Vérification Formelle dans le Modèle Polyédrique

Katell Morin-Allory 1
1 Lande - Logiciel : ANalyse et DEveloppement
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : This document deals with formal verification of safety properties in the context of embedded systems design. This work is based on the polyhedral model formalism, the combination of systems of affine recurrence equations with integer polyhedra. This model is used in high level synthesis fot generating parallel architectures from regular system descriptions, dimensions of which are defined by means of symbolic parameters. We are interested in the verification of safety properties about boolean control signals that are generated or manually introduced during the synthesis. We call control properties properties on such signals. We show in this document that the polyhedral model is well suited to the formal verification of control properties.
In this work, we present a ``polyhedral logic'' that allows for specifying and proving properties in the polyhedral model. The syntax and semantics of logical formulae are based on those of a description language designed for systems of affine recurrence equations on polyhedral domains. There are different kinds of deductions rules: ``classical rules'' on logical connectors, rewriting rules and rules induced by the computations in the model. We present an algorithm to automatize the proof construction, and heuristic techniques to speed up this construction. These algorithms allow for proving simple properties like the fact that a signal is always true for a given set of processors and time instants. We then sketch and begin to develop solutions that can be used to expand our logic so as to express and prove more complex properties, like mutual exclusion properties for instance. We give some proof tactics for this augmented formalism.
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-00011522
Contributor : Katell Morin-Allory <>
Submitted on : Wednesday, February 1, 2006 - 3:53:30 PM
Last modification on : Friday, November 16, 2018 - 1:28:15 AM
Long-term archiving on : Saturday, April 3, 2010 - 10:03:33 PM

Identifiers

  • HAL Id : tel-00011522, version 1

Citation

Katell Morin-Allory. Vérification Formelle dans le Modèle Polyédrique. Réseaux et télécommunications [cs.NI]. Université Rennes 1, 2004. Français. ⟨tel-00011522⟩

Share

Metrics

Record views

459

Files downloads

847