P. Alart, K. T. Andrews, M. Shillor, S. Wright et al., Méthode de Newton généralisée en mécanique du contact, Journal de mathématiques pures et appliquées, vol.76, issue.35, pp.83-108, 1997.

E. Arnoult, Modélisation Numérique et Approche Expérimentale du Contact en Dynamique : Application au Contact Aubes, Thèse de doctorat, p.133, 2000.

J. L. Batoz and G. Dhatt, Modélisation des structures par éléments finis, Hermès, 1990.

T. Belytschko and M. Oneal, Contact-impact by the pinball algorithm with penalty and lagrangian methods, International Journal for Numerical Methods in Engineering, vol.78, issue.6, pp.141-163, 1991.

R. Bladh, Efficient Predictions of the Vibratory Response of Mistuned Bladed Disks by Reduced Order Modeling, Thèse de doctorat. University of Michigan, 2001.
URL : https://hal.archives-ouvertes.fr/tel-00358168

N. J. Carpenter, R. L. Taylor and M. G. Katona, Lagrange constraints for transient finite element surface contact, International Journal for Numerical Methods in Engineering, vol.32, pp.146-130, 1991.
DOI : 10.1002/nme.1620320107

URL : https://hal.archives-ouvertes.fr/hal-01389918

A. Cezdanski, S. A. Et-meguid, P. Chabrand, F. Dubois, and M. Et-raous, Analysis of dynamic frictional contact problems using variational inequalities Various numerical methods for solving unilateral contact problems with friction, Finite Elements in Analysis and Design Mathematical Computer and Modelling, vol.37, issue.28, pp.861-879, 1998.

P. Chabrand, O. Chertier and F. Dubois, Complementarity methods for multibody friction contact problems in finite deformations, International Journal For Numerical Methods in Engineering, vol.51, pp.553-579, 2001.
DOI : 10.1002/nme.170

URL : https://hal.archives-ouvertes.fr/hal-01297284

D. Chamoret, P. Saillard, A. Rassineux and J. Bergheau, New smoothing procedures in contact mechanics, Journal of Computational and Applied Mathematics, vol.168, issue.1-2, pp.107-116, 1993.
DOI : 10.1016/j.cam.2003.06.007

R. R. Craig and C. C. Bampton, Coupling of substructures for dynamics analyses, AIAA Journal, vol.6, issue.7, pp.1313-1319, 1968.
URL : https://hal.archives-ouvertes.fr/hal-01537654

R. R. Craig and C. Chang, Free-interface methods of substructure coupling for dynamic analysis, AIAA Journal, vol.14, issue.11, pp.1633-1635, 1976.
DOI : 10.2514/3.7264

R. R. Craig, Coupling of substructures for dynamics analyses: an overview, Structures, Structural Dynamics and Material Conference, 2000.

J. Culioli, A. Curnier, Q. C. He, and A. Klarbring, Modelling of Large Deformation Contact with Friction, dans Contact Mechanics, pp.24-145, 1994.

P. J. Davis and C. Matrices, On a predictive macroscopic contact-sliding wear model based on micromechanical considerations, Thèse, ´ Ecole Centrale de Nantes, pp.1625-1639, 1989.

M. Géradin and D. Rixen, Théorie des vibrations : application à la dynamique des structures, p.36, 1992.

M. W. Heinstein and A. L. Et, An algorithm for the matrix-free solution of quasistatic frictional contact problems, International Journal for Numerical Methods in Engineering, vol.1, issue.9, pp.1205-1226, 1999.
DOI : 10.1002/(SICI)1097-0207(19990330)44:9<1205::AID-NME550>3.0.CO;2-0

A. Ibrahimbegovic, On finite element implementation of geometrically nonlinear Reissner's beam theory: three-dimensional curved beam elements, Computer Methods in Applied Mechanics and Engineering, vol.122, issue.1-2, pp.11-26, 1995.
DOI : 10.1016/0045-7825(95)00724-F

A. R. Johnson and C. J. Quigley, Frictionless geometrically non-linear contact using quadratic programming, International Journal for Numerical Methods in Engineering, vol.38, issue.1, pp.2261-2270, 1989.
DOI : 10.1002/nme.1620280110

. Tel-00011631, Cyclic Symmetry in MSC/NASTRAN. The MacNeal-Schwendler Corporation, JOS, vol.81, issue.6, 1981.

