B. Le, Ils permettront également de tenter de comprendre comment les particules acquièrent une masse alors que la symétrie chirale est brisée. ALICE sera le détecteur le mieux adapté pour sonder le domaine des petits x afin d'étudier les conditions de l'état initial et la validité du CGC

]. K. Ackermann, The forward time projection chamber in STAR, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.499, issue.2-3, pp.713-719
DOI : 10.1016/S0168-9002(02)01968-X

]. K. Adco-01c and . Adcox, Collisions at RHIC, Physical Review Letters, vol.87, issue.5, p.52301
DOI : 10.1103/PhysRevLett.87.052301

J. P. Alard, The Diogene 4?? detector at Saturne, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.261, issue.3, p.379
DOI : 10.1016/0168-9002(87)90347-0

URL : https://hal.archives-ouvertes.fr/in2p3-00001944

C. Albergo, Au-Au Collisions, Physical Review Letters, vol.88, issue.6, p.62301
DOI : 10.1103/PhysRevLett.88.062301

A. Andronic, Statistical hadronization of charm in heavy-ion collisions at SPS, RHIC and LHC, Physics Letters B, vol.571, issue.1-2, p.36
DOI : 10.1016/j.physletb.2003.07.066

V. V. Anisovich and V. M. Shekhter, Quark model for multiparticle and inclusive reactions, Nuclear Physics B, vol.55, issue.2, p.455
DOI : 10.1016/0550-3213(73)90391-X

URL : http://doi.org/10.1016/0550-3213(73)90391-x

D. Antreasyan, -nucleus collisions, Physical Review D, vol.19, issue.3, p.764
DOI : 10.1103/PhysRevD.19.764

URL : https://hal.archives-ouvertes.fr/in2p3-00023121

H. Appelshauser, Collisions at 158 GeV per Nucleon, Physical Review Letters, vol.82, issue.12, p.2471
DOI : 10.1103/PhysRevLett.82.2471

L. Arnold, The STAR silicon strip detector (SSD), Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.499, issue.2-3, p.652
DOI : 10.1016/S0168-9002(02)01963-0

URL : https://hal.archives-ouvertes.fr/in2p3-00014032

S. A. Bass, Last call for RHIC predictions, Nuclear Physics A, vol.661, issue.1-4, p.205
DOI : 10.1016/S0375-9474(99)85024-6

N. Bastid, Exclusive measurements of light fragment production at forward angles in Ne???Pb and Ne???NaF collisions at, Nuclear Physics A, vol.506, issue.3-4, p.637
DOI : 10.1016/0375-9474(90)90207-3

URL : https://hal.archives-ouvertes.fr/in2p3-00001934

Y. R. Baier, A. H. Dokshitzer, S. Mueller, D. Peigne, and . Schiff, Radiative energy loss of high energy quarks and gluons in a finite-volume quark-gluon plasma, Nuclear Physics B, vol.483, issue.1-2, p.291
DOI : 10.1016/S0550-3213(96)00553-6

Y. R. Baier, A. H. Dokshitzer, D. Mueller, and . Schiff, Radiative energy loss of high energy partons traversing an expanding QCD plasma, Physical Review C, vol.58, issue.3, p.1706
DOI : 10.1103/PhysRevC.58.1706

Y. R. Baier, S. Dokshitzer, D. Peigne, and P. Schiff, Induced gluon radiation in a QCD medium, Physics Letters B, vol.345, issue.3, p.277
DOI : 10.1016/0370-2693(94)01617-L

W. Broniowski, W. Florkowski, and B. Hiller, GeV in a single-freeze-out model, Physical Review C, vol.65, issue.6, p.64905
DOI : 10.1103/PhysRevC.65.064905

]. H. Bich, . Bichsel, and S. Collaboration, Calculated and experimental Landau spectra in a TPC, STAR notes SN0439, pp.440-0441

M. Bleicher, Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model, Journal of Physics G: Nuclear and Particle Physics, vol.25, issue.9, p.1859
DOI : 10.1088/0954-3899/25/9/308

. Bmhs-9901-]-p, I. Braun-munzinger, J. Heppe, P. P. Stachel, D. Braun-munzinger et al., Preprint: arXiv : nucl-th/9903010, Lett. B Lett. B, vol.465, issue.518, pp.15-20

I. Arsene, ????) 171c et ibid 482c, Collaboration BRAHMS, Nucl. Phys. A Collaboration BRAHMS, vol.715, pp.juin nucl-ex, 312023.

