H. Hartridge, F. J. Roughton, R. G. Norrish, and G. Porter, Velocity with which carbon monoxide displaces oxygen from combination with hemoglobin. IChemical reactions produced by very high light intensities, Proc. Roy. Soc. B Nature, vol.94, issue.168, p.654, 1923.

G. Porter and R. G. Norrish, Flash photolysis and spectroscopy. A new method for the study of free-radical reactionsPhotochemical processes at very high light intensity, Proc. Roy. Soc. A Z. Elektro. Angew, vol.200, issue.284, 1950.

C. Phys, R. G. Norrish, G. Porter, B. A. Thrush, R. G. Norrish et al., Detection of diatomic-radical absorption spectra during combustionThe application of flash techniques to the study of fast reactions, Nature Disc. Faraday Soc, vol.56, issue.17, pp.705-745, 1952.

J. R. Novak and M. W. Windsor, Laser Photolysis and Spectroscopy in the Nanosecond Time Range: Excited Singlet State Absorption in Coronene, The Journal of Chemical Physics, vol.47, issue.8, pp.47-3075, 1967.
DOI : 10.1063/1.1712336

J. R. Novak and M. W. Windsor, Excited Singlet Absorption in 1,2-Benzanthracene by the Use of Nanosecond Laser Photolysis and Spectroscopy, Science, vol.161, issue.3848, p.1342, 1968.
DOI : 10.1126/science.161.3848.1342

J. R. Novak and M. W. Windsor, Laser Photolysis and Spectroscopy: A New Technique for the Study of Rapid Reactions in the Nanosecond Time Range, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.308, issue.1492, p.95, 1492.
DOI : 10.1098/rspa.1968.0210

. R. Govt, T. L. Netzel, W. S. Struve, and P. M. Rentzepis, Picosecond spectroscopy, Announce. Annu. Rev. Phys, vol.7211, issue.5, p.76, 1972.

C. Fork, R. L. Greene, B. I. Shank, C. V. Shank, C. V. Zewail et al., Generation of optical pulses shorter than 0.1 psec by colliding pulse mode lockingMeasurement of ultrafast phenomena in the femtosecond time domainUltrafast laser spectroscopyFemtochemistry : atomic-scale dynamics of the chemical bond, Appl. Phys. Lett. Science Adv. Chem. Phys. 213th ACS Nat. Meet. J. Phys, vol.241215, issue.892, pp.473-1027, 1973.

C. Mamantov, A. Zika, R. G. Gidel, L. T. Davis, D. D. Literathy et al., A comparison of photolysis and substitution decomposition rates of methyl iodide in the oceanEnvironmental transformation, photolysis of fluorescing petroleum compounds in marine watersEnvironmental Ice Photochemistry: MonochlorophenolsPhotolysis of polychlorinated biphenyls by solid-phase microextraction "On-fibre" versus aqueous photodegradationPhotolysis and detoxification of environmental pollutantsDevelopment of a photochemical reactor for investigations of the degradation of particle-bound PAHHealth effects, environmental impacts, and photochemical degradation of selected surfactants in waterPhotochemical reaction for environmental protection, Environ. Sci. Technol. Geophys. Res. Lett. Water Sci. Technol. Environ. Sci. Technol. J. Chromatogr. A Kagaku Kogyo Poll. Atmos. Int. J. Photoener. Chem. Listy, vol.104132023, issue.871, pp.353-1568, 1984.

P. Slade and A. E. Smith, Photochemical Degradation of Diquat, Nature, vol.12, issue.5079, p.919, 1967.
DOI : 10.1038/213919a0

S. M. Siegel, J. T. Warden, J. R. Bolton, G. P. Hess, J. A. Mccray et al., Flash photolysis-electron spin resonance studies of the dynamics of photosystem I in green-plant photosynthesis. I. Effects of acceptors and donors in subchloroplast particlesRapid chemical reaction techniques developed for use in investigations of membrane-bound proteins (neurotransmitter receptors)Application of lasers to molecular biology Laser AppPhotolysis of mast cells in presence of protoporphyrinSynthesis and photochemistry of photolabile N-glycine derivatives and effects of one on the glycine receptorLaser photolysis in biochemistryResponse of bromodeoxyuridine-substituted Chinese hamster cells to UVA light exposure in the presence of Hoechst dye #33258: survival and DNA repair studiesPositive chronotropic responses of rabbit sino-atrial node cells to flash photolysis of caged isoproterenol and cyclic AMPOn the mechanism of inhibition of the nicotinic acetylcholine receptor by the anticonvulsant MK-801 investigated by laser-pulse photolysis in the microsecond-tomillisecond time regionUncaging" using optical fibers to deliver UV light directly to the samplePhotolysis of caged cyclic AMP in the ciliary cytoplasm of the newt olfactory receptor cellRapid chemical reaction techniques developed for use in investigations of membrane-bound proteins (neurotransmitter receptors)Cocaine: mechanism of inhibition of a muscle acetylcholine receptor studied by a laser-pulse photolysis technique, Proc. Natl. Acad. Sci. USA 92, pp.251-493, 1368.

R. G. Salomon and M. F. Salomon, Copper(I) catalysis of olefin photoreactions

E. Pelizzetti, V. Maurino, C. Minero, O. Zerbinati, E. Borgarello et al., Photorearrangement and photofragmentation of 7-methylenenorcaranePhotocatalytic degradation of bentazon by titanium dioxide particlesPhotoinduced catalysis and photoreactions of iron carbonyl [Fe(CO)5] adsorbed on zeolitesFast reactions in micelles, J. Am. Chem. Soc. Chemosphere, vol.98, issue.326, pp.7454-328, 1437.

A. Reuther, A. Laubereau, and D. N. Nikogosyan, Primary Photochemical Processes in Water, The Journal of Physical Chemistry, vol.100, issue.42, pp.937-16794, 1978.
DOI : 10.1021/jp961462v

A. O. Allen, F. S. Dainton, J. J. Rowbottom, and . Chim, Radiation Chemistry of Aqueous Solutions, The Journal of Physical and Colloid Chemistry, vol.52, issue.3, p.479, 1948.
DOI : 10.1021/j150459a009

N. F. Barr, A. O. Allen, J. T. Allan, G. Scholes, G. Czapski et al., Hydrogen atoms in the radiolysis of waterThe reducing radicals produced in water radiolysis: solutions of oxygen-hydrogen peroxide-hydrogen ionA determination of some rate constants for the radical processes in the radiation chemistry of waterYield and reactivity of electrons and H atoms in irradiated aqueous solutionsConversion of solvated electrons into hydrogen atoms in the photo-and radiation chemistry of aqueous solutionsThe reducing radical in water radiolysisAbsorption spectrum of the hydrated electron in water and in aqueous solutionsPhysical and chemical development of electron tracks in liquid waterThe hydrated electron and its reactions at high temperaturesTwo-photon ionization and dissociation of liquid water by powerful laser UV radiationExcess electrons in liquid water: first evidence of a prehydrated state with femtosecond lifetimeFemtosecond dynamics of geminate pair recombinaison in pure liquid waterFemtosecond studies of the presolvated electron: an excited state of the solvated electronEvidence for resonanceenhanced multiphoton ionization of liquid water using 2-eV laser light: variation of hydrated electron absorbance with femtosecond pulse intensityUltrafast transient-absorption spectroscopy of the aqueous solvated electronUltrafast transient absorption spectroscopy of the solvated electron in waterFemtosecond electron solvation kinetics in waterFemtosecond solvation dynamics of hydrated electronWave packet dynamics in ultrafast spectroscopy of the hydrated electronDetailed investigation of the femtosecond pump-probe spectroscopy of the hydrated electron, Effects of pH and the nature of the primary species in the radiolysis of aqueous solutionsNear-IR Absorption Spectrum of the Solvated Electron in Alcohols, Deuterated Water, and Deuterated Glasses: Lack of Observance of the Near-IR Spectrum in H 2 O GlassesUltrafast librationnal dynamics of the hydrated electron, pp.928-255, 1959.

