\overline{\Lambda}_T^h(FL_N)}(L_T - rB_T U). \\
\end{cases}
\]
(3.8)
On peut aussi travailler avec les multiplicateurs modifiés, lesquels pour certaines discrétisations correspondent à des forces équivalentes sur le bord de contact : l’inégalité (3.7) peut être réécrite comme suit
\[(B_N^T M_N - B_N^T L_N)^T U \geq 0, \quad \forall M_N \in \Lambda_N^h. \]
Donc, en notant \(\tilde{L}_N = B_N^T L_N, \tilde{L}_T = B_T^T L_T, \tilde{\Lambda}_N^h = B_N^T \Lambda_N^h, \) et \(\tilde{\Lambda}_T^h(\tilde{L}_N) = B_T^T \tilde{\Lambda}_T^h(L_N), \) on obtient la formulation matricielle suivante
\[
\begin{cases}
\text{Trouver } U \in \mathbb{R}^{k_1}, \ \tilde{L}_N \in \mathbb{R}^{k_1} \text{et } \tilde{L}_T \in \mathbb{R}^{k_3} \text{ satisfaisant} \\
KU = F + \tilde{L}_N + \tilde{L}_T, \\
\tilde{L}_N = P_{\tilde{\Lambda}_N^h}(\tilde{L}_N - rU), \\
\tilde{L}_T = P_{\tilde{\Lambda}_T^h(F\tilde{L}_N)}(\tilde{L}_T - rU). \\
\end{cases}
\]
(3.9)
En fait, \(\tilde{L}_N \) et \(\tilde{L}_T \) sont respectivement dans l’image de \(B^T_N \) et de \(B^T_T \) et donc restent tous les deux dans un sous espace de dimension \(k_1 \).

Le choix entre (3.8) et (3.9) dépendra duquel des ensembles convexes \(\overline{\Lambda}_N^h, \overline{\Lambda}_T^h(L_N) \) ou \(\overline{\Lambda}_N^h, \overline{\Lambda}_T^h(F \tilde{L}_N) \) a l’expression la plus simple. L’avantage de ces deux formulations est que les conditions de contact et du frottement sont exprimées sans contraintes et avec des expressions lipschitziennes.

La discrétisation hybride du problème de Signorini est aussi présentée dans [5], [6], [7], [19], [21].

Remarque. Les problèmes (3.8) et (3.9) ne sont pas des régularisations du problème (3.3). Il y a une stricte équivalence entre le problème (3.3) et les deux formulations pour un \(r > 0 \) arbitraire. Dans [28] une analyse des formulations en projections est faite et la relation entre ces formulations et le Lagrangien augmenté pour le problème de Tresca est discutée.

Remarque. Dans [28], la formulation avec projections suivant un produit scalaire \(H^{1/2} \) a été étudiée. Il est démontré que pour le problème de Tresca il n’y a pas de dégradation de la constante de contraction du point fixe correspondant (voir après la définition de \(T^1_h \) et \(T^2_h \)). Avec les projections \(L^2 \), la constante de contraction tend vers 1 quand \(h \) tend vers 0. Si on veut utiliser les projections \(H^{1/2} \), on a juste à remplacer \(B_N \) et \(B_T \) dans la formulation (3.8) par la matrice provenant du produit scalaire \(H^{1/2} \). La formulation (3.9) ne change pas (excepté peut être les définitions de \(\tilde{\Lambda}_N^h \) et \(\tilde{\Lambda}_T^h(F \tilde{L}_N) \)).

3.1.2 Discrétisation de la formulation de De Saxcé

Il est possible de définir \(\Lambda^h_T \) comme

\[
\Lambda^h_T = \left\{ (\lambda^h_N, \lambda^h_T) \in X^h_N \times X^h_T : \lambda^h_N \in \Lambda^h_N, \lambda^h_T \in \Lambda^h_T(F \tilde{L}_N) \right\}.
\] (3.10)

Dans la suite, on utilisera cette définition, bien qu’il soit possible de le définir autrement.

La discrétisation du problème (2.20) s’écrit

\[
\begin{cases}
\text{Trouver} \ u^h \in V^h, \lambda^h_N \in X^h_N \text{ et } \lambda^h_T \in X^h_T \text{ satisfaisant} \\
\begin{align*}
a(u^h, v^h) & = l(v^h) + \int_{\Gamma_C} \lambda^h_N u^h_N d\Gamma + \int_{\Gamma_C} \lambda^h_T u^h_T d\Gamma, \quad \forall v^h \in V^h, \\
\left(u^h_N - \mathcal{F}|u^h_T| \right) & \in N_{\Lambda_T^h} (\lambda^h_N, \lambda^h_T) \Longleftrightarrow \left(\frac{\lambda^h_N}{\lambda^h_T} \right) = P_{\Lambda_T^h} \left(\frac{\lambda^h_N - r(u^h_N - \mathcal{F}|u^h_T|)}{\lambda^h_T - ru^h_T} \right).
\end{align*}
\end{cases}
\] (3.11)
La définition du cône normal par rapport au produit scalaire dans $L^2(\Gamma_C, \mathbb{R}^n)$:

$$N_{\Lambda_F^h} (\lambda^h) = N_{\Lambda_T^h} (\lambda^h_N, \lambda^h_T) = \left\{ w \in L^2(\Gamma_C, \mathbb{R}^n) : \int_{\Gamma_C} w(\mu^h - \lambda^h) d\Gamma \leq 0, \forall \mu^h \in \Lambda_F^h \right\}.$$

Avec Λ_F^h défini par (3.10), on peut vérifier que (3.3) et (3.11) sont équivalents. La formulation matricielle de ce dernier problème est

\[
\begin{aligned}
& \text{Trouver } U \in \mathbb{R}^{k_1}, L_N \in \mathbb{R}^{k_2} \text{ et } L_T \in \mathbb{R}^{k_3} \text{ satisfaisant}
\end{aligned}
\]

\[
\begin{aligned}
K U &= F + B^T_N L_N + B^T_T L_T \\
\begin{pmatrix} L_N \\ L_T \end{pmatrix} &= P^{\lambda_F^h}_{\pi_F^h} \begin{pmatrix} L_N - r B_N U + r \mathcal{F} S_T(U) \\ L_T - r B_T U \end{pmatrix}, \\
\end{aligned}
\]

où $S_T(U)$ est le vecteur défini par

$$\left(S_T(U) \right)_i = \int_{\Gamma_C} \psi_i |u_T| d\Gamma$$

et

$$\overline{\Lambda}_F^h = \{ (\lambda_N, \lambda_T)^h \in X_N^h \times X_T^h : \lambda_N^h \in \overline{\Lambda}_N^h, \lambda_T^h \in \overline{\Lambda}_T^h (\mathcal{F} L_N) \}.$$

3.1.3 Formulation en point fixe et existence et unicité de la solution pour le problème discret

Les problèmes (3.3) et (3.11) se réécrivent en formulation en point fixe. Définissons les deux applications T_1^h, T_2^h comme suit

\[
\begin{aligned}
T_1^h : \quad X^h & \longrightarrow X^h \\
\begin{pmatrix} \lambda^h_N \\ \lambda^h_T \end{pmatrix} & \longmapsto \begin{pmatrix} P_{\Lambda_N^h} (\lambda_N^h - r u_N^h) \\ P_{\Lambda_T^h (\mathcal{F} L_N)} (\lambda_T^h - r u_T^h) \end{pmatrix}, \\
T_2^h : \quad X^h & \longrightarrow X^h \\
\lambda^h & \longmapsto P_{\Lambda_T^h} \left(\lambda^h - r \left(\frac{u_N^h - \mathcal{F} u_T^h}{u_T^h} \right) \right),
\end{aligned}
\]

où u^h est solution de

$$a(u^h, v^h) = l(v^h) + \int_{\Gamma_C} \lambda^h_N u_N^h d\Gamma + \int_{\Gamma_C} \lambda^h_T u_T^h d\Gamma, \forall v^h \in V^h.$$

Les points fixes de ces applications sont solutions du problème de Coulomb discret et sont indépendants du paramètre d’augmentation $r > 0$.

Théorème 1. Sous les hypothèses (2.1), (2.2), (2.3), (3.1), (3.2) et pour $r > 0$ suffisamment petit, les applications T^h_1 et T^h_2 ont au moins un point fixe. Donc, les problèmes (3.3), (3.8), (3.9), (3.11) et (3.12) ont au moins une solution pour des valeurs arbitraires de F et $r > 0$.

Preuve. La preuve est faite pour T^h_1, celle pour T^h_2 est similaire.

Montrons tout d’abord que pour un $r > 0$ suffisamment petit et λ^h suffisamment grand

$$\|T^h_1(\lambda^h)\|_{L^2(\gamma_C)} \leq \|\lambda^h\|_{L^2(\gamma_C)},$$
où $\lambda^h = (\lambda^h_N, \lambda^h_T)$.

On a

$$\|T^h_1(\lambda^h)\|_{L^2(\gamma_C)}^2 = \|P_{\lambda_N}^h(\lambda^h_N - ru^h_N)\|_{L^2(\gamma_C)}^2 + \|P_{\lambda_T}^h(F_{\lambda_T} - ru^h_T)\|_{L^2(\gamma_C)}^2 \leq \|\lambda^h - ru^h\|_{L^2(\gamma_C)}^2 \leq \|\lambda^h\|_{L^2(\gamma_C)}^2 - 2r \int_{\gamma_C} \lambda^h u^h d\Gamma + r^2 \|u^h\|_{L^2(\gamma_C)}^2.$$

Mais

$$\int_{\gamma_C} \lambda^h u^h d\Gamma = a(u^h, u^h) - l(u^h) \geq \alpha \|u^h\|_{V}^2 - C_L \|u^h\|_{V},$$

et

$$\|u^h\|_{L^2(\gamma_C)} \leq \beta \|u^h\|_{V} \quad \Rightarrow \quad \|u^h\|_{L^2(\gamma_C)} \leq \frac{\beta}{\alpha} (C_L + 2 \|\lambda^h\|_{L^2(\gamma_C)}),$$

et des conditions inf-sup (3.1), (3.2)

$$\|\lambda^h\|_{L^2(\gamma_C)} \leq \frac{1}{\eta^h}(C_M \|u^h\|_{V} + C_L),$$
où η^h est tel que $\|\lambda^h\|_{X'} \geq \eta^h \|\lambda^h\|_{L^2(\gamma_C)}$,

où C_M et C_L sont définis par (2.1) et (2.2). Finalement,

$$\|T^h_1(\lambda^h)\|_{L^2(\gamma_C)}^2 \leq \|\lambda^h\|_{L^2(\gamma_C)}^2 - 2r \alpha \|u^h\|_{V}^2 + 2r C_L \|u^h\|_{V}^2 + r^2 \|u^h\|_{L^2(\gamma_C)}^2 \leq \|\lambda^h\|_{L^2(\gamma_C)}^2 - 2r \alpha \left(\frac{\eta^h}{C_M} \|\lambda^h\|_{L^2(\gamma_C)} - \frac{C_L}{C_M} \right)^2 \geq 2r \frac{C_L}{\alpha} (C_L + \beta \|\lambda^h\|_{L^2(\gamma_C)}) + r^2 \frac{\beta^2}{\alpha^2} (C_L + \beta \|\lambda^h\|_{L^2(\gamma_C)})^2.$$

Alors, il existe C^h tel que, pour $\|\lambda^h\|_{L^2(\gamma_C)} > C^h$, le terme en facteur de r est toujours négatif et il existe r_0 tel que

$$\|T^h_1(\lambda^h)\|_{L^2(\gamma_C)} < \|\lambda^h\|_{L^2(\gamma_C)},$$
pour $\|\lambda^h\|_{L^2(\gamma_C)} > C^h$ et $0 < r < 2r_0$.

Maintenant, en utilisant l’inégalité triangulaire, il existe k_1 et k_2 tels que

$$\|T^h_1(\lambda^h)\|_{L^2(\gamma_C)} \leq \|\lambda^h\|_{L^2(\gamma_C)} + r \|u^h\|_{L^2(\gamma_C)} \leq k_1 \|\lambda^h\|_{L^2(\gamma_C)} + k_2,$$
et donc
\[\| T^h_1(\lambda^h) \|_{L^2(\Gamma_C)} \leq C^h k_1 + k_2, \quad \text{où} \quad \| \lambda^h \|_{L^2(\Gamma_C)} \leq C^h. \]

Cela veut dire que \(T^h_1(\lambda^h) \) est une application continue de la boule de rayon \(C^h k_1 + k_2 \) dans elle même et donc on peut conclure avec le théorème du point fixe de Brower.

Théorème 2 Sous les hypothèses (2.1), (2.2), (2.3), (3.1), (3.2) et pour un \(r > 0 \) suffisamment petit et \(\| F \|_\infty \) suffisamment petit aussi, les applications \(T^h_1 \) et \(T^h_2 \) sont des contractions strictes. Alors, les problèmes (3.3), (3.8), (3.9), (3.11) et (3.12) ont une unique solution pour \(\| F \|_\infty \) suffisamment petit et un \(r > 0 \) arbitraire.

Preuve. La preuve et faite pour \(T^h_2 \), celle pour \(T^h_1 \) est similaire.

Notons \(\delta T^h_2(\lambda^h) = T^h_2(\lambda^h) - T^h_2(\lambda^h) \), \(\delta \lambda^h = \lambda^h - \lambda^h \) et \(\delta u^h = u^h - u^h \). Alors
\[
\left\| \delta T^h_2(\lambda^h) \right\|_{L^2(\Gamma_C)}^2 = \left\| \frac{\partial}{\partial \lambda} \left(\lambda^h - r \left(u^h_{1N} - F \mid u^h_{1T} \right) \right) - \frac{\partial}{\partial \lambda} \left(\lambda^h - r \left(u^h_{2N} - F \mid u^h_{2T} \right) \right) \right\|_{L^2(\Gamma_C)}^2
\leq \left\| \delta \lambda^h - r \left(\frac{\partial u^h}{\partial \lambda} - \frac{\partial F}{\partial u^h} \right) \right\|_{L^2(\Gamma_C)}^2
\leq \left\| \delta \lambda^h - r \delta u^h \right\|_{L^2(\Gamma_C)}^2 + \left\| \delta v^h \right\|_{L^2(\Gamma_C)}^2.
\]

Mai
\[
\left\| \delta \lambda^h - r \delta u^h \right\|_{L^2(\Gamma_C)}^2 \leq \left\| \delta \lambda^h \right\|_{L^2(\Gamma_C)}^2 - 2 r \int_{\Gamma_C} \delta \lambda^h \cdot \delta u^h d\Gamma + r^2 \left\| \delta u^h \right\|_{L^2(\Gamma_C)}^2,
\]
et
\[
\int_{\Gamma_C} \delta \lambda^h \cdot \delta u^h d\Gamma \geq \alpha \| \delta u^h \|_{H^1}^2,
\]
d’autre part
\[
\| \delta u^h \|_{L^2(\Gamma_C)} \leq \beta \| \delta u^h \|_{H^1} \quad \text{et} \quad \| \delta v^h \|_{L^2(\Gamma_C)} \leq \left\| \frac{\partial F}{\partial u^h} \right\|_{L^2(\Gamma_C)} \| \delta u^h \|_{L^2(\Gamma_C)}.
\]

Alos, avec \(\xi = \frac{\| \delta u^h \|_{H^1}}{\| \delta \lambda^h \|_{L^2(\Gamma_C)}} \geq \frac{\eta^h \gamma}{C_M} \), et on choisissant \(r \) suffisamment petit de sorte que \((1 - 2r \alpha \xi^2 + r^2 \beta^2 \xi^2) < 1 \), on aura
\[
\left\| \delta T^h_2(\lambda^h) \right\|_{L^2(\Gamma_C)}^2 \leq \left\| \delta \lambda^h \right\|_{L^2(\Gamma_C)}^2 \left((1 - 2r \alpha \xi^2 + r^2 \beta^2 \xi^2)^{1/2} + r \left\| \frac{\partial F}{\partial \xi} \right\| \beta \xi \right)^2
\leq \left\| \delta \lambda^h \right\|_{L^2(\Gamma_C)}^2 \left(1 - 2r \alpha \xi^2 + r^2 \beta^2 \xi^2 + 2r \left\| \frac{\partial F}{\partial \xi} \right\| \beta \xi + r \left\| \frac{\partial F}{\partial \xi} \right\|^2 \beta^2 \xi^2 \right).
\]

Alors, la constante de contraction est plus petite que un pour un \(r \) suffisamment petit quand
\[
\left\| \frac{\partial F}{\partial \xi} \right\| \leq \frac{\alpha \eta^h \gamma}{C_M \beta},
\]
et donc T^h_2 est une contraction pour $r < 2r_0$ où

$$r_0 = \frac{\alpha \gamma \eta^h - C_M \beta \|F\|_{\infty}}{(1 + \|F\|_{\infty})^2 \beta^2 \eta^h \gamma}.$$

Ceci assure l’existence et l’unicité de la solution.

Remarque. La constante η^h, dans les preuves des deux théorèmes précédents, représente la constante d’équivalence entre la norme $L^2(\Gamma_c)$ et la norme de X'. Pour des discrétisations régulières, cette constante est d’ordre \sqrt{h} (voir [11]). Ceci veut dire que la limite de $\|F\|_{\infty}$ qui assure l’unicité tend vers 0 quand h tend vers 0. Ce qui est cohérent avec le fait qu’aucun résultat d’unicité n’a été prouvé pour le problème continu, même pour un coefficient de frottement suffisamment petit. Par conséquent, il n’est pas possible de donner une estimation d’erreur dans le cadre général.
Chapitre 4
Exemples de discrétisations

Pour commencer les tests numériques et les comparaisons entre les différents approches, une description exhaustive de la discrétisation sera donnée dans deux cas :
- discrétisation “presque conforme en déplacement” où le même élément fini de Lagrange est utilisé pour le déplacement et les forces sur le bord de contact.
- discrétisation “presque conforme des forces de contact et de frottement” avec des éléments finis différents pour le déplacement et les forces sur le bord de contact.

Notons $a_i, i = 1, ..., N$, l’ensemble de tous les nœuds de l’élément fini et $I_C = \{ i : a_i \in \Gamma_C \}$ les indices des nœuds sur Γ_C. Nous continuerons d’utiliser les notations définies en (3.4), (3.5) et (3.6). Pour un élément Lagrange, il est possible de définir $N_i \in \mathbb{R}^{k_1}$ pour $i \in I_C$ tel que le déplacement normal des nœuds sur le bord de contact s’exprime par

$$u^h_N(a_i) = U.N_i.$$

D’une façon similaire, on considère à chaque nœud a_i une base orthonormale $t^n_{\alpha_i}, \alpha = 1, ..., d - 1$ pour le plan tangent à Γ_C. En notant t_i les matrices $d \times (d - 1)$ (remplies par les $t^n_{\alpha_i}$ en colonne), il est possible de définir T_i les matrices $k_1 \times (d - 1)$ pour tout $i \in I_C$ telles que

$$u^h_T(a_i) = u^i_T = t_i T_i^T U.$$

4.1 Discrétisation presque conforme en déplacement

Ce cas correspond approximativement à une discrétisation directe du problème (2.4) (i.e. une procédure de Galerkin standard appliquée à ce problème), on a

$$\forall F \in X', \ \exists \tilde{F} \in X^h \text{ tel que } \langle F, v^h \rangle = \int_{\Gamma} \tilde{F}.v^h, \ \forall v^h \in X^h.$$

Une discrétisation directe est équivalente au choix $X^h_N = X'^h_N$ et $X^h_T = X'^h_T$. Une discrétisation conforme en u^h_N est obtenue quand $K^h_N \subset K_N$. Un choix naturel pour K^h_N serait

$$\{ u^h_N \in X^h_N : u^h_N(x) \leq 0 \}.$$
L’inconvénient de ce choix est que pour \(K \geq 2 \), la condition \(u_N^i \leq 0 \) n’est pas facile à exprimer ni sur les coefficients des polynômes ni sur les valeurs nодales (voir [21]). C’est pourquoi, souvent une discrétisation non-conforme est choisie, où la condition de non-pénétration est donnée comme suit :

\[
K_N^h = \{ u_N^i \in X_N^h : u_N^i(a_i) \leq 0, \forall i \in I_C \}.
\]

Dans la formulation matricielle, ceci correspond à la condition \(U.N_i \leq 0 \) pour \(i \in I_C \). L’ensemble correspondant des forces normales admissibles est défini par

\[
\Lambda_N^h = \left\{ \lambda_N^h \in X_N^h : \int_{r_C} \lambda_N^h(x)u_N^h(x)d\Gamma \leq 0, \forall u_N^h \in K_N^h \right\}.
\]

En notant \(\psi \) les fonctions de bases de l’espace élément fini \(X_N^h \) où

\[
\psi_i \in X_N^h \text{ et } \psi_i(a_j) = \delta_{ij}, \forall i, j \in I_C,
\]

on obtient

\[
\Lambda_N^h = \left\{ \lambda_N^h \in X_N^h : \int_{r_C} \lambda_N^h(x)\psi_i d\Gamma \forall i \in I_C \right\}.
\]

Cela veut dire, en utilisant la formulation matricielle (3.9), que \(\Lambda_N^h \) est défini par

\[
\Lambda_N^h = \left\{ \tilde{\lambda}_N^i = \sum_{i \in I_C} \tilde{\lambda}_N^i N_i : \tilde{\lambda}_N^i \leq 0, \forall i \in I_C \right\},
\]

avec la relation \(\tilde{\lambda}_N^i = \int_{r_C} \lambda_N^h(x)\psi_i d\Gamma \).

