Algorithmes d’ordonnancement pour les nouveaux supports d’exécution

Pierre-François Dutot

Laboratoire ID-IMAG

18 October 2004
Scheduling algorithms for new execution platforms

Pierre-François Dutot

Laboratoire ID-IMAG

18 October 2004
Fact
Computing power will never outgrow users imagination.

Bigger computers allow:

- better weather forecast
- medical research (protein modeling)
- astro-physics simulation
- ...
Fact

Computing power will never outgrow users imagination.

Bigger computers allow:

- better weather forecast
- medical research (protein modeling)
- astro-physics simulation
- ...

Pierre-François Dutot
Scheduling algorithms for new platforms
Pierre-François Dutot
Scheduling algorithms for new platforms
There are two options to increase the available computer power:

- Either buy a bigger computer,
- Or use several computers.

Question

We need to decide where and when to compute.
There are two options to increase the available computer power:

- Either buy a **bigger computer**,
- Or use several computers.

Question

We need to decide where and when to compute.
There are two options to increase the available computer power:

- Either buy a bigger computer,
- Or use several computers.

Question

We need to decide where and when to compute.
There are two options to increase the available computer power:

- Either buy a bigger computer,
- Or use several computers.

Question

We need to decide where and when to compute.
Usually “where and when” is depicted in a Gantt diagram:
Usually “where and when” is depicted in a **Gantt diagram**:
Usually “where and when” is depicted in a **Gantt diagram**:
Task characteristics
- predictable or unpredictable
- identical or different
- independent or precedence constrained
- sequential or multiprocessor
 - multiprocessor tasks are:
 - rigid or moldable

Machine characteristics
- off-line or on-line
- homogeneous or heterogeneous processors
- homogeneous or heterogeneous links
- simple topology or any graph

Pierre-François Dutot
Scheduling algorithms for new platforms
Task characteristics
- predictable or unpredictable
- identical or different
- independent or precedence constrained
- sequential or multiprocessor
 multiprocessor tasks are:
 - rigid or moldable

Machine characteristics
- off-line or on-line
- homogeneous or heterogeneous processors
- homogeneous or heterogeneous links
- simple topology or any graph
Introduction
Moldable Tasks
Master-Slave Tasking
Conclusion

Task characteristics
- **predictable** or unpredictable
- **identical** or different
- **independent** or precedence constrained
- **sequential** or multiprocessor
 multiprocessor tasks are:
 - rigid or moldable

Machine characteristics
- **off-line** or on-line
- homogeneous or **heterogeneous** processors
- homogeneous or heterogeneous links
- simple topology or **any graph**
1 Introduction

2 Moldable Tasks
 - Presentation of the Model
 - Hierarchical Scheduling
 - Bicriteria Scheduling

3 Master-Slave Tasking
 - Presentation of the Model
 - Polynomial Algorithms
 - NP-Hardness

4 Conclusion
Outline

1. Introduction

2. Moldable Tasks
 - Presentation of the Model
 - Hierarchical Scheduling
 - Bicriteria Scheduling

3. Master-Slave Tasking
 - Presentation of the Model
 - Polynomial Algorithms
 - NP-Hardness

4. Conclusion
Moldable tasks concept

- fine grain execution graphs are replaced by boxes
- execution time depends on the number of processors

Monotony hypothesis

When \(p \) increases:
- \(t \) is nonincreasing
- \(W \) is nondecreasing

<table>
<thead>
<tr>
<th>#proc</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>(W)</td>
<td>10</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>
Moldable tasks concept

- fine grain execution graphs are replaced by boxes
- execution time depends on the number of processors

Monotony hypothesis

When p increases:
- t is nonincreasing
- W is nondecreasing
Moldable tasks concept

- Fine grain execution graphs are replaced by boxes
- Execution time depends on the number of processors

Monotony hypothesis

When p increases:
- t is nonincreasing
- W is nondecreasing

<table>
<thead>
<tr>
<th>#proc</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>W</td>
<td>10</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>
Moldable tasks concept

- fine grain execution graphs are replaced by boxes
- execution time depends on the number of processors

<table>
<thead>
<tr>
<th>#proc</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>W</td>
<td>10</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

Monotony hypothesis

When p increases:
- t is nonincreasing
- W is nondecreasing
Moldable tasks concept

- fine grain execution graphs are replaced by boxes
- execution time depends on the number of processors

Monotony hypothesis

When p increases:
- t is nonincreasing
- W is nondecreasing
Moldable tasks concept

- fine grain execution graphs are replaced by boxes
- execution time depends on the number of processors

Monotony hypothesis

When \(p \) increases:
- \(t \) is nonincreasing
- \(W \) is nondecreasing
Previous results

[Mounié et al. 01] gave a $\frac{3}{2}$ approximation algorithm for independent tasks.