W. Marbach, A. N. Asaad, P. Krebs, M. Assel, R. Laenen et al., Femtosecond solvation dynamics of solvated electrons in neat waterFemtochemistry of the hydrated electron at decimolar concentrationNanosecond kinetics of hydrated electron upon water photolysis by high intensity femtosecond UV pulsesGeneration of solvated electrons in neat water: new results from femtosecond spectroscopyTemperature-dependent studies of solvated electrons in liquid water with two and three femtosecond pulse sequences, Advances in Chemical Series, pp.28-11400, 1965.

E. J. Hart and M. Anbar, The Hydrated Electron, 1970.

J. Jortner and N. R. Kestner, Electrons in Fluids, 1973.
DOI : 10.1007/978-3-642-61962-5

E. J. Hart, S. Gordon, and E. M. Fielden, Reaction of the hydrated electron with water, J

J. H. Baxendale, C. Bell, P. Wardman, C. D. Jonah, M. S. Matheson et al., Yield and decay of the hydrated electron from 100 ps to 3 nsSpur decay of the solvated electron in picosecond radiolysis measured with time-correlated absorption spectroscopyUltrafast electronic relaxation dynamics: a comparison between water and ionic aqueous solutionsShort-time electron transfer processes in ionic aqueous solution: counterion and H/D isotope effects on electron-atom pairs relaxationTransient spectra, formation, and geminate recombination of solvated electrons in pure water UV-photolysis: an alternative view, J. Chem. Soc., Faraday Trans.1 J. Phys. Chem. J. Phys. Chem. A J. Mol. Liq. J. Phys. Chem, vol.6987, issue.10033, pp.776-1267, 1973.

D. Madsen, C. L. Thomsen, J. Thogersen, S. R. Keiding, B. Soroushian et al., Formation and geminate recombination of solvated electron upon two-photon ionisation of ethylene glycol [93] Martini, IMechanisms of the ultrafast production and recombination of solvated electrons in weakly polar fluids: comparison of multiphoton ionization and detachment via the charge-transfer-to-solvent transition of Na -in THFOn the reactions of hydrated electrons with OH . and H 3 O + . Analysis of photoionization experimentsElectron photodetachment from aqueous anions. 2. ionic strength effect on geminate recombination dynamics and quantum yield for hydrated electronRetrapping and solvation dynamics after femtosecond UV excitation of the solvated electron in water, Lack of ionic strength effect in the recombination of hydrated electrons: (e -) aq + (e -) aq -> 2(OH) -+ H 2, pp.1126-313, 1992.

F. S. Dainton, J. A. Delaire, E. Croc, P. Cordier, H. A. Schwarz et al., Numerical solution of the Smoluchowski equation applied to the radiolysis of aliphatic amines and hydrazineVersuch einer mathematischen Theorie der Koagulationskinetik kolloider LösungenApplications of the spur diffusion model to the radiation chemistry of aqueous solutions, Studies to link the basic radiation physics and chemistry of liquid water, pp.323-1549, 1917.

G. V. Buxton, Q. G. Mulazzani, A. B. Ross, T. Goulet, J. Jay-gerin et al., Critical review of rate constants for reactions of transients from metal ions and metal complexes in aqueous solutionComment on "Femtosecond studies of electron-cation geminate recombination in waterCritical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicalsOn the stochastic treatment of fast chemical reactions, aqueous solutions, pp.503-1055, 1988.

R. Soper, A. K. Turner, J. Halle, B. Karlstroem, and G. , Impact of neutron scattering on the study of water and aqueous solutionsPrototropic charge migration in water. Part 2. Interpretation of nuclear magnetic resonance and conductivity data in terms of model mechanisms, Int. J. Mod. Phys. B J. Chem. Soc., Faraday Trans, vol.100108, issue.27, pp.24516-24533, 1983.

B. Halle, G. Karlstroem, G. Stein, G. Stein, R. Roberts et al., Prototropic charge migration in water Part 1. Rate constants in light and heavy water and in salt solution from oxygen-17 spin relaxationSome aspects of the radiation chemistry of organic solutesReduction of mercuric chloride in aqueous solutions by x-raysIrradiation of liquid ammoniaModel for metal-ammonia solutions, J. Chem. Soc., Faraday Trans. 2 Disc. Faraday Soc. Trans. Faraday Soc. J. Am. Chem. Soc. J. Chem. Phys, vol.79110111112113, issue.27, pp.1031-1030, 1952.

J. Jortner, M. Anbar, and E. J. Hart, Energy levels of bound electrons in liquid ammoniaThe reactivity of aromatic compounds toward hydrated electrons, J. Chem. Phys. J, vol.30, issue.839, 1959.

M. Anbar, E. J. Hart, J. W. Boag, E. J. Hart, J. H. Baxendale et al., Absorption spectra in irradiated water and some solutionsPulse RadiolysisExcited state chemistry of aromatic amino acids and related peptides. I. TyrosineExcited state chemistry of aromatic amino acids and related peptides. II. Phenylalanine, Excited state chemistry of aromatic amino acids and related peptides. III. TryptophanRedox potential and hydration energy of the hydrated electron, pp.1244-2599, 1962.

W. C. Gottschall, E. J. Hart, B. D. Michael, E. J. Hart, K. H. Schmidt et al., The absorption spectrum of e aq in the temperature range -4 to 390°Temperature dependence of optical absorption of a solvated electronTemperature dependence of optical absorption spectra and the physical nature of solvated electronsTemperature and isotope effects on the shape of the optical absorption spectrum of solvated electron in waterElectronic absorption spectra of excess electrons in molecular aggregates. II. Solvated electrons, Shape stability of solvated electron optical absorption bands, pp.2102-2798, 1967.

R. R. Hentz, . Farhataziz, E. M. Hansen, G. Nilsson, F. Y. Jou et al., Faraday TransPulse radiolysis of liquids at high pressures. I. Absorption spectrum of the hydrated electron at pressures up to 6.3 kbarAbsorption spectrum of the hydrated electron at high pressures. A calculation of the pressure shift of the absorption peakShapes of optical spectra of solvated electrons. Effect of pressurePulse radiolysis at high pressure: pressure dependence of the absorption spectrum and the lifetime of hydrated electronsPrimary radical yields in pulse-irradiated alkaline aqueous solutionElectron reactions with thiosulphate ions at various ionic strengthsSolvated electron in an electrolyteThe solvated electron in an electrolyte solution, J. Chem. Soc. J. Chem. Phys. Chem. Phys. Lett. J. Phys. Chem. Angew. Chem. Int. Ed. Radiat. Res. Radiat. Phys. Chem. Chem. Phys. Lett, vol.873130132133134135136, issue.1771, pp.77-4974, 1967.