Remarque. Puisque \(\Lambda_N^h \) est très simple dans ce cas, nous utiliserons la formulation matricielle (3.9) au lieu de la formulation (3.8).

Concernant la force tangentielle, une façon naturelle est de considérer l’ensemble

\[
\left\{ \lambda_T^h \in X_T^h : -\int_{r_C} \lambda_T^h(x)w_T(x)d\Gamma + \int_{r_C} \mathcal{F}\lambda_T^h(x)|w_T(x)|d\Gamma \leq 0, \forall w_T \in X_T^h \right\},
\]

mais, dû à la non-linéarité du terme \(|w_T(x)| \), cet ensemble n’est pas facile à exprimer. La façon la plus classique est de faire une interpolation de ce terme dans la base de Lagrange, ce qui revient à faire l’approximation suivante

\[
|w_T(x)| \approx \sum_{i \in I_C} |w_T(a_i)|\varphi_i(x)|_{r_C}.
\]

En notant \(\xi^\alpha_i \) les fonctions de bases de l’espace élément fini \(X_T^h \) où

\[
\xi^\alpha_i(a_j) \in X_T^h \text{ et } \xi^\alpha_i(a_j) = t^\alpha_i \delta_{ij}, \forall i, j \in I_C, \forall \alpha = 1, \ldots, d - 1,
\]
alors, \(\Lambda^h_T \) sera défini par
\[
\Lambda^h_T(\mathcal{F}\lambda^h_N) = \left\{ \lambda^h_T \in X^h_T \colon - \int_{\Gamma_C} \lambda^h_T(x).w_T(x)d\Gamma + \sum_{i \in I_C} \int_{\Gamma_C} \mathcal{F} \lambda^h_N(x)|w_T(a_i)|\psi_i d\Gamma \leq 0, \ \forall w^h_T \in X^h_T \right\},
\]
ce qui correspond à
\[
\Lambda^h_T(\mathcal{F}\lambda^h_N) = \left\{ \lambda^h_T \in X^h_T \colon \left(\int_{\Gamma_C} \lambda^h_T \xi^a_i d\Gamma \right)_a \leq -\mathcal{F}\tilde{\lambda}^i, \ \forall i \in I_C \right\},
\]
ce qui est compatible avec le fait que \(\tilde{\lambda}^i_N = \int_{\Gamma_C} \lambda^h_T \psi_i d\Gamma \leq 0 \).

Avec la formulation matricielle (3.8), \(\tilde{\Lambda}^h(\mathcal{F}\tilde{L}_N) \) est définie par
\[
\tilde{\Lambda}^h(\mathcal{F}\tilde{L}_N) = \left\{ \tilde{L}_T = \sum_{i \in I_C} T_i \tilde{\lambda}^i_T : |\tilde{\lambda}^i_T| \leq -\mathcal{F}\tilde{\lambda}^i, \ \forall i \in I_C \right\},
\]
où \((\tilde{\lambda}^i_T)_a = \int_{\Gamma_C} \lambda^h_T \xi^a_i d\Gamma \).

Le problème discret se réécrit avec une condition de contact et de frottement nodale comme suit :

\[
\begin{cases}
\text{Trouver } U \in \mathbb{R}^{k_1}, \ L_N = \sum_{i \in I_C} \tilde{\lambda}^i_N N_i \text{ et } \tilde{L}_T = \sum_{i \in I_C} T_i \tilde{\lambda}^i_T \text{ satisfaisant } \\
KU = F + \tilde{L}_N + \tilde{L}_T, \\
-\tilde{\lambda}^i_N \in J_N(U.N_i), \ \forall i \in I_C \iff \tilde{\lambda}^i_N = -(rU.N_i - \tilde{\lambda}^i_N)_+, \\
-\tilde{\lambda}^i_T \in -\mathcal{F}\tilde{\lambda}^i_N \text{ Dir}_T(u^i_T), \ \forall i \in I_C \iff \tilde{\lambda}^i_T = P_{B(0,-\mathcal{F}\tilde{\lambda}^i_N)}(\tilde{\lambda}^i_T - ru^i_T),
\end{cases}
\]
où \(P_{B(0,\delta)} \) est la projection sur la boule de centre 0 et de rayon \(\delta \) dans \(\mathbb{R}^{d-1} \), \((x)_+ \) est la partie positive de \(x \in \mathbb{R} \), et \(r > 0 \) est un paramètre d’augmentation arbitraire.

4.2 Discrétisation hybride presque conforme en force

Nous supposons que la force sur le bord de contact est discrétisée avec un élément fini de Lagrange scalaire (en particulier, cela implique que \(k_3 = (d-1)k_2 \)).

La formulation matricielle (3.8) sera facile à exploiter numériquement si l’ensemble \(\Lambda^h_N \) est simple à exprimer. L’approximation de \(\Lambda^h_N \) la plus simple est
\[
\Lambda^h_N = \left\{ \lambda^h_N = \sum_{i=1}^{k_2} \lambda^i_N \psi_i(x) : \lambda^i_N \leq 0 \right\}.
\]
Pour la même raison comme dans la section précédente, celle-ci n’est pas une approximation conforme de \(\Lambda^h_N \) (i.e. \(\Lambda^h_N \subset \Lambda^N \)) excepté pour des éléments \(P_1 \). Dans la formulation matricielle (3.8) cela correspond à

\[
\overline{\Lambda}^h_N = \{ L_N \in \mathbb{R}^{k_2} : (L_N)_i \leq 0, i = 1...k_2 \}.
\]

De la même façon, \(\overline{\Lambda}^h_T(FL_N) \) peut être défini par

\[
\overline{\Lambda}^h_T(FL_N) = \{ L_T \in \mathbb{R}^{(d-1)k_2} : |L^i_T| \leq -F(L_N)_i, 1 \leq i \leq k_2 \},
\]

où \(L^i_T \) est le vecteur \(((L_T)_i(1), ..., (L_T)_i(d-1))\). La formulation matricielle est la suivante :

\[
\begin{cases}
\text{Trouver } U \in \mathbb{R}^{k_1}, L_N \in \mathbb{R}^{k_2} \text{ et } L_T \in \mathbb{R}^{(d-1)k_2} \text{ satisfaissant} \\
KU = F + B^T_N L_N + B^T_T L_T, \\
(L_N)_i = -(r(B_N U)_i - (L_N)_i)_+, \forall i = 1...k_2, \\
L^i_T = P_{B(0,-F(L_N)_i)} (L_T - r(B_T U)^i), \forall i = 1...k_2,
\end{cases}
\]

(4.2)

où \((B_T U)^i\) est le vecteur \(((B_T U)(1)_i, ..., (B_T U)(d-1)_i)\).

Un exemple classique de ce genre de discrétisations hybrides est d’utiliser un élément fini \(P_K \) (polynomial d’ordre \(K \) par morceaux) pour le déplacement et un élément fini \(P_{K-1} \) pour les multiplicateurs. La condition inf-sup est satisfaite pour \(K > 1 \). Pour \(K = 1 \) la condition inf-sup n’est généralement pas vérifiée pour \(d = 2 \) et jamais pour \(d = 3 \). Il est toutefois possible de stabiliser la méthode élément fini par l’adjonction de fonctions bulles comme dans [5] où d’utiliser des maillages plus grossiers pour approcher les multiplicateurs comme dans [18].

Remarque. La formulation (4.1) peut être écrite sous la formulation similaire (4.2) en définissant les matrices \(B_N = \begin{pmatrix} N_1^T \\ N_2^T \\ \vdots \\ N_{k_2}^T \end{pmatrix} \) et \(B_T = \begin{pmatrix} T_1^1 \\ T_2^1 \\ \vdots \\ T_{k_2}^1 \end{pmatrix} \).
Chapitre 5

Etude numérique

Dans ce chapitre, deux cas tests sont considérés : un disque pour le cas bidimensionnel et un tore pour le cas tridimensionel. Les corps sont soumis à leur propre poids. Ils sont en contact frottant avec une fondation rigide plane. L’efficacité de différentes méthodes numériques pour la résolution du problème discret est comparée.

Cas(a) : un disque, en élasticité linéaire isotrope, d’un rayon de 20 cm avec des coefficients de Lamé $\lambda = 115 \, GP$; $\mu = 77 \, GP$ (voir Fig. 5.1). Le maillage est non structuré ayant de 16 triangles (82 d.d.l pour u et 72 d.d.l pour λ) à 2760 triangles (11306 d.d.l pour u et 266 d.d.l pour λ). C’est un élément fini P_2 isoparamétrique.

Cas(b) : un tore, en élasticité linéaire isotrope, de rayon maximal 20 cm et avec les mêmes caractéristiques (voir Fig. 5.2). Le maillage est structuré ayant de 8 hexahèdres (288 d.d.l pour u et 72 d.d.l pour λ) à 512 hexahèdres (13824 d.d.l pour u et 987 d.d.l pour λ). C’est un élément fini Q_2 isoparamétrique.

Pour tous les tests numériques, le critère d’arrêt des méthodes est atteint dès que le résidu relatif est plus petit que 10^{-9}.

Fig. 5.1 – Cas(a), le critère de Von Mises sur le disque déformé discrétisé avec un élément P_2 isoparamétrique (avec Getfem [47]).
5.1 Méthodes de point fixe

Deux méthodes de point fixe sont étudiées ici : la première est un point fixe sur les forces de contact et de frottement et la deuxième est un point fixe sur le seuil de frottement. Quelques aspects théoriques concernant ces méthodes peuvent être trouvés dans [28].

5.1.1 Point fixe sur les forces de contact (PFF)

L’approche la plus naturelle est de prendre le point fixe T^h_1 ou la variante de De Saxcé T^h_2 définie dans la Section 3.1.3. Dans le cas de la discrétisation définie dans la Section 4.2, l’algorithme peut être exprimé, pour le point fixe T^h_1, comme suit :

\begin{align}
0) & \quad L^0_N, L^0_T \text{ donnés}, \\
1) & \quad \text{calculer } U^k \text{ solution de } \\
& \quad KU^k = F + B^T_N L^k_N + B^T_T L^k_T, \\
2) & \quad \text{calculer } L^{k+1}_N \text{ et } L^{k+1}_T \text{ tels que} \\
& \quad (L^{k+1}_N)_i = -(r(B_N U^k)_i - (L^k_N)_i)_+, \quad \forall \ i = 1, \ldots, k_2, \\
& \quad L^{k+1}_T = P_{B[0,-r(L^k_T)_i]}(L^{k,k}_T - r(B_T U)^{i,k}), \quad \forall \ i = 1, \ldots, k_2. \\
3) & \quad \text{Revenir à (1) jusqu’à ce que le critère d’arrêt soit vérifié.}
\end{align}
5.1. MÉTHODES DE POINT FIXE

Remarque. Pour un problème de Tresca (*i.e.* un problème de Coulomb avec un seuil fixe $-\mathcal{F}(\lambda^k)_i = s, \forall i = 1...k_2$), l'algorithme (5.1) correspond à l'algorithme d’Uzawa.

Remarque. La difficulté pour les deux points fixes T^1_h et T^2_h est de choisir la valeur du paramètre d’augmentation. La preuve du Théorème 2 montre clairement que la propriété de contraction dépend de r. Suivant cette preuve une estimation de la valeur optimale du paramètre r est donnée par

$$ r_{opt} = \frac{1/\lambda_{\text{max}} - \|\mathcal{F}\|_{\infty}/\lambda_{\text{min}}}{(1 + \|\mathcal{F}\|_{\infty})^2}, \quad (5.2) $$

où λ_{max}, λ_{min} sont les valeurs propres maximale et minimale de $BK^{-1}B^T$ et $B = \begin{pmatrix} B_N \\ B_T \end{pmatrix}$.

Les Fig. 5.3 et 5.4 montrent l’évolution du nombre d’itérations en fonction du coefficient de frottement \mathcal{F} et du paramètre d’augmentation r. Le système linéaire est résolu à chaque itération avec une méthode de gradient conjugué préconditionné.

![Graphique 5.3](image.png)

Fig. 5.3 – (PFF) Influence du paramètre d’augmentation r pour le disque avec différentes valeurs du coefficient de frottement.
Etant donné, dans le cas bidimensionnel, le paramètre optimal r ne dépend pas de F, cependant le nombre d’itérations croit avec F. Cela ne correspond pas à l’estimation (5.2), qui donne une très petite valeur optimale du paramètre r pour $F > 0$.

Cette situation est un peu différente dans le cas tridimensionnel. Le coefficient de frottement a une très grande influence sur la valeur optimale du paramètre d’augmentation.

Les tests numériques correspondants aux Fig. 5.5 et 5.6 sont réalisés avec un coefficient de frottement fixe ($F = 0.2$) et des pas d’espaces différents pour le disque et le tore.
5.1. MÉTHODES DE POINT FIXE

FIG. 5.5 - (PFF) Influence du paramètre d’augmentation \(r \) pour le disque avec différents pas d’espaces.

FIG. 5.6 - (PFF) Influence du paramètre d’augmentation \(r \) pour le tore avec différents pas d’espaces.

Comme on peut voir, la valeur optimal du paramètre d’augmentation \(r \) dépend fortement du pas d’espace \(h \).
Les résultats expérimentaux des deux cas 2D et 3D montrent une propriété remarquable. Le nombre d’itérations augmente soudainement pour un paramètre d’augmentation r un peu plus grand que la valeur optimale numérique mais nous n’avons pas d’interprétation de ce phénomène.

5.1.2 Point fixe sur le seuil de frottement (PFS)

Ce point fixe est une approche très connue pour résoudre le problème de Coulomb (voir [13]). Il consiste en une séquence de problème de Tresca. Chaque itération demande la résolution d’un problème non-linéaire. La formulation est :

\[
\begin{align*}
(0) & \quad s^0 \geq 0 \text{ arbitraire}, \\
(1) & \quad \text{Trouver } U^k, L^k, \text{ et } L^k T, \text{ solution du problème (Tresca) non-linéaire} \\
& \quad KU^k = F + B_N^TP_N^k + B_T^TL_T^k, \\
& \quad -(L^k_N)_i \in J_N((B_NU^k)_i), \forall \ i = 1...k_2, \\
& \quad -L^i_T \in s^k \text{Dir}_T((B_TU)^i), \forall \ i = 1...k_2, \\
(2) & \quad s^{k+1} = -F(L^k_N)_i. \text{ Revenir à (1) jusqu’à ce que le critère d’arrêt soit vérifié.}
\end{align*}
\]

(5.3)

Sur les Figures 5.7 et 5.8 les résultats expérimentaux pour les cas (a) et (b) sont présentés avec différentes valeurs de pas d’espace et du coefficient de frottement.

Fig. 5.7 – (PFS) Influence du coefficient de frottement pour le disque avec différentes valeurs de pas d’espace.
Fig. 5.8 – (PFS) Influence du coefficient de frottement pour le tore avec différentes valeurs de pas d’espace.

Pour des valeurs raisonnables du coefficient de frottement, c’est à dire \(F \) entre 0 et 1.5, le nombre d’itérations augmente avec \(F \).

Pour des maillages grossiers et pour de grandes valeurs de \(F \), l’algorithme converge en un petit nombre d’itérations. Cela peut être relié au petit nombre de nœuds en contact et le fait qu’ils sont collés \((u = 0)\). Ce phénomène ne persiste pas pour des maillages fins.

5.2 Méthode itérative sur-relaxée (ISR)

Dans le contexte des problèmes de frottement, cette méthode a été proposée par plusieurs auteurs comme Lebon dans [32] et Raous dans [42] dans le cas bidimensionnel. Ici, la méthode est présentée pour les deux cas 2D et 3D.

La Formulation (4.1) de la section 4.1, peut être réécrite d’une manière équivalente comme suit

\[
\begin{cases}
KU = F + \tilde{L}_N + \tilde{L}_T, \\
-\tilde{L}_N.N_i \in J_N(U.N_i), \forall \ i = 1...k_2, \\
-T_i^T \tilde{L}_T \in -\mathcal{F} \tilde{L}_N.N_i Dir_T(UT_i^T), \forall \ i = 1...k_2.
\end{cases}
\]

La résolution de (5.4) avec la méthode ISR est la suivante :

- Pour les nœuds qui ne sont pas sur \(\Gamma_c \) il y a deux stratégies :
- stratégie nodale (i.e., appliquer une itérations ISR sur chaque d.d.l.)

\[U^{k+1}_i = (1 - \omega)U^k_i + \frac{\omega}{K_{ii}} \left(F_i - \sum_{j<i}K_{ij}U^{k+1}_j - \sum_{j>i}K_{ij}U^k_j \right), \]

- stratégie globale (i.e., une iteration ISR sur la matrice des d.d.l intérieurs)

\[(B^TU)^{k+1} = (B^TU)^k + \omega(B^TKB)^{-1}(B^TF - B^T(KU^k)), \]

où \(w \) est le paramètre de relaxation et \(B \) la matrice qui sélectionne les d.d.l intérieurs,

- pour les noeuds qui sont sur \(\Gamma_c \) :

- les composantes normales sont mises à jour avec

\[U^{k+1}.N_i = (1 - \omega)U^k.N_i + \frac{\omega}{N^T_iKN_i} \left[F.N_i - (K(U^k - (U^k.N_i)N_i)).N_i \right] , \]

- les composantes tangentielle sont mises à jour avec

\[U^{k+1}T^T_i = (1 - \omega)U^kT^T_i + \omega X, \]

où \(X \) est tel que

\[Y \in \tilde{A}X + \beta Dir_T(X), \]

et

\[
\begin{cases}
Y = (F - K(U^k - T_iX))T^T_i , \\
\tilde{A} = T_iKT^T_i , \\
\beta = -\mathcal{F}L_N.N_i .
\end{cases}
\]

Donc, si \(\frac{Y}{\beta} \leq 1 \) alors \(X = 0 \) est une solution.

Sinon \(Y = \tilde{A}X + \beta \frac{X}{\|X\|} \). Notons \(X = \alpha v \) avec \(\|v\| = 1 \), on obtient

\[Y = (\alpha\tilde{A} + \beta Id)v. \]

D'où

\[\|v\| = \|(\alpha\tilde{A} + \beta Id)^{-1}Y\| = 1. \hspace{1cm} (5.5) \]

Cela veut dire que pour les composantes tangentielle, on cherche \(\alpha \) solution de \((5.5) \). La valeur de \(X \) sera déduite de \(\alpha \) avec \(v = (\alpha\tilde{A} + \beta Id)^{-1}Y \).

Comme on observe sur la Fig. 5.9, le nombre d’itérations est très grand. Cependant, chaque itération est très simple à calculer.

Le nombre d’itérations croît strictement pour des maillages fins, mais c’est un comportement naturel de la méthode ISR, même pour les problèmes linéaires.
5.3. MéTHODE DE NEWTON SEMI-RÉGULIÈRE (NSR)

De la Formulation (4.2), résoudre le problème de Coulomb est équivalent à trouver le zéro de la fonction $\mathcal{H}(Z)$ définie par

$$\mathcal{H}(Z) = \begin{pmatrix} KU - F - B_N^T L_N - B_T^T L_T \\ \mathcal{H}_N \\ \mathcal{H}_T \end{pmatrix}, \quad (5.6)$$

où

$$Z = (U, L_N, L_T)^T,$$

$$\mathcal{H}_N^i = \frac{1}{r} \left(-L_N^i - (r(B_N U)_i - L_N^i)_+ \right), \forall \ i = 1, \ldots, k_2,$$

et

$$\mathcal{H}_T^i = \frac{1}{r} \left(-L_T^i + P_{\mathcal{B}(0,-F(L_N)^i)}(L_T^i - r(B_T U)^i) \right), \forall \ i = 1, \ldots, k_2.$$

La fonction $\mathcal{H}(Z)$ est lipschitzienne et C^1 par morceaux.

L’algorithme de la méthode de Newton semi-régulière

- **Étape 1** : Z^0 est donné.
- **Étape 2** : trouver la direction d telle que

$$\mathcal{H}(Z^k) + \mathcal{H}'(Z^k;d) = 0, \quad (5.7)$$

où $\mathcal{H}'(Z^k;d)$ est la dérivée directionnelle de \mathcal{H} en Z^k dans la direction d.
- **Étape 3** : faire une recherche linéaire dans la direction d pour trouver la valeur convenante de α avec $Z^{k+1} = Z^k + \alpha d$.
- **Étape 4** : si $||\mathcal{H}(Z^{k+1})||$ est suffisamment petit s’arrêter. Sinon, remplacer k par $k + 1$ et revenir à l’étape 2.

La recherche linéaire qu’on a testé est très simple et se résume comme suit :

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
<td>$\alpha = 1$</td>
</tr>
<tr>
<td>(1)</td>
<td>$Z^{k+1} = Z^k + \alpha d$</td>
</tr>
<tr>
<td>si</td>
<td>$</td>
</tr>
<tr>
<td>(2)</td>
<td>$\alpha \leftarrow \alpha/2$, revenir à (1)</td>
</tr>
</tbody>
</table>
5.3. MÉTHODE DE NEWTON SEMI-RÉGULIÈRE (NSR)

Dans l'équation (5.7), $H'(Z^k; d)$ est remplacée par $H'(Z^k)d$, le gradient de $H(Z^k)$ si Z^k est un point de différentiabilité de H.

Fig. 5.10 (NSR) Influence du coefficient de frottement pour le disque avec différents pas d'espace.