Algorithm
- partition tasks
- make a few transformations
- build a shelf schedule
[Mounié et al. 01] gave a $\frac{3}{2}$ approximation algorithm for independent tasks.

Algorithm
- partition tasks
- make a few transformations
- build a shelf schedule
Introduction

2 Moldable Tasks
 • Presentation of the Model
 • Hierarchical Scheduling
 • Bicriteria Scheduling

3 Master-Slave Tasking
 • Presentation of the Model
 • Polynomial Algorithms
 • NP-Hardness

4 Conclusion
Hierarchical scheduling

With two levels of communication, t is not a function of p anymore:
With two levels of communication, t is not a function of p anymore:
To keep writing t as a function of p, we introduce a placement rule:

Placement rule

For any given allocation:
- fill as many multiprocessors as possible
- group remaining processors in the same multiprocessor

This placement minimizes the number of clusters used by a task. We can prove that it is the best placement for biprocessors.
To keep writing t as a function of p, we introduce a placement rule:

Placement rule

For any given allocation:
- fill as many multiprocessors as possible
- group remaining processors in the same multiprocessor

This placement minimizes the number of clusters used by a task. We can prove that it is the best placement for biprocessors.
Contiguity

Tasks may not always be represented with rectangles.

<table>
<thead>
<tr>
<th>Tasks</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 proc.</td>
<td>13</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>2 proc.</td>
<td>13</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>1.5</td>
</tr>
<tr>
<td>3 proc.</td>
<td>13</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>4 proc.</td>
<td>13</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>
Contiguity

Tasks may not always be represented with rectangles.

<table>
<thead>
<tr>
<th>Tasks</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 proc.</td>
<td>13</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>2 proc.</td>
<td>13</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>1.5</td>
</tr>
<tr>
<td>3 proc.</td>
<td>13</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>4 proc.</td>
<td>13</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>
Problem

We consider:

- independent moldable tasks
- hierarchical platform
 - identical processors
 - fully connected clusters of size 2^q
- objective function: makespan
Using the placement rule, we get:

- same guaranty as the homogeneous case for biprocessors and quadriprocessors
- \((2 - \frac{2}{2^q})\) for other values of \(q\)

Keypoint of the proof

Remainders are reduced to powers of 2 and sorted.
Using the placement rule, we get:

- same guaranty as the homogeneous case for biprocessors and quadriprocessors
- \(2 - \frac{2}{2^q} \) for other values of \(q \)

Keypoint of the proof

Remainders are reduced to powers of 2 and sorted.
Using the placement rule, we get:

- same guaranty as the homogeneous case for biprocessors and quadriprocessors
- \((2 - \frac{2}{2q})\) for other values of \(q\)

Keypoint of the proof

Remainders are reduced to powers of 2 and sorted.
Using the placement rule, we get:
- same guaranty as the homogeneous case for biprocessors and quadriprocessors
- \((2 - \frac{2}{2^q})\) for other values of \(q\)

Keypoint of the proof
Remainders are reduced to powers of 2 and sorted.
Outline

1. Introduction

2. Moldable Tasks
 - Presentation of the Model
 - Hierarchical Scheduling
 - Bicriteria Scheduling

3. Master-Slave Tasking
 - Presentation of the Model
 - Polynomial Algorithms
 - NP-Hardness

4. Conclusion
Until now we only used the **makespan** criterion. However there are other possible objective functions such as the **minsum** criterion.

\[
\max_i (C_i) = 9 \\
\sum_i C_i = 24
\]

\[
\max_i (C_i) = 9 \\
\sum_i C_i = 12
\]
Problem

We consider:

- independent moldable tasks
- identical processors
- fully connected
- objective function: makespan and minsum
Preliminary definition

ρ-MSWP algorithm

A ρ approximation algorithm solving the Maximum Scheduled Weight Problem (MSWP) takes as input:

- a set of weighted jobs
- a deadline D

Selects some jobs, and produces:

