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Résumé

Dans cette thése, effectuée en cotutelle avec I’Université d’Oklahoma City, nous avons étudié
le transfert radiatif dans les enveloppes en expansion rapide des supernove de type la
(SNEIA) dans le cadre de la collaboration SUPERNOVAE FACTORY .

Ces étoiles qui explosent avec une luminosité comparable & celle d’une galaxie sont util-
isées comme chandelles standard permettant d’étudier le comportement & grande échelle
de 'univers. Nous avons utilisé le code de transfert radiatif PHOENIX développé par
P.Hauschildt, F.Allard et E.Baron, pour simuler des spectres de SNEIA & différentes dates
et luminosités afin d’étudier le processus de formation spectrale. Nous avons parallélement
élaboré un module de grille adaptative qui augmente sa robustesse de convergence.

Nous avons montré que la formation des spectres de SNEIA n’était pas aussi localisée
que dans le modéle photospherique standard mais qu’elle mettait en relation des régions
allant de 5000km.s ! & 20000km.s ! pour des époques proches du maximum de luminosité.
Nous avons de plus développé des indicateurs spectraux permettant de mesurer la luminosité
des SNEIA avec une précision égale a celle des méthodes basées sur 1’analyse des courbes
de lumiére. Il devient ainsi possible de contraindre de facon indépendante ’évolution des
SNEIA avec le redshift, ce qui place ce travail a l'interface entre 1’étude des supernova en

tant qu’objets stellaires et leur utilisation en cosmologie.
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Abstract

This co-supervised dissertation was conducted in collaboration between The University of
Oklahoma City (USA) and Université Claude Bernard of Lyon (France). It addresses the
radiative transfer issue in type Ia supernovae expanding envelopes, in the context of the
SUPERNOVE FACTORY .

We used the multi-purpose radiative transfer code PHOENIX, developed by P.Hauschildt,
F.Allard and E.Baron to produce a grid of synthetic spectra sampling dates from 10 to 25
days after explosion and bolometric magnitudes from —18.0 to —19.7. We also developed
an adaptive grid scheme in order to stabilize PHOENIX convergence.

We showed the spectrum formation in SNEIA around maximum light to be a multi-
layered process involving regions from 5000km.s™! to 20000km.s™!, interacting not only
through scattering but also through pure emission. This new understanding allowed us to
introduce a new spectral indicators we called Rg;s, which can be used to measure SNEIA
blue magnitudes with a precision comparable to the stretch factor. This makes it possible
to independently constraint the evolutionary effect on SNEIA that are of crucial importance

for high z surveys.
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Chapter 1

Introduction

1.1 Scientific background

In the frame work of General Relativity, the universe mass density is described by €y, its
curvature by €2z, and any possible dark energy by 2, where A is the so called cosmological
constant, related by Qp7 + Qp + Q. = 1.

In Fig. 1.1 we display the results of three different experiments that prove according to
three different experiments, Q5; and Q4 have to be finite at a two o level. The ellipsoids
denoted as “supernova” are based on the SCP results, one of the two experiments that
used type Ia supernovee (or SNEIA) as cosmological probes. Both groups, the SCP and the
High z team, used these extremely bright exploding stars' with a very homogeneous B
band luminosity as standard candles.

Moreover, both groups found a way to correct for part of the SNEIA blue magnitude
intrinsic dispersion®. As can be seen in Fig. 1.2, SNEIA absolute blue magnitude dispersion
can be well accounted for, decreasing the intrinsic dispersion to ~ 30.15 blue magnitudes.
Note that the upper panel of the figure exaggerates the natural SNEIA dispersion, since lots
of “normal” supernovae have not been plotted for clarity sake.

Knowing the SNEIA absolute luminosity in the B band from the stretch or A,,,,, and

measuring their apparent blue magnitude, their luminosity distance dr can be inferred, as

'as bright as a whole galaxy, i.e. ~ —19 absolute blue magnitude
2SCP calling it stretch factor, and High z team calling it A,,,;. These are slightly different methods
based on the same physical correlation between the SNEIA blue light curve evolution time and maximum.
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shown in eq. (1.1).
7 2
Fy, |Fy = d2/10 (1.1)

where dj, is in parsecs, Fj is the absolute flux of the supernova at 10pc, and Fy, is the
apparent flux of the supernova. Note that prior to show that the SNEIA are good standard
candles with SNEIA in the Hubble flow, their absolute blue magnitudes had to be calibrated
using independent indicators like Cepheids, which means that SNEIA are secondary distance
indicators.

This luminosity distance dr describes the distance at which the supernovee appear to
be, and is a function of redshift, the Hubble constant, the universe curvature, Qp; and €25

as described by eq. (1.2), eq. (1.3) and eq. (1.4).

o if Q) <1
c 1 12 [* 2 1/2
dr 172 sinh | (14 2)“(1+ Qumz) — 2(2 4 2)Q4] 7/ “dz (1.2)
Ho 0
o if Qp >1
- i 1 . 1/2 g 2 . 1/2
dr = Ho L)1 sin <Qk /0 (14 2)°(1 4+ Qumz) — 2(2+ 2)Qa] 7 4dz (1.3)



Figure 1.4: K corrections.
The green curve is the blue fil-
ter in the SNIA rest frame,
showing the part of the spectra
we are interested in. The red
one is the red filter in Earth
R filter de—redshited from z=0.6 rest frame blueshifted to the
SNIA rest frame. We see that
the part of light we are inter-
ested in falls “almost” in this
filter. This means that to mea-
sure the blue magnitude of the
supernova, we have to observe
it in the red filter, and correct
for the differences between the

SN la rest frame

two filters . Accounting for
this effect is what is called K
SN o at max corrections.

e if Q) = 0 (Which is compatible with the data and usually assumed to be the case)
dp = Hi / [(1+ 2)2(1 + Qurz) — 2(2 + 2)Qa]Y?dz (1.4)
0Jo

By plotting dy, vs z, the possible values of the Qs can be constrained, usually assuming
a flat universe which is the most consistent with the CMB measures. Fig. 1.3 shows the
SCP results, where we see that 0 < z < 0.1 data do not constrain the values of the 2s. On
the other hand, at 0.6 < z < 1., the larger lever arm allows to constrain 2y — €237 as has
been done by the SCP and the High z team.

At z > 1.5, the Qs term dominates the expansion rate, breaking the degeneracy of
the previous result. The natural evolution of the SCP program was thus to observe far-
ther SNEIA in order to estimate €23, and further constrain the Universe equation of state
which is the goal of the space project SNAP. But for this project to be conclusive, several
specifications must be met (cf Kim et al., 2004).

First, distant SNEIA have their spectra redshifted, which makes their luminosity measure

in any given filter complex: the filters used in the Earth rest frame will usually not correspond
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to any classic filter in the SNIA rest frame, as can be seen in Fig. 1.4. Building a set of
filters accounting for each redshift is of course out of question. “K corrections” are a way to
correct for this effect. This critical photometric issue can also be solved using a good SNEIA
spectra catalog to infer from the colors at z the corresponding colors at rest.

This scheme will be implemented in SNAP/JDEM making a good SNEIA spectra cat-
alog a prerequisite for this high z space program. SNAP/JDEM will also incorporate a
dedicated spectrograph able to do spectrophotometry, in order to constrain the systematics
inherent to the K correction method.

In order to take full advantage of the large leverage power of high z measurements, the
zero point of the Hubble diagram previously displayed in Fig. 1.3 has to be accurately fixed.
Fig. 1.5 shows how a large survey of nearby SNEIA could improve SNAP/JDEM results
by addressing this issue.

In addition, if the SNEIA host galaxies could be observed, metallicity studies might be
performed. They would help to constrain the potential evolution of SNEIA luminosities with
the age of the universe (or redshift), which is so far only taken into account as a systematic
error.

Finally, a large nearby SNIA survey would provide high quality data that would be
of great use for the study of these stellar objects. Not only would the understanding of
the SNEIA homogeneity be comforting when using them for cosmological studies: these
objects are also intrinsically fascinating. They are among the very few astronomical objects
that evolve on a human time scale, displaying extreme physical conditions even on stellar
standards, and they are as well one of the two heavy element producers of the Universe

which makes them fundamental in its evolution. Moreover, the understanding of SNEIA



spectral formation might lead to independent luminosity indicators that would prove useful
when constraining the systematic errors in SNAP /JDEM like programs.
All these considerations lead to the project called SuperNova Factory, as the first step

toward a high z SNEIA survey.

1.2 SUPERNOVAE FACTORY and SNIFS

The SUPERNOVE FACTORY is a collaboration between French and American laboratories:
The CRAL? Observatory (Lyon), the IPNL* (Lyon), the LPNHE? (Paris), and the LBL®
(Berkeley). Its purpose is to use an integral field spectrometer (called SNIF'S for SuperNova
Integral Field Spectrometer) to follow spectrophotometrically ~ 300 SNEIA within 4 years.

This spectrograph is an Integral Field Unit, or IFU: instead of falling on a slit as in
usual spectrographs, the image of the sky is focussed on a microlens array whose focal plane
coincides with a detection CCD on the other side of a grism (grating+prism).

Each microlens therefore contains a small specific section of the sky (0.4"” x0.4" in SNIFS
case) which light will be focused and scattered into a single spectrum on the CCD. The com-
plete image on the CCD will therefore be a collection of spectra, each one corresponding to a
definite part of the sky. This result in the IFU gives spatial as well as spectral information,
which explains why they have first been used in galactic surveys, where they allowed the
velocity mapping of the galaxies. This feature is expected to prove useful when extracting
the supernova from the galaxy.

Moreover, since SNIF'S total field of view is a 6" x 6" microlens array and not a slit, it will
contain the whole supernova’. Therefore, no unknown part of the supernova light would be
cut off, as in slit spectroscopy, making photometry possible at the same time as spectrometry
for IFUs. This scheme is summarized in Fig. 1.6. Since SNIA spectrophotometry of high
quality is very rare and of crucial importance to achieve the SUPERNOVE FACTORY scientific

goals, the central part of the project had to be an integral field unit: SNIF'S.

3Centre de Recherche Astronomique de Lyon

*Institut de Physique Nucléaire de Lyon

®Laboratoire de Physique Nucléaire et des Hautes Energies

%Laurence Berkeley Laboratory

"Differential refraction at high airmass can extend the supernova enough for this statement to become
inaccurate.
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Figure 1.6: SNIFS IFU principle

SNIFS has been built at the CRAL in France, as they have great expertise in this field®,
and is mounted on UH telescope on the Mauna Kea in Hawaii.

The SNEIA detection uses the NEAT?® data to find variable objects. Since asteroids
are moving objects close to the Earth, the same field can be scanned every 3 days without
decreasing their detection probability. This allows us to find variable objects by “simple”
subtraction. The main problems of this method come from the huge volume of data that
has to be dealt with. Also, each field of view is not observed at the same time each night,
and is therefore rotated at a different angle with respect to the CCD in each exposure. Even
worse, the seeing varies from night to night, making it easier to find subtraction artifacts
like rings than variable objects.

Once the true variable objects have been found, there is a discrimination between type

Ia candidates and other variable objects. This is done using the two exposures separated

8They built the IFUs of the Tigre, Oasis, and Sauron projects.
®Near Earth Asteroid Tracking



by three days where the varying object appears, plus the reference pose. Rise time consid-
erations allow to sort out AGNs and quantify the likelihood of a candidate to be type Ia
supernovee. Once this first sort is done, a SNIF'S exposure is taken in order to identify the
candidate. If it appears that it is a SINIA, it will then be followed until about 40 days after

maximum light.

1.3 Type la supernovae

The SUPERNOVE FACTORY is the background in which this PhD work takes place, and
supernove spectra analysis is its cap stone. The only pieces of information we require about
SNEIA are spectra and photometry, and luckily enough lots of information can be found in
the optical.

Therefore, radiative transfer plays a key role in understanding type Ia supernove, since
it connects their physical structure to what we observe. The motivation of this PhD work
was using synthetic spectrum simulators, to understand spectra formation better as well as

its link to SNEIA physical structure, which we now discuss.

1.3.1 Progenitors
SNEIA display these very specific features:

e SNEIA luminosity is homogeneous

SNEIA spectral features consist of blends of wide P-Cygni profiles

SNEIA spectra display no hydrogen lines

SNEIA spectra display no helium lines

SNEIA spectra display strong Siil and Cail lines
e ~ 1 SNIA explosion per galaxy per 1000 years

The homogeneity of the luminosity points toward an homogeneous class of progenitors.
Since there are neither helium nor hydrogen lines in the spectra, the abundance of these

elements must be low, therefore pointing toward old progenitors.



The wide P-Cygni profiles !° show that the element velocities are very high (going all
the way up to above 30000km.s '), which leads to an estimate of the total kinetic energy
to be &~ 1 foe, i.e. 10%lergs. This impressive amount of energy, together with the shape
of SNEIA light curves which is at late times dominated by nuclear disintegration suggests
thermonuclear explosions as SNEIA energy source.

All these elements lead Colgate & White (1966) to propose type Ia supernove to be White
Dwarf (WD in the following) thermonuclear explosions. This makes these supernova very
specific, in that they are the only ones not powered by a core collapse mechanism.

The process that leads to the White Dwarf explosion is still not well understood, but the
community mostly agrees on that the typical type Ia progenitor is most likely to be a near
Chandrasekhar mass White Dwarf that reached this mass through accretion from a binary
companion.

Many different accretion models, together with collapsing binary WD systems have been
proposed, and are still debated. Whether or not the type Ia diversity comes from a diversity
of progenitor systems is still an unresolved issue. What is certain is that in our actual
knowledge of WD populations, none of these models can account for the ~ 1 SNIA per
galaxy per 1000 year alone. Whether or not there are enough WD in order to account for
all the type Ia supernovae observed is still to be determined.

On the other hand, the explosion models that fit the observations the best are near
Chandrasekhar mass C/O WD thermonuclear explosions, making them the widely accepted

candidate for type Ia supernova progenitors.

1.3.2 Explosion models

The main problem of WD explosion simulations resides in the thermonuclear flame devel-
opment. The object to be simulated is approximately 1000km wide, and the flame structure
is dominated by turbulent effects that take place at the centimeter scale. To simulate such
a process would require more computing power than currently available, or, alternatively
clever coding schemes and parameterizations.

The first step in WD explosion simulation was to compute 1D models, and they are

more will be said on these profiles in 2.1
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still the only models that run fast enough to allow accurate nucleosynthesis simulations. In
these models, the flame propagation has to be parameterized since there are not enough
dimensions for turbulence to develop!!. Flame velocity is then used as a free parameter to
tune the nucleosynthesis. At high densities, the C/O WD burns into mainly nickel and
other heavy elements (A ~ 56). At intermediate densities, it burns into intermediate mass
elements like silicon, magnesium, sulfur, etc. And at low densities the flame dies out.

As the WD burns, there is a competition between its expansion, due to the huge energy
input coming from the flame, and the flame propagation. The quicker the flame, the bigger
part of the WD that will burn at high densities, and therefore the higher the mass of nickel
produced. Similarly, if the flame is slow more intermediate mass elements will be produced
before the flame dies out.

The most famous of type Ia 1D models ever computed is called W7 (cf. Iwamoto et al.,
1999) and has been the one giving the best results in simulating SNEIA spectra for more
than 20 years. It is the model that was used the most in this PhD work, and it will be
discussed much more thoroughly later on.

Lots of other 1D models have been computed, and more will be said about them. Par-
ticularly, the other models we used are different in that they are delayed detonations. This
means that the subsonic flame is at some point artificially turned into a supersonic flame.

Whether or not this really happens in real WD explosions is still a topic of intense
debate, but what is sure is that it can happen for non thermonuclear flames!2.

Recently, in addition to 1D models, some 2D and 3D models have been computed. The
solution of the scale problem has been very nicely overcome through turbulence theory, which
allows us to simulate larger scale flame fronts without micro-detailed simulation. Still, the
computing power needed to simulate a full WD explosion is tremendous, and it is not yet
possible to compute accurate nucleosynthesis from a 3D model.

Nonetheless, the understanding of WD explosions has improved a lot, and the Nickel/Cobalt

disintegration chain powering of SNEIA is not challenged any more. In this context, with

" Turbulence needs at least 2D, in order for the instabilities to develop.

12 A natural gas pipeline in Siberia for example once started to burn. And it was clearly seen from the
temperature monitoring that the flame at some point turned form steady subsonic burning into supersonic,
and therefore one can say pretty unsteady, burning.
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the foreseeable advent of accurate nucleosynthesis from 3D models less parameterized than
1D ones, the very high quality of SUPERNOVE FACTORY spectrophotometry will be of great
use to constrain and test their prediction. This cannot be achieved without lots of radiative
transfer, since the only available information from the explosion model comes from SNEIA

spectra.
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Chapter 2

PHOENIX and Radiative Transfer

In this chapter will be presented some radiative transfer notions as well as the radiative

transfer code SYNOW and PHOENIX used in this thesis work.

2.1 Some Radiative Transfer notions

2.1.1 Definitions
The specific intensity

To study light transfer in any physical environment, there are at least three different ap-
proaches. The first one would be to use Maxwell’s equations, and is suited for local interac-
tion between the radiation and the environment studies.

An other approach is the Monte-Carlo method, where photon propagation is simulated
individually or by packets, following their path through the considered media. Its property
to take care of complex integrals by simple photon summation make it especially suited for
3D radiative transfer. Some 1D and 3D Monte-Carlo based works could be found in Thomas
et al. (2002), Kasen et al. (2003), Mazzali (2000) for example.

The third method, used in both codes that we worked with, is analytical and studies the
energy transfered by light, instead of it’s “vehicle”(photons, or electro-magnetic fields). The
key function used in this formalism is the specific intensity, usually noted I(r,n,v,t), defined
with eq. (2.1) as the energy transported in the direction n by a radiation of frequencies

v,v+dv across an element of area dS into a solid angle dw in a time interval dt (cf Fig. 2.1).
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as

Figure 2.1: Pencil of radiation used to de-
fine specific intensity. The vector n is
the direction of propagation, while dS is
the vector perpendicular to the element of
area dS, such that ||dS|| = dS

dE = I(r,n,v,t) dS n dw dv dt (2.1)

Mean intensity, energy density and radiation pressure

From now, we will note A(r,n,v,t) = A, any function depending on r and n, once it has

been defined.

The mean intensity of the radiation, or first moment of the intensity is defined as the

integral of I, over all directions:

1 4w
J(r,v,t) = E./o Idw (2.2)

and is related to the energy density of the radiation field by

A7

E(r,v,t) = 7.],,(r,t) (2.3)

The specific intensity’s second and third moments are defined using u = cos(f) = || ||

These quantities are related to the flux F, and the radiation pressure P, as shown in eq. (2.4),

eq. (2.5), eq. (2.6) and eq. (2.7).
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F,(r,t) = 4nH,(r,t) (2.5)
4

K (r,t) = i /0 Lpdw (2.6)

P(rt) = %P,,(r, ) (2.7)

These integral quantities allow us to describe the energy flow of unpolarized light. Po-
larization could also be added to this formalism, but since it was not included in either
SYNOW, or PHOENIX, we will only refer the reader to the literature, for example Kasen
et al. (2003).

2.1.2 Radiative transfer equation

The problem to be solved in radiative transfer is to find the solution of the differential
equation describing the local energy balance of the radiative field with appropriate boundary

17 by the non linearity of

conditions. This trivially stated problem is made “more interesting
the electromagnetic field coupling with the matter. Moreover, the radiative field also couples
spatially distant points, adding non locality to the difficulty of the problem.

The energy sinks are described by the extinction coefficient or function, usually
noted x(r,n,v,t). Eq. (2.8) relates it to the energy extracted from a beam of specific

intensity I, going through a volume element of surface dS and length ds, propagating into

the solid angle dw during the time dt:

0E = x(r,n,v,t) I(r,n,v,t) dS ds dw dv dt (2.8)

X(r,n,V,t) = "Z(r’n,V,t)"i_o'(r’n,V’t) (2'9)

Using the extinction coefficient, we define the photon mean free path to be [, = X

'“May you live interesting times” Old Chinese curse
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which describes the photon mean propagation length in the considered medium.