Fig. 5.11 (NSR) Influence du coefficient de frottement pour le tore avec différents pas d’espace.
Les points de non-différentiabilité de \mathcal{H} correspondent à des situations très particulières. La solution de (4.2) est l'une d'entre elles si et seulement si

$$\exists \ i = 1...k_2 \text{ tel que ou bien } (L^i_N) = (B^i_N U) = 0 \text{ ou bien } (B^i_T U)^i = 0 \text{ et } |L^i_T| = -\mathcal{F}(L^i_N).$$

Puisque cette situation est très rare, tous les points sont considérés comme points de différentiabilité et l'équation (5.7) est remplacée par

$$\mathcal{H}(Z^k) + \mathcal{H}'(Z^k) d = 0.$$

Le nombre d'itérations ne croît pas en fonction du frottement dans le cas bidimensionnel et pour le cas tridimensionnel, il y a quelques fluctuations mais l'influence n'est pas si importante.

La même expérience est réalisée pour des valeurs différentes du pas d'espace h pour le cas (a) et (b). L'augmentation de h influe sur le nombre d'itérations (voir les Fig.5.12 et 5.13). On peut voir sur ces figures que l'influence du paramètre d'augmentation est moins importante que le cas des points fixes de la section 5.1.1. Le choix de ce paramètre d'augmentation n'est pas important pour cette méthode.

Fig. 5.12 – (NSR) Influence du paramètre d’augmentation r pour le disque et avec différents pas d’espace.
5.4 Comparaison entre les différentes formulations

5.4.1 Symétrisation partielle pour la méthode NSR

L’expression de \(\mathcal{H}(Z) \) donnée par (5.6) peut être modifiée pour avoir une variante plus symétrique. Cela est établi en utilisant la définition suivante :

\[
\bar{\mathcal{H}}(Z) = \begin{pmatrix}
 KU - F - B_N^T L_N - B_T^T L_T \\
 \mathcal{H}_N \\
 \mathcal{H}_T
\end{pmatrix},
\]

où

\[
Z = (U, L_N, L_T)^T,
\]

\[
\bar{T}_N^i = -r(B_N U)_i - (L_N)_i^+, \quad \forall \ i = 1...k_2,
\]

\[
\bar{L}_T^i = P_{E(0,-r(L_N)_i)}(L_T^i - r(B_T U)^i), \quad \forall \ i = 1...k_2,
\]

\[
\mathcal{H}_N^i = \frac{1}{r} \left(-L_N^i + \bar{T}_N^i \right), \quad \forall \ i = 1...k_2
\]

et

\[
\mathcal{H}_T^i = \frac{1}{r} \left(-L_T^i + \bar{L}_T^i \right), \quad \forall \ i = 1...k_2.
\]
Pour le problème de Tresca, $\mathcal{H}(Z)$ admet une variante symétrique parce qu'elle est une Hessienne d'un Lagrangien augmenté. Pour le problème de Coulomb une partie non-symétrique est présente. Elle provient de la condition de frottement de Coulomb.

La comparaison est faite dans le cas(a) et cas(b) en utilisant la méthode de Newton semi-régulière. Les Fig. 5.14 et 5.15 représentent l'évolution du nombre d'itérations en fonction du paramètre d'augmentation r. Apparemment, la symétrisation n'influence pas sur la convergence de la méthode NSR.

Fig. 5.14 – (NSR) Comparaison entre le problème presque symétrique et le non-symétrique pour le disque.
5.4. COMPARAISON ENTRE LES DIFFÉRENTE FORMULATIONS

5.4.2 Comparaison entre la formulation de De Saxcé et la formulation standard

On compare maintenant deux formulations pour le point fixe sur les forces de contact : T_1^h et T_2^h. Les Fig. 5.16 et 5.17 montrent que les deux formulations donnent approximativement le même nombre d’itérations.
CHAPITRE 5. ÉTUDE NUMÉRIQUE

Fig. 5.16 – (PFF) Comparaison de la formulation de De Saxcé et la formulation standard pour le disque.

Fig. 5.17 – (PFF) Comparaison de la formulation de De Saxcé et la formulation standard pour le tore.
5.4.3 Comparaison entre la formulation presque conforme en force et la presque conforme en déplacement

Toutes les expériences des sections précédentes sont faite avec la formulation presque conforme en déplacement (section 4.1). Les méthodes de résolution ont été aussi testées avec la formulation hybride presque conforme en force (section 4.2), cependant, on a pas trouvé de grandes différences du comportement des méthodes entre les deux formulations.
Conclusion

On a présenté dans cette partie un cadre de travail général pour la discrétisation hydride des conditions du contact et du frottement en élastostatique. On a prouvé un résultat d’existence et d’unicité pour le problème discrétisé dans ce cadre général.

Dans le Chapitre 5, différentes méthodes pour résoudre le problème discrétisé sont analysées du point de vue numérique. On n’a pas donné de comparaison en terme du temps CPU parce que ce dernier dépend fortement des détails de l’implémentation de chaque méthode (dans laquelle un préconditionnement est utilisé ...).

Les points fixes sur les forces de contact et de frottement T_h^1 et T_h^2 (Section 5.1.1) correspondent à un algorithme d’Uzawa quand on a un seuil de frottement donné (problème de Tresca). Ces méthodes sont d’ordre un, le nombre d’itérations augmente beaucoup quand le pas d’espace devient petit et le paramètre d’augmentation optimal n’est pas facile à calculer. Chaque itération demande la résolution d’un système linéaire symétrique coercif.

Le point fixe sur le seuil de frottement (Section 5.1.2) est une méthode très usuelle. Elle converge en un petit nombre d’itérations pour un coefficient de frottement raisonnable. Chaque itération demande la résolution d’un problème de Tresca, qui est un problème non-linéaire. Le problème de Tresca peut être résolu avec des techniques d’optimisation comme le gradient conjugué ou les méthodes de points intérieurs.

La méthode itérative (Section 5.2) est simple à implémenter. Une itération de la stratégie nodale ne demande pas la résolution d’un système linéaire et donc très rapide à converger. Elle est vraiment adaptée à de petits problèmes bidimensionnels.

La méthode semi-régulière de Newton sur le problème augmenté (Section 5.3) est très efficace. Elle n’est pas sensible au choix du paramètre d’augmentation et le nombre d’itérations reste petit même pour des valeurs très grandes du coefficient de frottement. Chaque itération demande la résolution d’un système linéaire non-symétrique utilisant la matrice tangente.

La conclusion de l’étude numérique est que la méthode semi-régulière de Newton apparaît comme la plus robuste pour résoudre les problèmes de contact avec frottement de Coulomb pour des corps déformables.
Deuxième partie

Problème de contact dynamique
Introduction

Cette partie se décompose en quatre chapitres. Le premier chapitre concerne une analyse de stabilité des schémas d’intégration classiques. On commencera par donner quelques notions de stabilité, ensuite on présentera des adaptations des schémas classiques pour le problème de contact. La θ-méthode est la première présentée pour sa simplicité. Cependant, on montrera qu’elle n’est pas stable sauf pour $\theta = 1$ mais avec une perte rapide de l’énergie. Dans la section suivante, on donnera le schéma de Newmark et on montrera qu’on retrouve bien un résultat de Hugues [22] pour un problème d’élasticité linéaire. Ensuite, on donnera le schéma de point milieu standard qui n’est pas stable, puis on proposera une modification de ce schéma pour le stabiliser.

Dans le chapitre suivant, on présentera les difficultés rencontrées lors de la semi-discrétisation en espace d’abord, ensuite après une discrétisation totale. En effet, quand on discrétise en espace, on retrouve un problème discret mal posé. Ceci est démontré pour le cas d’un seul degré de liberté. Ensuite, après une discrétisation en temps, le problème ainsi défini peut être caractérisé par une dissipation totale de l’énergie au bout de quelques itérations en temps. Ceci est illustré avec la θ-méthode appliquée au problème à 1 d.d.l.

L’avant dernier chapitre sera la partie la plus importante. Dans ce chapitre, on présentera de nouvelles stratégies pour venir à bout des difficultés exposées dans le chapitre précédent. Dans la première section, on considère le schéma qui a été introduit dans le cadre des corps rigides par Paoli et Schatzman [39] et qui consiste à ajouter une loi d’impact au problème de contact élastodynamique. On propose dans la section suivante une adaptation du schéma de Paoli et Schatzman pour assurer une certaine condition de stabilité. La troisième section concerne un schéma proche de celui de Chawla et Laursen [31]. On montrera que le schéma ainsi défini est stable. Dans la dernière section, on donne une nouvelle discrétisation en espace du problème de contact élastodynamique. On aboutira ainsi à un problème bien posé admettant une solution lipschitzienne.

Dans le dernier chapitre, une étude numérique est faite sur un disque avec les mêmes propriétés que dans le chapitre numérique de la première partie. Toutes les méthodes présentées dans cette partie sont testées et comparées.
Chapitre 6

Analyse de la stabilité des schémas classiques

Pour résoudre le problème linéaire élastodynamique, il y a deux approches possibles : la méthode de superposition modale et la méthode d’intégration directe. Le terme \textit{intégration directe} signifie qu’aucune transformation de la discrétisation du problème linéaire élastodynamique n’est effectuée avant l’intégration numérique. Parmi les méthodes d’intégration directes, on distingue les méthodes explicites et les méthodes implicites.

Les méthodes explicites sont habituellement utilisées pour des simulations d’impact des solides, et d’autres phénomènes de très courte durée, où la propagation des ondes de hautes fréquences est importante. Ces méthodes ne nécessitent pas d’inverser des matrices globales, et permettent ainsi de traiter des problèmes de très grande taille. En revanche, la faible stabilité de ces méthodes nécessite l’utilisation de pas de temps très petits. Le traitement du contact dans une formulation explicite est très délicat, car les réactions de contact ne sont pas continues en fonction des variables d’état cinématiques. Pour ces raisons, on choisit d’utiliser dans ce travail les méthodes implicites car ils permettent d’utiliser des pas de temps grands.

Dans ce chapitre, on donnera d’abord une notion de stabilité pour un schéma d’intégration en temps. Ensuite, on présente des adaptations au contact des schémas classiques d’intégration en temps, comme la θ-méthode, le schéma de Newmark ou le schéma du point milieu. Chaque schéma sera étudié du point de vue de la stabilité précédemment définie.

Le critère sur lequel se base notre étude est la conservation de l’énergie. Cette propriété n’est pas respectée pas les schémas classiques. De plus, les complications liées d’abord à la semi-discrétisation en espace puis à la discrétisation totale, rajoutent encore des difficultés à cette étude.

Des difficultés seront éliminées par la proposition de nouveaux schémas d’intégration en temps. Ces schémas conservent l’énergie et donnent de bons résultats numériques.

On s’intéressera au problème de contact élastodynamique en utilisant les mêmes notations.
CHAPITRE 6. ANALYSE DE LA STABILITÉ DES SCHÉMAS CLASSIQUES

que précédemment. Soit \(\Omega \subset \mathbb{R}^d \) \((d = 2\) ou \(3\)) un domaine ouvert borné qui représente la configuration de référence d’un corps élastique soumis à une condition de Neumann sur \(\Gamma_N \), une condition de Dirichlet sur \(\Gamma_D \) et une condition de contact unilatéral avec frottement de Coulomb sur \(\Gamma_C \) entre le corps et une fondation rigide plane. La partition en ouverts \(\Gamma_N, \Gamma_D \) et \(\Gamma_C \) de parties ouvertes disjointes de \(\partial\Omega \) est indépendante du temps. On travaillera sur l’intervalle de temps \([0, T]\) où \(T > 0 \) est fixé.

Le problème de contact élasto-dynamique consiste à se donner \(u_0 \in V, u_1 \in L^2(\Omega; \mathbb{R}^n) \), \(f : [0, T] \rightarrow H^{-1}(\Omega; \mathbb{R}^d) \) et à résoudre le système suivant :

Trouver le déplacement \(u \) vérifiant :

\[
\begin{align*}
\rho \frac{\partial^2 u}{\partial t^2} - \text{div} \sigma(u) &= f, \quad \text{dans }]0, T[\times \Omega, \\
\sigma(u) &= \mathcal{A} \varepsilon(u), \quad \text{dans }]0, T[\times \Omega, \\
u &= U, \quad \text{sur }]0, T[\times \Gamma_D, \\
\sigma(u)n &= g, \quad \text{sur }]0, T[\times \Gamma_N, \\
-\sigma_N &\in N_K_N (u_N) \quad \text{dans }]0, T[\times \Gamma_C, \\
-\sigma_T &\in \partial_2 j (\sigma_N, v_T) \quad \forall v \in]0, T[\times \Gamma_C, \\
u(0) &= u_0, \quad \dot{u}(0) = u_1, \quad \text{dans } \Omega,
\end{align*}
\]

(6.1)

avec les mêmes notations de la partie précédente (chapitre 2) et où \(\rho \) est la densité de masse qu’on supposera indépendante de la variable d’espace et du temps.

De la même manière que pour la proposition 2 du chapitre 2, on peut montrer que le problème (6.1) est équivalent au problème suivant :

\[
\begin{align*}
\text{Trouver } u &\in]0, T[\times V, \lambda_N \in]0, T[\times X'_N \text{ et } \lambda_T \in]0, T[\times X'_T \text{ satisfaisant} \\
\langle \rho \dot{u}, v \rangle_{V,V} + a(u, v) &= l(v) + \langle \lambda_N, v_N \rangle_{X'_N \times X_N} + \langle \lambda_T, v_T \rangle_{X'_T \times X_T}, \quad \forall v \in]0, T[\times V, \\
-\lambda_N &\in N_K_N (u_N), \\
-\lambda_T &\in \partial_2 j (\lambda_N, \dot{u}_T).
\end{align*}
\]

(6.2)
6.1. NOTIONS DE STABILITÉ

On peut encore réécrire le problème (6.2) comme suit :

\[
\begin{cases}
\text{Trouver } u \in]0, T[\times V, \lambda_N \in]0, T[\times X_N' \text{ et } \lambda_T \in]0, T[\times X_T' \text{ satisfaisant} \\
M \ddot{u} + Ku = L + B_N^* \lambda_N + B_T^* \lambda_T, \quad \text{dans } V', \\
-\lambda_N \in N_{K_N}(B_N u), \\
-\lambda_T \in \partial_2 j(\lambda_N, B_T \dot{u}).
\end{cases}
\]

(6.3)

On a posé :

\[
\begin{align*}
M & : V' \to V' \quad \ddot{u} \mapsto \rho \ddot{u}, \\
K & : V \to V' \quad u \mapsto a(u,.), \\
B_N & : V \to X_N \quad u \mapsto u_N = B_N u, \\
B_T & : V \to X_T \quad u \mapsto u_T = B_T u, \\
B_N^* & : X_N' \to V' \quad \lambda_N \mapsto B_N^* \lambda_N, \\
B_T^* & : X_T' \to V' \quad \lambda_T \mapsto B_T^* \lambda_T,
\end{align*}
\]

tels que

\[
\langle B_N^* \lambda_N, v \rangle_{V',V} = \langle \lambda_N, v_N \rangle_{X_N',X_N} \quad \text{et} \quad \langle B_T^* \lambda_T, v \rangle_{V',V} = \langle \lambda_T, v_T \rangle_{X_T',X_T}, \quad \forall v \in V.
\]

Enfin,

\[
L : V \to \mathbb{R} \quad v \mapsto \langle L, v \rangle_{V',V} = l(v).
\]

6.1 Notions de stabilité

On commence par le découpage uniforme de l’intervalle \([0, T]\), ce qui nous donne un pas de temps \(\Delta t = T/N\) associé à un entier \(N \geq 1\), et on pose \(t_n = n\Delta t, \forall 0 \leq n \leq N\). On cherche à calculer, pour tout \(n = 1, ..., N\), les approximations respectives \(u^n\) et \(v^n\) de \(u(t_n)\) et \(\dot{u}(t_n)\). On suppose dans cette analyse de stabilité que \(f\) ne dépend pas du temps.

Analyse énergétique

L’énergie du système élastodynamique (6.3) est définie par

\[
J(u, \dot{u}) = \frac{1}{2} \langle M \ddot{u}, \ddot{u} \rangle + \frac{1}{2} \langle Ku, u \rangle - \langle L, u \rangle.
\]

Après avoir défini l’énergie, on peut maintenant donner les notions suivantes qui sont des éléments importants de notre analyse énergétique.
Définition 4 On dira que le schéma d’intégration en temps est stable s’il existe \(c > 0 \) indépendant de \(\Delta t \) tel que :
\[
\forall n : J(u^n, v^n) \leq c.
\]

Définition 5 On dira que le schéma d’intégration en temps est dissipatif si la variation de l’énergie vérifie :
\[
\Delta J := J(u^{n+1}, v^{n+1}) - J(u^n, v^n) \leq 0.
\]

Définition 6 On dira que le schéma d’intégration en temps est conservatif si la variation de l’énergie vérifie :
\[
\Delta J = 0.
\]

La relation \(\Delta J \leq 0 \) sera l’outil le plus important pour choisir les schémas d’intégration en temps car la condition qu’un schéma soit dissipatif est suffisante pour qu’il soit stable. Le but de notre analyse, même si cela n’est pas toujours évident, est d’avoir des schémas conservatifs et ceci sera explicité dans le chapitre 8.

Dans les sections suivantes, on formulera des adaptations de schémas classiques pour le problème de contact élastodynamique.

6.2 La \(\theta \)-méthode

6.2.1 Formulation de la \(\theta \)-méthode pour le problème de contact

La famille de schémas de la \(\theta \)-méthode est l’une des méthodes les plus utilisées. Le schéma est obtenu par un développement de Taylor des vecteurs de déplacement et de vitesse au premier ordre avec une pondération \(\theta \).

Remarque. On notera \(a^n \) l’approximation de \(\ddot{u}(t_n) \) sans risque d’ambiguïté avec la forme bilinéaire \(a(.,.) \).

Le schéma de la \(\theta \)-méthode pour le problème de contact élastodynamique s’énonce comme suit :
\[
\begin{align*}
\begin{cases}
 u^{n+1} = u^n + \Delta t \left((1 - \theta)v^n + \theta v^{n+1} \right), \\
 v^{n+1} = v^n + \Delta t \left((1 - \theta)a^n + \theta a^{n+1} \right),
\end{cases}
\end{align*}
\]

(6.4)

D’après (6.4), on calcule la vitesse \(v^{n+1} \) et l’accélération \(a^{n+1} \) en fonction de \(u^{n+1} \) comme suit :

\[
a^{n+1} = \frac{1}{\theta^2 \Delta t^2} \left(u^{n+1} - u^n \right) - \frac{1}{\theta^2 \Delta t} \frac{v^n - 1 - \theta}{\theta} a^n,
\]
\[
v^{n+1} = \frac{1}{\theta \Delta t} \left(u^{n+1} - u^n \right) - \frac{1 - \theta}{\theta} v^n.
\]

On remplace dans le système (6.5), ce qui revient à résoudre le système suivant :

\[
\begin{cases}
Ma^{n+1} + Ku^{n+1} = L + B_N^* \lambda_N^{n+1} + B_T^* \lambda_T^{n+1}, \\
-\lambda_N^{n+1} \in N_{\kappa_N}(B_N u^{n+1}), \\
-\lambda_T^{n+1} \in \partial_2 j(\lambda_N^{n+1}, B_T v^{n+1}), \\
u(0) = u^0, v(0) = v^1.
\end{cases}
\]

(6.5)

\[
\begin{cases}
\left(\frac{M}{\theta^2 \Delta t^2} + K \right) u^{n+1} = \hat{L} + B_N^* \lambda_N^{n+1} + B_T^* \lambda_T^{n+1}, \\
-\lambda_N^{n+1} \in N_{\kappa_N}(B_N u^{n+1}), \\
-\lambda_T^{n+1} \in \partial_2 j(\lambda_N^{n+1}, \alpha B_T u^{n+1} - C_T), \\
u(0) = u^0, v(0) = v^1.
\end{cases}
\]

(6.6)

où

\[
\hat{L} = L + \frac{1}{\theta^2 \Delta t^2} M u^n + \frac{1}{\theta^2 \Delta t} M v^n + \frac{1 - \theta}{\theta} M a^n, \quad (6.7)
\]

\[
\alpha = \frac{1}{\theta \Delta t} \quad \text{et} \quad C_T = \frac{1}{\theta \Delta t} B_T u^n + \frac{1 - \theta}{\theta} B_T v^n. \quad (6.8)
\]

Remarque. On utilisera cette dernière formulation (6.6) du problème de contact élastodynamique pour la résolution numérique dans le chapitre 8.

