K. Data-collection, Program package WinGX, Abs correction MULTISCAN Refinement using SHELXL-97, Drawing using ORTEP-3 for Windows

W. Kaim and B. Schwederski, Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, 1995.

R. H. Holm, P. Kennepohl, and E. Solomon, Structural and Functional Aspects of Metal Sites in Biology, Chemical Reviews, vol.96, issue.7, pp.2239-2314, 1996.
DOI : 10.1021/cr9500390

D. O. Hall, R. Cammack, and K. K. Rao, Role for Ferredoxins in the Origin of Life and Biological Evolution, Nature, vol.243, issue.5315, pp.136-138, 1971.
DOI : 10.1038/233136a0

J. Frazzon and D. R. Dean, Formation of iron???sulfur clusters in bacteria: an emerging field in bioinorganic chemistry, Current Opinion in Chemical Biology, vol.7, issue.2, pp.166-173, 2003.
DOI : 10.1016/S1367-5931(03)00021-8

M. Stephenson and L. H. Stickland, Hydrogenase: a bacterial enzyme activating molecular hydrogen, Biochemical Journal, vol.25, issue.1, pp.205-214, 1931.
DOI : 10.1042/bj0250205

P. M. Vignais, B. Billoud, and J. Meyer, Classification and phylogeny of hydrogenases, FEMS Microbiology Reviews, vol.25, issue.4, pp.455-501, 2001.
DOI : 10.1111/j.1574-6976.2001.tb00587.x

M. Frey, Hydrogenases: Hydrogen-Activating Enzymes, ChemBioChem, vol.3, issue.2-3, pp.153-160, 2002.
DOI : 10.1002/1439-7633(20020301)3:2/3<153::AID-CBIC153>3.0.CO;2-B

R. K. Thauer, Biochemistry of methanogenesis: a tribute to Marjory Stephenson:1998 Marjory Stephenson Prize Lecture, Microbiology, vol.144, issue.9, pp.2377-2406, 1998.
DOI : 10.1099/00221287-144-9-2377

. Dehydrogenase, Novel Type of Hydrogenase without Iron-Sulfur Clusters in Methanogenic Archaea, Eur. J. Biochem, vol.208, pp.511-520, 1992.

A. Berkessel and R. K. Thauer, On the Mechanism of Catalysis by a Metal-Free Hydrogenase from Methanogenic Archaea -Enzymatic Transformation of

A. Berkessel, Activation of dihydrogen without transition metals, Current Opinion in Chemical Biology, vol.5, issue.5, pp.486-490, 2001.
DOI : 10.1016/S1367-5931(00)00245-3

G. Buurman, S. Shima, and R. K. Thauer, The metal-free hydrogenase from methanogenic archaea: evidence for a bound cofactor, FEBS Letters, vol.72, issue.2-3, pp.200-204, 2000.
DOI : 10.1016/S0014-5793(00)02225-0

S. Shima, The Cofactor of the Iron???Sulfur Cluster Free Hydrogenase Hmd: Structure of the Light-Inactivation Product, Angewandte Chemie International Edition, vol.43, issue.19, pp.2547-2551, 2004.
DOI : 10.1002/anie.200353763

E. J. Lyon, -Forming Methylenetetrahydromethanopterin Dehydrogenase As Revealed by Infrared Spectroscopy, Journal of the American Chemical Society, vol.126, issue.43, pp.14239-14248, 2004.
DOI : 10.1021/ja046818s

URL : https://hal.archives-ouvertes.fr/medihal-00506668

A. Volbeda, Crystal structure of the nickel???iron hydrogenase from Desulfovibrio gigas, Nature, vol.373, issue.6515, pp.580-587, 1995.
DOI : 10.1038/373580a0

Y. Montet, Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics, Nature Structural Biology, vol.23, issue.7, pp.523-526, 1997.
DOI : 10.1063/1.463598

F. A. Armstrong, Hydrogenases: active site puzzles and progress, Current Opinion in Chemical Biology, vol.8, issue.2, pp.133-140, 2004.
DOI : 10.1016/j.cbpa.2004.02.004

B. H. Huynh, Desulfovibrio vulgaris hydrogenase: a nonheme iron enzyme lacking nickel that exhibits anomalous EPR and Mossbauer spectra., Proceedings of the National Academy of Sciences, vol.81, issue.12, pp.3728-3732, 1984.
DOI : 10.1073/pnas.81.12.3728