The extinction coefficient usually takes into account scattering, noted o, as well as “true
absorption”?, noted k. It is often convenient to include the induced emission in &, as a
“negative” absorption. Since the stimulated emission is coherent, the mean free path of the
photon remains [, = x%’ even though the simulated emission is taken into account in k.

The emissivity, denoted 7(r,n,v,t) describes the amount of energy released into the

beam through relation eq. (2.10) which uses the same conventions than eq. (2.8).
0E = n(r,n,v,t) dS ds dw dv dt (2.10)

Finally, the energy balance of the volume element previously defined gives the general

radiative transfer equation (2.11):

1901, 09I,

EW‘FE:%—XV I, (2.11)

where 7, the emissivity is given by n, = kB, + ¢J,, where B, is the Planck function and
J, is the zeroth Eddington moment of the specific intensity.

For further discussion we will consider the static plane parallel case in non relativistic
matter flows, in order to emphasize the physics over the algebra.

Equation (2.12) is the standard radiative transfer equation for a one-dimensional planar

atmosphere, where the coordinate z increases toward the external observer.

oI,
— =1 — Xv Inu 2.12
K 92 =X ( )

It is then useful to define the optical depth 7(z,v):

T(2,v) = — /Z x(2',v) d' (2.13)

which increases with non zero opacities zones?. Equation (2.12) now becomes:

2By opposition to scattering, which could result in “absorption” features since the scattering of light in
all directions from an incoming beam results in a diminution of the intensity in the beam direction.
3+ increases from the observer, i.e. it goes the opposite direction from the z axis previously defined.
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oI,

v _ 1,58, 2.14

I ar ( )
v

s, = I 2.15

Xv (2.15)

Where S, is the source function, describing the ratio of emissivity over absorption in
the medium. The formal solution of eq. (2.14) can then easily be calculated analytically and
reads:

T2
I(my, p,v) = I(ro, pyv) e (2B =1 / S,e tH dt (2.16)

T1
Let us consider the case of an incoming beam with direction p = cos(f) = 1. We suppose
that this beam crosses a zone of finite optical depth and of constant source function, as it is
the case for example in the Sobolev approximation that will be developed later on. In this

case, equation (2.16) becomes:
I0,p=1,v) =I(T—e,p=1L,v) e + S, (1 — =) (2.17)

The left hand side of this formal solution is the intensity seen by the observer looking
photons going in the p = 0 direction. The right hand side describes the different contribu-
tions to this intensity. The first term expresses the incoming intensity decreases as it goes
through an absorbing or scattering zone. The larger the optical depth, the more the inten-
sity will exponentially fade. Whenever the first term dominates, it will result in absorption
features with respect to the incoming intensity.

The second term of the right hand side gives the emission contribution to the observed
intensity. This time, the larger the optical depth, the more important the contribution of
the source function. A region where the optical depth is higher than one is called “optically
thick”, and where the optical depth is less than one “optically thin”.

Outside of an optically thick layer heated by incoming radiation, we will only see the
source function contribution, the incoming beam being completely shielded by the medium.
But it will change the local energy density and therefore indirectly change the source func-
tion. Also, for an incoming beam in the p = 0 direction, i.e. perpendicularly with respect

to the observer, only the source function term will remain, accounting for the pure emission
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as well as the incoming beam scattering.

Calculating the spectrum needs the solution of the transfer equation for a given struc-
ture, and the knowledge of the opacities and the source function. If the source function
and the opacity are known, inverting the radiative transfer equation to find the intensity
becomes easy. The calculation of the flux then only needs the integration of I, into H,. The
complexity of the problem resides in the fact that usually the source function is not known
independently of J, and thus of I,,, and both have to be calculated simultaneously.

Assuming the opacities to be known, in order to calculate S,, we integrate the formal

solution over all directions, i.e. over u = cos(0), transforming eq. (2.16) into:

1 o0
J(n) = 5/ SyEr(ty — 1)dt, (2.18)
0
Ey(z) = / t e dt (2.19)
1

if the source function is isotropic.
This last equation is then usually written in operator formalism, which can be trans-

formed to matrix notation once we discretize the problem. It then reads:

AlfO) = 5 [ 10 - md, (2.20)
J, = A [Su(t)] (2.21)

Since both the intensity, and therefore J,,, and the source function are supposed to be
unknown, eq. (2.20) has to be solved iteratively taking into account the considered problem
boundary conditions.

The A, operator contains information on the opacities for each wavelength and physical
point, and its calculation requires the knowledge of the physical structure of the medium.
In the case of pure scattering, eq. (2.20) is all that has to be solved, whereas pure emission
has to be accounted for additionally as will be discussed in next subsection.

This scheme can be generalized to spherical symmetry and to the special relativistic case,

additional complexity arising from the following effects:

e In moving atmospheres, the radiative transfer equation left and right term are differ-
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ent: the left hand side term is more naturally expressed in the observer rest frame
where the wavelength of a specific intensity beam is constant, while the opacities and
source function are more naturally expressed in the comoving frame where scattering
is isotropic. Any chosen frame will therefore need to transform part of the equation,

increasing its complexity.

e Taking into account scattering requires information on beams coming from all direc-

tions, so that the A, operator must sample the 6 or y parameter even in 1D.

e The calculation of the A, matrix coefficients is always time consuming since it contains

lots of exponentials which are costly in computer time.

2.1.3 The rate equation

We mentioned that even if the level populations were perfectly known, the source function
would still have to be calculated because it depends on the energy density J, through
scattering. But usually the level and ionization populations are not known a priori and
have to be calculated by solving the rate equation.

In this section, J,, and the temperature structure are supposed to be known. As this if
often not the case, the resolution then uses a nested iteration scheme, solving the radiative
transfer equation to get the temperature and the energy density, and the rate equation to find
the level and ionization populations needed to calculate the opacities and emissivities. The
temperature structure also depends on the radiation field and therefore must be corrected,
which is usually done by enforcing the energy conservation between different physical layers.

If we assume statistical equilibrium, the general rate equation for level population reads:

dni (r)
dt

N N
=Y n;(r)Pji(r) — ni(r) Y Pij(r) =0 (2.22)
J#i J#i
with m; the population of a particular level, N the total number of levels, and P;; the
transition rates between level ¢ and level j. This equation has to be supplemented by the
charge conservation equation and the nucleus conservation equations. The electron density

if found from the generalized equation of state.
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This problem can then be addressed either assuming Local Thermodynamic Equilibrium,
denoted LTE, or in the more general Non Local Thermodynamic Equilibrium case, denoted

NLTE.

e LTE: In this approximation, the level and ionization populations are assumed to follow
the Saha — Boltzmann equation. This assumption holds of course in Thermal Equilib-
rium, but is also a good approximation when collisional rates are preponderant, since
the level populations and atom ionizations are then dominated by the matter velocity
distribution, i.e. the temperature structure. Two sub classes of LTE approximations

exist:

— The pure LTE, where thermal equilibrium really holds locally with the direct
consequence that the source function is a Planck function with the local matter
temperature:

$,(x) = B,(T(x)) (2.23)

— The “LTE-€” approximation where the atom level populations and ionizations
are supposed to follow the Saha-Boltzmann equation but where the part of the
source function corresponding to the lines is allowed to depart from the Planck

function in order to take into account coherent line scattering. In this case

S, =(1—-e€)J, +eB, (2.24)

where € is the so called thermalization factor. Obviously, if the pure LTE approx-
imation holds, € ~ 1. Allowing € to be different than one for the lines allows to
take into account line scattering which is important for spectrum formation, pure
scattering corresponding to the ¢ = 0 case. This equation is the one we missed in
the previous section once we had defined the A, operator. Here (1—¢)J, accounts
for the line scattering, and eB,, for thermal emission of the element lines. For all
other processes € = 1. In our LTE calculations we usually use € ~ 0.05, making
the line source function dominated by scattering. In NLTE, the e factor is not

needed, but can be estimated, and has been shown to always be € ~ 10~7 for ion
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lines in SNEIA around maximum light.

e NLTE: In this more general case, the atomic levels and atom ionizations are not
supposed to follow the Saha-Boltzmann equation, and the radiation field is allowed
to depart completely from the thermal equilibrium with matter. The complete rate
equation has therefore to be solved, taking into account the radiative and collisional
transition rates, and their relation with the radiative field. NLTE ionization effects
can also be taken into account using generalized partition functions. Whereas in LTE
the levels are related by Boltzmann statistics, one now has to account for each possible
transition rate between any considered levels, which results into a dramatic increase

of the calculations needed (68 levels for Helr, 13675 for Felr).

2.1.4 Level populations
LTE:

In LTE, the problem to solve is simpler, and computationally less costly than in NLTE. In
thermodynamic equilibrium at temperature 7" with an electron pressure P,, the atoms are
distributed over their bound levels according to Boltzmann statistics. The number N, ; of
atoms in excitation state r of ionization state s (s = 0 for neutral atoms) compared to the

total number N, of atoms in ionization state s is accordingly:

N, s o greixr/kBT

)

Ny Q(T,P.)

(2.25)

where kp is Boltzmann’s constant, ) the partition function and y, the excitation energy
relative to the ground-state configuration of ionization state s. Between two ionization

states, the Saha equation has to be used, and reads:

Ngi1 (27rm)3/2(kBT)5/2 2Q, 16 Xewt1 /KT

- 2.2
NS h3Pe QS ( 6)

with xs,s+1 =| Xs — Xs+1 |, the energy difference between the ionization states s and s + 1.

The solution must fulfill the constraints of particle (total and for each element) and
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charge conservation:

Ntot = ZNr,s,i (227)
7,8,1
€iNtot = ZNr,s,i (228)

N = ) N, (2:29)
7,870,
where ¢; denotes the abundance of the element 7, N;o the total number of particles, and N,
the total free electron number.
It can be shown that this set of equations is equivalent to a single non-linear equation
for the free electron number N,. In LTE one then just has to solve this single equation to

get the level populations and ionization level.

NLTE:

In NLTE, the general rate equation (2.22) has to be solved with the transition rates taking

into account the radiative as well as the collisional rates:
Pij = R + Cj; (2.30)

with jo the radiative transition rate between level < and level j and C;; the collisional rate

associated to the same levels.

For calculation purposes we change from the R’ and C' probability transitions previously
defined. We note the upward transition rates (i — j), n;R;; and n;C;;. We also note
the downward transition rates (j — i), nJ(T:L—;R,) and nj(%*Cj,-), where n} is the LTE
population of level ¢ computed from the actual number densities of the ground state of the
next ionization stage of the element and the electron density?. Finally, the s subscript
denotes the continuum.

Still assuming ‘Z? = 0 we can now write the complete rate equation for each bound state

“It is usually a good approximation to consider that free electron are thermalized with the matter, i.e.
the atoms, since they are are at least three order of magnitude lighter.
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i of each ionization stage of each chemical specie in the material:

> nj (Rji+ Ci)
i<t
K K n*
—n; Z (Rij + Cij) + Z <n_i> (R,’j + Cj,’)
J>i i<i i
+z"‘:n' n_: (R"—FC“):O
L J n* Jt )
3> J

(2.31)

The collisional rates C;; are given by C;; = w;;Ne, where w;; is a function of T' tabulated
or calculated for each level of the considered model atom. The radiative rates for the lines

are given by

Rij = BijJi (2.32)
Rji = J, + B],J,J (2.33)
i = [0 (2.34)

Here Aj;, Bj; and B;; are the Einstein coefficients for the transition ¢ — j and ¢;;()) is the

normalized line profile function for this transition.

The radiative rates for the bound-free transitions are given by

R, = 4—‘” fooo gixAJ(A) dX
R.; (ni) fo Cir [2hc + J()\)] exp ( };\?P) d\

(2.35)

were 0;, = 0;(A) denotes the photo ionization cross-section from level i to the continuum
state x. There is one equation per level, which means that if the charge conservation
equation is added for the continuum level population, the system is closed, i.e. it gives one

independent relation per unknown.

Finally, this set of equation can be compactified to operator notation, with n the level
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populations vector, including each chemical species level, and ionization stage as well as the
continuum, and R the rate operator containing all the transition probabilities and defined
as follows:

Rij = [Rij][n] (2.36)

Solving the rate equation is numerically costly since it is non linear for the electron
number as well as for the level population numbers. Still, if one manages to solve the
rate equation, in NLTE?, it becomes possible to calculate the opacities needed to solve the

radiative transfer equation scattering problem.

2.2 SYNOW

We shall now present the two codes we used, starting with the parameterized radiative
transfer code SYNOW which takes full advantage of the simplifications specific to the

supernoveae case.

2.2.1 SYNOW approximations

Spherical symmetry: SYNOW assumes spherical symmetry to solve the 1D spherical
radiative transfer equation. This is well supported by the low polarization (=~ 1%) of SNEIA

spectra . In order to correctly treat scattering, u = cos(f) previously defined is sampled.

Sobolev approximation: This approximation takes advantage of the large velocity
gradient present in SNEIA. If one considers an element presenting a line at Ag in its rest
frame, at velocity v,p, toward the observer, this element will present a non negligible opacity
in the observer rest frame at A = Ag(1 + “¢2+), assuming that the first order Doppler shift
formula holds.
The element line is then said to be in resonance at the wavelength A. This resonance will
Av _ Ay

extend on a zone of velocity width Av, where =* = o A), standing for the line profile

width.

®depending on his time or his resistance against adversity
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In the Sobolev approximation, this zone, called the resonance zone, is assumed to be
small enough to consider its velocity and all the relevant physical parameters (temperature,
level populations, etc) as constant. The source function of the line at the wavelength A,
as well as its optical depth at the same wavelength are therefore given by their resonance
region values, without having to integrate over the whole extension of the atmosphere: the
Sobolev approximation changes S, and 7, into local quantities.

We can now derive the equation for the specific intensity emergent from a resonance
region centered on s, where s is the beam path coordinate (cf Jeffery & Branch, 1990) for

a resonance wavelength A, in the same way as in eq. (2.17):
I(M,n,00) =I(As,n,—00)e "+ S(As,n,84) (L —€e ") (2.37)

In this equation I(\.,n,—o0) is the incident specific intensity, and 7 the optical depth
calculated on the resonance region. S(As,n,s,) is the source function evaluated in the
resonance region.

In the Sobolev approximation, multiple resonance regions are also considered to be at
infinity relative to each other in wavelength space. The previous equation is then easily

generalized to more than one line:

N
I(Aym,00) = Y S(A,m, 8:)(1 — ™) + I(A,, 0, —00)e™ ZivoT (2.38)

i=1
Transforming the source function and the optical depth into local quantities has sim-
plified the solution of the radiative transfer equation, but the Sobolev approximation does
not hold for overlapping resonance regions, which is for instance the case for elements with
numerous close lines, such as the iron group elements. This will prove important later on,

when the flux transfer issue will be addressed.

Photospheric model SYNOW also assumes the photospheric model, which considers
the supernova to be formed of an opaque region with a black body spectrum called the
photosphere, on top of which lie some scattering elements. This model has long been thought

to well describe SNEIA around maximum, when their central part is supposed to be very
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dense and hot. It therefore presents a very high continuum opacity from the free electrons
coming from the ionized material. The photosphere is assumed to be optically thick enough
for the radiative field to be thermalized with the matter, and thus to be well described by
a black body spectrum. We found the situation to be more complex, and will address this

issue in later chapters.

Boltzmann level population In SYNOW, the rate equations are not solved. Each
element is considered to be at a fixed excitation temperature, its lines weights being scaled
with respect to a given reference line optical depth at the photosphere surface, using the

Boltzmann level equation. Each optical depth decreases from the photosphere toward the

v
VUphot

outside of the supernova, as ( )~", with n empirically chosen to be n = 7.5, vppo being
the photospheric velocity. This is a stronger approximation than LTE, for which LTE is of
course a prerequisite.

It is also possible in SYNOW to detach lines, i.e. to have their optical depth to be

maximal at v > vphe. In this case their optical depth is considered to be zero between the

photosphere and the velocity of their maximum.

2.2.2 P-Cygni profiles

All these simplification make SYNOW a fast code, and allow to simulate the geometri-
cal effects of many different element distributions. If one is well aware of the underlying
hypotheses, SYNOW is a powerful tool for line identification.

In the photospheric approximation, the main geometrical effect of line scattering is the
characteristic spectral feature called a P-Cygni profile. Figure 2.2 displays the geometrical
structure of the photospheric model. The line forming region is the zone lying on top of the
photosphere. We will first suppose that it contains only one element scattering light at a
single wavelength )¢ in its rest frame. In the zone in front of the photosphere with respect to
the observer, called the absorption zone, the scattering results in a decrease of the incoming
flux from the photosphere, as was seen in eq. (2.17) or eq. (2.37), I(7_ iuf, 4, ¥) being here
the black body photospheric intensity. Since all the matter in front of the photosphere is

going toward the observer, the resulting absorption feature will be blue shifted with respect
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Figure 2.2: Geometry resulting in a P-Cygni line profile. In this simplistic picture, the
extended line forming region above the stellar surface is optically thin to continuum radiation,
but is optically thick to line radiation. The far side of the emission lobe is moving away from
the observer (at the left), resulting in an emission feature extending to the red of the rest
wavelength of the line.

to Ag.

In SYNOW, the matter lying behind the photosphere, i.e. in the occulted region, affects
the spectrum only through multiple scattering, which results in a a negligible contribution to
the total flux. On the other hand, in more detailed simulations, this zone has an important
if indirect effect on the overall spectrum because of the non locality of the problem: it should

not be thought of as equivalent to an empty region.

The side lobes also scatter the light emitted by the photosphere. The corresponding case
in eq. (2.37) or eq. (2.17) would be a null incoming flux. The observer will still see the source
function contribution, i.e. the light scattered in his direction by the line. Since these lobes
are often very large, the amount of light scattered toward the observer usually outweighs

the photospheric intensity, resulting in an emission peak centered on the rest wavelength of
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Figure 2.3: Schematic P-Cygni line profile. The blueshifted absorption trough comes from
material blocking the core of the object, expanding toward the observer. The emission feature
is peaked at the rest wavelength, and results from light scattered toward the observer.

the scatterer by geometrical symmetry of the emission lobes.

The sum of the contributions of the different regions results in the characteristic P-Cygni
profile displayed in Fig. 2.3 If there is more than one scattering line in the line forming region,
which is usually the case, the resulting feature is not the linear combination of each line
resulting P-Cygni profile. Instead, lines blend together, which is where SYNOW proves
useful: by an iterative manual process one can fit supernova spectra using different sets of
elements. It then becomes possible to infer precious information on the elements present in

the line forming region®.

This is how the most well known SNIa explosion model W7 was devised: using SYNOW to iterate on
its outcome in order to tune the flame velocity

28



2.3 PHOENIX

PHOENIX, the other radiative transfer code we used, is mainly developed by P.Hauschildt,
F. Allard, and E.Baron. It is designed to be a general non-LTE stellar atmosphere code.
As such it has as few physical assumptions as possible, and can be used to simulate very
different objects and has been used to compute synthetic spectra for, e.g., novee, supernovae
of many types, M and brown dwarfs, O to M giants, white dwarfs and accretion disks in
Active Galactic Nuclei.

PHOENIX solves the 1D spherical time independent radiative transfer equation in the
relativistic case, and solves the rate equations in NLTE. Note that PHOENIX only neglects
the ezplicit time dependence, since it has been shown in Baron et al. (1996) that its effects
are of smaller order than all the special relativistic effects.

The cost of this lower degree of parameterization compared to simpler codes like SYNOW,
are increased computing power requirements. The output on the other hand is much more
than a spectrum, also containing the converged physical structure of the simulated type Ia
supernova.

In the PHOENIX mode we used, the input is an abundance structure with respect to
velocity, given by an explosion code. We mainly used the W7 model, and did not consider the
abundance set as free parameters. The only free parameters were the bolometric luminosity

of the supernova, and the time after explosion.