6.2.2 Analyse de stabilité

Calcul de la variation de l’énergie

L’analyse de stabilité repose sur le calcul de la variation de l’énergie \(\Delta J \).
Lemme 2 Pour le schéma (6.4)(6.5), la variation de l'énergie est donnée par la formule

\[
\Delta J = \left(\frac{1}{2} - \theta \right) \langle M(v^{n+1} - v^n), v^{n+1} - v^n \rangle \\
+ \left(\frac{1}{2} - \theta \right) \langle K(u^{n+1} - u^n), u^{n+1} - u^n \rangle \\
- \langle (1 - \theta) \left(B^*_N \lambda^*_n + B^*_T \lambda^*_r \right), v^{n+1} - v^n \rangle.
\]

(6.9)

\[
\text{Preuve.} \quad \text{On commence par le calcul de la variation de l'énergie comme suit :}
\]

\[
\Delta J = J(u^{n+1}, v^{n+1}) - J(u^n, v^n)
\]

\[
= \frac{1}{2} \langle M(v^{n+1} - v^n), v^{n+1} + v^n \rangle + \frac{1}{2} \langle K(u^{n+1} - u^n), u^{n+1} + u^n \rangle - \langle L, u^{n+1} - u^n \rangle,
\]

ou

\[
M(v^{n+1} - v^n) = \Delta t \left((1 - \theta) Ma^n + \theta Ma^{n+1} \right)
\]

\[
= (1 - \theta) \Delta t \left(L + B^*_N \lambda^*_n + B^*_T \lambda^*_r - Ku^n \right) + \theta \Delta t \left(L + B^*_N \lambda^{n+1} + B^*_T \lambda^{n+1} - Ku^{n+1} \right)
\]

\[
= S + \Delta t \ L,
\]

où

\[
S = (1 - \theta) \Delta t \left(B^*_N \lambda^*_n + B^*_T \lambda^*_r - Ku^n \right) + \theta \Delta t \left(B^*_N \lambda^{n+1} + B^*_T \lambda^{n+1} - Ku^{n+1} \right).
\]

On remplace dans le calcul de \(\Delta J \) et on obtient

\[
\Delta J = \frac{1}{2} \langle S, v^{n+1} + v^n \rangle + \frac{1}{2} \langle K(u^{n+1} - u^n), u^{n+1} + u^n \rangle + \langle L, \frac{\Delta t}{2} (v^{n+1} + v^n) - u^{n+1} + u^n \rangle,
\]

or, de l'énoncé du schéma (6.4) on a

\[
\frac{\Delta t}{2} (v^{n+1} + v^n) - u^{n+1} + u^n = \Delta t \left(\frac{1}{2} - \theta \right) (v^{n+1} - v^n).
\]

Donc, \(\Delta J \) est donné par

\[
\Delta J = \frac{\Delta t}{2} \left(1 - \theta \right) \langle B^*_N \lambda^*_n + B^*_T \lambda^*_r - Ku^n, v^{n+1} + v^n \rangle + \frac{1}{2} \langle K(u^{n+1} - u^n), u^{n+1} + u^n \rangle
\]

\[
+ \frac{\Delta t}{2} \theta \langle B^*_N \lambda^{n+1} + B^*_T \lambda^{n+1} - Ku^{n+1}, v^{n+1} + v^n \rangle + \Delta t \left(\frac{1}{2} - \theta \right) (L, v^{n+1} - v^n).
\]
6.2. LA \(\theta\)-MÉTHODE

D’autre part, on peut écrire

\[
L = (1 - \theta)L + \theta L,
\]

et puisque \(f\) ne dépend pas du temps, alors on a aussi (voir système (6.5))

\[
L = (Ma^n + Ku^n - B_N^x \lambda_n^x - B_T^x \lambda_T^x) = (Ma^{n+1} + Ku^{n+1} - B_N^x \lambda_{n+1}^x - B_T^x \lambda_{T+1}^x),
\]

donc

\[
L = (1 - \theta) (Ma^n + Ku^n - B_N^x \lambda_n^x - B_T^x \lambda_T^x) + \theta (Ma^{n+1} + Ku^{n+1} - B_N^x \lambda_{n+1}^x - B_T^x \lambda_{T+1}^x)
\]

\[
= M ((1 - \theta)a^n + \theta a^{n+1}) + K ((1 - \theta)u^n + \theta u^{n+1})
\]

\[
- ((1 - \theta) (B_N^x \lambda_n^x + B_T^x \lambda_T^x) + \theta (B_N^x \lambda_{n+1}^x + B_T^x \lambda_{T+1}^x))
\]

\[
= \frac{1}{\Delta t} M (v^{n+1} - v^n) + K ((1 - \theta)u^n + \theta u^{n+1})
\]

\[
- ((1 - \theta) (B_N^x \lambda_n^x + B_T^x \lambda_T^x) + \theta (B_N^x \lambda_{n+1}^x + B_T^x \lambda_{T+1}^x)).
\]

Par suite,

\[
\Delta J = \frac{\Delta t}{2} (1 - \theta) \langle B_N^x \lambda_n^x + B_T^x \lambda_T^x - Ku^n, v^{n+1} + v^n \rangle
\]

\[
+ \frac{\Delta t}{2} \theta \langle B_N^x \lambda^{n+1} + B_T^x \lambda_{T+1}^x - Ku^{n+1}, v^n + v^{n+1} \rangle
\]

\[
+ \frac{1}{2} \langle K (u^{n+1} - u^n), u^{n+1} + u^n \rangle
\]

\[
+ \frac{1}{2} - \theta \langle M (v^{n+1} - v^n), v^{n+1} - v^n \rangle
\]

\[
+ \Delta t \left(\frac{1}{2} - \theta \right) \langle K ((1 - \theta)u^n + \theta u^{n+1}) , v^{n+1} - v^n \rangle
\]

\[
- \Delta t \left(\frac{1}{2} - \theta \right) (1 - \theta) \langle B_N^x \lambda_n^x + B_T^x \lambda_T^x, v^{n+1} - v^n \rangle
\]

\[
- \Delta t \left(\frac{1}{2} - \theta \right) \theta (B_N^x \lambda_{n+1}^x + B_T^x \lambda_{T+1}^x, v^{n+1} - v^n).
\]
Et en rassemblant les mêmes termes et en utilisant l’équation de l’élastodynamique dans (6.5), on obtient :

\[
\Delta J = \left(\frac{1}{2} - \theta \right) \langle M(v^{n+1} - v^n), v^{n+1} - v^n \rangle \\
+ \left(\frac{1}{2} - \theta \right) \langle K(u^{n+1} - u^n), u^{n+1} - u^n \rangle \\
- \langle (1 - \theta) \left(B_N^* \lambda_N^n + B_T^* \lambda_T^n \right), u^{n+1} - u^n \rangle.
\]

Stabilité de la \(\theta \)-méthode

L’étude de la stabilité du problème de contact élastodynamique semi-discrétisé en temps par la \(\theta \)-méthode donne les résultats suivants :

Lemme 3 Le schéma (6.4)(6.5) est dissipatif (donc stable) pour \(\theta = 1 \).

Preuve. Le schéma pour \(\theta = 1 \) n’est autre que le schéma d’Euler implicite.

Pour \(\theta = 1 \), la formulation (6.9) devient :

\[
\Delta J = -\frac{1}{2} \left(\langle M(v^{n+1} - v^n), v^{n+1} - v^n \rangle + \langle K(u^{n+1} - u^n), u^{n+1} - u^n \rangle \right) \\
- \langle B_N^* \lambda_N^{n+1} + B_T^* \lambda_T^{n+1}, u^{n+1} - u^n \rangle.
\]

Or

\[\langle M(v^{n+1} - v^n), v^{n+1} - v^n \rangle \geq 0 \quad \text{et} \quad \langle K(u^{n+1} - u^n), u^{n+1} - u^n \rangle \geq 0,\]

alors

\[\Delta J \leq -\langle B_N^* \lambda_N^{n+1} + B_T^* \lambda_T^{n+1}, u^{n+1} - u^n \rangle.
\]

En utilisant la définition de \(B_N^* \) et \(B_T^* \), on obtient :

\[\langle B_N^* \lambda_N^{n+1} + B_T^* \lambda_T^{n+1}, u^{n+1} - u^n \rangle = \langle \lambda_N^{n+1}, u_N^{n+1} - u_N^n \rangle + \langle \lambda_T^{n+1}, u_T^{n+1} - u_T^n \rangle,
\]

or d’après la condition de contact unilatéral et la définition de la \(\theta \)-méthode on a

\[\langle \lambda_N^{n+1}, u_N^{n+1} \rangle = 0, \quad \langle \lambda_N^{n+1}, u_N^n \rangle \geq 0 \quad \text{et} \quad u_T^{n+1} - u_T^n = \Delta t v_T^{n+1},\]

donc

\[\Delta J \leq \Delta t \langle \lambda_T^{n+1}, v_T^{n+1} \rangle,
\]

et finalement on obtient

\[\Delta J \leq 0\]

grâce au fait que \(\langle \lambda_T^{n+1}, v_T^{n+1} \rangle \leq 0 \), d’après la condition de frottement de Coulomb.
6.3. LE SCHÉMA DE NEWMARK

Donc le schéma d’Euler implicite est dissipatif ce qui implique la stabilité de ce schéma.

Remarque. Le schéma pour $\theta = \frac{1}{2}$ correspond au schéma de Crank-Nicolson. Le lemme 2 donne la variation de l’énergie du problème (6.4)(6.5) comme suit

$$\Delta J = -\frac{1}{2} \left(\left(B^*_N \lambda^n_N + B^*_T \lambda^n_T \right) + \left(B^*_N \lambda^{n+1}_N + B^*_T \lambda^{n+1}_T \right) , u^{n+1} - u^n \right).$$

Dans le cas sans contact, on retrouve le résultat classique de conservation de l’énergie du problème linéaire elastodynamique.

En présence du contact, on ne peut rien conclure. Cependant, dans le chapitre des résultats numériques, on montrera que le schéma (6.4)(6.5) n’est pas stable.

6.3 Le schéma de Newmark

6.3.1 Adaptation du schéma de Newmark pour le contact

Le schéma de Newmark est le plus utilisé parmi les méthodes implicites. La formulation du problème elastodynamique semi-discrétisé avec le schéma de Newmark s’énonce comme suit :

$$\begin{align*}
\left\{ \begin{array}{l}
u^{n+1} = v^n + \Delta t \left((1 - \gamma) a^n + \gamma a^{n+1} \right), \\
u^{n+1} = u^n + \Delta t \left(a^n - \frac{1}{2} \beta a^n + \beta a^{n+1} \right), \\
Ma^{n+1} + Ku^{n+1} = L + B^*_N \lambda^{n+1}_N + B^*_T \lambda^{n+1}_T, \\
-\lambda^{n+1}_N \in N_{N_N} (B_N u^{n+1}), \\
-\lambda^{n+1}_T \in \partial_2 j(\lambda^{n+1}_N, B_T v^{n+1}), \\
u(0) = u^0, v(0) = u^1.
\end{array} \right.
\end{align*}$$

Les paramètres β et γ déterminent la stabilité et la dissipation numérique du schéma.

Remarque. Dans sa version originale, Newmark a proposé les valeurs $\gamma = \frac{1}{2}$ et $\beta = \frac{1}{4}$ qui correspondent à la règle du trapèze. Ces valeurs permettent d’avoir la stabilité du problème linéaire elastodynamique semi-discrétisé par le schéma de Newmark. Le résultat a été généralisé et la condition de stabilité est assurée pour $\gamma \geq \frac{1}{2}$ et $\beta \geq \frac{1}{4} \left(\frac{1}{2} + \gamma \right)$. Cependant, en présence du contact, le problème devient non-linéaire et la condition de stabilité n’est pas facile à obtenir.
A partir du système (6.10), on calcule l’accélération :
\[a^{n+1} = \frac{1}{\beta \Delta t^2} (u^{n+1} - u^n) - \frac{1}{\beta \Delta t} v^n - \frac{\gamma - \beta}{\beta} a^n. \]

On remplace dans le système (6.11). Ce qui revient à résoudre le système suivant :

\[
\begin{cases}
(\frac{M}{\beta \Delta t^2} + K) u^{n+1} = \hat{L} + B^*_N \lambda_{N}^{n+1} + B^*_T \lambda_{T}^{n+1}, \\
-\lambda_{N}^{n+1} \in N_{K_N} (B_N u^{n+1}), \\
-\lambda_{T}^{n+1} \in \partial_j (\lambda_{T}^{n+1} + \alpha B_T u^{n+1} - C_T), \\
u(0) = u_0, v(0) = u_1,
\end{cases}
\]

(6.12)

où

\[\hat{L} = L + \frac{1}{\beta \Delta t^2} Mu^n + \frac{1}{\beta \Delta t} Mv^n + \frac{1}{\beta \Delta t} Ma^n, \]

(6.13)

\[\alpha = \frac{\gamma}{\beta \Delta t} \quad \text{et} \quad C_T = \frac{\gamma}{\beta \Delta t} B_T u^n + \frac{\gamma - \beta}{\beta} B_T v^n + \frac{\gamma - \beta}{\beta} \Delta t B_T a^n. \]

(6.14)

Comme dans le cas de la \(\theta \)-méthode, c’est cette dernière formulation (6.12) du problème élastodynamique qu’on va utiliser pour la résolution numérique dans le chapitre 8.

6.3.2 Analyse de stabilité

Tout d’abord, on fera une analyse semblable à celle de la \(\theta \)-méthode. Le calcul de la variation de l’énergie est donné par le lemme suivant :

Lemme 4 *La variation de l’énergie du schéma (6.10)(6.11) est donnée par*

\[
\Delta J = 2 \left(\frac{1}{2} - \gamma \right) (K(u^{n+1} - u^n), u^{n+1} - u^n) + \Delta t \left(\beta - \frac{\gamma}{2} \right) (K(u^{n+1} - u^n), v^{n+1} - v^n)
\]

\[+ \Delta t (\beta - \frac{\gamma}{2}) ((B^*_N \lambda_{N}^{n+1} + B^*_T \lambda_{T}^{n+1}) - (B^*_N \lambda_{N}^{n} + B^*_T \lambda_{T}^{n}), v^{n+1} - v^n)
\]

\[+ \Delta t ((1 - \gamma)(B^*_N \lambda_{N}^{n+1} + B^*_T \lambda_{T}^{n}) + \gamma (B^*_N \lambda_{N}^{n+1} + B^*_T \lambda_{T}^{n}), u^{n+1} - u^n). \]

(6.15)

Preuve. On commence par le calcul de la variation de l’énergie comme suit :

\[
\Delta J = J(u^{n+1}, v^{n+1}) - J(u^n, v^n)
\]

\[= \frac{1}{2} \langle M(v^{n+1} - v^n), v^{n+1} + v^n \rangle + \frac{1}{2} \langle K(u^{n+1} - u^n), u^{n+1} + u^n \rangle - \langle L, u^{n+1} - u^n \rangle. \]
D'après le système (6.10), on a :

\[
\begin{align*}
\begin{cases}
 u^{n+1} - u^n - \Delta t \cdot v^n = \Delta t^2 \left(\frac{1}{2} - \beta \right) a^n + \beta a^{n+1}, \\
v^{n+1} - v^n = \Delta t \left((1 - \gamma) a^n + \gamma a^{n+1} \right).
\end{cases}
\end{align*}
\tag{6.16}
\]

En multipliant les deux équations du système (6.16) par la matrice de masse \(M \), on obtient :

\[
\begin{align*}
\begin{cases}
 M \left(u^{n+1} - u^n - \Delta t \cdot v^n \right) = \Delta t^2 \left(\frac{1}{2} - \beta \right) Ma^n + \beta Ma^{n+1}, \\
M \left(v^{n+1} - v^n \right) = \Delta t \left((1 - \gamma) Ma^n + \gamma Ma^{n+1} \right).
\end{cases}
\end{align*}
\tag{6.17}
\]

A partir de l'équation de l'élastodynamique du système (6.11), on a :

\[
\begin{align*}
M \left(u^{n+1} - u^n \right) &= \Delta t^2 \left(\frac{1}{2} - \beta \right) \left(-Ku^n + L + B^*_N \lambda^n_N + B^*_T \lambda^n_T \right) \\
&\quad + \Delta t^2 \beta \left(-Ku^{n+1} + L + B^*_N \lambda^{n+1}_N + B^*_T \lambda^{n+1}_T \right) \\
&= \frac{\Delta t^2}{2} L - \left[\frac{1}{2} - \beta \right] Ku^n + \beta Ku^{n+1} \\
&\quad + \Delta t^2 \left[\frac{1}{2} - \beta \right] \left(B^*_N \lambda^n_N + B^*_T \lambda^n_T \right) + \beta \left(B^*_N \lambda^{n+1}_N + B^*_T \lambda^{n+1}_T \right). \tag{6.18}
\end{align*}
\]

De plus,

\[
\begin{align*}
M \left(v^{n+1} - v^n \right) &= \Delta t \left(1 - \gamma \right) \left(-Ku^n + L + B^*_N \lambda^n_N + B^*_T \lambda^n_T \right) \\
&\quad + \Delta t \gamma \left(-Ku^{n+1} + L + B^*_N \lambda^{n+1}_N + B^*_T \lambda^{n+1}_T \right) \\
&= \Delta t \left(1 - \gamma \right) Ku^n + \gamma Ku^{n+1} \\
&\quad + \Delta t \left[\left(1 - \gamma \right) \left(B^*_N \lambda^n_N + B^*_T \lambda^n_T \right) + \gamma \left(B^*_N \lambda^{n+1}_N + B^*_T \lambda^{n+1}_T \right) \right]. \tag{6.19}
\end{align*}
\]

En multipliant (6.19) par \(\frac{\Delta t}{2} \) et rajoutant (6.18), on obtient :

\[
\begin{align*}
M \left(u^{n+1} - u^n \right) &= \Delta t^2 \left(\beta - \frac{\gamma}{2} \right) K \left(u^{n+1} - u^n \right) + \frac{\Delta t}{2} M \left(v^{n+1} + v^n \right) \\
&\quad + \Delta t^2 \left(\beta - \frac{\gamma}{2} \right) \left(B^*_N \lambda^{n+1}_N + B^*_T \lambda^{n+1}_T \right) - \left(B^*_N \lambda^n_N + B^*_T \lambda^n_T \right).
\end{align*}
\]
ce qui donne

\[M(v^{n+1} + v^n) = \frac{2}{\Delta t} M(u^{n+1} - u^n) + 2 \Delta t \left(\beta - \frac{\gamma}{2} \right) K(u^{n+1} - u^n) \]

\[- 2 \Delta t \left(\beta - \frac{\gamma}{2} \right) \left((B_n^* \lambda_{N+1} + B_r^* \lambda_{T+1}) - (B_n^* \lambda_N + B_r^* \lambda_T) \right) \tag{6.20} \]

En remplaçant (6.20) dans (6.15), on trouve :

\[\Delta J = \frac{1}{2} \langle K(u^{n+1} - u^n), u^{n+1} + u^n \rangle + \frac{2}{\Delta t} \langle M(u^{n+1} - u^n), v^{n+1} - v^n \rangle \]

\[+ \Delta t \left(\beta - \frac{\gamma}{2} \right) \langle K(u^{n+1} - u^n), v^{n+1} - v^n \rangle - \langle L, u^{n+1} - u^n \rangle \]

\[- \Delta t \left(\beta - \frac{\gamma}{2} \right) \langle ((B_n^* \lambda_{N+1} + B_r^* \lambda_{T+1}) - (B_n^* \lambda_N + B_r^* \lambda_T)), v^{n+1} - v^n \rangle \tag{6.21} \]

D’autre part, de la formule (6.19) on a :

\[\langle L, u^{n+1} - u^n \rangle = \frac{\Delta t}{2} \langle M(v^{n+1} - v^n), u^{n+1} - u^n \rangle \]

\[+ \Delta t \langle \left[(1 - \gamma) K u^n + \gamma K u^{n+1} \right], u^{n+1} - u^n \rangle \tag{6.22} \]

Maintenant en remplaçant (6.22) dans (6.21) et en rassemblant les termes qui se ressemblent on trouve :

\[\Delta J = 2(\frac{1}{2} - \gamma) \langle K(u^{n+1} - u^n), u^{n+1} - u^n \rangle + \Delta t \left(\beta - \frac{\gamma}{2} \right) \langle K(u^{n+1} - u^n), v^{n+1} - v^n \rangle \]

\[+ \Delta t \left(\beta - \frac{\gamma}{2} \right) \langle (B_n^* \lambda_{N+1} + B_r^* \lambda_{T+1}) - (B_n^* \lambda_N + B_r^* \lambda_T), v^{n+1} - v^n \rangle \]

\[+ \Delta t \langle (1 - \gamma)(B_n^* \lambda_{N+1} + B_r^* \lambda_{T+1}) + \gamma (B_n^* \lambda_{N+1} + B_r^* \lambda_{T+1}), u^{n+1} - u^n \rangle. \]

Le lemme 4 nous permet de distinguer les cas suivants.

- Si \(\gamma > \frac{1}{2} \), on a une forte dissipation de l’énergie du au terme

\[2(\frac{1}{2} - \gamma) \langle K(u^{n+1} - u^n), u^{n+1} - u^n \rangle \]

est négatif et il n’y a pas de facteur \(\Delta t \) devant ce terme. Cependant, on ne peut rien dire sur le signe des autres termes et donc on ne peut rien conclure.
6.3. LE SCHÉMA DE NEWMARK

- Si \(2\beta = \gamma = \frac{1}{2}\), on retrouve bien le schéma de Crank-Nicolson et le même résultat que celui du lemme 2 :
\[
\Delta J = \frac{\Delta t}{2} \langle (B_N^s \lambda_N^n + B_T^s \lambda_T^n) + (B_N^s \lambda_N^{n+1} + B_T^s \lambda_T^{n+1}), u^{n+1} - u^n \rangle.
\]

- Si \(\beta = \frac{1}{2}\) et \(\gamma = 1\), on obtient
\[
\Delta J = -\langle K(u^{n+1} - u^n), u^{n+1} - u^n \rangle \leq 0,
\]

ce qui nous donne un schéma stable (mais très dissipatif).

A priori, on ne sait montrer la stabilité du schéma de Newmark que pour \(\beta = \frac{1}{2}\) et \(\gamma = 1\), ce qui est vraisemblablement un résultat optimal au vu des tests numériques qui seront présentés.

Dans un certain contexte, Hugues a montré des résultats de stabilité en élastodynamique pour le schéma de Newmik. Il s’est appuyé sur une formule \(S(n)\) exprimée en termes d’accélération (qui sera donnée un peu plus loin). Si \(S(n)\) est bornée alors à fortiori le déplacement sera borné ce qui entrainera la stabilité.

Inspirons nous de la démarche de Hugues dans [22] et essayons de voir si on peut avoir les mêmes résultats.

6.3.3 Estimation en accélération

On pose
\[
S(n) = \langle Aa^n, a^n \rangle + \langle Kv^n, v^n \rangle, \tag{6.23}
\]
 où
\[
A = M + \Delta t^2 (\beta - \frac{1}{2})K.
\]

Pour \(2\beta \geq \gamma\), la matrice \(A\) est symétrique définie positive parce que \(M\) et \(K\) le sont.

