E. Arzt, Size effects in materials due to microstructural and dimensional constraints: a comparative review, Acta Materialia, vol.46, issue.16, p.5611, 1998.
DOI : 10.1016/S1359-6454(98)00231-6

R. J. Asaro and S. Suresh, Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins, Acta Materialia, vol.53, issue.12, p.3369, 2005.
DOI : 10.1016/j.actamat.2005.03.047

M. F. Ashby and R. A. Verrall, Diffusion-accommodated flow and superplasticity, Acta Metall, p.49, 1973.
DOI : 10.1016/0001-6160(73)90057-6

W. A. Backofen, I. R. Turner, and D. H. Avery, Superplasticity in an Al-Zn alloy, Trans. ASM, vol.57, p.980, 1964.

A. Ball and M. M. Hutchison, Superplasticity in the aluminium-zinc eutectoid, Metal Sci, Journal, vol.3, issue.1, 1969.

Z. S. Basinski, Thermal activation energies for the low temperatures deformation in metals, Acta Metall, p.998, 1963.

G. Baur and P. Lehr, Analyse des lois de relaxation de la contrainte d'écoulement dans les métaux, Rev. de Métallurgie, p.551, 1975.

W. Beere, Grain-boundary sliding controlled creep: its relevance to grain rolling and superplasticity, Journal of Materials Science, vol.21, issue.10
DOI : 10.1007/BF00561984

J. Bernardini, Z. Tökei, and D. L. Beke, Effect of segregation on the shape of grain boundary diffusion profiles Experimental study of the Cu[sbnd]Ag system, Philosophical Magazine A, vol.45, issue.1, p.237, 1996.
DOI : 10.1080/01418619008243919

J. Bigot, Preparation and properties of nanocrystalline powders obtained by cryogenic melting, Ann. Chim. Fr, vol.18, p.369, 1993.

W. Blum, Role of Dislocation Annihilation during Steady-State Deformation, Physica Status Solidi (b), vol.4, issue.2, p.561, 1971.
DOI : 10.1002/pssb.2220450219

J. Bonneville and J. L. Martin, Multiplication, Mobility and Exhaustion of Dislocations, 2000.
DOI : 10.1007/978-94-011-4048-5_5

J. Bruley, V. J. Keast, and D. B. Williams, An EELS study of segregation-induced grain-boundary embrittlement of copper, Acta Materialia, vol.47, issue.15-16, p.4009, 1999.
DOI : 10.1016/S1359-6454(99)00261-X

R. P. Carreker and W. R. Hibbard, Tensile deformation of high-purity copper as a function of temperature, strain rate, and grain size, Acta Metallurgica, vol.1, issue.6, p.656, 1953.
DOI : 10.1016/0001-6160(53)90022-4

Y. Champion and J. Bigot, Synthesis and structural analysis of aluminium nanocrystalline powders

Y. Champion, F. Bernard, N. Guigue-millot, and P. Perriat, Sintering of copper nanopowders under hydrogen: an in situ X-ray diffraction analysis, Materials Science and Engineering: A, vol.360, issue.1-2, p.258, 2003.
DOI : 10.1016/S0921-5093(03)00446-5

URL : https://hal.archives-ouvertes.fr/hal-00475132

Y. Champion, J. L. Bonnentien, C. Langlois, C. Duhamel, J. Moulin et al., Synthesis and processing of metallic nanopowders for the study of their mechanical and magnetic properties, Mater. Sc. For, pp.436-442, 2003.

Y. Champion, C. Langlois, S. Guérin-mailly, P. Langlois, J. L. Bonnentien et al., Near-Perfect Elastoplasticity in Pure Nanocrystalline Copper, Science, vol.300, issue.5617, p.310, 2003.
DOI : 10.1126/science.1081042

Y. Champion, C. Langlois, S. Guérin, S. Lartigue-korinek, P. Langlois et al., Plasticity of copper with small grain size, Mater. Sc. For, vol.482, p.71, 2005.

Y. Champion, C. Langlois, S. Guérin-mailly, P. Langlois, J. L. Bonnentien et al., Near-Perfect Elastoplasticity in Pure Nanocrystalline Copper, Science, vol.300, issue.5617, p.310, 2003.
DOI : 10.1126/science.1081042

M. Chen, E. Ma, K. J. Hemker, H. Sheng, Y. M. Wang et al., Deformation Twinning in Nanocrystalline Aluminum, Science, vol.300, issue.5623, p.1275, 2003.
DOI : 10.1126/science.1083727

S. Cheng, J. A. Spencer, and W. W. Milligan, Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals, Acta Materialia, vol.51, issue.15, p.4505, 2003.
DOI : 10.1016/S1359-6454(03)00286-6

S. Cheng, E. Ma, Y. M. Wang, L. J. Kecskes, K. M. Youssef et al., Tensile properties of in situ consolidated nanocrystalline Cu, Tensile properties of in situ consolidated nanocrystalline Cu, p.1521, 2005.
DOI : 10.1016/j.actamat.2004.12.005

M. A. Clark and T. H. Alden, Deformation enhanced grain growth in a superplastic Sn-1% Bi alloy, Acta Metall, p.1195, 1973.

H. Conrad, Grain size dependence of the plastic deformation kinetics in Cu, Materials Science and Engineering: A, vol.341, issue.1-2, p.216, 2003.
DOI : 10.1016/S0921-5093(02)00238-1

H. Conrad and K. Jung, On the strain rate sensitivity of the flow stress of ultrafine-grained Cu processed by equal channel angular extrusion (ECAE), Scripta Mater, 2005.
DOI : 10.1016/j.scriptamat.2005.04.030

J. Creuze, Atomic-scale modelling of intergranular segregation: the case of alloys with strong size-effect, Defect Diff. For, pp.203-205, 2002.

D. Torre, F. Van-swygenhoven, H. Victoria, and M. , Nanocrystalline electrodeposited Ni: microstructure and tensile properties, Acta Materialia, vol.50, issue.15, p.3957, 2002.
DOI : 10.1016/S1359-6454(02)00198-2

D. Torre, F. Pereloma, E. V. Davies, and C. H. , Strain rate sensitivity and apparent activation volume measurements on equal channel anguler extuded Cu processed by one to twelve passes, p.367, 2004.

D. Torre, F. Spätig, P. Schäublin, R. Victoria, and M. , Deformation behaviour and microstructure of nanocrystalline electrodeposited and high pressure torsioned nickel, Acta Mater, vol.53, p.2337, 2005.

D. Torre, F. Lapovok, R. Sandlin, J. Thomson, P. F. Davies et al., Microstructures and properties of copper processed by equal channel angular extrusion for 1???16 passes, Acta Materialia, vol.52, issue.16, p.4819, 2004.
DOI : 10.1016/j.actamat.2004.06.040

D. Meester, P. Yin, C. Doner, M. Conrad, and H. , Thermally activated deformation of crystalline solids, 1975.

J. Degauque, . M4600, S. Divinski, M. Lohmann, and C. Herzig, Matériaux à propriétés magnétiques dures: notions de base, Technique de l'ingénieur Ag grain boundary diffusion and segregation in Cu: measurements in the types B and C diffusion regimes, Acta Mater, vol.49, p.249, 2001.

S. Divinski, M. Lohmann, and C. Herzig, Grain boundary diffusion and segregation of Bi in Cu: radiotracer measurements in B and C diffusion regimes, Acta Materialia, vol.52, issue.13, p.3973, 2004.
DOI : 10.1016/j.actamat.2004.05.013

O. Dominguez, Etude de la compaction et du frittage de poudres nanométriques de Fe et de Cu, 1996.

P. Ducheyne, D. Meester, and P. , Superplastic testing conditions and grain growth, Journal of Materials Science, vol.21, issue.1, p.109, 1974.
DOI : 10.1007/BF00554760

C. Duhamel, Y. Champion, M. Tence, and M. Walls, Synthesis of controlled-chemistry ultrafine FexNi1???x ferromagnetic powders, Journal of Alloys and Compounds, vol.393, issue.1-2, p.204, 2005.
DOI : 10.1016/j.jallcom.2004.10.041

G. L. Dunlop and D. M. Taplin, The tensile properties of a superplastic aluminium bronze, Journal of Materials Science, vol.2, issue.1, p.84, 1972.
DOI : 10.1007/BF00549554

J. D. Embury and D. J. Lahaie, Mechanical Properties and deformation behavior of materials having ultrafine microstructure, N. M. e. al. Kluwer Academy, pp.287-169, 1993.

Y. Estrin and H. Mecking, A unified phenomenological description of work hardening and creep based on oneparameter models, Acta Metall, p.57, 1984.

H. J. Frost and M. F. Ashby, Deformation -mechanism maps, 1989.

R. C. Gifkins, Grain-boundary sliding and its accommodation during creep and superplasticity, Metallurgical Transactions A, vol.20, issue.8
DOI : 10.1007/BF02656607

A. V. Granato, K. Lücke, J. Schlipf, and L. J. Teutonico, Entropy Factors for Thermally Activated Unpinning of Dislocations, Journal of Applied Physics, vol.35, issue.9, p.2732, 1964.
DOI : 10.1063/1.1713833

G. T. Gray, Influence of strain rate & temperature on the mechanical response of ultrafine-grained Cu, Ni, and Al-4Cu-0.5Zr, Nanostructured Materials, vol.9, issue.1-8, p.477, 1997.
DOI : 10.1016/S0965-9773(97)00104-9

F. Guiu and P. L. Pratt, Stress Relaxation and the Plastic Deformation of Solids, physica status solidi (b), vol.11, issue.1, p.111, 1964.
DOI : 10.1002/pssb.19640060108

S. P. Gupta, Kinetics of discontinuous precipitation and dissolution in Cu-Ag alloys, Canadian Metall, Quaterly, vol.37, p.141, 1998.

E. Hart, Theory of the tensile test, Acta Metallurgica, vol.15, issue.2, p.351, 1967.
DOI : 10.1016/0001-6160(67)90211-8

E. Hart, A phenomenological theory for plastic deformation of polycristalline metals, Acta Metall, p.599, 1970.

T. Haubold, Exafs studies of bismuth doped nanocrystalline copper, Acta Metallurgica et Materialia, vol.41, issue.6, p.1769, 1993.
DOI : 10.1016/0956-7151(93)90196-Y

G. He, J. Eckert, W. Loeser, and L. Schultz, Novel Ti-base nanostructure???dendrite composite with enhanced plasticity, Nature Materials, vol.2, issue.1, p.33, 2003.
DOI : 10.1038/nmat792

J. Hertz, E. D. Hondros, and M. P. Seah, Diagrammes d'équilibre -alliages binaires, Technique de l'ingénieur M70 Segregation to interface, Int. Met. Rev, vol.222, p.262, 1977.

R. E. Honig, Vapor pressure data for the solid and liquid elements, RCA Rev, p.567, 1962.

H. W. Höppel, J. May, P. Eisenlohr, and M. Göken, Strain-rate sensitivity of ultrafine-grained materials, Z

J. Horvath, R. Birringer, and H. Gleiter, Diffusion in nanocrystalline material, Solid State Comm, p.319, 1987.

M. J. Hÿtch, R. E. Dunin-borkowski, M. R. Scheinfein, J. Moulin, C. Duhamel et al., Vortex Flux Channeling in Magnetic Nanoparticle Chains, Vortex Flux Channeling in Magnetic Nanoparticle Chains, p.257207, 2003.
DOI : 10.1103/PhysRevLett.91.257207

S. Ichikawa, K. Miyasawa, H. Ichinose, and K. Ito, The microstructure of deformed nanocrystalline Ag and

L. I. Ivanov and V. A. Yanushkevich, High temperature mechanism of steady state creep in BCC metals: creep of zirconium, Fizika Metall. i Metalloved, vol.17, p.112, 1964.

M. Jin, A. M. Minor, E. A. Stach, M. Jr, and J. W. , Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature, Acta Materialia, vol.52, issue.18, p.5381, 2004.
DOI : 10.1016/j.actamat.2004.07.044

A. A. Karimpoor, U. Erb, K. T. Aust, and G. Palumbo, High strength nanocrystalline cobalt with high tensile ductility, High strength nanocrystalline cobalt with high tensile ductility, p.651, 2003.
DOI : 10.1016/S1359-6462(03)00397-X

H. S. Kim, Y. Estrin, and M. B. Bush, Plastic deformation behaviour of fine-grained materials, Acta Materialia, vol.48, issue.2, p.493, 2000.
DOI : 10.1016/S1359-6454(99)00353-5

H. S. Kim and Y. Estrin, Ductility of ultrafine grained copper, Applied Physics Letters, vol.79, issue.25, p.4115, 2001.
DOI : 10.1063/1.1426697

H. S. Kim and Y. Estrin, Phase mixture modeling of the strain rate dependent mechanical behavior of nanostructured materials, Acta Materialia, vol.53, issue.3, p.765, 2005.
DOI : 10.1016/j.actamat.2004.10.028

C. C. Koch and T. R. Malow, The ductility problem in nanocrystalline materials, Mater. Sci. Forum, pp.312-314, 1999.

U. F. Kocks and J. Eng, Laws for Work-Hardening and Low-Temperature Creep, Journal of Engineering Materials and Technology, vol.98, issue.1, p.76, 1976.
DOI : 10.1115/1.3443340

H. Konrad, T. Haubold, R. Birringer, and H. Gleiter, Nanostructured Cu-Bi alloys prepared by co-evaporation in a continuous gas flow, Nanostructured Materials, vol.7, issue.6, p.605, 1996.
DOI : 10.1016/0965-9773(96)00038-4

N. Krasilnikov, W. Lojkowski, Z. Pakiela, and R. Z. Valiev, Tensile strength and ductility of ultra-fine-grained nickel processed by severe plastic deformation, Materials Science and Engineering: A, vol.397, issue.1-2, p.330, 2005.
DOI : 10.1016/j.msea.2005.03.001

D. Kuhlmann-wilsdorf, Theory of workhardening 1934-1984, Metallurgical Transactions A, vol.2, issue.2, p.2091, 1985.
DOI : 10.1007/BF02670414

K. S. Kumar, S. Suresh, M. F. Chisholm, J. A. Horton, and P. Wang, Deformation of electrodeposited nanocrystalline nickel, Acta Materialia, vol.51, issue.2, p.387, 2003.
DOI : 10.1016/S1359-6454(02)00421-4

T. G. Langdon, The physics of superplastic deformation, Materials Science and Engineering: A, vol.137, issue.1, 1991.
DOI : 10.1016/0921-5093(91)90312-B

J. E. Langford, Accuracy in powder Diffraction II National Institute of standards and technology Special Publication, 1992.

C. Langlois, Le cuivre nanostructuré massif: élaboration par métallurgie des poudres et étude du comportement mécanique, 2003.

C. Langlois, M. J. Hÿtch, P. Langlois, S. Lartigue-korinek, and Y. Champion, Synthesis and microstructure of bulk nanocrystalline copper, Metallurgical and Materials Transactions A, vol.342, issue.310, 2005.
DOI : 10.1007/s11661-005-0018-2

S. Lartigue, Influence des dopants et de la déformation à chaud sur les paramètres cristallographiques des joints de grains et les dislocations intergranulaires de l'alumine, 1988.

M. Legros, B. R. Elliott, M. N. Rittner, J. R. Weertman, and K. J. Hemker, Microsample tensile testing of nanocrystalline metals, Philosophical Magazine A, vol.234, issue.4, p.1017, 2000.
DOI : 10.1007/s11661-998-0159-1

J. M. Li, Petch relation and grain boundary sources, Trans, AIME, vol.227, p.239, 1963.

Y. J. Li, X. H. Zeng, and W. Blum, Transition from strengthening to softening by grain boundaries in ultrafine-grained Cu, Acta Materialia, vol.52, issue.17, p.5009, 2004.
DOI : 10.1016/j.actamat.2004.07.003

X. Z. Liao, F. Zhou, E. J. Lavernia, S. G. Srinivasan, M. I. Baskes et al., Deformation mechanism in nanocrystalline Al: Partial dislocation slip, Applied Physics Letters, vol.83, issue.4, p.632, 2003.
DOI : 10.1063/1.1594836

L. Lu, M. L. Sui, and K. Lu, Superplastic Extensibility of Nanocrystalline Copper at Room Temperature, Science, vol.287, issue.5457, p.1463, 2000.
DOI : 10.1126/science.287.5457.1463

L. Lu, S. X. Li, and K. Lu, An abnormal strain rate effect on tensile behavior in nanocrystalline copper, Scripta Materialia, vol.45, issue.10, p.1163, 2001.
DOI : 10.1016/S1359-6462(01)01138-1

L. Lu, R. Schwaiger, Z. W. Shan, M. Dao, K. Lu et al., Nano-sized twins induce high rate sensitivity of flow stress in pure copper, Acta Materialia, vol.53, issue.7, p.2169, 2005.
DOI : 10.1016/j.actamat.2005.01.031

E. Ma, Instabilities and ductility of nanocrystalline and ultrafine-grained metals, Scripta Materialia, vol.49, issue.7, p.663, 2003.
DOI : 10.1016/S1359-6462(03)00396-8

E. Ma, Y. M. Wang, Q. H. Lu, M. L. Sui, L. Lu et al., Strain hardening and large tensile elongation in ultrahigh-strength nano-twinned copper, Applied Physics Letters, vol.85, issue.21, pp.85-4932, 2004.
DOI : 10.1063/1.1814431

J. May, H. W. Höppel, and M. Göken, Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation, Scripta Materialia, vol.53, issue.2, p.189, 2005.
DOI : 10.1016/j.scriptamat.2005.03.043

M. J. Mayo, R. W. Siegel, A. Narayanasamy, and W. D. Nix, Mechanical properties of nanophase TiO2 as determined by nanoindentation, Journal of Materials Research, vol.60, issue.05, p.1073, 1990.
DOI : 10.1038/330556a0

M. Lean and D. , Grain boundaries in metals, 1957.

S. X. Mcfadden, R. S. Mishra, R. Z. Valiev, A. P. Zhilyaev, and A. K. Mukherjee, Low-temperature superplasticity in nanostructured nickel and metal alloys, Nature, vol.398, issue.6729, p.684, 1999.

M. Menyhard, M. Yan, and V. Vitek, Atomistic vs phenomenological approaches to grain boundary segregation: Computer modeling of Cu???Ag alloys, Acta Metallurgica et Materialia, vol.42, issue.8, p.2783, 1994.
DOI : 10.1016/0956-7151(94)90219-4

P. Millett, P. Selvam, R. Bansal, S. Saxena, and A. , Atomistic simulation of grain boundary energetics ??? Effects of dopants, Acta Materialia, vol.53, issue.13, p.3671, 2005.
DOI : 10.1016/j.actamat.2005.04.031

R. S. Mishra, V. V. Stolyarov, C. Echer, R. Z. Valiev, and A. K. Mukherjee, Mechanical behavior and superplasticity of a severe plastic deformation processed nanocrystalline Ti???6Al???4V alloy, Materials Science and Engineering: A, vol.298, issue.1-2, p.44, 2001.
DOI : 10.1016/S0921-5093(00)01338-1

A. K. Mukherjee, The rate controlling mechanism in superplasticity, Materials Science and Engineering, vol.8, issue.2, p.83, 1971.
DOI : 10.1016/0025-5416(71)90085-1

J. L. Murray, Calculations of Stable and Metastable Equilibrium Diagrams of the Ag-Cu and Cd-Zn Systems, Metallurgical Transactions A, vol.6, issue.2, p.261, 1984.
DOI : 10.1007/BF02645110

K. Nuttall, Strain-rate sensitivity in superplastic metals, International Journal of Mechanical Sciences, vol.13, issue.1, p.83, 1971.
DOI : 10.1016/0020-7403(71)90107-X

G. Palumbo, S. J. Thorpe, and K. T. Aust, On the contribution of triple junctions to the structure and properties of nanocrystalline materials, Scripta Metallurgica et Materialia, vol.24, issue.7, p.1347, 1990.
DOI : 10.1016/0956-716X(90)90354-J

V. N. Perevezentsev, V. V. Rybin, and V. N. Chuvil-'deev, The theory of structural superplasticity???I. The physical nature of the superplasticity phenomenon, Acta Metallurgica et Materialia, vol.40, issue.5, p.887, 1992.
DOI : 10.1016/0956-7151(92)90065-M

J. Pilling and N. Ridley, Superplasticity in cristalline solids, The Institute of Metals, 1989.

L. Priester, On the accomodation of extrinsic dislocation in grain boundaries, Interf. Sc, vol.4, p.205, 1997.

P. Rodriguez, Grain size dependence of the activation parameters for plastic deformation: Influence of crystal structure, slip system, and rate-controlling dislocation mechanism, Metallurgical and Materials Transactions A, vol.47, issue.9, pp.2697-663, 1965.
DOI : 10.1007/s11661-004-0215-4

G. Schoeck, The Activation Energy of Dislocation Movement, physica status solidi (b), vol.198, issue.2, p.499, 1965.
DOI : 10.1002/pssb.19650080209

S. Schumacher, R. Birringer, R. Straub, and H. Gleiter, Diffusion of silver in nanocrystalline copper between 303 and 373 K, Acta Metallurgica, vol.37, issue.9, p.2485, 1989.
DOI : 10.1016/0001-6160(89)90046-1

R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, and S. Suresh, Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel, Acta Materialia, vol.51, issue.17, p.5159, 2003.
DOI : 10.1016/S1359-6454(03)00365-3

R. Schweinfest, A. T. Paxton, and M. W. Finnis, Bismuth embrittlement of copper is an atomic size effect, Nature, vol.40, issue.7020, p.1008, 2004.
DOI : 10.1103/PhysRevB.54.11169

P. Shariat, R. B. Vastava, and T. G. Langdon, An evaluation of the roles of intercrystalline and interphase boundary sliding in two-phase superplastic alloys, Acta Met, p.285, 1982.

P. Spätig, J. Bonneville, and J. L. Martin, A new method for activation volume measurements: application to Ni 3, Mater Sc Eng A 167, p.73, 1993.

J. R. Spingarn and W. D. Nix, Diffusional creep and diffusionally accommodated grain rearrangement, Acta Metallurgica, vol.26, issue.9, p.1389, 1978.
DOI : 10.1016/0001-6160(78)90154-2

P. R. Subramanian and J. H. Perepezko, The ag-cu (silver-copper) system, Journal of Phase Equilibria, vol.20, issue.1, p.62, 1993.
DOI : 10.1007/BF02652162

P. L. Sun, C. Y. Yu, P. W. Kao, and C. P. Chang, Influence of boundary characters on the tensile behavior of submicron-grained aluminium, p.265, 2004.

T. Surholt, Y. Mishin, and C. Herzig, kinetic regimes, Physical Review B, vol.50, issue.6, p.3577, 1994.
DOI : 10.1103/PhysRevB.50.3577

C. Suryanarayana, Nanocrystalline materials, International Materials Reviews, vol.8, issue.1, p.41, 1995.
DOI : 10.1126/science.254.5036.1300

A. Taylor, X-ray metallography, 1961.

T. Ungar, S. Ott, P. G. Sanders, A. Borbély, and J. R. Weertman, Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis, Acta Materialia, vol.46, issue.10, p.3693, 1998.
DOI : 10.1016/S1359-6454(98)00001-9

R. Z. Valiev, V. Gertsman, . Yu, and O. A. Kaibyshev, Grain boundary structure and properties under external influences, physica status solidi (a), vol.90, issue.2, p.11, 1986.
DOI : 10.1002/pssa.2210970102

R. Z. Valiev, E. V. Kozlov, I. F. Yu, J. Lian, A. A. Nazarov et al., Deformation behaviour of ultra-fine-grained copper, Acta Metallurgica et Materialia, vol.42, issue.7, p.2467, 1994.
DOI : 10.1016/0956-7151(94)90326-3

R. Z. Valiev, I. V. Alexandrov, Y. T. Zhu, and T. C. Lowe, Paradox of Strength and Ductility in Metals Processed Bysevere Plastic Deformation, Journal of Materials Research, vol.25, issue.01, p.5, 2002.
DOI : 10.1007/s11837-000-0127-8

H. Van-swygenhoven, M. Spaczer, and A. Caro, Microscopic description of plasticity in computer generated metallic nanophase samples: a comparison between Cu and Ni, Acta Materialia, vol.47, issue.10, p.3117, 1999.
DOI : 10.1016/S1359-6454(99)00109-3

R. B. Vastava and T. G. Langdon, An investigation of intercrystalline and interphase boundary sliding in the superplastic Pb-62%Sn eutectic, Acta Met, p.251, 1979.

T. Volpp, E. Göring, W. M. Kuschke, and E. Arzt, Grain size determination and limits to Hall-Petch behavior in nanocrystalline NiAl powders, Nanostructured Materials, vol.8, issue.7, p.855, 1997.
DOI : 10.1016/S0965-9773(98)00019-1

Y. M. Wang, M. Chen, F. Zhou, and E. Ma, High tensile ductility in a nanostructured metal, Nature, vol.81, issue.6910, p.912, 2002.
DOI : 10.1038/nature01133

Y. M. Wang and E. Ma, Temperature and strain rate effects on the strength and ductility of nanostructured copper, Applied Physics Letters, vol.83, issue.15, p.3165, 2003.
DOI : 10.1063/1.1618370

Y. M. Wang and E. Ma, Three strategies to achieve uniform tensile deformation in a nanostructured metal, Acta Materialia, vol.52, issue.6, p.1699, 2004.
DOI : 10.1016/j.actamat.2003.12.022

Y. M. Wang and E. Ma, On the origin of ultrahigh cryogenic strength of nanocrystalline metals, Applied Physics Letters, vol.85, issue.14, p.1, 2004.
DOI : 10.1063/1.1799238

Y. M. Wang and E. Ma, Strain hardening, strain rate sensitivity, and ductility of nanostructured metals, Materials Science and Engineering: A, vol.375, issue.377, p.71, 2004.
DOI : 10.1016/j.msea.2003.10.214

Y. M. Wang, A. V. Hamza, and E. Ma, Activation volume and density of mobile dislocations in plastically deforming nanocrystalline Ni, Applied Physics Letters, vol.86, issue.24, p.241917, 2005.
DOI : 10.1063/1.1946899

B. E. Warren, X-ray studies of deformed metals, Progress in Metal Physics, vol.8, p.147, 1959.
DOI : 10.1016/0502-8205(59)90015-2

J. R. Weertman, High temperature creep produced by dislocation motion. Rate processes in plastic deformation of materials, p.315, 1972.

Q. Wei, D. Jia, K. T. Ramesh, and E. Ma, Evolution and microstructure of shear bands in nanostructured Fe, Applied Physics Letters, vol.81, issue.7, p.1240, 2002.
DOI : 10.1063/1.1501158

Q. Wei, S. Cheng, K. T. Ramesh, and E. Ma, Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals, Materials Science and Engineering: A, vol.381, issue.1-2, pp.375-377, 2004.
DOI : 10.1016/j.msea.2004.03.064

J. Weismüller, Alloy effects in nanostructures, Nanostructured Materials, vol.3, issue.1-6, p.261, 1993.
DOI : 10.1016/0965-9773(93)90088-S

D. S. Wilkinson and C. H. Caceres, On the machenism of strain-enhanced grain growth during superplastic deformation, Acta Metall, p.1335, 1984.

G. K. Williamson and W. H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metallurgica, vol.1, issue.1, p.22, 1953.
DOI : 10.1016/0001-6160(53)90006-6

D. A. Woodford, Strain-rate sensitivity as a mesure of ductility, Trans. ASM, vol.62, p.291, 1969.

W. M. Yin, S. H. Whang, and R. A. Mirshams, Effect of interstitials on tensile strength and creep in nanostructured Ni, Acta Materialia, vol.53, issue.2, p.383, 2005.
DOI : 10.1016/j.actamat.2004.09.034

M. Yoshizawa and T. Sakuma, Grain growth acceleration during high temperature deformation in high purity alumina, Materials Science and Engineering: A, vol.149, issue.1, p.59, 1991.
DOI : 10.1016/0921-5093(91)90786-M

M. Yoshizawa and H. Ohsawa, Evaluation of strain-rate sensitivity in superplastic compressive deformation, Journal of Materials Processing Technology, vol.68, issue.3
DOI : 10.1016/S0924-0136(96)00103-3

K. M. Youssef, R. O. Scattergood, L. Murty, K. Horton, J. A. Koch et al., Ultrahigh strength and high ductility of bulk nanocrystalline copper, Applied Physics Letters, vol.87, issue.9, p.91904, 2005.
DOI : 10.1063/1.2034122

M. G. Zelin and A. K. Mukherjee, Geometrical aspects of superplastic flow, Materials Science and Engineering: A, vol.208, issue.2, p.210, 1996.
DOI : 10.1016/0921-5093(95)10080-6

Y. Zhou, U. Erb, K. T. Aust, and G. Palumbo, Young's modulus in nanostructured metals, Zeitschrift f??r Metallkunde, vol.94, issue.10, p.1157, 2003.
DOI : 10.3139/146.031157