2.3.1 Radiative transfer equation solution in PHOENIX

The radiative transfer equation can be solved with a number of different methods. PHOENIX
uses the operator approach described previously, in the 1D spherical relativistic case. It can
also be expressed in the form of eq. (2.20) but with a more complicated A operator. Di-
rectly inverting this equation requires too large amounts of CPU time and memory. Instead,
PHOENIX uses the so called “Accelerated Lambda Iteration” method (ALI), developed on
the philosophy of operator perturbation. It consists in splitting the A operator by introduc-

ing an appropriate operator A*, rewriting eq. (2.20) as:

A=A*+(A—AY) (2.39)
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Example of the LTE case

PHOENIX is designed to solve the full NLTE problem, but since most of the PHOENIX
models presented in this work where calculated in LTE we exemplify the radiative transfer

equation solution in the LTE-¢ approximation.

The iterative solution using a fixed point iteration scheme is presented in eq. (2.40) for

the atomic line part of the LTE case:

Jnew = ASold y Shew = (1 — G)Jnew +eB (2.40)

At large optical depth in scattering dominated atmospheres like in SNEIA, € << 1 and
S ~ J. The change per iteration, i.e. the convergence speed, AS = Spew — Soiq is thus small.
Physicaly, the reason is that A follows photons in its propagation of correction per step since
it transfers the old S in to a new one using J. Therefore the corrections propagate by A7 =1
steps just as photons do. As the thermalisation depth is of order 1/4/€, it needs many more
iteration to converge than to reach the AS/S << 1 point. This is mathematically similar

to say that the A operator has an eigenvalue spectrum close to unity for large optical depth.

In the ALI method, the A, operator is chosen to have smaller eigenvalues than the

operator A. Rewriting the iteration scheme as

Jnew = A*Snew + (A - A*)‘Sold (241)

Or equivalently as

1 —A*(1—€)]Jnew = Jgs — A*(1 —€)Jold (2.42)

will then increase the convergence. In the last equation J¢, = AS,q4 is the formal solution

for the energy density.

PHOENIX implements this ALI method, calculating a tri-diagonal (or larger band-
width, up to the full operator) A* operator, solving equation (2.42) for the new values of
J, and then using them to compute the new source function S, with eq. (2.40) in the LTE

case, for the next iteration cycle until convergence for each wavelength and physical point.
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2.3.2 Rate equation in PHOENIX

Once the scattering problem converged for a first guess of the level populations, PHOENIX
solves the rate equations, either in the LTE approximation (by a call to the EOS) or in

non-LTE for a desired set of atomic levels.

In LTE, the level populations are calculated using the Saha-Boltzmann equation. It has
to be noted that this LTE approximation is not the stronger LTE approximation where the

radiation is considered in full local equilibrium with the matter.

In NLTE mode, PHOENIX solves eq. (2.37) with the sums extended over all the included
levels of the considered model atoms. The weaker radiative transitions are treated as LTE

background opacities.

As for the radiative transfer equation, an ALI method accelerates eq. (2.36) iterative
solution, since the direct inversion of such a system would be too costly in CPU time and

memory.

The rate equation can be rewritten using the “Accelerated Lambda Operator” R* defined
as

Rij = [R}j|[mew] + ([Rij] — [R}}]) [nord] (2.43)

and built to have eigenvalues much smaller than one. The resulting equation still displays
explicit non linearities with respect to the level population n; and the free electron density
Ne, as the coefficients of the [R};] and [R};| are quadratic in n;, and because of the Saha-

Boltzmann factors dependence on the electron density.

The rate equation is linearized replacing the terms n; new [R;‘z] [Mnew] By nj,old[R;fi][nnew].
The resulting increase in the iterations needed to converge the solution is by far outweighed
by the removal of the major part of the non-linearities of the rate equation eq. (2.35). But

this equation is still non linear with respect to mn., and still has the high dimensionality of

the original system.
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S tsetal R lnew] = ita | S 2[R mew] + 3[R fneu

j<i j<t ' j<i
+ Z n],old * [nnew + Z Njnew [AR]z][nold] + C]z)
Jj>1 i<i
n*
~Minew | Y —r([ARij)[moia] + C5i) + > ([ARij][noia] + Cij)
j<i ¢ j>i
+ Z nJ,new ARJl] [nold] + le) =

>t

(2.44)

To linearize further more, the electron density calculation is separated from the rate
equation solution, so that n. can be considered as given during the rate equation solution.
Changes in the electron density are then accounted for in a separate iteration to find a

consistent solution of the rate equations and the electron densities.

This resulting scheme only requires the solution of large linear systems and low-dimensional
non-linear systems. Moreover, since separate equations are solved for each group of elements,
this process can be parallelized, distributing the groups among the available processors al-

lowing PHOENIX to take full advantage of the cluster computing power available nowadays.

Finally, the NLTE effects on the electron density are also taken into account by a mod-

ification of the LTE partition functions used to calculate the ionization equilibrium.

2.3.3 Temperature correction

PHOENIX outermost level of iteration is the temperature correction, based on a generaliza-
tion of the Uns6ld-Lucy temperature correction scheme for spherical geometry and NLTE
model calculations. It uses the global constraint equation of energy conservation to find

corrections to the temperature structure.

PHOENIX supposes the atmosphere to be in local radiative equilibrium, in which case
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the energy conservation equation that has to be fulfilled reads:

in [T - (o - o) Blas = 2 (2.45)

where S is any external energy source such as gamma-ray deposition or mechanical energy

from a wind.

At any given iteration of the temperature correction scheme, the temperature structure is
fixed. In each layer the matter temperature is T'(l) = Teq(I) +AT(l), where Teq stands for the

temperature that would, for the calculated radiation field, fulfill the radiative equilibrium.

It can be shown that to obtain the radiative equilibrium in the relativistic case solved
by PHOENIX, the temperature should be corrected so that the Planck function changes
by an amount §B(r) equal to:

SB(r) = (ks I(r) ke B(r)+ 5 ) 2 (H(r = 0)-H(©0) - £
(2.46)
where H(r) = F(r)/4n. Hy(7) is the target luminosity at the particular 7 depth point, and

q is the “sphericity factor”
roosf1g
1 (. e)

4= 3 (2.47)

Tcore Deing the inner radius of the atmosphere, R the total radius, and f(7) = K(7)/J(7) the
Eddington factor, where K, H and J have been defined in eq. (2.2), eq. (2.4) and eq. (2.6).

We also remind that xp, x5, and xs are the wavelength averaged absorptions:

> kyB,dv
0 14
> Ky J,dv

Ky = 7‘[‘(}00 T (2.49)
0 14
>0 XvFodv

X7 7‘&}@ e (2.50)
0 14

Using this procedure, PHOENIX corrects the temperature structure and through iter-

ation of the whole process converges a self consistent supernova physical structure.
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2.3.4 Summary

The global PHOENIX iteration scheme for the multi-level non-LTE problem solution can

be summarized as follows:

e Set up: Having a first guess T, n;,n. as function of radius, the hydrostatic and
hydrodynamic equations are solved with the explosion model abundances to calculate

the gas pressure Pgas7.

1. Wavelength loop: Done at fixed n;,n. and T for each grid point.
(a) Iteration over the wavelength loop to solve for the radiative transfer field
until J and S are converged to the desired accuracy.
(b) Update of the radiative rates and rate operators
2. Rate equation solution: Done at fixed J and T for each wavelength and layer
point
(a) Solution of the high dimensionality linear system for the level population n;
(b) Solution of the low dimensionality non-linear system for the electron density
Te
3. Temperature correction:

(a) Correct T to enforce better radiative equilibrium.

(b) If radiative equilibrium is obtained to desired accuracy, exit the iteration

scheme, else start again at the Wavelength loop.

e Converged model: This converged model can then be used to obtain the spectrum

through the calculation of the radiative transfer solution.

"In the supernova case, the equation of state procedure, that reads Pyas = f(ne,T) only has to be inverted
to find ne
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Figure 2.4: PHOENIX General iteration scheme.
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Chapter 3

Adaptive Grid for PHOENIX

Mathematically, the ALI method used in PHOENIX belongs to the same family of iterative

methods as Jacobi or Gauss-Seidel methods. They have the general form:
If we note zg the solution of this problem, and if we start with 1 = z¢ + dz; we have:

ro = :IC0+M_1N(5£131 (3.2)

oxy = M*1N5w1 (3.3)

which shows that this procedure will converge if the spectral radius of the matrix G = M_1 N
is lower than unity. Moreover, if in the course of the calculation of x,; we introduce errors
bigger than dz, 1 — dz,, this procedure will fail.

This well known problem of PHOENIX users occurs when an ionization front becomes
too poorly spatially sampled. In order to keep PHOENIX convergence time and memory
needs within acceptable bounds, we can not use much more than ~ 100 radial points for the

velocity grid, that ranges from Okm.s™! to 30000km.s™'.

Since the temperature structure
changes in the course of model convergence, the ionization fronts move, and the spacial grid
is too coarse to sample them finely enough everywhere.

At ionization fronts the electron density and the species densities vary quickly, making

the optical depth and the source function varies accordingly. If the optical depth and source
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function changes are too poorly spatially sampled, their interpolation while calculating the

formal solution will introduce errors important enough to cause the convergence to fail.

The usual solution to such convergence problems was to provide by hand a new grid
with more points at the main ionization fronts. The automatization of this long and tedious

procedure has been included in this PhD work.

3.1 The grid density:

The first step of our adaptive grid algorithm is to automatically find the main unsampled
ionization fronts, calculating their partial pressure derivatives. We select the three species
with the worst sampled partial pressures in order to define the grid point density function
noted R. Since large electron density variations usually also cause large optical depth or
source function variations, we included it to the calculation of R. The number of functions
used to calculate R is somewhat arbitrary, but too many would unavoidably degrade the
resampling, since the total number of grid points is fixed. Consequently, we selected only

three of them.

Once the relevant functions found, we as grid points density function:

dyr \” dy \? dys ) ?
R = 1+ ai <Cl E) + a2 ((22 %> + as <C3E> (34)

The coefficients a1, as, as are the relative weights attributed to each one of the three

functions. The scaling coefficients ¢;, c2, c3 are the ratio of the grid span (i.e. the difference
between the maximum velocity and the minimum velocity) to the function span (i.e. the
difference between the maximum and the minimum of the function). They transform the

function derivatives into non dimensional quantities comparable to 1. If ¢ % > 1, the

variation is locally more important than the global variation ﬁg—i”i, and identically, if ¢ % <

1, the function variation is lower than its average.

Finally the %, % and % are the derivatives values of the chosen functions defined as

dy ;) _ i+ 1)~ (i)

dv z(i+1) (3:5)

|
8
—~~
~.
~—
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We preferred this simple choice to spline derivatives in order to ensure computational
robustness. Moreover, the natural propensity of splines to amplify variations empirically
proved to be a drawback because of the partial pressures sometimes high and narrow peaks,

their spline fitting resulting in an artificially too large grid density.

The R function obtained describes the relative grid point density corresponding to the

best sampling of the three chosen function variations.

3.2 Adapting the grid

Once the grid point density known, we have to calculate the new grid. The grid point density

R(z), z being the grid variable and z; the #*? grid point, satisfies

_dN

R(z) = e

(3.6)

with IV the number of grid points.

In order to sample the best the chosen function variations, we want to have an uniform

density distribution of points:
dN  dN
du  R(z)dz

=a (3.7
where « is a constant.

The formal solution of the adaptive grid problem would be to invert the equation set

resulting from eq. (3.7), i.e. N(z) — N(0) = o [;’ R(y)dy.

One possible approach is to tabulate the R(z) integral, and interpolate to find equal mass
bins to build the new grid, that will from now on be noted z}. Since there is no way to know
the large variation zone’s location “a priori”, this method needs a large number of tabulated
points to calculate the new grid accurately in regions of steep R(xz). We preferred to this
the Voronoi tessellation method, which substitutes an iterative approach to the inversion of

the function.
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3.2.1 Voronoi tessellation method

Our method takes seed in Cappellari & Copin (2003), where the Voronoi tessellation is used
to rebin 2D images. The central Voronoi tessellation is a division of the space into zones
enclosing all the closer points to its associated gemerator, defined as the barycenter of the
zone. For any given density function p(r) the central Voronoi tessellation bins, or zones, are
naturally smaller where the density is higher, but the mass in each bin is not constant.

It has been proven in 1D and conjectured in n dimensions (the Gersho conjecture) that

if d is the typical size of the central Voronoi tessellation bin, then d and p are related by

-1

d x pzin (3.8)

where “density” and “mass” are generic names used for quantities related in n dimension by
the relation m = pd".

In 1D the “mass” enclosed in each bin is m ~ pd, or, using eq. (3.8) m ~ p?/3. If we
define p' = p?, the associated bin mass, according to eq. (3.8) in 1D will be m ~ pp'~/3 =1:
in the approximation of large number of bins, the central Voronoi tessellation corresponding
to p' has constant mass zones for the density p.

The modified Lloyd method described in Cappellari & Copin (2003) has the central
Voronoi tessellation as fixed point. We can then iteratively calculate the grid optimally
close to the asymptotic situation of high number of bins we are interested in by using the

following procedure:
1. First guess for the grid, noted z;.
2. Calculate the mass centroids z(7) of each bin using the density p' = R?

3. Calculate the new grid z'(z), where the z'(7) are the boundaries of the Voronoi tessel-
lation using the 2(i) as generators. The z'(:) points are therefore the middle of the

segments [z(z + 1), z(7)].
4. Go back to (2) and iterate until the z'(7) don’t move anymore.

This simple algorithm is easy to implement in 1D, and the Gersho conjecture makes it
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Figure 3.1: Left: Step function. In black before the adaptive grid, in red after the adaptive
grid. Center: the R function calculated with only this function. Right: New grid in
function of the old one.

generalizable to higher dimensions, which is an interesting feature since 3D PHOENIX is

actually in development.

3.3 Tests

3.3.1 Step function

The step function was used to tests if the grid points moved toward the poorly sampled
step, but also to ensure that some points remained in the constant zones, since we do not

want any large variation to accrete all the grid points.

In our algorithm, the maximal derivative is bound to be lower than A,,..f/Amae®,
which is not the case with spline derivatives. The uses of spline fits proved not to be a good
choice, since it did not include the natural “viscosity”of grid point drift when using the linear
derivative. If the real function happens to have a steeper front than detected with the linear
derivatives, the next PHOENIX iteration will show it, and our adaptive grid algorithm will

continue to drag points toward this zone.

Fig. 3.1 displays the case of a step function. The right hand side picture shows that
grid points are dragged toward the discontinuity without totally depleting the constant
zones as expected. Moreover, the left hand side function shows that since we use two point
logarithmic interpolation when possible, the error on the resampled function is less than it

would be with a simple linear interpolation.
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Figure 3.2: Left: R function calculated with 3 tangent functions. In black before the adaptive
grid, in red after the adaptive grid. Right: The new grid in function of the new one.
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Figure 3.3: The three “tangent” functions used.

3.3.2 Multiple functions

To test how this procedure worked with different functions, we chose three tangent functions
peaking at different points. The adaptive grid procedure needed 364 iterations to converge
the new grid, using a negligible amount of CPU time, showing that the grid adaptation will
be possible at each PHOENIX iteration.

In Fig. 3.2 we display the R function and the new grid obtained plotted in function of the
new one. The relative heights of the peaks only depend on the slope and not on the absolute
values of the functions, as expected. The right hand side of the figure shows that the points

are dragged toward the large derivative zones, again without depleting the constant regions.
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3.4 Adaptive grid in PHOENIX

3.4.1 Test on a converged model

Once the adaptive grid procedure was shown to work, we integrated it into PHOENIX.
We implemented the automatic quickly varying function detection following what has been
previously explained.

As a first test we ran 10 iterations on an already converged model. In Fig. 3.4, Fig. 3.6,
and Fig. 3.5 we display the partial pressures of the most important species found: electrons,
Ci1 and O11.

As expected the electron pressure has a steady decreasing slope with increasing velocity,
causing more points to be dragged toward the inside of the supernova. This function is
not redundant with partial pressures, since its main variation results from density and
temperature variation more than from drastic ionization changes.

O11 and Ci1 partial pressure display steep slopes and large peaks that are a combination
of ionization and density effects. We display in Appendix I section 8.2 the abundance
profiles of W7 model, which already show thin large peaks. But differentiating between
both effects is not crucial as what impacts on the optical depth and source functions are the
partial pressures of the chemical species.

The red curves and points are not the interpolation of the black curve on the new grid:
they are the electron pressure after the next PHOENIX calculation on the new grid. The
left hand side figures for electron, O11 and CiI partial pressures show that more points are
indeed added where the steep variations of these functions are. Moreover, these figures also
show the large changes the re-griding can have on a new PHOENIX iteration. It is hard
to predict how strongly these changes will impact the spectrum. The variation due to the
electron pressure occurs deep inside of the supernova where the mean continuum optical
depth is between 0.6 and 1.5. As all continuum opacity source directly depend on the free
electrons abundance, this change will repercute on the mean opacity in a physical region
where 7 = 1, i.e. where it’s effect on the spectrum formation should be large.

The center and right hand side figures show that after the first large change, the grid

and the calculated functions stabilize.
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The adaptive grid method we developed detects automatically the larger partial pressure
gradients, and the grid accordingly adapted. The calculation time added to a PHOENIX
iteration is negligible, and the grid convergence was robust to steep slopes. The grid change
did not deplete the regions where the chosen functions leading the regriding do not vary
much. We where able to run over 10 PHOENIX iterations on different models. The larger
ionization fronts where always detected and the ionization structure changes coming from

the regriding always stabilized, which was not a priori obvious.
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Chapter 4

Colors and Arnett law

4.1 Arnett’s law

In a series of papers, D. Arnett presented a parameterized approach of SNEIA light curves

of SNEIA based on the assumption that the density and the opacity could be written as:

R(0)\?
plrvt) = p(0,00) (70 ) (4.1)
k(z) = cte (4.2)
following Arnett (1982) notations, the mean free path of the photons being A\ = nlp, and

T = a dimensionless radial coordinate which follows the expansion of the matter.

R’

D.Arnett also assumes :

1. Homologous expansion

2. Radiation pressure dominant: the equation of state is therefore E = aT*V, P = %

3. Presence of %% Ni with a distribution somewhat peaked toward the center of the ejected

massl .

from D.Arnett himself
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He then uses the first law of thermodynamics and the Eddington diffusion approximation

to calculate the energy balance:

. . oL
L Ac\ 8(aT?)
- = = 4.4
472 < 3 ) or (44)

1
pK

where € is the energy release per unit mass from radioactive decay and A = == is the mean

free path of the photons.

From there D.Arnett derives a separable differential equation on the temperature, rewrit-

ten as: .
R(0)
T(r,t)* = $)7(0,0)* [ == 4.5
(1.0 =920 )T0,0* (77 ) (45)
where z = ﬁ is a dimensionless radial coordinate which follows the expansion of the
matter.

Coupling the opacity decrease due to the expansion through the density evolution, and
the energy deposition through %6Ni and 56Co decay, D.Arnett is able to devise a function
that reproduces the temperature, and thus the luminosity evolution of type Ia supernovae

around maximum light:

L = eniMpiA(z,y) (4.6)

A(z,y) e(wz)‘/ el 25912%) 9,4, (4.7)
0

with ¢ = t/7,, y = Tm = 279R(0)/v,s. and 7p; is the mean half life of >*Ni. The

pEsD
total mass of nickel is denoted Mp; and ep; is the energy of radioactive decay of 56Ni per
unit mass divided by the mean life time 7p;. This luminosity function has been shown to
reproduce SNEIA blue light curve shape, including the universality of the Phillips relation

(Arnett (2001)).