Y. Nicolet, B. J. Lemon, J. C. Fontecilla-camps, and J. W. Peters, A novel FeS cluster in Fe-only hydrogenases, Trends in Biochemical Sciences, vol.25, issue.3, pp.138-143, 2000.
DOI : 10.1016/S0968-0004(99)01536-4

M. W. Adams, The structure and mechanism of iron-hydrogenases, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1020, issue.2
DOI : 10.1016/0005-2728(90)90044-5

J. W. Peters, W. N. Lanzilotta, B. J. Lemon, and L. C. Seefeldt, X-ray Crystal Structure of the Fe-Only Hydrogenase (CpI) from Clostridium pasteurianum to 1.8&nbsp;Angstrom Resolution, Science, vol.282, issue.5395, pp.1853-1858, 1998.
DOI : 10.1126/science.282.5395.1853

A. J. Pierik, M. Hulstein, W. R. Hagen, and S. P. Albracht, A low-spin iron with CN and CO as intrinsic ligands forms the core of the active site in [Fe]-hydrogenases, European Journal of Biochemistry, vol.258, issue.2, pp.572-578, 1998.
DOI : 10.1046/j.1432-1327.1998.2580572.x

C. V. Popescu and E. Munck, Electronic Structure of the H Cluster in [Fe]-Hydrogenases, Journal of the American Chemical Society, vol.121, issue.34, pp.7877-7884, 1999.
DOI : 10.1021/ja991243y

P. V. Rao and R. H. Holm, Synthetic Analogues of the Active Sites of Iron???Sulfur Proteins, ChemInform, vol.104, issue.21, pp.527-559, 2004.
DOI : 10.1002/chin.200421274

Z. X. Cao and M. B. Hall, Modeling the Active Sites in Metalloenzymes. 3. Density Functional Calculations on Models for [Fe]-Hydrogenase:?? Structures and Vibrational Frequencies of the Observed Redox Forms and the Reaction Mechanism at the Diiron Active Center, Journal of the American Chemical Society, vol.123, issue.16, pp.3734-3742, 2001.
DOI : 10.1021/ja000116v

M. Bruschi, P. Fantucci, and L. De-gioia, Subcluster, Inorganic Chemistry, vol.42, issue.15, pp.4773-4781, 2003.
DOI : 10.1021/ic0262132

Z. P. Liu and P. Hu, A Density Functional Theory Study on the Active Center of Fe-Only Hydrogenase:?? Characterization and Electronic Structure of the Redox States, Journal of the American Chemical Society, vol.124, issue.18, pp.5175-5182, 2002.
DOI : 10.1021/ja0118690

M. C. Posewitz, Discovery of Two Novel Radical S-Adenosylmethionine Proteins Required for the Assembly of an Active [Fe] Hydrogenase, Journal of Biological Chemistry, vol.279, issue.24
DOI : 10.1074/jbc.M403206200

S. Reissmann, Taming of a Poison: Biosynthesis of the NiFe-Hydrogenase Cyanide Ligands, Science, vol.299, issue.5609, pp.1067-1070, 2003.
DOI : 10.1126/science.1080972

W. Roseboom, M. Blokesch, A. Bock, and S. P. Albracht, The biosynthetic routes for carbon monoxide and cyanide in the Ni-Fe active site of hydrogenases are different, FEBS Letters, vol.271, issue.2, pp.469-472, 2005.
DOI : 10.1016/j.febslet.2004.12.013

T. Herskovitz, Structure and Properties of a Synthetic Analogue of Bacterial Iron-Sulfur Proteins, Proceedings of the National Academy of Sciences, vol.69, issue.9, pp.2437-2441, 1972.
DOI : 10.1073/pnas.69.9.2437

R. W. Lane, J. A. Ibers, R. B. Frankel, and R. H. Holm, Synthetic analogs of active sites of iron-sulfur proteins: bis (o-xylyldithiolato) ferrate (III) monoanion, a structurally unconstrained model for the rubredoxin Fe-S4 unit., Proceedings of the National Academy of Sciences, vol.72, issue.8
DOI : 10.1073/pnas.72.8.2868

J. Zhou and R. H. Holm, Synthesis and Metal Ion Incorporation Reactions of the Cuboidal Fe3S4 Cluster, Journal of the American Chemical Society, vol.117, issue.45, pp.11353-11354, 1995.
DOI : 10.1021/ja00150a039

