T. Maruyama, X. Ye, and Y. Saito, Electromotive force of the CO???CO2???O2 concentration cell using Na2CO3 as a solid electrolyte at low oxygen partial pressures, Solid State Ionics, vol.23, issue.1-2, pp.113-117, 1987.
DOI : 10.1016/0167-2738(87)90089-0

A. Dubbe, M. Wake, and Y. Sadaoka, Yttria/carbonate composite solid electrolytes for potentiometric CO 2 sensors, Solid State Ionics, pp.96-201, 1997.

S. Yao, Y. Shimizu, N. Miura, and Y. N. , Solid electrolyte carbon dioxide sensor using binary carbonate electrode, Chem. Lett, vol.11, pp.2033-2036, 1990.
DOI : 10.1246/cl.1990.2033

N. Miura, S. Yao, Y. Shimizu, and N. Yamazoe, Carbon Dioxide Sensor Using Sodium Ion Conductor and Binary Carbonate Auxiliary Electrode, Journal of The Electrochemical Society, vol.139, issue.5, pp.1384-1388, 1992.
DOI : 10.1149/1.2069417

N. Miura, S. Yao, Y. Shimizu, and N. Yamazoe, High-performance solid-electrolyte carbon dioxide sensor with a binary carbonate electrode, Sensors and Actuators B: Chemical, vol.9, issue.3, pp.165-170, 1992.
DOI : 10.1016/0925-4005(92)80211-F

N. Imanaka, T. Kawasato, and G. Adachi, A Carbon Dioxide Gas Sensor Probe Based on a Lithium Ionic Conductor, Chemistry Letters, vol.19, issue.4, pp.497-500, 1990.
DOI : 10.1246/cl.1990.497

N. Imanaka, T. Murata, T. Kawasato, and G. Adachi, The operating temperature lowering for CO 2 sensor using NASICON and Li-based binary carbonate electrode, Chem. Lett, pp.103-106, 1992.

N. Imanaka, T. Murata, T. Kawasato, and G. Adachi, CO2 detection with lithium solid electrolyte sensors, Sensors and Actuators B: Chemical, vol.13, issue.1-3, pp.476-479, 1993.
DOI : 10.1016/0925-4005(93)85431-9

S. Yao, Y. Shimizu, N. Miura, and N. Yamazoe, Solid electrolyte carbon dioxide sensor using sodium ionic conductor and lithium carbonate-based auxiliary phase, Applied Physics A Solids and Surfaces, vol.1990, issue.19, pp.25-29, 1993.
DOI : 10.1007/BF00331212

]. D. Lee, S. D. Choi, and K. W. Lee, Carbon dioxide sensor using NASICON prepared by the sol-gel method, Sensors and Actuators B: Chemical, vol.25, issue.1-3, pp.11466-11467, 1995.
DOI : 10.1016/0925-4005(95)85133-X

]. S. Yao, S. Hosohara, Y. Shimizu, N. Miura, H. Futata et al., Solid electrolyte CO 2 sensor using NASICON and Li + -based binary carbonate electrode, Chem. Lett, pp.2069-2072, 1991.

]. K. Shimanoe, H. Kawate, N. Miura, and N. Yamazoe, Interface structure of CO 2 sensing devices using Li 2 CO 3 -CaCO 3 /NASICON junctionA study of heating-up characteristics of solid-electrolyte type CO 2 sensors, 14. [23] H. Futata, K. Ogino, pp.52-112, 1998.

]. T. Kida, H. Kawate, K. Shimanoe, N. Miura, and N. Yamazoe, Interfacial structure of NASICON-based sensor attached with Li 2 CO 3 -CaCO 3 auxiliary phase for detection of CO 2, Solid State Ionics, pp.136-137, 2000.

]. P. Pasierb, S. Komornicki, R. Gajerski, S. Kozinski, and M. Rekas, The performance and long-time stability of potentiometric CO 2 gas sensors based on the (Li- Ba)CO 3 |NASICON|(Na-Ti-O) electrochemical cells, Solid State Ionics, pp.157-357, 2003.

]. P. Pasierb, S. Komornicki, S. Kozinski, R. Gajerski, and M. Rekas, Long-term stability of potentiometric CO2 sensors based on Nasicon as a solid electrolyte, Sensors and Actuators B: Chemical, vol.101, issue.1-2, pp.47-56, 2004.
DOI : 10.1016/j.snb.2004.02.021

]. Y. Sadaoka, Solid state electrochemical CO2 gas sensor using zircon-based sodium ionic conductors, Journal of Materials Science, vol.76, issue.19, pp.11466-5783, 1993.
DOI : 10.1007/BF00367559

J. Liu and W. Weppner, Beta???-alumina solid electrolytes for solid state electrochemical CO2 gas sensors, Solid State Communications, vol.76, issue.3, pp.311-313, 1990.
DOI : 10.1016/0038-1098(90)90844-2