In order for the diffusion approximation to hold, the optical depth must be of order 1/e,
where € is the thermalization factor. Given € &~ 0.05, the overall shape of the spectrum forms
deep inside of the supernova where the Felll lines have been shown to blend and form a large

optical depth zone. As the opacities of the iron lines are larger in the A > 5000A wavelength
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region, the D.Arnett approximation is expected to work better for the B and V band than

for larger wavelength.

4.2 PHOENIX & real supernovea colors

The PHOENIX line list has been extended in 2004, to improve the accuracy of the computed
opacities. As the overall shape of the spectrum is dominated by the numerous iron line blends
at the epochs we simulated, the new set of lines will result into an improved matching of
the simulated colors to the observed ones.

To compare PHOENIX results to reality we used real supernovee colors published in
Hamuy et al. (1996) and we calculated the UBVRI PHOENIX simulated spectra colors
using the same filters. The color calculation was done by a simple integration including the
filters transmission function.

The list of the Calan Tololo survey supernove we used (called CTIO supernovea from
now) and their luminosities can be found in table 4.1. We also used the ones published in
Phillips (1993) which luminosities are listed in tab. 4.2.

As PHOENIX does not include the time evolution of the light curve, it is not possible
to relate self consistently the different epochs of our simulations. In the following we will
compare real supernovae magnitudes to PHOENIX magnitudes for each of the luminosity
sequences we simulated. For this purpose and in order to study the spectral formation in
SNEIA, we converged a grid of LTE PHOENIX simulations sampling the luminosity and
date within the W7 model. We simulated day 10, day 15, day 20 and day 25 after maximum
light luminosity sequences with bolometric luminosities ranging from —18.0 to —19.7, and

the complete grid can be found in appendix 8.2

4.3 Comparison with reality

We display in the left hand side of Fig. 4.1 the V band magnitude of all the spectra of our
grid as well as the CTIO ones. In the right hand side of the same figure we display B versus
R magnitudes calculated on the same PHOENIX spectra compared to the R colors of the
supernove listed in tab. 4.2. Fig. 4.2 displays the CTIO and the PHOENIX I versus B
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name | mB mV ml Anmis || name | mB mV ml Anmis
900 | -19.40 | -19.41 | -19.02 | 0.96 92bk | -19.03 | -19.03 | -18.83 | 1.57
90T | -19.17 | -19.21 | -18.98 | 1.15 92bl | -19.13 | -19.13 | -18.85 | 1.51
90Y | -18.56 | -18.89 | -18.65 | 1.13 92bo | -18.76 | -18.77 | -18.65 | 1.69
90af | -18.95 | -19.00 — 1.56 92bp | -19.40 | -19.35 | -19.03 | 1.32
91S | -19.24 | -19.28 | -18.98 | 1.04 92br | -18.66 | -18.70 — 1.69
91U | -19.49 | -19.55 | -19.37 | 1.06 92bs | -18.96 | -19.03 — 1.13
9lag | -19.40 | -19.48 | -19.16 | 0.87 93B | -19.04 | -19.16 | -18.87 | 1.04
92J | -18.92 | -19.04 | -18.78 | 1.56 93H | -18.45 | -18.68 | -18.74 | 1.69
92K | -17.72 | -18.46 | -18.61 | 1.93 930 | -19.23 | -19.14 | -18.91 | 1.22
92P | -19.34 | -19.31 | -19.03 | 0.87 93ag | -19.10 | -19.13 | -18.81 | 1.32
92ae | -19.07 | -19.18 — 1.28 93ah | -19.28 | -19.24 | -18.93 | 1.30
92ag | -18.98 | -19.11 | -18.98 | 1.19 37C | -19.56 | -19.54 — 0.87
92al | -19.47 | -19.42 | -19.13 | 1.11 T2E | -19.69 | -19.64 | -19.26 | 0.87
92aq | -18.89 | -18.99 | -18.57 | 1.46 80N | -18.74 | -18.79 | -18.53 | 1.28
92au | -19.03 | -19.08 | -18.83 | 1.49 81B | -19.07 | -19.17 — 1.10
92bc | -19.64 | -19.56 | -19.22 | 0.87 86G | -18.08 | -18.43 | -18.45 | 1.73
92bg | -19.36 | -19.32 | -19.04 | 1.15 90N | -19.26 | -19.28 | -19.05 | 1.07
92bh | -18.89 | -18.97 | -18.79 | 1.05 91bg | -16.62 | -17.38 | -17.81 | 1.93
92A | -18.43 | -18.45 | -18.20 | 1.47 94D | -19.00 | -18.96 | -18.75 | 1.32

Table 4.1: Calan Tololo survey supernove as published in Hamuy et al. (1996)

name | mB mV mR | A,.15 || name | mB mV mR | Anis

71T | -17.2 | -17.52 — 1.64 90N | -18.74 | -18.82 — 1.01
80N | -18.53 | -18.58 | -18.32 | 1.28 91T | -18.96 | -19.1 | -19.04 | 0.94
81B | -18.47 | -18.54 — 1.1 91b | -16.38 | -17.13 | -17.57 | 1.88
86G | -17.72 | -18.12 | -18.21 | 1.73 92A | -18.05 | -18.1 | -17.85 | 1.33
89B | -185 | -185 | -18.3 | 1.31

Table 4.2: Phillips supernove from Phillips (1993)
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Figure 4.1: Left: Calan Tololo supernoveMp and My versus PHOENIX Mp and My.
Real SNEIA in black, PHOENIX ones are colored. 10 days after explosion in red, 15 in
green, 20 in blue and 25 in yellow. Right : idem but for Mp and Mg

black CTO SN, red: d10, green: d15, blue: d20, yellow: d25
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et ey T 1 Figure 4.2: Calan Tololo supernoveMp and
o X R A 1 My versus PHOENIX Mp and Mj. Real
P 1 SNEIA in black, PHOENIX ones are colored.
aob L L L 1 10 days after explosion in red, 15 in green, 20

mB in blue and 25 in yellow.
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band magnitudes.

The PHOENIX and real spectra agree for both B vs V and V vs R for dates ranging
from 15 days to 25 days after explosion. Day 10 spectra are too blue compared to maximum
light real spectra until Mp > —18.4. This corroborates the assumption of the maximum
light time to be ~ 20 days after explosion, earlier spectra being expected to be bluer as they

correspond to hotter denser objects.

The agreement of 10 days after explosion for lower luminosities can be explained by
the cooling driving inwards the region where the overall shape of the spectrum is formed.
When it reaches a region with high enough optical depth and of low enough velocity to be

insensitive to an ~ 5 days expansion dilution, the color curves of day 10 and day 15 merge.

Moreover, since day 15 to day 25 after explosion supernove have similar colors, probably
insensitive to the details of the density profile. In the “multi-layered spectrum formation”
picture that will be developed later, with deep layers dominated by iron lines, once their
optical depth is >> 1 a change of density has little effect on the flux transfer. The colors
are more sensitive to a composition change which will modify the opacity distribution with

wavelength.

The comparison in the B vs I, Fig. 4.2 shows that the PHOENIX spectra are system-
atically lacking flux in the I band except at faint luminosities for day 20 and day 25 after
explosion. There is a general lack of flux transfer from the blue toward the red in the W7
model. The decrease of the opacity as a function of wavelength is probably too steep. When
the flux transfer from the blue toward the red is dominated by Doppler effect on scattering, a
steep density decrease would imply a steep optical depth diminution, causing a smaller flux
transfer than a shallower one. The agreement with reality of day 25 B vs I for Mg > —19
corroborates this explanation. At this later epoch the layer where the overall shape of the
spectrum forms has been driven inwards where the velocities are lower and thus the density
decrease with radius shallower. At higher luminosities, even for day 25 after explosion, the
overall shape of the spectrum is formed further out, where the higher velocities make the

Felll dominated region thiner and the flux transfered from the UV thus smaller.

Fig. 4.3 and Fig. 4.4 display the B-V, V-R and V-I behavior of both the synthetic

and the real supernoveze. The real and synthetic spectra agree but for the V-I case where
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Figure 4.5: P.Héflich models at different times and luminosities. FEach date is from the
ezxplosion time. Red: day20. Green: day 22. Blue: day 25. Yellow: day 35

the PHOENIX spectra systematically lack I flux as previously stated. The trend of the
evolution as the blue magnitude increases also departs from the real supernova trend. On
the other hand, even if the V and R magnitudes for the day 10 after explosion of the synthetic

spectrum disagree with reality, the V-R color is in perfect agreement.

Even though it is difficult to give a detailed explanation for this effect, the present results
suggest that the color formation is based on global properties of the SNEIA: in presence of
the optically thick iron core, the detailed abundance structure has little effect on the BVRI

magnitudes and even less on the colors.

The colors of P.H6flich models, with a shallower density profile, are displayed in Fig. 4.5
and Fig. 4.6. The B vs V plot is very similar to the W7 model one, stressing the point that
these colors depend on the deep iron core of the models and are not sensitive to the details

of the nucleosynthesis.

The I and V — I plots are however in better agreement with reality than W7 model,
which corroborates the hypothesis of a too steep density profile being the reason why W7
model fails to transfer enough flux from the UV. We calculated the difference of U band
flux between W7 model at day 20 after explosion and the P.Ho6flich models to be ~ 0.5

magnitude lower which corresponds to a 50% larger U band luminosity for W7 model.
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Figure 4.6: P.Hdéflich models colors at different times and luminosities. Each date is from
the explosion time. Red: day20. Green: day 22. Blue: day 25. Yellow: day 35

4.4 Addendum

In (Reindl et al.,

2005), a new study of the SNEIA magnitude corrections for the host

extinction is discussed. The new magnitudes are listed in tab. 4.3, and show a global

increase with respect to the ones we used before.

Table 4.3: Supernove magnitudes from (Reindl et al., 2005)

(continued on next pages)
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SN Mp My My SN Mp My My
SN 1937C | -19.7170 | -19.7050 SN 1995D | -19.6060 | -19.5970 | -19.2330
SN 1960F | -19.7230 | -19.6890 SN 1995E -19.4730 | -19.5190

SN 1972E | -19.5960 | -19.5900 | -19.2730 || SN 1995ak | -19.4160 | -19.3130 | -19.0820
SN 1972 | -19.2640 | -19.3770 SN 1995al | -19.6670 | -19.6920 | -19.3310
SN 1974G | -19.5540 | -19.5550 SN 1996C -19.6600 | -19.6500 | -19.3890
SN 1980N | -19.4160 | -19.4460 | -19.1130 || SN 1996X | -19.4280 | -19.4240 | -19.1740
SN 1981B | -19.5380 | -19.5430 SN 19967 -19.5050 | -19.4680

SN 1981D | -19.5790 | -19.5550 SN 1996ab | -19.7100 | -19.6970

SN 1982B | -19.6130 | -19.6700 SN 1996bk | -19.1290 | -19.2320

SN 1983G | -19.4820 | -19.4170 SN 1996bl | -19.5800 | -19.5460 | -19.3220
SN 1984A | -19.5710 | -19.5470 SN 1996bo | -19.4120 | -19.4480




SN 1989B

SN 1990N
SN 19900
SN 1990T

SN 1990Y
SN 1990af
SN 1991S

SN 1991U
SN 1991ag
SN 1992A
SN 1992J

SN 1992P

SN 1992ae
SN 1992al
SN 1992aq
SN 1992au
SN 1992bc
SN 1992bg
SN 1992bh
SN 1992bk
SN 1992bl
SN 1992bo
SN 1992bp
SN 1992br
SN 1992bs
SN 1993B

SN 1993H
SN 1993L

SN 19930
SN 1993ac

-19.4250
-19.6200
-19.6490
-19.6470
-19.4850
-19.2410
-19.6300
-19.5990
-19.6710
-19.3240
-19.1730
-19.6180
-19.4420
-19.6020
-19.2030
-19.1450
-19.7230
-19.5680
-19.5610
-19.2520
-19.2790
-19.1960
-19.3300
-19.1740
-19.5460
-19.4820
-19.1310
-19.3500
-19.5250
-19.4840

-19.4320
-19.5800
-19.6560
-19.4950
-19.5630
-19.2680
-19.6110
-19.5350
-19.7060
-19.3410
-19.2090
-19.5770
-19.4300
-19.5490
-19.1930
-19.2130
-19.6620
-19.5030
-19.5280
-19.1830
-19.2700
-19.1960
-19.2830
-19.2080
-19.5210
-19.4090
-19.2190
-19.3240
-19.4330
-19.4510

-19.2770
-19.2820
-19.2710
-19.3910
-19.1630

-19.3080
-19.3650
-19.3390
-19.0990
-18.9790
-19.3090

-19.2770
-19.0500
-18.8700
-19.4300
-19.2820
-19.3010
-19.1150
-19.0770
-19.0590
-19.0730
28.2960
28.8860
-19.1760
-19.1030

-19.2740
-19.3170
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SN 1996bv
SN 1997E
SN 1997Y
SN 1997bp
SN 1997bq
SN 1997dg
SN 1997do
SN 1997dt
SN 1998V
SN 1998aq
SN 1998bu
SN 1998dh
SN 1998dk
SN 1998dm
SN 1998dx
SN 1998ec
SN 1998ef
SN 1998eg
SN 1999X
SN 1999aw
SN 1999cc
SN 1999dk
SN 1999ee
SN 1999ef
SN 1999¢k
SN 1999gd
SN 1999gh
SN 2000B
SN 2000E
SN 2000bk

-19.7070
-19.3840
-19.5160
-19.6480
-19.5300
-19.5700
-19.6370
-19.5950
-19.6110
-19.5570
-19.4920
-19.4280
-19.5750
-19.6240
-19.3120
-19.5560
-19.6870
-19.5610
-19.5580
-19.7170
-19.3270
-19.4380
-19.6180
-19.5490
-19.5070
-19.5350
-19.1630
-19.2900
-19.6670
-19.2620

-19.7150
-19.3770
-19.4440
-19.6350
-19.6460
-19.5240
-19.6200
-19.6020
-19.5700
-19.5350
-19.5470
-19.4990
-19.5910
-19.5600
-19.2670
-19.5700
-19.6230
-19.5150
-19.5470
-19.7500
-19.3360
-19.4500
-19.6830
-19.6020
-19.5490
-19.5370
-19.2110
-19.3560
-19.6450
-19.1690

-19.4070
-19.1750
-19.3170
-19.1880
-19.3080
-19.3180
-19.3370
-19.4220
-19.3840

-19.3620
-19.1950
-19.2950
-19.3920
-19.1280
-19.2800
-19.4000
-19.3090
-19.3050
-19.3670
-19.0990
-19.0790
-19.3030
-19.2030
-19.2390
-19.3480
-19.0470
-19.0510
-19.3320
-19.1480




SN 1993ae | -19.3890 | -19.3080 | -19.2020 || SN 2000ce | -19.5530 | -19.6560 | -19.3840
SN 1993ag | -19.4180 | -19.4430 | -19.1400 || SN 2000cf | -19.4490 | -19.4540 | -19.1850
SN 1993ah | -19.3680 | -19.3310 | -19.0450 || SN 2000cn | -19.1930 | -19.2940 | -19.0970
SN 1994D | -19.4740 | -19.4120 | -19.2660 || SN 2000dk | -19.2470 | -19.2820 | -19.0580
SN 1994M | -19.3600 | -19.3310 | -19.1280 || SN 2000fa | -19.6500 | -19.6030 | -19.3190
SN 1994Q | -19.6570 | -19.6850 | -19.3480 || SN 2001V | -19.6370 | -19.6260 | -19.3190
SN 1994S | -19.6220 | -19.6030 | -19.3210 || SN 2001el | -19.5850 | -19.5230 | -19.2480
SN 1994T | -19.3120 | -19.3560 | -19.1060 | SN 2002bo | -19.4570 | -19.5750 | -19.1920
SN 1994ae | -19.7030 | -19.6900 | -19.3080 || SN 2002er | -19.4010 | -19.4270 | -19.1710
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Figure 4.7: Left: Mp and My versus PHOENIX Mp and My. Real SNEIA in black,
PHOENIX ones are colored. 10 days after explosion in red, 15 in green, 20 in blue and 25
in yellow. Right : idem but for Mg and My

We display in fig. 4.7, fig. 4.8, fig. 4.9, fig. 4.10 and fig. 4.11 the same plots as in the

previous sections where the real supernovee luminosities have been replaced by the ones from

(Reindl et al., 2005).

Each one of these plots shows smaller SNEIA dispersion after the new corrections for

host extinction are applied.

The general conclusions from the previous section are not changed by the new set of

magnitudes, although if the luminosity range where the W7 model correctly reproduces the

real SNEIA colors has decreased.
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Figure 4.10: P.Hdéflich models at different times and luminosities. Each date is from the

explosion time. Red: day20. Green: day 22. Blue: day 25. Yellow: day 35. Left: My wvs
MB. Right: MI vs MB
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Figure 4.11: P.Héflich models at different times and luminosities. Each date is from the
ezplosion time. Red: day20. Green: day 22. Blue: day 25. Yellow: day 35. Left: Mg — My
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Chapter 5

Some empirical spectral ratio

correlated to luminosity

In this chapter we shall redefine some spectroscopic luminosity indicators first presented in
(Nugent et al. (1995)). We shall also define a new indicator of higher accuracy. And finally,
we will simulate the expected accuracy on SNEIA luminosity measures in the SNAP /JDEM

context using these spectroscopic ratios.

5.1 Rs; and Re,:

5.1.1 Definitions:

Rgi and Re,, are empirical line ratios that were first defined in (Nugent et al. (1995)). They

are called after the main element identified in the considered wavelength zones.

Rg; zones lower | Rg; zones higher
wavelength in A | wavelength in A
First maximum 6200 6450
Second maximum 5850 6000
Third maximum 5500 5700
6355 A minimum 6050 6250
5979 A minimum Variable Variable

Table 5.1: Rg; definition zones
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Figure 5.1: Left: Green lines locate the 6355 A and 5979 A Si1l lines. The blue lines locate
the regions where the minima are searched for. The red diamonds locate the three mazima
used to draw the two purple reference lines, and the two purple arrows represent d,.q and
dpiye used to compute Rg;. Right: Red lines locate the 36504 and the 39334 Cail lines.
The mazima used to calculate Re, are searched in the two blue colored regions.

Rs; definition:

Rg; is named after the characteristic Sill trough found at ~ 6100Aand usually associated to

the absorption part of the 6355 A Sii1 line P-Cygni feature.

In the left hand side of Fig. 5.1, the green lines label the 6355 A and 5979 A Sii1 lines
rest wavelengths. The red diamonds locate the maxima and the blue diamonds the minima

found in the wavelength zones defined in tab. 5.1.1.

The 6355 A minimum band is centered on the 6355 A line blueshifted of approximately
10000km.s~!!. It corresponds to the average velocity at which the SiiI line is supposed to
form. The ~ 200A wide wavelength zone where we search for the second minimum is noted
as “variable” because it is centered on the 5979 A line blueshifted by the same actual velocity
than the 6355 A minima. This to ensure to find the right trough assumed to be at least

partly created by the 5979 A Sii1 line, which should thus form in the same physical region.

Rg; is defined as the ratio of the vertical distances between each minima and the reference

lines drawn between two consecutive maxima dpjye and d,eq, as shown in Fig. 5.1.

'Because of the homologous expansion, it is usual to use equivalently velocities or A when analyzing
supernova spectra.
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dblue
Rg; = 2 5.1
s dred ( )

This definition differs slightly from the one of Nugent et al. (1995), where tangents to
the spectrum were manually selected instead of the reference lines between two consecutive
maxima. These two methods mainly differ when the zones searched for maxima only display
inflection points, but our method was easier to automatize, and we shall turn to such cases

later.

Finally, because is is defined as the distance between points of the spectrum and ref-
erences linearly coupling points of the spectrum, Rg; is independent of the absolute flux
calibration. Moreover, as it is calculated within a wavelength region only ~ 1000A wide,

the relative flux calibration is not critical.