T. D. Stack and R. H. Holm, Subsite-specific functionalization of the [4Fe-4S]2+ analog of iron-sulfur protein clusters, Journal of the American Chemical Society, vol.109, issue.8, pp.2546-2547, 1987.
DOI : 10.1021/ja00242a067

M. A. Whitener, G. Peng, and R. H. Holm, Subsite-differentiated analogs of biological [4Fe-4S] clusters effected by binding of a macrocyclic polyether trithiol, Inorganic Chemistry, vol.30, issue.10, pp.2411-2417, 1991.
DOI : 10.1021/ic00010a034

C. Walsdorff, W. Saak, and S. Pohl, A new preorganized tridentate ligand bearing three indolethiolate groups. Preparation of 3???1 subsite-differentiated Fe4S4 clusters, Journal of the Chemical Society, Dalton Transactions, issue.11, pp.1857-1861, 1997.
DOI : 10.1039/a608284j

L. S. Cai and R. H. Holm, Synthesis and Electron Delocalization of

C. Y. Zhou, L. S. Cai, and R. H. Holm, ]???S???Ferriheme Bridged Assembly Containing an Isobacteriochlorin Component:?? A Further Analogue of the Active Site of Sulfite Reductase, Inorganic Chemistry, vol.35, issue.10, pp.2767-2772, 1996.
DOI : 10.1021/ic951493p

P. V. Rao, S. Bhaduri, J. F. Jiang, D. Hong, R. H. Holm et al., Bridge Formation in the Synthesis of an A-Cluster Analogue of Carbon Monoxide Dehydrogenase/Acetylcoenzyme A Synthase, Journal of the American Chemical Society, vol.127, issue.6, pp.1933-1945, 2005.
DOI : 10.1021/ja040222n

R. Panda, Initial Structure Modification of Tetrahedral to Planar Nickel(II) in a Nickel???Iron???Sulfur Cluster Related to the C-Cluster of Carbon Monoxide Dehydrogenase, Journal of the American Chemical Society, vol.126, issue.20, pp.6448-6459, 2004.
DOI : 10.1021/ja030627s

S. C. Lee and R. H. Holm, The Clusters of Nitrogenase:?? Synthetic Methodology in the Construction of Weak-Field Clusters, Chemical Reviews, vol.104, issue.2, pp.1135-1157, 2004.
DOI : 10.1021/cr0206216

O. Einsle, Nitrogenase MoFe-Protein at 1.16 A Resolution: A Central Ligand in the FeMo-Cofactor, Science, vol.297, issue.5587, pp.1696-1700, 2002.
DOI : 10.1126/science.1073877

S. C. Lee and R. H. Holm, Speculative synthetic chemistry and the nitrogenase problem, Proceedings of the National Academy of Sciences, vol.4, issue.4, pp.12522-12524, 2003.
DOI : 10.1021/ic025825j

H. Reihlen, A. Gruhl, and G. Hessling, ??ber den photochemischen und oxydativen Abbau von Carbonylen, Justus Liebig's Annalen der Chemie, vol.54, issue.1, pp.268-287, 1929.
DOI : 10.1002/jlac.19294720113

W. Hieber, J. Gruber, and . Metallcarbonyle, Zur Kenntnis der Eisencarbonylchalkogenide, Zeitschrift f???r anorganische und allgemeine Chemie, vol.289, issue.1-6, pp.91-103, 1958.
DOI : 10.1002/zaac.19582960111

R. B. King and T. Bitterwolf, Metal carbonyl analogues of iron???sulfur clusters found in metalloenzyme chemistry, Coordination Chemistry Reviews, vol.206, issue.207, pp.563-579, 2000.
DOI : 10.1016/S0010-8545(99)00251-9

D. Seyferth, Novel anionic rearrangements in hexacarbonyldiiron complexes of chelating organosulfur ligands, Organometallics, vol.6, issue.2, pp.283-294, 1987.
DOI : 10.1021/om00145a009

L. Cloirec and A. , A di-iron dithiolate possessing structural elements of the carbonyl/cyanide sub-site of the H-centre of Fe-only hydrogenase, Chemical Communications, issue.22, pp.2285-2286, 1999.
DOI : 10.1039/a906391i

E. J. Lyon, I. P. Georgakaki, J. H. Reibenspies, and M. Y. Darensbourg, Carbon Monoxide and Cyanide Ligands in a Classical Organometallic Complex Model for Fe-Only Hydrogenase, Angewandte Chemie International Edition, vol.38, issue.21, pp.3178-3180, 1999.
DOI : 10.1002/(SICI)1521-3773(19991102)38:21<3178::AID-ANIE3178>3.0.CO;2-4

