. Forme-rare-du-diamant,-découverte-en, On suppose qu'elle est formée à partir de graphite météorique tombé sur terre. La chaleur et les contraintes qui en résultent transformeraient alors ce graphite (2D) en diamant (3D) Le diamant cubique correspond à une organisation en forme de " chaise " des atomes de carbone, le diamant hexagonal (lonsdaléite) à une organisation en forme de " bateau " de ces atomes. La lonsdaléite est présente sur divers sites, 1967.

W. H. Bragg and W. L. Bragg, Cette structure a été définie pour la première fois en Ce fut également la première structure déterminée par diffraction des rayons X, 1913.

. Le, 77 × 10 23 atomes/cm 3 ) peut être présenté sous 4 types distincts, en fonction du taux et de la nature des impuretés qu'il recèle (essentiellement en substitution), principalement de l'azote et du bore

D. G. Le-diamant and . Demazeau, de type Ia " présente une densité atomique d'azote de l'ordre de 10 20 atomes par centimètre cube, la plus forte trouvée naturellement, J. Etourneau, Mater. Sci. Eng. B, vol.10, p.149, 1991.

B. P. Singh, Characterization of cubic boron nitride compacts, Materials Research Bulletin, vol.21, issue.1, p.85, 1986.
DOI : 10.1016/0025-5408(86)90033-4

A. L. Liu and M. L. Cohen, Prediction of New Low Compressibility Solids, Science, vol.245, issue.4920, p.841, 1989.
DOI : 10.1126/science.245.4920.841

J. C. Angus and C. C. Hayman, Low-Pressure, Metastable Growth of Diamond and "Diamondlike" Phases, Science, vol.241, issue.4868, p.913, 1988.
DOI : 10.1126/science.241.4868.913

K. E. Spear and J. , Diamond-Ceramic Coating of the Future, Journal of the American Ceramic Society, vol.155, issue.6, p.171, 1989.
DOI : 10.1111/j.1151-2916.1989.tb06099.x

W. A. Yarbrough and R. Messier, Current Issues and Problems in the Chemical Vapor Deposition of Diamond, Science, vol.247, issue.4943, p.688, 1990.
DOI : 10.1126/science.247.4943.688

P. K. Bachmann, Diamond thin film technology I. Diamond deposition, Advanced Materials, vol.52, issue.12, p.195, 1990.
DOI : 10.1002/adma.19900020410

I. Alves, G. Demazeau, B. Tanguy, and F. Weill, On a new model of the graphitic form of C3N4, Solid State Communications, vol.109, issue.11, pp.697-701, 1999.
DOI : 10.1016/S0038-1098(98)00631-0

C. Cao, Carbon nitride prepared by solvothermal method, Diamond and Related Materials, vol.12, issue.3-7, p.1070, 2003.
DOI : 10.1016/S0925-9635(02)00309-6

M. Mattesini, Proposition et modélisation ab initio de nouveaux matériaux ultra-durs dans le ternaire BCN, Thèse de Doctorat, 2001.

W. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review, vol.136, issue.3B, p.864, 1964.
DOI : 10.1103/PhysRev.136.B864

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, vol.140, issue.4A, p.1133, 1965.
DOI : 10.1103/PhysRev.140.A1133

V. L. Solozhenko, D. Andrault, G. Fiquet, M. Mezouar, and E. D. Rubie, Synthesis of superhard cubic BC2N, Applied Physics Letters, vol.78, issue.10, p.1385, 2001.
DOI : 10.1063/1.1337623

J. Kouvetakis, T. Sasaki, C. Shen, R. Hagiwara, M. Lerner et al., Novel aspects of graphite intercalation by fluorine and fluorides and new B/C, C/N and B/C/N materials based on the graphite network, Synthetic Metals, vol.34, issue.1-3, p.1, 1990.
DOI : 10.1016/0379-6779(89)90355-X