Rc, definition:

Following Nugent et al. (1995), we defined two zones in the 3000A 5000A region of the
spectra, centered on the Cail 3650A and 3933A lines, as shown in the right hand side
of Fig. 5.1. R¢, is defined as the ratio of the ~ 3933A maximum (mawggg54) over the

~ 3650A one (mazs4e03)-

max
Rog = 39334 (5.2)
MaT 36504

The width of the zones searched for these maxima are displayed in tab. 5.2.

The maxima are almost never found at the ex-
Rcq Central Zones half width
act Call lines wavelength. This was to be expected
wavelength in A in A

since even if we had pure Call, non-scattering ef-

3650 40
fects could move the feature’s maximum wavelength.

3933 65
Moreover, we shall show that these lines are line
blends, and not pure Call features. Table 5.2: Rc, mazimum zones

When studying these line blends with PHOENIX, we also noted that the dominating

elements in the wavelength zones considered behave mostly in the same way with respect to
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a luminosity change. This lead us to define an integral ratio we named Rc,s 2 as

39984
Fyd\
Reas = 38684 (5.3)

36904
36104 FydA

Both R¢, and Rees ratios, like Rg;, are independent of the absolute flux calibration,

and not too sensitive to the relative calibration quality.

Dealing with the noise:

The main merit of Roes over R, is the increased signal to noise ratio. On the other
hand, R¢, and Rg; will be highly sensitive to noise since they rely on maxima and minima
detections. In order to minimize this effect, we fit each wavelength zone considered with a
6" degree polynomial and search for their local maximum or minimum.

We need to search a wavelength range wide enough to ensure finding the right maxima
and minima, but in these large zones the spectral features shapes are more complex than
second degree polynomial. On the other hand, the noise may generate oscillations for too

high degrees. A 62 degree polynomial empirically proved to be a good compromise between

these two effects.

5.1.2 Correlation with luminosity:

name Day after max Blue absolute magnitude
SN 1981B | 0 -19.07
SN 1986G | -1,-3,-5,1,3 -18.08
SN 1989B | -1, -5 -18.58
SN 1991bg | O, -2 -16.62
SN 1991T |-3,0 -19.44
SN 1992A | 0,-1,-5,3,5 -18.48
SN 1994D | 2, 3,4, 5,-3,-4,-5 -19.0

Table 5.3: Supernove used in our simulation. Absolute magnitudes from Hamuy et al. (1996)
and Nugent et al. (1995)

We applied these definitions to the public supernova spectra we were able to gather,

listed in tab. 2 and plotted in Appendix 8.2.

2The S standing for Surface. And also for SNURP since SNURP RULES!
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Figure 5.3: Left: Rcq.s calculated on tab 2 supernove, Right: Re,s relative dispersion

Even though Rg; and R¢, were originally defined for SNEIA spectra at maximum light,

we used spectra ranging from 5 days prior to maximum to 5 days after maximum.

We relaxed the time constraint in order to show whether or not the date of the spectra has

a critical impact on the ratios correlation with luminosity. Moreover, since space program

like SNAP/JDEM will only take one spectrum per supernova, we wanted to quantify the

time window where spectra are usable for luminosity measures with line ratios.

On the other hand the rise time for supernovee at z =~ 1 is twice slower in the observer

rest frame. Relaxing the time constraint to 5 days around maximum was thus conservative.

Reoa & Reoas correlation with luminosity:



Slope | Constant | Variance
Rea 0.56 11.94 0.25
Reas | 0.75 15.89 0.37

Table 5.4: Reoq and Reoas linear regression on the real supernove with sufficient wavelength
coverage

Calibration of the correlation relation:  Some of the supernove listed in tab. 2 lacked
the wavelength coverage needed to calculate R¢, and Reoas. For the other ones, we plotted
the values obtained in Fig. 5.2 and Fig. 5.3.

The R¢, values for maximum light spectra agree with Nugent et al. (1995) to within a
few %. In order to calibrate the luminosity relations, we computed the linear regression of

Rea and Rees values with respect to blue magnitude.

Rea =aw,, Mp+ by, (5.4)

Reas = ARcus Mp + becas (5.5)

We list the resulting parameters in tab. 5.4. Since we have no information on the spectra
signal to noise, we had no way to estimate the errors, and forced them to be arbitrary all
equal to 1.

We also calculated the variance for R¢, and Reoqs, defined as the quadratic mean of the

distance of each supernova with the linear regression, and found it to be:

O, 0.25 (5.6)
ORpys ~ 0.37 (5.7)
(5.8)

We checked that taking out either one or both of the non “Branch Normal” supernova
did not improve the quality of the calibration, i.e. did not decrease the variances. We recall

that the non “Branch Normal” supernova refer to SN 1991T and SN 1991bg in our sample.

Time evolution: = We plotted in Fig. 5.4 the R¢, and Rees time dependence for each

supernova. When enough points where available, we interpolated the ¢ = 0 point using a
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Figure 5.4: Left: Roqa and Reas time evolution

Slope | Constant Variance
Rea 0.55 11.7 Oy, = 0.24
Reas | 0.73 15.29 ORp,s = 0.41

Table 5.5: Roq and Reoas linear regression on the real supernove with sufficient wavelength
coverage using the t = 0 interpolated values

274 degree polynomial. For the cases with two points only, we used a linear regression.

The supernova SN 1994D had enough points for a 274

order polynomial interpolation, but
since all of them are for ¢t < —3 days, and since the trend is different from the other super-
novee, we considered the ¢ = 0 point to be too much of an extrapolation to be used. Whether
or not SN 1994D R, or Rees dispersion is intrinsic or due to uncertainties measures is still
an open question, but we checked that it does not comes from our calculation.

Replacing each R¢, and Rees by the corresponding ¢ = 0 calculated value, we recom-
puted the linear regression, and the associated variance, this time defined as the quadratic
mean of the distances between the regression and the extrapolated ¢ = 0 values. These
results are shown in tab. 5.5.

More spectra are needed in order to show if there is any kind of time sequence in the
Rea or Reges evolution, but there is nothing as simple as a single time evolution for all
the SNEIA. Until more data becomes available, as the ¢ = 0 interpolation or extrapolation
almost did not change, the calibration, we decided to stay on the conservative side and treat
Reoao and Regs time dependence as an uncontrolled dispersion. Note that Rges does not

reduce the dispersion with respect to R¢,, since the signal to noise of the spectra we used is
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always high enough for the intrinsic dispersion to dominate. Therefore, even if Roqas would
be more robust to Poisson noise and thus decrease the correspondent dispersion with respect

to Rea, this is not the case here where the noise is negligible.

Luminosity measure precision using Rg, or Re,s:  With the linear regression cal-
ibration of R¢, and Rees with respect to blue magnitude and the associated variance, we

where able to estimate the luminosity precision measure using these ratios as follows:

Reca =ag,, Mp+ by, (5.9)
TRy = ag,, AMp (5.10)
AMp = ;';f—z (5.11)

AL IRCa

We display in tab. 5.6 the measurement accuracy on the blue magnitude as estimated for
Ree and Rees. We find AMp =~ £0.4 for Ro, and AMp =~ 0.5 for Ro.s. This is twice the
AMp ~ £0.2 dispersion of the “Branch Normal” SNEIA luminosity measure with the light
curve method. On the other hand these line ratio provide an independent method which,
together with a sufficient number of supernove, could be used to constrain the evolutionary

effects of SNEIA explosions.

Dispersion | slope | Blue magnitude accuracy
Rea ORg, ~ 0.24 | 0.56 +0.4
§Rca5 ORCas ~ 0.37 0.75 +0.5

Table 5.6: Estimate of the luminosity measure precision using Rca and Reas

Since we did not use the ¢ = 0 extrapolated values, the variances og,, , and og,_g
account for both the time and intrinsic supernovae dispersion. On the other hand, since the
t = 0 extrapolation hardly changes the results, we conclude that for our data, the variance

is dominated by the intrinsic and not the time dispersion.

Rg; correlation with luminosity:
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Figure 5.5: Left: Rg; calculated on tab 2 supernove, Right: Rg; relative dispersion

The correlation calibration We plot in Fig. 5.5 the Rg; values calculated on the su-
pernovee from tab. 2. The two Rg; negative values correspond to the peculiar SN 1991T
spectrum, and the 5 days prior maximum light SN 1994D spectrum, for which the blue
through associated to the 5979 A line does not exist.

The Rg; ratio is of course mathematically well defined even in this peculiar case, but
since these points fall out of the general trend and increase the Rg; slope, we removed them
from the linear regression. This selection is compatible with observational constraints, as
such spectra are easily identified when the signal to noise allows to measure Rg;.

The linear regression and the corresponding relative dispersion for this selection of su-
pernove is shown in Fig. 5.6.

Rs; = aps, MpB + by, (5.13)

We also calculated the associated variance, defined as the quadratic mean of the distances

between the measured Rg; and the linear regression, and found it to be
oRg; ~ 0.06 (5.14)

At this point this variance includes the time as well as the intrinsic dispersion of the super-

noveae.

Time evolution: = We plot in Fig. 5.7 Rg; time dependence of the supernova we dispose of.

We calculated a quadratic regression for each supernova presenting three or more Rg; values.
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Figure 5.6: Left: Rg; calculated on tab 2 supernove, Right: Rg; relative dispersion. SN
1991T and SN 199D 5 days prior to mazimum spectra have been excluded of the regression.
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Figure 5.7: Left: Rg; time dependence. Right: Rg; correlation with t = 0 interpolated
values.

We then replaced each Rg; value by the corresponding ¢ = 0 interpolated or extrapolated
value. The new linear regression calculated for Rg; correlation with luminosity is also plotted

in Fig. 5.7.

The variance calculated with respect to this new regression, still removing the events
with negative Rg;, is now:

o, ~ 0.08 (5.15)

This dispersion is the distance between the extrapolated values for ¢ = 0 and the linear
regression. If we calculate it with respect the uncorrected values distances to the linear

regression done on the ¢ = 0 extrapolated values, the variance is left to be ogrg ~0.0s. It
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proves the variance to be dominated by the intrinsic dispersion of the supernova for Rg;.
Moreover, the left hand side of Fig. 5.7 also shows that there is no general time dependence

trend for our supernova sample.

Luminosity measure precision: Asin 5.1.2 we estimate the accuracy of the luminosity
determination using Rg; directly from the dispersion with respect to the linear regression.

Table 5.7 summarizes the results.

Dispersion | slope | Blue magnitude accuracy
Rs;, no Rg; <0 ORg; ~ 0.06 | 0.14 +0.4
§R51’, no Rg; <0 ORs; ~ 0.08 | 0.16 +0.5

t = 0 extrapolation

Table 5.7: Estimate of the luminosity measure precision using Rg;.

The accuracy of the luminosity measure with Rg; is twice as large as the dispersion of
normal SNEIA measured with the light curve method, and the ¢ = 0 extrapolation does not
improve its accuracy because of the dominant intrinsic dispersion. On the other hand we
now dispose with R, /Reas of two independent luminosity spectral indicators, one on the
blue and one on the red part of the spectrum, which gives an improved leverage to constrain

the evolutionary effects of SNEIA.

5.2 A new spectral indicator: Rg;g

5.2.1 Rgis
Definition

The Rg; zone, because of the Rg; correlation with luminosity, has been particularly studied
in this thesis work. More will be said about the line formation in this spectral region in
chapter 6, but the clarification of the spectrum formation process allowed us to devise a new
line ratio indicator which we called Rg;s.

Rsis is defined as the ratio of two maxima. The first maximum is the one used in Rg;
calculation, located around 6355 A, and the second one is the bluer peak of Rg; located

in the 5600 — 5700A region. The zones where we look for these maxima are recalled in
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Rg;s zones lower
wavelength in A

Rsis zones higher
wavelength in A

First maximum

6200

6450

Third maximum

5500

5700

Table 5.8: Rg;s definition zones
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Figure 5.8: Left: Rg;s calculated on the supernove of tab 2. Right: Rg;s relative disper-
sion. The SN 1991bg has been excluded of the linear regression.

tab. 5.2.1. As for Rg; and R¢,, we used 6t® order polynomial to fit the regions searched for

the maxima, in order to increase the ratio robustness with respect to Poisson noise.

We also define the integral ratio Rg;ss as:

57004
f J55008 AGA FydA

T62008 . o4
64504 FydA

Rsiss = (5.16)
Once again, the simplicity of this integral ratio calculation and its robustness to noise

makes it an interesting alternative to the line fitting method.

Correlation with luminosity

Correlation calibration To compute the linear regression of the Rg;s correlation with
luminosity, we excluded the peculiar subluminous SN 1991bg supernova. This selection
increased the quality of the calibration and is consistent with the line forming process, as it
shall been shown later.

We plot the linear regression of Rg;s correlation with luminosity in the left hand side

72



X ]
“E . . . . L Figure 5.9: Rg;55 calculated on the supernovee
Cee e ey T e of tab 2.
Slope | Constant Variance
§R51;5 all SNEIA 0.1 2.6 ORgis — 0.08
Rsis no 91bg 0.25 5.4 ORg;s = 0.05
§R51;55 all SNEIA 0.1 2.7 ORgiss — 0.08
Rsiss no 91bg 0.25 5.5 ORg;ss = 0.05

Table 5.9: Rg;s and Rg;ss linear regression on the real supernove with sufficient wavelength
coverage using the t = 0 interpolated values

of Fig. 5.8. The right hand side of the same figure shows the dispersion of Rg;s, smaller
than Rg; and R, dispersions for all but the peculiar subluminous supernova SN 1991bg.
We also plot in Fig. 5.9 Rg;ss correlation with luminosity. Its dispersion, almost identical

to Rg;s is not displayed. Table 5.9 summarizes the results for both quantities.

Time dependence In Fig. 5.10 and Fig. 5.11 we plot the time dependence of Rg;s and
Rsiss as well as the linear regression calculated on the values at ¢ = 0 interpolated or
extrapolated with quadratic fits. The three supernovae with sufficient data do not display a
common time evolution, making doubtful the existence of an universal Rg;s or Rg;s5 time

correction.

The variances calculated as the quadratic mean of the distance of all but the SN 1991bg

supernova Rg;s and Rg;s5 to the linear regression calculated with the extrapolated ¢t = 0
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Figure 5.10: Left: Rg;s time evolution, Right: Rgs;s corrected for the time dependence.
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Figure 5.11: Left: Rgs;55 time evolution, Right: Rg;ss corrected for the time dependence.
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values are:

TRgis = 0.06 (5.17)
ORgiss = 0.06 (5.18)
(5.19)

Whereas the variance of the estimated values of Rg;s and Rg;ss for ¢ = 0 with respect to

the ¢ = 0 extrapolated linear regression are:

TRgis = 0.04 (5.20)
ORsiss = 0.04 (5.21)
(5.22)

Correcting for the time evolution can thus increase the Rg;s and Rg;ss efficiency, the
drawback being the need of at least three points to interpolate or extrapolate the ¢ = 0
value with a quadratic fit. Since there is no common trend for the three supernova fitted,
this correction remains purely empirical. Still, the intrinsic dispersion can be estimated to

be o =~ 0.04, and the time & intrinsic dispersion to be o =~ 0.06 for both Rg;s and Rg;ss.

Luminosity measure precision In tab. 5.10 we summarize the different slopes and dis-
persion values for Rg;s and Rg;55 calculated with or without the time dispersion correction.

In each case the subluminous SN 1991bg has been excluded.

Dispersion slope | Blue magnitude precision
Rsis ORg;s ~ 0.05 0.25 0.2
§R51;5 t=0 ORg;s ~ 0.04 0.23 +0.17
Rsiss ORsiss ~ 0.05 | 0.25 0.2
§R51;55 t=0 ORgiss ~ 0.04 0.25 +0.16

Table 5.10: Estimate of the luminosity measure precision using Rg;s and Rg;ss

With this spectral indicator family even without time correction, we have augmented
the blue magnitude accuracy by a factor of two compared to Rg; and R, reaching the

intrinsic “Branch Normal” supernove dispersion. Since Rg;s and Rg; can not be considered
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BLUE RED
Ain A ﬂ Ain A ﬂ Ain A ﬁ Ain A ﬁ
4000 | 295. | 7500 | 95. || 10000. | 78. | 14000. | 86.
4500 | 235. | 8000 | 90. || 10500. | 77. | 14500. | 90.
5000 | 185. | 8500 | 85. || 11000. | 77. | 15000. | 93.
5500 | 155. | 9000 | 80. || 11500. | 78. | 15500. | 97.
6000 | 130. | 9500 | 78. || 12000. | 79. | 16000. | 100.
6500 | 115. | 10000 | 75. || 12500. | 80. | 16500. | 105.
7000 | 105. 13000. | 82. | 17000. | 110.
13500. | 84.

Table 5.11: SNAP/JDEM blue and red A\ bin size

as independent, we still have only two independent spectral indicators. But one of them is
as accurate as the light curve method, and with a sufficient number of supernovae they will

definitely allow to constrain the evolutionary effects.

5.3 Rsi, Rea and Rg;s used in SNAP /JDEM context

In order to estimate the luminosity measure accuracy of these spectral indicators in a cosmo-
logical context, we simulated SNAP /JDEM exposures at different redshifts. We used them
to estimate the accuracy on the determination of the mean luminosity of “Branch Normal”
supernovee, which is the value needed to devise the Hubble diagram and the determination

of cosmological parameters.

5.3.1 SNAP/JDEM simulator
The SNAP/JDEM spectrometer

To simulate SNAP /JDEM spectrometer, we assumed 50% optical and 70% CCD efficien-
cies. We considered the mirror surface to be 7 m? and implemented the rebinning of the
supernova spectra to SNAP/JDEM binning in the observer rest frame. The red and blue
channel resolution of SNAP/JDEM we used are summarized in table 5.11.

As the two spectrograph channels separation is not precisely defined yet, we trxeated
the spectra as if the red and the blue detector properties where the same. But as the edges

of the spectral range are harder to calibrate, their location can impact the final results.
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readout noise/pixel V2-5-1.e
slow drift contribution 7-12-1e
Leakage current fluct. for 2000s Ge
Total electronic noise per pixel: 10e
Presence of a cosmic (20% of cases) 12¢
Total Electronic noise per A\ (3 spatial pixels) 17 e

Table 5.12: Noise per pizel per 2000 s.

Table 5.13: The number of photons does not
take into account the 0.5 x 0.7 efficiency. It
0.5 1.110°3 588s is calculated here for a Mp = —18.48 SNIA.
15 1.84 104 18000 Black c.urves are. only the supern(?va, .red
curves include Poisson and electronic noise.

z | Blue filter N, /s/cm? | exposure time

1.7 1.48 104 36000s

The simulated supernovae

In order to simulate SNAP/JDEM exposures, we calibrate the photon flux of each super-

novea to its absolute blue magnitude and then redshift it to the desired z.

2) 2 (5.23)

luminosity

Eq. (5.23) shows how the number of photons per unit of time and of surface in the B band

in the supernova rest frame at z N, (z) = [ B(: dN" )d) is related to N,(0) = [ B(0) dl\;")\o) d,
the number of photons per unit of time and of surface in the B band at rest in the supernova
rest frame for a supernova at 10Pc.

2

The flux dilution factor for a supernova at z is where dy = 10Pc¢, but the num-

d2

luminosity

ber of photon takes into account the length dilatation applying to the wavelength through
the suppression of a factor (1 + z) included in d2.
Finally, we included a procedure to noise the spectra according to tab. 5.3.1.

The electronic noise for each 2000s exposure was calculated using eq. (5.24)

t
nzlectronic = 172 : ﬁ (524)

and assumed to be a Gauss function of mean zero. The Poisson noise of the signal was also

included for each of the 2000s exposures needed to complete the total exposure time.
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Table 5.14: Supernove simu-
lated in SNAP/JDEM con-
SN 1981B 0 —19.07 | text.

