.. Microsonde-Électronique, EPMA (pour Electron Probe Micro Analysis), p.61

S. Akaganeite-de, Préparation : Synthèse de l'akaganéite, p.88

J. Argo, On the nature of 'ferrous' corrosion products on marine iron. Studies in conservation, pp.42-44, 1981.

P. Arnould-pernot, Traitement de déchloruration des objets archéologiques ferreux par plasma d'hydrogene, Sciences et Genie des Materiaux, p.157, 1994.

P. Arnould-pernot, C. Forrieres, H. Michel, and . B. Weber, Peut on déchlorurer les objets archéologiques ferreux avec les plasmas d'hydrogene, Metal 95, International Conference on Metals Conservation, 1995.

A. Askey, S. B. Lyon, G. E. Thompson, J. B. Johnson, G. C. Wood et al., The corrosion of iron and zinc by atmospheric hydrogen chloride, Corrosion Science, vol.34, issue.2, pp.539-553, 1997.
DOI : 10.1016/0010-938X(93)90004-Z

J. K. Bailey, C. J. Brinker, and M. M. , Growth Mechanisms of Iron Oxide Particles of Differing Morphologies from the Forced Hydrolysis of Ferric Chloride Solutions, Journal of Colloid and Interface Science, vol.157, issue.1, pp.1-13, 1992.
DOI : 10.1006/jcis.1993.1150

A. Beaudoin, Corrosion d'objets archéologiques en fer après déchloruration par la méthode au sulfite alcalin. caracterisation physico-chimique et retraitement electrochimique, Metal 95, International Conference on Metals Conservation, 1995.

G. Béranger, G. Henry, and G. Sanz, Le livre de l'acier, 1994.

R. Bertholon, La limite de la surface d'origine des objets métalliques archéologiques, Caractérisation, localisation et approche des mécanismes de conservation, in Archéologie, p.419, 2000.

J. Bottero, Structure and mechanisms of formation of FeOOH(Cl) polymers. Langmuir, pp.316-319, 1994.

N. Boucherit, Passivity of iron alloys studies by voltammetry and raman spectroscopy, Material Science Forum, vol.44, pp.51-62, 1989.

N. Boucherit, A. H. Goff, and J. S. , Raman studies of corrosion films grown on Fe and Fe-6Mo in pitting conditions, Corrosion Science, vol.32, issue.5-6, pp.497-507, 1991.
DOI : 10.1016/0010-938X(91)90103-V

J. Cai, Synthesis and Anion Exchange of Tunnel Structure Akaganeite, Chemistry of Materials, vol.13, issue.12, pp.4595-4602, 2001.
DOI : 10.1021/cm010310w

D. G. Chambaere and E. D. Grave, A study of the non stoichiometrical halogen and water content of beta- FeOOH, pp.93-102, 1984.

D. G. Chambaere and E. D. Grave, The ??FeOOH to ??Fe2O3 phase transformation: Structural and magnetic phenomena, Physics and Chemistry of Minerals, vol.57, issue.C1, pp.176-184, 1985.
DOI : 10.1007/BF00308211

P. Chevallier, The LURE-IMT X-Ray fluorescence photon microprobe, Journal of Trace and Microprobe Techniques, vol.14, issue.3, pp.517-539, 1996.

C. W. Childs, B. A. Goodman, and E. Paterson, The nature of iron in akaganeite (beta-FeOOH). Aust, Journal Chem, vol.33, pp.15-26, 1980.