Dans le cas de présence du contact, on a le lemme suivant :

Lemme 5 La variation du terme \(S(n)\) défini par (6.23) est donnée par :
\[
\Delta S = S(n+1) - S(n) = -(2\gamma - 1)\langle A(a^{n+1} - a^n), a^{n+1} - a^n \rangle
\]
\[
+ (2\gamma - 1)\langle (B_N^s \lambda_N^{n+1} + B_T^s \lambda_T^{n+1}) - (B_N^s \lambda_N^n + B_T^s \lambda_T^n), a^{n+1} - a^n \rangle
\]
\[
+ \langle (B_N^s \lambda_N^{n+1} + B_T^s \lambda_T^{n+1}) - (B_N^s \lambda_N^n - B_T^s \lambda_T^n), a^{n+1} + a^n \rangle
\]

Preuve. En utilisant l’équation de l’élastodynamique dans (6.11) et la définition du schéma
de Newmark, on obtient :

\[\Delta S = \langle Aa^{n+1}, a^{n+1} \rangle + \langle Kv^{n+1}, v^{n+1} \rangle - \langle Aa^n, a^n \rangle - \langle Kv^n, v^n \rangle \]

\[= \langle Ma^{n+1}, a^{n+1} \rangle + \Delta t^2 (\beta - \frac{1}{2} \gamma) \langle Ka^{n+1}, a^{n+1} \rangle + \langle Kv^{n+1}, v^{n+1} \rangle \]

\[- \langle Ma^n, a^n \rangle - \Delta t^2 (\beta - \frac{1}{2} \gamma) \langle Ka^n, a^n \rangle - \langle Kv^n, v^n \rangle \]

\[= \langle M(a^{n+1} - a^n), a^{n+1} + a^n \rangle + \Delta t^2 (\beta - \frac{1}{2} \gamma) \langle K(a^{n+1} - a^n), a^{n+1} + a^n \rangle \]

\[+ \langle K(v^{n+1} - v^n), v^{n+1} + v^n \rangle. \]

A partir de l’équation de l’élastodynamique dans le système (6.11), on a

\[M(a^{n+1} - a^n) = K(u^{n+1} - u^n) + (B_s^N \lambda^{n+1}_N + B_s^T \lambda^{n+1}_T) - (B_s^N \lambda^n_N + B_s^T \lambda^n_T). \]

Ce qui nous permet d’écrire

\[\Delta S = \langle K(u^{n+1} - u^n), a^{n+1} + a^n \rangle + \Delta t^2 (\beta - \frac{1}{2} \gamma) \langle K(a^{n+1} - a^n), a^{n+1} + a^n \rangle + \langle K(v^{n+1} - v^n), v^{n+1} + v^n \rangle + \langle (B_s^N \lambda^{n+1}_N + B_s^T \lambda^{n+1}_T) - (B_s^N \lambda^n_N + B_s^T \lambda^n_T), a^{n+1} + a^n \rangle \]

\[= \langle K(u^{n+1} - u^n) + \Delta t^2 (\beta - \frac{1}{2} \gamma) (a^{n+1} - a^n), a^{n+1} + a^n \rangle + \langle K(v^{n+1} - v^n), v^{n+1} + v^n \rangle + \langle (B_s^N \lambda^{n+1}_N + B_s^T \lambda^{n+1}_T) - (B_s^N \lambda^n_N + B_s^T \lambda^n_T), a^{n+1} + a^n \rangle. \]

De la définition du schéma de Newmark (6.10), on a

\[-(u^{n+1} - u^n) + \Delta t^2 (\beta - \frac{1}{2} \gamma) (a^{n+1} - a^n) = -\frac{\Delta t}{2} (v^{n+1} + v^n). \] (6.24)

Alors

\[\Delta S = -\frac{\Delta t}{2} \langle K(v^{n+1} + v^n), a^{n+1} + a^n \rangle + \langle K(v^{n+1} - v^n), v^{n+1} + v^n \rangle + \langle (B_s^N \lambda^{n+1}_N + B_s^T \lambda^{n+1}_T) - (B_s^N \lambda^n_N + B_s^T \lambda^n_T), a^{n+1} + a^n \rangle \]

\[= \langle K(v^{n+1} - v^n) - \frac{\Delta t}{2} (a^{n+1} + a^n), v^{n+1} + v^n \rangle + \langle (B_s^N \lambda^{n+1}_N + B_s^T \lambda^{n+1}_T) - (B_s^N \lambda^n_N + B_s^T \lambda^n_T), a^{n+1} + a^n \rangle. \]
Et puisque

\[v^{n+1} - v^n - \frac{\Delta t}{2}(a^{n+1} + a^n) = \Delta t \left(\gamma - \frac{1}{2} \right)(a^{n+1} - a^n), \]

alors

\[\Delta S = \Delta t \left(\gamma - \frac{1}{2} \right)(K(v^{n+1} + v^n), a^{n+1} - a^n) + \langle (B_N^* \lambda_{N}^{n+1} + B_T^* \lambda_T^{n+1}) - (B_N^* \lambda_N^n + B_T^* \lambda_T^n), a^{n+1} + a^n \rangle. \]

Maintenant, on va réutiliser la formule (6.24) et on remplace \(v^{n+1} + v^n \) dans le dernier résultat comme suit :

\[
\Delta S = (2\gamma - 1) \left[(K(u^{n+1} - u^n), a^{n+1} - a^n) - \Delta t^2(\beta - \frac{1}{2}\gamma)(K(a^{n+1} - a^n), a^{n+1} - a^n) \right] \\
+ \langle (B_N^* \lambda_{N}^{n+1} + B_T^* \lambda_T^{n+1}) - (B_N^* \lambda_N^n + B_T^* \lambda_T^n), a^{n+1} + a^n \rangle.
\]

Or

\[K(u^{n+1} - u^n) = -M(a^{n+1} - a^n) + \langle (B_N^* \lambda_{N}^{n+1} + B_T^* \lambda_T^{n+1}) - (B_N^* \lambda_N^n + B_T^* \lambda_T^n), a^{n+1} + a^n \rangle. \]

D'où

\[
\Delta S = -(2\gamma - 1) \langle (M + \Delta t^2(\beta - \frac{1}{2}\gamma)K)(a^{n+1} - a^n), a^{n+1} - a^n \rangle \\
+ (2\gamma - 1) \langle (B_N^* \lambda_{N}^{n+1} + B_T^* \lambda_T^{n+1}) - (B_N^* \lambda_N^n + B_T^* \lambda_T^n), a^{n+1} - a^n \rangle \\
+ \langle (B_N^* \lambda_{N}^{n+1} + B_T^* \lambda_T^{n+1}) - (B_N^* \lambda_N^n + B_T^* \lambda_T^n), a^{n+1} + a^n \rangle.
\]

Finalement,

\[
\Delta S = -(2\gamma - 1) \langle A(a^{n+1} - a^n), a^{n+1} - a^n \rangle \\
+ (2\gamma - 1) \langle (B_N^* \lambda_{N}^{n+1} + B_T^* \lambda_T^{n+1}) - (B_N^* \lambda_N^n + B_T^* \lambda_T^n), a^{n+1} - a^n \rangle \\
+ \langle (B_N^* \lambda_{N}^{n+1} + B_T^* \lambda_T^{n+1}) - (B_N^* \lambda_N^n + B_T^* \lambda_T^n), a^{n+1} + a^n \rangle.
\]

Remarque. Dans le cas de l’élasticité pure sans contact et pour \(2\beta \geq \gamma \geq \frac{1}{2} \), on retrouve le résultat de Hugues qui est \(\Delta S \leq 0 \) et donc la stabilité du schéma de Newmark.

En présence du contact, on ne peut conclure sur la stabilité et donc la méthode de Hugues n’apporte pas de résultats nouveaux pour ce genre de problème.

6.4 La méthode du point milieu (standard)

6.4.1 Formulation pour le contact

La méthode du point milieu consiste à calculer les valeurs du déplacement, vitesse et accélération au milieu du pas de temps \([t_n, t_{n+1}]\). Dans cette partie, on présentera une adaptation du
schéma de point milieu standard pour le problème de contact élastodynamique.

Le schéma s'écrit comme suit :

\[
\begin{align*}
 u^{n+1} &= u^n + \Delta t \, v^{n+\frac{1}{2}}, \\
 v^{n+1} &= v^n + \Delta t \, a^{n+\frac{1}{2}}, \\
 M u^{n+\frac{1}{2}} + K u^{n+\frac{1}{2}} &= L + B_N^* \lambda^{n+\frac{1}{2}}_N + B_T^* \lambda^{n+\frac{1}{2}}_T, \\
 -\lambda^{n+\frac{1}{2}}_N &\in N_{K_N}(B_N u^{n+\frac{1}{2}}), \\
 -\lambda^{n+\frac{1}{2}}_T &\in \partial_2 j(\lambda^{n+\frac{1}{2}}_N, B_T v^{n+\frac{1}{2}}), \\
 u(0) &= u^0, v(0) = v^1.
\end{align*}
\]

(6.25)

Du système (6.25), on calcule la vitesse \(v^{n+\frac{1}{2}} \) et l'accélération \(a^{n+\frac{1}{2}} \) en fonction de \(u^{n+\frac{1}{2}} \) :

\[
\begin{align*}
 v^{n+\frac{1}{2}} &= \frac{2}{\Delta t} u^{n+\frac{1}{2}} - \frac{2}{\Delta t} u^n \\
 a^{n+\frac{1}{2}} &= \frac{4}{\Delta t^2} u^{n+\frac{1}{2}} - \frac{4}{\Delta t^2} u^n - \frac{2}{\Delta t} v^n.
\end{align*}
\]

On remplace dans le système (6.26) et on obtient le système équivalent suivant :

\[
\begin{align*}
 \left(\frac{4}{\Delta t^2} M + K \right) u^{n+\frac{1}{2}} &= \hat{L} + B_N^* \lambda^{n+\frac{1}{2}}_N + B_T^* \lambda^{n+\frac{1}{2}}_T, \\
 -\lambda^{n+\frac{1}{2}}_N &\in N_{K_N}(B_N u^{n+\frac{1}{2}}), \\
 -\lambda^{n+\frac{1}{2}}_T &\in \partial_2 j(\lambda^{n+\frac{1}{2}}_N, B_T v^{n+\frac{1}{2}} - C_T), \\
 u(0) &= u^0, v(0) = v^1.
\end{align*}
\]

(6.26)

où

\[
\hat{L} = L + \frac{4}{\Delta t^2} M u^n + \frac{2}{\Delta t} M v^n, \\
\alpha = \frac{1}{2\Delta t} \text{ et } C_T = \frac{1}{2\Delta t} B_T u^n.
\]

(6.27)

(6.28)

(6.29)

6.4.2 Analyse de stabilité

Lemme 6 La variation de l'énergie du schéma (6.26)(6.25) est donnée par

\[
\Delta J = \Delta t \langle \lambda^{n+\frac{1}{2}}_N, v^{n+\frac{1}{2}} \rangle + \Delta t \langle \lambda^{n+\frac{1}{2}}_T, v^{n+\frac{1}{2}} \rangle - \langle \lambda^{n+\frac{1}{2}}_N, u^n \rangle \leq -2 \langle \lambda^{n+\frac{1}{2}}_N, u^n \rangle.
\]

(6.29)
6.4. LA MÉTHODE DU POINT MILIEU (STANDARD)

Preuve. L’analyse de stabilité du schéma de point milieu standard se fera entre les états en n et $n+1$ au lieu de $n+\frac{1}{2}$ et $n-\frac{1}{2}$. On commence tout d’abord par calculer le ΔJ :

$$\Delta J = J(u^{n+1}, v^{n+1}) - J(u^n, v^n)$$

$$= \frac{1}{2} \langle M(v^{n+1} - v^n), v^{n+1} + v^n \rangle + \frac{1}{2} \langle K(u^{n+1} - u^n), u^{n+1} + u^n \rangle - \langle L, u^{n+1} - u^n \rangle.$$

En utilisant la définition du schéma de point milieu, on déduit :

$$\Delta J = \Delta t \langle Ma^{n+\frac{1}{2}}, v^{n+\frac{1}{2}} \rangle + \Delta t \langle Ku^{n+\frac{1}{2}}, u^{n+\frac{1}{2}} \rangle - \Delta t \langle L, v^{n+\frac{1}{2}} \rangle.$$

De l’équation de l’élasotdynamique du problème (6.26), on a

$$Ma^{n+\frac{1}{2}} + Ku^{n+\frac{1}{2}} - L = B_N^* \lambda^{n+\frac{1}{2}} + B_T^* \lambda^{n+\frac{1}{2}},$$

et puisque K est symétrique, on peut réécrire ΔJ comme suit :

$$\Delta J = \Delta t \langle Ma^{n+\frac{1}{2}}, v^{n+\frac{1}{2}} \rangle + \Delta t \langle Ku^{n+\frac{1}{2}}, v^{n+\frac{1}{2}} \rangle - \Delta t \langle L, v^{n+\frac{1}{2}} \rangle$$

$$= \Delta t \langle Ma^{n+\frac{1}{2}} + Ku^{n+\frac{1}{2}} - L, v^{n+\frac{1}{2}} \rangle$$

$$= \Delta t \langle B_N^* \lambda^{n+\frac{1}{2}} + B_T^* \lambda^{n+\frac{1}{2}}, v^{n+\frac{1}{2}} \rangle.$$

Et là, on remarque que si on est dans un cas sans contact (*i.e.* $\lambda^{n+\frac{1}{2}} = 0$), on retrouve la conservation de l’énergie.

Avec la définition de B_N^* et B_T^* on a

$$\Delta J = \Delta t \langle \lambda^{n+\frac{1}{2}}, v^{n+\frac{1}{2}} \rangle + \Delta t \langle \lambda^{n+\frac{1}{2}}, v^{n+\frac{1}{2}} \rangle.$$

Or, d’après la condition de frottement

$$\langle \lambda^{n+\frac{1}{2}}, v^{n+\frac{1}{2}} \rangle \leq 0,$$

ce qui donne

$$\Delta J \leq \Delta t \langle \lambda^{n+\frac{1}{2}}, v^{n+\frac{1}{2}} \rangle.$$

Et puisque $\Delta t v^{n+\frac{1}{2}} = 2(u^{n+\frac{1}{2}} - u^n)$ et que la condition de contact est vérifiée en $n + \frac{1}{2}$ (*i.e.* $\langle \lambda^{n+\frac{1}{2}}, u^{n+\frac{1}{2}} \rangle = 0$) alors

$$\Delta J \leq -2 \langle \lambda^{n+\frac{1}{2}}, u^n \rangle.$$

Remarque. La discrétisation de la condition de contact dans le système (6.26) ne permet pas d’imposer $u^n \leq 0$ et donc on ne peut conclure pour la stabilité du schéma (6.25)(6.26). Cependant, les tests numériques montrent qu’il n’est pas stable.
6.5 Point milieu en implicitant la force de contact

6.5.1 Adaptation de la méthode pour le contact

Dans la littérature, la méthode du point milieu est la base de beaucoup de schémas stables comme ceux de Love et Laursen [29], Gonzales [16], Hauret [20] ... Comme on vient de le voir pour le schéma de point milieu standard, la difficulté se pose pour la partie contact, le frottement ne posant aucun problème. D'où l'idée d'implicitiser la force de contact. Ce schéma s'énonce comme suit :

\[
\begin{align*}
\mathbf{u}^{n+1} &= \mathbf{u}^n + \Delta t \left(\mathbf{v}^{n+\frac{1}{2}} + \mathbf{v}^n \right), \quad \mathbf{u}^{n+\frac{1}{2}} = \frac{\mathbf{u}^{n+1} + \mathbf{u}^n}{2}, \quad (6.30) \\
\mathbf{v}^{n+1} &= \mathbf{v}^n + \Delta t \mathbf{a}^{n+\frac{1}{2}} + \Delta t \mathbf{a}_N^{n+1}, \quad \mathbf{v}^{n+\frac{1}{2}} = \frac{\mathbf{v}^{n+1} + \mathbf{v}^n}{2}, \\
M\mathbf{a}^{n+\frac{1}{2}} + K\mathbf{u}^{n+\frac{1}{2}} &= L + B^*_T \lambda_T^{n+\frac{1}{2}}, \\
M\mathbf{a}_N^{n+1} &= B^*_N \lambda_N^{n+1}, \\
-\lambda_N^{n+1} &\in N_{\kappa_N}(B_N\mathbf{u}^{n+1}), \\
-\lambda_T^{n+\frac{1}{2}} &\in \partial_{2j}(\lambda_N^{n+\frac{1}{2}}, B_T\mathbf{v}^{n+\frac{1}{2}}), \\
u(0) &= u^0, v(0) = v^1.
\end{align*}
\]

(6.31)

A partir du système (6.30), on peut obtenir l'accélération \(a^{n+\frac{1}{2}}\) et la vitesse \(v^{n+\frac{1}{2}}\) en fonction du déplacement \(u^{n+\frac{1}{2}}\) comme suit :

\[
v^{n+\frac{1}{2}} = \frac{2}{\Delta t} u^{n+\frac{1}{2}} - \frac{2}{\Delta t} u^n \quad \text{et} \quad a^{n+\frac{1}{2}} = \frac{4}{\Delta t^2} u^{n+\frac{1}{2}} - \frac{4}{\Delta t^2} u^n - \frac{2}{\Delta t} v^n - a_N^{n+1}.
\]

On remplace dans le système (6.31) et on obtient le système équivalent suivant :

\[
\begin{align*}
\left(\frac{4}{\Delta t^2} M + K \right) u^{n+\frac{1}{2}} &= \hat{\mathbf{L}} + B^*_N \lambda_N^{n+1} + B^*_T \lambda_T^{n+\frac{1}{2}}, \\
-\lambda_N^{n+1} &\in N_{\kappa_N}(B_N\mathbf{u}^{n+1}), \\
-\lambda_T^{n+\frac{1}{2}} &\in \partial_{2j}(\lambda_N^{n+\frac{1}{2}}, \alpha B_T u^{n+\frac{1}{2}} - C_T), \\
u(0) &= u_0, v(0) = u_1,
\end{align*}
\]

(6.32)

où

\[
\hat{\mathbf{L}} = L + \frac{4}{\Delta t^2} M u^n + \frac{2}{\Delta t} M v^n,
\]

(6.33)
6.5. POINT MILIEU EN IMPLICITANT LA FORCE DE CONTACT

\[\alpha = \frac{1}{2\Delta t} \quad \text{et} \quad C_T = \frac{1}{2\Delta t}B_T u^n. \]

(6.34)

C’est cette dernière formulation (6.32) qui sera utilisée pour la résolution numérique.

6.5.2 Analyse de stabilité

L’analyse de stabilité pour ce schéma se fera entre les états en \(n \) et \(n + 1 \) comme pour le point milieu standard. On commence tout d’abord par calculer \(\Delta J \) qui est donné par le lemme suivant :

Lemme 7 Le schéma (6.30)(6.31) est stable et la variation de son énergie est donnée par la formule

\[\Delta J = \Delta t \langle B_N^s \lambda_{n+1}^N + v^{n+\frac{1}{2}} \rangle + \Delta t \langle B_T^s \lambda_{n+1}^T + v^{n+\frac{1}{2}} \rangle \leq 0. \]

Preuve.

\[
\Delta J = J(u^{n+1}, v^{n+1}) - J(u^n, v^n) = \frac{1}{2} \langle M(v^{n+1} - v^n), v^{n+1} + v^n \rangle + \frac{1}{2} \langle K(u^{n+1} - u^n), u^{n+1} + u^n \rangle - \langle L, u^{n+1} - u^n \rangle.
\]

En utilisant la définition du schéma de point milieu, on a :

\[
\Delta J = \Delta t \left(\langle Ma^{n+\frac{1}{2}}, v^{n+\frac{1}{2}} \rangle + \langle Ma_{n+1}^N, v^{n+\frac{1}{2}} \rangle + \langle Ku^{n+\frac{1}{2}}, v^{n+\frac{1}{2}} \rangle - \langle L, v^{n+\frac{1}{2}} \rangle \right).
\]

De l’équation de l’élastodynamique et l’équation de la force de contact implicite du problème (6.26) on a

\[
Ma^{n+\frac{1}{2}} + Ma_{n+1}^N + Ku^{n+\frac{1}{2}} - L = B_N^s \lambda_{n+1}^N + B_T^s \lambda_{n+1}^T,
\]

et puisque \(K \) est symétrique, on peut réécrire \(\Delta J \) comme suit :

\[
\Delta J = \Delta t \left(\langle Ma^{n+\frac{1}{2}}, v^{n+\frac{1}{2}} \rangle + \langle Ma_{n+1}^N, v^{n+\frac{1}{2}} \rangle + \langle Ku^{n+\frac{1}{2}}, v^{n+\frac{1}{2}} \rangle - \langle L, v^{n+\frac{1}{2}} \rangle \right)
\]

\[
= \Delta t \langle Ma^{n+\frac{1}{2}} + Ma_{n+1}^N + Ku^{n+\frac{1}{2}} - L, v^{n+\frac{1}{2}} \rangle
\]

\[
= \Delta t \langle B_N^s \lambda_{n+1}^N + B_T^s \lambda_{n+1}^T + v^{n+\frac{1}{2}} \rangle,
\]

\[
= \Delta t \langle B_N^s \lambda_{n+1}^N + v^{n+\frac{1}{2}} \rangle + \langle B_T^s \lambda_{n+1}^T, v^{n+\frac{1}{2}} \rangle.
\]

Avec la définition de \(B_N^s \) et \(B_T^s \) on a

\[
\Delta J = \Delta t \langle \lambda_{n+1}^N, v^{n+\frac{1}{2}} \rangle + \Delta t \langle \lambda_{n+1}^T, v^{n+\frac{1}{2}} \rangle,
\]
Or, d’après la condition de frottement

\[\langle \lambda^{n+\frac{1}{2}}, v^{n+\frac{1}{2}}_T \rangle \leq 0, \]

ce qui donne

\[\Delta J \leq \Delta t \langle \lambda^{n+1}, v^{n+\frac{1}{2}}_N \rangle. \]

Et puisque \(\Delta t \, v^{n+\frac{1}{2}}_N = u^{n+1}_N - u^n_N \) et que la condition de contact est vérifiée en \(n + 1 \) (i.e. \(\langle \lambda^{n+1}_N, u^{n+1}_N \rangle = 0 \)) alors

\[\Delta J \leq -\langle \lambda^{n+1}_N, u^n_N \rangle. \]

Et puisque,

\[\langle \lambda^{n+1}_N, u^n_N \rangle \geq 0, \]

on obtient

\[\Delta J \leq 0. \]

6.6 Conclusion

Dans ce chapitre, on a présenté des adaptations de schémas classiques pour la semi-discrétisation en temps du problème de contact élastodynamique. Le but était de montrer que de tels schémas ne suffisent pas, en général, pour avoir la stabilité recherchée et pour les schémas qui sont stables, on observe une perte rapide de l’énergie.