H. Schettler, J. Liu, and H. R. , Investigation of solid sodium reference electrodes for solid-state electrochemical gas sensors, Applied Physics A Solids and Surfaces, vol.125, issue.10, pp.31-35, 1993.
DOI : 10.1007/BF00331213

M. Holzinger, J. Maier, and W. Sitte, Potentiometric detection of complex gases: Application to CO2, Solid State Ionics, vol.94, issue.1-4, pp.94-217, 1997.
DOI : 10.1016/S0167-2738(96)00583-8

J. Maier and U. Warhus, Thermodynamic investigations of Na2ZrO3 by electrochemical means, The Journal of Chemical Thermodynamics, vol.18, issue.4, pp.309-316, 1986.
DOI : 10.1016/0021-9614(86)90075-3

J. Maier, Electrical sensing of complex gaseous species by making use of acid-base properties???, Solid State Ionics, vol.62, issue.1-2, pp.105-111, 1993.
DOI : 10.1016/0167-2738(93)90257-4

M. Holzinger, J. Maier, and W. Sitte, Fast CO 2 -selective potentiometric sensor with open reference electrode, Solid State Ionics, pp.86-88, 1996.

]. L. Wang and R. V. Kumar, A novel carbon dioxide gas sensor based on solid bielectrolyte, Sensors and Actuators B: Chemical, vol.88, issue.3, pp.292-299, 2003.
DOI : 10.1016/S0925-4005(02)00372-6

]. N. Imanaka, M. Kamikawa, S. Tamura, and G. Adachi, CO 2 sensor based on the combination of trivalent Sc 3+ ion-conducting Sc 2 (WO 4 ) 3 and O 2-ion conducting stabilized zirconia solid electrolytes, Electrochemical and solid-state letters, pp.602-604, 1999.

Y. Sadaoka, S. Nakayama, Y. Sakai, and M. Wake, Preparation of K 2 O---Sm 2 O 3 ---nSiO 2 based solid-state electrolyte and its application to electrochemical CO 2 gas sensor, Sensors and Actuators B, pp.24-282, 1995.

]. G. Kale, A. J. Davidson, and D. J. Fray, Investigation into an improved design of CO 2 sensor, Solid State Ionics, pp.11466-11467, 1996.

]. N. Yamazoe, S. Hosohara, T. Fukuda, K. Isono, and N. Miura, Gas sensing interfaces of solid electrolyte based carbon dioxide sensors attached with metal carbonate, Sensors and Actuators B: Chemical, vol.34, issue.1-3, pp.361-366, 1996.
DOI : 10.1016/S0925-4005(96)01827-8

H. Zhang, S. Tagawa, J. Asakura, H. Mizusaki, and . Narita, Solid-state electrochemical CO 2 sensor by coupling lithium ion conductor (Li 2 CO 3 -Li 3 PO 4 -Asl 2 O 3 ) with oxide ionelectron mixed conductor, Solid State Ionics, pp.100-275, 1997.

H. Näfe, On the electrode reaction of the Au|CO 2)| yttriastabilized zirconia electrode, J. Electrochem. Soc, vol.2, issue.3, pp.144-915, 1997.

]. F. Salam, P. Birke, and W. Weppner, Solid-state CO 2 sensor with Li 2 CO 3 -MgO electrolyte and LiMn 2 O 4 as solid reference electrode, Electrochemical and solid-state letters, pp.201-204, 1999.

]. K. Singh, P. Ambekar, and S. S. Bhoga, An investigation of Na 2 CO 3 -ABO 3 (A=Li/K/Ba and B=Nb/Ti) heterogeneous solid electrolyte systems for electrochemical CO 2 gas sensor application, Solid State Ionics, pp.122-191, 1999.

G. He, T. Goto, T. Narushima, and Y. Iguchi, Electrical conductivity of alkaline-earth metal ??-aluminas and their application to a CO2 gas sensor, Solid State Ionics, vol.121, issue.1-4, pp.313-319, 1999.
DOI : 10.1016/S0167-2738(99)00063-6

]. Y. Shimizu and N. Yamashita, Solid electrolyte CO2 sensor using NASICON and perovskite-type oxide electrode, Sensors and Actuators B: Chemical, vol.64, issue.1-3, pp.102-106, 2000.
DOI : 10.1016/S0925-4005(99)00491-8

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.524.9757

]. E. Traversa, H. Aono, Y. Sadaoka, and L. Montanaro, Electrical properties of sol???gel processed NASICON having new compositions, Sensors and Actuators B: Chemical, vol.65, issue.1-3, pp.204-208, 2000.
DOI : 10.1016/S0925-4005(99)00293-2

]. H. Näfe and F. Aldinger, CO 2 sensor based on a solid state oxygen concentration cell, Sensors and Actuators B, vol.69, pp.11466-11512, 2000.