- a schedule of length ρD
- with as much weight as the optimal schedule does in D units of time.
Preliminary definition

ρ-MSWP algorithm

A ρ approximation algorithm solving the Maximum Scheduled Weight Problem (MSWP) takes as input:

- a set of weighted jobs
- a deadline D

Selects some jobs, and produces:

- a schedule of length ρD
- with as much weight as the optimal schedule does in D units of time.
We improved an execution scheme presented by [Hall et al. 96]:

Algorithm

- find the smallest possible execution time t_{min}
- make a box of size $2\rho t_{min}$
- fill the box with as much weight as possible (with a ρ-MSWP algorithm)
- double the size of the box and continue
We improved an execution scheme presented by [Hall et al. 96]:

Algorithm
- find the smallest possible execution time t_{min}
- make a box of size $2\rho t_{min}$
- fill the box with as much weight as possible (with a ρ-MSWP algorithm)
- double the size of the box and continue
We improved an execution scheme presented by [Hall et al. 96]:

Algorithm
- find the smallest possible execution time t_{min}
- make a box of size $2\rho t_{min}$
- fill the box with as much weight as possible (with a ρ-MSWP algorithm)
- double the size of the box and continue
We improved an execution scheme presented by [Hall et al. 96] :

Algorithm

- find the smallest possible execution time t_{min}
- make a box of size $2\rho t_{min}$
- fill the box with as much weight as possible (with a ρ-MSWP algorithm)
- double the size of the box and continue
We improved an execution scheme presented by [Hall et al. 96] :

Algorithm

- find the smallest possible execution time t_{min}
- make a box of size $2\rho t_{min}$
- fill the box with as much weight as possible (with a ρ-MSWP algorithm)
- double the size of the box and continue
We improved an execution scheme presented by [Hall et al. 96]:

Algorithm

- find the smallest possible execution time t_{min}
- make a box of size $2\rho t_{min}$
- fill the box with as much weight as possible (with a ρ-MSWP algorithm)
- double the size of the box and continue
Introduction
Moldable Tasks
Master-Slave Tasking
Conclusion

Presentation of the Model
Hierarchical Scheduling
Bicriteria Scheduling

Improvements
1. off-line
2. better ρ-MSWP algorithm
3. parameter α

$\sum \omega_i C_i^8$ ratio

C_{max} ratio

$(\frac{\alpha}{\alpha-1} \rho; \frac{\alpha^2}{\alpha-1} \rho)$

(makespan ; minsum) guaranty
Improvements

1. off-line
2. better ρ-MSWP algorithm
3. parameter α

(makespan ; minsum) guaranty

$$\left(\frac{\alpha}{\alpha-1} \rho ; \frac{\alpha^2}{\alpha-1} \rho \right)$$
Presentation of the Model
Hierarchical Scheduling
Bicriteria Scheduling

Improvements

1. off-line
2. better ρ-MSWP algorithm
3. parameter α

(makespan ; minsum) guaranty

$$\left(\frac{\alpha}{\alpha - 1} \rho ; \frac{\alpha^2}{\alpha - 1} \rho \right)$$
Randomization scheme

The worst cases are when a task is close to the time limits. We move randomly these limits.
Randomization scheme [Algorithmica(submitted)]

Multiplying the time scale by a random $\beta \in]\frac{1}{\alpha}; 1]$ we get:

$$E \left[\sum_{i=1}^{n} w_i \bar{C}_i \right] \leq \frac{\alpha \rho}{\ln(\alpha)} \sum_{i=1}^{n} w_i C^*_i$$

Mean guaranties

$$\left((1 + \frac{1}{\ln(\alpha)}) \rho; \frac{\alpha}{\ln(\alpha)} \rho \right)$$

$$(3; 4.08) < (3.66; 4.33)$$
Randomization scheme [Algorithmica(submitted)]

Multiplying the time scale by a random $\beta \in \left[\frac{1}{\alpha}; 1 \right]$ we get:

$$E \left[\sum_{i=1}^{n} w_i \bar{C}_i \right] \leq \frac{\alpha \rho}{\ln(\alpha)} \sum_{i=1}^{n} w_i C^*_i$$

Mean guarantees

$$\left(1 + \frac{1}{\ln(\alpha)} \right) \rho; \frac{\alpha}{\ln(\alpha)} \rho$$

$$(3; 4.08) < (3.66; 4.33)$$

Presentation of the Model
Hierarchical Scheduling
Bicriteria Scheduling

Conclusion
Scheduling algorithms for new platforms
This scheme can be used in several cases, depending on the underlying ρ-MSWP algorithm:

