G. J. Stor, F. Hartl, J. W. Van-outersterp, and D. J. Stufkens, Spectroelectrochemical (IR, UV/Vis) Determination of the Reduction Pathways for a Series of [Re(CO)3(.alpha.-diimine)L']0/+ (L' = Halide, OTf-, THF, MeCN, n-PrCN, PPh3, P(OMe)3) Complexes, Organometallics, vol.14, issue.3, p.1115, 1995.
DOI : 10.1021/om00003a013

F. P. Johnson, M. W. George, F. Hartl, and J. J. James, ) as Catalyst Precursors:?? Infrared Spectroelectrochemical Investigation, Organometallics, vol.15, issue.15, p.3374, 1996.
DOI : 10.1021/om960044+

D. H. Gibson and X. Yin, X (dmbpy = 4,4???-dimethyl-2,2???-bipyridyl; X = COOH, COOMe, H, OH, and OCHO), Journal of the American Chemical Society, vol.120, issue.43, p.11200, 1998.
DOI : 10.1021/ja982284h

D. H. Gibson and X. Yin, X] (dmbpy = 4,4???-Dimethyl-2,2???-bipyridine; X = COOH, CHO) and Their Derivatives, Organometallics, vol.22, issue.2, p.337, 2003.
DOI : 10.1021/om020677q

R. Ziessel, Photocatalysis. Mechanistic studies of homogeneous photochemical water gas shift reaction catalyzed under mild conditions by novel cationic iridium(III) complexes, Journal of the American Chemical Society, vol.115, issue.1, p.118, 1993.
DOI : 10.1021/ja00054a017

H. Ishida, K. Tanaka, and T. Tanaka, Electrochemical CO2 reduction catalyzed by ruthenium complexes [Ru(bpy)2(CO)2]2+ and [Ru(bpy)2(CO)Cl]+. Effect of pH on the formation of CO and HCOO-, Organometallics, vol.6, issue.1, p.181, 1987.
DOI : 10.1021/om00144a033

C. Simpson, T. Durand, and R. R. Jr, Ligand participation in the reduction of CO2 catalyzed by complexes of 1,10 o-phenanthroline, Electrochimica Acta, vol.33, issue.4, p.581, 1988.
DOI : 10.1016/0013-4686(88)80181-6

P. Paul, B. Tyagi, A. K. Bilakhiya, M. M. Bhadbhade, E. Suresh et al., Synthesis and Characterization of Rhodium Complexes Containing 2,4,6-Tris(2-pyridyl)-1,3,5-triazine and Its Metal-Promoted Hydrolytic Products: Potential Uses of the New Complexes in Electrocatalytic Reduction of Carbon Dioxide, Inorganic Chemistry, vol.37, issue.22, p.5733, 1998.
DOI : 10.1021/ic9709739

H. Nakajima, Y. Kushi, H. Nagao, and K. Tanaka, Multistep CO2 Reduction Catalyzed by [Ru(bpy)2(qu)(CO)]2+ (bpy = 2,2'-Bipyridine, qu = Quinoline). Double Methylation of the Carbonyl Moiety Resulting from Reductive Disproportionation of CO2, Organometallics, vol.14, issue.11, p.5093, 1995.
DOI : 10.1021/om00011a031

T. Mizuwaka, K. Tsuge, H. Nakajima, and K. Tanaka, Selective Production of Acetone in the Electrochemical Reduction of CO2 Catalyzed by a Ru-Naphthyridine Complex, Angewandte Chemie International Edition, vol.38, issue.3, p.362, 1999.
DOI : 10.1002/(SICI)1521-3773(19990201)38:3<362::AID-ANIE362>3.0.CO;2-T

K. Tanaka and T. Mizuwaka, Selective formation of ketones by electrochemical reduction of CO2 catalyzed by ruthenium complexes, Applied Organometallic Chemistry, vol.38, issue.12, p.863, 2000.
DOI : 10.1002/1099-0739(200012)14:12<863::AID-AOC88>3.0.CO;2-4

P. Vasudevan, N. Phougat, and A. K. Shukla, Metal Phthalocyanines as Electrocatalysts for Redox Reactions, Applied Organometallic Chemistry, vol.4, issue.8, p.591, 1996.
DOI : 10.1002/(SICI)1099-0739(199610)10:8<591::AID-AOC526>3.0.CO;2-2