P. Dixon, R. S. Lopata, V. J. Kirschke, E. J. Jolly, W. L. Schindewolf et al., Spectrum of the solvated electron in heavy water up to 445KThe reversibility of the reaction of alkali metals with liquid ammoniaFormation and properties of solvated electronsElectrochemical production of solvated electronsElectron drift mobility in liquid hexanePhotocurrents from semiconductor-liquid ammonia junctionsDynamics of electron solvation in liquid water, Radiat. Phys. Chem. Inorg. Chem. Angew. Chem. Int. Ed. Ber. Bunsenges. Phys. Chem. J. Chem. Phys. J. Phys. Chem, vol.153138140142, issue.8410, pp.147-855, 1959.

. Phys, W. J. Lett-chase, J. W. Hunt, L. D. Zusman, and A. B. Helman, Solvation time of the electron in polar liquids. Water and alcoholsTime-resolved spectroscopy of solvated electrons, J. Phys. Chem, vol.73146, issue.7926, pp.47-2835, 1975.

. Phys, R. Lett-spezia, C. Nicolas, A. Boutin, and R. Vuilleumier, Molecular dynamics simulations of a silver atom in water: evidence for a dipolar excitonic state, Phys. Rev. Lett, vol.114147, issue.30120, pp.91-208304, 1985.

J. Jortner, P. J. Rossky, J. Schnitker, O. V. Prezhdo, and P. J. Rossky, The hydrated electron: quantum simulation of structure, spectroscopy, and dynamicsSolvent mode participation in the nonradiative relaxation of the hydrated electronBand resolution of optical spectra of solvated electrons in water, alcohols, and tetrahydrofuran, Conjecture on electron binding in aqueous solutions Electrons in Fluids, pp.24-17094, 1964.

J. P. New-york-keene, M. C. Sauer, S. Arai, and L. M. Dorfman, The absorption spectrum and some reaction constants of the hydrated electronPulse radiolysis studies. VII. The absorption spectra and radiation chemical yields of the solvated electron in the aliphatic alcohols, Radiat. Res. J. Chem, vol.447, issue.1, 1964.

J. L. Phys155-]-dye, M. G. Debacker, L. M. Dorfman, L. M. Dorfman, and F. Y. Jou, Pulse radiolysis studies. XVIII. Spectrum of the solvated electron in the systems ethylenediamine-water and ammonia-waterSolvent dependence of the optical absorption spectrum of the solvated electronElectronic absorption spectra of excess electrons in molecular aggregates. I. Trapped electrons in gamma-irradiated amorphous solids at 77°K, J. Chem. Phys. Ber. Bunsen-Ges. J. Phys, vol.42156157, issue.757, pp.708-6251, 1965.

K. Okazaki, K. M. Idriss-ali, G. R. Freeman, J. F. Wishart, P. Neta et al., Spectrum and reactivity of the solvated electron in the ionic liquid methyltributylammonium Bis(trifluoromethylsulfonyl)imideOptical absorption spectra of solvated electrons in mixtures of ammonia and methylamineSolvation dynamics of electron ejected by photoionization of pphenylenediamine in several alcohols: temperature effect studied by picosecond transient absorption measurementsTemperature dependence of the stability of a hydrated electron: An integral equation studyPressure shifts in properties of solvated electrons in alcohols and waterPath integral Monte Carlo study of the hydrated electronBehavior of the hydrated electron at different temperatures: structure and absorption spectrumAb initio studies of the interactions of an electron and two water molecules as a building block for a model of the hydrated electronA molecular orbital calculation for the hydrated electronA plausible theoretical model for the hydrated electronSemi-empirical UHF treatment for the solvated electronDielectric medium effects on loosely bound electrons, Can. J. Chem. J. Phys. Chem. B J. Phys. Chem. J. Phys. Chem. J. Phys. Chem. J. Chem. Phys. J. Chem. Phys. J. Phys. Chem. J. Phys. Chem. Chem. Phys. Lett. Chem. Phys. Lett. Chem. Phys. Lett. Mol. Phys, vol.62161162164170, issue.5, pp.2223-7261, 1962.

K. Fueki, Theory of the Trapped Dielectron, The Journal of Chemical Physics, vol.50, issue.12, p.5381, 1969.
DOI : 10.1063/1.1671059

K. Fueki, D. Feng, L. Kevan, D. Feng, and L. Kevan, Dielectric continuum model for the hydrated electronTheoretical models for solvated electrons, Chem. Phys. Lett. Chem. Rev, vol.4173, issue.801, pp.313-314, 1969.

K. Fueki, D. Feng, and L. Kevan, Semicontinuum model for the hydrated electron, The Journal of Physical Chemistry, vol.74, issue.9
DOI : 10.1021/j100704a026

D. A. Phys175-]-copeland, N. R. Kestner, and J. Jortner, Excess Electrons in Polar Solvents, Chem. J. Chem, vol.74, issue.9, p.1976, 1970.

P. Pommeret, S. Gauduel, and Y. , A semicontinuum model for the hydrated electron, The Journal of Physical Chemistry, vol.95, issue.10, p.1189, 1970.
DOI : 10.1021/j100163a042

S. Bratos, J. Leicknam, D. Borgis, S. Bratos, C. Nicolas et al., Theoretical description of the hydrated electron Shape and spectroscopic properties of the cavity containing the excess electronMolecular simulation of a hydrated electron at different thermodynamic state pointsSequential classical-quantum description of the absorption spectrum of the hydrated electronReactivity of an excess electron with monovalent cations in bulk water by mixed quantum classical molecular dynamics simulationsMolecular dynamics simulations of the Ag + or Na + cation with an excess electron in bulk waterThe nature of the transitions comprising the optical absorption spectra of solvated electronsSolvated electrons: what is solvatedResolution of the absorption spectrum of solvated electrons, Chem. Chem. Phys. Lett. J. Molec. Struc. J. Chem. Phys. Phys. Rev. B Mol. Simulat. J. Chem. Phys. Rad. Phys. Chem. J. Phys. Chem. J, vol.95180181182183185, issue.32315, pp.4126-436, 1988.

S. Golden and T. R. Tuttle, Shape stability of solvated electron optical absorption bands, Chem. Phys, vol.57186, issue.5, p.2122, 1972.

H. Abramczyk, Absorption spectrum of the solvated electron. 1. Theory [188] Rips, I., "Electron solvation dynamics in polar liquid, J. Chem. Soc., Faraday Trans. 2 J. Phys. Chem. Chem. Phys. Lett, vol.77187, issue.245, pp.6149-79, 1981.

T. W. Kee, D. H. Son, P. Kambhampati, P. F. Barbara, and M. A. Berg, A unified electron transfer model for the different precursors and excited states of the hydrated electronA viscoelastic continuum model of nonpolar solvation. III. Electron solvation and nonlinear coupling effectsElectron solvation in liquid 1-propanol and 2-propanol. Effect of microscopic liquid structureElectron solvation in methanol revisited, J. Phys. Chem. A J. Chem. Phys. Radiat. Phys. Chem, vol.105, issue.67, p.263, 0192.