S. L. Lau, Y. K. Cheung, S. Y. Et-wu, and T. A. Laursen, Incremental Harmonic Balance Method With Multiple Time Scales for Aperiodic Vibration of Nonlinear Systems, Journal of Applied Mechanics, vol.50, issue.4a, pp.871-876, 1983.
DOI : 10.1115/1.3167160

M. Legrand, B. Peseux, C. Pierre and E. Seinturier, Amélioration de la prédiction de l'interaction rotor/stator dans un moteur d'avion, 5e Colloque National en Calcul des Structures, pp.12-14, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01349530

W. Leissa, Vibration of Shells. Washington D.C.: NASA SP 288, Scientific and Technical Information Office, 1973.

D. Lornage, A. Magnusson, M. Ristinmaa, C. Et-ljung, S. Nacivet et al., Behavior of the extensible elastica solution Analytical Methods in Vibrations A dynamic Lagrangian frequency-time method for the vibration of dry-friction-damped systems A method of computation for structural dynammics A framework for development of surface smoothing procedures in large deformation frictional contact analysis, Dynamique globale des lignes d'arbre de turbomachines couplées aux fluides environnantsMEI 67] Meirovitch L, pp.8441-8457, 1959.

P. F. Pai, T. J. Anderson, and E. A. Et-wheater, Large-deformation tests and total-Lagrangian finite-element analyses of flexible beams, International Journal of Solids and Structures, vol.37, issue.21, pp.2951-2980, 1993.
DOI : 10.1016/S0020-7683(99)00115-8

O. Poudou, C. Pierre, and B. Reisser, A new hybrid frequency-time domain method for the forced vibration of elastic structures with friction and intermittent contact, 10th of International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, pp.73-83, 2004.

R. R. Pujsenjak and M. M. Oblak, Incremental harmonic balance method with multiple time variables for dynamical systems with cubic non-linearities, International Journal for Numerical Methods in Engineering, vol.59, issue.2, pp.255-292, 2004.
DOI : 10.1002/nme.875

R. Rabinowicz and E. , Friction and Wear of Materials, Journal of Applied Mechanics, vol.33, issue.2, p.140, 1965.
DOI : 10.1115/1.3625110

R. M. Rosenberg, The Normal Modes of Nonlinear n-Degree-of-Freedom Systems, Journal of Applied Mechanics, vol.29, issue.1, pp.363-368, 1962.
DOI : 10.1115/1.3636501

URL : https://hal.archives-ouvertes.fr/hal-01344457

M. Schulz and F. C. Et-filippou, Non-linear spatial Timoshenko beam element with curvature interpolation, International Journal for Numerical Methods in Engineering, vol.17, issue.4, pp.761-785, 2001.
DOI : 10.1002/1097-0207(20010210)50:4<761::AID-NME50>3.0.CO;2-2

S. W. Shaw and C. Pierre, Non-linear normal modes and invariant manifolds, Journal of Sound and Vibration, vol.150, issue.1, pp.170-173, 1991.
DOI : 10.1016/0022-460X(91)90412-D

URL : https://hal.archives-ouvertes.fr/hal-01310674

J. C. Simo and T. A. Laursen, An augmented lagrangian treatment of contact problems involving friction, , vol.42, issue.1, pp.97-116, 1992.
DOI : 10.1016/0045-7949(92)90540-G

S. K. Sinha, Non-linear dynamic response of a rotating radial Timoshenko beam with periodic pulse loading at the free-end, International Journal of Non-Linear Mechanics, vol.40, issue.1, pp.113-149, 2005.
DOI : 10.1016/j.ijnonlinmec.2004.05.019

J. M. Vance, . Rotordynamics-of-turbomachinary, G. Wiley-interscience-von-groll, and D. J. Et-ewins, The harmonic balance method with arc-length continuation in rotor/stator contact problems, Journal of Sound and Vibration, vol.241, issue.5 2, pp.223-233, 1987.

P. Wriggers, M. Yi, J. He, B. Huang, and H. Et-zhou, Computational Contact Mechanics Friction and wear behavior and abradability of abradable seal coating, Wear, vol.231, pp.18-47, 1999.

O. Zienkiewicz and R. L. Et-taylor, Solid and Fluid Mechanics, Dynamics and Non-linearity de The Finite Element Method, p.35, 1991.