Synthèse et caractérisation de dispersions aqueuses de polyuréthane
Vanessa Durrieu

To cite this version:
THESE

pour obtenir le grade de

DOCTEUR DE L’INPG

Spécialité : « Science et Génie des Matériaux »

préparée au laboratoire de Génie des Procédés Papetiers
de l’Ecole Française de Papeterie et des Industries Graphiques de Grenoble – UMR 5518
dans le cadre de l’Ecole Doctorale « Matériaux et Génie des Procédés »

présentée et soutenue publiquement

par

Vanessa DURRIEU

le 08 octobre 2002

SYNTHESE ET CARACTERISATION DE DISPERSIONS AQUEUSES DE POLYURETHANE

Directeur de thèse : Alessandro GANDINI

JURY

M. ROCHAS C. Président
M. PASCAULT J-P. Rapporteur
M. PILATI F. Rapporteur
M. GANDINI A. Directeur de thèse
Mme. BLAYO A. Co-encadrant
M. EISELE G. Examinateur
TABLES DES MATIERES

TABLES DES MATIERES ...2

INTRODUCTION GENERALE ..10

PARTIE I : ETUDE BIBLIOGRAPHIQUE

I. GENERALITES SUR LES POLYURETHANES.................................13

I.1. Introduction .. 13

I.2. Réactions des isocyanates .. 13
 I.2.1. Réactions avec des composés à hydrogène mobile..................... 14
 I.2.1.1. Réaction avec les alcools ... 14
 I.2.1.2. Réaction avec les amines (primaires ou secondaires) 14
 I.2.1.3. Réaction avec l’eau .. 15
 I.2.1.4. Réaction avec les uréthanes et les urées 15
 I.2.1.5. Réactions avec les acides carboxyliques 15
 I.2.2. Réactions d’auto-addition des isocyanates 16
 I.2.2.1. Polymérisation ... 16
 I.2.2.2. Trimérisation ... 16
 I.2.2.3. Dimérisation ... 16

I.3. Mécanisme réactionnel et cinétique ... 17
 I.3.1. Mécanisme réactionnel .. 17
 I.3.2. Cinétique .. 17
 I.3.3. Influence de la nature de l’alcool ... 18
 I.3.4. Influence de la nature de l’isocyanate 18

II. DISPERSIONS AQUEUSES DE POLYURETHANE.........................20

II.1. Introduction ... 20

II.2. Procédés de fabrication .. 21
II.2.1. Procédé "à l’acétone" .. 22
II.2.2. Procédé "mélange du prépolymère" ... 23
II.2.3. Procédé "Hot Melt" .. 23
II.2.4. Procédé "à la kéttamine/kétazine" .. 24

II.3. Matières premières .. 25
II.3.1. Diisocyanates ... 25
II.3.1.1. Isocyanates aromatiques ... 25
II.3.1.1.1. Diphényléthane diisocyanate (MDI) ... 25
II.3.1.1.2. Toluène diisocyanate (TDI) .. 26
II.3.1.2. Isocyanates aliphatiques ... 27
II.3.1.2.1. Tétraméthylxylène diisocyanate (TMXDI) ... 28
II.3.1.2.2. Isophorone diisocyanate (IPDI) .. 29
II.3.1.2.3. Dicyclohexyléthane diisocyanate (H12MDI) ... 29
II.3.2. Polyols .. 29
II.3.2.1. Polyéthers ... 30
II.3.2.2. Polyesters ... 31
II.3.2.3. Acryliques .. 32
II.3.2.4. Polycarbonates aliphatiques ... 34
II.3.3. Agents d’extension .. 35
II.3.3.1. Polyols .. 36
II.3.3.2. Polyamines ... 36

II.4. Emulsification interne ... 37
II.4.1. Ionomères ... 37
II.4.2. Non ionomères .. 38
II.4.3. Combinaison de groupes ioniques et de segments hydrophiles 38

CONCLUSION .. 38
PARTIE II : TECHNIQUES EXPERIMENTALES

III. PROCEDE DE SYNTHÉSE DES DISPERSIONS AQUEUSES41

III.1. Introduction .. 41

III.2. Description de la procédure suivie ... 41

IV. TECHNIQUES D’ANALYSE ..43

IV.1. Introduction .. 43

IV.2. Analyse spectroscopique ... 43

IV.2.1. Spectroscopie Infrarouge à Transformée de Fourier ... 43

IV.2.2. Résonance Magnétique Nucléaire .. 43

IV.3. Analyse thermique .. 44

IV.4. Chromatographie d’exclusion stérique sur gel ... 44

IV.5. Analyse des énergies superficielles ... 44

IV.5.1. Tension superficielle des liquides .. 44

IV.5.2. Énergie de surface des solides ... 45

IV.5.2.1 : Angles de contact ... 45

IV.5.2.2 : Méthodes de calcul de l’énergie de surface .. 47

IV.5.2.2.1. Approche de Owens Wendt [Owens et Wendt, 1969] 47

IV.5.2.2.2. Approche acide-base, approche de Van Oss [Van Oss, 1993] 48

IV.6. Analyse des particules en dispersion ... 48

IV.6.1. "Taille moyenne" des particules par diffusion de lumière 49

IV.6.2.1. Microscopie électronique .. 50

IV.6.2.2. Analyse d'images ... 52

IV.6.2.3. Artefacts possibles de la cryo-MET ... 54

IV.6.2.4. Erreurs sur la mesure de taille ... 55

IV.6.3. Potentiel zêta .. 57

IV.7. Comportement en écoulement .. 57
PARTIE III : CARACTERISATION DES MATIERES PREMIERES ET DE DISPERSIONS COMMERCIALES

V. CARACTERISATION DES MATIERES PREMIERES.................................59

V.1. Diisocyanates.. 59
 V.1.1. Diisocyanate aromatique ... 59
 V.1.2. Diisocyanates aliphatiques ... 64
 V.1.2.1. TMXDI .. 64
 V.1.2.2. IPDI .. 65
 V.1.2.3. H12MDI .. 68

V.2. Diols ... 70
 V.2.1. Polyethers diols ... 70
 V.2.1.1. Polyoxydes de propylène... 71
 V.2.1.2. Polyoxydes d’éthylène... 72
 V.2.1.3. Copolymères blocs .. 72
 V.2.1.4. Polytétrahydrofurane diols .. 74
 V.2.2. Polymers .. 75
 V.2.2.1. Polycaprolactone diols ... 75
 V.2.2.2. Polyadipates diols ... 76
 V.2.2.2.1. Adipate 1 .. 76
 V.2.2.2.2. Adipate 2 .. 77
 V.2.2.2.3. Adipate 3 .. 78
 V.2.3. Diols "exotiques" ... 79
 V.2.3.1. Diol acrylique .. 79
 V.2.3.2. Polycarbonate diol ... 81
 V.2.3.3. Diol fluoré ... 83
 V.2.4. Analyse thermique des diols .. 84
 V.2.4.1. Influence du poids moléculaire du diol 84
 V.2.4.2. Influence de la structure chimique du diol 86
 V.2.4.3. Influence de la cristallisation du diol ... 86

V.3. Emulsifiant interne .. 88

V.4. Agent d’extension de chaîne ... 89
PARTIE IV : RELATIONS STRUCTURE-PROPRIETES DES DISPERSIONS AQUEUSES DE POLYURETHANE

VII. ROLE DU DIISOCYANATE ... 101

VII.1. Synthèse bibliographique.. 101
VII.1.1. Influence de la structure du diisocyanate... 101
VII.1.2. Influence du rapport NCO/OH ... 104

VII.2. Résultats et discussions ... 107
VII.2.1. Les différentes dispersions réalisées... 107
VII.2.2. Influence de la structure du diisocyanate... 107
VII.2.2.1. MDI... 107
VII.2.2.2. H_{12}MDI ... 108
VII.2.2.3. IPDI et TMXDI... 109
VII.2.2.3.1. Cinétique de polycondensation... 109
VII.2.2.3.2. Influence de la structure de ces diisocyanates 112
VII.2.3. Influence du rapport NCO/OH ... 115
VII.2.4. Conclusions... 122

VIII. ROLE DU POLYOL ... 124
VIII.1. Synthèse bibliographique .. 124
 VIII.1.1. Influence de la nature du polyol .. 124
 VIII.1.1.1. Polyéthers polyols .. 124
 VIII.1.1.2. Polyesters polyols .. 125
 VIII.1.2. Influence du poids moléculaire du polyol ... 126