R. B. Kaner, J. Kouvetakis, C. E. Warble, M. L. Sattler, and N. Bartlett, Boron-carbon-nitrogen materials of graphite-like structure, Materials Research Bulletin, vol.22, issue.3, p.399, 1987.
DOI : 10.1016/0025-5408(87)90058-4

M. L. Cohen, Calculation of bulk moduli of diamond and zinc-blende solids, Physical Review B, vol.32, issue.12, p.7988, 1985.
DOI : 10.1103/PhysRevB.32.7988

D. M. Teter and R. J. Hemley, Low-Compressibility Carbon Nitrides, Science, vol.271, issue.5245, p.53, 1996.
DOI : 10.1126/science.271.5245.53

A. P. Gerk, The effect of work-hardening upon the hardness of solids: minimum hardness, Journal of Materials Science, vol.9, issue.4, p.735, 1977.
DOI : 10.1007/BF00548163

D. M. Teter, Computational Alchemy: The Search for New Superhard Materials, MRS Bulletin, vol.I, issue.3, p.22, 1998.
DOI : 10.1038/scientificamerican0874-62

R. Riedel, Novel Ultrahard Materials, Advanced Materials, vol.6, issue.14, p.549, 1994.
DOI : 10.1002/adma.19940060705

F. Birch, Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300??K, Journal of Geophysical Research, vol.47, issue.2, p.1257, 1978.
DOI : 10.1029/JB083iB03p01257

G. R. Barsch and Z. P. Chang, Second??? and Higher???Order Effective Elastic Constants of Cubic Crystals under Hydrostatic Pressure, Journal of Applied Physics, vol.39, issue.7, p.3276, 1968.
DOI : 10.1063/1.1656768

R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, troisième édition, 1989.

A. Kelly and N. H. Macmillan, Strong Solids, troisième édition, 1986.

R. Riedel, Handbook of Ceramic Hard, p. L, édité par Wiley-VCH, 2000.

E. Knittle, R. M. Wentzcovitch, R. Jeanloz, and M. L. Cohen, Experimental and theoretical equation of state of cubic boron nitride, Nature, vol.337, issue.6205, p.349, 1989.
DOI : 10.1038/337349a0

H. B. Huntington, Solid state physics, Journal of the Franklin Institute, vol.285, issue.1, 1958.
DOI : 10.1016/0016-0032(68)90473-0

O. L. Anderson, Physical Acoustics : Principles and Methods, Part. B, édité par, vol.III, 1965.

T. H. Barron, M. L. Klein, and P. , Second-order elastic constants of a solid under stress, Proceedings of the Physical Society, vol.85, issue.3, p.523, 1965.
DOI : 10.1088/0370-1328/85/3/313

J. F. Nye, Physical Properties of Crystals : Their Representation by tensors, édité par, 1985.

A. Reuss, Berechnung der Flie??grenze von Mischkristallen auf Grund der Plastizit??tsbedingung f??r Einkristalle ., ZAMM - Zeitschrift f??r Angewandte Mathematik und Mechanik, vol.8, issue.1, p.49, 1929.
DOI : 10.1002/zamm.19290090104

M. Dacorogna, J. Ashkenazi, and M. Peter, calculation of the tetragonal shear moduli of the cubic transition metals, Physical Review B, vol.26, issue.4, p.1527, 1982.
DOI : 10.1103/PhysRevB.26.1527

P. Ravindran, L. Farst, P. A. Korzhavyi, B. Johansson, J. Wills et al., Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2, Journal of Applied Physics, vol.84, issue.9, p.4891, 1998.
DOI : 10.1063/1.368733

M. Born and K. Huang, Dynamical Theory of Crystal Lattices, édité par Clarendon, 1956.

Y. Zhao, D. W. He, L. L. Daemen, T. D. Shen, R. B. Schwarz et al., Superhard B???C???N materials synthesized in nanostructured bulks, Journal of Materials Research, vol.17, issue.12, p.3139, 2002.
DOI : 10.1063/1.1288602

A. Derré, L. Filipozzi, F. Bouyer, and A. Marchand, Parametric study of the chemical vapour deposition of carbon-boron-nitrogen compounds, Journal of Materials Science, vol.3, issue.II, p.1589, 1994.
DOI : 10.1007/BF00368931