- rigid parallel tasks
- moldable tasks
- hierarchical moldable tasks

We may also use it in an on-line setting.
Outline

1. Introduction

2. Moldable Tasks
 - Presentation of the Model
 - Hierarchical Scheduling
 - Bicriteria Scheduling

3. Master-Slave Tasking
 - Presentation of the Model
 - Polynomial Algorithms
 - NP-Hardness

4. Conclusion
Applications

Features

We are considering applications with the following nice properties:

- small instruction set
- large data set
- computation times are constant

We use independent identical tasks.
We are considering applications with the following nice properties :

- small instruction set
- large data set
- computation times are constant

We use independent identical tasks.
Applications

Some close matches are:

- parameterized computation (CiGri)
- SETI@home
- Mersenne prime search
- Décrypthon

This problem is related to divisible load tasks [Cheng & Robertazzi 88]
Platформы

Определение

Мы рассмотрим разнообразные платформы:

- разнообразные связи
- разнообразные процессоры
- централизованные данные
Platforms

Definition
We consider heterogeneous platforms:
- heterogeneous links
- heterogeneous processors
- centralized data
As hardware evolves, one site often has very different kinds of computers available.

Some homogeneous processors graphs may also be seen as heterogeneous chains. [Li 02]

A heterogeneous cluster ranked 7th in the last Top500 ranking.

Heterogeneity allows for bigger computing grids
Why heterogeneous?

As hardware evolves, one site often has very different kinds of computers available.

Some homogeneous processors graphs may also be seen as heterogeneous chains. [Li 02]

A heterogeneous cluster ranked 7th in the last Top500 ranking.

Heterogeneity allows for bigger computing grids.
Presentation of the Model
Polynomial Algorithms
NP-Hardness
As hardware evolves, one site often has very different kinds of computers available.

Some homogeneous processors graphs may also be seen as heterogeneous chains. [Li 02]

A heterogeneous cluster ranked 7th in the last Top500 ranking.

Heterogeneity allows for bigger computing grids
As hardware evolves, one site often has very different kinds of computers available.

Some homogeneous processors graphs may also be seen as heterogeneous chains. [Li 02]

A heterogeneous cluster ranked 7th in the last Top500 ranking.

Heterogeneity allows for bigger computing grids
Communications

1-port \(\Rightarrow\) One send at a time

\[\Rightarrow\] One receive at a time

We can still send, receive and compute at the same time.

No overhead, Communication times are linear in link speed

no gap and datasize.

No routing A node can only speak to its neighbours, which can forward the task further.
Communications

1-port ⇒ One send at a time
⇒ One receive at a time
We can still send, receive and compute
at the same time.

No overhead, Communication times are linear in link speed
no gap and datasize.

No routing A node can only speak to its neighbours,
which can forward the task further.
Communications

1-port ⇒ One send at a time
⇒ One receive at a time
We can still send, receive and compute at the same time.

No overhead, Communication times are linear in link speed and datasize.
no gap

No routing A node can only speak to its neighbours, which can forward the task further.
Our goal

Let n be the number of tasks and t the makespan.

Three similar goals:

1. given n, minimize t
2. given t, maximize n
3. given n and t provide a schedule if it is possible
Let n be the number of tasks and t the makespan.

Three similar goals:

1. given n, minimize t
2. given t, maximize n
3. given n and t provide a schedule if it is possible
Our goal

Let \(n \) be the number of tasks and \(t \) the makespan.

Three similar goals:

1. Given \(n \), minimize \(t \)
2. Given \(t \), maximize \(n \)
3. Given \(n \) and \(t \) provide a schedule if it is possible
Summary

Definition

We consider:

- independent identical tasks
- heterogeneous processors
- heterogeneous links
- communications are one-port
- objective function: makespan
Here is the Gantt chart of a schedule:

The numbers are (respectively) the time needed to send/compute
[Beaumont et al. 02] provided an optimal algorithm for fork-graphs which is polynomial in both n and t.