E. L. Bratkovskaya, Strangeness dynamics and transverse pressure in relativistic nucleus-nucleus collisions, Physical Review C, vol.69, issue.5, p.54907
DOI : 10.1103/PhysRevC.69.054907

D. R. Baier, B. G. Schiff, and . Zakharov, QCD, Annual Review of Nuclear and Particle Science, vol.50, issue.1, p.37
DOI : 10.1146/annurev.nucl.50.1.37

H. Caines, S. Collaboration, and . Va-Être-publié-dans, Preprint: arXiv : nucl-ex, J. Phys. G, SQM (????), 412015.

M. Calderon, . La, and . Sánchez, Charged Hadron Spectra in Au-Au Collisions at ? s N N =130 GeV

A. Capella, Preprint: arXiv : nucl-th/0205014

N. Cabibbo and G. Parisi, Exponential hadronic spectrum and quark liberation, Physics Letters B, vol.59, issue.1, p.67
DOI : 10.1016/0370-2693(75)90158-6

URL : http://doi.org/10.1016/0370-2693(75)90158-6

U. Heinz and M. Jacob, Preprint: arXiv : nucl-th/0002042, 2000.

A. Capella, E. G. Ferreiro, and A. B. Kaidalov, Suppression at Large Transverse Energy in the Comovers Approach, Physical Review Letters, vol.85, issue.10, p.2080
DOI : 10.1103/PhysRevLett.85.2080

G. F. Chaplin, Highly Excited Nuclear Matter, Physical Review D, vol.8, issue.12, p.4302
DOI : 10.1103/PhysRevD.8.4302

A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf, New extended model of hadrons, Physical Review D, vol.9, issue.12, p.3471
DOI : 10.1103/PhysRevD.9.3471

A. A. Capella, D. Kaidalov, and . Sousa, suppression enhanced at large transverse energy?, Physical Review C, vol.65, issue.5, p.54908
DOI : 10.1103/PhysRevC.65.054908

URL : https://hal.archives-ouvertes.fr/hal-00127351

J. Cleymans and K. Redlich, Unified Description of Freeze-Out Parameters in Relativistic Heavy Ion Collisions, Physical Review Letters, vol.81, issue.24, p.5284
DOI : 10.1103/PhysRevLett.81.5284

B. L. Combridge, Associated production of heavy flavour states in pp and p??p interactions: Some QCD estimates, Nuclear Physics B, vol.151, p.429
DOI : 10.1016/0550-3213(79)90449-8

J. C. Collins and M. J. Perry, Superdense Matter: Neutrons or Asymptotically Free Quarks?, Physical Review Letters, vol.34, issue.21, p.1353
DOI : 10.1103/PhysRevLett.34.1353

G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nuclear Physics B, vol.126, issue.2, p.298
DOI : 10.1016/0550-3213(77)90384-4

S. E. Eiseman, ????? production in heavy ion collisions at the AGS, Physics Letters B, vol.325, issue.3-4, p.322
DOI : 10.1016/0370-2693(94)90019-1

]. K. Eskola and X. Wang, Space-time structure of initial parton production in ultrarelativistic heavy ion collisions, Physical Review D, vol.49, issue.3, p.1284, 1994.
DOI : 10.1103/PhysRevD.49.1284

R. J. Fries, B. Müller, C. Nonaka, S. A. Bass, . Phys et al., C 68 (????) 044902, ????) 202303

V. Greco, C. M. Ko, and P. Rapp, Quark coalescence for charmed mesons in ultrarelativistic heavy-ion collisions, Physics Letters B, vol.595, issue.1-4, p.202
DOI : 10.1016/j.physletb.2004.06.064

R. J. Glauber, Lectures in Theoritical Physics

C. Greiner and S. Leupold, Preprint : arXiv : nucl-th/0011026, C. GREI- NER

R. Gupta and P. , Gsi 94] Pour une revue voir : GSI Scientific Report 94-1 (????), p.9807028

M. Gyulassy and T. Matsui, Quark-gluon-plasma evolution in scaling hydrodynamics, Physical Review D, vol.29, issue.3, p.419
DOI : 10.1103/PhysRevD.29.419

M. Gyulassy and M. Plumer, Jet quenching in dense matter, Physics Letters B, vol.243, issue.4, p.432
DOI : 10.1016/0370-2693(90)91409-5

. R. Hanbury, R. Q. Brown, and . Twiss, A Test of a New Type of Stellar Interferometer on Sirius, Nature, vol.170, issue.4541, p.1046
DOI : 10.1038/1781046a0