T. Komatsu, Bulk synthesis and characterization of graphite-like B???C???N and B???C???N heterodiamond compounds, J. Mater. Chem., vol.47, issue.2, p.221, 2004.
DOI : 10.1039/B310513J

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review, vol.136, issue.3B, p.864, 1964.
DOI : 10.1103/PhysRev.136.B864

J. C. Slater, A Simplification of the Hartree-Fock Method, Physical Review, vol.81, issue.3, p.385, 1951.
DOI : 10.1103/PhysRev.81.385

J. C. Slater, The Self-Consistent field for Molecules and Solids, édité par McGraw-Hill, 1974.

V. L. Moruzzi, J. F. Janak, and A. R. Williams, Calculated Electronic Properties of Metals , édité par, 1978.

A. Zunger and A. J. Freeman, Ground-state electronic properties of diamond in the local-density formalism, Physical Review B, vol.15, issue.10, p.5049, 1977.
DOI : 10.1103/PhysRevB.15.5049

A. Zunger and A. J. Freeman, Ground- and excited-state properties of LiF in the local-density formalism, Physical Review B, vol.16, issue.6, p.2901, 1977.
DOI : 10.1103/PhysRevB.16.2901

D. C. Langreth and M. J. , Beyond the local-density approximation in calculations of ground-state electronic properties, Physical Review B, vol.28, issue.4, p.1809, 1983.
DOI : 10.1103/PhysRevB.28.1809

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A, vol.38, issue.6, p.3098, 1988.
DOI : 10.1103/PhysRevA.38.3098

J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson et al., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Physical Review B, vol.46, issue.11, p.6671, 1992.
DOI : 10.1103/PhysRevB.46.6671

O. Gunnarsson, M. Jonson, and B. I. Lundqvist, Exchange and correlation in inhomogeneous electron systems, Solid State Communications, vol.24, issue.11, p.765, 1977.
DOI : 10.1016/0038-1098(77)91185-1

O. Gunnarsson, M. Jonson, and B. I. Lundqvist, Descriptions of exchange and correlation effects in inhomogeneous electron systems, Physical Review B, vol.20, issue.8, p.3136, 1979.
DOI : 10.1103/PhysRevB.20.3136

O. Gunnarsson and R. O. Jones, Density Functional Calculations for Atoms, Molecules and Clusters, Physica Scripta, vol.21, issue.3-4, p.394, 1980.
DOI : 10.1088/0031-8949/21/3-4/027

P. Bendt and A. Zunger, New approach for solving the density-functional self-consistent-field problem, Physical Review B, vol.26, issue.6, p.3114, 1982.
DOI : 10.1103/PhysRevB.26.3114

R. Car and M. Parrinello, Unified Approach for Molecular Dynamics and Density-Functional Theory, Physical Review Letters, vol.55, issue.22, p.2471, 1985.
DOI : 10.1103/PhysRevLett.55.2471

C. G. Broyden, A class of methods for solving nonlinear simultaneous equations, Mathematics of Computation, vol.19, issue.92, p.577, 1965.
DOI : 10.1090/S0025-5718-1965-0198670-6

G. Kresse and J. Hafner, molecular-dynamics simulation of the liquid-metal???amorphous-semiconductor transition in germanium, Physical Review B, vol.49, issue.20, p.14251, 1994.
DOI : 10.1103/PhysRevB.49.14251

G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science, vol.6, issue.1, p.15, 1996.
DOI : 10.1016/0927-0256(96)00008-0

J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Physical Review B, vol.23, issue.10, p.5048, 1981.
DOI : 10.1103/PhysRevB.23.5048

D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Physical Review B, vol.41, issue.11, p.7892, 1990.
DOI : 10.1103/PhysRevB.41.7892

P. E. Blöchl, O. Jepsen, and O. K. Anderson, Improved tetrahedron method for Brillouin-zone integrations, Physical Review B, vol.49, issue.23, p.16223, 1994.
DOI : 10.1103/PhysRevB.49.16223