]. N. Imanaka, N. Kamikawa, S. Tamura, and G. Adachi, Carbon dioxide gas sensor with multivalent cation conducting solid electrolytes, Sensors and Actuators B: Chemical, vol.77, issue.1-2, pp.301-306, 2001.
DOI : 10.1016/S0925-4005(01)00747-X

]. T. Goto, G. He, T. Narushima, and Y. Iguchi, Application of Sr??-alumina solid electrolyte to a CO2 gas sensor, Solid State Ionics, vol.156, issue.3-4, pp.329-336, 2003.
DOI : 10.1016/S0167-2738(02)00681-1

]. Y. Miyachi, G. Sakai, K. Shimanoe, and N. Yamazoe, Fabrication of CO2 sensor using NASICON thick film, Sensors and Actuators B: Chemical, vol.93, issue.1-3, pp.250-256, 2003.
DOI : 10.1016/S0925-4005(03)00174-6

J. Ramirez-salgado and P. Fabry, Study of CO2 electrodes in open devices of potentiometric sensors, Solid State Ionics, vol.158, issue.3-4, pp.297-308, 2003.
DOI : 10.1016/S0167-2738(02)00775-0

URL : https://hal.archives-ouvertes.fr/hal-00418065

]. L. Wang and R. V. Kumar, Thick film CO2 sensors based on Nasicon solid electrolyte, Solid State Ionics, vol.158, issue.3-4, pp.309-315, 2003.
DOI : 10.1016/S0167-2738(02)00840-8

]. S. Baliteau, A. Sauvet, C. Lopez, and P. Fabry, Characterization of a NASICON based potentiometric CO2 sensor, Journal of the European Ceramic Society, vol.25, issue.12, pp.2965-2968, 2005.
DOI : 10.1016/j.jeurceramsoc.2005.03.170

]. F. Ménil, B. Ould-daddah, P. Tardy, H. Debéda, and C. Lucat, Planar LiSICON-based potentiometric CO2 sensors: influence of the working and reference electrodes relative size on the sensing properties, Sensors and Actuators B: Chemical, vol.107, issue.2, pp.695-707, 2005.
DOI : 10.1016/j.snb.2004.07.041

]. F. Qiu, L. Sun, X. Li, M. Hirata, H. Suo et al., Static characteristic of planar-type CO 2 sensor based on NASICON and with an inner-heater, Sensors and Actuators B, pp.45-233, 1997.

M. Lee and J. Meyer, A new process for fabricating CO2-sensing layers based on BaTiO3 and additives, Sensors and Actuators B: Chemical, vol.68, issue.1-3, pp.293-299, 2000.
DOI : 10.1016/S0925-4005(00)00447-0

]. M. Alonso-porta and R. V. Kumar, Use of NASICON/Na 2 CO 3 system for measuring CO 2, Sensors and Actuators B, pp.11466-11467, 2000.

B. Ould-daddah-susbielles, H. Debéda, C. Lucat, and P. Tardy, Capteurs potentiométriques de gaz carbonique réalisés en technologie microélectronique hybride "couche épaisse Thèse de l'Université Bordeaux IEvidence of a correlation between the non-linearity of chemical sensors and the asymmetry of their response and recovery curves, Sensors and Actuators B, vol.106, pp.407-423, 2000.

M. Holzinger, J. Maier, and W. Sitte, Potentiometric detection of complex gases: Application to CO2, Solid State Ionics, vol.94, issue.1-4, pp.94-217, 1997.
DOI : 10.1016/S0167-2738(96)00583-8

T. Ogata, S. Fujitsu, K. Koumoto, and H. Yamagida, CO2 gas sensor using??-Al2O3 and metal carbonate, Journal of Materials Science Letters, vol.124, issue.3, pp.285-286, 1986.
DOI : 10.1007/BF01748079

T. Maruyama, S. Sasaki, and Y. Saito, Potentiometric gas sensor for carbon dioxide using solid electrolytes, Solid State Ionics, vol.23, issue.1-2, pp.107-112, 1987.
DOI : 10.1016/0167-2738(87)90088-9

T. Maruyama, X. Ye, and Y. Saito, Electromotive force of the CO???CO2???O2 concentration cell using Na2CO3 as a solid electrolyte at low oxygen partial pressures, Solid State Ionics, vol.23, issue.1-2, pp.113-117, 1987.
DOI : 10.1016/0167-2738(87)90089-0

Y. Saito and T. Maruyama, Recent developments of the sensors for carbon oxides using solid electrolytes, Solid State Ionics, vol.28, issue.30, pp.28-30, 1988.
DOI : 10.1016/0167-2738(88)90434-1

S. Yao, Y. Shimizu, N. Miura, and Y. N. , Solid electrolyte carbon dioxide sensor using binary carbonate electrode, Chem. Lett, vol.11, pp.2033-2036, 1990.
DOI : 10.1246/cl.1990.2033

P. Pasierb, S. Komornicki, R. Gajerski, S. Kozinski, and M. Rekas, The performance and long-time stability of potentiometric CO 2 gas sensors based on the (Li- Ba)CO 3 |NASICON|(Na-Ti-O) electrochemical cells, Solid State Ionics, pp.157-357, 2003.