SN 1986G | —1 | —18.08
SN 1989B | —1 | —18.58
SN 1991bg 0 —16.62

Name date | MBpBjye

SN 1991T 0 —19.44
SN 1992A | —1 | —18.48
SN 1994D | -3 | —19.0

In tab. 5.13 we display the number of photons per second expected in the B Bessel filter
for a SNIA of absolute blue magnitude Mp = —18.48, not accounting for the CCD and
optical transmission. The exposure time we use have been assumed to follow a a (1 + 2)7

power law with 10 hours for z = 1.7.

5.3.2 Results at z=1.5

We display in Fig. 5.12 the standard supernova SN 1992A number of photons per bin sim-
ulated for z = 1.5 and z = 1.7. This quantity differs from the usual flux per A , which
explains the flatter shape of the spectrum as there is a 1/ factor difference between them.
For z = 1.7, the wavelength coverage will be too small to allow the calculation of Rg; and
Rsis.

We simulated 100 exposures for each one of the supernove listed in table 5.14 and calcu-
lated the spectral indicators previously defined on each one of them. We then calculated the
variance of these measures and, using the linear regression calibrations previously calculated,

we estimated the accuracy of the associated luminosity measures.

In order to concentrate on the accuracy of the spectroscopic indicators in SNAP /JDEM,
and as at redshifts of ~ 1 the time dilatation doubles the evolution time of the light curve,
we assumed that the spectra will be taken almost at the maximum light time. We thus
selected in our sample only the supernove spectra that were the closer to the light curve

maximum time.
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Figure 5.12: Left: SNAP/JDEM SN 19924 z = 1.5 simulated ezposure. Right:
SNAP/JDEM SN 19924 z = 1.7 simulated ezposure.

Name Rg; mean | op,, | measured Mg | AMp | t=0 | t=0

Mg | AMp
SN 1981B 0.318 0.049 -19.10 0.34 | -18.94 | 0.30
SN 1986G 0.312 0.146 -19.14 1.02 | -18.97 | 0.89
SN 1989B 0.352 0.052 -18.86 0.36 | -18.73 | 0.32
SN 1991bg 0.626 0.220 -16.95 1.54 | -17.07 | 1.33
SN 1991T 1.207 0.742 -12.88 5.19 | -13.55 | 4.50
SN 1992A 0.225 0.063 -19.75 0.44 | -19.50 | 0.38
SN 1994D 0.282 0.077 -19.35 0.54 | -19.15 | 0.47

Table 5.15: Rg; simulated for z=1.5 and the corresponding blue magnitudes calculated with
the previous linear regression. The t = 0 values have been calculated with the t = 0 extrapo-
lated linear fits.

Rs;

We list in tab. 5.15 the luminosities measured on the simulated supernovae without any
selection cut on the simulated Rg; values. For half of the supernove, the Rg; dispersion
due to the noise is of the same order than the intrinsic dispersion calculated previously. We
recall that it was o®Rg; =~ 0.06, corresponding to AMp =~ 0.4. The distance between the
mean blue magnitude measured and the real blue magnitude are listed in tab. 5.16.

The peculiar SN 1991T and SN 1991bg have higher dispersions, and would hinder the
global accuracy of the method unless extracted of the sample. Doing so spectroscopically
would be feasible with a large SNEIA spectra library, thus preventing the need to use the
light curves, keeping this method completely independent.

The total variance of Rg; can be estimated to be oy ~ /2 ORg,;, Where oy, stands for
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Name Distance of measured Mp | Distance of time corrected Mp
to true Mp to true Mp
SN 1981B 0.03 0.13
SN 1986G 1.06 0.89
SN 1989B 0.28 0.15
SN 1991bg 0.33 0.45
SN 1991T 6.56 5.89
SN 1992A 1.27 1.02
SN 1994D 0.35 0.15

Table 5.16: Rg; measured Mp distance to the true Mp

the dispersion due to the noise, the v/2 factor coming from the intrinsic dispersion being of

the same order than the one due to the noise.

z 06 | 070809 |10|11 |12 |13 |14 |15 |16 |17
SNAP | 150 | 171 | 183 | 179 | 170 | 155 | 142 | 130 | 119 | 107 | 94 | 80

Table 5.17: Number of supernove ezpected in function of redshift for SNAP/JDEM.

As shown in tab. 5.17, SNAP/JDEM is expected to find ~ 107 SNEIA at z = 1.5.
The accuracy expected on the luminosity measure with Rg; would then be statistically
improved by a factor of 1/107 ~ 10. The resulting blue magnitude dispersion for the “Branch
Normal” supernova using the 107 spectra expected by SNAP/JDEM at z = 1.5 will thus
be \/5/\/10—70MB, ranging from =~ 0.06 to ~ 0.27, for the time corrected calibration. The
SN 1991T would even have a dispersion as hight as o7, ~ 0.85

The time correction decreases the distance between the measured and real blue magni-
tude, and also increases the accuracy of the measure by increasing the slope of the correla-
tion. In order to take full advantage of this luminosity measure, we need spectra as close as
possible to the maximum light time, which will be feasible at z = 1.5 since the elapsed time

between —1 and +1 days around maximum is 2.5 -2 = 5 days.

Rsis

Calculating Rg;s, it appeared that Rg;s5 was not improving results as expected from the
previous section. This is due to the SNAP/JDEM large wavelength binning that already
transforms Rg;s in an “integral” ratio compared to the 10A binning we previously used.

We thus displayed in tab. 5.18 only Rg;s, Rs;s5s results being almost identical, and some
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Name Rgis mean | op,,, | measured Mp | AMp t=0 t=0

Mg AMp
SN 1981B 0.774 0.020 -18.86 0.09 | -19.0627 | 0.096
SN 1986G 1.059 0.040 -17.65 0.17 | -17.7442 | 0.185
SN 1989B 0.828 0.035 -18.63 0.15 | -18.8119 | 0.163
SN 1991bg 0.862 0.115 -18.48 0.49 | -18.6550 | 0.532
SN 1991T 0.668 0.019 -19.31 0.08 | -19.5546 | 0.090
SN 1992A 0.878 0.039 -18.41 0.17 | -18.5795 | 0.185
SN 1994D 0.766 0.027 -18.89 0.12 | -19.0990 | 0.129

Table 5.18: Rg;s simulated for z=1.5 and the correspondent blue magnitudes calculated
with the previous linear regression. The t = 0 values have been calculated with the t = 0
ectrapolated linear regression.

Name Distance of measured Mp | Distance of time corrected Mg
to true Mp to true Mp
SN 1981B 0.21 0.01
SN 1986G 0.43 0.34
SN 1989B 0.95 0.23
SN 1991bg 1.86 2.03
SN 1991T 0.13 0.11
SN 1992A 0.07 0.1
SN 1994D 0.11 0.1

Table 5.19: Rg;s measured Mg distance to the true Mp

times a bit worse because the larger SNAP /JDEM binning tended to include more of the

Fell ~ 5600A peak into the integral, hindering its quality.

Table tab. 5.18 lists the measured blue magnitudes with 100 supernova, and the disper-
sion due to the noise. Besides from SN 1991bg that has been excluded from the calibration,

the luminosity measure dispersion is always lower than 0.2 blue magnitudes.

As can be seen from tab. 5.19, the intrinsic dispersion of the supernove is of the same
order than the variance due to the noise for this line ratio, multiplying the error on the blue
magnitude by =~ 1/2. Using all the supernovz expected to be found by SNAP/JDEM at z =
1.5 would again allow to increase the accuracy on the mean blue magnitude determination
by a factor of 1/4/107. The resulting dispersion taking into account the time correction
will then range from AMp =~ 0.017 to AMp =~ 0.037, which is within the requirements for

SNAP/JDEM to measure wp and w; independently, and constrain the evolution of SNEIA.
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Name Rcq mean | og,, | measured Mp | AMp | Distance to real Mp
SN 1981B 1.196 0.053 -19.05 0.09 0.97
SN 1989B 1.059 0.041 -19.29 0.07 0.71
SN 1991bg 2.474 0.633 -16.78 1.12 0.16
SN 1991T 0.877 0.022 -19.61 0.03 0.17
SN 1992A 1.279 0.061 -18.90 0.10 0.42
SN 1994D 1.279 0.048 -18.90 0.08 0.1

Table 5.20: R¢, simulated for z=1.5 and the corresponding blue magnitudes calculated with
the previous calibrations.

§RCa.

As for Rg;s55, Roas has a smaller dispersion due to the noise, but a larger calibration error
because of the too coarse SNAP/JDEM binning. We thus only display R¢, results in this
section.

Table 5.20 summarizes the luminosity measure precision estimated for R¢c,. Besides from
SN 1991bg and SN 1981b, the dispersion due to the noise is much lower than the oR¢, ~ 0.25
intrinsic dispersion estimated previously. The last column of the table even shows the mean
intrinsic dispersion is og,, ~ 0.5. The accuracy of a luminosity measure using ¢, is then
AMp =~ 0.95 for the “Branch Normal” supernove. Using the 107 supernovee SNAP /JDEM
is supposed to find at z = 1.5, the final accuracy of the R, luminosity measure will thus
be AMp ~ 0.09 which is not enough for the cosmological requirements, even if it remains a
good way to probe the evolution effects, as the final result on the mean blue magnitude is

of the same order of the intrinsic dispersion of the “Branch Normal” supernovee.

5.3.3 Evolution with 2

As was show earlier, SNAP /JDEM wavelength coverage does not allow to use Rg;, nor Rgis
for z = 1.7. On the other hand R¢, will be measurable. Moreover, since the exposure time
has been calculated so that the number of photons per bin will remain almost the constant,
the signal to noise will not be degraded too much. The dispersion due to the noise can be
seen in tab. 5.21 to remain small compared to the intrinsic dispersion of the supernovze.
Rce blue magnitude accuracy remains dominated by the intrinsic dispersion of the su-

pernovae corresponding to AMp = 1. This result can again be improved by using the 80
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Name Rcq mean | og,, | measured Mp | AMp | Distance to real Mp
SN 1981B 1.34 0.037 -18.79 0.07 0.71
SN 1989B 1.05 0.037 -19.28 0.07 0.7
SN 1991bg 2.87 0.83 -16.07 1.48 0.55
SN 1991T 0.80 0.01 -19.74 1.43 0.3
SN 1992A 1.36 0.05 -18.75 0.09 0.27
SN 1994D 1.25 0.04 -18.94 0.07 0.06

Table 5.21: R¢, simulated for z=1.7 and the corresponding blue magnitudes calculated with
the previous calibrations.

Table 5.22: Results for the new regressions using the (Reindl et al., 2005) magnitudes and
the —19.6 > Mp > 19.0 SNEIA sub sample.

Slope(a) | Variance (0) | omy = 0/a
Rca 2.13 0.22 0.10
Rcas 3.15 0.31 0.10
R 0.75 0.05 0.07
Rs; t = 0 extrapolation 0.79 0.06 0.07
Rsis 0.67 0.06 0.09
Rs;s t = 0 extrapolation 0.66 0.03 0.04
Rsiss 0.73 0.06 0.09
Rsiss t = 0 extrapolation 0.80 0.04 0.05

supernovee expected. The blue magnitude precision would then be AMp = 0.11, which is

still of the same order of the intrinsic dispersion of the “Branch Normal” blue magnitude.

5.4 Addendum

As discussed in chapter 4.4, (Reindl et al., 2005) propose a new set of absolute magnitudes
for the supernove with improved host reddening corrections which decrease the “Branch
normal” supernovae luminosity scatter. The magnitudes we quoted do not include any
SNEIA standardization, i.e. do not correct for any intrinsic properties of the supernovee.

In this addendum we restrict ourselves to the —19.6 > Mp > —19.0 range, excluding
the “91T like” and “91bg like” supernovee presenting more uncertain corrections. This is, as
already pointed out, consistent with observational constraints since the “91T and 91bg like”
supernovee have specific spectral characteristics.

We also use the favored —19.16 blue magnitude for SN 1986G from (Reindl et al., 2005),

as it lies within our luminosity range.
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Figure 5.13: R¢, calculated using the sub sample of thesupernove listed in Table 2 corre-
sponding to —19.6 < Mp < —19(Top panel). Idem for Rc,s (Bottom panel).
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We display in fig. 5.13, fig. 5.14 and fig. 5.15 the linear regressions calculated on this
subsample. Table 5.22 lists the new slopes, variances and accuracy on the blue magnitude
measures using these ratios. As the slopes are systematically larger, the accuracy of the
method improved for all the ratios and is lower than 0.1 blue magnitude in each case.

It is seen in fig. 5.13 and fig. 5.14 that the correlation hinges on the inclusion of SN
1986G at Mp = —19.16. The case of Rg;s in fig. 5.15 is stronger, as its linear regression
would not suffer too much from the exclusion of SN 1986G.

In the SNAP/JDEM context, the increase in the slopes leads to better accuracy too.
For Rg; the accuracy becomes op, ~ 0.1, for Reog it oary~0.14 and for Rg;s oprgno.06 blue
magnitudes.

The dispersions quoted include both the noise and the intrinsic SNEIA dispersion. With
a statistic of ~ 100 supernova observed, each one of these ratio can be used for cosmological
studies within SNAP /JDEM requirements.

The luminosity range may be extended in the future, but no significant loss of statistics
is expected from the restriction to —19.6 < Mp < —19.0. In this restricted range Rc¢,
and Rg;/Rgsis are independent luminosity indicators with an accuracy comparable to the

stretch/Am;5 one, and, Rg;s remains potentially twice as accurate as Rg;.
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Chapter 6

Line formation, study of the Rg;

region

In this chapter we shall investigate the line formation process in type Ia supernovee around
blue maximum light using day 20 after explosion PHOENIX spectra from our simulated
grids. We remind that for the full grid, the date ranges from 10 to 25 days after explo-
sion, and the luminosity from —18.17 to to —19.7 blue magnitude. In this chapter we will
concentrate on the solutions corresponding to 20 days after explosion as this date is the
canonical maximum light time, and it has been shown in Lentz et al. (2001) that it is the
time after explosion at which PHOENIX reproduces the best SN 1994D maximum light
spectrum with W7 model.

We also dwell on the —18.17 blue magnitude spectrum because our starting point was the

Ti11 effects on Rg;, and Tiil is know to be more important in lower luminosities supernovze.

6.1 The Till issue in the Rg; zone

The existence of the Rg; correlation with luminosity incites to think of the 5500A-6500A re-
gion as a possible “Rosetta stone” for the line formation analysis since a change in the blue
magnitude is correlated to the observed spectrum in that wavelength range.

In Fig. 6.1 we display the Rg; region, the two green lines marking the 6355 A and 5979
A Si11 emission lines. Attributing the 6100A &5800A troughs to the P-Cygni profiles of
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Figure 6.1: Rg; region. Green lines label the 6355 A and 5979 A lines.

these two lines is therefore very appealing. These two lines however share the 4P level, the

6355 A line as the 4S-4P transition and the 5979 A as the 4P-5S one.

Their optical depth can be estimated in the Sobolev approximation using eq. (6.1) from
Hatano et al. (1999), where n; and n,, stand for the number densities of the lower and upper
level associated to the transition, f for its oscillator strength, ¢ for the time since explosion,

g1 and g, for the level degeneracy state, and A for the wavelength.

2

T ) patmy[1 — Sme (6.1)

T=(—
mc GuTy

The ratio of the Sir1 6355 A line optical depth (7,.eq) over the Sit1 5979 A line optical
depth (Tpiue), using the Boltzmann level population equation, and the fact that they share
the intermediate 4P level becomes:

A
Ered

Tred e 8T —1
0.8

AR
Tblue blue
1—e BT

Where AFE is the difference between the transition upper and lower level’s energy.

This optical depth ratio decreases monotonically with respect to a temperature increase.

We display this effect in Fig. 6.2, where we used SYNOW to compute SilI spectra for
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Figure 6.2: Siit in SYNOW with different excitation temperatures. Black 5000K, red
10000K, green 20000K, blue 40000K .

excitation temperatures ranging from 5000K to 40000K.

Since P-Cygni troughs become deeper with increasing optical depth, a higher SiIiI excita-
tion temperature will affect the ~ 57004 / = 6100A depth ratio, causing Rg; to increase.
If SNEIA at higher luminosities have higher SiII excitation temperatures! Rs; should then
increase and not decrease with luminosity as observed for real supernovz.

Fig. 6.3 displays the temperature evolution in the 9000-16000km.s~! region, where SiII
is found, and shows that the physical temperature increases with bolometric luminosity as
one would expect. In LTE this means that the SiiI excitation temperature increases with
luminosity, which we will consider to be the case for real supernove, even if we cannot exclude
NLTE effects, or less intuitive temperature behaviors with different abundance structures.

Si1I lines alone are thus unable to explain the trend of the Rg; correlation with luminosity.
Garnavich et al. (2001) proposed the TiiI line, which P-Cygni trough would form at the same

place than the 5979 A Si1I line, as an alternate explanation.

6.1.1 SYNOW fit of a PHOENIX spectra

In order to investigate the line formation process in the Rg; 5500A -6400A region, we

applied to the —18.17 bolometric luminosity spectrum of our PHOENIX synthetic spectra

"Which might not be the case, if for example the luminosity increase makes the temperature structure
much steeper, or if NLTE effect enter the game.
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Figure 6.3: Temperature evolution for —18.17 (black), —19.17(red) and —19.5(green) blue
luminosities PHOENIX spectra in the 8000-16000km.s™ ! region where Sill ions are found.

grid for 20 days after maximum the method usually used for real supernove.

We fitted this wavelength zone with SYNOW, first using only SiiI lines, and then adding
Ti11 lines. The results are plotted in Fig. 6.4. For SilI lines alone we concentrated on the
~ 6100A trough fit, and for TiI lines alone on the ~ 5600A one.

On the top three panels of Fig. 6.4, we see that the ~ 6100A trough is well fitted, and
that there are no worrying features for a more complete fits. In the SYNOW fit procedure,
a “worrying feature” is a deep absorption trough not present in the fitted spectrum. Since
SYNOW only treats pure scattering, these troughs are known to be usually impossible to
fill up with other chemical species. The =~ 9000A absorption feature could be one of these,
but as the PHOENIX spectrum drops steeply after 9000Awe considered it not to be critical
issue.

The same remark applies to the lower three panels, as we find no optical depth and
excitation temperature combination for TiI lines that allowed to fit the ~ 5600A trough
without the ~ 9300A absorption feature.

The final parameter values for these fits are summarized in tab. 6.1.1. While it has

not been possible to fit both the ~ 6100A and the ~ 5600A trough with only SiII lines,
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Figure 6.5: Left: Black curve: PHOENIX spectra. Red curve SYNOW fit of the 5500 —
65004 wavelength region with Till and Sill. Right: Black curve: PHOENIX spectra. Red
curve SYNOW fit with Ti11 Si1l and Fell.

combining them to Till reproduced qualitatively this wavelength region as can be seen in

Fig. 6.5. We also display in the right hand side of the same figure that the fit is improved by

adding Feil lines, in particular around the ~ 5300A peak and the 4000 — 5000A wavelength

region.

Photosphere velocity 14000km.s !
Black body temperature 12000K
TSin 9
Sii1 excitation Temperature 9000K
TTin 8
Till excitation Temperature 18000 K
TFen 1.5
Fell excitation Temperature 12000K
TCa 60
CalI excitation Temperature 14000K
TCor 4
Coll excitation Temperature 7000K

Table 6.1: SYNOW fit parameters
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Tirr is thus a good candidate to ex-
plain the Rg; correlation with luminosity,
since as stated in Garnavich et al. (2001)
its 5979 A line strength increases with tem-
perature, and since the combination of SiI1
and Ti11 lines reproduce well the Rg; spec-
tral region. The poor quality of the fit at
A < 4000A shows that we miss some con-
tribution which will be shown to be a non
trivial problem. But we have shown that
Sit1 and Till lines can be used to fit well
the Rg; wavelength region. We shall now
proceed with PHOENIX to show that such

an assignement is erroneous.



6.1.2 Single Element spectra

Since the fitted spectrum was not a real supernova but a PHOENIX synthetic spectrum,
the output also contained all the detailed information pertinent to the line formation issue.