C. Huppert, D. Kenney-wallace, G. Rentzepis, P. M. Kambhampati, P. Son et al., Picosecond infrared dynamics of electron trapping in polar liquidsSolvation dynamics of the hydrated electron depends on its initial degree of electron delocalizationElectron hydration dynamics: simulation results compared to pump and probe experimentsPicosecond spectroscopy and solvation clusters. The dynamics of localizing electrons in polar fluidsQuantum dynamical simulations of nonadiabatic processes: Solvation dynamics of the hydrated electron, Evidence for two electron states in solvation and scavenging processes in alcohols, pp.2265-2374, 1981.

S. Pommeret, A. Antonetti, and Y. Gauduel, Electron hydration in pure liquid water

X. Shi, F. H. Long, H. Lu, and K. B. Eisenthal, Existence of two nonequilibrium configurations in the near-infrared regionElectron solvation in neat alcohols, J. Am. Chem. Soc. J. Phys, vol.113, issue.24, p.9105, 0200.

C. L. Thomsen, D. Madsen, S. R. Keiding, J. Thogersen, O. Christiansen et al., Two-photon dissociation and ionization of liquid water studied by femtosecond transient absorption spectroscopySolvation dynamics of the hydrated electron: A nonadiabatic quantum simulationThe solvated electron, Chem. J. Chem. Phys. Phys. Rev. Lett, vol.99, issue.221, pp.6917-3172, 1991.

S. Acquisition-des, 65 a) Elimination des signaux parasites 65 b) Optimisation du rapport signal, p.66

S. Traitement-des, 68 a) Courbes de dispersion 69 b) Logiciel de traitement, ., p.74

M. Sels-de, 74 a) Sels de chlorures, p.75

T. H. Maiman, Stimulated Optical Radiation in Ruby, Nature, vol.187, issue.4736, p.493, 1960.
DOI : 10.1103/PhysRevLett.4.564

T. H. Maiman, Stimulated optical emission in fluorescent solids. I. Theoretical considerations, Phys. Rev, vol.123, issue.4, p.11451150, 1961.

T. H. Maiman, Stimulated Optical Emission in Fluorescent Solids. II. Spectroscopy and Stimulated Emission in Ruby, Physical Review, vol.123, issue.4, p.1151, 1961.
DOI : 10.1103/PhysRev.123.1151

L. E. Hargrove, R. L. Fork, and M. A. Pollock, LOCKING OF He???Ne LASER MODES INDUCED BY SYNCHRONOUS INTRACAVITY MODULATION, Applied Physics Letters, vol.5, issue.1, p.4, 1964.
DOI : 10.1063/1.1754025

F. P. Schäfer, W. Schmidt, and J. Volze, ORGANIC DYE SOLUTION LASER, Applied Physics Letters, vol.9, issue.8, p.306, 1966.
DOI : 10.1063/1.1754762

L. F. Mollenauer and J. C. White, Tunable Lasers, Top. Appl. Phys, vol.59, issue.6, p.404, 1987.

C. V. Shank and E. P. Ippen, Subpicosecond kilowatt pulses from a mode???locked cw dye laser, Applied Physics Letters, vol.24, issue.8, p.373, 1974.
DOI : 10.1063/1.1655222

I. S. Ruddock, E. P. Ippen, A. J. Demaria, D. A. Stetser, H. Heynau et al., Bandwidth-limited subpicosecond pulse generation in modelocked cw dye lasersSelf mode-locking of lasers with saturable absorbersGeneration of optical pulses shorter than 0.1 psec by colliding pulse mode lockingDesign considerations for a femtosecond pulse laser balancing self phase modulation, group velocity dispersion, saturable absorption, and saturable gain, Appl. Phys. Lett. Appl. Phys. Lett. Appl. Phys. Lett. IEEE J, vol.291112, issue.389, pp.296-17463, 1966.

. Quant, J. A. Valdmanis, R. L. Fork, J. P. Gordon, J. C. Walling et al., Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation, group-velocity dispersion, saturable absorption, and saturable gainTunable-laser performance in BeAl 2 O 4 :Cr 3+Some surprising results in studies of transition metal-doped crystalsGeneration of 50-fsec pulses from a pulse-compressed, cw, passively mode-locked Ti:sapphire laserRegeneratively initiated self-modelocked titanium-doped:sapphire laser, Proc. Intern. Conf. Lasers, pp.131-153, 1979.

D. E. Spence, P. N. Kean, W. Sibbett, M. Hentschel, R. Kienberger et al., 60-Femtoseconds pulse generation from a selfmode-locked titanium-doped sapphire laserAttosecond metrologySingle-shot characterization of ultrashort light pulses, Opt. Lett. Nature J. Phys. D : Appl. Phys, vol.1620, issue.5098, pp.42-66, 1991.

H. Abraham, T. Lemoine, C. R. Acad, . Sc, and R. G. Norrish, Photochemical processes at very high light intensity, Z. Elektro. Angew, vol.12922, issue.206, 1899.

C. Phys, R. G. Norrish, G. Porter, R. G. Norrish, G. Porter et al., Chemical reactions produced by very high light intensitiesThe application of flash techniques to the study of fast reactionsFlash photolysis and spectroscopy. A new method for the study of free-radical reactions, Proc. Roy. Soc. A 200, pp.705-745, 1949.

N. Bloembergen, F. Shimizu, R. R. Alfano, S. L. Shapiro, R. R. Alfano et al., Observation of self-phase modulation and small-scale filaments in crystals and glassesEmission in the region 4000 to 7000 °A via four-photon coupling in glassDirect distortion of electronic clouds of rare-gas atoms in intense electric fieldsFemtosecond whitelight continuum pulsesAmplified femtosecond optical pulses and continuum generation at 5-kHz repetition rateEffects of self, induced and cross phase modulations on the generation of picosecond and femtosecond white light supercontinuaFemtosecond pulse amplification at 250 kHz with a Ti:sapphire regenerative amplifier and application to continuum generation, Band-gap dependence of the ultrafast white-light continuum, pp.283-1097, 1967.

. Rev, S. L. Lett-chin, S. Petit, F. Borne, K. Miyazaki et al., The white light supercontinuum is indeed an ultrafast white laserFemtosecond spectroscopy of condensed phases with chirped supercontinuum probingCatastrophic collapse of ultrashort pulsesWhite-light continuum generation and filamentation during the propagation of ultra-short laser pulses in airTwo-photon spectroscopy and analysis with white-light continuum probeSolvatation de l'éthylène glycol : étude par spectroscopie d'absorption résolue en temps à l'échelle femtosecondeOn the nature of "coherent artifact, Thèse de doctoratThe coordination (hydration) of rare earth ions in aqueous chloride solutions from X-ray diffraction. I. TbCl 3 , DyCl 3 , ErCl 3 , TmCl 3 , and LuCl 3, pp.4406-2369, 1998.