J. Ramirez-salgado and P. Fabry, Study of CO2 electrodes in open devices of potentiometric sensors, Solid State Ionics, vol.158, issue.3-4, pp.297-308, 2003.
DOI : 10.1016/S0167-2738(02)00775-0

URL : https://hal.archives-ouvertes.fr/hal-00418065

N. Miura, S. Yao, Y. Shimizu, and N. Yamazoe, Carbon Dioxide Sensor Using Sodium Ion Conductor and Binary Carbonate Auxiliary Electrode, Journal of The Electrochemical Society, vol.139, issue.5, pp.1384-1388, 1992.
DOI : 10.1149/1.2069417

]. N. Miura, S. Yao, Y. Shimizu, and N. Yamazoe, High-performance solid-electrolyte carbon dioxide sensor with a binary carbonate electrode, Sensors and Actuators B: Chemical, vol.9, issue.3, pp.11466-11467, 1992.
DOI : 10.1016/0925-4005(92)80211-F

]. F. Qiu, L. Sun, X. Li, M. Hirata, H. Suo et al., Static characteristic of planar-type CO 2 sensor based on NASICON and with an inner-heater, Sensors and Actuators B, issue.11, pp.45-233, 1997.

L. Dessemond, S. Brosda, H. J. Bouwmeester, and U. Guth, Spectroscopie d'impédance des fissures dans la zircone cubiqueContribution à l'étude des électrodes à gaz dans un capteur potentiométrique à CO 2 de deuxième espèceElectrical conductivity and thermal behavior of solid electrolytes based on alkali carbonates and sulfates, Thèse INPG, Grenoble. [13] J. Ramirez-Salgado Thèse UJF, Grenoble. [14] Solid State Ionics, pp.101-103, 1992.

]. K. Singh, P. Ambekar, and S. S. Bhoga, An investigation of Na2CO3??????ABO3 (A=Li/K/Ba and B=Nb/Ti) heterogeneous solid electrolyte systems for electrochemical CO2 gas sensor application, Solid State Ionics, vol.122, issue.1-4, pp.191-196, 1999.
DOI : 10.1016/S0167-2738(99)00033-8

M. B. Goodenough, H. Y. Hong, and J. A. Kafalas, Fast Na+-ion transport in skeleton structures, Materials Research Bulletin, vol.11, issue.2, pp.203-220, 1976.
DOI : 10.1016/0025-5408(76)90077-5

H. Khireddine, Etudes des performances de capteurs potentiométriques à ions sodium utilisant des membranes Nasicon, Thèse INPG, 1992.

C. Gondran, Transfert des ions Na+ à l'interface NASICON/électrolyte. Application à l'acquisition de signaux bioélectriques à la surface de la peau, Thèse INPG, 1994.

P. Vernoux, F. Gaillard, C. Lopez, and E. Siebert, In-situ electrochemical control of the catalytic activity of platinum for the propene oxidation, Solid State Ionics, vol.175, issue.1-4, pp.609-613, 2004.
DOI : 10.1016/j.ssi.2004.01.075

URL : https://hal.archives-ouvertes.fr/hal-00417959

C. G. Vayenas, S. Bebelis, C. Pliangos, S. Brosda, and D. Tsiplakides, Electrochemical activation of catalysis, Kluwer Academic, 2001.

R. S. Gordon, G. R. Miller, and B. J. Mc-entire, Fabrication and characterization of Nasicon electrolytes, Solid State Ionics, vol.3, issue.4, pp.243-248, 1981.
DOI : 10.1016/0167-2738(81)90091-6

F. Krok, Influence of sintering conditions on chemical composition of NASICON, Solid State Ionics, vol.24, issue.1, pp.21-28, 1987.
DOI : 10.1016/0167-2738(87)90062-2

M. Alonso-porta and R. V. Kumar, Use of NASICON/Na 2 CO 3 system for measuring CO 2, Sensors and Actuators B, pp.71-173, 2000.

]. A. Clearfield, M. A. Subramanian, W. Wang, and P. Jerus, The use of hydrothermal procedures to synthesize NASICON and some comments on the stoichiometry of NASICON phases, Solid State Ionics, vol.9, issue.10, pp.11466-11467, 1983.
DOI : 10.1016/0167-2738(83)90108-X

]. R. Roy, Aids in Hydrothermal Experimentation: II, Methods of Making Mixtures for Both "Dry" and "Wet" Phase Equilibrium Studies, Journal of the American Ceramic Society, vol.40, issue.3, pp.145-146, 1956.
DOI : 10.1111/j.1151-2916.1956.tb14180.x

P. Colomban, Méthodes chimiques et procédés sol-gel: ou la mise en oeuvre de poudres ultrafines, pp.187-196, 1985.

C. J. Brinker and G. W. Scherer, Sol-gel Science: The physics and chemistry of sol-gel processing, 1990.

]. P. Colomban, Gel technology in ceramics, glass-ceramics and ceramic-ceramic composites, Ceramics International, vol.15, issue.1, pp.23-25, 1989.
DOI : 10.1016/0272-8842(89)90005-9

J. Livage, M. Henry, and C. Sanchez, Sol-gel chemistry of transition metal oxides, Progress in solid state chemistry, pp.259-341, 1989.
DOI : 10.1016/0079-6786(88)90005-2

M. Cretin, I. , and G. , Réalisation et étude de capteurs potentiométriques à memebranes céramiques sélectives à l'ion lithiumIntroduction to ceramics, Thèse, 1976.

]. G. Cizeron, Le frittage sous son aspect physico-chimique", Cours de recyclage "ingénieur" à l'école supérieure de céramique industrielle et de l, pp.25-41, 1968.

J. Guindet, Contribution à l'étude de matériaux d'anode pour pile à combustible à oxyde électolyte solide, Thèse INPG, Grenoble. [21] L. Dessemond, "Spectroscopie d'impédance des fissures dans la zircone cubique Thèse INPG, 1991.

]. M. Bayard and G. G. Barna, A complex impedance analysis of the ionic conductivty of Na 1+x Zr 2 Si x P 3-x O 12 ceramics, J. Electroanal Chem, pp.11466-11467, 1978.

]. S. Zhang, B. Quan, Z. Zhao, B. Zhao, and Y. He, Preparation and characterization of NASICON with a new sol???gel process, Materials Letters, vol.58, issue.1-2, pp.226-229, 2003.
DOI : 10.1016/S0167-577X(03)00450-6

]. R. Adams, R. Layland, M. Danot, and C. Payen, A new mixed metal titanate: the synthesis and characterization of Ba 2 Fe 2 Ti 4 O 13, Références bibliographiques, pp.15-2567, 1996.

J. Maier, M. Holzinger, and W. Sitte, Fast potentiometric CO 2 sensors with open reference electrodes, Solid State Ionics, pp.74-79, 1994.

M. Holzinger, J. Maier, and W. Sitte, Fast CO 2 -selective potentiometric sensor with open reference electrode, Solid State Ionics, pp.86-88, 1996.

M. Holzinger, J. Maier, and W. Sitte, Potentiometric detection of complex gases: Application to CO2, Solid State Ionics, vol.94, issue.1-4, pp.217-225, 1997.
DOI : 10.1016/S0167-2738(96)00583-8

J. Ramirez-salgado and P. Fabry, Study of CO2 electrodes in open devices of potentiometric sensors, Solid State Ionics, vol.158, issue.3-4, pp.297-308, 2003.
DOI : 10.1016/S0167-2738(02)00775-0

URL : https://hal.archives-ouvertes.fr/hal-00418065

P. Pasierb, S. Komornicki, R. Gajerski, S. Kozinski, and M. Rekas, The performance and long-time stability of potentiometric CO 2 gas sensors based on the (Li- Ba)CO 3 |NASICON|(Na-Ti-O) electrochemical cells, Solid State Ionics, pp.157-357, 2003.

P. Pasierb, S. Komornicki, S. Kozinski, R. Gajerski, and M. Rekas, Long-term stability of potentiometric CO2 sensors based on Nasicon as a solid electrolyte, Sensors and Actuators B: Chemical, vol.101, issue.1-2, pp.47-56, 2004.
DOI : 10.1016/j.snb.2004.02.021

S. Baliteau, A. Sauvet, C. Lopez, and P. Fabry, Characterization of a NASICON based potentiometric CO2 sensor, Journal of the European Ceramic Society, vol.25, issue.12, pp.2965-2968, 2005.
DOI : 10.1016/j.jeurceramsoc.2005.03.170

J. Ramirez-salgado and P. Fabry, Feasibility of potentiometric oxygen gas sensor based on perovskite and sodium titanate measuring electrode, Sensors and Actuators B: Chemical, vol.82, issue.1, pp.34-39, 2002.
DOI : 10.1016/S0925-4005(01)00986-8

URL : https://hal.archives-ouvertes.fr/hal-00418199

]. T. Feist and P. K. Davies, The soft chemical synthesis of titania (B) from layered titanates, Journal of Solid State Chemistry, vol.101, pp.11466-11467, 1992.

]. J. Shim, A. K. Lee, S. G. Park, and J. S. Lee, The synthesis of potassium hexatitanate and manufacturing alkaline fuel cell matrix, Synthetic Metals, vol.71, issue.1-3, pp.71-2261, 1995.
DOI : 10.1016/0379-6779(94)03250-A

]. S. Andersson and A. D. Wadsley, The structures of Na2Ti6O13 and Rb2Ti6O13 and the alkali metal titanates, Acta Crystallographica, vol.15, issue.3, pp.194-201, 1962.
DOI : 10.1107/S0365110X62000511

A. D. Wadsley and W. G. Mumme, Crystal structure of sodium titanium oxide(Na 2 Ti 7 O 15 ), an ordered intergrowth of sodium titanium oxide (Na 2 Ti 6 O 13 ) and sodium titanium oxide (Na 2 Ti 8 O 17 ), Acta Crystallographica, Section B: Structural Crystallography and Crystal Chemistry, pp.24-392, 1968.

]. S. Kikkawa, F. Yasuda, and M. Koizumi, Ionic conductivities of Na2Ti3O7, K2Ti4O9 and their related materials, Materials Research Bulletin, vol.20, issue.10, pp.1221-1227, 1985.
DOI : 10.1016/0025-5408(85)90096-0

J. Ramirez-salgado, U. , G. J. Ramirez-salgado, E. Djurado, and P. Fabry, Contribution à l'étude des électrodes à gaz dans un capteur potentiométrique à CO 2 de deuxième espèceSynthesis of sodium titanate composites by sol-gel method for use in gas potentiometric sensors, Thèse, pp.24-2477, 2001.

]. R. Bouaziz and M. Mayer, Sodium oxide-titanium dioxide binary [system], C.R. Hebd, Seances Acad. Sci, 1971.

]. C. Gicquel, M. Mayer, R. Bouaziz, and C. R. , Oxygen-containing compound of titanium and the alkaly metals (lithium, sodium). M2O-TiO2 compounds in alkaly oxide-rich zones

]. C. Bamberger and G. M. Begun, Sodium titanates: stoichiometry and Raman spectraThe investigation of sodium titanates by the hydrothermal reactions of TiO 2 with NaOH, Journal of the American Ceramic Society J. Solid. State Chem, vol.70, pp.11466-11502, 1981.

]. K. Byrappa, B. S. Raj, V. Rajeev, A. B. Kulkarni, R. R. Clemente et al., Hydrothermal growth and characterization of Na 2 Ti 3 O 7 crystals, Indian Journal of Physics, A, pp.71-131, 1997.

]. Sauvet, S. Baliteau, C. Lopez, and P. Fabry, Synthesis and characterization of sodium titanates Na 2 Ti 3 O 7 and Na 2 Ti 6 O 13, J. Solid State Chem, pp.177-4508, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00417913

J. Engell, S. Mortensen, and L. Moller, Fabrication of Nasicon electrolytes from metal alkoxide derived gels, Solid State Ionics, vol.9, issue.10, pp.877-884, 1983.
DOI : 10.1016/0167-2738(83)90105-4

]. H. Khireddine, P. Fabry, A. Caneiro, and B. Bochu, Optimization of NASICON composition for Na+ recognition, Sensors and Actuators B: Chemical, vol.40, issue.2-3, pp.223-230, 1997.
DOI : 10.1016/S0925-4005(97)80266-3

O. V. Yakubovich and V. V. Kireev, Refinement of the Crystal Structure of Na 2 Ti 3 O 7, Crystallography Reports (Translation of Kristallografiya), pp.48-72, 2003.

]. S. Pal, S. D. Pandey, and P. Chand, Electrical studies in some alkali titanates, Solid State Communications, vol.69, issue.12, pp.1203-1206, 1989.
DOI : 10.1016/0038-1098(89)91065-X

]. S. Pal, P. Chand, and S. D. Pandey, Electrical conductivity and electron paramagnetic resonance investigations in manganese-doped polycrystalline sodium titanate (Na 2 Ti 3 O 7 ), Journal of Materials Science: Materials in Electronics, issue.2, pp.89-93, 1991.

]. P. Pasierb, S. Komornicki, R. Gajerski, S. Kozinski, P. Tomczyk et al., Electrochemical gas sensor materials studied by impedance spectroscopy part II: reference electrode and solid electrolyte/electrode system, Journal of Electroceramics, vol.8, issue.1, pp.57-64, 2002.
DOI : 10.1023/A:1015503403823

S. H. Chan, X. J. Chen, and K. A. Khor, Cathode Micromodel of Solid Oxide Fuel Cell, Journal of The Electrochemical Society, vol.151, issue.1, pp.11466-11467, 2004.
DOI : 10.1149/1.1630036

J. Ramirez-salgado and P. Fabry, Investigation of a reference electrode based on perovskite oxide for second kind potentiometric gas sensor in open systems, Sensors and Actuators B: Chemical, vol.77, issue.1-2, pp.339-345, 2001.
DOI : 10.1016/S0925-4005(01)00724-9

. Les-deux-Électrodes, référence et sensible) d'un capteur potentiométrique « ouvert » à CO 2 font intervenir l'oxygène dans leur équilibre. Les tests précédents sous pression partielle de CO 2 ont été réalisés avec une pression partielle d'oxygène fixée à 0,2 bar (cf. chapitre V.V.B). Pour observer l'influence de l'oxygène, nous avons donc entrepris des expériences Références bibliographiques

N. Miura, S. Yao, Y. Shimizu, and N. Yamazoe, High-performance solid-electrolyte carbon dioxide sensor with a binary carbonate electrode, Sensors and Actuators B: Chemical, vol.9, issue.3, pp.165-170, 1992.
DOI : 10.1016/0925-4005(92)80211-F

N. Miura, S. Yao, Y. Shimizu, and N. Yamazoe, Carbon Dioxide Sensor Using Sodium Ion Conductor and Binary Carbonate Auxiliary Electrode, Journal of The Electrochemical Society, vol.139, issue.5, pp.1384-1388, 1992.
DOI : 10.1149/1.2069417

P. Pasierb, S. Komornicki, R. Gajerski, S. Kozinski, and M. Rekas, The performance and long-time stability of potentiometric CO 2 gas sensors based on the (Li- Ba)CO 3 |NASICON|(Na-Ti-O) electrochemical cells, Solid State Ionics, pp.157-357, 2003.

P. Pasierb, S. Komornicki, S. Kozinski, R. Gajerski, and M. Rekas, Long-term stability of potentiometric CO2 sensors based on Nasicon as a solid electrolyte, Sensors and Actuators B: Chemical, vol.101, issue.1-2, pp.47-56, 2004.
DOI : 10.1016/j.snb.2004.02.021

N. Guillet, Etude d'un capteur de gaz potentiométrique influence et rôle des espèces oxygénées de surface sur la réponse électrique, Thèse INPG et Ecole Nationale, 2001.

N. Miura, Y. Yan, M. Sato, S. Yao, S. Nonaka et al., Solid-state potentiometric CO2 sensors using anion conductor and metal carbonate, Sensors and Actuators B: Chemical, vol.24, issue.1-3, pp.260-265, 1995.
DOI : 10.1016/0925-4005(95)85055-4

V. Leonhard, D. Fischer, H. Erdmann, M. Ilgenstein, and H. Köppen, Comparison of thinand thick-film CO 2 sensors, Sensors and Actuators B, pp.13-14, 1993.

M. Holzinger, J. Maier, and W. Sitte, Fast CO 2 -selective potentiometric sensor with open reference electrode, Solid State Ionics, pp.86-88, 1996.

M. Holzinger, J. Maier, and W. Sitte, Potentiometric detection of complex gases: Application to CO2, Solid State Ionics, vol.94, issue.1-4, pp.217-225, 1997.
DOI : 10.1016/S0167-2738(96)00583-8

J. Ramirez and P. Fabry, Investigation of a reference electrode based on perovskite oxide for second kind potentiometric gas sensor in open systems, Sensors and Actuators B: Chemical, vol.77, issue.1-2, pp.339-345, 2001.
DOI : 10.1016/S0925-4005(01)00724-9

J. Ramirez-salgado, U. , and G. , Contribution à l'étude des électrodes à gaz dans un capteur potentiométrique à CO 2 de deuxième espèceFast potentiometric CO 2 sensors with open reference electrodes, Thèse, pp.74-79, 1994.

]. S. Yao, Y. Shimizu, N. Miura, and Y. N. , Solid electrolyte carbon dioxide sensor using binary carbonate electrode, Chem. Lett, vol.11, pp.2033-2036, 1990.
DOI : 10.1246/cl.1990.2033

]. N. Yamazoe, S. Hosohara, T. Fukuda, K. Isono, and N. Miura, Gas sensing interfaces of solid electrolyte based carbon dioxide sensors attached with metal carbonate, Sensors and Actuators B: Chemical, vol.34, issue.1-3, pp.361-366, 1996.
DOI : 10.1016/S0925-4005(96)01827-8

]. L. Wang and R. V. Kumar, Thick film CO2 sensors based on Nasicon solid electrolyte, Solid State Ionics, vol.158, issue.3-4, pp.309-315, 2003.
DOI : 10.1016/S0167-2738(02)00840-8

M. Alonso-porta and R. V. Kumar, Use of NASICON/Na 2 CO 3 system for measuring CO 2, Sensors and Actuators B, pp.71-173, 2000.