Only one shared resource: the outbound link from the master \implies bandwidth-centric allocation.
[Beaumont et al. 02] provided an optimal algorithm for fork-graphs which is polynomial in both n and t. Only one shared resource: the outbound link from the master \Rightarrow bandwith-centric allocation.
Outline

1 Introduction

2 Moldable Tasks
 - Presentation of the Model
 - Hierarchical Scheduling
 - Bicriteria Scheduling

3 Master-Slave Tasking
 - Presentation of the Model
 - Polynomial Algorithms
 - NP-Hardness

4 Conclusion
We kept this idea of not spending too much time communicating.

Algorithm

Starting from the end, for each task:

1. Try every processor
2. Choose the "cheapest" option (wrt communications)

Complexity is $O(np^2)$.

Pierre-François Dutot

Scheduling algorithms for new platforms
We kept this idea of not spending too much time communicating.

Algorithm

Starting from the end, for each task:

1. Try every processor
2. Choose the “cheapest” option (wrt communications)

Complexity is $O(np^2)$.

Heterogeneous Chains
We kept this idea of not spending too much time communicating.

Algorithm

Starting from the end, for each task:

1. Try every processor
2. Choose the “cheapest” option (wrt communications)

Complexity is $O(np^2)$.
We kept this idea of not spending too much time communicating.

Algorithm

Starting from the end, for each task:

1. Try every processor
2. Choose the “cheapest” option (wrt communications)

Complexity is $O(np^2)$.
We kept this idea of not spending too much time communicating.

Algorithm

Starting from the end, for each task:

1. Try every processor
2. Choose the “cheapest” option (wrt communications)

Complexity is $O(np^2)$.
Heterogeneous Chains

Keypoint of the proof
Induction on the sub-chains.

We kept this idea of not spending too much time communicating.

Algorithm

Starting from the end, for each task:

1. Try every processor
2. Choose the “cheapest” option (wrt communications)

Complexity is $O(np^2)$.

Pierre-François Dutot

Scheduling algorithms for new platforms
Heterogeneous Spiders [IPDPS03]

Definition
A spider is a collection of chains with a single master.

Algorithm
1. Compute the optimal schedule for each chain
2. Replace each chain by a fork
3. Compute the optimal schedule for the fork
4. Revert to a spider schedule
Heterogeneous Spiders [IPDPS03]

Definition
A spider is a collection of chains with a single master.

Algorithm
1. Compute the optimal schedule for each chain
2. Replace each chain by a fork
3. Compute the optimal schedule for the fork
4. Revert to a spider schedule
Heterogeneous Spiders [IPDPS03]

Definition
A spider is a collection of chains with a single master.

Algorithm
1. Compute the optimal schedule for each chain
2. Replace each chain by a fork
3. Compute the optimal schedule for the fork
4. Revert to a spider schedule
Heterogeneous Spiders [IPDPS03]

Definition
A spider is a collection of chains with a single master.

Algorithm
1. Compute the optimal schedule for each chain
2. Replace each chain by a fork
3. Compute the optimal schedule for the fork
4. Revert to a spider schedule
Heterogeneous Spiders [IPDPS03]

Definition
A spider is a collection of chains with a single master.

Algorithm
1. Compute the optimal schedule for each chain
2. Replace each chain by a fork
3. Compute the optimal schedule for the fork
4. Revert to a spider schedule
Outline

1. Introduction
2. Moldable Tasks
 - Presentation of the Model
 - Hierarchical Scheduling
 - Bicriteria Scheduling
3. Master-Slave Tasking
 - Presentation of the Model
 - Polynomial Algorithms
 - NP-Hardness
4. Conclusion
For general trees the problem is NP-hard

- The reduction is made from 3-partition.
- The tree used in the reduction is a fork graph connected to the master node by a single link.
Results

Moldable tasks
- optimal polynomial algorithm for a constrained case with precedence constraints
- efficient algorithm for hierarchical moldable tasks
- improved general scheme for bicriteria scheduling

Master-slave tasking
- optimal polynomial algorithm for chains and spider graphs
- NP-hardness of trees
Future works

- Implementation of the algorithms within CiGri and OAR
- Promote the use of moldable tasks
- Consider other criteria for master-slave tasking
- Multicriteria algorithms for multi-users settings
\[
\sum_{i=1}^{3n} x_i = n \frac{7S}{8}
\]

Master

Distribution

\[\begin{array}{ccccccccc}
P_1 & P_2 & P_i & P_{3n-1} & P_{3n} & Q_{n-1} & Q_1 & Q_0 \\
E & E & E & E & E & E & E & E
\end{array}\]