E. J. Hart and M. Anbar, The Hydrated Electron, 1970.

M. Haissinsky and A. M. Pujo, Heterogeneous catalysis in radiation chemistry, R. Acad. Sci, vol.240, p.2530, 1955.

H. Fujita, M. Izawa, and H. Yamazaki, ??-Ray-induced Formation of Gold Sol from Chloroauric Acid Solution, Nature, vol.26, issue.4855, p.666, 1962.
DOI : 10.1038/196666a0

J. H. Sommer, P. B. O-'hara, C. D. Jonah, and R. Bersohn, Relative reducibilities of complexes of Fe(III), Co(III), Mn(III) and Cu(II) with apotransferrin using eaq??? and CO2???, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.703, issue.1, p.62, 1982.
DOI : 10.1016/0167-4838(82)90011-5

J. Khatouri, M. Mostafavi, J. Amblard, and J. Belloni, Radiation-induced copper aggregates and oligomers, Chemical Physics Letters, vol.191, issue.3-4, pp.3-4, 1992.
DOI : 10.1016/0009-2614(92)85313-Y

R. K. Broszkiewicz, Pulse radiolysis studies on chloro-complexes of palladium, International Journal for Radiation Physics and Chemistry, vol.6, issue.4
DOI : 10.1016/0020-7055(74)90025-4

J. H. Baxendale, E. M. Fielden, and J. P. Keene, The Pulse Radiolysis of Aqueous Solutions of Some Inorganic Compounds, Proc. Roy. Soc. A 286, p.320, 1965.
DOI : 10.1098/rspa.1965.0147

J. Marignier and J. Belloni, Nanoaggregates of nickel generated by radiolysis, J. Chim

P. Remita, H. Derai, R. Delcourt, M. O. Derai, R. Remita et al., A new process using radiation for synthesizing molecular metal clusters and complexes: first results concerning iron, ruthenium and osmium compounds, Pulse radiolysis of bis(dicarbonylchlororhodium) (Rh I (CO) 2, p.221, 1988.

Y. Liu, Y. Qian, C. Wang, M. Zhang, Y. Zhang et al., CH 3 COO) 2 ) 2 solutions under carbon monoxide or nitrogen atmospherePreparation of nanocrystalline antimony powders by using gamma-ray radiation methodPulse radiolysis studies on complexes of iridium, Cl) 2 and bis(diacetaterhodium) (Rh II, pp.483-73, 1973.

L. Gratiet, B. Remita, H. Picq, G. Delcourt, M. O. Malkov et al., Radiolytic reduction of divalent mercury ions in solution containing metal ionsNanometer-sized Bi particles in aqueous solution: absorption spectrum and some chemical propertiesThe rates of reaction of the hydrated electron in aqueous inorganic solutionsCritical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicalsCritical review of rate constants for reactions of transients from metal ions and metal complexes in aqueous solution, aqueous solutions, pp.263-1524, 1964.

H. Remita, Silver-palladium alloyed clusters synthesized by radiolysis, Z. Phys. D: At., Mol. Clusters, vol.40, pp.1-4, 1997.

M. Mostafavi, Y. Liu, P. Pernot, J. Belloni, M. Mostafavi et al., Dose rate effect on size of CdS clusters induced by irradiation, Radiation Physics and Chemistry, vol.59, issue.1, pp.49-10184, 2000.
DOI : 10.1016/S0969-806X(99)00521-6

H. Remita, A. Etcheberry, J. Belloni, E. J. Hart, S. Gordon et al., Rate constants of hydrated electron reactions with organic compoundsReactions of solvated electrons with solutes at high concentrations. A laser photolysis studyReactions of the hydrated electronAbsorption spectrum of the hydrated electron in water and in aqueous solutionsThe effect of solvent and solutes on the absorption spectrum of solvated electronsConcentration effects on primary processes in the radiation chemistry of aqueous solutionsPulse radiolysis of aqueous lithium chloride solutionsThe rate of hydrated electron reaction with neutral and anionic scavengers in concentrated salt solutions, Dose rate effect on bimetallic gold-palladium cluster structure Colloque Weyl II, pp.31-1271, 1962.

J. A. Delaire, J. Belloni, P. Cordier, M. Delcourt, G. A. Salmon et al., Production of solvated electrons, ion-pairs and alkali metal anions in tetrahydrofuran studied by pulse radiolysisPulse radiolytic formation of solvated electrons, ion-pairs, and alkali metal anions in tetrahydrofuranAlkali metals species in liquid amines, ammonia, and ethers. Formation by pulse radiolysisCorrelation of optical and electron spin resonance spectra for metal-electron species in alkali metal solutionsPulse radiolysis Studies. XXII. Spectrum and kinetics of the sodium cation-electron pair in tetrahydrofuran solutionsCollapse of e -,Na + pairs into sodium atoms and the reactions of solvated electrons and of e -,Na + pairsFormation of electron-cation pairs in the radiolysis of alkaline icePulse radiolysis study of electrons in frozen alkaline solutions, Protons and Ions Involved in Fast Dynamic Phenomena; LazloEffect of ion pairing on the reactivity of solvated electrons in ethyl alcohol, pp.366-2017, 1971.

F. Renou, M. Mostafavi, F. Renou, M. Mostafavi, P. Archirel et al., Formation et réactivité de la paire électron -solvaté -métal alcalino -terreux bivalent dans le tétrahydrofuranne Etude par radiolyse impulsionnelleReactivity of the solvated electron toward divalent magnesiumSolvated electron pairing with earth alkaline metals in THF. 1. Formation and structure of the pair with divalent magnesium, Thèse de doctoratSolvated electron pairing with earth alkaline metals in THF. 2. Reactivity of the (Mg II , e s -) pair with aromatic and halogenated hydrocarbon compounds, pp.1506-6587, 2001.

F. Renou, P. Archirel, P. Pernot, B. Lévy, and M. Mostafavi, Pulse Radiolysis Study of Solvated Electron Pairing with Alkaline Earth Metals in Tetrahydrofuran. 3. Splitting of p-Like Excited States of Solvated Electron Perturbed by Metal Cations, The Journal of Physical Chemistry A, vol.108, issue.6, p.987, 2004.
DOI : 10.1021/jp035899w

Y. Gauduel, H. Gelabert, M. Ashokkumar, H. Gelabert, Y. Gauduel et al., Short-lived charge-transfer-to-solvent-states and multiple electronic relaxations following femtosecond excitation of aqueous chloride ionShort-time electron transfer processes in ionic aqueous solution: counterion and H/D isotope effects on electron-atom pairs relaxationUltrafast electron transfers in aqueous electrolyte solutionsUltrafast reactivity of IR-excited electron in aqueous ionic solutionsSolvated electrons and the effect of coordination on the optical spectra of alkali metal cation-electron pairs in ethers, Chem. Soc. Chem. Phys. J. Phys. Chem. J. Mol. Liq. J. Phys. Chem. A Can. J, vol.112, issue.10240, pp.2925-13993, 1990.

J. G. Kloosterboer, L. J. Giling, R. P. Rettschnick, and J. D. Van-voorst, Flash photolysis of solutions of sodium in ethers, Chemical Physics Letters, vol.8, issue.5, pp.3356-462, 1971.
DOI : 10.1016/0009-2614(71)80429-3

K. R-e-i-t-u-s and I. V. , Effect of solution microstructure on the hydrated electron absorption spectrum, J. Phys. Chem, vol.89, p.1987, 1985.

A. N. Asaad, N. Chandrasekhar, A. W. Nashed, and P. Krebs, Is there any effect of solution microstructure on the solvated electron absorption spectrum in LiCl / H2O solutions, J. Phys

M. Assel, R. Laenen, A. Laubereau, H. A. Schwarz, H. Shiraishi et al., Dynamics of Excited Solvated Electrons in Aqueous Solution Monitored with Femtosecond-Time and Polarization Resolution, The Journal of Physical Chemistry A, vol.102, issue.13, p.2256, 1991.
DOI : 10.1021/jp972499y

D. Borgis and A. Staib, Ultrafast spectroscopy of the aqueous chloride ion studied by quantum molecular dynamics simulationsThe kinetics of the dihalide ions from the flash photolysis of aqueous alkali halide solutions, Chem. J. Phys. Chem, vol.98, issue.8478, pp.5164-9389, 1957.