]. F. Ménil, Mod??lisation des temps de r??ponse des capteurs chimiques, Comptes Rendus de l'Acad??mie des Sciences - Series IIC - Chemistry, vol.4, issue.12
DOI : 10.1016/S1387-1609(01)01334-2

]. F. Ménil, M. Susbielles, H. Debéda, C. Lucat, and P. Tardy, Evidence of a correlation between the non-linearity of chemical sensors and the asymmetry of their response and recovery curves, Sensors and Actuators B: Chemical, vol.106, issue.1, pp.407-423, 2005.
DOI : 10.1016/j.snb.2004.08.027

]. J. Gerblinger and H. Meixner, Fast oxygen sensors based on sputtered strontium titanate, Sensors and Actuators B: Chemical, vol.4, issue.1-2, pp.11466-99, 1991.
DOI : 10.1016/0925-4005(91)80183-K

]. E. Lindner, K. Toth, and E. Pungor, The dynamic characteristics of ion-selective electrodes., Bunseki kagaku, vol.30, issue.11, 1988.
DOI : 10.2116/bunsekikagaku.30.11_S67

P. L. Markovic and J. O. Osburn, The Mathematics of diffusion, 648 d'après [20] [23] W. Jaenicke, 1904.

H. S. Carslaw, J. C. Jaeger, P. Fabry, E. Siebert, T. Ogata et al., Conduction of heat in solids d'après [20] [29] B. Ould DaddahCapteurs potentiométriques de gaz carbonique réalisés en technologie microélectronique hybride "couche épaisseElectrochemical sensors (chap. X)", CRC Handbook of Solid State Electrochemistry gas sensor using ?-Al 2 O 3 and metal carbonate, J. Mater.Sci. Letters, vol.369, issue.2, pp.29-52, 1959.

]. T. Maruyama, X. Y. Ye, and Y. Saito, Electromotice force of a CO-CO 2 sensor in CO-CO 2 - H 2 -H 2 O atmospheres and simultaneous determination of partial pressures of CO and CO 2, Solid State Ionics, pp.11466-11467, 1987.

]. F. Salam, S. Bredikhin, P. Birke, and W. Weppner, Effect of the thickness of the gassensitive layer on the response of solid state electrochemical CO 2 sensors, Solid State Ionics, pp.110-319, 1998.

]. H. Futata and K. Ogino, A study of heating-up characteristics of solid-electrolyte type CO2 sensors, Sensors and Actuators B: Chemical, vol.52, issue.1-2, pp.112-118, 1998.
DOI : 10.1016/S0925-4005(98)00264-0

]. K. Kaneyasu, K. Otsuka, Y. Setoguchi, S. Sonoda, T. Nakahara et al., A carbon dioxide gas sensor based on solid electrolyte for air quality control, Sensors and Actuators B, pp.66-56, 2000.

H. Näfe, On the electrode reaction of the Au|CO 2)| yttriastabilized zirconia electrode, J. Electrochem. Soc, vol.2, issue.3, pp.144-915, 1997.

]. L. Wang and R. V. Kumar, A novel carbon dioxide gas sensor based on solid bielectrolyte, Sensors and Actuators B: Chemical, vol.88, issue.3, pp.292-299, 2003.
DOI : 10.1016/S0925-4005(02)00372-6

W. F. Chu, D. Fischer, H. Erdmann, M. Ilgenstein, H. Koppen et al., Thin and Thick film electrochemical CO 2 sensors, Solid State Ionics, pp.53-56, 1992.

]. T. Maruyama, S. Sasaki, and Y. Saito, Potentiometric gas sensor for carbon dioxide using solid electrolytes, Solid State Ionics, vol.23, issue.1-2, pp.107-112, 1987.
DOI : 10.1016/0167-2738(87)90088-9

]. N. Miura, Y. Yan, S. Nonaka, and N. Yamazoe, Sensing properties and mechanism of a planar carbon dioxide sensor using magnesia-stabilized zirconia and lithium carbonate auxiliary phase, Journal of Materials Chemistry, vol.5, issue.9, pp.1391-1394, 1995.
DOI : 10.1039/jm9950501391

]. T. Lang, H. Wiemhofer, and W. , Carbonate Based CO/sub2/ Sensors With High Performance, Proceedings of the International Solid-State Sensors and Actuators Conference, TRANSDUCERS '95, pp.383-387, 1996.
DOI : 10.1109/SENSOR.1995.721974

]. J. Ramirez-salgado and P. Fabry, Study of CO 2 electrodes in open devices of potentiometric sensors, Solid State Ionics, vol.158, pp.11466-297, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00418065