M. Schmidt, S. M. Contakes, and T. B. Rauchfuss, First generation analogues of the binuclear site in the Fe-only hydrogenases, SR) 2 (CO) 4 (CN) 2

L. C. Song, Z. Y. Yang, H. Z. Bian, and Q. M. Hu, Novel Single and Double Diiron Oxadithiolates as Models for the Active Site of [Fe]-Only Hydrogenases, Organometallics, vol.23, issue.13, pp.3082-3084, 2004.
DOI : 10.1021/om049752i

M. Razavet, All-iron hydrogenase: synthesis, structure and properties of {2Fe3S}-assemblies related to the di-iron sub-site of the H-cluster, Dalton Trans, pp.586-595, 2003.

M. Razavet, S. C. Davies, D. L. Hughes, and C. Pickett, {2Fe3S} clusters related to the di-iron sub-site of the H-centre of all-iron hydrogenases, Chemical Communications, issue.9, pp.847-848, 2001.
DOI : 10.1039/b102244j

S. J. George, Z. Cui, M. Razavet, and C. J. Pickett, The Di-Iron Subsite of All-Iron Hydrogenase: Mechanism of Cyanation of a Synthetic {2Fe3S}???Carbonyl Assembly, Chemistry - A European Journal, vol.8, issue.17, pp.4037-4046, 2002.
DOI : 10.1002/1521-3765(20020902)8:17<4037::AID-CHEM4037>3.0.CO;2-O

T. J. Zhou, Y. R. Mo, A. M. Liu, Z. H. Zhou, and K. R. Tsai, Enzymatic Mechanism of Fe-Only Hydrogenase:?? Density Functional Study on H???H Making/Breaking at the Diiron Cluster with Concerted Proton and Electron Transfers, Inorganic Chemistry, vol.43, issue.3, pp.923-930, 2004.
DOI : 10.1021/ic0342301

X. Zhao, I. P. Georgakaki, M. L. Miller, J. C. Yarbrough, and M. Y. Darensbourg, ase, Journal of the American Chemical Society, vol.123, issue.39, pp.9710-9711, 2001.
DOI : 10.1021/ja0167046

A. K. Justice, R. C. Linck, T. B. Rauchfuss, and S. R. Wilson, Dihydrogen Activation by a Diruthenium Analogue of the Fe-Only Hydrogenase Active Site, Journal of the American Chemical Society, vol.126, issue.41
DOI : 10.1021/ja0455594

R. F. Service, The Hydrogen Backlash, Science, vol.305, issue.5686, pp.958-961, 2004.
DOI : 10.1126/science.305.5686.958

J. D. Holladay, Y. Wang, and E. Jones, Review of Developments in Portable Hydrogen Production Using Microreactor Technology, Chemical Reviews, vol.104, issue.10, pp.4767-4789, 2004.
DOI : 10.1021/cr020721b

X. Zhao, Scrambling and Other H/D Exchange Processes by [Fe]-Hydrogenase Model Complexes, Inorganic Chemistry, vol.41, issue.15, pp.3917-3928, 2002.
DOI : 10.1021/ic020237r

R. Mejia-rodriguez, D. S. Chong, J. H. Reibenspies, M. P. Soriaga, and M. Y. Darensbourg, Production Electrocatalysts:?? Iron Hydrogenase Model Complexes, Journal of the American Chemical Society, vol.126, issue.38, pp.12004-12014, 2004.
DOI : 10.1021/ja039394v

S. Ott, M. Kritikos, B. Akermark, L. C. Sun, and R. Lomoth, A Biomimetic Pathway for Hydrogen Evolution from a Model of the Iron Hydrogenase Active Site, Angewandte Chemie International Edition, vol.43, issue.8, pp.1006-1009, 2004.
DOI : 10.1002/anie.200353190

J. F. Capon, F. Gloaguen, P. Schollhammer, and J. Talarmin, Electrochemical proton reduction by thiolate-bridged hexacarbonyldiiron clusters, Journal of Electroanalytical Chemistry, vol.566, issue.2
DOI : 10.1016/j.jelechem.2003.11.032

C. Kolomyjec, J. Whelan, and B. Bosnich, Biological analogs. Synthesis of vicinal trimercapto ligands, Inorganic Chemistry, vol.22, issue.16, pp.2343-2345, 1983.
DOI : 10.1021/ic00158a026