In particular it allowed us to compute “single element spectra” as follows.

Using the converged output of the PHOENIX simulation, we artificially turn off all
but the continuum and one single element lines opacities. We recall that the “continuum
opacities” denote all the bound-free and free-free opacities as well as the electron scattering
and the Rayleigh scattering. We can also compute “multiple element spectra” where we
turn off all but two or more elements lines opacities, but we will abusively group all these

different spectra in the same “single element spectra” denomination.

Once the chemical species selected, we recalculate the solution of the radiative transfer
equation in order to get the spectrum, with the level populations and free electrons number
kept fixed. Since the solution of the scattering problem is recalculated, the“single element
spectra” is not the exact contribution of the element to the complete spectrum?. The relative
strength of the absorption features give a good indication on each line optical depth, but
since the source functions change, the features are not expected to look exactly the same
as in the complete spectrum. True emission ,depending only on the level populations kept
fixed, will not change, while the scattering part of the emission peaks will. The ratio of true

emission over scattering is thus different in the “single element spectra”.

As the overall opacity is decreased in the “single element spectrum”; the flux transfer to
the red due to scattering will be underestimated, and the “single element spectra” will tend
to appear bluer than the complete spectrum.

With only a single iteration over the radiative equation loop, the energy conservation is
not enforced anymore, since the opacities changed so dramatically, and the “single element

spectra” can not be considered as normalized consistently in flux anymore.

The Till issue

2Ergo, the complete spectrum is NOT the linear combination of all the single element spectra.
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Till and Sill single element spectra: In Fig. 6.1.2 we display the —18.17 blue mag-
nitude spectrum together with the corresponding “only Sii1” and “only TiIr” single element
spectra. The “single element spectrum” where all the element lines have been turned off is
also plotted as a reference, and more will be said about this case in sec 6.2.1. Compared
to this “only continuum opacity” spectrum, the “only TiIl lines” spectrum shows that there
are no significant TiII lines in the Rg; 5300-6500A wavelength zone for the PHOENIX
spectrum, even though SYNOW fitted this region adequately with Tiir and Si1r.

In Fig. 6.7 we display the 6355 A Sii1 and the 5979 A TiiI line optical depth. The 6355
A si11 line optical depth is five times higher than the 5979 A Siir one which peaks at 7 ~ 20.
It results into a larger scattering power, which we see in Fig. 6.1.2, where for comparable
underlying continuum level, the redder line emission peak is higher and wider than the bluer

one.

Since the 5979 A SiII line optical depth peaks at 7 ~ 20, and since it forms in the same
velocity range than the Ti1l line, 7r;; would have to be of comparable magnitude to have
a direct impact on the ~5979 A wavelength region. In the considered situation, this line is
thus not only too weak to appear in the spectrum, but also completely shielded by the 5979
A sii1 line.

Many TiII lines appear in the < 5000A region of Fig. 6.1.2, proving that their lack of
contribution to the ~ 5300A wavelength region is neither an abundance nor an ionization
effect. There is enough titanium in the TiIl ionization stage for its lines to show up in the
spectrum.

Fig. 6.7 shows the Ti1r ~5979 A line to form in the 12000km.s ! /15000km.s ! velocity
range at a temperature of ~ 7000K, as read on the black curve of Fig. 6.3. Garnavich et al.
(2001) have shown the Ti11 5979 A line to become stronger than the SiiI one for T' > 7000K,
and claimed it to become preponderant in lower temperature spectra.

We display in Fig. 6.8 the Tiir and SiiI lines “single element PHOENIX spectra”, and
the SYNOW simulations with the same physical parameters as in the complete fit, with
only the same corresponding element. We see that Siit SYNOW and PHOENIX spectra

are qualitatively close, whereas the Till spectra only qualitatively agrees at A < 50004 .

We fitted the Tirt PHOENIX “single element spectrum” with SYNOW. Fig. 6.9 displays
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Figure 6.8: Si11 only(left) and Ti11 only(right) for PHOENIX (black) and SYNOW (red).
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the result where 71y; = 120 and T., = 6000K, in complete agreement with PHOENIX
physical parameters, since the Till reference line in SYNOW is A, = 3349.408A . The fit
is of good quality for the whole spectrum, besides from the systematic too high SYNOW
flux above 43004 , due to the absence of energy conservation equation in SYNOW.

At the excitation temperature of 6000K, the ~5979 A TiiI line is negligible in SYNOW
too, even though the excitation temperature is lower than 7000K. Even if the Ti11 60134 line
strength relative to the Sir 6355 A one increases when the temperature decreases as stated
in Garnavich et al. (2001), it does not mean that the Tir1 6013A line has to show up in the
spectrum, since the 6355 A SiII line strength decreases along with temperature.

Even though TiII can fit the ~ 5800A Rg; trough in SYNOW, it needs different physicals
condition than in the the converged PHOENIX simulation. Since we were able to correctly
fit the Ti11 “single element” spectrum with SYNOW, the conclusion is not that SYNOW is
wrong, but that its use for line identification requires some care, especially when only one

spectral feature is fitted.

6.2 The “multi-layered spectrum formation”

Now that TiII line contribution to the ~ 5800A Rg; trough has been ruled out, we shall

investigate the line formation process in the PHOENIX computation.

6.2.1 Line formation in the Rg; zone for the —18.17 blue magnitude PHOENIX

spectrum
The continuum opacity spectrum

We display in Fig. 6.10 the spectrum calculated with all but the continuum opacities have
been turned off. This spectrum forms at ~ 5300km.s~! where the mean continuum optical
depth is approximately equal to one and the temperature equal to 13700K as can be read
from Fig. 6.3.

We plot in the same figure the associated black body spectrum and the full PHOENIX
spectrum. The black body and the continuum “single element spectrum” are normalized

to the full spectrum integral. Since for “single element spectra” we only recalculate the
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Figure 6.10: Left: Full PHOENIX spectrum in black, continuum “single element spectrum’
in dotted blue, 13685 K black body in plain blue. Right: continuum “single element spectrum’
in dotted blue, and 13685K black body in plain blue.

)

radiative transfer equation solution with the temperature structure fixed, the bolometric
luminosity is not the same as for the full PHOENIX spectrum. Nevertheless, reconverging
the temperature structure would be too much of a change for the “single element spectra”
to then be interpreted.

The left hand side of Fig. 6.10 shows that even as deep as 5300km.s~! where the con-
tinuum “single element spectrum” form there is no such thing as a photospheric black body.
This figure emphasizes the flux transfer toward the red in rapidly expanding atmospheres,
showing against intuition that type Ia supernovee spectra are not at first order a black body
spectrum carved by some atomic lines.

The right hand side of the same figure displays only the black body and the continuum
“single element spectrum” stresses the fact that even at continuum optical depth 7Teontinuum ~
1, the spectrum is not a Planck function. The continuum opacity sources can even display

what looks like line features, as can be seen at ~ 2000A and ~ 1900A.

Felll lines

The elements presenting strong individual lines or lines blends, forming at approximately
the same velocity than the continuum “single element spectrum” modify its shape. Felll is
a major contributor to this next “layer” of the spectrum formation with both strong and

1

numerous weak lines. All their optical depth peak at vge;; =~ 6000km.s™" as shown for the

particular strong 5128A line in the left hand side of Fig. 6.11. A distinction has to be made
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Figure 6.11: Left: Fei 51284 line optical depth. Right: full spectrum in black. Red:
Fe111 single element spectrum. Blue: continuum single element spectrum

between weak line blends and strong single lines. As can be seen in the left hand side of
the figure, T 5551 at @ velocity ~ 9000km.s~!. The strong FellI lines thus form at higher
velocity than the weak line blends which form where the optical depth is maximal.

We can then picture the line formation process as the continuum opacity spectrum
blending with the numerous Felll weak lines, creating a first “layer” on top of which the
strong FelII lines form.

We display in the right hand side of Fig. 6.11 the FeliI single element spectrum scaled
to the full PHOENIX spectrum integral. This is the second layer of what we call the
“multi-layered line formation”, the first one being the continuum “single element spectrum?”.
We are very far from the photospheric picture, where line form by scattering light from an
underlying black body. The canonical photospheric velocity in SYNOW is ~ 13000km.s !
for SNEIA around maximum light, which is 4000km.s ! quicker than the velocity at which
this layer forms.

We see from the ~ 5100A peak that some of the spectral features of this layer can make
they way through to the final spectrum, while some other regions are completely dominated

by other lines forming on top of it, as for example for A < 4000A.

Fell lines

On top of the Felil layers we find a more complex region mainly dominated by Fell lines

and single ionized silicon family elements. Other metals also contribute but their role in the

101



Red: Felll main line optical depth. Purple: Fell
10 T T T Fell between 5900.00 and 6100.00 31
[ T 0.0012[ T T T T

0.0010 — =

0.0008 — —

tou
tau

0.0006 — =
0.0004 — =

0.0002 — =

il ; 1 . 0.0000 [ . L
1.0x10 1.5%10 2.0x10 0 5.0x10° 1.0x10% 1.5x10% 2.0x10* 2.5x10%
vel vel

[9) P N
) 5.0x10°

Figure 6.12: Left: Feil 5170A line optical depth. Right: Typical weak Fell line optical
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Figure 6.13: Left: Felll single element in red, Fell single element in pink, full spectrum
in black and continuum single element spectrum in blue. Right: Full spectrum in black,
continuum single element spectrum in blue, Fell and Felll “single element” spectrum

A > 5000A is of second order. We thus concentrated on Fell because of its large impact in

this part of the spectrum.

We display in Fig. 6.12 the strong Ferl 5170A line optical depth as well as one of its
weak lines on the right hand side of the same figure. The strong Fell lines form around
15000km.s !, where their optical depth approaches unity, whereas the weak line blend will
have form around 11000km.s~! where their optical depth peaks. We have again two layers
of line formation. The weak line blends forms on top of the Felil layers, whereas the strong

lines form farther out.

Fig. 6.13 left hand side displays the Fell and FellI single element spectra normalized to

102



the full PHOENIX spectrum integral. On the right hand side we show the Fell and FeIil
“single element spectrum”. It is calculated in the same way as a regular “single element
spectrum” but keeping both Feil and Feiirl lines. It is also normalized to the full spectrum
integral. Concentrating on the 5300-6500A wavelength region, we can relate this spectrum
to the photospheric model.

Instead of a Planck function, we have what we could abusively call a “multi-layered
pseudo-continuum” formed by continuum opacity, and by successive layers of Felll and Fei1
lines. On top of it, strong lines like the 5170A FelI one form.

From the left hand side figure we see that once we merge Felll and Fell effects, Fell lines
dominate the spectrum, completely reshaping the underlying Feli1 “layer” that still has a
fundamental role, as the right hand side is the merging of the two effects.

The “multi-layered line formation” picture is also more complex in that depending on
the wavelength region, different depth of the supernovae envelope are seen. For example,in
the 6000A blend, we see the 11000km.s ! region, whereas when looking at the 5170 or

4500A wavelength zone we see the 15000km.s ! region.

Silicon family elements lines

The silicon family elements lines form in the same layer than the 5170A Feir line. This
is close to the photospheric model with a much more complex “pseudo-continuum” than a
Planck function. We use abusively the word “pseudo-continuum” in order to discriminate
between the strong, well separated lines forming above 11000km.s ! and the layers blending
underneath, even though the resulting shape can be somewhat far from a “continuum”.

We show in Fig. 6.14 the Feiir 51284 (black), Fei1 5170A (red), Sit1 63734 (blue) and Si1
5455 A (pink) lines optical depth. The strong SiiI line responsible of the Rg; ~ 6100A trough
forms in the same 11000-15000km.s ! region than the strong Ferr line, i.e. the region. The
S11 line forms deeper, emphasizing the fact that the different layers defined are not as rigid
as it could seem. They could be considered as part of the underlying “multi-layered pseudo-
continuum” or of the lines forming atop as well. We made the choice to label them as part

of the upper layer of the line formation because sulfur is part of the silicon family elements.
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Figure 6.14: Left: Feinn 5128 A (black), Feil 5170A(red), Sii1 63734 (blue) and Si
5455%{(pink) lines optical depth. Right:  Full spectrum in black, continuum single ele-
ment spectrum in blue, Fell and Felll “single element” spectrum in red, Sill single element
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Figure 6.15: Left: Black: complete spectrum. Blue continuum single element spectrum.
Red Felil & Fell “single element spectrum”. Green: Sill “single element spectrum”. Pink:
S11 “single element spectrum”. Right: Black: complete spectrum. Blue continuum single
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Figure 6.16: Black: complete spectrum. Blue continuum single element spectrum. Red Felll
& Fel1 “single element spectrum”. Green: Sill & S11 “single element spectrum”. Pink: Felll,
Fer1, Sit1 & S11 “single element spectrum”.

SiII lines: In the right hand side of the same figure we display the SiiI single element
spectrum which shows that the ~ 6300 peak and the associated trough as well as the red
wing of the ~ 5600A trough can be accounted for by SiiI lines. These two features form on
top of the almost flat “pseudo-continuum”.

The Si11 “single element spectrum” is compared to the continuum opacity spectrum in
fig. 6.14 and shows that in between of the strong lines, the SiII lines have no effect. This
strongly differs from iron behavior, and verifies better the separation condition of the Sobolev

approximation, making Siit SYNOW simulation more accurate than the Fell one.

SII lines:  We plot in the left hand side of Fig. 6.15 the SiI “single element spectrum”. Its
only significant contribution is the blue wing of the ~ 5600A trough. The absence of the
sulfur “W” is one of the main problem of the LTE PHOENIX simulated spectra with W7
model. Nevertheless, the right hand side of the same figure shows that for this simulated
spectrum, the Siit & SiI combined lines can account for the Rg; wavelength region shape.
The S11 line blend dominates the blue wing of the ~ 5600A trough even if they form deeper

than the strong Fell and SiiI lines because there are no other strong lines on top of it.
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Figure 6.17: Left: S11 54554 optical depth. Right: Feu1 51704 optical depth

This also justifies our choice to identify SiI lines as part of the last layer of the spectrum
formation. But the strong Feil 5170A peak’s red wing also strongly impacts on the Rg;
blue trough red wing formation, almost washing out the SiI contribution.

Fig. 6.16 shows the Fel11, Ferl, Sii1 and SiI “single element spectrum” still normalized to
the full spectrum integral. The Rg; 5400-6400A wavelength zone is well reproduced by these
four species. The S1I sulfur line, even if it does not dominate the whole ~ 55004 peak, is

fundamental in reproducing its shape, and dominates the red wing of this Ferr 5170A peak.

6.2.2 Evolution with luminosity, or why Rgs;s works
Higher luminosity PHOENIX spectrum

For a —19.17 blue magnitude PHOENIX spectrum with the same W7 model abundance
set, Fell will ionize more into Felll because of the global temperature increase. The Fell
lines will therefore become weaker as the supernovee luminosity increases, while SiI lines will
remain, since SII is harder to ionize. Moreover, its lines will even become stronger in LTE
because of the higher temperature.

The optical depth of the Ferr 5170A and the Si1 5445A lines are shown in Fig. 6.17.
As expected, the sulfur line became stronger while the Fell line maximal optical depth
decreases and now peaks in a thiner region only ~ 200km.s~! wide around 15000km.s~?.
The S11 5170A line now dominates the blue wing of the blue Rg; trough.

Fig. 6.18 left hand side clearly shows that the FelI lines contribution in the > 55004 re-
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Figure 6.18: Left: Black, complete spectrum. Blue, continuum single element spectrum.
Red, Feil single element spectrum. Pink, Fell single element spectrum. Right: Black,
complete spectrum. Blue, continuum single element spectrum. Red, Felll single element
spectrum. Green, Sill single element spectrum. Pink, S11 single element spectrum

gion is now negligible, while the Felll contribution remains qualitatively unchanged. The
“multi-layered line formation” and the “multi-layered pseudo continuum” defined previously
still hold here, but the element contributions changed as well as the velocities at which each
layer forms.

On the right hand side of Fig. 6.18, the SiiI lines that form on top of the Felil dominated
“multi-layered pseudo-continuum” stay strong, but their relative strength changed. The Si1
“single element spectrum” displayed on the same graph shows that SiI lines will now be
preponderant in the blue wing of the ~ 5600A trough.

Fig. 6.19 shows how these lines blend together in order to create the Rg; wavelength
region spectrum. The left hand side figure shows that Fell affects the Felll dominated
pseudo-continuum through line blending and flux transfer toward the red without changing
too much its shape. This comes from its numerous blue lines that help to transfer flux
toward the red as the light flows out of the supernova. On the other hand, the strong Fel1
lines are now forming in a much narrower velocity region at ~ 15000km.s!, and are thus
less extended in wavelength too.

The green line shows Si11 and S11 blend that reproduces well the Rg; ~ 5600-6300A shape.
The main discrepancy stands in the intermediate ~ 5800A peak, where the Felll has its
emission like feature. It is hard to tell whether or not it is a true emission since this region

is not dominated by a single line but is created by the complex blend of more than 100 Feiil
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Figure 6.19: Left: Black, complete spectrum. Blue, continuum single element spectrum.
Red, Felll & Fell single element spectrum. Green, Sill & SII single element spectrum.
Right: Black, complete spectrum. Pink, Felll, Fell, Sill and S11 single element spectrum.
Thick line scaled by an 0.8 multiplicative factor.

lines.

The right hand side of the same figure shows the Fel11, Feil, Sii1 and SiI “single element
spectrum”. Like all of the “single element spectra” displayed in this section, we normalized
it to the full spectrum total flux. We see that these four elements alone reproduce almost
perfectly the Rg; wavelength zone.

The “multi-layered line formation” picture shows that the depth of the troughs are not
the pertinent quantities, since the “absorption” feature are formed by a complex blend of
absorptions and emissions. The intermediate ~ 5900A Rg; peak is clearly the more complex
feature in this wavelength region, mixing Fel11, Fell and Si11 effects. The way Rg; is calculated
couples these three elements plus the Si1 behavior, making it difficult to understand its
correlation with luminosity.

Since above 6000A the Rg; region is dominated by SiII lines, while the 5400A zone is
dominated by SiI lines, the Rg;s ratio definition isolates the main contributors to the Rg;
correlation with luminosity, the Felll dominated layer behaving like a “pseudo-continuum”
on top of which these preponderant features form.

As the FeIr lines become stronger as the luminosity decreases, its 5170A emission peak
impact on the Rg;s ratio will also increase. Rg;s correlation with luminosity is thus expected
to change trend for the faint supernovz, the break point luminosity still having to be found.

We shall address this issue again in next chapter, as well as the comparison of the PHOENIX
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spectra with reality. We shall then show that the “multi-layered spectrum formation” picture
is not only a theoretical construct, but also exists in reality.

Finally, even if it is difficult to compare two different elements lines that form at different
places of the supernova, we can propose at least a partial explanation for the Rg;s correlation
with luminosity. In the pure LTE case, the source function of the Siil and SiI lines would be
Planck functions, and their ratio as the temperature increases would go the wrong way. But
PHOENIX does not assume pure LTE. In this situation, the source function can be ap-
proximated by a resonant scattering source function (the assumption used in SYNOW) and
hence it is proportional to the “dilution factor” corresponding to the “pseudo-photosphere”.

The dilution factor W (Mihalas, 1978) is:

W =(1- /(1 - (Re/R)?)) (6.3)

where Ry is the radius of the photosphere, and R the radius at which the scatterer is found.
It describes the evolution of the solid angle of the photosphere seen by a scatterer at R with
radius.

In the PHOENIX models we calculated, Rg;rr, i.e. the radius at which 7g;;;7 =~ 1 is
approximately constant for —19.0 < Mp < —18.2 and corresponds to a velocity vs;rr =
15000km.s~! when the velocity at which the SiI line peaks varies from ~ 10000km.s™! for
Mp = —18.2 to ~ 12000km.s ! for Mp = —19.0.