M. Anbar and J. K. Thomas, Pulse radiolysis studies of aqueous sodium chloride solutions, J

. Phys, J. H. Baxendale, E. M. Fielden, C. Capellos, J. M. Francis et al., Pulse RadiolysisReaction of hydrated electrons with alkali metal cations in alkaline solutionsExcitation energy dependence of the quantum yields of fluorescence and electron formation from aqueous phenol by means of the heavy atom effectReactions of the reducing species in the radiolysis of aqueous methanol solutionsElectrical conductances of some aqueous rare earth electrolyte solutions at 25°C. II. Rare earth chloridesThe Fermi level and the redox potential, Thèse de doctorat, pp.297-373, 1964.

H. Reiss, A. Heller, R. M. Noyes, R. Gomer, G. Tryson et al., Thermodynamics of ion hydration as a measure of effective dielectric properties of waterAn experimental determination of absolute half-cell emf's and single ion free energies of solvationTemperature and isotope effects on the shape of the optical absorption spectrum of solvated electron in waterBand resolution of optical spectra of solvated electrons in water, alcohols, and tetrahydrofuranEffect of temperature on the absorption spectrum of the hydrated electrons and on its bimolecular recombination reactionUltrafast transient absorption spectroscopy of the hydrated electron: a theorySubpicosecond pump-probe absorption of the hydrated electron: Nonlinear response theory and computer simulationMolecular simulation of a hydrated electron at different thermodynamic state pointsResolution of the absorption spectrum of solvated electrons, J. Phys. Chem. J. Am. Chem. Soc. J. Chem. Phys. J. Phys. Chem. Can. J. Chem. J. Phys. Chem. Chem. Phys. Lett. Phys. Rev. E J. Chem. Phys. J, vol.897780, issue.11821, pp.4207-4413, 1962.

K. N. Jha, G. L. Bolton, and G. R. Freeman, Temperature shifts in the optical spectra of solvated electrons in methanol and ethanol, Shape stability of solvated electron optical absorption bands, p.2122, 1972.
DOI : 10.1021/j100669a034

H. Abramczyk, Linear solvated-electron-solvent energies relationship Faraday TransAbsorption spectrum of the solvated electron. 1. Theory, J. Chem. Soc. J. Phys. Chem, vol.84, issue.2816, pp.77-1421, 1981.

D. Borgis, S. Bratos, M. Hilczer, and M. Steblecka, Theoretical description of the hydrated electron Shape and spectroscopic properties of the cavity containing the excess electronElectron solvation in liquid 1-propanol and 2-propanol. Effect of microscopic liquid structureShapes of optical spectra of solvated electrons. Effect of pressure, Shape stability of solvated electron optical absorption bands, pp.436-437, 1977.

A. Hertwig, H. Hippler, A. Unterreiner, S. A. Kabakchi, J. Bonin et al., Faraday TransTemperature-dependent studies of solvated electrons in liquid water with two and three femtosecond pulse sequencesStructure of the spectrum of a hydrated electron in alkaline solutionsAbsorption spectrum of the hydrated electron paired with nonreactive metal cations, J. Chem. Soc. Phys. Chem. Chem. Phys. Khim. Vys. Energ, vol.873, issue.180, p.77, 1971.

I. Chapitre and A. Solvatation-de-l-'électron-dans-les-alcools, Introduction à la dynamique de solvatation de l'électron, p.123

L. Mesure-de, 137 a) Propane-1 137 b) Propane-1,3-diol, p.139

.. Le-propane--diol, 148 F. Dynamique de solvatation dans un triol : le glycérol, Références du chapitre IV, vol.152, issue.3, p.154

J. H. Baxendale and P. Wardman, Electrons in liquid alcohols at low temperatures, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol.69, issue.0, p.584, 1973.
DOI : 10.1039/f19736900584

A. Migus, Y. Gauduel, J. L. Martin, and A. Antonetti, Excess electrons in liquid water: First evidence of a prehydrated state with femtosecond lifetime, Physical Review Letters, vol.58, issue.15, pp.58-1559, 1987.
DOI : 10.1103/PhysRevLett.58.1559

A. Hertwig, H. Hippler, and A. Unterreiner, Transient spectra, formation, and geminate recombination of solvated electrons in pure water UV-photolysis: an alternative view, Physical Chemistry Chemical Physics, vol.1, issue.24
DOI : 10.1039/a906950j

C. Pépin, D. Houde, H. Remita, T. Goulet, and J. Jay-gerin, Evidence for resonanceenhanced multiphoton ionization of liquid water using 2-eV laser light: variation of hydrated electron absorbance with femtosecond pulse intensity, Phys. Rev. Lett, issue.23, pp.69-3389, 1992.

P. M. Rentzepis, R. P. Jones, and J. Jortner, Dynamics of solvation of an excess electron, The Journal of Chemical Physics, vol.59, issue.2
DOI : 10.1063/1.1680087

D. C. Walker, Dynamics of electron localization, The Journal of Physical Chemistry, vol.84, issue.10, p.1140, 1980.
DOI : 10.1021/j100447a012

J. M. Wiesenfeld and E. P. Ippen, Dynamics of electron solvation in liquid water, Chemical Physics Letters, vol.73, issue.1
DOI : 10.1016/0009-2614(80)85199-2

G. A. Kenney-wallace, Picosecond Spectroscopy and Dynamics of Electron Relaxation Processes in Liquids, Adv. Chem. Phys, vol.47, p.535, 1981.
DOI : 10.1002/9780470142660.ch16

D. N. Nikogosyan, A. A. Oraevsky, V. I. Rupasov, L. D. Zusman, and A. B. Helman, Two-photon ionization and dissociation of liquid water by powerful laser UV radiationTime-resolved spectroscopy of solvated electrons, Chem. Phys, vol.7710, issue.1, p.131, 1983.

. Phys, Y. Lett-hirata, N. Murata, Y. Tanioka, N. Mataga et al., Dynamic behavior of solvated electrons produced by photoionization of indole and tryptophan in several polar solventsFemtosecond studies of electron-cation dynamics in neat water: the effects of isotope substitutionFemtosecond studies of electron photodetachment of simple ions in liquid water: solvation and geminate recombination dynamicsFemtosecond studies of the presolvated electron: an excited state of the solvated electron ?Femtosecond studies of electron photodetachment from an iodide ion in solution: the trapped electronFemtosecond studies of electrons in liquids, J. Phys. Chem. Chem. Phys. Lett. J. Phys. Chem. Phys. Rev. Lett. Chem. Phys. Lett. J. Opt, vol.1141516, issue.1693, pp.4527-4413, 1985.

. Soc, M. C. Messmer, and J. D. Simon, A physical interpretation of the time-dependent absorption dynamics of photogenerated electrons in water, Electron hydration in pure liquid water, pp.1511-1220, 1990.

M. Sander, U. Brummund, K. Luther, J. Troe, Y. Gauduel et al., Fast processes in UV-two-photon excitation of pure liquidsEarly formation of electron-radical pairs in a polar protic liquid: evidence of ultrafast concerted electron-proton transfersKinetic analysis of computer experiments on electron hydration dynamicsUltrafast transient absorption spectroscopy of the solvated electron in water, Existence of two nonequilibrium configurations in the near-infrared region, pp.9105-1486, 1991.