A. Maisonnat, J. Devillers, and R. Poilblanc, Assembling potentialities of an anionic tripod ligand: trirhodium and triiridium complexes of 1,1,1-tris(sulfidomethyl)ethane. Molecular structure and crystal packing of Ir3(CH3C(CH2S)3)(CO)6, Inorganic Chemistry, vol.26, issue.10, pp.1502-1507, 1987.
DOI : 10.1021/ic00257a009

C. A. Ghilardi, S. Midollini, A. Orlandini, and A. Vacca, Reactivity of the tripodal trithiol 1,1,1-tris(mercaptomethyl)ethane toward methyl- and ethyl-mercury halides, Journal of the Chemical Society, Dalton Transactions, issue.20, pp.3117-3121, 1993.
DOI : 10.1039/dt9930003117

C. A. Ghilardi, S. Midollini, A. Orlandini, and G. Scapacci, Synthesis and crystal structure of the complex [(CH3C(CH2PPh2)3)Rh(CH3C(CH2S)3]??0.5THF, CH 3 C(CH 2 PPh 2 ) 3 )Rh(CH 3 C(CH 2 S) 3 ) center dot 0.5THF, pp.113-116, 1997.
DOI : 10.1016/S0020-1693(97)05531-X

J. Hu and D. L. Mattern, Ferrocenyl Derivatives with One, Two, or Three Sulfur-Containing Arms for Self-Assembled Monolayer Formation, The Journal of Organic Chemistry, vol.65, issue.8, pp.2277-2281, 2000.
DOI : 10.1021/jo9909812

M. B. Smith and J. March, March's Advanced Organic Chemistry -Reactions, Mechanisms, and Structures, 2001.

B. S. Furniss, A. J. Hannaford, P. W. Smith, and A. R. Tatchel, Vogel's Textbook of Practical Organic Chemistry, 1989.

K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordinatino Compounds, 1997.

A. Winter, L. Zsolnai, and G. Huttner, Dinuclear and Trinuclear Carbonylairon Complexes Containing 1,2-Dithiolato and 1,3-Dithiolato Bridging Ligands

H. X. Li and T. B. Rauchfuss, Iron Carbonyl Sulfides, Formaldehyde, and Amines Condense To Give the Proposed Azadithiolate Cofactor of the Fe-Only Hydrogenases, Journal of the American Chemical Society, vol.124, issue.5, pp.726-727, 2002.
DOI : 10.1021/ja016964n

G. Zampella, Dissecting the Intimate Mechanism of Cyanation of {2Fe3S} Complexes Related to the Active Site of All-Iron Hydrogenases by DFT Analysis of Energetics, Transition States, Intermediates and Products in the Carbonyl Substitution Pathway, Chemistry - A European Journal, vol.100, issue.239, pp.509-520, 2005.
DOI : 10.1002/chem.200400442

K. Krogh-jespersen, Molecular and electronic structures of pentaammineruthenium(II)-thioether complexes. The nature of Ru(II)-S back bonding elucidated by structural, electronic spectral, and molecular orbital studies, Journal of the American Chemical Society, vol.114, issue.11, pp.4345-4353, 1992.
DOI : 10.1021/ja00037a047

H. Jacobsen, H. B. Kraatz, T. Ziegler, and P. M. Boorman, A new look at an old ligand: surprises with thioethers. A density functional study, Journal of the American Chemical Society, vol.114, issue.20
DOI : 10.1021/ja00046a034

G. E. Mullen, M. J. Went, S. Wocadlo, A. K. Powell, and P. J. Blower, Electron Transfer Induced C???S Bond Cleavage in Rhenium and Technetium Thioether Complexes: Structural and Chemical Evidence for?? Back-Donation to C???S??* Orbitals, Angewandte Chemie International Edition in English, vol.36, issue.11, pp.1205-1207, 1997.
DOI : 10.1002/anie.199712051

K. Ligand and X. , -ray absorption spectroscopy: covalency of ligand-metal bonds, Coord. Chem. Rev, vol.249, pp.97-129, 2005.

J. Talarmin, F. Gloaguen, and P. Schollhammer, Catalysis of the electrochemical H 2 evolution by di-iron sub-site models, Coord. Chem. Rev. in press, 2005.