J. Chivot, Sélection de données thermodynamiques concernant le système Fe-H 2 O, 1998.

J. Chivot, Les diagrammes E-pH révisés du système Fer-H 2 O en fonction de la température, 1999.

J. M. Combes, Formation of ferric oxides from aqueous solutions: A polyhedral approach by X-ray absorption spectroscdpy: I. Hydrolysis and formation of ferric gels, Geochimica et Cosmochimica Acta, vol.53, issue.3, pp.583-594, 1988.
DOI : 10.1016/0016-7037(89)90001-X

R. M. Cornell and R. Giovanoli, Acid Dissolution of Akagani??ite and Lepidocrocite: The Effect on Crystal Morphology, Clays and Clay Minerals, vol.36, issue.5, pp.385-390, 1988.
DOI : 10.1346/CCMN.1988.0360501

R. M. Cornell and U. Schwertmann, Iron Oxydes in the laboratory, 2000.

R. Cornell and U. Schwertmann, The iron oxides -Structure, Properties, Occurrences ans Uses, p.664, 2003.

F. Dalard, Y. Gourbeyre, and C. Degrigny, Chloride removal from archaeological cast iron by pulsating current. Studies in Conservation, pp.117-121, 2002.

M. Descostes, Evaluation d'une perturbation oxydante en milieux argileux : mécanisme d'oxydation de la pyrite, p.308, 2001.

P. Dillmann, Corrosion des objets archéologiques ferreux, COR, vol.675, pp.1-20, 2005.

F. Dussere, Peut on concevoir le plasma comme un traitement de masse, Metal 95, International Conference on Metals Conservation, 1995.

J. P. Eberhardt, Analyse structurale et chimique des matériaux. Diffraction des rayons X, électrons et neutrons. Spectrométrie des rayons X, électrons et ions. Microscopie Electronique, Science Sup, p.614, 1989.

J. Ellis, R. Giovanoli, and W. Stumm, Anion exchange properties of b-FeOOH, Chimia, vol.30, pp.194-197, 1976.

F. Farges, The effect of redox state on the local structural environment of iron in silicate glasses: a combined XAFS spectroscopy, molecular dynamics, and bond valence study, Journal of Non-Crystalline Solids, vol.344, issue.3, pp.177-188, 2004.
DOI : 10.1016/j.jnoncrysol.2004.07.050

URL : https://hal.archives-ouvertes.fr/hal-00085025

W. Feitknecht, Über die Hydrolyse von Eisen(III) Salzlösungen. I. Die Hydrolyse der Lösungen von Eisen(III) Chlorid, Helvetica Chimica Acta, issue.8, pp.56-2847, 1973.

A. M. Flank, LUCIA, a microfocus soft XAS beamline. NIMB, à paraitre, 2005.

R. L. Frost, Raman spectroscopy of the basic copper chloride minerals atacamite and paratacamite: implications for the study of copper, brass and bronze objects of archaeological significance, Journal of Raman Spectroscopy, vol.33, issue.10, pp.801-806, 2002.
DOI : 10.1002/jrs.921

R. L. Frost, Raman spectroscopy of selected copper minerals of significance in corrosion, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.59, issue.6, pp.1195-1204, 2003.
DOI : 10.1016/S1386-1425(02)00315-3

S. T. Galbraith, T. Baird, and J. R. Fryer, Structural changes in ??-FeOOH caused by radiation damage, Acta Crystallographica Section A, vol.35, issue.1, pp.197-200, 1979.
DOI : 10.1107/S0567739479000346

K. J. Gallagher and D. N. Phillips, Hydrogen exchange Studies and proton tranfer in beta-iron (III) oxyhydroxide. Chimia, pp.465-470, 1969.

K. J. Gallagher, The Atomic Structure of Tubular Subcrystals of ??-Iron(III) Oxide Hydroxide, Nature, vol.16, issue.5252, pp.1225-1228, 1970.
DOI : 10.1038/2261225a0

L. Galoisy, G. Calas, and A. M. , High-resolution XANES spectra of iron in minerals and glasses: structural information from the pre-edge region, Chemical Geology, vol.174, issue.1-3, pp.307-319, 2001.
DOI : 10.1016/S0009-2541(00)00322-3

URL : https://hal.archives-ouvertes.fr/hal-00085620

J. R. Genin, Preparation and Eh-pH diagrams of Fe(II)-Fe(III) green rust compounds; hyperfine interaction characteristics and stoichiometry of hydroxy-chloride, -sulfate and -carbonate, pp.313-318, 1998.

J. Genin, Mössbauer Spectroscopy Characterization and Electrochemical Study of the Kinetics of Oxidation of Iron in Chlorinated Aqueous Media: Structure and Equilibrium Diagram of Green Rust One, Electrochemical Methods in corrosion Research. Toulouse 9-12 juillet, 1985.

J. Genin, Structure and stability of the Fe(II)???Fe(III) green rust ???fougerite??? mineral and its potential for reducing pollutants in soil solutions, Applied Geochemistry, vol.16, issue.5, pp.559-570, 2001.
DOI : 10.1016/S0883-2927(00)00043-3

M. R. Gilberg and N. J. Seeley, The identity of coumpounds contaigning chloride ions in marine iron corrosion products: a critical review, Studies in conservation, vol.26, pp.50-56, 1981.

M. R. Gilberg and N. J. Seeley, The alkaline sodium sulfite reduction process for archaeological iron : a closer look, Studies in Conservation, pp.180-184, 1982.

J. M. Gonzales-calbet, M. A. Alario-franco, and M. Gayoso-andrade, The porous structure of synthetic akaganeite, Journal of Inorganic and Nuclear Chemistry, vol.43, issue.2, pp.257-264, 1981.
DOI : 10.1016/0022-1902(81)90006-3

A. P. Hammersley, Two-dimensional detector software : from real detector to idealised image or two-theta scan. High Pressure Research, pp.235-248, 1996.

N. G. Holm, Cln (akaganeite) and Fe1-xO (wüstite) in hot brine from the atlantis (red sea) and the uptake of amino acids by synthetic beta-FeOOH, beta-FeOOHCln. Geochimica and Cosmochimica Acta, pp.47-1465, 1983.

N. G. Holm, The structure of beta FeOOH Cln akaganeite and its uptake of amino acids. Origins of life, pp.343-350, 1984.

J. H. Johnston and E. Logan, A precise Iron-57 Mössbauer Spectroscopic Study of iron (III) in the octahedral and Channel sites of akaganeite (beta-iron hydroxide oxide), Journal of the Chemical society, pp.13-16, 1979.

J. Jolivet, M. Henry, and L. J. , De la solution à l'oxyde. Condensation des cations en solution aqueuse Chimie de surface des oxydes, Savoirs Actuels Chimie, p.387, 1994.

P. Keller, Vorkommen, Entstehung und Phasenumwandlung von beta-FeOOH in Rost, Werstoffe und Korrosion Heft, vol.2, pp.102-108, 1969.

S. Keene and C. Orton, Stability of treated archaeological iron : an assessment. Studies in Conservation, pp.136-142, 1985.

B. Knight, The Stabilisation of Archaeological Iron. Past, present and future, Metal 95, International Conference on Metals Conservation, 1995.

H. Konishi, Cl K-Edge XANES Spectra of Atmospheric Rust on Fe, Fe-Cr and Fe-Ni Alloys Exposed to Saline Environment, MATERIALS TRANSACTIONS, vol.45, issue.12, pp.45-3356, 2004.
DOI : 10.2320/matertrans.45.3356

D. Landolt, Traité des matériaux : Corrosion et chimie de surface des matériaux, 1993.

M. Loeper-attia and W. Weker, Déchloruration d'objets archéolgiques en fer par la méthode du sulfite alcalin à l'IRRAP, Metal 95, International Conference on Metals Conservation, 1995.

C. Mccammon, Mössbauer Spectroscopy of Minerals, in Mineral Physics and Cristallography A handbook of Physical Constants, pp.332-347, 1995.

A. L. Mackay, beta-ferric oxyhydroxide. Mineralogical Magazyne, pp.270-280, 1960.

A. L. Mackay, beta-ferric oxyhydroxide, akaganeite. Mineralogical Magazyne, pp.270-280, 1962.

A. Manceau and J. M. Combes, Structure of Mn and Fe oxides and oxyhydroxides: A topological approach by EXAFS, Physics and Chemistry of Minerals, vol.8, issue.5922, pp.283-295, 1988.
DOI : 10.1007/BF00307518

W. Martens, Raman spectroscopic study of the basic copper sulphates?implications for copper corrosion and ?bronze disease?, Journal of Raman Spectroscopy, vol.130, issue.29, pp.145-151, 2003.
DOI : 10.1002/jrs.969

T. Misawa, The mechanism of atmospheric rusting and the effect of Cu and P on the rust formation of low alloy steels, Corrosion Science, vol.11, issue.1, pp.35-48, 1971.
DOI : 10.1016/S0010-938X(71)80072-0

T. Misawa, K. Hashimoto, and S. Shimodaira, The mecanism of formation of iron oxide and oxyhydroxides in aquaeous solutions at room temperature. Corrosion science, pp.131-149, 1974.

E. Murad, Mössbauer and X-ray data on beta-FeOOH (akaganeite), Clay Minerals, issue.14, p.273, 1979.

G. Nauer, Spectroscopic and thermoanalytical characterization of standard substances for the identification of reaction products on iron electrodes, Journal of Thermal Analysis, vol.9, issue.3, pp.813-830, 1985.
DOI : 10.1007/BF01913309

D. Neff, Apport des analogues archéologiques à l'estimation des vitesses moyennes et à l'étude des mécanismes de corrosion à très long terme des aciers non alliés dans les sols, in Sciences Mécaniques pour l'Ingénieur, p.360, 2003.

D. Neff, Structural characterization of corrosion products on archaeological iron: an integrated analytical approach to establish corrosion forms, Journal of Raman Spectroscopy, vol.35, issue.89, pp.739-745, 2004.
DOI : 10.1002/jrs.1130

D. Neff, Corrosion of iron archaeological artefacts in soil: characterisation of the corrosion system, Corrosion Science, vol.47, issue.2, pp.515-535, 2005.
DOI : 10.1016/j.corsci.2004.05.029

N. A. North and C. Pearson, Thermal Decomposition of FeOCl and Marine Cast Iron Corrosion Products. Studies in conservation, pp.146-157, 1977.

N. A. North and C. Pearson, Washing methods for chloride removal from marine iron artefacts. Studies in conservation, pp.174-186, 1978.

N. A. North, corrosion products on marine iron. Studies in conservation, pp.75-83, 1982.

W. A. Oddy and M. J. Hughes, The stabilization of active bronze and iron antiquities by the use of sodium sesquicarbonate. Studies in conservation, pp.183-189, 1970.

S. J. Oh, Ions in Sulfate- and Chloride-Containing Aqueous Medium, CORROSION, vol.58, issue.6, pp.498-504, 2002.
DOI : 10.5006/1.3277640

S. J. Oh, D. C. Cook, and T. H. , Characterization of iron oxides commonly formed as corrosion products on steel, Hyperfine Interactions, vol.112, issue.1/4, pp.59-65, 1998.
DOI : 10.1023/A:1011076308501

T. Ohtsuka, K. Kubo, and N. Sato, Raman Spectroscopy of Thin Corrosion Films on Iron at 100 to 150 C in Air, CORROSION, vol.42, issue.8, pp.476-481, 1986.
DOI : 10.5006/1.3583054

A. A. Olowe, D. Rezel, and G. J. , Mechanism of formation of magnetite from ferrous hydroxide in aqueous corrosion processes, Hyperfine Interactions, vol.14, issue.1-4, pp.429-436, 1989.
DOI : 10.1007/BF02398227

N. Oswald, In search of the lost surface : 10 years of active hydrogen research . An attempt to convert destructiv criticism into improvements of the plasma method, Metal 95, International Conference on Metals Conservation, 1995.

H. R. Oswald and W. Feitknecht, über die Hydroxidhalogenide Me2(OH)3Cl -Br, J zweiwertiger Metalle Helvetica Chimica Acta, pp.47-272, 1964.

P. Pascal, Nouveau traité de chimie minérale, 1967.

E. Paterson, R. Swaffield, and D. R. Clark, Thermal decomposition of synthetic akaganeite (??-FeOOH), Thermochimica Acta, vol.54, issue.1-2, pp.201-211, 1982.
DOI : 10.1016/0040-6031(82)85079-X

E. Pons, Corrosion à long terme du fer et des aciers non ou faiblement alliés dans les sols à dominante argileuse - Caractérisation Physico-chimique et étude électrochimique d'analogues archéologiques, p.239, 2002.

J. E. Post and V. F. Buchwald, Crystal structure refinement of akaganeite, American Mineralogist, issue.76, pp.272-277, 1991.

J. E. Post, Neutron and temperature-resolved synchrotron X-ray powder diffraction study of akagan??ite, American Mineralogist, vol.88, issue.5-6, pp.782-788, 2003.
DOI : 10.2138/am-2003-5-607

P. Refait and J. R. Genin, The mechanisms of oxidation of ferrous hydroxychloride ??-Fe2(OH)3Cl in aqueous solution: The formation of akaganeite vs goethite, Corrosion Science, vol.39, issue.3, pp.539-553, 1997.
DOI : 10.1016/S0010-938X(97)86102-1

P. Refait, H. Drissi, J. Pytkiewicz, and J. R. Genin, The anodic species competition in iron aqueous corrosion : role of various green rust compounds. Corrosion science, pp.1699-1710, 1997.

P. Refait, M. Abdelmoula, and G. R. , Mechanisms of formation and structure of green rust one in aqeous corrosion of iron in the presence of chloride ions, Corrosion Science, issue.9, pp.40-1547, 1998.

P. Refait, O. Benali, M. Abdemoula, and -. J. Génin, Formation of 'ferric green rust' and/or ferrihydrite by fast oxidation of iron(II-III) hydroxichloride green rust, Corrosion science, issue.45, pp.2435-2449, 2003.

S. Réguer, P. Dillmann, F. Mirambet, and L. Bello-gurlet, Local and structural characterisation of chlorinated phases formed on ferrous archaeological artefacts by ??XRD and ??XANES, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.240, issue.1-2, pp.500-504, 2005.
DOI : 10.1016/j.nimb.2005.06.217

P. Réguer, F. Dillmann, J. Mirambet, P. Susini, and . Lagarde, Investigation of Cl corrosion products of iron archaeological artefacts using micro-focused synchrotron X-ray absorption spectroscopy, Applied Physics A, vol.240, issue.2
DOI : 10.1007/s00339-006-3506-3

P. Réguer, F. Dillmann, J. Mirambet, and . Susini, Contribution of the local and structural characterisation for studies of the corrosion mechanisms related to the presence of chlorine on the archaeological ferrous artefacts, EFC Book : Corrosion of metallic heritage artefacts: investigation, conservation and prediction for long term behaviour The substitution of chloride ions to OH-ions in the akaganeite beta ferric oxyhydroxyde studied by Mössbauer effect, Hyperfine Interactions, vol.57, pp.2067-2076, 1990.

A. Rinuy and F. Schweizer, Méthodes de conservation d'objets de fouilles en fer. Etude quantitative comparée de l'élimination des chlorures. Studies in conservation, pp.29-41, 1981.

B. Saini-eidukat, H. Kucha, and H. Keppler, Hibbingite, gamma-Fe2(OH)3Cl, a new mineral from the Duluth complex, Minnesota, with implications for the oxidation of Fe-bearing compounds and the transport of metals, American Mineralogist, issue.79, pp.555-561, 1994.

K. Schmidt-ott and V. Boissonnas, Low pressure hydrogen plasma : an assessment of its application on archaeological iron. Studies in Conservation, pp.81-87, 2002.

W. Schneider, Hydrolysis of Iron(III)???Chaotic Olation Versus Nucleation, Comments on Inorganic Chemistry, vol.14, issue.4, pp.205-223, 1984.
DOI : 10.1080/02603598408078138

L. S. Selwyn, P. J. Sirois, and V. Argyropoulos, The corrosion of excavated archaeological iron with details on weeping and akaganeite. Studies in conservation, pp.217-232, 1999.

L. S. Selwyn, W. R. Mckinnon, and A. V. , Models for Chloride Ion Diffusion in Archaeological Iron, Studies in Conservation, vol.46, issue.2, pp.109-120, 2001.
DOI : 10.2307/1506841

K. Stahl, On the akagan??ite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artifacts, Corrosion Science, vol.45, issue.11, pp.2563-2575, 2003.
DOI : 10.1016/S0010-938X(03)00078-7

J. Susini, THE SCANNING X-RAY MICROPROBE AT THE ESRF "X-RAY MICROSCOPY" BEAMLINE, Surface Review and Letters, vol.09, issue.01, pp.203-211, 2002.
DOI : 10.1142/S0218625X02001793

L. A. Taylor, H. K. Mao, and P. M. Bell, beta-FeOOH, akaganeite, in lunar rocks, Geochimica et Cosmochimica Acta, issue.1, pp.743-748, 1974.

F. Trolard, Identification of a green rust mineral in a reductomorphic soil by Mössbauer and Raman spectroscopies, Geochemica et Cosmochimica Acta, issue.5, pp.61-1107, 1997.

S. Turgoose, Post-excavation changes in iron antiquities. Studies in conservation, pp.97-101, 1982.

S. Turgoose, The corrosion of archaeological iron during burial and treatment. Studies in conservation, pp.13-18, 1985.

E. Vega, Altération des objets ferreux archéologiques sur le site de Glinet (Seine-maritime

D. Watkinson, Degree of mineralization : its significance for the stability and treatment of excavated iron work. Studies in Conservation, pp.85-90, 1983.

J. H. Watson, R. R. Cardell, and W. Heller, The Internal Structure of colloidal crystal of beta-FeOOH and remarks on their assemblies in schiller layers, The Journal of Physical Chemistry, issue.10, pp.66-1757, 1962.

B. Weckler and H. D. Lutz, Lattice vibration spectra. Part XCV. Infrared spectroscopic studies on the iron oxide hydroxides goethite (??), akagan??ite (??), lepidocrocite (??), and feroxyhite (??), European Journal of Solid State and Inorganic Chemistry, vol.35, issue.8-9, pp.531-544, 1998.
DOI : 10.1016/S0992-4361(99)80017-4

O. Weizhen and X. Chunchun, Studies on Localized Corrosion and Dessalination Treatment of Simulated Cast Iron Artifacts. Studies in Conservation, pp.101-108, 2004.

M. Wilke, XANES spectroscopic study, American Mineralogist, vol.86, issue.5-6, pp.714-730, 2001.
DOI : 10.2138/am-2001-5-612

. Genin, Le taux de FeIII est de 0,25. Par exemple, les composés avec un rapport, 2001.

. La-structure-est-similaire-À-celle-de-la-pyroaurite, Refait, 1997); et si il existe quelques variations dues à la géométrie et à la taille des anions incorporés, on retrouve la forme principale. Il s'agit d'un cristal rhomboédrique, de groupe d'espace R3m, a = 3

. La-formule-chimique-générale-pour-une-rouille-verte-est, [Fe II 1-x Fe III x (OH) 2 ] x+ .[(x/n)A ?n (m/n)H 2 O] x? où A ?n représente les anions en insertion et m le nombre de molécules d'eau pour A ?n anions. Une propriété des rouilles vertes est d'avoir une formule chimique bien définie, malgré une composition changeante, Pour le composé chloruré GR1(Cl ? ), la formule chimique se note: [Fe II 3 Fe III (OH) 8 , Cl

I. Fe, OH) 8 ] + s'alternent régulièrement avec des couches faites d'ions Cl ?

. La-rouille-verte-est-identifiable-par-raman, Elle présente deux pics caractéristiques (Trolard, 1997) vers 427 cm ?1 et 518 cm ?1 qui correspondent respectivement aux vibrations des liaisons Fe, p.2