Pour la \(\theta \)-méthode, on a montré que pour \(\theta = 1 \) le schéma est stable et que pour \(\theta = \frac{1}{2} \), on retrouvait bien le résultat de conservation de l’énergie dans le cas de l’élasticité linéaire.

Concernant le schéma de Newmark, on a montré la stabilité pour \(\beta = \frac{1}{2} \) et \(\gamma = 1 \). On a essayé d’adapter les travaux de Hugues [22] pour notre cas mais cela n’a pas donné de résultats nouveaux.

Ensuite, on a présenté le point milieu standard qui n’est pas stable. On a apporté une petite modification en implicitant la force de contact dans le schéma du point milieu standard. Ceci correspond à une discrétisation d’ordre un en temps pour le contact. Le nouveau schéma est stable.

L’étude précédente montre que les schémas implicites stables considérés sont dissipatifs. La question est de savoir s’il existe des schémas conservatifs pour le problème de contact (sans frottement). Mais avant d’aborder cette question, commençons par présenter au chapitre suivant les difficultés de la semi-discrétisation en espace, ensuite celles de la discrétisation totale.
Chapitre 7

Difficultés de la discrétisation

Dans ce chapitre, on traitera les difficultés de la semi-discrétisation en espace et de la discrétisation totale. D’abord, on présentera le problème de contact élastodynamique semi-discrétisé en espace. On montrera qu’il est mal posé. Ensuite, on donnera la formulation du problème totalement discrétisé et on montrera que l’énergie de ce problème est totalement dissipée au bout de quelques pas de temps.

7.1 Semi-discrétisation en espace et multiplicité de solutions

Dans cette section, on utilisera les mêmes notations qu’au chapitre 4, en particulier le système (4.2). On considère la formulation matricielle suivante du problème de contact élastodynamique sans frottement :

\[
\begin{cases}
\text{Trouver } U \in [0, T] \times \mathbb{R}^d \text{ et } ((\Lambda_N)_i) \in [0, T] \times \mathbb{R}^m \text{ satisfaisant} \\
M\ddot{U} + KU = L + B_N^T \Lambda_N, \\
-((\Lambda_N)_i) \in J_N((B_N U)_i), \forall i \in I_c \\
U^0 \text{ et } U^1 \text{ données},
\end{cases}
\]

(7.1)

où \(M, K \) et \(L \) sont respectivement la matrice de masse, la matrice de rigidité et le vecteur des forces extérieurs, \(d \) et \(m = \text{Card}(I_c) \) représentent le nombre de degrés de liberté pour le déplacement et le nombre de nœuds sur le bord de contact. Le système (7.1) représente une inclusion différentielle à solution mesure [36], [39].

Lemme 8 Le problème (7.1) est mal posé dans le sens où il admet une infinité de solutions.

Preuve. Pour la démonstration, on se limitera au cas simple d’un seul degré de liberté (d.d.l) représenté sur la Fig.7.1 par un ressort et une masse. Le ressort est en position d’équilibre quand la masse est en contact avec le sol.

89
Dans le cas d'un seul ddl, la formulation (7.1) devient :

\[
\begin{align*}
 m\ddot{U} + kU &= \Lambda_N, \\
 -\Lambda_N &\in J_N(U_N), \\
 U^0 \text{ et } U^1 &\text{ donnés,}
\end{align*}
\]

où \(m \) est le poids de la masse placée à l'extrémité du ressort et \(k \) son coefficient de rigidité. On choisit \(U^0 = 1 \) et \(U^1 = 0 \).

Dans le cas général, le système (7.2) apparaît sur la composante normale en chaque nœud de contact dans le système (7.1) à la différence près qu'un second membre supplémentaire apparaîsse (il correspond au reste du système).

On a \(U_N = U \) car le mouvement est vertical. D'autre part, en utilisant la définition de \(J_N \), le système (7.2) est équivalent à :

\[
\begin{align*}
 m\ddot{U} + kU &= \Lambda_N, \\
 \Lambda_N &= (\Lambda_N - rU)_, \forall r > 0, \\
 U^0 \text{ et } U^1 &\text{ donnés,}
\end{align*}
\]

Fig. 7.1 – système à un degré de liberté.
où \((.)_–\) désigne la partie négative et la première équation de (7.3) est une équation différentielle ordinaire du second ordre.

Quand il y a contact, on a \(U = 0\). En remplaçant dans la première équation de (7.3), on trouve
\[
m\ddot{U} = \Lambda_N.
\]
Quand il n’y a pas contact, on a \(\Lambda_N = 0\). On remplace dans la première équation de (7.3) et on obtient :
\[
\begin{aligned}
m\ddot{U} + kU &= 0, \\
0 &= (-rU)_–, \forall r > 0, \\
U^0 \text{ et } U^1 &\text{ donnés}.
\end{aligned}
\]
(7.4)

La deuxième équation montre que \(U < 0\). La solution générale de la première équation est donnée par
\[
U = a \cos \left(t\sqrt{\frac{k}{m}} \right) + b \sin \left(t\sqrt{\frac{k}{m}} \right), \ a, b \in \mathbb{R}.
\]

Le contact a lieu quand \(U = 0\), ce qui veut dire l’instant de contact
\[
t_c = \frac{\pi}{2} \sqrt{\frac{m}{k}} + 2p\pi, \forall p \in \mathbb{Z}.
\]

Ainsi, on peut définir une infinie de solution pour le système (7.3) en posant :
\[
\begin{aligned}
U(t) &= -\cos \left(t\sqrt{\frac{k}{m}} \right), \ \forall \ 0 \leq t < \frac{\pi}{2} \sqrt{\frac{m}{k}} , \\
U(t) &= \alpha \cos \left(t\sqrt{\frac{k}{m}} \right), \ \forall \ \frac{\pi}{2} \sqrt{\frac{m}{k}} < t < \frac{\pi}{2} \sqrt{\frac{m}{k}}, \ \forall \ \alpha \geq 0.
\end{aligned}
\]

D’où le problème de contact élastodynamique semi-discrétisé en espace est mal posé car \(\alpha\) peut être choisi arbitrairement.

7.2 La discrétisation totale et la dissipation de l’énergie

L’un des objectifs recherchés est la conservation de l’énergie du problème de contact élastodynamique. Or, le fait que le problème soit mal posé rend l’étude plus difficile. Plusieurs auteurs se sont investis pour répondre à ce genre de questions. Dans le cadre de contact entre corps rigides, Moreau a introduit une loi d’impact avec un coefficient de restitution. Un peu plus tard, une généralisation des travaux de Moreau a été établie dans [39], [41] par Paoli et Schatzman qui ont développé un schéma d’intégration en temps bien adapté aux corps rigides (il sera présenté un
peu plus loi dans le chapitre 8). Cependant, ceci s’est avéré insuffisant pour les corps déformables car pour un coefficient de restitution quelconque, le système tend vers une restitution globale de l’énergie quand le pas d’espace tend vers zéro.

Pour illustrer ceci, on utilise toujours l’exemple de la section précédente. On choisit une semi-discretisation en temps par la θ-méthode. Alors, la discrétisation totale du problème de contact élastodynamique s’exprime comme suit :

$$
\begin{align*}
U^{n+1} &= U^n + \Delta t \left((1 - \theta)V^n + \theta V^{n+1}\right), \\
V^{n+1} &= V^n + \Delta t \left((1 - \theta)A^n + \theta A^{n+1}\right),
\end{align*}
$$

(7.5)

$$
\begin{align*}
mA^{n+1} + kU^{n+1} &= \Lambda_N^{n+1}, \\
\Lambda_N^{n+1} &= (\Lambda_N^{n+1} - rU^{n+1})_-, \forall r > 0, \\
U^0 \text{ et } U^1 \text{ donnés.}
\end{align*}
$$

(7.6)

Le système (7.6) est équivalent à :

$$
\begin{align*}
\left(\frac{m}{\theta^2\Delta t^2} + k\right)U^{n+1} &= \Lambda_N^{n+1} + R_n(\theta), \\
\Lambda_N^{n+1} &= (\Lambda_N^{n+1} - rU^{n+1})_-, \forall r > 0, \\
U^0 \text{ et } U^1 \text{ donnés,}
\end{align*}
$$

(7.7)

où

$$
R_n(\theta) = \frac{m}{\theta^2\Delta t^2} U^n + \frac{m}{\theta^2\Delta t} V^n + \frac{m(1 - \theta)}{\theta} A^n \text{ et } (x)_- = \min(x, 0).
$$

Proposition 6 La solution du système (7.7) est donnée par :

$$
U^{n+1} = \frac{(R_n(\theta))_-}{\frac{m}{\theta^2\Delta t^2} + k},
$$

de plus,

$$
V^{n+1} = \frac{U^{n+1} - U^n}{\theta\Delta t} - \frac{1 - \theta}{\theta} V^n \text{ et } \Lambda_N^{n+1} = -(R_n(\theta))_+.
$$

Preuve. La première équation du système (7.7) donne :

$$
U^{n+1} = \frac{R_n(\theta) + \Lambda_N^{n+1}}{\frac{m}{\theta^2\Delta t^2} + k}.
$$

(7.8)
On a toujours $U^{n+1} \leq 0$ et sa valeur dépend de la valeur de Λ_n^{n+1} et du signe du terme $R_n(\theta) + \Lambda_n^{n+1}.$

En effet, si ce terme est positif alors U^{n+1} est nul.

Or $\Lambda_n^{n+1} = (\Lambda_n^{n+1} - rU^{n+1})_-$, ce qui nous donne deux cas :

- 1er cas : si $\Lambda_n^{n+1} - rU^{n+1} \geq 0$ alors d’après la deuxième équation du système (7.7) $\Lambda_n^{n+1} = 0$. On obtient :

$$U^{n+1} = \frac{R_n(\theta)}{m} - \frac{1}{\theta^2 \Delta t^2} + k,$$

sinon, $U^{n+1} = 0.

Ce qui est équivalent à

$$U^{n+1} = \frac{(R_n(\theta))_-}{m} - \frac{1}{\theta^2 \Delta t^2} + k,$$

- 2ème cas : si $\Lambda_n^{n+1} - rU^{n+1} < 0$ alors $\Lambda_n^{n+1} = \Lambda_n^{n+1} - rU^{n+1}$, ce qui veut dire que $U^{n+1} = 0$ et puisque $\Lambda_n^{n+1} \leq 0$, on aura donc :

$$\text{si } R_n(\theta) \geq 0, \quad \Lambda_n^{n+1} = -R_n(\theta),$$

sinon, $\Lambda_n^{n+1} = 0.$

Ce qui est équivalent à

$$\Lambda_n^{n+1} = -(R_n(\theta))_+.$$

On peut aussi calculer la vitesse comme suit

$$V^{n+1} = \frac{(R_n(\theta))_-}{(\frac{m}{\theta^2 \Delta t^2} + k) \theta \Delta t} - \frac{1}{\theta \Delta t} U^n - \frac{1 - \theta}{\theta} V^n.$$

Calcul de restitution d’énergie

On choisit $U^n = a < 0$ et $V^n = \frac{-a}{\Delta t}$. Donc, $\Lambda_n^n = 0.$ car il n’y pas de contact à l’instant t_n.

Ensuite, on calcule les mêmes quantités à l’étape $n + 1$ et on trouve :

$$R_n(\theta) = \frac{m}{\theta^2 \Delta t^2} U^n + \frac{m}{\theta^2 \Delta t} V^n + \frac{m(1 - \theta)}{\theta} A^n$$

$$= \frac{m}{\theta^2} \left(\frac{U^n}{\Delta t^2} + \frac{V^n}{\Delta t} \right) + \frac{m(1 - \theta)}{\theta} A^n$$

$$= \frac{m(1 - \theta)}{\theta} A^n.$$
A partir du système (7.6),

\[A^n = \frac{-k \ U^n + \Lambda^n}{m} = \frac{k \ U^n}{m} > 0, \]

d'où \((R_n(\theta))_- = 0\) et \((R_n(\theta))_+ = -\frac{1 - \theta}{\theta} k \ a\); et donc, on a :

\[U^{n+1} = 0, \quad \Lambda^{n+1}_N = \frac{(1 - \theta)k \ a}{\theta}, \quad \Lambda^{n+1}_m = \frac{(1 - \theta)k \ a}{m \ \theta} \quad \text{et} \quad V^{n+1} = -\frac{a}{\Delta t}. \]

On continue à l'étape suivante :

On a

\[R_{n+1}(\theta) = \frac{m}{\theta^2 \Delta t^2} U^{n+1} + \frac{m}{\theta^2 \Delta t} V^{n+1} + \frac{m(1 - \theta)}{\theta} A^{n+1} \]

\[= -\frac{ma}{\theta^2 \Delta t^2} + \frac{(1 - \theta)^2 k \ a}{\theta^2} \]

\[= \frac{a}{\theta^2} \left((1 - \theta)^2 k - \frac{m}{\Delta t^2}\right). \]

\(R_{n+1}(\theta) > 0\) pour \(\Delta t\) suffisamment petit,

d'où

\[\Lambda^{n+2}_N = \frac{a}{\theta^2} \left(\frac{m}{\Delta t^2} - (1 - \theta)^2 k\right), \quad U^{n+1} = 0 \quad \text{et} \quad V^{n+2} = \frac{(1 - \theta) a}{\theta \ \Delta t}. \]

Ce qui nous donne un coefficient de restitution \(e = \frac{(1 - \theta)}{\theta}\), or \(e \in [0, 1]\) ce qui veut dire que \(\theta \in [\frac{1}{2}, 1]\) qui est l'intervalle de stabilité de la \(\theta\)-méthode (pour le problème d'élasticité linéaire).

7.3 Conclusion

Dans ce chapitre, on a montré d'abord le caractère mal posé du problème de contact élasto-dynamique semi-discretisé en espace.

Par ailleurs, pour le problème (7.2) d'un seul d.d.l, on a établi un résultat de stabilité qui se révèlera faux pour le problème (7.1) complet comme on le verra dans le chapitre des résultats numériques.
Chapitre 8

Nouvelles stratégies

Dans tout ce chapitre, on semi-discrétise le problème de contact élastodynamique en espace. On présente de nouveaux schémas proposés pour venir à bout des difficultés rencontrées dans le chapitre précédent. Dans la première section, on considère le schéma qui a été introduit dans le cadre des corps rigides par Paoli et Schatzman [39] défini via une loi d’impact. Cette loi introduit un coefficient de restitution et permet de définir complètement le mouvement de la structure. On propose dans la section suivante une adaptation du schéma de Paoli et Schatzman pour assurer une certaine condition de stabilité. La troisième section concerne un schéma proche de celui de Chawla et Laursen [31]. Il résulte d’un point milieu standard et d’une condition de contact modifiée, exprimée en terme de vitesse. On montrera que le schéma ainsi défini est stable. Dans la dernière section, on donne une nouvelle discrétisation en espace du problème de contact élastodynamique. On aboutira ainsi à un problème bien posé admettant une solution lipschitzienne.

La formulation matricielle utilisée dans tout ce chapitre est la suivante :

\[
\begin{align*}
M\ddot{U} + KU &= L + B_T^T\Lambda_N + B_T^T\Lambda_T, \\
-\Lambda_N &\in N_{K_N}(B_NU), \\
-\Lambda_T &\in \partial_2j(\Lambda_N, B_TV).
\end{align*}
\]

(8.1)

8.1 Schéma de Paoli et Schatzman

Le schéma de Paoli et Schatzman [39] sort du cadre des schémas standards utilisés dans la littérature. Il fait intervenir un paramètre de restitution \(e \in [0,1]\) qui est à déterminer expérimentalement (voir [33]).

L’idée générale du schéma consiste à utiliser un schéma centré (on utilise trois pas de temps) pour la vitesse et à discrétiser le déplacement normal en utilisant la notion de point proximal via le coefficient de restitution \(e\).
CHAPITRE 8. NOUVELLES STRATÉGIES

Le problème de contact élastodynamique sans frottement totalement discrétisé avec le schéma de Paoli et Schatzman s'énonce comme suit :

\[
\begin{align*}
U_0 \text{ et } V_0 \text{ donnés, } U^1 &= U^0 + \Delta t V^0 + \Delta t z(\Delta t), \text{ avec } \lim_{\Delta t \to 0} z(\Delta t) = 0, \\
\forall n \geq 2, F^n &\in \frac{U^{n+1} - 2U^n + U^{n-1}}{\Delta t^2} + \partial I_{\kappa_N} \left(\frac{U^{n+1} + eU^{n-1}}{1 + e} \right), \\
F^n &= M^{-1}(L - KU^n), \\
V^n &= \frac{U^{n+1} - U^{n-1}}{2\Delta t}.
\end{align*}
\]

(8.2)

Le schéma a été proposé la première fois avec une matrice de masse triviale (\(i.e. M = \text{Id}_{\mathbb{R}^d}\)). Il est équivalent à l'algorithme suivant :

\[
\begin{align*}
U_0 \text{ et } V_0 \text{ donnés, } U^1 &= U^0 + \Delta t V^0 + \Delta t z(\Delta t), \text{ avec } \lim_{\Delta t \to 0} z(\Delta t) = 0, \\
\forall n \geq 2, U^{n+1} &= -eU^{n-1} + (1 + e)P_N K_N \left(\frac{2U^n - (1 - e)U^{n-1} + \Delta t^2 F^n}{1 + e} \right), \\
F^n &= M^{-1}(L - KU^n), \\
V^n &= \frac{U^{n+1} - U^{n-1}}{2\Delta t}.
\end{align*}
\]

(8.3)

Pour la démonstration, le lecteur peut se référer à [40], [41].

On s’est inspiré de ce schéma pour trouver un autre algorithme dont l’étude de stabilité est plus facile. C’est l’objectif de la section suivante.

8.2 Modification du schéma de Paoli et Schatzman

8.2.1 Présentation du schéma

Dans cette section, nous proposons une adaptation du schéma de Paoli et Schatzman. L’idée est d’utiliser un schéma de point milieu pour la partie élastodynamique. Le schéma proposé s’énonce comme suit :

\[
U^{n+1} = U^n + \Delta t V^{n+\frac{1}{2}}, \quad U^{n+\frac{1}{2}} = \frac{U^{n+1} + U^n}{2},
\]

(8.4)
Il faut remarquer que la condition de contact est vérifiée pour le déplacement sur le point proximal défini par
\[\frac{B_N U^{n+1} + eB_N U^{n-1}}{1 + e} \]
et la condition de frottement est donnée sur la vitesse moyenne de deux demi-pas donnée par
\[\frac{B_T V^{n+\frac{1}{2}} + B_T V^{n-\frac{1}{2}}}{2} \].