M. J. Dewar, J. A. Hashmall, and . N. Trinajst, Ground states of conjugated molecules. XXII. Polarographic reduction potentials of hydrocarbons, Journal of the American Chemical Society, vol.92, issue.19
DOI : 10.1021/ja00722a004

V. D. Parker, Energetics of electrode reactions. II. The relationship between redox potentials, ionization potentials, electron affinities, and solvation energies of aromatic hydrocarbons, Journal of the American Chemical Society, vol.98, issue.1, pp.98-103, 1976.
DOI : 10.1021/ja00417a017

J. O. Howell, Electron transfer from aromatic hydrocarbons and their .pi.-complexes with metals. Comparison of the standard oxidation potentials and vertical ionization potentials, Journal of the American Chemical Society, vol.106, issue.14, pp.3968-3976, 1984.
DOI : 10.1021/ja00326a014

J. Chatt, C. T. Kan, G. J. Leigh, C. J. Pickett, and D. R. Stanley, Transition-metal binding sites and ligand parameters, Journal of the Chemical Society, Dalton Transactions, issue.10, pp.2032-2038, 1980.
DOI : 10.1039/dt9800002032

V. Artero and M. Fontecave, Some general principles for designing electrocatalysts with hydrogenase activity, Coordination Chemistry Reviews, vol.249, issue.15-16, 2005.
DOI : 10.1016/j.ccr.2005.01.014

URL : https://hal.archives-ouvertes.fr/hal-00374533

T. B. Liu, Synthesis, Structures and Electrochemical Properties of Nitro- and Amino-Functionalized Diiron Azadithiolates as Active Site Models of Fe-Only Hydrogenases, Chemistry - A European Journal, vol.218, issue.207, pp.4474-4479, 2004.
DOI : 10.1002/chem.200400004

E. Steudel, J. Posdorfer, and R. N. Schindler, Intermediates and products in the electrochemical reduction of nitrosobenzene. A spectroelectrochemical investigation, Electrochimica Acta, vol.40, issue.11, pp.1587-1594, 1995.
DOI : 10.1016/0013-4686(95)00102-K

S. P. Best, Spectroelectrochemistry of hydrogenase enzymes and related compounds, Coordination Chemistry Reviews, vol.249, issue.15-16, 2005.
DOI : 10.1016/j.ccr.2005.01.012

K. Nakamoto and R. E. Rundle, Spectroscopic Study of the Monomer and the Dimer in Nitrosobenzene Derivatives, Journal of the American Chemical Society, vol.78, issue.6, pp.1113-1118, 1956.
DOI : 10.1021/ja01587a008

N. P. Hacker, Investigation of the polymerization of 1,4-dinitrosobenzene by low-temperature infrared and UV absorption spectroscopy, Macromolecules, vol.26, issue.22
DOI : 10.1021/ma00074a015

B. A. Averill, T. Herskovitz, R. H. Holm, and J. A. Ibers, Synthetic Analogs of Active-Sites of Iron-Sulfur Proteins. 2. Synthesis and Structure of Tetra[Mercapto-µ 3 -Sulfido-Iron] Clusters, J. Am. Chem. Soc, vol.4, issue.95, pp.3523-3534, 1973.
URL : https://hal.archives-ouvertes.fr/jpa-00215709

G. B. Wong, M. A. Bobrik, and R. H. Holm, Inorganic derivatives of iron sulfide thiolate dimers and tetramers: synthesis and properties of the halide series [Fe2S2X4]2- and [Fe4S4X4]2- (X = chlorine, bromine, iodine), Inorganic Chemistry, vol.17, issue.3, pp.578-584, 1978.
DOI : 10.1021/ic50181a012

X. B. Wang, Probing the Intrinsic Electronic Structure of the Cubane [4Fe???4S] Cluster:?? Nature's Favorite Cluster for Electron Transfer and Storage, Journal of the American Chemical Society, vol.125, issue.46
DOI : 10.1021/ja036831x

L. S. Cai, J. A. Weigel, and R. H. Holm, Analogs of bridged biological active site assemblies: the Fe4S4-sulfide-heme unit, Journal of the American Chemical Society, vol.115, issue.20, pp.9289-9290, 1993.
DOI : 10.1021/ja00073a055

C. J. Daley and R. H. Holm, Reactions of site-differentiated [Fe 4 S 4 ] 2+,1+ clusters with sulfonium cations: reactivity analogues of biotin synthase and other members of the S-adenosylmethionine enzyme family, J. Inorg

G. G. Yakobson, L. S. Kobrina, J. Vorozhtsov, and N. N. , Aromatic Nucleophilic Substitution. IV. Reaction of pentachloro derivatives of benzene with sodium methoxide, Zhurnal Obshchei Khimii, vol.35, pp.137-141, 1965.