H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Physical Review B, vol.13, issue.12, p.5188, 1976.
DOI : 10.1103/PhysRevB.13.5188

W. C. Toop and J. J. Hopfield, Chemically Motivated Pseudopotential for Sodium, Physical Review B, vol.7, issue.4, p.1295, 1974.
DOI : 10.1103/PhysRevB.7.1295

T. Starkloff and D. J. Joannopoulos, Local pseudopotential theory for transition metals, Physical Review B, vol.16, issue.12, p.5212, 1977.
DOI : 10.1103/PhysRevB.16.5212

J. C. Slater, Quantum Theory of Molecules and Solids, 1965.

W. Kohn and N. Rostoker, Solution of the Schr??dinger Equation in Periodic Lattices with an Application to Metallic Lithium, Physical Review, vol.94, issue.5, p.1111, 1954.
DOI : 10.1103/PhysRev.94.1111

V. Eyert, Basic notions and applications of the augmented spherical wave method, International Journal of Quantum Chemistry, vol.52, issue.88, p.1007, 2000.
DOI : 10.1002/(SICI)1097-461X(2000)77:6<1007::AID-QUA8>3.0.CO;2-U

O. K. Andersen, Linear methods in band theory, Physical Review B, vol.12, issue.8, p.3060, 1975.
DOI : 10.1103/PhysRevB.12.3060

P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, J. Luitz et al., An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, édité par KarlHeinz Schwarz, Techn. Universität (Autriche), 2001.

E. P. Wigner and F. Seitz, Solid State Physics, 1955.

S. Y. Savrasov, D. Y. Savrasov, and O. K. Andersen, Linear-response calculations of electron-phonon interactions, Physical Review Letters, vol.72, issue.3, pp.372-375, 1994.
DOI : 10.1103/PhysRevLett.72.372

R. Hoffmann, How Chemistry and Physics Meet in the Solid State, Angewandte Chemie International Edition in English, vol.26, issue.9, p.846, 1987.
DOI : 10.1002/anie.198708461

R. Dronskowski and P. E. Blöchl, Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations, The Journal of Physical Chemistry, vol.97, issue.33, p.8617, 1993.
DOI : 10.1021/j100135a014

G. Bester and M. Fähnle, total energy results in a chemical language: I. Formalism and implementation into a mixed-basis pseudopotential code, Journal of Physics: Condensed Matter, vol.13, issue.50, pp.11541-11551, 2001.
DOI : 10.1088/0953-8984/13/50/313

A. D. Becke and K. E. Edgecombe, A simple measure of electron localization in atomic and molecular systems, The Journal of Chemical Physics, vol.92, issue.9, pp.5397-5403, 1990.
DOI : 10.1063/1.458517

B. F. Bader, Atoms in Molecules : A Quantum Theory, édité par, 1990.

N. Hellgren, Sputtered Carbon Nitride Thin Films, Linköping Studies in Science and Technology Dissertation n°604, 1999.

N. Hellgren, M. P. Johansson, E. Broitman, L. Hultman, and J. Sundgren, thin films by reactive magnetron sputtering, Physical Review B, vol.59, issue.7, pp.5162-5169, 1999.
DOI : 10.1103/PhysRevB.59.5162

R. Weihrich, S. F. Matar, E. Betranhandy, and V. Eyert, A model study for the breaking of N2 from CNx within DFT, Solid State Sciences, vol.5, issue.5, pp.701-703, 2003.
DOI : 10.1016/S1293-2558(03)00057-8

URL : https://hal.archives-ouvertes.fr/hal-00238513

M. Mattesini, S. F. Matar, A. Snis, J. Etourneau, and A. G. Mavromaras, Stability and electronic property investigations of the graphitic C3N4 system showing an orthorhombic unit cell, Journal of Materials Chemistry, vol.10, issue.3, p.709, 2000.
DOI : 10.1039/a908903i