8.2.2 Analyse de stabilité

L’analyse de ce schéma ci-dessus donne le résultat suivant concernant la variation de l’énergie \(\Delta J = J(U^{n+\frac{1}{2}}, V^{n+\frac{1}{2}}) - J(U^{n-\frac{1}{2}}, V^{n-\frac{1}{2}}) \):

\[
\text{Lemme 9} \quad \text{La variation de l’énergie pour le schéma (8.4)(8.5) est donnée par}
\]
\[
\Delta J = \frac{1}{2} \langle \Lambda_N^n, B_N U^{n+1} - B_N U^{n-1} \rangle + \Delta t \langle \Lambda_T^n, \frac{B_T V^{n+\frac{1}{2}} + B_T V^{n-\frac{1}{2}}}{2} \rangle - \frac{1}{2} \langle \Lambda_N^n, B_N U^{n-1} \rangle.
\]

\text{Preuve.} \quad \text{Commençons d’abord par calculer la variation de l’énergie du système.}

\[\Delta J = J(U^{n+\frac{1}{2}}, V^{n+\frac{1}{2}}) - J(U^{n-\frac{1}{2}}, V^{n-\frac{1}{2}}) = \]
\[= \frac{1}{2} \langle M \left(V^{n+\frac{1}{2}} - V^{n-\frac{1}{2}} \right), V^{n+\frac{1}{2}} + V^{n-\frac{1}{2}} \rangle + \frac{1}{2} \langle K \left(U^{n+\frac{1}{2}} - U^{n-\frac{1}{2}} \right), U^{n+\frac{1}{2}} + U^{n-\frac{1}{2}} \rangle \]
\[- \langle L, U^{n+\frac{1}{2}} - U^{n-\frac{1}{2}} \rangle, \]
 Avec la définition de $U^{n+\frac{1}{2}}$, $U^{n-\frac{1}{2}}$, $V^{n+\frac{1}{2}}$ et de $V^{n-\frac{1}{2}}$, on obtient
\[
U^{n+\frac{1}{2}} - U^{n-\frac{1}{2}} = \frac{U^{n+1} - U^{n-1}}{2}, \quad U^{n+\frac{1}{2}} + U^{n-\frac{1}{2}} = \frac{U^{n+1} + 2U^n + U^{n-1}}{2},
\]
\[
V^{n+\frac{1}{2}} - V^{n-\frac{1}{2}} = \frac{U^n - 2U_h + U^{n-1}}{\Delta t}, \quad V^{n+\frac{1}{2}} + V^{n-\frac{1}{2}} = \frac{U^{n+1} - U^{n-1}}{\Delta t}.
\]
En remplaçant dans le calcul ci-dessus de ΔJ, on trouve :
\[
\Delta J = \frac{1}{2\Delta t^2} \langle M \left(U^{n+1} - 2U^n + U^{n-1} \right), U^{n+1} - U^{n-1} \rangle
+ \frac{1}{8} \langle K \left(U^{n+1} + 2U^n + U^{n-1} \right), U^{n+1} - U^{n-1} \rangle
- \frac{1}{2} \langle L, U^{n+1} - U^{n-1} \rangle
= \frac{1}{2} \langle M \left(\frac{U^{n+1} - 2U^n + U^{n-1}}{\Delta t^2} \right) + K \left(\frac{U^{n+1} + 2U^n + U^{n-1}}{4} \right) - L, U^{n+1} - U^{n-1} \rangle.
\]
Or d’après la première équation du système (8.5), on a :
\[
M \left(\frac{U^{n+1} - 2U^n + U^{n-1}}{\Delta t^2} \right) + K \left(\frac{U^{n+1} + 2U^n + U^{n-1}}{4} \right) - L = B_N^T \Lambda_n^N + B_T^T \Lambda_n^T.
\]
Alors,
\[
\Delta J = \frac{1}{2} \langle B_N^T \Lambda_n^N + B_T^T \Lambda_n^T, U^{n+1} - U^{n-1} \rangle
= \frac{1}{2} \langle B_N^T \Lambda_n^N, U^{n+1} - U^{n-1} \rangle + \frac{1}{2} \langle B_T^T \Lambda_n^T, U^{n+1} - U^{n-1} \rangle
= \frac{1}{2} \langle B_N^T \Lambda_n^N, U^{n+1} - U^{n-1} \rangle + \Delta t \langle B_T^T \Lambda_n^T, \frac{V^{n+\frac{1}{2}} + V^{n-\frac{1}{2}}}{2} \rangle
= \frac{1}{2} \langle \Lambda_n^N, B_N U^{n+1} - B_N U^{n-1} \rangle + \Delta t \langle \Lambda_n^T, B_T V^{n+\frac{1}{2}} + B_T V^{n-\frac{1}{2}} \rangle
\]
Or, selon la condition de frottement représentée par la troisième équation du système (8.5) on obtient :
\[
\langle \Lambda_n^T, B_T V^{n+\frac{1}{2}} + B_T V^{n-\frac{1}{2}} \rangle \leq 0,
\]
alors
\[
\Delta J \leq \frac{1}{2} \langle \Lambda_n^N, B_N U^{n+1} - B_N U^{n-1} \rangle.
\]
Maintenant, en posant \(U^{n+1} - U^{n-1} = U^{n+1} + eU^{n-1} - (1 + e)U^{n-1} \) on a :

\[
\Delta J \leq \frac{1}{2} \langle \Lambda^n, B_N U^{n+1} + eB_N U^n \rangle - \frac{1 + e}{2} \langle \Lambda^n, B_N U^{n-1} \rangle.
\]

Or, selon la condition de contact représentée par la deuxième équation du système (8.5) on obtient :

\[
\langle \Lambda^n, B_N U^{n+1} + eB_N U^n \rangle = 0,
\]

alors

\[
\Delta J \leq -\frac{1 + e}{2} \langle \Lambda^n, B_N U^{n-1} \rangle.
\]

Le lemme 9, nous permet d’établir que le schéma (8.4)(8.5) est stable pour \(e = 0 \) et pour \(e = -1 \).

Pour \(e = 0 \), on a \(\forall \, n : B_N U^n \leq 0 \) et le schéma correspond à une implicite de la force de contact. Pour \(e = -1 \), il ne correspond à rien physiquement.

8.3 Point milieu avec une condition de contact modifiée

Ces dernières années, un intérêt croissant a été dévolu aux schémas d’intégrations en temps qui conservent l’énergie du problème de contact élastodynamique. En particulier, dans le cas sans frottement, Laursen et Chawla dans [31] ont montré l’importance de la condition de persistance pour obtenir la conservation de l’énergie dans le cas discret. Cependant, dans ce travail il a été autorisé une interpénétration qui tend vers zéro quand le pas de temps tend vers zéro. Cet inconvénient a été résolu par Love et Laursen [29] en introduisant un saut de vitesse durant l’impact, permettant de respecter la condition de contact tout en évitant les problèmes de l’impact. Mais le prix à payer est de résoudre un problème supplémentaire en vitesse. D’autre part, en considérant une pénalisation de la loi de contact, Hauret [20] a pu lui aussi venir à bout de cet inconvénient.

Dans le cadre de cette thèse, on a fait le choix de ne pas utiliser ni de méthode de pénalisation ni de méthode de régularisation. On a opté pour un schéma proche de celui de Laursen et Chawla. On considère dans cette section le problème de contact élastodynamique (8.1) avec une condition de contact nodale (voir section 4.1). Pour simplifier, on prend le cas sans frottement. Le problème semi-discrétisé est défini comme suit :
trouver $U : [0, T] \rightarrow \mathbb{R}^d$ tel que

$$
\begin{align*}
M \ddot{U} + KU &= L + \sum_{i \in I_C} \Lambda^i_N N_i, \\
\Lambda^i_N &\leq 0, \quad U.N_i \leq 0, \quad \Lambda^i_N (U.N_i) = 0, \forall i \in I_C, \\
U(0) &= U^0, \quad \dot{U}(0) = U^1,
\end{align*}
$$

(8.6)

où d est le nombre de degrés de liberté (ddl) pour le déplacement U, les notations M, K, F désignent respectivement la matrice de masse, la matrice de rigidité et les densités de forces données, I_C est l’ensemble des indices du bord de contact. En chaque noeud $i \in I_C$, on note Λ^i_N et N_i la force normale et la normale unité sortante.

La deuxième ligne dans le système (8.6) représente la condition de contact classique. Cependant, en faisant l’analyse énergétique des schémas d’intégration en temps, on a remarqué que cette condition ne permettait pas d’avoir la conservation de l’énergie et que le calcul faisait apparaître la vitesse normale. On propose la condition de contact suivante

$$
\begin{align*}
U.N_i < 0 \implies \Lambda^i_N &= 0, \\
U.N_i \geq 0 \implies \dot{U}.N_i \leq 0, \quad \Lambda^i_N (\dot{U}.N_i) &= 0.
\end{align*}
$$

(8.7)

Elle est équivalente à la deuxième ligne du système (8.6) au moins pour une solution régulière. De plus, l’expression (8.7) en terme de vitesse est très proche de celle introduite dans [36]. La vitesse est à comprendre au sens de la dérivée à droite du déplacement i.e.

$$
\dot{U}(x) = \lim_{l \to 0^+} \frac{U(x + l) - U(x)}{l}.
$$

La deuxième ligne du système (8.7) est exactement ce qu’on appelle la condition de persistance introduite par Laursen et Chawla dans [31]. Elle implique la non-interpénétration.

La discrétisation qu’on propose consiste en un schéma de point milieu standard pour la partie élastodynamique du problème et un schéma centré aux différences finies pour la condition de contact équivalente. L’équation de l’élastodynamique s’écrit comme suit :

$$
\begin{align*}
U^n \text{ et } V^0 \text{ donnés}, \quad U^1 &= U^0 + \Delta t V^0 + \Delta t z(\Delta t) \text{ avec } \lim_{\Delta t \to 0} z(\Delta t) = 0, \\
M \left(\frac{U^{n+1} - 2U^n + U^{n-1}}{\Delta t^2} \right) + K \left(\frac{U^{n+1} + 2U^n + U^{n-1}}{4} \right) &= L + \sum_{i \in I_C} \Lambda^{i,n}_N N_i, \forall n \geq 1,
\end{align*}
$$

(8.8)

où Δt est le pas de temps.

Et la condition de contact (8.7) est approchée par :

$$
\begin{align*}
U^n.N_i < 0 \implies \Lambda^{i,n}_N &= 0, \\
U^n.N_i \geq 0 \implies \frac{(U^{n+1} - U^{n-1}).N_i}{2\Delta t} \leq 0, \quad \Lambda^{i,n}_N \leq 0, \quad \Lambda^{i,n}_N \left(\frac{(U^{n+1} - U^{n-1}).N_i}{2\Delta t} \right) &= 0.
\end{align*}
$$

(8.9)
Théorème 3 Le schéma (8.8)(8.9) est conservatif.

Preuve. On a

\[\Delta J = J(U^{n+\frac{1}{2}}, V^{n+\frac{1}{2}}) - J(U^{n-\frac{1}{2}}, V^{n-\frac{1}{2}})\]

\[= \frac{1}{2} \langle M \left(V^{n+\frac{1}{2}} + V^{n-\frac{1}{2}}\right), V^{n+\frac{1}{2}} - V^{n-\frac{1}{2}}\rangle + \frac{1}{2} \langle K \left(U^{n+\frac{1}{2}} + U^{n-\frac{1}{2}}\right), U^{n+\frac{1}{2}} - U^{n-\frac{1}{2}}\rangle - \langle L, U^{n+\frac{1}{2}} - U^{n-\frac{1}{2}}\rangle.\]

A partir de la définition de \(U^{n+\frac{1}{2}}\) et de \(V^{n+\frac{1}{2}}\), on a :

\[V^{n+\frac{1}{2}} + V^{n-\frac{1}{2}} = \frac{U^{n+1} - U^{n-1}}{\Delta t}, \quad V^{n+\frac{1}{2}} - V^{n-\frac{1}{2}} = \frac{U^{n+1} - 2U^n + U^{n-1}}{\Delta t},\]

\[U^{n+\frac{1}{2}} + U^{n-\frac{1}{2}} = \frac{U^{n+1} + 2U^n + U^{n-1}}{2} \quad \text{et} \quad U^{n+\frac{1}{2}} - U^{n-\frac{1}{2}} = \frac{U^{n+1} - U^{n-1}}{2}.\]

En plus, en utilisant le fait que \(M\) et \(K\) soient symétriques, on obtient :

\[\Delta J = \frac{1}{2\Delta t^2} \langle M \left(U^{n+1} - 2U^n + U^{n-1}\right), U^{n+1} - U^{n-1}\rangle \]

\[+ \frac{1}{8} \langle K \left(U^{n+1} + 2U^n + U^{n-1}\right), U^{n+1} - U^{n-1}\rangle - \frac{1}{2} \langle F, U^{n+1} - U^{n-1}\rangle\]

\[= \frac{1}{2} \langle M \left(\frac{U^{n+1} - 2U^n + U^{n-1}}{\Delta t^2}\right), U^{n+1} - U^{n-1}\rangle + K \left(\frac{U^{n+1} + 2U^n + U^{n-1}}{4}\right) - L, U^{n+1} - U^{n-1}\rangle.\]

Or d’après la relation (8.8), on a

\[M \left(\frac{U^{n+1} - 2U^n + U^{n-1}}{\Delta t^2}\right) + K \left(\frac{U^{n+1} + 2U^n + U^{n-1}}{4}\right) - f = \sum_{i \in I_C} \Lambda^i_{n} N_i.\]

D'où

\[\Delta J = \frac{1}{2} \langle \sum_{i \in I_C} \Lambda^i_{n} N_i, U^{n+1} - U^{n-1}\rangle = \Delta t \sum_{i \in I_C} \Lambda^i_{n} \left(\frac{U^{n+1}.N_i - U^{n-1}.N_i}{2\Delta t}\right).\]

Finalement, avec la relation (8.9) on obtient \(\Delta J = 0\).
- La différence entre le schéma que nous venions de présenter et celui proposé par Laursen et Chawla est que la condition de contact (8.7) est discrétisée avec un schéma centré aux différences finies.
- Avec une telle discrétisation de la condition (8.7), on autorise de petites interpénétrations qui tendent vers zéro quand le pas d'espace tend vers zéro. Néanmoins, ceci n'affecte pas la stabilité du schéma.

Nous avons bien obtenu un schéma conservatif en dépit de la mauvaise approximation de la force de contact (qui sera présentée dans le chapitre 9). Dans la section suivante, on essayera de venir à bout de cette difficulté en présentant une nouvelle méthode.

8.4 Elimination de la masse sur le bord

Le caractère mal posé du problème (8.6) (voir la section 7.1) vient du fait que les noeuds du bord de contact ont leur propre inertie. Ceci donne lieu à des instabilités surtout pour les schémas qui conservent l'énergie en élastodynamique linéaire (Crank-Nicholson, point milieu standard ...).

Une approche pour éliminer ces instabilités et rendre le problème bien posé est d'introduire une nouvelle distribution de la masse en conservant la masse totale, le centre de gravité et les moments d'inertie. Cette distribution de la masse est faite de sorte que les points du bord de contact n'aient plus d'inertie (comme dans le cas continu).

8.4.1 Construction de la nouvelle matrice de masse

On note M_0 la matrice de masse habituelle et M la nouvelle matrice de masse. La condition la plus importante pour construire cette méthode est de supposer qu'on ait

$$N_i^T M N_j = 0, \forall i, j \in I_c,$$

où N_i est la normale unité sortante au noeud $i \in I_c$. Cette hypothèse nous permet d'écrire la matrice de masse sous la forme suivante :

$$M = \begin{pmatrix} M & 0 \\ 0 & 0 \end{pmatrix}.$$

Le remplissage de la matrice M est identique à celui de M_0, ce qui veut dire qu'il y aura des zéros dans M là où il y avait des zéros pour M_0. La matrice de masse équivalente est construite de telle sorte que les quantités suivantes soient conservées :
la masse totale \[\int_{\Omega} \rho \, dx = c_1, c_1 \in \mathbb{R} \]

le centre de gravité \[\int_{\Omega} \rho \, x_k \, dx = c_2, c_2 \in \mathbb{R}, \ k = 1, 2, 3, \]

les moments d’inertie \[\int_{\Omega} \rho \, x_k \, x_l \, dx = c_3, c_3 \in \mathbb{R}, \ k, l = 1, 2, 3, \]

où \(x_1, x_2 \) et \(x_3 \) représentent les composantes de \(x \).

Pour cela, on résout le problème suivant :

\[
\begin{align*}
\inf \quad & \frac{1}{2} \| M - M_0 \|^2 \\
\text{s. t.} \quad & N_i^T M N_j = 0, \ \forall \ i, j \in I_C, \\
& X^T (M - M_0) X = 0, \\
& X^T (M - M_0) Y_k = 0, \\
& Y_k^T (M - M_0) Y_l = 0.
\end{align*}
\] \hspace{1cm} (8.10)

où

\[X = \frac{1}{\sqrt{d}} \begin{pmatrix} 1 \\ \vdots \\ \vdots \\ 1 \end{pmatrix}, \quad Y_k = \left(y_i \right)_i \text{ avec } \frac{1}{\sqrt{d}} \sum_{i,j} y_i \psi_i \psi_j = x_k. \]

Dans les notations que nous venons de donner, \((\psi_i)_i \) représentent les fonctions de bases de la méthode élément fini utilisée (voir chapitre 3) et la matrice de masse est données par :

\[M = (M_{ij}) \text{ telle que } M_{ij} = \int_{\Omega} \rho \psi_i \psi_j \, dx. \]

On pose

\[E = \{ M \text{ telle que } N_i^T M N_j = 0, \ \forall \ i, j \in I_C, \ X^T (M - M_0) X = 0, \]

\[X^T (M - M_0) Y_k = 0 \text{ et } Y_k^T (M - M_0) Y_l = 0 \}. \]

Le problème de minimisation (8.10) est équivalent au problème suivant :

\[
\inf_{M \in E} \sup_{\lambda \in \mathbb{R}^4} \mathcal{L}(M, \lambda),
\] \hspace{1cm} (8.11)

où le Lagrangien est donné par la formule

\[
\mathcal{L}(M, \lambda) = \frac{1}{2} \| M - M_0 \|^2 + \lambda_1 N_i^T M N_j + \lambda_2 X^T (M - M_0) X \\
+ \lambda_3 X^T (M - M_0) Y_k + \lambda_4 Y_k^T (M - M_0) Y_l, \quad \text{où } \lambda = (\lambda_1, \lambda_2, \lambda_3, \lambda_4)^T.
\]
Chapitre 8. Nouvelles stratégies

Ensuite, on résout le problème (8.11) avec une méthode d’Uzawa par exemple.

8.4.2 Analyse de stabilité

Après avoir construit la nouvelle matrice de masse, on peut étudier maintenant le problème défini via cette matrice. Cette méthode permet d’avoir les deux résultats suivants.

Théorème 4 Le problème (8.6) avec la matrice de masse équivalente est bien posé et admet une solution lipschitzienne.

Preuve. Si on ordonne les degrés de liberté de sorte que les derniers soient ceux du bord de contact, alors on peut décomposer chaque matrice et chaque vecteur comme suit :

\[
M = \begin{pmatrix} M_0 & 0 \\ 0 & 0 \end{pmatrix}, \quad K = \begin{pmatrix} K & C^T \\ C & D \end{pmatrix}, \quad L = \begin{pmatrix} L \\ 0 \end{pmatrix}, \quad N_i = \begin{pmatrix} 0 \\ \tilde{N}_i \end{pmatrix} \text{ et } U = \begin{pmatrix} U \\ \tilde{U} \end{pmatrix}.
\]

Ainsi, le problème (8.6) devient :

\[
\begin{cases}
(M_0 \ddot{U} + 0 \ddot{\tilde{U}}) + (K \dot{U} + C^T \dot{\tilde{U}}) + (L_0 + \sum_{i \in I_C} \Lambda^i_N \tilde{N}_i) = 0, \\
\Lambda^i_N \leq 0, \quad U.N_i \leq 0, \quad \Lambda^i_N(U.N_i) = 0, \forall \ i \in I_C, \\
U(0) = U^0, \dot{U}(0) = U^1.
\end{cases}
\]

Ce qui est équivalent à

\[
\begin{cases}
\ddot{U} + (K \dot{U} + C^T \dot{\tilde{U}}) = L_0 - \sum_{i \in I_C} \Lambda^i_N \tilde{N}_i, \\
\Lambda^i_N \leq 0, \quad U.N_i \leq 0, \quad \Lambda^i_N(U.N_i) = 0, \forall \ i \in I_C, \\
U(0) = U^0, \dot{U}(0) = U^1.
\end{cases}
\]

La seconde équation du système (8.13) avec la condition de contact définissent d’une manière unique \(\tilde{U} \) dès que \(\tilde{U} \) est donné. En effet, Le système suivant

\[
\begin{cases}
C\dot{U} + D\dot{\tilde{U}} = \sum_{i \in I_C} \Lambda^i_N \tilde{N}_i, \\
\Lambda^i_N \leq 0, \quad U.N_i \leq 0, \quad \Lambda^i_N(U.N_i) = 0, \forall \ i \in I_C.
\end{cases}
\]
peut être écrit sous la forme variationnelle suivante :

\[b(\tilde{U}, V - \tilde{U}) - l(V - \tilde{U}) \geq 0, \forall V \in K, \]

où \[b(\tilde{U}, V) = V^T D \tilde{U} \quad l(V) = V^T C \tilde{U} \quad \text{et} \quad K = \{ V : V N_i \leq 0 \}. \]

On suppose que le problème (8.13) admet deux solutions \(U_1 \) et \(U_2 \) alors on a :

\[b(\tilde{U}_1, V - \tilde{U}_1) - l_1(V - \tilde{U}_1) \geq 0, \quad \forall V \in K, \]

\[b(\tilde{U}_2, V - \tilde{U}_2) - l_2(V - \tilde{U}_2) \geq 0, \quad \forall V \in K. \]

En remplaçant \(V \) par \(\tilde{U}_2 \) dans la première inéquation et par \(\tilde{U}_1 \) dans la deuxième, on obtient :

\[b(\tilde{U}_1, \tilde{U}_2 - \tilde{U}_1) - l_1(\tilde{U}_2 - \tilde{U}_1) \geq 0, \quad \forall V \in K, \]

\[b(\tilde{U}_2, \tilde{U}_1 - \tilde{U}_2) - l_2(\tilde{U}_1 - \tilde{U}_2) \geq 0, \quad \forall V \in K. \]

Ce qui nous donne

\[b(\tilde{U}_1 - \tilde{U}_2, \tilde{U}_1 - \tilde{U}_2) \leq l_1(V - \tilde{U}_1) - l_2(V - \tilde{U}_2). \]

Or, \(b(., .) \) découle de la restriction de la matrice de rigidité, alors \(b(., .) \) est aussi coercive avec la même constante de coercivité \(\alpha \), d'où

\[\alpha \| \tilde{U}_1 - \tilde{U}_2 \|^2 \leq \| l_1 - l_2 \| \| \tilde{U}_1 - \tilde{U}_2 \|. \]

De plus, \(l \) est continu puisque l'opérateur découle de la restriction de \(K \) qui est continu avec la constante de continuité \(C_L \). Alors, on trouve :

\[\| \tilde{U}_1 - \tilde{U}_2 \| \leq \frac{C_L}{\alpha} \| U_1 - U_2 \|. \]

D'où \(\tilde{U}(\tilde{U}) \) est lipschitzienne et la constante de Lipschitz est \(\frac{C_L}{\alpha} \).