A. D. Hardy, D. D. Macnicol, and D. Wilson, A new approach for the design of inclusion compounds, Journal of the Chemical Society, Perkin Transactions 2, vol.2, issue.7, pp.1011-1019, 1979.
DOI : 10.1039/p29790001011

T. D. Stack and R. H. Holm, Subsite-differentiated analogs of biological [4Fe-4S]2+ clusters: synthesis, solution and solid-state structures, and subsite-specific reactions, Journal of the American Chemical Society, vol.110, issue.8, pp.2484-2494, 1988.
DOI : 10.1021/ja00216a023

J. Pollak, B. Schadler, . Uber-homologe-dimerkaptobenzole, and . Vi, ???ber homologe Dimerkaptobenzole, Monatshefte f???r Chemie, vol.39, issue.3-4, pp.129-147, 1918.
DOI : 10.1007/BF01552359

T. D. Stack, J. A. Weigel, and R. H. Holm, The cavitand concept in the synthesis of subsite-differentiated analogs of biological [4Fe-4S/Se]2+ clusters: cluster capture reactions, ligand conformational analysis, and the structure of a trigonal [4Fe-4Se]2+ analog, Ligand Conformational-Analysis, and the Structure of a Trigonal [4Fe4Se] 2+ Analog, pp.3745-3760, 1990.
DOI : 10.1021/ic00344a022

B. H. Depamphilis, B. A. Averill, T. Herskovitz, L. Que, and R. H. Holm, Synthetic Analogs of Active-Sites of Iron-Sulfur Proteins. 6. Spectral and Redox Characteristics of Tetranuclear Clusters

R. H. Holm, W. D. Phillips, B. A. Averill, J. J. Mayerle, and T. Herskovitz, Synthetic analogs of the active sites of iron-sulfur proteins. V. Proton resonance properties of the tetranuclear clusters [tetra-.mu.-sulfido-tetrakis(alkyl or aryl thiolato)tetraferrate](2-), Journal of the American Chemical Society, vol.96, issue.7, pp.2109-2117, 1974.
DOI : 10.1021/ja00814a020

URL : https://hal.archives-ouvertes.fr/jpa-00215709

S. Ciurli, Subsite-differentiated analogs of native iron sulfide [4Fe-4S]2+ clusters: preparation of clusters with five- and six-coordinate subsites and modulation of redox potentials and charge distributions, Journal of the American Chemical Society, vol.112, issue.7, pp.2654-2664, 1990.
DOI : 10.1021/ja00163a028

J. P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Physical Review B, vol.33, issue.12, pp.8822-8824, 1986.
DOI : 10.1103/PhysRevB.33.8822

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A, vol.38, issue.6, pp.3098-3100, 1988.
DOI : 10.1103/PhysRevA.38.3098

A. Schafer, C. Huber, and R. Ahlrichs, Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr, The Journal of Chemical Physics, vol.100, issue.8, pp.5829-5835, 1994.
DOI : 10.1063/1.467146

M. Winter and R. J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors?, Chemical Reviews, vol.104, issue.10, pp.4245-4269, 2004.
DOI : 10.1021/cr020730k

V. Vijaikanth, J. F. Capon, F. Gloaguen, P. Schollhammer, and J. Talarmin, Chemically modified electrode based on an organometallic model of the [FeFe] hydrogenase active center, Electrochemistry Communications, vol.7, issue.4, pp.427-430, 2005.
DOI : 10.1016/j.elecom.2005.02.019

C. J. Pickett and K. S. Ryder, Bioinorganic Reaction Centers on Electrodes - Modified Electrodes Possessing Amino-Acid, Peptide and Ferredoxin-Type Groups on a Poly(Pyrrole) Backbone, J. Chem. Soc.-Dalton Trans, pp.2181-2189, 1994.