C. M. Lieber and N. S. Lewis, Catalytic reduction of carbon dioxide at carbon electrodes modified with cobalt phthalocyanine, Journal of the American Chemical Society, vol.106, issue.17, p.5033, 1984.
DOI : 10.1021/ja00329a082

S. Kapusta and N. Hackerman, Carbon Dioxide Reduction at a Metal Phthalocyanine Catalyzed Carbon Electrode, Journal of The Electrochemical Society, vol.131, issue.7, p.1511, 1984.
DOI : 10.1149/1.2115882

N. Furuya and S. Koide, Electroreduction of carbon dioxide by metal phthalocyanines, Electrochimica Acta, vol.36, issue.8, p.1309, 1991.
DOI : 10.1016/0013-4686(91)80010-6

M. Shibata and N. Furuya, Electrochemical synthesis of urea at gas-diffusion electrodes, Journal of Electroanalytical Chemistry, vol.507, issue.1-2, p.177, 2001.
DOI : 10.1016/S0022-0728(01)00363-1

T. V. Magdesieva, K. P. Butin, T. Yamamoto, D. A. Tryk, and A. Fujishima, Lutetium Monophthalocyanine and Diphthalocyanine Complexes and Lithium Naphthalocyanine as Catalysts for Electrochemical CO[sub 2] Reduction, Journal of The Electrochemical Society, vol.150, issue.12, p.608, 2003.
DOI : 10.1149/1.1624297

M. Isaacs, F. Armijo, G. Ramirez, E. Trollund, S. R. Biaggio et al., Electrochemical reduction of CO2 mediated by poly-M-aminophthalocyanines (M=Co, Ni, Fe): poly-Co-tetraaminophthalocyanine, a selective catalyst, Journal of Molecular Catalysis A: Chemical, vol.229, issue.1-2, p.249, 2005.
DOI : 10.1016/j.molcata.2004.11.026

H. Tanaka and A. Aramata, Aminopyridyl cation radical method for bridging between metal complex and glassy carbon: cobalt(II) tetraphenylporphyrin bonded on glassy carbon for enhancement of CO2 electroreduction, Journal of Electroanalytical Chemistry, vol.437, issue.1-2, pp.29-30, 1997.
DOI : 10.1016/S0022-0728(97)00080-6

M. Hammouche, D. Lexa, M. Momenteau, and J. Savéant, Chemical catalysis of electrochemical reactions. Homogeneous catalysis of the electrochemical reduction of carbon dioxide by iron("0") porphyrins. Role of the addition of magnesium cations, Journal of the American Chemical Society, vol.113, issue.22, p.8455, 1991.
DOI : 10.1021/ja00022a038

I. Bughun, D. Lexa, and J. Savéant, Ultraefficient selective homogeneous catalysis of the electrochemical reduction of carbon dioxide by an iron(0) porphyrin associated with a weak Broensted acid cocatalyst, Journal of the American Chemical Society, vol.116, issue.11, p.5015, 1994.
DOI : 10.1021/ja00090a068

I. Bughun, D. Lexa, and J. Savéant, Catalysis of the Electrochemical Reduction of Carbon Dioxide by Iron(0) Porphyrins:?? Synergystic Effect of Weak Br??nsted Acids, Journal of the American Chemical Society, vol.118, issue.7, p.1769, 1996.
DOI : 10.1021/ja9534462

B. Fisher and R. Eisenberg, Electrocatalytic reduction of carbon dioxide by using macrocycles of nickel and cobalt, Journal of the American Chemical Society, vol.102, issue.24, p.7361, 1980.
DOI : 10.1021/ja00544a035

M. Beley, J. Collin, R. Ruppert, and J. Sauvage, Electrocatalytic reduction of carbon dioxide by nickel cyclam2+ in water: study of the factors affecting the efficiency and the selectivity of the process, Journal of the American Chemical Society, vol.108, issue.24, p.7461, 1986.
DOI : 10.1021/ja00284a003

M. Shionoya, E. Kimura, and Y. Iitaka, Mono-, di- and tetrafluorinated cyclams, Journal of the American Chemical Society, vol.112, issue.25, p.9237, 1990.
DOI : 10.1021/ja00181a028