De plus, la première équation du système (8.13) est une équation différentielle ordinaire lipschitzienne du second ordre en \(\tilde{U} \) facile à résoudre.

D'où le problème (8.13) admet une solution lipschitzienne.

Proposition 7 On a \(\Lambda^j_N \in W^{1,\infty}([0, T], \mathbb{R}) \) et \(\Lambda^j_N \left(\dot{U}.N_j \right) = 0, \text{ pp sur } [0, T]. \)

Preuve. D’après la première équation du système (8.13), on a \(\tilde{U}_j \in C^2([0, T], \mathbb{R}) \). Et d’après le théorème 4, on a \(\tilde{U}_j \in W^{1,\infty}([0, T], \mathbb{R}) \). Ce qui implique que \(\Lambda^j_N \in W^{1,\infty}([0, T], \mathbb{R}) \) en tenant compte de la deuxième équation du système (8.13).
D’après la condition de contact unilatéral, on a
\[
\Lambda^j_N = 0 \text{ sur } \text{Supp}(U.N_j) = \omega_j \subset [0, T].
\]
Ayant défini \(\omega_j \), on aboutit à :

d’une part, la continuité de \(\Lambda^j_N \) sur \([0, T]\) implique que
\[
\Lambda^j_N = 0 \text{ sur } \overline{\omega_j},
\]
d’autre part,
\[
\dot{U}.N_j = 0 \text{ sur } \epsilon_j,
\]
 où \(\epsilon_j \) est le complémentaire de l’intérieur de \(\omega_j \) dans \([0, T]\). Ce qui nous donne que
\[
\Lambda^j_N (\dot{U}.N_j) = 0, \text{ pp sur } [0, T].
\]

Théorème 5 L’énergie du problème (8.12) avec la matrice de masse équivalente est conservée.

Preuve. L’énergie discrète du système (8.12) est donnée par la formule suivante :
\[
E(t) = J(U, \dot{U}) = \frac{1}{2} \langle M\ddot{U}, \dot{U} \rangle + \frac{1}{2} \langle KU, U \rangle - \langle L, U \rangle,
\]
où \(M \) est la matrice équivalente donnée au début de la preuve du Théorème 4.

On veut montrer que
\[
E(t) = E(0), \forall t \in [0, T].
\]

On commence par calculer le produit scalar de la première équation de (8.6) par \(\dot{U} \) comme suit :
\[
\frac{1}{2} \langle M\ddot{U}, \dot{U} \rangle + \frac{1}{2} \langle KU, \dot{U} \rangle = \langle L, \dot{U} \rangle + \sum_{i \in I_C} \langle \Lambda^i_N N_i, \dot{U} \rangle.
\]

En faisant une intégration par rapport à \(s \) entre 0 et \(t \), on obtient :
\[
\frac{1}{2} \langle M\ddot{U}, \dot{U} \rangle + \frac{1}{2} \langle KU, U \rangle - \langle L, U \rangle = E(0) + \sum_{i \in I_C} \int_0^t \Lambda^i_N \dot{U}.N_i \, ds,
\]

ce qui fait que
\[
E(t) = E(0) + \sum_{i \in I_C} \int_0^t \Lambda^i_N \dot{U}.N_i \, ds, \forall t \in [0, T].
\]

D’où grâce à la proposition 7 on trouve
\[
E(t) = E(0), \forall t \in [0, T].
\]

i.e on a obtenu la conservation de l’énergie du système (8.12).
8.5 Conclusion

Dans ce chapitre, on a cherché à présenter de nouvelles stratégies qui permettent de conserver l’énergie en absence de frottement.

On a présenté le schéma de Paoli et Schatzman qui est plus adapté à la dynamique des corps rigides et qui est sensé reproduire une loi d’impact. Ensuite, Nous avons adapté ce schéma en utilisant un point milieu pour la partie élastodynamique et un coefficient de restitution \(e \in [0, 1] \). Nous n’avons pu montré la stabilité du schéma ainsi défini que pour \(e = 0 \) (force normale implicite) et pour \(e = -1 \) (qui ne correspond à rien physiquement).

Afin de construire un schéma vraiment conservatif en énergie, nous avons introduit une loi de contact modifiée exprimée en termes de vitesse. Cette dernière a été discrétisée par une méthode de différences finies centrées.

Pour éviter l’instabilité de la contrainte normale sur le bord de contact, nous avons introduit une nouvelle stratégie en considérant une matrice de masse équivalente. Cette méthode permet l’obtention d’un problème semi-discrétisé en espace bien posé, d’énergie conservée et ayant une solution lipschitzienne en temps. Le problème ainsi défini se ramène à une équation différentielle ordinaire lipschitzienne permettant aux schémas classiques d’être conservatifs au moins pour un pas d’espace fixe et un pas de temps tendant vers zéro.
Chapitre 9
Tests numériques

Dans ce chapitre, toutes les méthodes présentées seront étudiées et comparées numérique-ment. Nous utilisons un disque élastique (voir Fig. 9.1) ayant les propriétés données par le tableau 9.1. On note A le point le plus bas du disque. C'est le premier point qui rentre en contact avec la fondation puisqu'on suppose qu'il n'y a pas de rotation du disque.

![Fig. 9.1 - Disque élastique avant et durant le premier contact.](image)

Vérification de la condition C.F.L

On a choisi un maillage d'un cas test avec un pas d'espace $\Delta x = 0.02 \, \text{m}$. D'après les propriétés du disque élastique données dans le tableau 9.1, on peut calculer les vitesses de propagation

<table>
<thead>
<tr>
<th>Propriétés du disque</th>
<th>Valeurs</th>
<th>Propriétés de la méthode de résolution</th>
<th>Valeurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ, diamètre</td>
<td>$6 \times 10^3 , \text{kg/m}^3$, 0.2 m</td>
<td>Pas de temps</td>
<td>10^{-3}s</td>
</tr>
<tr>
<td>Coefficients de Lamé</td>
<td>$\lambda = 10^6 , \text{Pa}$, $\mu = 5 \times 10^5 , \text{Pa}$</td>
<td>Temps de simulation</td>
<td>0.3 s</td>
</tr>
<tr>
<td>u^0, v^0</td>
<td>0.01 m, $-0.1 , \text{m/s}$</td>
<td>Pas d'espace</td>
<td>$\simeq 0.02 , \text{m}$</td>
</tr>
</tbody>
</table>

TAB. 9.1 – Caractéristiques du disque élastique et de la méthode de résolution.
d’ondes de pression et de cisaillement comme suit :

\[v_p = \sqrt{\frac{\lambda + 2\mu}{\rho}} = \sqrt{\frac{10}{3}} \times 10, \quad v_c = \sqrt{\frac{\mu}{\rho}} = \sqrt{\frac{5}{6}} \times 10. \]

Ce calcul est fait pour le cas d’une déformation plane. Pour vérifier la condition C.F.L, on divise le pas d’espace par la vitesse \(v_p \):

\[\Delta t = \frac{\Delta x}{v_p} = \sqrt{\frac{6}{5}} \times 10^{-3}, \]

donc même en prenant un pas de temps égal à \(10^{-3} \), on reste en dessous de la C.F.L.

La figure 9.2 représente l’évolution de la contrainte de Von Mises dans le solide lors du premier contact. On remarque bien un aller-retour de l’onde de pression. Le résultat est obtenu avec la \(\theta \)-méthode pour \(\theta = 1 \).
9.1 La θ-méthode

Dans cette section, on étudiera l’influence de θ sur la méthode. Ensuite, pour θ = 0.5 (qui correspond à un schéma conservatif dans le cas d’un problème d’élasticité linéaire) on verra l’influence du pas de temps sur l’évolution de l’énergie, de la force normale, du déplacement et de la vitesse.

Ce qu’il faut remarquer d’abord que la méthode ne converge pas pour θ < 0.5 qui est la limite de stabilité de la méthode. Cela on l’avait remarqué dans la section 7.2.
L’énergie augmente d’une façon brutale pour $\theta = 0.5$ avec l’apparition de paliers constants correspondants aux moments où le disque décolle (voir Fig. 9.3). La croissance rapide de l’énergie se traduit aussi par une évolution assez chaotique de la force normale (Fig. 9.4). Le schéma est vraiment instable pour $\theta = 0.5$. Cependant, pour $\theta \in \frac{1}{2}, 1]$, on a quasiment le même comportement. L’énergie décroît ce qui signifie qu’on a une perte d’énergie (Fig. 9.3) causée par la perte de la vitesse du solide au moment où il touche la fondation. Ceci se traduit par des rebonds petits et une force normale qui ne s’annule pas après le troisième rebond (pour $\theta = 1.0$), ce qui veux dire que le disque n’a pas redécollé (voir Fig. 9.4).

Fig. 9.3 – Influence de θ sur l’évolution de l’énergie.
9.1. LA θ-MÉTHODE

Fig. 9.4 – Influence de θ sur l’évolution de la force normale du point le plus bas du disque.

Influence du pas de temps (θ = 0.5)

Le pas de temps joue un rôle important dans l’évolution des quantités ci-dessus. En effet, on a testé deux valeurs pour le pas de temps Δt = 10⁻³ et Δt = 10⁻⁴ avec θ = 0.5. On a remarqué que la diminution de ce paramètre augmente considérablement les fluctuations (voir Fig. 9.5 et 9.6) qui apparaissaient dans les figures précédentes.

Fig. 9.5 – Evolution de l’énergie en temps.
Fig. 9.6 – Evolution de la force normale en temps du déplacement du point le plus bas du disque.

9.2 La méthode de Newmark

On étudiera le schéma de Newmark par rapport aux deux paramètres β et γ dont il dépend. Ensuite, pour $\gamma = 2\beta = 0.5$ (qui correspond à un schéma conservatif dans le cas d’un problème d’élasticité linéaire) on verra l’influence du pas de temps sur l’évolution de l’énergie et de la force normale.

On a remarqué que la méthode ne converge que si $\beta \geq \frac{1}{4}(1 + \gamma)$ et $\gamma \geq \frac{1}{2}$ qui est la condition de stabilité prouvée par Hugues [22] pour un problème d’élasticité linéaire. C’est une condition nécessaire mais pas suffisante pour la convergence.

Influence de γ

Pour $\gamma = 2\beta = 0.5$, on a le même résultat que pour le cas test $\theta = 0.5$ (voir Fig. 9.7, 9.8. Pour les autres valeurs, dès que $\gamma \neq 0.5$, le comportement change et devient plus chaotique quand on est loin des valeurs $\gamma = 2\beta = 0.5$. La méthode est très instable et l’influence de γ est importante.

Influence de β

D’après les résultats de l’influence de γ, il paraît que la valeur $\gamma = 0.5$ est la meilleure valeur à utiliser. Ce qui donne d’après la condition de stabilité $\beta \geq 0.25$.

Le comportement des différentes quantités est presque le même. Néanmoins, les valeurs $\beta =$
9.2. LA MÉTHODE DE NEWMARK

\(\gamma = 0.5 \) donne des résultats plus satisfaisants surtout par rapport à l'évolution de l'énergie qui est décroissante (voir Fig. 9.9). Donc, \(\beta \) n'a pas de très grande influence sur le problème du moment que \(\gamma = 0.5 \).

Influence du pas de temps

On remarque sur les figures ci-dessous que la diminution du pas de temps rend le comportement des différentes quantités encore plus chahuté. Ce qui veut dire que pour la méthode de Newmark, il faut que le pas de temps ne soit pas trop petit.

\[\beta = 0.25, \gamma = 0.5 \quad \beta = 0.25, \gamma = 0.6 \]

Fig. 9.7 - Influence de \(\gamma \) sur l'évolution de l'énergie.
\(\beta = 0.25, \gamma = 0.5\) \hspace{2cm} \(\beta = 0.25, \gamma = 0.6\)

Fig. 9.8 – Influence de \(\gamma\) sur l’évolution de la force normale du point le plus bas du disque.

Fig. 9.9 – Evolution de l’énergie et de la force normale du point le plus bas du disque (\(\beta = 0.5, \gamma = 0.5\)).
9.3. LA MÉTHODE DU POINT MILIEU

Le point milieu standard est très instable car l’énergie explode (voir Fig. 9.12) à chaque rebond du disque. Cela est aussi traduit par l’évolution chaotique de la force normale (Fig. 9.12).
9.4 La méthode du point milieu modifiée

On a proposé la méthode du point milieu modifiée pour essayer de stabiliser le point milieu standard. En effet, la force normale devient plus lisse (Fig. 9.13). De plus, l’énergie décroît mais d’une façon brutale ce qui entraîne une perte rapide de l’énergie (Fig. 9.13). Mais malgré ça, le schéma est stable.

Fig. 9.12 – Evolution de l’énergie et de la force normale du point le plus bas du disque.

Fig. 9.13 – Evolution de l’énergie et de la force normale du point le plus bas du disque.
9.5 Le schéma de Paoli et Schatzman

Pour le schéma de Paoli et Schatzman, on a testé différentes valeurs du coefficient de restitution e et comparé les différentes quantités étudiées. On a remarqué que l'augmentation du coefficient de restitution perturbe le comportement de l'énergie et la force normale surtout pour la valeur $e = 1$.

Fig. 9.14 – Influence du coefficient de restitution sur l’évolution de l’énergie.

Fig. 9.15 – Influence du coefficient de restitution sur l’évolution de la force normale du point le plus bas du disque.
9.6 Le schéma de Paoli et Schatzman modifié

On a apporté une petite modification au schéma de Paoli et Schatzman qui a permis d’améliorer le comportement de chaque quantité. Par contre, ce comportement se dégrade avec l’augmentation du coefficient de restitution comme pour le schéma initial de Paoli et Schatzman. Pour $e = 1$, l’énergie explode et augmente (Fig. 9.16) au contraire des autres valeurs où elle a tendance à diminuer.

\[e = 0 \quad e = 1.0 \]

Fig. 9.16 – *Influence du coefficient de restitution sur l’évolution de l’énergie.*
9.7 Le schéma avec la condition de contact équivalente

Ce schéma qui a été introduit par plusieurs auteurs, fait intervenir un point milieu sur la partie élastodynamique et une modification de la condition de contact (voir par exemple Laursen [31], Barboteu [4]). En ce qui nous concerne, on a opté pour une discrétisation en différences finies pour la condition de contact en vitesse. Ce schéma est conservatif car l’énergie est constante (voir Fig. 9.18). Cependant, on a une mauvaise approximation de la force normal (Fig. 9.18) car pour avoir la conservation de l’énergie on fait rebondir les points ce qui crée des oscillations traduites par le comportement chaotique.

Influence du pas de temps

L’influence du pas de temps sur ce schéma est très importante sur l’évolution de la force normale car la diminution de ce paramètre augmente presque trois fois les perturbations.
\textbf{CHAPITRE 9. TESTS NUMÉRIQUES}

\begin{center}
\begin{figure}[h!]
\includegraphics[width=0.45\textwidth]{fig9_18.png}
\includegraphics[width=0.45\textwidth]{fig9_19.png}
\caption{Evolution de l’énergie et de la force normale du point le plus bas du disque.}
\end{figure}
\end{center}

$\Delta t = 0.001$

$\Delta t = 0.0001$

\begin{center}
\begin{figure}[h!]
\includegraphics[width=0.45\textwidth]{fig9_18.png}
\includegraphics[width=0.45\textwidth]{fig9_19.png}
\caption{Evolution de l’énergie.}
\end{figure}
\end{center}
9.8. LA MÉTHODE DE LA MATRICE DE MASSE ÉQUIVALENTE

Dans cette section, on a testé différentes méthodes sans et avec une matrice de masse équivalente.

9.8.1 La θ-méthode

On prend le cas test pour $\theta = 0.5$.
9.8.2 La méthode de Newmark

On prend le cas test $\beta = \gamma = 0.5$.
9.8. LA MÉTHODE DE LA MATRICE DE MASSE ÉQUIVALENTE

9.8.3 Le schéma de point milieu

Ici, on choisit un point milieu standard.
Sans la matrice de masse équivalente Avec la matrice de masse équivalente ($\Delta t = 10^{-4}$)

FIG. 9.25 – *Évolution de l’énergie.*

Sans la matrice de masse équivalente Avec la matrice de masse équivalente ($\Delta t = 10^{-4}$)

FIG. 9.26 – *Évolution de la force normale du point le plus bas du disque.*

Dans cette section, on remarque que l’application de la méthode de la matrice de masse équivalente, améliore le comportement de l’évolution de l’énergie et de la force normale surtout pour le schéma de Newmark.

Influence du pas de temps
Lors de la définition de la matrice de masse dans la section 8.4, on a montré que le problème de contact élastodynamique avec la matrice de masse équivalente est d'énergie conservée quelque soit le schéma utilisé. Cependant, dans les tests numériques de cette section, on a remarqué que l'énergie n'est pas conservée mais ne varie que très peu.

Le problème de contact élastodynamique, défini avec la méthode de la matrice de masse équivalente, se ramène à une équation différentielle ordinaire lipschitzienne en temps permettant aux schémas classiques de converger lorsque le pas de temps tend vers zéro. Pour vérifier ceci, on a testé un pas de temps de 10^{-4} pour un schéma de Newmark avec $\beta = \gamma = 0.5$. On remarque que la diminution du pas de temps baisse considérablement les fluctuations dans l'évolution de l'énergie. De plus, on tend vers un comportement de conservation ce qui corrobore l'étude la section 8.4.

Remarque. La question reste ouverte de savoir s'il existe un schéma conservatif pour le problème de contact élastodynamique défini avec la méthode de la matrice de masse équivalente.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig927.png}
\caption{Influence du pas de temps sur l'évolution de l'énergie.}
\end{figure}

9.9 Conclusion

Dans ce chapitre, on a présenté des simulations numériques de la chute libre d'un disque élastique. Le problème de contact élastodynamique, décrivant ce problème physique, a été semi-discrétisé en temps par plusieurs schémas. Le but étant de conserver l'énergie totale du solide.

On a pu adapter les schémas classiques (la θ-méthode, Newmark, point milieu) et les appliquer au problème. Cependant, on a remarqué rapidement la limitation de ces schémas qui ne sont pas stables. D'où la nécessité de trouver d'autres algorithmes.
De nouvelles stratégies ont été proposées pour venir à bout de ces problèmes d’instabilité. Un premier schéma est la méthode du point milieu modifiée qui consiste à impliciter la force normale. Ce schéma est dissipatif et correspond à une approximation d’ordre un de la force de contact. Ensuite, on a donné le schéma de Paoli et Schatzman modifié qui s’inspire du schéma original. Le schéma ainsi défini est stable pour $e = 0$.

Les deux dernières approches, présentées dans ce chapitre, sont les plus intéressantes. On a proposé un schéma proche de celui de Laursen et Chawla défini via une condition de contact équivalente. Même si la force de contact n’est pas approchée d’une manière précise, ce schéma est conservatif et donne de très bons résultats. La deuxième approche est la méthode de la matrice de masse équivalente qui améliore significativement le comportement de la force normale et du déplacement sur le bord de contact.
Conclusion et perspectives

Dans cette partie, on a présenté le problème de contact élastodynamique. Le but était d'obtenir des schémas conservatifs ou au moins stables. Pour la semi-discrétisation en temps, plusieurs schémas ont été utilisés.

On a commencé par appliquer des algorithmes classiques (la θ-méthode, Newmark, point milieu) et on a montré leurs limitations. Ensuite, on a présenté de nouvelles stratégies pour venir à bout des difficultés rencontrées. Un schéma bien adapté pour les corps rigides est le schéma de Paoli et Schatzman. On a proposé une méthode qui consiste à utiliser un point milieu pour la partie élastique et une condition de contact en termes de vitesse discrétisée avec la méthode des différences finies. Le schéma ainsi défini est strictement conservatif. La difficulté avec ces schémas est que des oscillations apparaissent sur le bord de contact traduites par une évolution chaotique de la force normale et le déplacement sur la zone de contact. Alors, on a introduit une nouvelle méthode qui fait intervenir une matrice de masse équivalente. Cette stratégie permet de réécrire le problème de contact élastodynamique semi discrétisé. Ce dernier ainsi reformulé admet une solution lipschitzienne et son énergie est conservée.

Les résultats numériques corroborent les résultats théoriques. Les schémas classiques ne sont pas bien adaptés pour le problème de contact, même ceux qui étaient stables ou conservatifs pour le problème d’élasticité. La méthode avec la condition de contact équivalente permet d’obtenir un schéma conservatif mais la force normale est mal approchée. Cependant, la méthode avec une matrice de masse équivalente permet non seulement de conserver l’énergie du système semi-discretisé en espace mais de stabiliser les oscillations qui apparaissent dans l’évolution de la force normale.

Pour les perspectives concernant la partie dynamique, il serait intéressant de trouver un schéma d’intégration en temps qui conserve l’énergie du problème de contact élastodynamique défini avec la méthode de la matrice de masse équivalente. Un autre point qu’il faudrait signaler est que les tests numériques réalisés en dimension deux marchent bien en dimension trois. Mais faute de temps, il n’ont pas été présentés dans ce mémoire. Cela constitue une autre perspective.

Enfin, l’étude menée dans cette thèse pourrait être étendue aux grandes déformations et à des applications industrielles plus réalistes.
Bibliographie

[23] H.B. Khenous, J. Pommier, Y. Renard. Hybrid discretization of the Signorini problem with Coulomb friction. Theoretical aspects and comparison of some numerical solvers. A
paraître Numerical Applied Mathematics.