P. P. Huovinen, U. Kolb, P. V. Heinz, S. A. Ruuskanen, and . Voloshin, Radial and elliptic flow at RHIC: further predictions, Physics Letters B, vol.503, issue.1-2, p.58
DOI : 10.1016/S0370-2693(01)00219-2

URL : http://doi.org/10.1016/s0370-2693(01)00219-2

E. Iancu and L. Mclerran, Saturation and universality in QCD at small x, Physics Letters B, vol.510, issue.1-4, p.145
DOI : 10.1016/S0370-2693(01)00526-3

URL : http://doi.org/10.1016/s0370-2693(01)00526-3

P. Jacobs, X. Wang, and . Prog, Matter in extremis: ultrarelativistic nuclear collisions at RHIC, Progress in Particle and Nuclear Physics, vol.54, issue.2, pp.443-534
DOI : 10.1016/j.ppnp.2004.09.001

]. S. Jeon and J. Kapusta, Linear extrapolation of ultrarelativistic nucleon-nucleon scattering to nucleus-nucleus collisions, Physical Review C, vol.56, issue.1, pp.468-480, 1997.
DOI : 10.1103/PhysRevC.56.468

D. Kharzeev and M. Nardi, Hadron production in nuclear collisions at RHIC and high-density QCD, Physics Letters B, vol.507, issue.1-4, p.121
DOI : 10.1016/S0370-2693(01)00457-9

C. D. Kharzeev, M. Lourenco, H. Nardi, and Z. Satz, A quantitative analysis of charmonium suppression in nuclear collisions, Zeitschrift f???r Physik C Particles and Fields, vol.74, issue.2, p.307
DOI : 10.1007/s002880050392

B. P. Koch, J. Müller, and . Rafelski, Strangeness in relativistic heavy ion collisions, Physics Reports, vol.142, issue.4, p.167
DOI : 10.1016/0370-1573(86)90096-7

T. D. Lee and G. C. Wick, Vacuum stability and vacuum excitation in a spin-0 field theory, Physical Review D, vol.9, issue.8, p.2291
DOI : 10.1103/PhysRevD.9.2291

Z. W. Lin, C. M. Ko, . Phys, and . Rev, Flavor Ordering of Elliptic Flows at High Transverse Momentum, Physical Review Letters, vol.89, issue.20, p.202302
DOI : 10.1103/PhysRevLett.89.202302

A. Majumder and V. Koch, Chemical equilibration volume: Measuring the degree of thermalization, Physical Review C, vol.68, issue.4, p.44903
DOI : 10.1103/PhysRevC.68.044903

T. Matsui, H. Satz, and J. /. , J/?? suppression by quark-gluon plasma formation, Physics Letters B, vol.178, issue.4, p.416
DOI : 10.1016/0370-2693(86)91404-8

P. Braun-munzinger, Maximum relative strangeness content in heavy-ion collisions around 30??GeV, Nuclear Physics A, vol.697, issue.3-4, p.902
DOI : 10.1016/S0375-9474(01)01257-X

P. Braun-munzinger, J. Stachel, and C. Wetterich, Chemical freeze-out and the QCD phase transition temperature, Physics Letters B, vol.596, issue.1-2, p.61
DOI : 10.1016/j.physletb.2004.05.081

A. H. Mueller and J. Qiu, Gluon recombination and shadowing at small values of x, Nuclear Physics B, vol.268, issue.2, p.427
DOI : 10.1016/0550-3213(86)90164-1

J. Adams, Preprint : arXiv : nucl-ex/0406003, Collaboration STAR Phys. Lett. B Collaboration PHENIX, vol.612, pp.181-189

J. Rafelski and B. Müller, Strangeness Production in the Quark-Gluon Plasma, Physical Review Letters, vol.48, issue.16, p.1066
DOI : 10.1103/PhysRevLett.48.1066

K. Redlich, A. Tounsi, A. Mischke, and K. Redlich, Preprint: arXiv : hep-ph/0105201, Eur. Phys. J. C Nucl. Phys. A, vol.24, issue.715, p.565

F. Retière and M. Lisa, Observable implications of geometrical and dynamical aspects of freeze-out in heavy ion collisions, Physical Review C, vol.70, issue.4, p.44907
DOI : 10.1103/PhysRevC.70.044907

R. R. Roberts, S. Hwa, and . Matsuda, Parton recombination model including resonance production, Journal of Physics G: Nuclear Physics, vol.5, issue.8, p.1043
DOI : 10.1088/0305-4616/5/8/009

W. Scheid, Ion-Ion Potentials and the Compressibility of Nuclear Matter, Physical Review Letters, vol.21, issue.21, p.1479
DOI : 10.1103/PhysRevLett.21.1479