R. W. Hay, B. Kinsman, and C. Smith, The chemistry of nickel(II) complexes of 1,4,7,11-tetra-azacyclotetradecane (isocyclam), Polyhedron, vol.14, issue.9, p.1245, 1995.
DOI : 10.1016/0277-5387(94)00365-L

M. Rudolph, S. Dautz, and E. Jäger, ] Coordinated Nickel Complexes as Catalysts for the Formation of Oxalate by Electrochemical Reduction of Carbon Dioxide, Journal of the American Chemical Society, vol.122, issue.44, p.10821, 2000.
DOI : 10.1021/ja001254n

M. Isaacs, J. C. Canales, M. J. Aguirre, G. Estiú, F. Caruso et al., Electrocatalytic reduction of CO2 by aza-macrocyclic complexes of Ni(II), Co(II), and Cu(II). Theoretical contribution to probable mechanisms, Inorganica Chimica Acta, vol.339, p.224, 2002.
DOI : 10.1016/S0020-1693(02)00942-8

P. R. Bernatis, A. Miedener, R. C. Haltiwanger, and D. L. Dubois, Exclusion of Six-Coordinate Intermediates in the Electrochemical Reduction of CO2 Catalyzed by [Pd(triphosphine)(CH3CN)](BF4)2 Complexes, Organometallics, vol.13, issue.12, p.4835, 1994.
DOI : 10.1021/om00024a029

B. D. Steffey, C. J. Curtis, and D. L. Dubois, Electrochemical Reduction of CO2 Catalyzed by a Dinuclear Palladium Complex Containing a Bridging Hexaphosphine Ligand: Evidence for Cooperativity, Organometallics, vol.14, issue.10, p.4937, 1995.
DOI : 10.1021/om00010a066

S. A. Wander, A. Miedener, B. C. Noll, R. M. Barkley, and D. L. Dubois, Reduction and the Heterolytic Cleavage of Molecular Hydrogen, Organometallics, vol.15, issue.15, p.3360, 1996.
DOI : 10.1021/om960072s

A. Miedener, B. C. Noll, R. M. Barkley, and D. L. Dubois, -Reduction Catalysts, Organometallics, vol.16, issue.26, p.5779, 1997.
DOI : 10.1021/om970519c

S. Slater and J. H. Wagenknecht, Electrochemical reduction of carbon dioxide catalyzed by Rh(diphos)2Cl, Journal of the American Chemical Society, vol.106, issue.18, p.5367, 1984.
DOI : 10.1021/ja00330a064

R. J. Haines, R. E. Wittrig, and C. P. Kubiak, Electrocatalytic Reduction of Carbon Dioxide by the Binuclear Copper Complex [Cu2(6-(diphenylphosphino-2,2'-bipyridyl)2(MeCN)2][PF6]2, Inorganic Chemistry, vol.33, issue.21, pp.4723-4724, 1994.
DOI : 10.1021/ic00099a024

M. Hossain, A. G. Nagaoka, T. Ogura, and K. , Palladium and cobalt complexes of substituted quinoline, bipyridine and phenanthroline as catalysts for electrochemical reduction of carbon dioxide, Electrochimica Acta, vol.42, issue.16, p.2577, 1997.
DOI : 10.1016/S0013-4686(96)00453-7

E. Simón-manso and C. P. Kubiak, Dinuclear Nickel Complexes as Catalysts for Electrochemical Reduction of Carbon Dioxide, Organometallics, vol.24, issue.1, p.96, 2005.
DOI : 10.1021/om0494723

K. Ogura and N. Endo, Electrochemical Reduction of CO[sub 2] with a Functional Gas-Diffusion Electrode in Aqueous Solutions With and Without Propylene Carbonate, Journal of The Electrochemical Society, vol.146, issue.10, p.3736, 1999.
DOI : 10.1149/1.1392542

C. Amatore, J. J. Savéant, E. K. Am-beuken, B. L. Feringa, B. D. Dombek et al., Références bibliographiques de la partie 2 [1] van den, Chem. Soc. Tetrahedron Tetrahedron J. Am. Chem. Soc. Organometallics Organometallics. M. Z, vol.103, issue.10, pp.5021-6194, 1707.

