Skip to Main content Skip to Navigation
Theses

PROBLÈME DE GOURSAT POUR DES SYSTÈMES D'ÉQUATIONS AUX DÉRIVÉES PARTIELLES AVEC CONDITIONS DE LEVI

Abstract : We study in this thesis a Goursat problem for systems of partial derivative equations with the Levi conditions . We improve the results of Pr D. Gourdin which studied the Cauchy problem in Sobolev and C-infini spaces on R_t × R_x^n for the matrix operators not strictly hyperbolic with double characteristics by calculating the domain of dependence in the first part of this thesis while pointing out the detail of the demonstrations used.
In the second part of this thesis, we study the Goursat problem in Sobolev spaces for a system of N
equations to N unknown functions of the variables (t, x, y) in R_t × R_x × R_y^n .
This system can be described as a composition of two linear partial differential with matrix coefficients hyperbolic, respectively in the direction of t for
the first and in the direction of x for the second with double characteristics and scalar conditions of Levi and with one matrix operator with on additive
residual specific matricial partial differential operators. The data of the Goursat problem are on t = 0 and x = 0. Then, we calculate the domain of dependence of Goursat problem .
Document type :
Theses
Complete list of metadatas

Cited literature [20 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00011197
Contributor : Mohamed Seifoudini <>
Submitted on : Tuesday, December 13, 2005 - 5:04:52 PM
Last modification on : Wednesday, December 9, 2020 - 3:11:08 PM
Long-term archiving on: : Saturday, April 3, 2010 - 7:02:13 PM

Identifiers

  • HAL Id : tel-00011197, version 1

Citation

Mohamed Seifoudini. PROBLÈME DE GOURSAT POUR DES SYSTÈMES D'ÉQUATIONS AUX DÉRIVÉES PARTIELLES AVEC CONDITIONS DE LEVI. Mathématiques [math]. Université Pierre et Marie Curie - Paris VI, 2005. Français. ⟨tel-00011197⟩

Share

Metrics

Record views

335

Files downloads

279