M. Mattesini, S. F. Matar, A. Snis, J. Etourneau, and A. G. Mavromaras, Relative stabilities, bulk moduli and electronic structure properties of different ultra???hard materials investigated within the local spin density functional approximation, Journal of Materials Chemistry, vol.9, issue.12, p.3151, 1999.
DOI : 10.1039/a904840e

R. W. Wyckoff, Crystal Structures -Second edition, 1963.

J. C. Grecu, B. P. Winnewisser, and M. Winnewisser, Substitution structure of cyanogen, NCCN, from high-resolution far infrared spectra, Journal of Molecular Spectroscopy, vol.218, issue.2, pp.246-255, 2003.
DOI : 10.1016/S0022-2852(02)00092-9

]. R. Weihrich, D. Kurowski, A. C. Stückl, S. F. Matar, F. Rau et al., On the ordering in new low gap semiconductors: PtSnS, PtSnSe, PtSnTe. Experimental and DFT studies, Journal of Solid State Chemistry, vol.177, issue.7, p.2591, 2004.
DOI : 10.1016/j.jssc.2004.03.031

URL : https://hal.archives-ouvertes.fr/hal-00154469

R. Weihrich, V. Eyert, and S. Matar, Structure and electronic properties of new model dinitride systems: a density-functional study of CN2, SiN2, and GeN2, Chemical Physics Letters, vol.373, issue.5-6, p.636, 2003.
DOI : 10.1016/S0009-2614(03)00674-2

URL : https://hal.archives-ouvertes.fr/hal-00819326

M. Mattesini and S. F. Matar, Search for ultra-hard materials: theoretical characterisation of novel orthorhombic BC2N crystals, International Journal of Inorganic Materials, vol.3, issue.7, pp.943-957, 2001.
DOI : 10.1016/S1466-6049(01)00085-X

M. Mattesini and S. F. Matar, First-principles characterisation of new ternary heterodiamond BC2N phases, Computational Materials Science, vol.20, issue.1, pp.107-119, 2001.
DOI : 10.1016/S0927-0256(00)00132-4

D. Williams, B. Pleune, J. Kouvetakis, M. D. Williams, and R. A. Andersen, , and Related C???N Compounds of Boron:?? New Precursors to Light Element Ceramics, Journal of the American Chemical Society, vol.122, issue.32, pp.7735-7741, 2000.
DOI : 10.1021/ja0006752

L. C. Brousseau, D. Williams, J. Kouvetakis, and M. O. Keeffe, (M = Li, Cu) Framework Structures, Journal of the American Chemical Society, vol.119, issue.27, pp.6292-6296, 1997.
DOI : 10.1021/ja9702024

E. Kroke and M. Schwarz, Novel group 14 nitrides, Coordination Chemistry Reviews, vol.248, issue.5-6, pp.493-532, 2004.
DOI : 10.1016/j.ccr.2004.02.001

R. Weihrich, S. F. Matar, and E. Betranhandy, In search of new candidates for ultra-hard materials: the ternary BC3N3 stoichiometry, Journal of Physics and Chemistry of Solids, vol.64, issue.9-10, p.1539, 2003.
DOI : 10.1016/S0022-3697(03)00171-9

URL : https://hal.archives-ouvertes.fr/hal-00177532

E. Betranhandy, S. F. Matar, C. El-kfoury, R. Weihrich, and J. Etourneau, Interplay of Electronic Structure and Bulk Properties in 2D and 3D Ternary Carbonitrides from First Principles, Zeitschrift f???r anorganische und allgemeine Chemie, vol.12, issue.15, p.2587, 2004.
DOI : 10.1002/zaac.200400401

URL : https://hal.archives-ouvertes.fr/hal-00156733

A. Y. Liu and R. M. Wentzcovich, Stability of carbon nitride solids, Physical Review B, vol.50, issue.14, p.10362, 1994.
DOI : 10.1103/PhysRevB.50.10362