J. L. Mcgowen, H. M. Ajo, J. Z. Zhang, B. J. Schwartz, B. J. Schwartz et al., Dynamical elements of transient spectral hole burning of the hydrated electron [25] Rips, I.Electron solvation dynamics in polar liquidPrimary photochemical processes in waterObservation of a continuous spectral shift in the solvation kinetics of electrons in neat liquid deuterated waterUltrafast events in the electron photodetachment from the hexacyanoferrate(II) complex in solutionFemtosecond solvation dynamics of hydrated electronDetailed investigation of the femtosecond pump-probe spectroscopy of the hydrated electronRetrapping and solvation dynamics after femtosecond UV excitation of the solvated electron in waterEarly-time dynamics of the photoexcited hydrated electronOn the relaxation kinetics following the absorption of light by solvated electrons in polar liquids: roles of the continuous spectral shifts and of the stepwise transition, Femtosecond studies of hydrated electron recombination following multiphoton ionization at 390 nmTwo-photon dissociation and ionization of liquid water studied by femtosecond transient absorption spectroscopy, pp.504-4489, 1994.

M. Assel, R. Laenen, A. Laubereau, A. Hertwig, H. Hippler et al., Ultrafast dynamics of solvated electrons in polar liquidsSolvation dynamics of the hydrated electron depends on its initial degree of electron delocalizationHydrated-electron population dynamicsUltrafast transient-absorption spectroscopy of the aqueous solvated electronGeneration of solvated electrons in neat water: new results from femtosecond spectroscopyFemtosecond electron solvation kinetics in waterDetailed investigations of the pumpprobe spectroscopy of the equilibrated solvated electron in alcoholsThe hydrated electron: quantum simulation of structure, spectroscopy, and dynamicsPump?probe spectroscopy of the hydrated electron: A quantum molecular dynamics simulation, Aqueous solvation dynamics with a quantum mechanical Solute: Computer simulation studies of the photoexcited hydrated electron, pp.165-2374, 1988.

E. Keszei, T. H. Murphrey, P. J. Rossky, B. J. Schwartz, P. J. Rossky et al., The interplay of dielectric and mechanical relaxation in solvation dynamicsMolecular dynamics simulation of an excess charge in water using mobile Gaussian orbitalsUltrafast transient absorption spectroscopy of the hydrated electron: a theoryThe isotope effect in solvation dynamics and nonadiabatic relaxation: a quantum simulation study of the photoexcited solvated electron in D 2 OQuantum decoherence and the isotope effect in condensed phase nonadiabatic molecular dynamics simulationsSubpicosecond pump-probe absorption of the hydrated electron: Nonlinear response theory and computer simulationPicosecond spectroscopy and solvation clusters. The dynamics of localizing electrons in polar fluidsFemtosecond kinetic measurements of excess electrons in methanol: substantation for a hybrid solvation mechanismSolvated electrons in irradiated concentrated alkaline methanol and water-methanol mixturesSolvated electron reaction rates in alcohols and water. Solvent effectPicosecond laser studies of electron solvation in alcoholsElectron trapping in glassy normal alcoholsElectron solvation in neat alcohols, J. Phys. Chem. J. Mol. Liq. J. Chem. Phys. Chem. Phys. Lett. J. Chem. Phys. J. Chem. Phys. Phys. Rev. E J. Phys. Chem. J. Phys. Chem. J. Phys. Chem. J. Am. Chem. Soc. Chem. Phys. Lett. J. Phys. Chem. Rad. Phys. Chem. J. Phys, vol.991665358, issue.216, pp.2642-6997, 1972.

P. K. Walhout, J. C. Alfano, T. Kimura, C. Silva, P. J. Reid et al., Direct pump/probe spectroscopy of the near-IR band of the solvated electron in alcoholsSome present aspects of radiolysis of liquid methanol: a reviewElectron localization in liquid methanol. Lifetime of the preexisting electron trapsElectron solvation in methanol revisited, Chem. Chem. Phys. Lett. Rad. Phys. Chem. J. Phys. Chem, vol.9964, issue.10018, pp.6917-473, 1995.

C. Scheidt, T. Laenen, R. Turi, L. Holpar, P. Keszei et al., Ionization of methanol: monitoring the trapping of electrons on the fs time scaleAlternative mechanisms for solvation dynamics of laserinduced electrons in methanolObservations on solvated electrons in aliphatic hydrocarbons at room temperature by pulse radiolysisA pulse radiolysis study of electrons in 1-propanol at low temperaturesSolvation time of the electron in polar liquids. Water and alcoholsElectron in cold alcohols: a pulse radiolysis study in ethanol, Chem. Phys. Lett. J. Phys. Chem. A J. Chem. Soc., Faraday Trans.1 Int. J. Radiat. Phys. Chem. J. Phys. Chem. Can. J. Chem, vol.5570, issue.792611, pp.445-5469, 1973.

M. Ogasawara, K. Shimizu, H. Yoshida, G. A. Kenney-wallace, C. D. Jonah et al., Picosecond molecular relaxations during electron solvation in liquid alcohol and alcohol-alkane solutionsSolvation dynamics of electron ejected by photoionization of pphenylenediamine in several alcohols: temperature effect studied by picosecond transient absorption measurementsEvidence for two electron states in solvation and scavenging processes in alcoholsSpectral characteristics of the weakly bound electron species in methanol as determined from a hybrid solvation modelDielectric relaxation in liquid alcohols and diolsDispersion at millimeter wavelengths in methyl and ethyl alcoholsMicrowave absorption and molecular structure in liquids, Rad. Phys. Chem. Chem. Phys. Lett. J. Phys. Chem. J. Phys. Chem. J. Chim. Phys. J. Chem. Phys. J. Chem. Phys, vol.1778, issue.37, pp.331-596, 1962.

B. Soroushian, S. Arai, M. C. Sauer, R. R. Hentz, G. Kenney-wallace et al., Thèse de doctoratSolvatation de l'éthylène glycol : étude par spectroscopie d'absorption résolue en temps à l'échelle femtosecondeAbsorption spectra of the solvated electron in polar liquids: dependence on temperature and composition mixturesOptical absorption of solvated electrons in alcohols and their mixtures with alkanesThe influence of molecular structure on optical absorption spectra of solvated electrons in alcohols, The three dielectric dispersion regions of the normal primary alcoholsBand resolution of optical spectra of solvated electrons in water, alcohols, and tetrahydrofuran, pp.1294-2297, 1965.

J. Jung, S. Habilitation-À-diriger-les-recherches-pommeret, F. Gobert, M. Mostafavi, I. Lampre et al., Photoionisation des liquides moléculairesFemtochemistry of the hydrated electron at decimolar concentrationTwo-photon absorption coefficients of several liquids at 264 nmThe Properties of Solvents";Wiley Series in Solution ChemistrySolvation dynamics of electron produced by two-photon ionization of liquid polyols. I. Ethylene GlycolPulse radiolysis studies. VII. The absorption spectra and radiation chemical yields of the solvated electron in the aliphatic alcoholsTemperature and molecular structure dependences of optical spectra of electrons in liquid diolsGlycerol viscosity tablesPressure and temperature dependent viscosity of two glass forming liquids: glycerol and dibutyl phthalateViscosity and shear response at the dynamic glass transition of glycerolThe reactions of electrons in glycerolElectronic absorption spectra of excess electrons in molecular aggregates. I. Trapped electrons in gamma-irradiated amorphous solids at 77°K, J. Phys. Chem. A IEEE J. Quant. Electr. J. Chem. Phys. Can. J. Chem. Ind. Eng. Chem. J. Chem. Phys. J. Chem. Phys. J. Phys. Chem. J. Phys, vol.10587, issue.1132012, pp.11400-11431, 1932.

