. [. Bibliographie and . Agboola, A geometric description of the class invariant homomorphism, J. Théor. Nombres Bordeaux, vol.6, pp.273-280, 1994.

A. Agboola and G. Pappas, On arithmetic class invariants, Mathematische Annalen, vol.320, issue.2, pp.339-365, 2001.
DOI : 10.1007/PL00004477

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.422.6670

A. Agboola and M. J. Taylor, Class invariants of Mordell-Weil groups, J. Reine Angew. Math, vol.447, pp.23-61, 1994.

]. S. An and . Anantharaman, Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1, Bull. Soc. Math. France Mém, pp.33-38, 1973.

[. Auslander and O. Goldman, The Brauer group of a commutative ring, Transactions of the American Mathematical Society, vol.97, issue.3, pp.367-409, 1960.
DOI : 10.1090/S0002-9947-1960-0121392-6

W. Bley and M. Klebel, An infinite family of elliptic curves and Galois module structure, Pacific Journal of Mathematics, vol.185, issue.2, pp.221-235, 1998.
DOI : 10.2140/pjm.1998.185.221

. S. Blr, W. Bosch, M. Lütkebohmert, and . Raynaud, Néron Models, Ergeb. Math. Grenzgeb, vol.21, issue.3, 1990.

[. Cassounogù-es and A. Jehanne, Espaces homogènes principaux et points de 2-division de courbes elliptiques, J. London Math. Soc, issue.2, pp.63-257, 2001.

[. Cassounogù-es and M. J. Taylor, Structures galoisiennes et courbes elliptiques, Journal de Th??orie des Nombres de Bordeaux, vol.7, issue.1, pp.307-331, 1995.
DOI : 10.5802/jtnb.145

. U. Chr-]-s, D. K. Chase, A. Harrison, and . Rosenberg, Galois theory and Galois cohomology of commutative rings, Memoirs Amer, Math. Soc, vol.52, pp.15-33, 1965.

S. U. Chase and M. E. Sweedler, Hopf algebras and Galois theory, Lecture Notes in Mathematics, vol.97, 1969.

]. L. Ch and . Childs, Taming wild extensions : Hopf algebras and local Galois module theory, AMS Math. Surveys and Monographs, vol.80, 2000.

]. J. Cr and . Cremona, Algorithms for modular elliptic curves, 1992.

]. P. De and . Deligne, Théorie de Hodge III Degeneration of abelian varieties, Publ. Math. Inst. HautesÉtudesHautes´HautesÉtudes Sci. Ergeb. Math. Grenzgeb, vol.44, issue.22, pp.6-77, 1975.

]. A. Fr and . Fröhlich, Galois module structure of algebraic integers, Ergeb. Math. Grenzgeb, vol.1, issue.3, 1983.

J. Gillibert, Invariants de classes : le cas semi-stable, Compositio Mathematica, vol.141, issue.04, pp.887-901, 2005.
DOI : 10.1112/S0010437X05001594

URL : https://hal.archives-ouvertes.fr/hal-00280800

]. C. Gr and . Greither, Cyclic Galois extensions of commutative rings, Lecture Notes in Mathematics, vol.1534, 1992.

. Ega-ii-]-a, J. Grothendieck, and . Dieudonné, ´ Eléments de géométrie algébrique, chapitre II : ´ Etude globalé elémentaire de quelques classes de morphismes, Publ. Math. Inst. HautesÉtudesHautes´HautesÉtudes Sci, vol.8, 1961.

. Ega-iv-]-a, J. Grothendieck, and . Dieudonné, ´ Eléments de géométrie algébrique, chapitre IV : ´ Etude locale des schémas et des morphismes de schémas, 28 Troisì eme partie 32 Quatrì eme partie, 1964.

A. Grothendieck, M. Artin, and J. L. Verdier, Théorie des topos et cohomologié etale des schémas, Lecture Notes in Mathematics, vol.269, issue.270, 1972.
DOI : 10.1007/BFb0081551

]. D. Hil and . Hilbert, Die Theorie der Algebraischen Zalhkörper, Jahresbericht der Deutschen Mathematiker- Vereinigung, vol.4, pp.175-546, 1897.

B. [. Katz and . Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, vol.108, 1985.

B. Mazur, Rational points of abelian varieties with values in towers of number fields, Inventiones Mathematicae, vol.2, issue.162, pp.183-266, 1972.
DOI : 10.1007/BF01389815

]. B. Ma78 and . Mazur, Rational isogenies of prime degree, Invent. Math, vol.44, pp.129-162, 1978.

J. S. Milne, Arithmetic Duality Theorems, Perspectives in Mathematics, vol.1, 1986.

]. D. Mu and . Mumford, Bi-extensions of formal groups, Algebraic Geometry, pp.307-322, 1969.

G. Pappas, On torsion line bundles and torsion points on abelian varieties, Duke Math, J, vol.91, pp.215-224, 1998.

[. ???, Galois modules and the theorem of the cube, Invent. Math, vol.133, pp.193-225, 1998.

M. Raynaud, 1-motifs et monodromie géométrique, Astérisque, vol.223, pp.259-319, 1994.

[. Srivastav and M. J. Taylor, Elliptic curves with complex multiplication and Galois module structure, Inventiones Mathematicae, vol.153, issue.376, pp.99-165, 1990.
DOI : 10.1007/BF01234415

URL : http://www.digizeitschriften.de/download/PPN356556735_0099/PPN356556735_0099___log20.pdf

M. J. Taylor, On Fr???hlich's conjecture for rings of integers of tame extensions, Inventiones Mathematicae, vol.39, issue.3, pp.41-79, 1981.
DOI : 10.1007/BF01389193

M. J. Taylor, Mordell-Weil groups and the Galois module structure of rings of integers, Illinois J. Math, vol.32, pp.428-452, 1988.

M. J. Taylor, L-functions and Galois modules : Explicit Galois Modules, in L-functions and Arithmetic, LMS Lecture Notes, vol.153, 1991.

W. C. Waterhouse, Principal homogeneous spaces and group scheme extensions, Transactions of the American Mathematical Society, vol.153, pp.181-189, 1971.
DOI : 10.1090/S0002-9947-1971-0269659-2

]. A. We and . Werner, On Grothendieck's pairing of component groups in the semistable reduction case, J. Reine Angew. Math, vol.486, pp.205-215, 1997.