P. Mohn, K. Schwarz, S. Matar, and G. Demazeau, N, Physical Review B, vol.45, issue.8, pp.4000-4007, 1992.
DOI : 10.1103/PhysRevB.45.4000

URL : https://hal.archives-ouvertes.fr/jpa-00210857

J. E. Lowther, Relative stability of some possible phases of graphitic carbon nitride, Physical Review B, vol.59, issue.18, p.11683, 1999.
DOI : 10.1103/PhysRevB.59.11683

Y. Miyamoto, M. L. Cohen, and S. G. Louie, N sheets, Physical Review B, vol.52, issue.20, p.14971, 1995.
DOI : 10.1103/PhysRevB.52.14971

H. Nozaki and S. Itoh, Structural stability of BC2N, Journal of Physics and Chemistry of Solids, vol.57, issue.1, p.41, 1995.
DOI : 10.1016/0022-3697(95)00088-7

D. C. Patton, D. V. Porezag, and M. R. Pederson, Simplified generalized-gradient approximation and anharmonicity: Benchmark calculations on molecules, Physical Review B, vol.55, issue.12, p.7454, 1997.
DOI : 10.1103/PhysRevB.55.7454

P. Granger, Panorama des liaisons chimiques, pp.48-49, 1997.

. Egalement, Site Science en ligne, classification périodique interactive

E. Betranhandy, L. Capou, S. F. Matar, and . Ch, First principles search of hard materials within the Si???C???N ternary system, Solid State Sciences, vol.6, issue.4, p.315, 2004.
DOI : 10.1016/j.solidstatesciences.2004.01.010

S. Andersson, Magnesium nitride fluorides, Journal of Solid State Chemistry, vol.1, issue.3-4, p.306, 1970.
DOI : 10.1016/0022-4596(70)90109-X

H. Seibel and T. L. Wagner, Preparation and crystal structure of Ba2NF, Journal of Solid State Chemistry, vol.177, issue.8, pp.2772-2776, 2004.
DOI : 10.1016/j.jssc.2004.04.026

J. C. Phillips, Bonds and bands in semi-conductors, 1973.

A. F. Wells, Structural Inorganic Chemistry, cinquième édition, pp.1004-1005, 1995.

E. Knittle, Mineral Physics and Crystallography : a Handbook of Physical Constants, 98-142, édité par T, J. Arhens (Am. Geophys, 1995.

Y. Joly, X-ray absorption near-edge structure calculations beyond the muffin-tin approximation, Physical Review B, vol.63, issue.12, p.125120, 2001.
DOI : 10.1103/PhysRevB.63.125120

N. Nakamura, K. Hirao, and Y. Yamauchi, Surface analytical studies of ion-implanted uni-directionally aligned silicon nitride for tribological applications, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.217, issue.1, p.51, 2004.
DOI : 10.1016/j.nimb.2003.09.024

D. Criado, M. I. Alayo, I. Pereyra, and M. C. Fantini, Structural analysis of silicon oxynitride films deposited by PECVD, Materials Science and Engineering: B, vol.112, issue.2-3, p.123, 2004.
DOI : 10.1016/j.mseb.2004.05.017

G. Demazeau, Solvothermal processes: a route to the stabilization of new materials, Journal of Materials Chemistry, vol.9, issue.1, p.15, 1999.
DOI : 10.1039/a805536j

C. Plitzko and G. Meyer, Synthese und Kristallstrukturen von NH4[Si(NH3)F5] und [Si(NH3)2F4], Zeitschrift f???r anorganische und allgemeine Chemie, vol.39, issue.10, pp.1646-1650, 1996.
DOI : 10.1002/zaac.19966221005

M. Radwan, T. Kashiwagi, and Y. Miyamoto, New synthesis route for Si2N2O ceramics based on desert sand, Journal of the European Ceramic Society, vol.23, issue.13, pp.2337-2341, 2003.
DOI : 10.1016/S0955-2219(03)00040-2

S. F. Matar, Propriétés des structures électroniques des matériaux magnétiques, ouvrage en cours de publication (prévu en, 2006.