The ratio of the source functions Ssyr/Ssirr < Wsir/Wgirr consequently increases from

Mp = —19.0 to Mg = —18.2 as the Rg;s ratio requires. This behavior is maintained for
1000km.s~! difference for vgrr and a 1000km.s~! decrease in vg;;r between Mg = —19.0
and —18.2.

Detailed NLTE studies will be required to prove that this effect dominates Rg;s be-
havior and to test other more complex radiative transfer effects, but this interpretation is

compatible with all observations at present.
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Chapter 7

Comparison with reality

In this chapter we will compare real supernove to our PHOENIX synthetic spectra. We will
compare the spectra as well as the Rg;, Ro, and Rg;s ratio, using our new understanding

of the spectrum formation to constrain W7 explosion model.

7.1 Rg & Rgis comparison with reality

7.1.1 Rs & Rsis in PHOENIX VS real supernovae

In Fig. 7.1 we display Rg; and Rg;s calculated on synthetic spectra simulated for W7 model
20 days after explosion. We kept the same W7 model throughout the whole luminosity
sequence even though it is doubtful that the nickel mass would remain the same for such
a wide luminosity range. On the other hand, considering the complexity of the radiative
transfer problem in type la supernova atmospheres, changing only one parameter at a time
was mandatory. One has to keep in mind that the supernova composition must change along
the luminosity sequence.

In the left hand side of Fig. 7.1, the black crosses correspond to the synthetic spectra
and the green squares the real supernove Rg;. These two correlations with luminosity, if
they both exist, are clearly different.

The synthetic spectra display three phases in the evolution with luminosity. First they
start with an Rg; ~ 0, which corresponds to the spectra for which the blue Rg; trough

is negligible. Then comes a linearly increasing Rg; zone as the blue magnitude decreases.
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Figure 7.1: Left: Rg; for our PHOENIX d20 synthetic spectra. Green: real supernove
Rgsi;. Right: idem for Rgis. The red line is the linear regression done on the PHOENIX
points.

Finally Rg; decreases again.

We lack points to sample the evolution of real supernove correctly, but the 91T spectrum
is clearly in the Rg; ~ 0 region. The linear increase region also exists for real supernovae,
but with a smaller slope than in the PHOENIX simulated spectra. It is hard to decide with
91bg alone if the declining Rg; region also exists for real supernovze. This peculiar event is
much fainter than the “Branch Normal” supernove, and that the nucleosynthesis is unlikely

to be the same. It’s integration in such a loosely sampled sequence is therefore difficult.

In the right hand side of Fig. 7.1, we display the Rg;s sequence for both the synthetic
spectra simulated with W7 model 20 days after explosion and the real supernovee. The
“Branch Normal” luminosity supernova are in good agreement within the real supernovae

dispersion.

However, for the —18.0 bolometric magnitude synthetic spectrum, Rg;s is not only in
disagreement with reality, but it also falls out of the linear regression trend, while the fainter
SN 1986G is still in agreement with the linear regression slope. We showed in the previous
chapter that the central ~ 5900A peak of the Rg; wavelength region was dominated by Feir
and Felll lines, while Rg;s was the ratio of Siil and SiI dominated features. We also showed
that at the contribution of Fell lines on the ~ 5700A Rg; peak increased as the luminosity

decreased.

The main difference between Rg; and Rg;s comes from the iron lines, which have been
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Figure 7.2: Rg; zone, black real spectra. From top left to bottom right: 91T, 81b, 94d, 89b,
92a, 869. The PHOENIX spectra with the closer blue magnitude have been chosen.
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excluded from Rg;s for bolometric magnitudes higher than Mp, > —18.2. The discrepancy
between Rg;s calculated on the real supernove spectra and on the luminosity sequence
spectra for 20 days after explosion happen when these Fell lines become preponderant at

lower luminosities.

sn94dp2, PHX Ite 18_8 d20 We dlsplay iIl Flg 72 the ‘SRSI,: wave-

6x107 1 4F

M length region for the real supernovae and

for the synthetic spectra sequence at day

4x107 14

20 after explosion. We plot for each real

3x107 4E

supernova the two simulated spectra with

2x107 1 4E

the closer Rg;s, normalized to have the

same 6400A flux. The ~ 6100A trough

1x107 14 E

ot I I I I I 3
5000 5500 6000 6500 7000 7500 8000

lombda is in all the cases poorly reproduced, be-

ing too wide and its minimum being too
Figure 7.3: Rg; zone, black 94d spectrum. Red

W7 model, blue P.Hdéflich model

blue, besides from the sn86g 5 days prior
to maximum light spectrum where the

trough is too shallow but of the right width.

The ~ 5900A peak is too small in each case, while the ~ 5100, 5600 and 6300A peaks
are in good agreement with reality. We showed these three emission features to be dominated
by lines forming in the outermost layer of the “multi-layered” line formation process, i.e. at
~ 11000 — 15000km.s!. Moreover, they are dominated by one single element, accordingly
Fer1, Si1 and Sit1. On the contrary, absorption features are blends of true absorption and
emission. Their blue edge is usually dominated by the next emission peak. The wide

~ 6100A trough shows that the ~ 5900A peak is not as large as in real spectra.

This feature has been shown to be formed at the Felil and Fell weak lines layers interface
at ~ 10000km.s~!. While the ~ 5100A emission peak is dominated by optically thick FeII
lines, and is thus less sensitive to the deeper abundance structure, the ~ 5900A one being
formed of weaker line is more sensitive, proving W7 model weakness for layers deeper than

11000km.s 1.

If we compare Fig. 7.2 to Fig. 7.3, where we display for sn94d the W7 LTE best fit,

as well as P.Hoflich “pah 5p0282216” model for day 20 after explosion also calculated in
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LTE, we note the later model better agreement of the ~ 5900A peak. The ~ 6300A one
is not as well reproduced than with W7 model, and the too deep =~ 6100A feature shows
that this is likely due to an over estimation of SiiI in the 11000 — 15000km.s ! region. We
also see that the characteristic “W” sulfur feature is better reproduced by P.Ho6flich model,
showing that its persistent absence from W7 model spectra does come from an abundance
structure problem. Moreover, this feature has been reproduced with homogeneous W7
model in Nugent et al. (1997). Homogeneous models in PHOENIX have shallower density
structure, as the P.Hoflich one. Since the SiI lines form right on top of the thick blended
iron lines layer, they are a good indicator of the model global density structure quality, and
they suggest that the new models must have smoother densities profiles than W7. As the
density is mainly dominated by iron, this clue, in complete agreement with (Baron et al

2005 in preparation) can help to constrain explosion models.

7.1.2 Time dependence

In Fig. 7.4 we display the Rg; and Rg;s evolutions with luminosity for each one of the
synthetic spectra epochs. The pink squares stand for the real spectra Rg; and Rg;s.

Fig. 7.5 displays day 10 after explosion spectra Rg; wavelength region. At blue mag-
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Figure 7.5: Rg; zone evolution with luminosity, day 10 after explosion. The black curve are
the full synthetic spectra, the red curve are only Felll single element spectra.

nitudes Mg > —18.9 we note a complete lack of SiII lines in the spectra. The left hand
side of the figure shows that the Rg; region at this epoch is dominated by Fetil lines for
Mp = —19.05. Then, as the luminosity decreases, the ~ 6200A peak is replaced by the
6355 A Sit1 P-Cygni absorption profile.

At day 10 after explosion the supernova is hotter than at day 20. Iron is thus ionized
into Felil further out, pushing its line formation layer forward and shielding the SiiI lines
forming at ~ 11000 — 15000km.s~!. As the luminosity decreases the temperature drops
letting Felll to recombine into Fell which as was previously shown has a lower impact on
the &~ 5800 — 6400A region. When this happens, the SiII lines contribution to the spectrum
quickly rises, explaining the break between the Rg; Felil and the Rg,; Sit1/Si1 dominated

evolutions.

At day 15 after explosion, the supernova is cold enough to have the Feiil line formation
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layer deeper than the SiII one. As time increases the density drops due to expansion. This
causes luminosity variation to have less effect on the Rg; evolution. The trend of the day 15,
20 and 25 after explosion are thus alike, but the slope is smaller for the later epochs. The
Rs; evolution closest to the real supernove is found for day 25 after explosion. Since the
Rs; evolution is strongly impacted by the intermediate ~ 5900A iron dominated peak, and
since it forms in a region where the iron density decrease is slower than for earlier epochs,
this again points toward a shallower iron density profile than what is predicted by the W7

model.

In Fig. 7.6 we display the Rg;s correlation with luminosity for each of the synthetic
spectra epochs we simulated. The best agreement with real supernove is found for day
20 after explosion. This happens to be in agreement with peak luminosity which usually
occurs at the same date in the SNIA rest frame. Since Rg;s is in complete agreement with
reality for day 20 after explosion while Rg; fails, the main problem of W7 model is likely
to originate in the deeper iron layers rather than in the silicon family. At day 25 after
explosion, the tendency of Rg;s to decrease for blue magnitudes higher than Mp = —18.4
is confirmed. The Rg;s trend reversal occurs at lower luminosity for day 25 after explosion.

The supernova in then colder than at day 20 for the same luminosity, so that Fell lines
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become preponderant for smaller blue magnitudes.

The supernova SN 1991bg seems to be following this trend, but the breakdown of the
correlation occurs at lower luminosities for the real supernovee, showing that the W7 model
more accurately describes “Branch Normal” supernovee. Even though the nucleosynthesis
can not be the same for the faint SNEIA, their light curve evolution show their maximum

light to occur earlier than average, in agreement with the trend of the synthetic spectra.

7.2 Rc, comparison with reality

We display in Fig. 7.7 R¢, correlation with luminosity for each epoch of the sequence as
well as for real supernovee. The agreement at day 20 after explosion is well within the
observational dispersion. For simulated supernovae the R, correlation with luminosity
is not than linear, the later the epoch the steeper the R, increase with increasing blue
magnitude.

As for Rg;s, days 20 after explosion is in agreement with the maximum light time for real
supernovee. And again SN 1991B falls out of the trend for this date, since extrapolation of
day 20 after explosion trend would give a much larger R¢,. On the other hand, the extrapo-

lation of day 10 after explosion trend would give a coherent value. The adiabatic expansion
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effect on these ratio is clearly proven, as well as their value as luminosity indicators.

The explanation of the quality of ¢, agreement with reality relies on the same physical
property than Rg;s: even if it is very doubtful that the nucleosynthesis remain unchanged
over the whole luminosity sequence, and the emission peaks are less sensitive to abundance

changes than the absorption trough, these ratio are mainly driven by temperature changes.
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Chapter 8

Prelude to NLTE studies

8.1 LTE vs NLTE

In the previous chapters, the discussion was based on LTE calculations. We will now present
W7 converged models in LTE and NLTE for day 20 after explosion and of approximately
the same blue magnitude!. The purpose is to compare both complete and “single element”
spectra in order to study the LTE approximation and thus test the reliability of the “multi-
layered” spectrum formation in the NLTE case. The magnitudes of these spectra are listed
in table tab. 8.1, the NLTE spectrum is bluer than the LTE one for a comparable blue
magnitude.

In fig. 8.1 we plot the LTE spectrum in black and the NLTE one in red. The left hand

side displays the F spectrum, showing a qualitative similarity below 4500A. The right hand

!The blue magnitude was chosen, as it is the chosen parameter to compare to observed spectra. The next
step would be to compare the magnitudes and spectra of LTE and NLTE spectra of the same bolometric
luminosity in order to study the difference in the energy transfer between.

Table 8.1: LTE and NLTE magnitudes of the studied spectra

LTE | NLTE
U |-20.1| -20.0
B|-194 | -19.3
V|-195| -19.2
R|-193 | -18.9
I |-187]| -18.3
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Figure 8.2: LTE(black) vs NLTE(red)Left: Fell single element spectrum, scaled to
have the same 30004 flux Right:Felll single element spectrum

side plot displays the F, spectrum?, which emphasizes the long wavelength and eases the
comparison. The F, spectrum are rescaled to have the same 6300A flux, and show the
similarity of the spectral features also in the 5000 — 7000A wavelength zone, even if the flux
is larger in the LTE case. The NLTE and LTE spectra differ more in the flux repartition
(i.e. the colors) than in the local feature shapes, i.e. the optical depth and source functions,
even though this difference is as expected for SNEIA near maximum light, small.

Fig. 8.2 displays Fell and Fel1l “single element” spectra. The Felll spectrum, formed

deep inside of the supernova where the collisional rates are predominant is as expected

2The energy per surface per unit of frequency. Since F, oc Fy *\%, the decrease of the “pseudo-continuum”
in the red is compensated, and the relative importance of the features are more comparable than with F
throughout the whole spectrum.
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Figure 8.3: LTE(black) vs NLTE(red)Left: SII single element spectrum Right: Sill single
element spectrum Both scaled to have the same 62004 spectrum.

much similar to the LTE spectrum. The “pseudo photosphere” defined previously is thus
conserved in NLTE. The discrepancies between LTE and NLTE are also minor for Feil. This
was to be expected?: the lower levels of the optical transitions of Fell are separated from
the ground level by forbidden lines. The resulting energy gap is too wide for these levels
population to be dominated by radiative rates. As the collisional rates prevail, Feil and Feiit
thus appear to be coherently simulated in the LTE approximation used in PHOENIX.
Fig. 8.7 compares the SiiI and SiI “single element” spectra. They are qualitatively similar
but for Sit1 below 2500A. The NLTE effects are qualitatively negligible for these independent
elements even though the small differences will affect the fine spectral studies such as line

ratios.

8.2 NLTE line formation

In order to investigate whether the line formation procedure described previously holds in
NLTE, we calculated several “single element” spectra on a W7 model converged for day 22
after maximum light in NLTE.

Fig. 8.4 left hand side displays the Fell and Felil single element spectra: the Felll dom-
inated “pseudo-photosphere” also exists in NLTE.

The right hand side of the figure displays Sil1 and SII single element spectra. The

3Thanks David!
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lines forming atop of the “pseudo-photosphere” dominate the ~ 5700A peak for Si1 and the
~ 6200A one for SiiI as in the LTE case. The blue edge of the ~ 5800A trough of the Rg;
feature is not a P-Cygni profile but rather generated by a SII emission feature. In the same
way the ~ 6100A trough is not a pure P-Cygni profile but a blend between the 6355 A
P-Cygni and the Feiil underlying emission.

The line forming process described in chapter 6 thus holds in NLTE. The quality of the
LTE approximation in the Rg; wavelength region and for Feii1, Feii, Sii1 & Si1 is stressed out
in fig. 8.7 where the corresponding “single element” spectra in LTE and NLTE are displayed
together. The main discrepancy between LTE an NLTE lies again mostly between 35004
and 5500Awhere the Felil “pseudo-continuum” differs the most.

In the “multi-layered” line formation process, fig. 8.7 displays the Sii1 & SiI “single

element” spectrum, where the Rg; wavelength region is shown to be dominated, in the
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~ 5700Apeak by SiI and in the ~ 6200Aone by Si1. Also, the contribution of SII alone is
not able to reproduce the ~ 5300A trough of the“sulfur W.

The right hand side of the figure shows the combination of Feli1, Feii, Sitt & Si1. As
can be seen in the zoom displayed in fig. 8.7, the Rg; wavelength region is qualitatively
reproduced, as in the LTE case. Moreover, the “sulfur W” also appears more similar, proving
the “multi-layered” process not to be reduced only to the Rg; wavelength region.

This chapter was the first step on the NLTE studies, and proved that for individual ele-
ments, and especially iron, the LTE approximation including scattering for “Branch normal”
blue magnitudes is close to the NLTE results. The “multi-layered” line formation process
and the Felll dominated “pseudo-photosphere” also proved not to be LTE artifacts. But
detailed level populations studies will be needed to understand quantitatively the global

discrepancies between the LTE and NLTE.
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Conclusion

In this work we have studied the spectrum formation of SNEIA using the radiative transfer
code PHOENIX to devise a grid of simulated spectra at different epochs and luminosity for
the abundance structure of the W7 model.

We have used the self consistent physical structure of the supernova converged for each
point of this grid and the “single element spectra” to study the line formation process,
concentrating to the 5000 — 6500A wavelength region where the Rg; line ratio is calculated.
We have shown the spectrum formation of SNEIA to be a multi-layered process. The deeper
layer is dominated for the dates studied by iron line blends which generate the overall shape
of the spectrum. The outer silicon family elements layer on top of it then affects the spectrum
through their strong lines as in the “photospheric” model, but with an underlying spectrum
very different from a Planck function.

This new picture of the spectrum formation process, and the determination of the ele-
ments responsible of the Rg; correlation with luminosity allowed us to derive a new line ratio
we called Rg;s. It proved to be a blue magnitude indicator allowing luminosity measures
with =~ 15% accuracy or better.

We simulated its use as well as the other spectral indicators Rg; and R¢, in the SNAP/JDEM
context and showed that they would allow us to monitor independently the mean luminosity
of the SNEIA with a precision of ~ 2% to a redshift of z = 1.5 for Rg;s and of of ~ 9% for
Rea. Even if Re, is less accurate than Rg;g, it is measurable for redshifts up to the z = 1.7
of SNAP/JDEM, since it is calculated in the 4000A region of the spectrum. These two
determinations of the SNEIA blue magnitudes will thus be a way to test evolution effects of

the supernove independently of the light curve method.

We finally compared the BVRI colors calculated on the spectra of the simulated grid to
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the Calan Tololo survey supernove ones at blue maximum light time. It allowed us to show
that, since the overall shape of the spectrum is created by the iron line blends deep inside of
the supernova, colors are weakly sensitive to the details of the abundance structure?. Also,
comparing W7 to P.Hoflich explosion models showed that the lack of flux in the I band
pointed toward an underestimated flux transfer from the UV which could be accounted for

by a shallower density profile.

“Even if, to the accuracy level needed to do accurate cosmology, the flux transfer due to lines is far from
negligible
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Appendix I: PHOENIX simulations

W7 model

The main model we used in our simulation was W7 devised by K.Nomoto((Iwamoto et al.,
1999)). Fig. 8 and Fig. 9 display the number abundances of the main elements of this

explosion model.

131



3x10° 3
2x10° E
| | 3 | | S 3
1x10° 2x10% 3x107 1x10° 2x10% 3x107
S Si
2.0x10%3 3.0x10%3 ]
r ] 2.5x10°% - B
1.5x10%3 - L ]
L 1 2.0x10°% - B
1.0x10%3 - 1.5x1093 B
r 1 1.0x10%3 - N
5.0x10%2 [~ — [ ]
L | 5.0x10%2 [~ N
0 ' ; ol | . ]
) 1x10° 2x10° 3x10° ) 1x10° 2x10° 3x10°
Mg Ca
8x10°2 4x10°2[ ]
6x10°2 - B 3x1022 -
4x10°2 B 2x1022 -
2x10°2 B 1x10°2 -
0 1 1 oL 1 1 |
o 1x10° 2x10% 3x107 o 1x10° 2x10% 3x107

Figure 8: W7 light elements abundances
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Figure 9: W7 Iron family elements abundances
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Appendix II: Real supernovae

In this appendix we present the spectra of the real supernove we used in this work.

name Day after max Blue absolute magnitude
snl981b |0 -19.07
sn1986g | -1,-3,-5,1,3 -18.08
snl989b | -1, -5 -18.58
snl991bg | 0, -2 -16.62
sn1991t | -3, 0 -19.44
snl992a | 0,-1,-5,3,5 -18.48
sn1994d | 2, 3, 4,5, -3, -4,-5 -19.0

Table 2: Absolute blue magnitues and dates reminder
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sn1981b.max

Figure 10: Real supernove used, SN 1981B
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Figure 11: Real supernove used, SN 1986G
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Figure 12: Real supernove used, SN 1986G
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Figure 13: Real supernove used, SN 1989 B
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Figure 14: Real supernove used, SN 1991bg
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Figure 15: Real supernove used, SN 1991T
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Figure 16: Real supernove used, SN 19924
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Figure 17: Real supernove used, SN 1994D
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Figure 18: Real supernove used, SN 1994D
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