D. Sandrini, M. Maestri, and R. Ziessel, Spectroscopic behavior of a new family of mixed-ligand iridium(III) complexes, Inorganica Chimica Acta, vol.163, issue.2, p.177, 1989.
DOI : 10.1016/S0020-1693(00)83449-0

R. Ziessel, Photocatalysis of the Homogeneous Water-Gas Shift Reaction under Ambient Conditions by Cationic Iridium(III) Complexes, Angewandte Chemie International Edition in English, vol.30, issue.7, p.844, 1991.
DOI : 10.1002/anie.199108441

R. Ziessel, Photocatalysis. Mechanistic studies of homogeneous photochemical water gas shift reaction catalyzed under mild conditions by novel cationic iridium(III) complexes, Journal of the American Chemical Society, vol.115, issue.1, p.118, 1993.
DOI : 10.1021/ja00054a017

K. J. Watson and R. Ziessel, Photochemical production of hydrogen and carbon dioxide from formate using mixed-ligand iridium complexes as catalysts, Inorganica Chimica Acta, vol.197, issue.2, p.125, 1992.
DOI : 10.1016/S0020-1693(00)84954-3

W. Kaim, R. Reinhardt, and M. Sieger, Chemical and Electrochemical Generation of Hydride-Forming Catalytic Intermediates (bpy)M(CnRn): M = Rh, Ir (n = 5); M = Ru, Os (n = 6). Coordinatively Unsaturated Ground State Models of MLCT Excited States?, Inorganic Chemistry, vol.33, issue.20, pp.4453-4455, 1994.
DOI : 10.1021/ic00098a009

C. Caix, S. Chardon-noblat, A. Deronzier, J. Moutet, and S. Tingry, (Pentamethylcyclopentadienyl)(polypyridyl) rhodium and iridium complexes as electrocatalysts for the reduction of protons to dihydrogen and the hydrogenation of organics, Journal of Organometallic Chemistry, vol.540, issue.1-2, p.105, 1997.
DOI : 10.1016/S0022-328X(97)00096-X

U. Kölle and M. Grätzel, Organometallic Rhodium(III) Complexes as Catalysts for the Photoreduction of Protons to Hydrogen on Colloidal TiO2, Angewandte Chemie International Edition in English, vol.26, issue.6, p.567, 1987.
DOI : 10.1002/anie.198705671

U. Kölle, B. Kang, and P. Infelta, Elektrochemische und pulsradiolytische Reduktion von (Pentamethylcyclopentadienyl)(polypyridyl)rhodium-Komplexen, Chemische Berichte, vol.1988, issue.10, p.1869, 1989.
DOI : 10.1002/cber.19891221008

R. Ruppert, S. Herrmann, and S. Steckhan, Efficient indirect electrochemical in-situ regeneration of nadh:electrochemically driven enzymatic reduction of pyruvate catalyzed by d-ldh, Tetrahedron Letters, vol.28, issue.52, p.6583, 1987.
DOI : 10.1016/S0040-4039(00)96919-3

E. Steckhan, S. Herrmann, R. Ruppert, E. Dietz, M. Frede et al., Analytical study of a series of substituted (2,2'-bipyridyl)(pentamethylcyclopentadienyl)rhodium and -iridium complexes with regard to their effectiveness as redox catalysts for the indirect electrochemical and chemical reduction of NAD(P)+, Organometallics, vol.10, issue.5, p.1568, 1991.
DOI : 10.1021/om00051a056

P. A. Gosling and R. J. Nolte, A manganese(III) porphyrin/rhodium(III) bipyridine/formate catalyst system for the reductive activation of molecular oxygen, Journal of Molecular Catalysis A: Chemical, vol.113, issue.1-2, p.257, 1996.
DOI : 10.1016/S1381-1169(96)00137-9

T. Scheiring, R. Fiedler, and W. Kaim, ), bptz = 3,6-Bis(2-pyridyl)-1,2,4,5-tetrazine, Organometallics, vol.20, issue.7, p.1437, 2001.
DOI : 10.1021/om000892b

P. K. Ghosh and T. G. Spiro, Photoelectrochemistry of tris(bipyridyl)ruthenium(II) covalently attached to n-type tin(IV) oxide, Journal of the American Chemical Society, vol.102, issue.17, p.5543, 1980.
DOI : 10.1021/ja00537a021

S. Ferrere and C. M. Elliott, Electrochemical Studies of Structurally Related Triply-Bridged Dinuclear Tris(bipyridine)iron(II) Complexes: An Electrostatic Model for Site-Site Interaction, Inorganic Chemistry, vol.34, issue.23, p.5818, 1995.
DOI : 10.1021/ic00127a020