T. Shida, S. Iwata, T. Watanabe, R. S. Dixon, V. J. Lopata et al., Electronic absorption spectra of excess electrons in molecular aggregates. II. Solvated electronsTemperature dependence of the absorption maximum of the solvated electron in liquid 1-propanolEffect of temperature on the solvated electron in 1- propanol, J. Phys. Chem. J. Phys. Chem. Int. J. Radiat. Phys. Chem, vol.76, issue.8, pp.3691-185, 1972.

M. J. Assael, S. K. Polimatidou, J. H. Baxendale, P. H. Sharpe, D. Huppert et al., Measurements of the viscosity of alcohols in the temperature range 290-340 K at pressures up to 30 MPaElectron solvation in alcohols at 77 K after pulse radiolysis [101] FarhatazizAn intrasolvent and intersolvent correlation of characteristics of absorption spectra of the solvated electron in polar solventsPicosecond infrared dynamics of electron trapping in polar liquidsAnion and electron solvation in alcohols, Int. J. Thermophys. Chem. Phys. Lett. Rad. Phys. Chem. J. Chem. Phys, vol.15102, issue.755, pp.95-503, 1976.

. Chem, Electron solvation in liquid 1-propanol and 2-propanol. Effect of microscopic liquid structureElectron solvation in 1-propanol and 2-propanol as a function of temperature, Radiat. Phys. Chem. Chem. Phys. Lett, vol.54, issue.262, pp.433-649, 1996.

D. Analyse-des, 161 a) Conditionnement des données 161 b) Analyse bayésienne des données 164 d) Sélection du modèle 165 e) Modèles semi-paramétriques, 162 c) Méthode de Monte Carlo par Chaîne de Markov (MCMC), p.166

.. Modèles-de-dynamique-de-solvatation, 166 a) Artefacts autour du temps zéro 166 b) Modèles par étapes 167 c) Modèles de relaxation continue, p.169

G. Cas-du, 186 a) Modèle par étapes 186 b) Modèle de relaxation continue, .

V. Figure, Ajustements (en traits pleins) des cinétiques expérimentales (en symboles) dans le propane-1,2-diol pour trois longueurs d'onde caractéristiques par le modèle CREL, et résidus de ces ajustements, pour deux fenêtres temporelles (noir : 50 ps ; rouge : 100 ps)

V. Figure, Ajustements (en traits pleins) des cinétiques expérimentales (en symboles) dans le propane-1,3-diol pour trois longueurs d'onde caractéristiques par le modèle STEP3, et résidus de ces ajustements, pour les trois fenêtres temporelles (noir : 50 ps ; rouge : 100 ps ps), p.470

V. Figure, Ajustements (en traits pleins) des cinétiques expérimentales (en symboles) dans le propane-1,3-diol pour trois longueurs d'onde caractéristiques par le modèle CREL, et résidus de ces ajustements, pour deux fenêtres temporelles (noir : 50 ps ; rouge : 100 ps)

D. S. Sivia, Data analysis: a Bayesian tutorial, 1996.

V. Dose, Bayesian inference in physics: case studies, Reports on Progress in Physics, vol.66, issue.9, p.1421, 2003.
DOI : 10.1088/0034-4885/66/9/202

C. Pépin, T. Goulet, D. Houde, and J. Jay-gerin, Observation of a Continuous Spectral Shift in the Solvation Kinetics of Electrons in Neat Liquid Deuterated Water, The Journal of Physical Chemistry A, vol.101, issue.24, p.4351, 1997.
DOI : 10.1021/jp970354l

S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing, Physical Review A, vol.59, issue.3, p.2369, 1999.
DOI : 10.1103/PhysRevA.59.2369

P. Borri, F. Romstad, W. Langbein, A. E. Kelly, J. Mork et al., Separation of coherent and incoherent nonlinearities in a heterodyne pump-probe experiment, Optics Express, vol.7, issue.3, p.107, 2000.
DOI : 10.1364/OE.7.000107

K. Ekvall, P. Van-der-meulen, C. Dhollande, L. Berg, S. Pommeret et al., Cross phase modulation artifact in liquid phase transient absorption spectroscopy, Journal of Applied Physics, vol.87, issue.5
DOI : 10.1063/1.372185

M. Lorenc, M. Ziolek, R. Naskrecki, J. Karolczak, J. Kubicki et al., Artifacts in femtosecond transient absorption spectroscopyOn the nature of "coherent artifactHeterogeneous dynamics in liquids: fluctuations in space and time, App. Phys. B Lasers and Optics J. Exp. Theor. Phys. J. Phys, vol.74, issue.1002, p.272, 2002.

C. Siano, D. B. Metzler, and D. E. , Band Shapes of the Electronic Spectra of Complex Molecules, The Journal of Chemical Physics, vol.51, issue.5, p.703, 2002.
DOI : 10.1063/1.1672270

T. Gustavsson, G. Baldacchino, J. Mialocq, and S. Pommeret, A femtosecond fluorescence up-conversion study of the dynamic Stokes shift of the DCM dye molecule in polar and non-polar solvents, Chemical Physics Letters, vol.236, issue.6, pp.1856-587, 1969.
DOI : 10.1016/0009-2614(95)00276-A

F. Alvarez, A. Alegria, and J. Colmenero, Relationship between the time-domain

I. Lampre, M. Lin, H. He, Z. Han, M. Mostafavi et al., Temperature dependence of the solvated electron absorption spectra in propanediolsA dielectric relaxation study of some mixtures of mono and dihydric alcoholsHigh frequency permittivity and its use in the investigation of solution propertiesDielectric relaxation time and relaxation time distribution of alcohol-water mixturesDielectric relaxation study of alcohol/diol(s) mixturesDielectric spectroscopy of glass-forming materials: alpharelaxation and excess wingFeatures of supercooled glycerol dynamics, Phys. Rev. B Chem. Phys. Lett. J. Mol. Liq. Pure & Appl. Chem. J. Phys. Chem. A J. Mol. Liq. Chem. Phys. Phys. Rev. B, vol.441617192021, issue.67, pp.7306-1473, 1991.

.. Méthode-de-synthèse-du-perchlorate-de-terbium-anhydre, 205 B. Absorption à deux photons, 205 C. Fonctions de distribution de probabilités, p.206

J. Bonin, I. Lampre, and M. Mostafavi, First Observation of Electron Paired with Divalent and Trivalent Nonreactive Metal Cations in Water, The Journal of Physical Chemistry A, vol.108, issue.33, pp.6817-6819, 2004.
DOI : 10.1021/jp047492c

». Propanediols, J. Bonin, I. Lampre, P. Pernot, and M. Mostafavi, Solvation Dynamics of Electron Produced by Two-Photon Ionization of Liquid Polyols. II, Journal of Physical Chemistry A