S. K. Ibrahim, C. J. Pickett, and C. Sudbrake, Peptide Derivatized Poly(Pyrrole) Modified Electrodes with Built-in Ion-Exchange Functions, J. Electroanal

M. S. Passos, M. A. Queiros, T. Legall, S. K. Ibrahim, and C. J. Pickett, Solid-phase chemistry of electropolymers, Journal of Electroanalytical Chemistry, vol.435, issue.1-2, pp.189-203, 1997.
DOI : 10.1016/S0022-0728(97)00293-3

M. Razavet, Transient FTIR spectroelectrochemical and stopped-flow detection of a mixed valence {Fe(I)-Fe(II)} bridging carbonyl intermediate with structural elements and spectroscopic characteristics of the di-iron subsite of all-iron hydrogenase, Chem. Commun, pp.700-701, 2002.

M. Razavet, V. Artero, and M. Fontecave, Proton Electroreduction Catalyzed by Cobaloximes:?? Functional Models for Hydrogenases, Inorganic Chemistry, vol.44, issue.13, pp.4786-4795, 2005.
DOI : 10.1021/ic050167z

D. S. Breslow and R. F. Heck, Mechanism of the Hydroformylation of Olefins, Chem. Ind, pp.467-467, 1960.

P. Szabo, L. Fekete, G. Bor, . Nagymago, and L. Marko, Phosphorus-containing cobalt carbonyls III. Monosubstituted derivatives of dicobalt octacarbonyl with phosphines and phosphites, Journal of Organometallic Chemistry, vol.12, issue.1, pp.245-248, 1968.
DOI : 10.1016/S0022-328X(00)90922-7

E. Diana, Hexacarbonylocta(.mu.3-sulfido)hexacobalt.cntdot.tris(octasulfur). Structure, bonding, and vibrational analysis of an exceptionally electron-rich carbonyl cluster, Inorganic Chemistry, vol.30, issue.2, pp.294-299, 1991.
DOI : 10.1021/ic00002a026

G. Natile and G. Bor, Studies of the differences in ligand transfer, stability, and fragmentation on electron impact of some organosulphur derivatives of cobalt and iron carbonyls, Journal of Organometallic Chemistry, vol.35, issue.1, pp.185-193, 1972.
DOI : 10.1016/S0022-328X(00)86898-9

S. T. Liu, Substituted boat-shaped Co6 carbonyl cluster derivatives containing a semi-interstitial P atom and both bridging dithiolate and heterocyclic phosphido ligands, Polyhedron, vol.21, issue.11, pp.1073-1080, 2002.
DOI : 10.1016/S0277-5387(02)00855-0

U. Riaz, O. J. Curnow, and M. D. Curtis, Desulfurization of Organic Sulfur Compounds Mediated by a Molybdenum/Cobalt/Sulfur Cluster, Journal of the American Chemical Society, vol.116, issue.10
DOI : 10.1021/ja00089a025

R. J. Angelici, Heterogeneous catalysis of the hydrodesulfurization of thiophenes in petroleum: an organometallic perspective of the mechanism, Accounts of Chemical Research, vol.21, issue.11
DOI : 10.1021/ar00155a001

E. I. Solomon, L. Basumallick, P. Chen, and P. Kennepohl, Variable energy photoelectron spectroscopy: electronic structure and electronic relaxation, Coordination Chemistry Reviews, vol.249, issue.1-2
DOI : 10.1016/j.ccr.2004.02.016

S. Q. Niu and M. B. Hall, Theoretical Studies on Reactions of Transition-Metal Complexes, Chemical Reviews, vol.100, issue.2, pp.353-405, 2000.
DOI : 10.1021/cr980404y

P. E. Siegbahn and M. R. Blomberg, Transition-Metal Systems in Biochemistry Studied by High-Accuracy Quantum Chemical Methods, Chemical Reviews, vol.100, issue.2
DOI : 10.1021/cr980390w

E. Amraoui, M. Spears, B. Ferrer, and S. , Simulation of a dynamic system by the KPMG method, Fan. De, vol.26, pp.269-286, 2000.

C. Cédric-tard, X. Liu, S. K. Ibrahim, and C. J. , Pickett Synthesis of {2Fe3S} cores related to the sub-site of [Fe]-Hydrogenase: towards total synthesis of the H-Cluster (poster presentation)

C. Tard, X. Liu, S. K. Ibrahim, and C. J. , Pickett Synthesis of {2Fe3S} cores related to the sub-site of [Fe]-Hydrogenase: towards total synthesis of the H-Cluster (poster presentation)

G. Conference, Nitrogen Fixation), 2004.

C. Tard, X. Liu, S. K. Ibrahim, S. Davies, D. Hughes et al., Pickett The Active-Site of the All-Iron Hydrogenase