R. Ruminski and R. T. Cambron, Synthesis and characterization of rhenium(I) complexes bound to the bridging ligand 2,3-bis(2-pyridyl)pyrazine, Inorganic Chemistry, vol.29, issue.8, p.1575, 1990.
DOI : 10.1021/ic00333a026

M. Wrighton, Photochemistry of metal carbonyls, Chemical Reviews, vol.74, issue.4, p.401, 1974.
DOI : 10.1021/cr60290a001

S. Daniele, P. Ugo, G. Bontempelli, and M. Fiorani, An electroanalytical investigation on the nickel-promoted electrochemical conversion of CO2 to CO, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.219, issue.1-2, p.259, 1987.
DOI : 10.1016/0022-0728(87)85044-1

A. Deronzier and J. Moutet, Polypyrrole films containing metal complexes: syntheses and applications, Coordination Chemistry Reviews, vol.147, p.339, 1996.
DOI : 10.1016/0010-8545(95)01130-7

M. E. Prater, L. E. Pence, R. Clérac, G. M. Finniss, C. Campana et al., A Remarkable Family of Rhodium Acetonitrile Compounds Spanning Three Oxidation States and with Nuclearities Ranging from Mononuclear and Dinuclear to One-Dimensional Chains, Journal of the American Chemical Society, vol.121, issue.35, p.8005, 1999.
DOI : 10.1021/ja991130e

A. Boughriet and M. Wartel, Evidence for the highly oxidizing properties of NO+2 and NO+ ions in organic media. Application to the study of nitrogen oxide/Li cells, Journal of Electroanalytical Chemistry, vol.362, issue.1-2, p.167, 1993.
DOI : 10.1016/0022-0728(93)80018-D

A. Deronzier and J. Moutet, Polypyrrole films containing metal complexes: syntheses and applications, Coordination Chemistry Reviews, vol.147, p.339, 1996.
DOI : 10.1016/0010-8545(95)01130-7

J. G. Eaves, H. S. Munro, and D. Parker, Anodic electrodeposition of thin films of polypyrrole functionalized with metal bipyridyl redox centers, Inorganic Chemistry, vol.26, issue.5, p.644, 1987.
DOI : 10.1021/ic00252a004

M. Sigaud, M. Li, S. Chardon-noblat, F. José-cadete-santos-aires, Y. Soldo-olivier et al., RMN 1 H (CD 3 COCD 3 , 250 MHz, ?/ppm) : 8,91 (d, J = 4,9 Hz, 1H 6 ou 6' Re ) (d, J = 6,1 Hz, 1H 6 ou 6' Re ) ), J. Mater. Chem. Re Re, vol.8, issue.1m, pp.8952-8954, 2004.

. Hz, 4H 5,5' Re ), Re, vol.76, issue.1m, pp.56855678-56855682

. Hz, 62 (m, 1H 6 ou 6' Rh ), Rh Hz, vol.83, issue.3, p.2512

. Hz, 67 (s, 1H 6 ou 6' ) (m, 1H 6 ou 6' )41 (s, 2H 3 ou 3' Re ) (s, 2H 3 ou 3, Re Re, vol.8, issue.7, p.5531725834

. Hz, 23 (d, J = 4,0 Hz, 1H 5 ou 5' ), p.285844

. Hz, 1H 6 ou 6' Re )67 (s, 1H 6 ou 6' ) 1H 3 ou 3' Re ) (s, 1H 3 ou 3' Re ) (s, 1H 3 ou 3' ), RMN 1 H (CD 3 COCD 3 , 250 MHz, p.969260544232705533

H. Hz, 2H 6 ou 6' Re )60 (s, 2H 3 ou 3' Re )43 (s, 2H 3 ou 3' Re ), RMN 1 H (CD 3 COCD 3 , 250 MHz, pp.9792725867009739-4

J. Hz, 9 Hz, 2H 6 ou 6' Ir ) (m, 2H 6 ou 6' Ir ; 2H 3 ou 3' Ir ), RMN 1 H (CD 2 Cl 2 , 250 MHz, p.70608545

. Hz, m, 4H ?, pp.720898-720902

. Le-complexe-dimère-précurseur, MeCN) 3 ] 2 (PF 6 ) 2 a été synthétisé suivant le protocole de la littérature. 13 Les ligands bpy et dmbpy sont des produits commerciaux (Acros Organics), Ru I (CO), vol.2, issue.13, pp.15-29