VIII.2. Résultats et discussions .. 127
 VIII.2.1. Réalisation des dispersions .. 127
 VIII.2.1.1. Polyoxides de propylène ... 127
 VIII.2.1.2. Polyoxides d’éthylène ... 128
 VIII.2.1.3. Copolymères blocs PEG-PPG-PEG ... 129
 VIII.2.1.4. Polytétrahydrofurane diols ... 130
 VIII.2.1.5. Polycaprolactone diols ... 131
 VIII.2.1.6. Adipates ... 132
 VIII.2.2. Caractérisations .. 132
 VIII.2.2.1. Les dispersions réalisées ... 132
 VIII.2.2.2. Influence de la nature du diol .. 133
 VIII.2.2.3. Influence du poids moléculaire du diol .. 134
 VIII.2.3. Conclusions .. 141

IX. INFLUENCE DE POLYMÈRES "EXOTIQUES" .. 143

IX.1. Synthèse bibliographique .. 143
 IX.1.1. Acryliques .. 143
 IX.1.2. Diols polycarbonates .. 145
 IX.1.3. Diols fluorés .. 145

IX.2. Résultats et discussions ... 146
 IX.2.1. Différentes dispersions réalisées .. 146
 IX.2.2. Caractérisation des dispersions hybrides poly(uréthane-acrylique) 146
 IX.2.3. Caractérisation des dispersions à base de diol polycarbonate 149
 IX.2.4. Caractérisation des dispersions à base de diol fluoré 150
 IX.2.5. Conclusions .. 152

X. ROLE DE L’AGENT EMULSIFIANT ... 154
INTRODUCTION

GENERALE
Introduction Générale

Depuis la découverte des polyuréthanes dans les années trentes, leurs domaines d’application n’ont cessé de s’élargir : mousses souples ou rigides, revêtements, élastomères, colles, adhésifs, bains de couches, encres et vernis…

En 2000, le marché mondial des produits à base de polyuréthane étaient estimé à 3,1 millions de tonnes. La production la plus importante était celle des enductions et représentait 44% de cette demande globale. Ces enductions (revêtements, peintures, encres et vernis) étaient, jusqu’à il y a quelques dizaines d’années essentiellement constituées de polyuréthanes à base de solvants organiques. Mais le coût élevé de ces polyuréthanes, et surtout les normes environnementales sur les émissions de composés organiques volatils, de plus en plus contraignantes, ont favorisé le développement des dispersions aqueuses de polyuréthane. Cependant, le comportement et les propriétés des dispersions aqueuses de polyuréthane sont très différents de ceux des polyuréthanes à base solvant.

Au sein de l’Ecole Française de Papeterie et des Industries Graphiques, notre équipe a acquis, depuis plusieurs années, une expérience solide tant dans la caractérisation des polyuréthanes que dans l’étude des matériaux impliqués dans le domaine de la Transformation et de l’Imprimerie. Ce travail, traitant de la synthèse et la caractérisation de dispersions aqueuses de polyuréthane, en vue de leur application dans la formulation d’encres et vernis d’imprimerie, s’intègre donc logiquement dans les thèmes de recherche du laboratoire.

L’objectif de ce travail était multiple :
- mettre en place un procédé de fabrication permettant de préparer les dispersions sans aucun ajout de solvant organique, afin d’être en accord avec les contraintes législatives et environnementales ;
- préparer des dispersions aqueuses de polyuréthane stables dans le temps et ayant les propriétés requises en tant que dispersion (taille de particules, viscosité) mais aussi en tant que polymère (propriétés mécaniques, résistance à la température) pour être utilisées dans la formulation d’encres et vernis d’imprimerie ;
- et surtout mieux comprendre les relations structure-propriétés propres au polymère ainsi qu’à son état dispersé en tant qu’émulsion colloïdale aqueuse.
La première partie de ce manuscrit est consacrée à une étude bibliographique sur les polyuréthanes. Après un premier chapitre présentant les principales caractéristiques de ces polymères, le deuxième chapitre présente plus particulièrement les dispersions aqueuses de polyuréthane, leurs procédés de fabrication et les matières premières utilisées.

Dans la deuxième partie sont détaillés le procédé d’élaboration choisi pour notre travail et les différentes techniques utilisées pour la caractérisation des dispersions et des polymères.

La troisième partie présente dans un premier chapitre la caractérisation de toutes les matières premières que nous avons utilisées, et dans un deuxième temps, les caractérisations de quelques dispersions commerciales, utilisées dans la formulation d’encres et de vernis, afin d’avoir une première idée des propriétés requises des dispersions aqueuses de polyuréthane.

Enfin, la dernière partie traite des relations structure propriétés des dispersions aqueuses et des polymères obtenus. Elle se divise en quatre chapitres :

- rôle du diisocyanate : étude de l’influence de la nature du diisocyanate et du rapport NCO/OH sur les propriétés physico-chimiques des dispersions et des polymères ;
- rôle du polyol : étude de l’influence de la nature du diol et de son poids moléculaire ;
- apport de diols spécifiques : étude de l’influence de l’ajout de diols spécifiques comme les diols acryliques, les diols polycarbonates ou encore des diols fluorés ;
PARTIE I

ETUDE BIBLIOGRAPHIQUE
I. Généralités sur les polyuréthanes

I.1. Introduction

Les polyuréthanes sont des polymères qui contiennent le groupement uréthane (aussi appelé carbamate) :

Ce groupement est issu de la réaction entre un alcool et un isocyanate, découverte par Wurtz vers 1848, mais les premiers polyuréthanes n'ont été commercialisés qu'à partir de 1937, par la société BAYER.

Les polyuréthanes résultent d'une réaction de polycondensation entre un composé portant au moins deux hydrogènes mobiles de type alcool HO-R-OH et un composé avec au moins deux fonctions isocyanates NCO.
Dans le cas de monomères difonctionnels, on a alors (Eq I.1) :

Les polyuréthanes ont été initialement utilisés dans la fabrication de mousses et composés plastiques, très largement utilisés pendant la Seconde Guerre Mondiale dans l'isolation thermique et sonore des sous-marins allemands. Ce n'est que dans les années 1950 que les premières enductions à base de polyuréthane ont fait leur apparition, à partir du moment où les dérivés du toluène diisocyanate (TDI) ont été fabriqués à grande échelle. Parallèlement les dérivés de l'hexaméthylène diisocyanate (HDI) ont été brevetés en 1958 et ont mené au développement de nouvelles enductions [Ardaud et al., 1998].
Depuis, ces polymères se sont développés de façon exceptionnelle, dans des domaines d'application très divers tels les élastomères, les thermoplastiques, les résines thermodurcissables, les systèmes expansés, mais aussi les fibres textiles, et plus récemment et avec un essor considérable, les systèmes d'enduction (bains de couchage pour le papier, revêtements du bois, peintures automobiles, adhésifs,…).

I.2. Réactions des isocyanates

Les isocyanates sont caractérisés par la fonction –N=C=O, très réactive à cause de ses deux insaturations. Cette réactivité est due au caractère électrophile de l'atome de carbone qui donne au groupe isocyanate une structure permettant des possibilités de résonance (Eq. I.2) :
I.2.1. Réactions avec des composés à hydrogène mobile

Les isocyanates réagissent donc avec tous les composés à hydrogène mobile. La réaction classique (Eq. I.3) s'écrit sous la forme :

\[\text{Puisque la fonction isocyanate joue ici le rôle d'électrophile, plus HA est nucléophile, plus la réaction de condensation sera rapide.} \]

L'atome d'hydrogène se fixe sur l'atome d'azote de l'isocyanate alors que le résidu A se fixe sur le carbone du groupement carbonyle. Cette réaction, très exothermique, peut être fortement influencée par la présence de catalyseurs, notamment les amines tertiaires et les composés métalliques (sels de zinc, de fer) [Oertel, 1985].

I.2.1.1. Réaction avec les alcools

Les condensations des isocyanates avec les alcools produisent des uréthanes selon la réaction suivante (Eq. I.4).

Cette réaction est réversible : à haute température (supérieure à 300°C), les uréthanes se décomposent pour redonner l’isocyanate et l’alcool correspondants.

La vitesse de la réaction varie avec la classe de l'alcool dans l'ordre suivant :

Les groupes hydroxyles primaires réagissent le plus vite, les groupes hydroxyles secondaires réagissent environ trois fois moins vite et les groupes hydroxyles tertiaires sont environ douze fois plus lents. Cela est dû à l’encombrement stérique. Les groupes phénoliques ont une réactivité du même ordre que celle des groupes hydroxyles tertiaires [Wirpsza, 1993].

I.2.1.2. Réaction avec les amines (primaires ou secondaires)

Les produits de cette réaction (Eq. I.5) sont des urées substituées. Les amines sont beaucoup plus réactives que les alcools car leur caractère nucléophile est plus marqué. La réactivité d'une amine primaire avec un isocyanate, sans catalyseur et en solution, est environ mille fois supérieure à celle du groupement hydroxyle correspondant. La réaction est d’autant plus
rapide que l’amine est basique [Wirpsza, 1993]. Elle sera donc très rapide avec les amines aliphatiques, plus lente avec les amines aromatiques.

I.2.1.3. Réaction avec l’eau

Cette réaction (Eq. I.6), essentielle dans la formation de mousses polyuréthanes, conduit à la formation d’un acide carbamique. Cet acide, instable, va alors libérer du dioxyde de carbone et former l’amine correspondante, qui peut alors réagir immédiatement avec l’isocyanate présent dans le mélange réactionnel, pour former l’urée correspondante [Oertel, 1985].

I.2.1.4. Réaction avec les uréthanes et les urées

Les uréthanes et les urées, issus des réactions précédentes (Eq. I.4 et I.5) possèdent encore des protons acides et peuvent de ce fait réagir à leur tour avec un isocyanate. Bien que leur réactivité soit significativement plus faible que celle d’un alcool ou d’une amine, ils sont, dans des conditions expérimentales plus sévères (température élevée, présence de catalyseur), aussi capables de réagir avec un isocyanate [Oertel, 1985].

Le produit de la réaction d’un isocyanate et d’un uréthane est un allophanate (Eq. I.7).

Quant à la réaction d’un isocyanate et d’une urée (Eq. I.8), elle conduit à la formation de bi-urées substituées.

Dans le cas de di- ou polyisocyanates, ces réactions entraînent la formation de polymères réticulés. Bien que ces réactions nécessitent des températures élevées pour avoir lieu, des températures encore supérieures peuvent provoquer la réaction inverse [Oertel, 1985].

I.2.1.5. Réactions avec les acides carboxyliques

Cette réaction (Eq. I.9) conduit à la formation d’amides, avec là aussi, un dégagement de CO₂, mais le caractère électrophile de la fonction COOH limite considérablement sa vitesse, comparée à celle des alcools.
I.2.2. Réactions d'auto-addition des isocyanates

Les isocyanates peuvent aussi réagir entre eux pour donner des polymères. Ces réactions sont loin d'être négligeables dans la formation des polyuréthanes. Elles peuvent interférer en effet en terme de stabilité des isocyanates, mais aussi en terme de réactions parallèles pendant la polymérisation.

I.2.2.1. Polymérisation

La polymérisation linéaire de monoisocyanates (Eq.I.10) conduit à des Nylons-1 linéaires. Cette réaction se produit à des températures relativement basses (de –100°C à –20°C), dans des solvants polaires (DMF) et avec des catalyseurs alcalins (NaCN, Na, naphtalénide de sodium) [Wirpsza, 1993]. Les polyisocyanates ainsi obtenus ont une forte tendance à cristalliser ou à former des cristaux liquides [Durairaj et al., 1990]. Mais à cause de leur tendance à dépolymériser à des températures relativement faibles (faible température plafond), ces polymères n'ont pas une importante application industrielle [Oertel, 1985].

I.2.2.2. Trimérisation

La trimérisation des isocyanates (Eq. I.11) conduit à des isocyanurates dont l'anneau est particulièrement stable. Cette réaction est catalysée par des bases fortes, et peut être menée à des températures élevées car les isocyanurates sont stables à 150-200°C et même jusqu’à 500°C en absence d’oxygène ou de traces de catalyseur [Wirpsza, 1993]. Les polyisocyanurates à un taux de réticulation élevé, réalisés à partir de polyisocyanates, sont utilisés dans la fabrication de moulles rigides [Oertel, 1985].

I.2.2.3. Dimérisation

Le produit obtenu lors de la dimérisation d’un isocyanate (Eq. I.12), l'urétidione, est thermiquement instable. La dimérisation ne peut se produire qu'à des températures relativement faibles et de préférence avec des isocyanates aromatiques (plus réactifs que les aliphatiques), car la dissociation des dimères a lieu dès 150-180°C [Wirpsza, 1993].

La dimérisation présente un intérêt lorsqu'il est nécessaire de protéger la fonction NCO. Sa restitution à des températures peu élevées permet notamment la séparation d'isocyanates de réactivités différentes [Belgacem, 1991].
I.3. Mécanisme réactionnel et cinétique

I.3.1. Mécanisme réactionnel

La première étude concernant la cinétique de condensation des fonctions OH et NCO (datant de 1934) a été réalisée à partir de phényl isocyanate et d’alcools aliphatiques [Davis et Farnum, 1934]. Depuis, de nombreuses études ont été menées sur ce sujet, utilisant essentiellement des polyols aliphatiques et des mono- ou diisocyanates aliphatiques et aromatiques.

Le mécanisme réactionnel suivant (Eq. I.13) est généralement accepté :

\[-\frac{d[NCO]}{dt} = -\frac{d[OH]}{dt} = k[NCO][OH] \] (Eq. I.13)

I.3.2. Cinétique

Le modèle le plus correct pour décrire les cinétiques de la condensation d’un alcool et d’un isocyanate est le modèle du deuxième ordre. La disparition de l’alcool et de l’isocyanate est décrite par l’équation I.14:

\[-\frac{d[NCO]}{dt} = -\frac{d[OH]}{dt} = k[NCO][OH] \] (Eq. I.14)

où k représente la constante de vitesse de la réaction du deuxième ordre (en 1.mol\(^{-1}\).s\(^{-1}\)).

Ce modèle cinétique décrit bien les cinétiques de condensations des fonctions OH avec les fonctions NCO jusqu’à des taux de conversion relativement élevés (70-80%). Par la suite, on peut observer une accélération ou un ralentissement de la réaction, suivant les conditions expérimentales.

Ce phénomène a été étudié [Sato, 1962] et le modèle suivant (Eq. I.15), tenant compte de l’effet de catalyse par les fonctions OH de l’alcool et d’autocatalyse par la fonction uréthane (u) formée a été proposé :

\[-\frac{d[NCO]}{dt} = -\frac{d[OH]}{dt} = k_1[NCO][OH]^2 + k_2[u][NCO][OH] \] (Eq. I.15)
où k_1 et k_2 sont respectivement les constantes de vitesse de la réaction catalysée par l’alcool et autocatalysée par la fonction uréthane formée (en l.mol2.s$^{-1}$).

I.3.3. Influence de la nature de l’alcool

La réaction entre un alcool et un isocyanate est considérée comme une réaction entre une base (alcool) et un acide (isocyanate). Vis-à-vis d’un isocyanate donné, la réactivité d’un alcool se détermine par sa basicité et son encombrement stérique. Ainsi, un alcool primaire est plus réactif qu’un alcool secondaire, lui même plus réactif qu’un alcool tertiaire [Davis et Farnum, 1934]. De plus, un groupement inductif donneur d’électrons accroît la basicité de la fonction alcool et par conséquent sa réactivité, alors qu’un groupement inductif attracteur d’électrons entraîne une diminution de sa réactivité [Frisch et Rumao, 1970]. Enfin, le phénol, de par son caractère acide, mais aussi à cause de l’encombrement stérique dû au noyau aromatique, est très peu réactif vis-à-vis des isocyanates [Ferstanding et Scherrer, 1959].

I.3.4. Influence de la nature de l’isocyanate

Pour un isocyanate donné, la réactivité relative de quelques composés contenant un hydrogène mobile est [Saunders et Frisch, 1962] :

$$R-NH_2 > R-OH > H_2O > C_6H_5-OH > RSH > RCOOH$$

Pour les amines :

$$R_2-NH > R-NH_2 > NH_3 > C_6H_5-NH_2$$

Pour les carbamides :

18
R-NH-R’ > R-NH-CO-NH-R’ > R-NH-CO-R’ > R-NH-COO-R’

amine urée amide uréthane

Toutes ces considérations (cinétique, influence de la nature des monomères) sont aussi valables dans le cas de polycondensation entre diols (ou polyols) et diisocyanates (ou polyisocyanates).
II. Dispersions aqueuses de polyuréthane

II.1. Introduction

Les dispersions aqueuses de polyuréthane (PUD), soit en tant que composant unique, soit combinées à d'autres polymères, sont de plus en plus utilisées dans le domaine des enductions (peintures, revêtements, encres, vernis...), notamment à cause des pressions législatives pour la réduction des émissions de C.O.V. (Composés Organiques Volatiles), mais aussi parce qu'elles présentent d'excellentes propriétés, difficiles à obtenir avec d'autres polymères [Lomax, 1994].

Les principaux avantages des PUD sont :
- une grande variété dans la composition macromoléculaire et donc un large choix de caractéristiques de performance ;
- de bonnes propriétés physiques (élasticité, allongement à la rupture...), une bonne résistance aux chocs et à l'abrasion ;
- des températures minimales de formation de film et de transition vitreuse basses, ce qui a pour conséquence de pouvoir réduire le taux de coalescents et l'ajout eventuel de plastifiants ;
- la possibilité d'obtenir un brillant élevé ;
- une bonne compatibilité avec les pigments, même métalliques ;
- une bonne adhérence sur les métaux et les plastiques ;
- une bonne compatibilité avec d'autres polymères, en particulier les polymères acryliques.

Les PUD sont essentiellement des polyuréthanes/urées linéaires de haut poids moléculaire stabilisés dans l'eau en particules sphériques de diamètre inférieur à 1 μm. La dispersibilité du polyuréthane dans l'eau est facilitée par la présence de fonctions ioniques au sein des chaînes polymères. La viscosité des PUD est assez basse (50 à 500 mPa.s), et il est parfois nécessaire de rajouter un épaississant afin d'obtenir les propriétés rhéologiques souhaitées.

Le taux de matière sèche peut varier de 30% pour des produits rigides à 50% pour des produits souples, voire 60% pour des enductions sur textiles. Les polymères souples sont généralement sans solvant, alors que les polymères rigides contiennent des cosolvants polaires.
et miscibles avec l'eau (comme le tétrahydrofurane, le diméthyl formamide ou la N-méthyl pyrrolidone) pour aider à la coalescence des particules.

L'apparence des PUD dépend principalement de la taille des particules, et donc de la composition macromoléculaire, du type de système de stabilisation et de la présence ou non de cosolvant [Lomax, 1994].

Les produits finaux (polymères issus des dispersions) peuvent aller des polymères souples, extrêmement flexibles (utilisés dans les textiles), à des polymères rigides, résistants à l'abrasion et aux chocs, utilisés dans la conception de vernis pour protéger bois, métal ou plastique. De plus, les groupements isocyanates résiduels étant rapidement consommés dans le milieu aqueux, les PUD sont beaucoup moins dangereux que leurs équivalents à base de solvant. Enfin, contrairement à d'autres polymères en dispersion aqueuse utilisés dans des applications d'impression, les produits obtenus à partir des PUD ne se redissolvent pas après séchage en milieu aqueux ou alcalin [Lomax, 1993].

II.2. Procédés de fabrication

Durant ces vingt dernières années, différents procédés de synthèses de dispersions aqueuses de polyuréthanes ont été développés. Tous ces procédés ont une étape commune qui consiste en la préparation d'un prépolymère à terminaisons isocyanates, de masse moléculaire intermédiaire.

En général, l'isocyanate, en excès, est introduit en premier dans le réacteur. Sont ensuite ajoutés le ou les polyols, le catalyseur si nécessaire, l'agent émulsifiant et le cosolvant (suivant le procédé utilisé). On obtient ainsi un prépolymère polyuréthane aux terminaisons isocyanates. Ce prépolymère est ensuite dispersé dans l'eau, puis "allongé", surtout avec des réactifs portant des fonctions NH₂ lors de l'étape d'extension de chaîne. La différence entre ces procédés se situe essentiellement au niveau de cette dernière étape de la fabrication de la dispersion.

Le paramètre fondamental de cette étape est la réaction NCO/NH₂ très rapide, et accompagnée d'une augmentation de viscosité, d'où l'importance du contrôle de cette réaction. Les différentes conditions et techniques d'extension de chaîne affectent la structure du polymère et les caractéristiques de la dispersion, et peuvent donc influencer les propriétés des enductions finales [Oertel, 1985; Tirpak et Markusch, 1985; Kim, 1996].
II.2.1. Procédé « à l’acétone »

Cette méthode constitue le premier procédé de synthèse des dispersions aqueuses de polyuréthanes, et est encore largement utilisée à ce jour [Chen et Chen, 1992; Döbert et al., 1999].

Dans ce procédé (Figure II.1), le prépolymère polyuréthane à terminaisons isocyanates est "allongé" avec une diamine dans un solvant organique, comme l'acétone, la méthyl éthyl cétone ou le tétrahydrofurane, miscible dans l'eau et ne réagissant pas avec les fonctions intervenant dans la synthèse macromoléculaire. Le produit polymère-solvant est ensuite mélangé à l'eau pour former la dispersion. Lors de l'ajout de l'eau se produit une inversion de phase où l'eau devient alors la phase continue [Dieterich, 1981].

L'intérêt du solvant est qu'il permet le contrôle de la viscosité durant l'étape d'extension de chaîne. Le solvant est ensuite éliminé par évaporation. Il est donc important qu'il ait un point d'ébullition assez bas, ce qui est le cas de l'acétone.

Le produit résultant est une dispersion aqueuse de polyuréthane-urée à haut poids moléculaire sans solvant. Ce procédé est assez facile à mettre en place et offre une bonne reproductibilité car la formation du polymère a lieu dans une solution homogène. Il permet aussi une large gamme de variation dans la structure du polymère et les produits finaux sont généralement de qualité élevée.

Mais les polyuréthanes obtenus sont linéaires et donc solubles dans certains solvants organiques. De plus, ce procédé nécessite la distillation d'une grande quantité de solvant, ce qui est un inconvénient d'un point de vue économique, mais aussi environnemental [Kim, 1996].
II.2.2. Procédé "mélange du prépolymère"

Le prépolymère aux terminaisons isocyanates, modifié avec des groupements hydrophiles, est dispersé dans l'eau sous forte agitation pour former une émulsion (Figure II.2). Ce procédé ne nécessite pas d'émulsifiant externe ni de force de cisaillement élevée. Cependant, la viscosité du prépolymère peut être élevée et doit être contrôlée car sinon la dispersion peut s'avérer difficile. Afin d'éviter cela, un cosolvant (en petite quantité) peut être ajouté au prépolymère pour réduire sa viscosité. Mais, de manière générale, ce procédé s'applique plus particulièrement à des prépolymères de faible viscosité (par exemple à base de polyéthers).

L'étape d'extension de chaîne est réalisée par l'addition de di- ou polyamines (ou plus rarement de polyols) dans la dispersion aqueuse. La dispersion doit être menée à une température relativement basse afin d'éviter que les isocyanates réagissent avec l'eau. C'est aussi pour cette raison que les diisocyanates cycloaliphatiques sont le plus souvent utilisés pour ce procédé, car ils ont une plus faible réactivité vis à vis de l'eau.

Les propriétés des dispersions obtenues sont généralement moins bonnes que celles des dispersions fabriquées par le procédé à l'acétone, principalement à cause du fait que l'extension de chaîne est ici réalisée en phase hétérogène [Kim, 1996].

Mais l'atout majeur de ce procédé est qu'il ne nécessite pas l'utilisation d'une grande quantité de solvant. De ce fait, il est de plus en plus préféré aux autres procédés de fabrication [Fricke et al., 1998; Yonek et Berezkin, 2000; Lahtinen et Price, 2002; Rodriguez et Goldstein, 2002].

II.2.3. Procédé "Hot Melt"

Dans ce procédé (Figure II.3), le prépolymère aux terminaisons isocyanates est mis en présence d'un excès d'ammoniaque ou d'urée, à haute température (supérieure à 130°C). On obtient ainsi un oligomère aux groupements terminaux urée ou biurée, qui peut être aussitôt
dispersé dans l'eau, sans aucun solvant organique. Cette dispersion est généralement réalisée à une température suffisamment élevée afin de réduire la viscosité de l'oligomère. L'extension de chaîne se fait alors par la réaction de l'oligomère avec du formaldéhyde pour former des groupements méthylol qui permettent une réaction de polycondensation [Dieterich, 1968]. Ce procédé nécessite une agitation puissante car, même à des températures élevées, la viscosité du prépolymère reste importante. Les polyuréthanes obtenus par cette méthode sont généralement réticulés et de faible poids moléculaire [Tirpak et Markusch, 1985].

Figure II.3 : schéma réactionnel du procédé « Hot Melt ».

Le principal intérêt de cette méthode est d'éviter la réaction des fonctions NCO avec l'eau lors de l'étape de dispersion.

II.2.4. Procédé "à la kéttimine/kétazine"

Ce procédé est similaire au procédé de mélange du prépolymère à l'exception faite que la kéttimine bloquée agit comme un allongeur de chaîne latent (Figure II.4). Elle peut être ajoutée au prépolymère à terminaisons isocyanates sans qu'aucune réaction n'ait lieu. Par contre, avec l'ajout de l'eau lors de la dispersion, la kéttimine est hydrolysée. Cette réaction étant plus rapide que la réaction des groupements isocyanates avec l'eau, la diamine libérée par l'hydrolyse réagit alors avec ces groupements isocyanates pour "allonger" le prépolymère. L'extension de chaîne et l'étape de dispersion ont lieu simultanément, ce qui provoque une augmentation de la viscosité jusqu'à une inversion de phase (eau/oligomère → oligomère/eau). Pour cette raison, une agitation conséquente et un cosolvant sont souvent nécessaires. Ce procédé permet d'obtenir des dispersions donnant des enductions de bonne qualité et est particulièrement adapté aux dispersions à base d'isocyanate aromatique.

Figure II.4 schéma réactionnel du procédé « à la kéttimine ».
Une variante de ce procédé consiste à remplacer la kétimine par la kétazine. Cette dernière s'hydrolyse pour donner de l'hydrazine qui permettra l'extension de chaîne [Overbeek et Huets, 1991], mais cette hydrolyse est beaucoup plus lente que celle de la kétimine [Tirpak et Markusch, 1985].

II.3. Matières premières

II.3.1. Diisocyanates

II.3.1.1. Isocyanates aromatiques

Le groupe fonctionnel NCO est directement attaché au noyau aromatique. Celui-ci entraîne une délocalisation des charges négatives sur la fonction NCO, rendant ainsi les isocyanates aromatiques beaucoup plus réactifs que les isocyanates aliphatiques [Pandya et al., 1986]. Ces isocyanates ne nécessitent pas de catalyseur dans les réactions avec les alcools, et ont un coût relativement peu élevé. Mais ils ont le défaut d'engendrer des matériaux sensibles au vieillissement photolytique. En effet l’oxydation possible des noyaux aromatiques par rayonnement UV peut provoquer un jaunissement de ces matériaux. Ils sont donc plutôt utilisés pour des polyuréthanes à applications spécifiques d’adhésifs ou d’enductions pour lesquelles la couleur n’est pas un aspect essentiel [Lomax, 1994].

Les deux isocyanates aromatiques utilisés dans la synthèse des dispersions aqueuses de polyuréthane sont le diphénylméthane diisocyanate et le toluène diisocyanate [Wen et al., 2000].

II.3.1.1.1. Diphénylméthane diisocyanate (MDI)

\[
\text{diphénylméthane 4,4 diisocyanate} \\
\left(f_{\text{NCO}} = 2, T_{\text{fusion}} = 43 \degree \text{C} \right)
\]

Le MDI, dérivé du produit de la condensation de l'aniline avec le formaldéhyde suivie de la transformation des fonctions NH$_2$ en NCO, possède une structure assez rigide et dimérisse spontanément à basse température. Cette dimérisation, bien que lente, altère les propriétés du produit. Ainsi, le MDI ne peut pas être conservé plus de six mois. Sa faible durée de vie est l'inconvénient majeur de cet isocyanate.
La parfaite symétrie du MDI laisse penser que les deux fonctions NCO devraient, en théorie, avoir la même réactivité. Or en pratique, des études cinétiques ont montré que le deuxième groupe NCO est deux fois moins réactif une fois que le premier a réagi [Frisch, 1998].

Le MDI est généralement produit sous la forme 4,4-diphenylméthane diisocyanate. On peut cependant trouver des traces des isomères 2,4 et 2,2 [Ulrich, 1996].

Cet isocyanate, principalement à cause de son caractère aromatique, n’est que peu souvent utilisé dans la synthèse de dispersions aqueuses de polyuréthane. Cependant, certains l’utilisent, notamment en le mélangeant avec des isocyanates aliphatiques [Klein et al., 1997].

II.3.1.1.2. Toluène diisocyanate (TDI)

2,4 toluène diisocyanate 2,6 toluène diisocyanate
($f_{\text{NCO}} = 2$, $T_{\text{fusion}} = 13 \, ^{\circ}\text{C}$)

Le TDI existe sous deux formes isomères, 2,4 et 2,6 toluène diisocyanate, et est généralement commercialisé sous la forme d'un mélange constitué de 80% de la forme 2,4 et de 20% de la forme 2,6 environ.

La synthèse du TDI se fait à partir du toluène. Elle inclut une étape de dinitration suivie d'une étape de réduction, donnant les deux isomères du diaminotoluène. Après réaction avec le phosgène, on obtient alors les deux isomères du TDI.

L’inconvénient de cet isocyanate, en plus de sa faible résistance au rayonnement ultra-violet, est sa toxicité (due à sa faible pression de vapeur). En effet, il peut provoquer des gênes de la respiration et une irritation des poumons. C’est pourquoi, même si cet isocyanate peut être utilisé comme monomère, il est généralement transformé en des polymères dérivés [Ardaud et al., 1998], comme, par exemple, le polyluba de propylène de poids moléculaire faible (1000) ayant réagi avec deux molécules de TDI. Ainsi on obtient des produits liquides et beaucoup moins toxiques.

Ces produits dérivés ont un taux de dimérisation très faible, et donc une excellente durée de vie. Une fois stockés dans des containers hermétiques, ils peuvent être conservés plusieurs années.
La fonction NCO présente sur le carbone 4 est beaucoup plus réactive que celles sur les carbones 2 ou 6. Une fois que le groupe NCO du carbone 4 a réagi, le second NCO est approximativement 8 fois moins réactif que le premier.

II.3.1.2. Isocyanates aliphatiques

La fonction NCO n'est pas directement liée à une double liaison, ce qui confère aux polyuréthanes à base de ces isocyanates une excellente résistance à la lumière et au vieillissement.

Le caractère aliphatique entraîne une plus faible réactivité. C'est pourquoi ces isocyanates réagissent plus lentement et nécessitent l'utilisation d'un catalyseur. Leur réactivité avec les groupements carboxyles et avec l'eau est aussi plus faible et il n'y a pas de réaction d'auto-condensation.

Ces isocyanates permettent la synthèse de prépolymères à des températures de réaction plus élevées (100-120°C contre 60-80°C pour des isocyanates aromatiques) et possèdent une viscosité plus faible [Cytec, 1998]. Pour toutes ces raisons, ils sont généralement préférés aux isocyanates aromatiques pour la formulation de dispersions aqueuses de polyuréthanes, malgré leur coût beaucoup plus élevé.

Les trois isocyanates aliphatiques utilisés dans la synthèse des polyuréthanes sont le tétraméthyl-xylylène diisocyanate, l’isophorone diisocyanate et le dicyclo-hexa-méthyl-méthane diisocyanate.
II.3.1.2.1. Tétraméthylxylène diisocyanate (TMXDI)

\[\text{NCO} \]
\[\text{NCO} \]
\[\text{CH} \]
\[\text{C} \]
\[\text{C} \]
\[\text{CH}_3 \]
\[\text{CH}_3 \]
\[\text{CH}_3 \]
\[\text{CH}_3 \]

1,3- tétraméthylxylène diisocyanate

\((f_{\text{NCO}} = 2, T_{\text{fusion}} = -10^\circ\text{C}) \)

La synthèse de cet isocyanate est basée sur la thermolyse d'une biurée. Cette thermolyse génère un acide isocyanique qui réagit avec une diamine pour former l'isocyanate. Les autres produits de cette réaction sont recyclés au cours de la réaction (alcools, diéthylamines) à l'exception de l'azote, qu'il faut éliminer.

Le TMXDI peut se trouver sous la forme de deux isomères, 1,3 et 1,4. Le p-TMXDI (isomère 1,4) est utilisé dans la fabrication de produits polyuréthane rigide, alors que le m-TMXDI (isomère 1,3) est celui utilisé dans la synthèse de dispersions aqueuses de polyuréthane, puisqu'il est liquide contrairement au p-TMXDI [Ulrich, 1996].

Cet isocyanate présente plusieurs avantages pour la synthèse des dispersions aqueuses de polyuréthane :

- une toxicité faible [Manock, 1993];
- il permet la formation de prépolymère à faible viscosité, permettant une synthèse sans solvant ;
- sa faible réactivité permet de travailler à des températures élevées (jusqu'à 120°C) pour diminuer encore la viscosité ;
- la vitesse de réaction relativement faible de cet isocyanate permet de disperser le prépolymère chaud dans l'eau, à une température inférieure à 40°C, sans que les fonctions NCO ne soient détruites par l'eau ;
- son taux de réaction avec les amines est meilleur que celui des autres isocyanates aliphatiques [Cytec, 1998], ce qui est un avantage pour l'étape d'extension de chaîne.

Pour toutes ces raisons, il est de plus en plus utilisé dans la synthèse de dispersions aqueuses de polyuréthane [Schafheutle et Klein, 1994].
II.3.1.2.2. Isophorone diisocyanate (IPDI)

isophorone diisocyanate
\((f_{\text{NCO}} = 2, T_{\text{fusion}} = -60^\circ\text{C})\)

L'IPDI est obtenu par phosgénation de l'isophorone diamine. On le trouve généralement sous la forme d'un mélange 75/25 des isomères bateau et chaise [Ulrich, 1996]. Il s'agit d'un diisocyanate cycloaliphatique asymétrique. Les deux fonctions isocyanates occupent une position différente sur la molécule. Le groupement NCO attaché directement au cycle est appelé "groupement primaire", celui relié au cycle par l'intermédiaire d'un groupe CH2 est appelé "groupement secondaire". Ces deux fonctions réagissent différemment suivant les conditions de synthèse et les catalyseurs utilisés [Ardaud et al., 1998].

Le principal avantage de l'IPDI, en plus du fait qu’il permet la fabrication de produits séchant rapidement et résistants au jaunissement, est son faible coût, qui en fait l’un des isocyanates les plus utilisés dans la synthèse des poluréthanes [Banning et Bui, 1997; Lipkin et Bechara, 1999].

II.3.1.2.3. Dicyclohexylméthane diisocyanate (H12MDI)

dicyclohexylméthane 4,4 diisocyanate
\((f_{\text{NCO}} = 2, T_{\text{fusion}} = -71^\circ\text{C})\)

LE H12MDI est un isocyanate aliphatique "secondaire", synthétisé par la phosgénation de l'amine précurseur préparée par l'hydrogénation de la méthylène diphenylamine [Ulrich, 1996]. Il est donc l’homologue aliphatique du MDI. On le trouve généralement sous la forme d'un mélange 80/20 de stéréo isomères bateau/chaise. Il réagit lentement, comme tous les isocyanates aliphatiques [Frisch, 1998]. Il est lui aussi couramment utilisé dans la synthèse de dispersions aqueuses de polyuréthane [Chung et al., 2000; Rodriguez et Goldstein, 2002].

II.3.2. Polyols
Plusieurs types de polyols peuvent être choisis, suivant l'utilisation finale, le procédé de fabrication utilisé, le coût... Les principales familles chimiques sont les polyéthers et les polyester. Mais des polyols plus spécifiques, comme les polymères acryliques ou les polycarbonates diols sont parfois utilisés pour conférer aux dispersions aqueuses des propriétés particulières.

II.3.2.1. Polyéthers

Les polyéthers hydroxylés sont en général obtenus par la polyaddition, anionique ou cationique, de monomères cycliques, comme l'oxyde d'éthylène, l'oxyde de propylène ou encore le tétrahydrofurane. Le cas de la polymérisation linéaire anionique de l'oxyde de propylène est détaillé dans la figure II.5.

Les masses molaires des polyols polyéthers utilisés dans la synthèse de polyuréthanes varient de 250 à 8000. Leur fonctionnalité peut aller de 2 à 7 en fonction de la nature de la molécule utilisée comme amorceur. Les groupements terminaux de ces diols polyéthers peuvent être primaires ou secondaires.
Les principales caractéristiques de la liaison C-O sont sa résistance chimique et sa résistance à la température, à peine surpassées par les liaisons C-C, comme le montre le tableau II.1 :

Tableau II.1 : comparaison des énergies de liaison.

La faible viscosité de ces polyéthers (due à l'absence de liaison hydrogène entre les chaînes polymères et à leur faible poids moléculaire) est aussi un avantage dans la production de formulations sans solvant. Par contre, la liaison C-O peut facilement se transformer en peroxyde sous l'action de la lumière UV en présence d'oxygène. Les groupements peroxydes sont beaucoup moins stables que les fonctions éthers, ce qui se traduit par un mauvais vieillissement à la lumière des dispersions polyuréthanes à base de polyéthers.

Cependant, le principal avantage de cette famille de polyols est leur coût, particulièrement bas, à cause de la grande disponibilité des matières premières utilisées dans leur fabrication [Ardaud et al., 1998].

Les autres caractéristiques physiques des polyéthers sont une faible température de transition vitreuse, une excellente résistance à l'hydrolyse, une adhésion modeste et une faible résistance à la traction.

II.3.2.2. Polyesters
Les polyesters polyols sont obtenus par l’utilisation d’un excès d’alcool di- ou poly-fonctionnel dans leur polystérification avec des diacides ou des anhydrides carboxyliques, ce qui produit des chaînes polyester avec des groupements terminaux hydroxyles (Figure II.6).

![Figure II.6: exemple d'une réaction d'estérification d'un acide avec un excès contrôlé de diol.

La grande variété de matières premières disponibles permet un large choix de produits finis, avec propriétés diversifiées.
Bien qu'il soit possible de produire des polyesters insaturés ou saturés par la sélection d'acides ou anhydrides appropriés, seuls les polyesters saturés, qui ont une meilleure durabilité, sont utilisés pour les dispersions de polyuréthanes. Ces chaînes polymères sont généralement linéaires ou faiblement ramifiées, suivant le type de monomère, avec des masses moléculaires allant de 1000 à 10000.
La sélection des matières premières et les conditions de polymérisation permettent de fabriquer des polyesters avec de groupements hydroxyles terminaux primaires ou secondaires. Les polyesters ont une bonne flexibilité, et une bonne résistance chimique [Ardaud et al., 1998]. Un des avantages des polyesters par rapport aux polyéthers est que le rayonnement UV n’entraîne pas la formation de groupements péroxydes. Ils ont aussi une stabilité à l'hydrolyse correcte et un prix modéré, mais supérieur à celui des polyéthers.

II.3.2.3. Acryliques

Les polymères acryliques sont une grande famille de polymères dérivés des acides acrylique et méthacrylique, ou de leurs esters polymérisés.
Ces polymères peuvent avoir des propriétés physiques très différentes, suivant les monomères et le procédé de fabrication utilisés. Les oligomères acryliques à fonction hydroxyle sont le
plus souvent utilisés pour des produits à haute performance, pour leur brillant élevé, leur excellente résistance chimique et leur durabilité.

Les polymères acryliques sont synthétisés par une simple réaction de polyaddition et leur poids moléculaire est facilement contrôlable.

La fonctionnalité hydroxyle est donnée par le 2-hydroxy-éthyl acrylate (HEA), ou l'hydroxy-éthyl méthacrylate (HEMA), bien que d'autres monomères puissent aussi être utilisés [Ardaud et al., 1998].

Cette polyaddition radicaleaire (Figure II.7) donne des polymères ayant un degré de polymérisation très élevé, ce qui n’est pas souhaité pour les dispersions aqueuses de polyuréthanes. Pour contrôler le degré de polymérisation (DP), il est indispensable d’utiliser des agents de transfert, comme les thiols (Figure II.8).

De plus, afin de contrôler le taux de groupements OH dans la chaîne, il est possible de fabriquer des copolymères avec l’HEA ou l’HEMA et des monomères acryliques sans groupements OH.

\[
\text{amorçage}
\]
\[
\begin{align*}
R^+ + CH_2=CH \quad &\rightarrow\quad R-CH_2-CH \quad \\
\text{C}=O \quad &\quad \text{C}=O \\
\text{O} \quad &\quad \text{O} \\
\text{CH}_2 \quad &\quad \text{CH}_2 \\
\text{CH}_2\text{OH} \quad &\quad \text{CH}_2\text{OH}
\end{align*}
\]
II.3.2.4. Polycarbonates aliphatiques

Il y a principalement deux modes de synthèse des polycarbonates aliphatiques, soit par une copolymérisation directe d’éthers cycliques avec le CO₂ (1), soit par une polymérisation par ouverture de cycle à partir de carbonates cycliques (3) (Figure II.9).
La première publication sur les polycarbonates de haut poids moléculaire [Inoue et al., 1969], traite de la copolymérisation de l’oxyde de propylène (R=CH₃) avec CO₂. Depuis, la copolymérisation des éthers cycliques avec le CO₂ a été abondamment étudiée. Cette réaction des éthers cycliques avec le CO₂ peut aussi être utilisée pour former des carbonates cycliques (2). Alors, une approche alternative à la copolymérisation est la polymérisation par ouverture du cycle du carbonate cyclique (3) qui contient la structure du polycarbonate souhaité [Storey et Hoffman, 1992].

Les polycarbonates diols sont généralement obtenus soit par polycondensation du phosgène avec des diols, soit par transestérification de carbonates cycliques avec des diols. Mais d’autres méthodes de synthèse de polycarbonates diols sont encore étudiées, comme par exemple la glycolyse du polypropylène carbonate de haut poids moléculaire, ou plus récemment, la polymérisation par ouverture de cycle (Figure II.10) du triméthylène carbonate et du néopentyl carbonate [Kuran et al., 2000].

Les polycarbonates ont une utilisation majeure dans l’élaboration des matériaux à haute valeur ajoutée, grâce à leurs propriétés optiques et leur stabilité (notamment stabilité thermique).

Les polycarbonates diols sont utilisés dans les élastomères polyuréthanes et dans les dispersions aqueuses de polyuréthanes souvent en combinaison avec des polyéthers diols. Le principal avantage des polyuréthanes contenant des groupements carbonates est leur résistance à l’eau élevée, en comparaison avec les polyuréthanes à base de polyester. Cela vient du fait que l’hydrolyse des groupements carbonates ne produit pas d’acides, évitant ainsi l’autocatalyse de l’hydrolyse (qui a lieu dans le cas des esters).

II.3.3. Agents d’extension
Comme il a été vu dans la partie précédente (II.2. Procédés de fabrication) l’étape d’extension de chaîne a lieu juste après la dispersion du prépolymère dans la phase aqueuse.

L’utilisation d’agents d’extension tri- (ou poly) fonctionnels permet d’obtenir des polymères réticulés. Il faut aussi noter qu’entre ces segments rigides se créent des interactions cohésives inter et intra moléculaires [Oertel, 1985].

II.3.3.1. Polyols

Dans le cas de diols (ou polyols) le polymère obtenu est un polyuréthane pur. Ce polymère aura donc des propriétés physiques relativement inférieures (notamment la rigidité) à celles d’un polymère obtenus à l’aide de polyamines. Afin d’améliorer ces propriétés, des triols (comme le tri-méthyl propane) sont généralement employés [Hepburn, 1982].

De plus, l’inconvénient majeur de l’utilisation de polyols en agents d’extension vient du fait de leur réactivité, plus faible que celle des polyamines. En effet, dans le cas de polyols, se pose le problème de la compétitivité de réactivité des fonctions NCO avec les OH des polyols et les OH de l’eau, puisque l’extension de chaîne se fait en phase aqueuse.

II.3.3.2. Polyamines

Des di- ou polyamines, primaires et secondaires peuvent être utilisées. Leur principal avantage est, contrairement aux polyols, le fait que leur réactivité avec les isocyanates est sans commune mesure largement supérieure à celle de l’eau, et qu’il n’y a donc ainsi pratiquement aucun risque de consommations des fonctions isocyanates par l’eau.

L’utilisation de polyamines comme agent d’extension de chaîne implique alors la formation d’une proportion non négligeable de fonctions urées dans la chaîne polymère. Les fortes
interactions dues aux groupements urées (liaisons hydrogènes fortes) confèrent aux produits obtenus des propriétés mécaniques élevées (Tableau II.2) [Hepburn, 1982].

Tableau II.2 : principales propriétés mécaniques des polyuréthanes suivant l’agent d’extension.

II.4. Emulsification interne

Les émulsifiants internes, c'est-à-dire inclus dans la chaîne du prépolymère, présentent plusieurs avantages. Tout d'abord, grâce à ce rôle d'auto-émulsification les conditions de dispersion ne nécessitent pas des forces de cisaillement élevées. Ils permettent aussi d'obtenir des petites particules et des dispersions plus stables. Et enfin, la résistance aux agents non polaires est améliorée [Kim, 1996]. Il existe deux types d'émulsifiants internes, les ioniques (anioniques ou cationiques) et les non ioniques.

II.4.1. Ionomères

Les émulsifiants ioniques, et plus particulièrement les anioniques, sont structurellement mieux appropriés à la préparation des dispersions aqueuses de polyuréthanes, et sont donc prédominants dans le commerce.

Les composés cationiques sont généralement des amines tertiaires incorporées dans la chaîne du prépolymère [Lee, 1995]. Mais le plus souvent les émulsifiants utilisés sont anioniques. Ce sont en général des groupes sulfonates ou carboxylates. Les principaux émulsifiants ioniques utilisés sont présentés dans la figure II.11 :

- Émulsifiants cationiques
- Émulsifiants anioniques :
 - sulfonates
 - carboxylates

L'émulsifiant anionique le plus souvent rencontré dans la littérature est l'acide 2,2-diméthylol propionique (DMPA). L'avantage du DMPA repose sur l'encombrement stérique du groupement COOH qui l'empêche de réagir avec les fonctions isocyanates. Dans le cas contraire, les groupements COOH seraient consommés par les isocyanates ce qui entraînerait des problèmes de dispersibilité et de viscosité élevée due à la réticulation du polyuréthane.
Généralement, pour neutraliser les groupements COOH, on utilise la triéthylamine, la triméthylamine, l'ammoniaque ou encore les hydroxydes de sodium ou lithium.

II.4.2. Non ionomères

L'autre approche pour obtenir un polyuréthane avec émulsifiant interne utilise des segments de chaîne polyéther, généralement à partir d'oxyde d'éthylène. En effet, ces segments étant hydrophiles, ils favorisent la stabilité de la dispersion dans l'eau. Or pour obtenir une dispersion stable, il est nécessaire d'introduire un grand nombre de segments polyéther dans la chaîne polyuréthane. Cela entraîne une très grande sensibilité à l'eau des films réalisés à partir des dispersions. Ces films ont tendance à gonfler au contact de l'eau et certains peuvent même y être solubles. Afin de trouver un équilibre entre dispersibilité et résistance à l'eau des produits secs, il est préférable d'incorporer les segments de polyoxyde d'éthylène en positions latérales ou terminales de la chaîne polyuréthane.

II.4.3. Combinaison de groupes ioniques et de segments hydrophiles

Chacun de ces deux types d'émulsifiants internes présente des avantages et des inconvénients. Les dispersions non ioniques ont des avantages techniques en terme de stabilité par rapport aux électrolytes, aux basses températures (gel) et aux forces de cisaillement élevées que n'ont pas les dispersions ioniques. Or, la stabilité aux électrolytes et aux additifs est particulièrement importante, notamment dans le cas où ces dispersions interviennent dans des formulations comprenant des pigments, des colles, des épaississants. D'un autre côté, ces dispersions sont instables à haute température car l'affinité du polyéther pour l'eau diminue quand la température augmente.

Il semblait donc logique d'étudier la combinaison de groupements ioniques et de segments non ioniques dans une même dispersion. Les résultats obtenus [Noll et al., 1980], montrent des effets synergiques au niveau de la stabilité de la dispersion et de la taille de particules.

Conclusion

Cette première approche bibliographique a permis de faire ressortir l’intérêt, mais surtout la complexité, des systèmes polyuréthanes et particulièrement celle de leurs dispersions aqueuses.
Un de nos premiers objectifs était de choisir un procédé de synthèse qui soit relativement simple à mettre en oeuvre tant en laboratoire qu’en vue d’une application industrielle, et surtout, compte tenu des pressions législatives concernant les C.O.V. (Composés Organiques Volatiles), qui ne nécessite pas l’utilisation de solvant organique. D’après cette étude bibliographique, le procédé de mélange du prépolymère nous a semblé le plus approprié. Cette recherche bibliographique a aussi permis de mettre en valeur l’influence de la nature des matières premières utilisées sur les propriétés des dispersions et des polymères.

Ainsi, nous avons choisi d’étudier plus particulièrement l’influence des deux matières premières majeures de la composition des dispersions aqueuses de polyuréthane, les diisocyanates et les polyols. Mais ce travail traitera aussi de l’importance de l’agent émulsifiant et du degré de neutralisation, ainsi que de l’effet d’un mélange de polyols de nature différente sur les propriétés des dispersions et des polymères séchés. Ces caractérisations, principalement physico-chimiques, auront pour but de mieux comprendre le comportement des matériaux étudiés, notamment en vue de leur application industrielle en formulation d’encres ou de vernis.

Certains aspects plus spécifiques, notamment les relations structure-propriétés, feront appel à une bibliographie plus adaptée dans chacun des prochains chapitres.
PARTIE II

TECHNIQUES EXPERIMENTALES
III. Procédé de synthèse des dispersions aqueuses

III.1. Introduction

Notre but était de trouver un procédé de fabrication de dispersions aqueuses de polyuréthane adapté à l’étude en laboratoire, tout en gardant l’optique d’une application industrielle. Notre choix s’est rapidement porté sur le procédé appelé "mélange du prépolymère" (mixing prepolymer process), relativement simple à mettre en œuvre tant en laboratoire que d’un point de vue industriel. L’atout majeur de ce procédé, compte tenu des lois environnementales de plus en plus restrictives et particulièrement dans le domaine des industries graphiques, est qu’il ne nécessite l’utilisation d’aucun solvant.

III.2. Description de la procédure suivie

Le processus chimique de ce procédé est détaillé dans la première partie, et résumé dans la figure III.1.

Figure III.1: schéma réactionnel du procédé « mélange de prépolymère ».

Les dispersions ont toutes été réalisées de la même façon. La synthèse du prépolymère est conduite dans un réacteur à simple enveloppe de 500 ml, sous agitation mécanique à l’aide d’une ancre en verre, et sous balayage azote. Le réacteur est auparavant mis à température (70-80°C) grâce à un bain d’huile de silicone chauffé, et maintenu sous balayage azote à vide pendant une heure.

Lors de l’introduction des produits, la vitesse d'agitation est de 160 tr/min. Le diisocyanate est introduit en premier, en excès, puis on ajoute le catalyseur (dibutyl dilaurate d'étain). Le polyol est ensuite introduit rapidement dans le réacteur, et enfin l'agent émulsifiant (acide diméthylol propionique, DMPA).

L’agitation du mélange réactionnel est alors portée à 280 tr/min, sous balayage azote et à une température pouvant aller de 80 à 110°C, l’idéal étant de rester entre 90 et 100°C, pour dissoudre correctement le DMPA tout en évitant le risque de réactions parallèles provoquées par une température trop élevée.

Le suivi de la réaction se fait par dosage des groupements isocyanates [ASTM D 2572, 1979]. Ce dosage est réalisé en ajoutant un excès de dibutylamine. La dibutylamine réagit
stechiométriquement avec les groupements isocyanates, et l'excès est titré en retour avec l'acide chlorhydrique. Lorsque le taux de NCO restant est égal à ± 5 % au théorique, l'agitation est stoppée et le réacteur enlevé du bain d'huile.
La durée de cette première étape peut varier d'une à deux heures, suivant le ratio NCO/OH et/ou le poids moléculaire et la nature du polyol.

Pour l'étape de dispersion, l'eau est introduite, à température proche de l'ambiante (entre 25 et 30°C) dans un récipient ouvert, auquel on ajoute ensuite la triéthylamine qui doit neutraliser les groupements carboxyliques du DMPA.
La proportion de TEA est évidemment fonction de la proportion d'agent émulsifiant. Cette proportion de DMPA intervient sous la forme d’un indice, l’indice d’acide. Il est défini comme étant le nombre de mg d'hydroxyde de potassium nécessaires à la neutralisation des acides libres contenus dans 1 g de produit. Il se calcule grâce à la formule suivante :

$$ Ia = \frac{56100}{e(ac)} $$

où $$ e(ac) $$ est le poids équivalent acide (la masse de produit contenant une fonction acide, exprimée en g), qui s'obtient par la formule suivante :

$$ e(ac) = \frac{m_{prépo}}{m_{DMPA}} e(ac)_{DMPA} $$

où $$ m_{prépo} $$ est la masse totale du prépolymeré,
$$ m_{DMPA} $$ est la masse de DMPA,
$$ e(ac)_{DMPA} $$ est le poids équivalent acide de la DMPA, 134.

Le prépolymeré est ensuite coulé lentement dans ce mélange sous agitation à 280 tr/min. On rajoute aussitôt l'amine d'extension de chaîne (éthylène diamine) afin d'éviter la réaction des fonctions isocyanates avec l'eau, mais cette addition doit se faire lentement, car une brusque augmentation de la viscosité (due à l'extension de chaîne) peut se produire et empêcher ainsi la dispersion. L'agitation est alors augmentée à 500 tr/min et on laisse disperser pendant 1h30.
IV. Techniques d’analyse

IV.1. Introduction

Les dispersions synthétisées ont alors été caractérisées de différentes façons. Nous avons souhaité les caractériser en terme d’émulsions (taille de particules, potentiel zêta), mais aussi en tant que polymères (température de transition vitreuse, énergie de surface).

Pour étudier les polymères, nous avons réalisé des ‘films’ polymères dans des moules en teflon que nous avons fit sécher à l’étuve (50°C, pendant plus de 24h). Les produits obtenus étaient souples, élastomères ou friables suivant leur température de transition vitreuse.

IV.2. Analyse spectroscopique

IV.2.1. Spectroscopie Infrarouge à Transformée de Fourier

L’appareil utilisé pour l’analyse infra-rouge est un spectromètre infrarouge de Perkin Elmer à transformée de Fourier. Le balayage a été effectué de 500 à 4000 cm\(^{-1}\), avec quatre accumulations.

Les réactifs liquides (diisocyanates, diols…), et les films minces de polymères ont été analysés en transmission entre deux faces de NaCl.

Les produits friables ont été analysés en transmission à l’aide de pastilles KBr. Les élastomères qui se dissolvaient (ou gonflaient) dans le dichlorométhane ont été analysés en transmission sur des faces NaCl, les autres par réflexion totale atténuée (ATR).

IV.2.2. Résonance Magnétique Nucléaire

Les analyses RMN du proton (RMN \(^{1}\)H) ont été réalisées avec un appareil BRUCKER de 300MHz. Différents solvants deutérés (acétone, chloroforme, dichlorométhane) ont été utilisés suivant la solubilité des produits à analyser.
IV.3. Analyse thermique

L'analyse calorimétrique différentielle à balayage (DSC) a été menée sur un calorimètre SETARAM DSC92, afin de déterminer les températures de transition des polymères. Les échantillons (de masse égale à environ 50 mg) ont été analysés de –140°C à 150°C, avec une vitesse de montée en température de 10°C/min.

L’analyse thermogravimétrique a été réalisée sur un appareil SETARAM TGA92. Les essais ont été réalisés avec un débit constant d’azote et à une vitesse de montée en température de 10°C/min. Nous avons défini une ‘température de début de dégradation’, comme étant la température à laquelle l’échantillon a perdu 10% de sa masse initiale.

IV.4. Chromatographie d’exclusion stérique sur gel

Les mesures de poids moléculaire ont été réalisées sur un appareil SPECTRA PHYSICS, muni de deux colonnes en série. Un étaillonnage préalable des colonnes avec des échantillons standards de polystyrène de poids moléculaire connu dans le THF a été réalisé. Les polymères issus des dispersions sont solubilisés dans une solution de DMF+NaNO₃ (0, 1M) à une concentration de 1mg/ml.

IV.5. Analyse des énergies superficielles

IV.5.1. Tension superficielle des liquides

La méthode utilisée est celle de l’anneau de Du Noüy qui utilise un anneau de platine, suspendu horizontalement. L’anneau est immergé dans le liquide puis retiré mécaniquement. La tension superficielle est obtenue à partir de la mesure de la force F nécessaire à la rupture du film lors de la séparation de l’anneau, par l’équation suivante (Eq. IV.1) :

\[\gamma = \frac{\beta F}{4\pi R} \]

(Eq. IV.1)

Où, \(R \) : Rayon de l'anneau,
\(\beta \) : Facteur correctif tenant compte de la masse volumique du liquide.
IV.5.2. Energie de surface des solides

IV.5.2.1 : Angles de contact

La mesure d'angles de contact est une des applications d'un dispositif plus complet développé et construit au sein de l'EFPG dans le cadre de deux thèses [Aurenty, 1996], [Lanet, 1997]. Tous les détails concernant le développement et les applications de ce dispositif ont fait l’objet d’une publication [Aurenty et al., 1997].

L'appareil utilisé dispose de deux caméras permettant de travailler avec des vitesses d'acquisition d'images différentes :
Une caméra CCD classique COHU pour les mesures en statique,
une caméra PULNIX TM 6701 AN pour les mesures en dynamique, permettant l'acquisition de 200 images/s.

L'ensemble est fixé sur un chariot mobile permettant de régler la mise au point. Cet appareil est aussi constitué de :
- un porte-échantillon à déplacement horizontal ;
- un porte-seringue à déplacement vertical ;
- une source de lumière diffuse (néon 18 watts) et des diffuseurs ;
- une carte d'acquisition vidéo VPM dont la programmation permet d'enregistrer et de traiter les images.

Figure IV.1 : Dispositif expérimental de mesure des angles de contact.
Les mesures d'angles de contact sont ici effectuées dans le but d'obtenir les énergies de surface des solides obtenus. Pour cela, on utilise des liquides de référence de tensions superficielles connues.

Pour effectuer la mesure, l'échantillon solide est collé sur le porte échantillon de façon à ce que la surface soit la plus plane possible. Une goutte d'un liquide de référence est déposée sur la surface grâce à une micro-seringue. L'image de la goutte, assimilée à une calotte sphérique, est acquise par la caméra choisie et traitée par un programme spécifique déterminant la valeur de l'angle de contact en appliquant l'équation (Eq. IV.2) :

\[
\tan \frac{\theta}{2} = \frac{2h}{D}
\]

(Oeq. IV.2)

Où,
\(\theta \) : angle de contact,
\(h \) : hauteur de la goutte,
\(D \) : longueur de la base de la goutte.

\[\text{Figure IV.2 : Exemple de contour de goutte traité par le dispositif de mesure d'angle de contact.}\]

Les polymères issus des dispersions sont analysés sous la forme d'un film couché sur un film en polypropylène et séché à l'étuve à 50°C pendant 1h30. Le film sec de polymère a une épaisseur de 2 à 3µm.
IV.5.2.2 : Méthodes de calcul de l'énergie de surface

Les valeurs des angles de contact des liquides de référence sur les matériaux testés permettent d'obtenir les valeurs des énergies de surface de ces matériaux par l'application de différentes méthodes de calcul [Balkenende et al., 1998]. