Skip to Main content Skip to Navigation

Phénomène de concentration pour des
problèmes non linéaires issus de la géométrie

Abstract : In this Thesis, we study concentration phenomena for geometrical nonlinear elliptic equations : the existence of constant r-curvature hypersurfaces in Riemannian manifolds. ( The r-mean curvature of a hypersurfave is defined to be the r-th elementary symmetric function of the principal curvature of the hypersurface). We give in this thesis some results of existence of such a submanifolds. Moreover, the
examples we build highlight a concentration phenomena along submanifolds, phenomena associated with a resonance phenomena which returns the analysis of these objects particularly delicate and which one meets in the study of many other nonlinear problems : nonlinear Schrödinger equations, singularly perturbed problems, reaction-diffusion systems, ...
Document type :
Complete list of metadatas

Cited literature [41 references]  Display  Hide  Download
Contributor : Fethi Mahmoudi <>
Submitted on : Monday, February 27, 2006 - 6:44:24 PM
Last modification on : Thursday, March 19, 2020 - 12:26:02 PM
Long-term archiving on: : Monday, September 17, 2012 - 12:20:27 PM



  • HAL Id : tel-00011695, version 1


Fethi Mahmoudi. Phénomène de concentration pour des
problèmes non linéaires issus de la géométrie. Mathématiques [math]. Université Paris XII Val de Marne, 2005. Français. ⟨tel-00011695⟩



Record views


Files downloads