. Ont-Été-décrites-dans-la-littérature, Les ligands L11 et L12 ? Acide 6-(pyrrol-1-yl)-hexanoïque : 13,12 g d'acide 6-amino-hexanoïque (100 mmol) sont dissous dans 13 mL de 2,5-diméthoxytétrahydrofuranne (100 mmol) et 100 mL d'une solution aqueuse eau/acide acétique (60/40) Le milieu réactionnel est porté à 70 °C pendant 2 h 30. La phase aqueuse est acidifiée jusqu'à pH 3 avec de l'acide chlorhydrique concentré puis extraite avec du dichlorométhane

. Dans-un-ballon-sous-argon-muni, eau glacée, on ajoute successivement 26,32 g de chlorure de tosyle (138,1 mmol) et une solution de 5,72 g de 6-(pyrrol-1-yl)-hexan-1-ol (34,2 mmol) dans 150 mL de pyridine sous agitation Après 3 h, le milieu réactionnel est placé toute une nuit à 4 °C sans agitation. On note l'apparition d'un précipité noir que l'on dissout dans de l'eau. Cette phase aqueuse est extraite avec du diéthyl-éther. La phase organique est lavée avec une solution aqueuse d'acide chlorhydrique à 5 % en volume, puis à l'eau et ensuite séchée sur Na 2 SO 4 . Le solvant est évaporé sous vide. On obtient alors 9

. Dans-un-ballon-contenant, 68 g de 1-tosyl-6-(pyrrol-1-yl)-hexane (30,1 mmol), on ajoute 60 mL d'une solution saturée en KBr ainsi que 562 mg de dibenzo, pp.18-24

. Dans-un-tricol-sec-et-sous-argon-placé-dans-un-bain-azote, 15 mL de THF anhydre et 12 mL de n-butyl-lithium à 2,5 M dans l'hexane (30 mmol) On procède alors à l'addition goutte à goutte d'une solution de 5,01 g de dmbpy (27,2 mmol) dans 200 mL de THF anhydre. On laisse sous agitation 1 h à -50 °C. Puis on ajoute 6,18 g de 6-bromo-(pyrrol-1-yl)hexane dans 10 mL de THF anhydre. Après une nuit, on hydrolyse avec 100 mL d'eau à température ambiante. La phase aqueuse est extraite avec du diéthyl-ether On obtient 1, p.30

J. Hz, s, 4H ? )08 (s, 4H ?, p.7502775450988868

. Hz, s, 4H ? ) (s, 4H ?, RMN 1 H (CD 3 CN, 250 MHz, pp.7625-7629

. Hz, 64 (s, 4H ? ) (s, 4H ? ), RMN 1 H (CDCl 3 , 250 MHz, pp.6020-6024

. Cette-synthèse-est-réalisée-en and . Bag, Ru I (CO) 2 (CH 3 CN) 3 ] 2 (PF 6 ) 2 (0,2 mmol) sont mis en présence de 206 mg de L 14 (0,5 mmol) dans 8 mL de MeCN. Le ligand met plusieurs minutes à se dissoudre Après 2 h d'agitation, la majeure partie du solvant est évaporée sous vide jusqu'à un volume de 3 mL. On ajoute sous agitation 50 mL de diéthyl-éther. On laisse décanter toute une nuit afin d'obtenir un précipité orange foncé qui est lavé 2 fois avec 5 mL de diéthyléther . Une deuxième précipitation

R. Ruminski and R. T. Cambron, Synthesis and characterization of rhenium(I) complexes bound to the bridging ligand 2,3-bis(2-pyridyl)pyrazine, Inorganic Chemistry, vol.29, issue.8, p.1575, 1990.
DOI : 10.1021/ic00333a026

W. G. Klemperer and B. Zhong, Synthesis and characterization of the polyoxoanion-supported ruthenium(I)-ruthenium(I) tetracarbonyls [(P3O9)2Ru2(CO)4]4- and [(Cp*TiW5O18)2Ru2(CO)4]4-, Inorganic Chemistry, vol.32, issue.25, p.5821, 1993.
DOI : 10.1021/ic00077a028