H. W. Alt, L. A. Caffarelli, and &. , Friedman ? « A free boundary problem for quasilinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci, vol.11, issue.4 1, pp.1-44, 1984.

L. Ambrosio, N. Gigli, and &. , Savaré ? Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich, 2005.

&. [. Broadie, The Valuation of American Options on Multiple Assets, Mathematical Finance, vol.7, issue.3, pp.241-286, 1997.
DOI : 10.1111/1467-9965.00032

A. Blanchet, J. Dolbeault, and &. , Monneau ? « On the continuity of the time derivative of the solution to the parabolic obstacle problem with variable coefficients, 2005.

A. Blanchet, J. Dolbeault, and &. , Perthame ? « Two-dimensional Keller- Segel : Optimal critical mass and qualitative properties of the solutions, 2005.

]. L. Caf93, Caffarelli ? « A monotonicity formula for heat functions in disjoint domains », in Boundary value problems for partial differential equations and applications, RMA Res. Notes Appl. Math, vol.29, pp.53-60, 1993.

[. Carlen and &. , Competing symmetries, the logarithmic HLS inequality and Onofri's inequality ons n, Geometric and Functional Analysis, vol.102, issue.1, pp.90-104, 1992.
DOI : 10.1007/BF01895706

&. [. Childress, Percus ? « Nonlinear aspects of chemotaxis, Math. Biosci, vol.56, pp.3-4, 1981.

L. A. Caffarelli, A. Petrosyan, and &. , Shahgholian ? « Regularity of a free boundary in parabolic potential theory, Journal of the American Mathematical Society, vol.17, issue.04, pp.827-869, 2004.
DOI : 10.1090/S0894-0347-04-00466-7

B. [. Corrias and &. Perthame, Global Solutions of Some Chemotaxis and Angiogenesis Systems in High Space Dimensions, Milan Journal of Mathematics, vol.72, issue.1, pp.1-29, 2004.
DOI : 10.1007/s00032-003-0026-x

&. [. Dolbeault, Optimal critical mass in the two dimensional Keller???Segel model in, Comptes Rendus Mathematique, vol.339, issue.9, pp.611-616, 2004.
DOI : 10.1016/j.crma.2004.08.011

J. Fouque, G. Papanicolaou, and &. K. , Sircar ? Derivatives in financial markets with stochastic volatility [Fri64] A. Friedman ? Partial differential equations of parabolic type, Parabolic variational inequalities in one space dimension and smoothness of the free boundary, pp.151-176, 1964.

&. [. Gajewski, Global Behaviour of a Reaction-Diffusion System Modelling Chemotaxis, Mathematische Nachrichten, vol.17, issue.1, pp.77-114, 1998.
DOI : 10.1002/mana.19981950106

&. [. Jäger, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Transactions of the American Mathematical Society, vol.329, issue.2, pp.819-824, 1992.
DOI : 10.1090/S0002-9947-1992-1046835-6

&. [. Keller, Segel ? « Initiation of slide mold aggregation viewed as an instability, no. 399 ?-415. [Lie96] G. M. Lieberman ? Second order parabolic differential equations, 1970.

O. A. Lady?enskaja, V. A. Solonnikov, and &. N. , Ural ceva ? Linear and quasilinear equations of parabolic type, Translated from the Russian by S, Smith. Translations of Mathematical Monographs, vol.23, 1967.

R. Monneau and ?. , On the number of singularities for the obstacle problem in two dimensions, Journal of Geometric Analysis, vol.138, issue.4, pp.359-389, 2003.
DOI : 10.1007/BF02930701

&. [. Nanjundiah, The determination of spatial pattern inDictyostelium discoideum, Journal of Biosciences, vol.13, issue.4, pp.353-394, 1992.
DOI : 10.1007/BF02720094

]. M. Wei83, Weinstein ? « Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys, vol.8783, issue.4, pp.567-576, 1982.

. Premì-ere-partie-probì-eme-de-l-'obstacle-parabolique-[-bbrs93-]-g, J. Barles, M. Burdeau, and &. Romano, Samsoen ? « Estimation de la frontì ere libre des options américaines au voisinage de l'´ echéance, C. R. Acad. Sci. Paris Sér. I Math, issue.2, pp.316-171, 1993.

&. [. Black, The Pricing of Options and Corporate Liabilities, Journal of Political Economy, vol.81, issue.3, pp.637-659, 1973.
DOI : 10.1086/260062

E. Chevalier and ?. , CRITICAL PRICE NEAR MATURITY FOR AN AMERICAN OPTION ON A DIVIDEND-PAYING STOCK IN A LOCAL VOLATILITY MODEL, Mathematical Finance, vol.20, issue.3, pp.439-463, 2005.
DOI : 10.1023/A:1008699315785

URL : https://hal.archives-ouvertes.fr/hal-00693107

E. Robert, Friedman ? Variational principles and free-boundary problems, secondédsecondéd, 1988.

P. Jaillet, D. Lamberton, and &. , Variational inequalities and the pricing of American options, Acta Applicandae Mathematicae, vol.60, issue.3, pp.263-289, 1990.
DOI : 10.1007/BF00047211

&. [. Kinderlehrer, Stampacchia ? An introduction to variational inequalities and their applications, Pure and Applied Mathematics, vol.88, 1980.

&. [. Lamberton, Lapeyre ? Introduction au calcul stochastique appliqué appliqué`appliquéà la finance, secondédsecondéd., EllipsesÉditionEllipses´EllipsesÉdition Marketing, 1997.

G. Rapuch and ?. , American option and the free boundary exercise region : a pde approach », Interfaces Free Bound, pp.79-98, 2005.

H. Berestycki, J. Busca, and &. I. Florent, Asymptotics and calibration of local volatility models, Quantitative Finance, vol.4, issue.1, pp.61-69, 2002.
DOI : 10.1002/cpa.3160450103

G. Barles, J. Burdeau, M. Romano, &. N. Samsoen, and ?. , Estimation de la frontì ere libre des options américaines au voisinage de l'´ echéance, C. R. Acad. Sci. Paris Sér. I Math, issue.2, pp.316-171, 1993.

A. Blanchet, J. Dolbeault, &. R. Monneau, and ?. , On the continuity of the time derivative of the solution to the parabolic obstacle problem with variable coefficients, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00004421

. References, Interest rate theory, Financial mathematics, pp.53-122, 1996.

E. Chevalier and ?. , CRITICAL PRICE NEAR MATURITY FOR AN AMERICAN OPTION ON A DIVIDEND-PAYING STOCK IN A LOCAL VOLATILITY MODEL, Mathematical Finance, vol.20, issue.3, pp.439-463, 2005.
DOI : 10.1023/A:1008699315785

URL : https://hal.archives-ouvertes.fr/hal-00693107

L. A. Caffarelli, A. Petrosyan, &. H. Shahgholian, and ?. , Regularity of a free boundary in parabolic potential theory, Journal of the American Mathematical Society, vol.17, issue.04, pp.827-869, 2004.
DOI : 10.1090/S0894-0347-04-00466-7

J. [. Fournié, J. Lasry, and &. Lebuchoux, Applications of Malliavin calculus to Monte-Carlo methods in finance. II, Finance and Stochastics, vol.5, issue.2, pp.201-236, 2001.
DOI : 10.1007/PL00013529

E. Robert, Variational principles and free-boundary problems, secondédsecondéd, 1988.

&. [. Harrison and ?. Pliska, Martingales and stochastic integrals in the theory of continuous trading, Stochastic Processes and their Applications, vol.11, issue.3, pp.215-260, 1981.
DOI : 10.1016/0304-4149(81)90026-0

P. Jaillet, D. Lamberton, and &. , Variational inequalities and the pricing of American options, Acta Applicandae Mathematicae, vol.60, issue.3, pp.263-289, 1990.
DOI : 10.1007/BF00047211

&. [. Lamberton and ?. Villeneuve, Critical price near maturity for an American option on a dividend-paying stock, Ann. Appl. Probab, vol.13, issue.2, pp.800-815, 2003.

H. [. Mc-kean, Appendix: a free boundary problem for the heat equation arising from a problem in mathematical economics, Indust. Manage. Rev

G. Rapuch, American options and the free boundary exercise region: a PDE approach, Interfaces and Free Boundaries, vol.7, issue.1, pp.79-98, 2005.
DOI : 10.4171/IFB/114

]. S. Vil99 and ?. Villeneuve, Options américaines dans un modèle de black-scholes multidimensionnel, Thèse, 1999.

. [. Van-moerbeke, An optimal stopping problem with linear reward, Acta Mathematica, vol.132, issue.0, pp.111-151, 1974.
DOI : 10.1007/BF02392110

R. Blanchet, J. Dolbeault, &. R. Monneau, and ?. , On the continuity of the time derivative of the solution to the parabolic obstacle problem with variable coefficients, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00004421

L. A. Caffarelli and ?. , The regularity of free boundaries in higher dimensions, Acta Mathematica, vol.139, issue.0, pp.155-184, 1977.
DOI : 10.1007/BF02392236

L. A. Caffarelli, D. Jerison, &. C. Kenig, and ?. , Some New Monotonicity Theorems with Applications to Free Boundary Problems, The Annals of Mathematics, vol.155, issue.2, pp.369-404, 2002.
DOI : 10.2307/3062121

L. A. Caffarelli, A. Petrosyan, &. H. Shahgholian, and ?. , Regularity of a free boundary in parabolic potential theory, Journal of the American Mathematical Society, vol.17, issue.04, pp.827-869, 2004.
DOI : 10.1090/S0894-0347-04-00466-7

. A. Cs-]-l, &. H. Caffarelli, and ?. Shahgholian, The structure of the singular set of a free boundary in potential theory

H. Federer and ?. , Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, 1969.

E. Robert, Friedman ? Variational principles and free-boundary problems, secondédsecondéd, 1988.

P. Jaillet, D. Lamberton, and &. , Variational inequalities and the pricing of American options, Acta Applicandae Mathematicae, vol.60, issue.3, pp.263-289, 1990.
DOI : 10.1007/BF00047211

&. [. Kinderlehrer, Stampacchia ? An introduction to variational inequalities and their applications, Pure and Applied Mathematics, vol.88, 1980.

R. Monneau and ?. , On the number of singularities for the obstacle problem in two dimensions, Journal of Geometric Analysis, vol.138, issue.4, pp.359-389, 2003.
DOI : 10.1007/BF02930701

G. Rapuch, American options and the free boundary exercise region: a PDE approach, Interfaces and Free Boundaries, vol.7, issue.1, pp.79-98, 2005.
DOI : 10.4171/IFB/114

D. G. Schaeffer, Some examples of singularities in a free boundary, Ann. Scuola Norm. Sup. Pisa Cl. Sci, vol.4, issue.4 1, pp.133-144, 1977.

]. E. Ste70, Stein ? Singular integrals and differentiability properties of functions, 1970.

G. S. Weiss and ?. , A homogeneity improvement approach to the obstacle problem, Inventiones Mathematicae, vol.138, issue.1, pp.23-50, 1999.
DOI : 10.1007/s002220050340

D. Horstmann and ?. From, until present : the Keller-Segel model in chemotaxis and its consequences. I », Jahresber. Deutsch. Math.-Verein, vol.105, issue.3, pp.103-165, 1970.

&. [. Keller, Segel ? « Initiation of slide mold aggregation viewed as an instability, J. Theor. Biol, vol.26, issue.399, p.415, 1970.

&. [. Nanjundiah, The determination of spatial pattern inDictyostelium discoideum, Journal of Biosciences, vol.13, issue.4, pp.353-394, 1992.
DOI : 10.1007/BF02720094

A. Arnold, J. A. Carrillo, L. Desvillettes, J. Dolbeault, A. Jüngel et al., Entropies and Equilibria of Many-Particle Systems: An Essay on Recent Research, References References, pp.35-43, 2004.
DOI : 10.1007/s00605-004-0239-2

H. [. Benguria, &. E. Brézis, and ?. Lieb, The Thomas-Fermi-von Weizs??cker theory of atoms and molecules, Communications in Mathematical Physics, vol.27, issue.2, pp.167-180, 1981.
DOI : 10.1007/BF01942059

M. Burger, M. Difrancesco, &. Y. Dolak, and ?. , The Keller???Segel Model for Chemotaxis with Prevention of Overcrowding: Linear vs. Nonlinear Diffusion, SIAM Journal on Mathematical Analysis, vol.38, issue.4, pp.2005-098, 2005.
DOI : 10.1137/050637923

. Bde-+-01-]-p, J. Biler, M. Dolbeault, P. Esteban, and &. Markowich, Steady states for Streater's energy-transport models of self-gravitating particles, IMA Volumes in Mathematics Series, vol.135, pp.1149-1162, 2001.

A. Blanchet, J. Dolbeault, and &. , Perthame ? " Two-dimensional Keller- Segel: Optimal critical mass and qualitative properties of the solutions, 2005.

P. Biler, G. Karch, &. P. Laurençot, and ?. , The 8?-problem for radially symmetric solutions of a chemotaxis model in a disc, 2005.

&. [. Brezis and . Merle, in two dimensions, Communications in Partial Differential Equations, vol.13, issue.8-9, pp.1223-1253, 1991.
DOI : 10.1007/BF02760233

&. [. Biler and ?. Nadzieja, A class of nonlocal parabolic problems occurring in statistical mechanics, Colloq. Math, vol.66, issue.1, pp.131-145, 1993.

&. [. Carrillo and ?. Calvez, Volume effects in the keller-segel model: energy estimates preventing blow-up, 2005.

[. Carlen and &. , Competing symmetries, the logarithmic HLS inequality and Onofri's inequality ons n, Geometric and Functional Analysis, vol.102, issue.1, pp.90-104, 1992.
DOI : 10.1007/BF01895706

R. Caglioti, P. Lions, C. Marchioro, &. M. Pulvirenti, and ?. , A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description, Communications in Mathematical Physics, vol.187, issue.3, pp.501-525, 1992.
DOI : 10.1007/BF02099262

P. [. Chalub, B. Markowich, and &. Perthame, Kinetic Models for Chemotaxis and their Drift-Diffusion Limits, Monatshefte f???r Mathematik, vol.142, issue.1-2, pp.123-141, 2004.
DOI : 10.1007/s00605-004-0234-7

L. Corrias, B. Perthame, and &. H. Zaag, A chemotaxis model motivated by angiogenesis, Comptes Rendus Mathematique, vol.336, issue.2, pp.141-146, 2003.
DOI : 10.1016/S1631-073X(02)00008-0

?. , E. Dolak, and T. Hillen, Cattaneo models for chemosensitive movement, Journal of Mathematical Biology, vol.46, issue.5, pp.153-170, 2003.
DOI : 10.1007/s00285-003-0222-x

&. [. Dolbeault and . Poupaud, A remark on the critical explosion parameter for a semilinear elliptic equation in a generic domain using an explosion time of an ordinary differential equation, Nonlinear Analysis: Theory, Methods & Applications, vol.24, issue.8, pp.1149-1162, 1995.
DOI : 10.1016/0362-546X(94)00220-C

B. Gidas, W. M. Ni, and &. L. Nirenberg, Symmetry and related properties via the maximum principle, Communications in Mathematical Physics, vol.43, issue.3, pp.209-243, 1979.
DOI : 10.1007/BF01221125

&. [. Gajewski and ?. Zacharias, Global Behaviour of a Reaction-Diffusion System Modelling Chemotaxis, Mathematische Nachrichten, vol.17, issue.1, pp.77-114, 1998.
DOI : 10.1002/mana.19981950106

&. [. Hardy and ?. Littlewood, Some properties of fractional integrals. I., Mathematische Zeitschrift, vol.62, issue.2, pp.565-606, 1928.
DOI : 10.1007/BF01171116

M. A. Herrero, E. Medina, and &. J. Velázquez, Finite-time aggregation into a single point in a reaction - diffusion system, Nonlinearity, vol.10, issue.6, pp.1739-1754, 1997.
DOI : 10.1088/0951-7715/10/6/016

&. [. Hillen and ?. Painter, Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowding, Advances in Applied Mathematics, vol.26, issue.4, pp.280-301, 2001.
DOI : 10.1006/aama.2001.0721

T. Hillen, K. Painter, and &. , Finite sampling radius in chemotaxis, 2005.

&. [. Horstmann and ?. Winkler, Boundedness vs. blow-up in a chemotaxis system, Journal of Differential Equations, vol.215, issue.1, pp.52-107, 2005.
DOI : 10.1016/j.jde.2004.10.022

&. [. Jäger and ?. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Transactions of the American Mathematical Society, vol.329, issue.2, pp.819-824, 1992.
DOI : 10.1090/S0002-9947-1992-1046835-6

]. E. Ks71a and &. L. Keller, Segel ? " Model for chemotaxis, J. Theor. Biol, vol.30, pp.225-234, 1971.

]. E. Lie83 and ?. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math, issue.2 2, pp.118-349, 1983.

]. P. Mai01 and . Maini, Applications of mathematical modelling to biological pattern formation, Coherent structures in complex systems, pp.205-217, 2001.

&. [. Nagai and ?. Senba, Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Sci. Appl, vol.8, issue.1, pp.145-156, 1998.

T. [. Nagai, &. T. Senba, and . Suzuki, Keller-Segel system and the concentration lemma, Variational problems and related topics (Japanese), pp.75-80, 1997.

&. [. Othmer and . Stevens, Aggregation, blowup, and collapse: the ABCs of taxis in reinforced random walks, SIAM J. Appl. Math, vol.57, issue.4, pp.1044-1081, 1997.

&. [. Potapov and ?. Hillen, Metastability in Chemotaxis Models, Journal of Dynamics and Differential Equations, vol.105, issue.3, pp.293-330, 2005.
DOI : 10.1007/s10884-005-2938-3

&. [. Renclawowicz and ?. Hillen, Quorum sensing models in chemotaxis, 2005.

&. [. Rossi and . Savaré, Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces, Ann. Sc. Norm. Super. Pisa Cl. Sci, vol.2, issue.5 2, pp.395-431, 2003.

&. [. Rascle and ?. Ziti, Finite time blow-up in some models of chemotaxis, Journal of Mathematical Biology, vol.33, issue.4, pp.388-414, 1995.
DOI : 10.1007/BF00176379

]. T. Ss02a, &. T. Senba, and ?. Suzuki, Time global solutions to a parabolic-elliptic system modelling chemotaxis, Asymptot. Anal, vol.32, issue.1, pp.63-89, 2002.

R. Tyson, L. G. Stern, and &. J. Leveque, Fractional step methods applied to a chemotaxis model, Journal of Mathematical Biology, vol.41, issue.5, pp.455-475, 2000.
DOI : 10.1007/s002850000038

]. J. Vel02 and . Velázquez, Stability of some mechanisms of chemotactic aggregation, SIAM J. Appl. Math, vol.62, issue.5, pp.1581-1633, 2002.

. Bibliographie-générale, Achdou, An inverse problem for a parabolic variational inequality arising in volatility calibration with American options, SIAM J. Control Optim, vol.43, pp.1583-1615, 2005.

H. W. Alt, L. A. Caffarelli, and E. A. Friedman, A free boundary problem for quasilinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci, issue.4, pp.11-12, 1984.

L. Ambrosio, N. Gigli, and E. G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich, 2005.

A. Arnold, J. A. Carrillo, L. Desvillettes, J. Dolbeault, A. Jüngel et al., Entropies and equilibria of many-particle systems: an essay on recent research, Monatsh. Math, pp.142-177, 2004.

L. Bachelier, Théorie de la spéculation, Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics, Editions Jacques Gabay, 1995.

G. Barles, J. Burdeau, M. Romano, and E. N. Samsoen, Estimation de lafrontì ere libre des options américaines au voisinage de l'´ echéance, C. R. Acad. Sci. Paris Sér. I Math, pp.316-171, 1993.

W. Beckner, Sharp Sobolev Inequalities on the Sphere and the Moser--Trudinger Inequality, The Annals of Mathematics, vol.138, issue.1, pp.213-242, 1993.
DOI : 10.2307/2946638

R. Benguria, H. Brézis, and E. H. Lieb, The Thomas-Fermi-von Weizs??cker theory of atoms and molecules, Communications in Mathematical Physics, vol.27, issue.2, pp.167-180, 1981.
DOI : 10.1007/BF01942059

A. Bensoussan, On the theory of option pricing, Acta Appl. Math, vol.2, pp.139-158, 1984.

A. Bensoussan and J. Lions, Applications des inéquations variationnelles en contrôle stochastique, Méthodes Mathématiques de l'Informatique, 1978.

H. Berestycki, J. Busca, and E. I. Florent, Asymptotics and calibration of local volatility models, Quantitative Finance, vol.4, issue.1, pp.61-69, 2002.
DOI : 10.1002/cpa.3160450103

J. Bertoin, Lévy processes, Cambridge Tracts in Mathematics, vol.121, 1996.

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl, vol.8, pp.715-743, 1998.

P. Biler, J. Dolbeault, M. Esteban, P. Markowich, and E. T. Nadzieja, Steady States for Streater???s Energy-Transport Models of Self-Gravitating Particles, IMA Volumes in Mathematics Series, p.135, 2001.
DOI : 10.1007/978-1-4613-0017-5_2

P. Biler, G. Karch, and E. P. Laurençot, The 8?-problem for radially symmetric solutions of a chemotaxis model in a disc, 2005.

P. Biler and T. Nadzieja, A class of nonlocal parabolic problems occurring in statistical mechanics, Colloq. Math, vol.66, pp.131-145, 1993.

T. Björk, Interest rate theory, Financial mathematics, pp.53-122, 1996.
DOI : 10.1016/0304-405X(77)90016-2

F. Black and M. Scholes, The Pricing of Options and Corporate Liabilities, Journal of Political Economy, vol.81, issue.3, pp.637-659, 1973.
DOI : 10.1086/260062

A. Blanchet, On the regularity of the free boundary in the parabolic obstacle problem. Application to American options, Nonlinear Analysis: Theory, Methods & Applications, vol.65, issue.7, 2005.
DOI : 10.1016/j.na.2005.10.009

A. Blanchet, J. Dolbeault, and E. R. Monneau, On the continuity of the time derivative of the solution to the parabolic obstacle problem with variable coefficients, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00004421

A. Blanchet and J. Dolbeault, Perthame, Two-dimensional Keller-Segel: Optimal critical mass and qualitative properties of the solutions, 2005.

H. Brezis and A. Fonctionnelle, Théorie et applications. [Theory and applications]. [29] H. Brezis et F. Merle, Uniform estimates and blow-up behavior for solutions of ??u = V (x)e u in two dimensions, Collection Mathématiques Appliquées pour la Ma??triseMa??trise. [Collection of Applied Mathematics for the Master's Degree] Comm. Partial Differential Equations, pp.16-1223, 1983.

M. Broadie and J. Detemple, The Valuation of American Options on Multiple Assets, Mathematical Finance, vol.7, issue.3, pp.241-286, 1997.
DOI : 10.1111/1467-9965.00032

M. Burger, M. Difrancesco, and E. Y. Dolak, The Keller???Segel Model for Chemotaxis with Prevention of Overcrowding: Linear vs. Nonlinear Diffusion, SIAM Journal on Mathematical Analysis, vol.38, issue.4, pp.2005-098, 2005.
DOI : 10.1137/050637923

L. A. Caffarelli, The regularity of free boundaries in higher dimensions, Acta Mathematica, vol.139, issue.0, pp.155-184, 1977.
DOI : 10.1007/BF02392236

L. A. Caffarelli, Compactness methods in free boundary problems, Communications in Partial Differential Equations, vol.28, issue.2, pp.427-448, 1980.
DOI : 10.1080/0360530800882144

L. A. Caffarelli, A monotonicity formula for heat functions in disjoint domains, in Boundary value problems for partial differential equations and applications, RMA Res. Notes Appl. Math, vol.29, pp.53-60, 1993.

L. A. Caffarelli, D. Jerison, and C. E. Kenig, Some New Monotonicity Theorems with Applications to Free Boundary Problems, The Annals of Mathematics, vol.155, issue.2, pp.155-369, 2002.
DOI : 10.2307/3062121

L. A. Caffarelli, A. Petrosyan, and E. H. Shahgholian, Regularity of a free boundary in parabolic potential theory, Journal of the American Mathematical Society, vol.17, issue.04, pp.827-869, 2004.
DOI : 10.1090/S0894-0347-04-00466-7

L. A. Caffarelli and H. Shahgholian, The structure of the singular set of a free boundary in potential theory

E. Caglioti, P. Lions, C. Marchioro, and E. M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description, Communications in Mathematical Physics, vol.187, issue.3, pp.501-525, 1992.
DOI : 10.1007/BF02099262

E. Carlen and M. Loss, Competing symmetries, the logarithmic HLS inequality and Onofri's inequality ons n, Geometric and Functional Analysis, vol.102, issue.1, pp.90-104, 1992.
DOI : 10.1007/BF01895706

J. A. Carrillo and V. Calvez, Volume effects in the keller-segel model: energy estimates preventing blow-up, tech. rep, 2005.

F. A. Chalub, P. A. Markowich, B. Perthame, and C. Schmeiser, Kinetic Models for Chemotaxis and their Drift-Diffusion Limits, Monatshefte f???r Mathematik, vol.142, issue.1-2, pp.123-141, 2004.
DOI : 10.1007/s00605-004-0234-7

E. Chevalier, CRITICAL PRICE NEAR MATURITY FOR AN AMERICAN OPTION ON A DIVIDEND-PAYING STOCK IN A LOCAL VOLATILITY MODEL, Mathematical Finance, vol.20, issue.3, pp.439-463, 2005.
DOI : 10.1023/A:1008699315785

URL : https://hal.archives-ouvertes.fr/hal-00693107

S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis, Mathematical Biosciences, vol.56, issue.3-4, pp.217-237, 1981.
DOI : 10.1016/0025-5564(81)90055-9

L. Corrias, B. Perthame, and E. H. Zaag, A chemotaxis model motivated by angiogenesis, Comptes Rendus Mathematique, vol.336, issue.2, pp.141-146, 2003.
DOI : 10.1016/S1631-073X(02)00008-0

I. Csiszár, Information-type measures of difference of probability distributions and indirect observations, Studia Sci. Math. Hungar, vol.2, pp.299-318, 1967.

Y. Dolak and T. Hillen, Cattaneo models for chemosensitive movement, Journal of Mathematical Biology, vol.46, issue.2, pp.153-170, 2003.
DOI : 10.1007/s00285-002-0173-7

T. Dolak and . Hillen, Cattaneo models for chemosensitive movement, Journal of Mathematical Biology, vol.46, issue.2, pp.153-170, 2003.
DOI : 10.1007/s00285-002-0173-7

Y. Dolak and C. Schmeiser, Kinetic models for chemotaxis: hydrodynamic limits and the back-of-the-wave problem, tech. rep, pp.2003-102, 2003.

J. Dolbeault and B. Perthame, Optimal critical mass in the two dimensional Keller???Segel model in, Comptes Rendus Mathematique, vol.339, issue.9, pp.339-611, 2004.
DOI : 10.1016/j.crma.2004.08.011

J. Dolbeault and F. Poupaud, A remark on the critical explosion parameter for a semilinear elliptic equation in a generic domain using an explosion time of an ordinary differential equation, Nonlinear Anal, pp.1149-1162, 1995.

N. Plessis, Some Theorems About the Riesz Fractional Integral, Transactions of the American Mathematical Society, vol.80, issue.1, pp.124-134, 1955.
DOI : 10.2307/1993008

B. Dupire, Pricing and hedging with smiles, Mathematics of derivative securities, pp.103-111, 1995.

P. Dupuis and H. Wang, Optimal stopping with random intervention times, Advances in Applied Probability, vol.III, issue.01, pp.141-157, 2002.
DOI : 10.1086/296288

H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, 1969.

J. Fouque, G. Papanicolaou, and K. R. Sircar, Derivatives in financial markets with stochastic volatility, 2000.

E. Fournié, J. Lasry, J. Lebuchoux, and P. Lions, Applications of Malliavin calculus to Monte-Carlo methods in finance. II, Finance Stoch, pp.201-236, 2001.

]. A. Friedman, Partial differential equations of parabolic type, N.J, 1964.

H. Gajewski and K. Zacharias, Global Behaviour of a Reaction-Diffusion System Modelling Chemotaxis, Mathematische Nachrichten, vol.17, issue.1, pp.77-114, 1998.
DOI : 10.1002/mana.19981950106

B. Gidas, W. M. Ni, and E. L. Nirenberg, Symmetry and related properties via the maximum principle, Communications in Mathematical Physics, vol.43, issue.3, pp.209-243, 1979.
DOI : 10.1007/BF01221125

Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Communications on Pure and Applied Mathematics, vol.38, issue.3, pp.297-319, 1985.
DOI : 10.1002/cpa.3160380304

T. Goudon, HYDRODYNAMIC LIMIT FOR THE VLASOV???POISSON???FOKKER???PLANCK SYSTEM: ANALYSIS OF THE TWO-DIMENSIONAL CASE, Mathematical Models and Methods in Applied Sciences, vol.15, issue.05, pp.737-752, 2005.
DOI : 10.1142/S021820250500056X

URL : https://hal.archives-ouvertes.fr/hal-00018817

L. Gross, Logarithmic Sobolev Inequalities, American Journal of Mathematics, vol.97, issue.4, pp.1061-1083, 1975.
DOI : 10.2307/2373688

G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. I., Mathematische Zeitschrift, vol.62, issue.2, pp.565-606, 1928.
DOI : 10.1007/BF01171116

J. M. Harrison and S. R. Pliska, Martingales and stochastic integrals in the theory of continuous trading, Stochastic Process, Appl, vol.11, pp.215-260, 1981.

M. A. Herrero, E. Medina, and J. J. Velázquez, Finite-time aggregation into a single point in a reaction - diffusion system, Nonlinearity, vol.10, issue.6, pp.10-1739, 1997.
DOI : 10.1088/0951-7715/10/6/016

T. Hillen and K. Painter, Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowding, Advances in Applied Mathematics, vol.26, issue.4, pp.280-301, 2001.
DOI : 10.1006/aama.2001.0721

T. Hillen, K. Painter, and C. Schmeiser, Finite sampling radius in chemotaxis, tech. rep., in preparation, 2005.

D. Horstmann, On the existence of radially symmetric blow-up solutions for the Keller-Segel model, Journal of Mathematical Biology, vol.44, issue.5, pp.463-478, 2002.
DOI : 10.1007/s002850100134

D. Horstmann, From 1970 until present: the keller-segel model in chemotaxis and its consequences, Max-Planck-Institut fur Mathematik in den Naturwissenschatften Leipzig, 2003.

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I, Jahresber, Deutsch. Math.-Verein, vol.105, pp.103-165, 2003.

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, Journal of Differential Equations, vol.215, issue.1, pp.52-107, 2005.
DOI : 10.1016/j.jde.2004.10.022

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Transactions of the American Mathematical Society, vol.329, issue.2, pp.819-824, 1992.
DOI : 10.1090/S0002-9947-1992-1046835-6

P. Jaillet, D. Lamberton, and E. B. Lapeyre, Variational inequalities and the pricing of American options, Acta Applicandae Mathematicae, vol.60, issue.3, pp.263-289, 1990.
DOI : 10.1007/BF00047211

I. Karatzas, On the pricing of American options, Applied Mathematics & Optimization, vol.60, issue.1, pp.37-60, 1988.
DOI : 10.1007/BF01448358

E. F. Keller and L. A. Segel, Initiation of slide mold aggregation viewed as an instability, J. Theor. Biol, p.26, 1970.

D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, of Pure and Applied Mathematics, 1980.
DOI : 10.1137/1.9780898719451

S. Kullback, On the convergence of discrimination information, IEEE Trans. Information Theory, pp.14-765, 1968.

O. A. Lady?enskaja, V. A. Solonnikov, and N. N. , Ural ceva, Linear and quasilinear equations of parabolic type, Translated from the Russian by S, Smith. Translations of Mathematical Monographs, vol.23, 1967.

D. Lamberton and B. Lapeyre, Introduction au calcul stochastique appliquéappliqué`appliquéà la finance, EllipsesÉditionEllipses´EllipsesÉdition Marketing, 1997.

D. Lamberton and S. Villeneuve, Critical price near maturity for an American option on a dividend-paying stock, Ann. Appl. Probab, vol.13, pp.800-815, 2003.

P. Laurençot and D. Wrzosek, FROM THE NONLOCAL TO THE LOCAL DISCRETE DIFFUSIVE COAGULATION EQUATIONS, Mathematical Models and Methods in Applied Sciences, vol.12, issue.07, pp.1035-1048, 2002.
DOI : 10.1142/S021820250200201X

E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math, issue.2, pp.118-349, 1983.

G. M. Lieberman, Second order parabolic differential equations, 1996.
DOI : 10.1142/3302

C. M. Et and A. Robertson, Wave propagation in the early stages f aggregation of cellular slime molds, J. theor. Biol, pp.31-101, 1971.

P. K. Maini, Applications of Mathematical Modelling to Biological Pattern Formation, Lecture Notes in Phys, vol.567, pp.205-217, 2001.
DOI : 10.1007/3-540-44698-2_13

A. Marrocco, Numerical simulation of chemotactic bacteria aggregation via mixed finite elements, ESAIM: Mathematical Modelling and Numerical Analysis, vol.37, issue.4, pp.617-630, 2003.
DOI : 10.1051/m2an:2003048

J. Mc-kean and H. P. , Appendix: a free boundary problem for the heat equation arising from a problem in mathematical economics, Indust. Manage. Rev, vol.6, pp.32-39, 1965.

R. Monneau, On the number of singularities for the obstacle problem in two dimensions, Journal of Geometric Analysis, vol.138, issue.4, pp.359-389, 2003.
DOI : 10.1007/BF02930701

T. Nagai and T. Senba, Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Sci. Appl, vol.8, pp.145-156, 1998.

T. Nagai, T. Senba, and E. T. Suzuki, Keller-Segel system and the concentration lemma, S¯ urikaisekikenky¯ usho K¯ oky¯ uroku, Variational problems and related topics (Japanese), pp.75-80, 1997.

Y. Naito, Symmetry results for semilinear elliptic equations in R2, Proceedings of the Third World Congress of Nonlinear Analysts, Part, pp.3661-3670, 2001.
DOI : 10.1016/S0362-546X(01)00486-2

Y. Naito and T. Suzuki, Self-similar solutions to a nonlinear parabolic-elliptic system, Proceedings of Third East Asia Partial Differential Equation Conference, pp.43-55, 2004.

V. Nanjundiah and S. Shweta, The determination of spatial pattern inDictyostelium discoideum, Journal of Biosciences, vol.13, issue.4, pp.353-394, 1992.
DOI : 10.1007/BF02720094

C. Neri, Statistical mechanics of the N-point vortex system with random intensities on a bounded domain, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.21, issue.3, pp.381-399, 2004.
DOI : 10.1016/j.anihpc.2003.05.002

H. G. Othmer and A. Stevens, Aggregation, blowup, and collapse: the ABCs of taxis in reinforced random walks, SIAM J. Appl. Math, vol.57, pp.1044-1081, 1997.

C. S. Patlak, Random walk with persistence and external bias, The Bulletin of Mathematical Biophysics, vol.198, issue.3, pp.311-338, 1953.
DOI : 10.1007/BF02476407

B. Perthame, Non-existence of global solutions to Euler-Poisson equations for repulsive forces, Japan Journal of Applied Mathematics, vol.101, issue.2, pp.363-367, 1990.
DOI : 10.1007/BF03167849

H. Pham, Optimal stopping of controlled jump diffusion processes: a viscosity solution approach, J. Math. Systems Estim. Control, vol.8, p.27, 1998.

A. B. Potapov and T. Hillen, Metastability in Chemotaxis Models, Journal of Dynamics and Differential Equations, vol.105, issue.3, pp.293-330, 2005.
DOI : 10.1007/s10884-005-2938-3

G. Rapuch, American options and the free boundary exercise region: a PDE approach, Interfaces and Free Boundaries, vol.7, pp.79-98, 2005.
DOI : 10.4171/IFB/114

M. Rascle and C. Ziti, Finite time blow-up in some models of chemotaxis, Journal of Mathematical Biology, vol.33, issue.4, pp.388-414, 1995.
DOI : 10.1007/BF00176379

J. Renclawowicz and T. Hillen, Quorum sensing models in chemotaxis, tech. rep., in preparation, 2005.

J. Rodrigues, Obstacle problems in mathematical physics, p.114, 1987.

C. Rosier, Probl??me de Cauchy pour une ??quation parabolique mod??lisant la relaxation des syst??mes stellaires auto-gravitants, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.332, issue.10, pp.903-908, 2001.
DOI : 10.1016/S0764-4442(01)01932-2

R. Rossi and G. Savaré, Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces, Ann. Sc. Norm. Super. Pisa Cl. Sci, vol.2, issue.5, pp.395-431, 2003.

D. G. Schaeffer, Some examples of singularities in a free boundary, Ann. Scuola Norm. Sup. Pisa Cl. Sci, vol.4, issue.4, pp.133-144, 1977.

T. Senba and T. Suzuki, Time global solutions to a parabolic-elliptic system modelling chemotaxis, Asymptot. Anal, vol.32, pp.63-89, 2002.

J. Simon, Compact sets in the space L p (0, Ann. Mat. Pura Appl, issue.4, pp.146-65, 1987.

S. Sobolev, On a theorem of functional analysis (russian), Mat. Sb. (N.S.), vol.4, pp.471-479, 1938.

E. M. Stein, Singular integrals and differentiability properties of functions, 1970.

A. Stevens, The Derivation of Chemotaxis Equations as Limit Dynamics of Moderately Interacting Stochastic Many-Particle Systems, SIAM Journal on Applied Mathematics, vol.61, issue.1, pp.183-212, 2000.
DOI : 10.1137/S0036139998342065

T. Suzuki, Free energy and self-interacting particles, Progress in Nonlinear Differential Equations and their Applications, 2005.

R. Tyson, L. G. Stern, and R. J. Leveque, Fractional step methods applied to a chemotaxis model, Journal of Mathematical Biology, vol.41, issue.5, pp.41-455, 2000.
DOI : 10.1007/s002850000038

P. Van-moerbeke, An optimal stopping problem with linear reward, Acta Mathematica, vol.132, issue.0, pp.111-151, 1974.
DOI : 10.1007/BF02392110

J. J. Velázquez, Stability of Some Mechanisms of Chemotactic Aggregation, SIAM Journal on Applied Mathematics, vol.62, issue.5, pp.1581-1633, 2002.
DOI : 10.1137/S0036139900380049

S. Villeneuve, Options américaines dans un modèle de Black-Scholes multidimensionnel, 1999.

A. Visintin, Models of phase transitions, Progress in Nonlinear Differential Equations and their Applications, 1996.

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys, vol.8783, pp.567-576, 1982.
DOI : 10.1007/bf01208265

G. S. Weiss, A homogeneity improvement approach to the obstacle problem, Inventiones Mathematicae, vol.138, issue.1, pp.23-50, 1999.
DOI : 10.1007/s002220050340

H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Transactions of the American Mathematical Society, vol.36, issue.1, pp.63-89, 1934.
DOI : 10.1090/S0002-9947-1934-1501735-3

D. V. Widder, The heat equation, Pure and Applied Mathematics, vol.67, 1975.

D. Wrzosek, Long time behaviour of solutions to a chemotaxis model with volume filling effect, Hyke preprint server, p.166, 2004.