A. Schüttauf, A forward TPC for STAR, Nuclear Physics A, vol.661, issue.1-4, p.677
DOI : 10.1016/S0375-9474(99)85116-1

E. V. Sollfrank, U. Heinz, H. Sorge, and N. Xu, Thermal analysis of hadron multiplicities from relativistic quantum molecular dynamics, Physical Review C, vol.59, issue.3, p.1637
DOI : 10.1103/PhysRevC.59.1637

E. V. Shuryak and P. , Quark-gluon plasma and hadronic production of leptons, photons and psions, Physics Letters B, vol.78, issue.1, p.150
DOI : 10.1016/0370-2693(78)90370-2

]. P. Sore-04b, . Soerensen, and S. Collaboration, Preprint: arXiv : nucl-ex/0412003, Proceedings SQM 2004. To be published in J. Phys. G (????)

H. Sorge and P. , Soft transverse expansion in Pb(158 AGeV) on Pb collisions: preequilibrium motion or first order phase transition?, Physics Letters B, vol.402, issue.3-4, p.251
DOI : 10.1016/S0370-2693(97)00474-7

]. G. Torrieri and J. Rafelski, Strange hadron resonances as a signature of freeze-out dynamics, Physics Letters B, vol.509, issue.3-4, p.239
DOI : 10.1016/S0370-2693(01)00492-0

M. Anderson, The STAR time projection chamber: a unique tool for studying high multiplicity events at RHIC, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.499, issue.2-3, p.659
DOI : 10.1016/S0168-9002(02)01964-2

S. F. Bieser, H. J. Crawford, J. Engelage, G. Eppley, L. C. Greiner et al., The STAR trigger, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.499, issue.2-3, p.766
DOI : 10.1016/S0168-9002(02)01974-5

X. N. Wang and P. , A pQCD-based approach to parton production and equilibration in high-energy nuclear collisions, Physics Reports, vol.280, issue.5-6, p.287
DOI : 10.1016/S0370-1573(96)00022-1

X. Wang and M. Gyulassy, GeV, Physical Review Letters, vol.68, issue.10, p.1480
DOI : 10.1103/PhysRevLett.68.1480

URL : https://hal.archives-ouvertes.fr/in2p3-00000059

N. Wang, M. Gyulassy, and M. Plumer, Landau-Pomeranchuk-Migdal effect in QCD and radiative energy loss in a quark-gluon plasma, Physical Review D, vol.51, issue.7, p.3436
DOI : 10.1103/PhysRevD.51.3436

N. Xu and Z. Xu, Transverse dynamics at RHIC, Nuclear Physics A, vol.715, p.587
DOI : 10.1016/S0375-9474(02)01538-5

URL : http://arxiv.org/abs/nucl-ex/0211012

. Preprint, 1 Introduction Le paramètre d'impact b, le nombre de participants N part et le nombre de collisions binaires N bin n'étant pas mesurables, il est nécessaire de modéliser la collision afin d'établir le lien entre ces quantités et des quantités mesurables comme le nombre de particules chargées Cette modélisatioin peut se faire à l'aide de modèles dits géométriques. Pour illustrer ce que l'on appelle modèles géométriques, nous avons choisi de présenter brièvement quelques notions actuellement utilisées pour construire un modèle dit " de Glauber 1 [Glau 59, JeKa 97] " cherchant à décrire la collision de deux noyaux. Alors que le but des collisions d'ions lourds ultra-relativistes est de sonder l'interaction à l'échelle des partons, il se trouve que les propriétés du bulk de certains spectres sont assez bien décrites par des arguments simples qui ne mettent en jeu que des superpositions de collisions nucléon-nucléon N+N, La théorie de Glauber est une théorie semi-classique qui repose sur des processus stochastiques ayant pour mécanismes élémentaires les collisions nucléonnucléon 2 . Le modèle utilise l'approximation eikonale pour décrire l'interaction sur une petite région de l'espace. Dans cette approximation, la trajectoire des noyaux est considérée comme 1

. Le-modèle-que, Modèle Notons toutefois l'utilisation actuelle d'un autre modèle inspiré de Glauber dit " Glauber Optique " . Le formalisme du modèle " optique " est développé en section 2, tandis que la réalisation numérique de la construction " optique " est présentée en section 3. Il s'agit là de résultats d'un modèle de Glauber de type MC. Ces deux modèles partent des mêmes fondements théoriques. La façon dont les calculs sont menés et approximés ensuite les différentie