J. Barrett, Introduction to Atomic and Molecular Structure, 1983.

A. Szabo and N. S. Ostlund, Modern Quantum Chemistry : Introduction to Advanced Electronic Theory, 1989.

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, vol.140, issue.4A, p.1133, 1965.
DOI : 10.1103/PhysRev.140.A1133

K. Schwarz, for the Free Atoms H through Nb, Physical Review B, vol.5, issue.7, pp.2466-2468, 1972.
DOI : 10.1103/PhysRevB.5.2466

J. M. Seminario and P. Politzer, Modern Density functional Theory, a tool for chemistry, 1995.

J. Kurth and J. Perdew, Role of the exchange-correlation energy: Nature's glue, International Journal of Quantum Chemistry, vol.59, issue.5, p.814, 2000.
DOI : 10.1002/(SICI)1097-461X(2000)77:5<814::AID-QUA3>3.0.CO;2-F

P. A. Dirac, Note on Exchange Phenomena in the Thomas Atom, Mathematical Proceedings of the Cambridge Philosophical Society, vol.26, issue.03, p.376, 1930.
DOI : 10.1017/S0305004100016108

E. Wigner, On the Interaction of Electrons in Metals, Physical Review, vol.46, issue.11, p.1002, 1934.
DOI : 10.1103/PhysRev.46.1002

L. Hedin and B. I. Lundqvist, Explicit local exchange-correlation potentials, Journal of Physics C: Solid State Physics, vol.4, issue.14, p.2064, 1971.
DOI : 10.1088/0022-3719/4/14/022

S. H. Vosko, L. Wilk, and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Canadian Journal of Physics, vol.58, issue.8, p.1200, 1980.
DOI : 10.1139/p80-159

S. H. Vosko and L. Wilk, Influence of an improved local-spin-density correlation-energy functional on the cohesive energy of alkali metals, Physical Review B, vol.22, issue.8, p.3812, 1980.
DOI : 10.1103/PhysRevB.22.3812

J. P. Perdew, J. Keller, and J. L. Gasquez, Density Functional Theory (N187), p.122, édité, 1983.

K. Burke, J. P. Perdew, and M. Ernzerhof, Why semilocal functionals work: Accuracy of the on-top pair density and importance of system averaging, The Journal of Chemical Physics, vol.109, issue.10, p.3760, 1998.
DOI : 10.1063/1.476976

J. P. Perdew, K. Burke, and Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Physical Review B, vol.54, issue.23, p.16533, 1996.
DOI : 10.1103/PhysRevB.54.16533

N. Solovyev, N. Hamada, and K. Terakura, =Ti???Cu): First-principles study, Physical Review B, vol.53, issue.11, p.7158, 1996.
DOI : 10.1103/PhysRevB.53.7158

N. Solovyev, P. H. Dederichs, and I. Mertig, =Pd,Pt), Physical Review B, vol.52, issue.18, p.13419, 1995.
DOI : 10.1103/PhysRevB.52.13419

A. R. Williams, J. Van, and W. Morgan, Multiple scattering by non-muffin-tin potentials: general formulation, Journal of Physics C: Solid State Physics, vol.7, issue.1, p.37, 1974.
DOI : 10.1088/0022-3719/7/1/013

A. Haug, Theoretical Solid State Physics, édité par, 1972.

J. Callaway, Quantum Theory of the Solid State, édité par, 1974.

J. M. Ziman, Principles of the Theory of Solids, édité par, 1972.

W. H. Bragg and W. L. Bragg, The Structure of the Diamond, Nature, vol.91, issue.2283, p.557, 1913.
DOI : 10.1038/091557a0

J. Donohue, The Structures of the Elements, 1974.

D. Saada, Ion implantation into diamond and the subsequent graphitization, Thèse de Doctorat, 2000.

B. Pajot, Quelques propriétés remarquables du diamant, texte en ligne : http ://www.gps.jussieu.fr/gps

J. Huang-et-yuntian and T. Zhu, Defect and Diffusion Forum, pp.186-187, 2000.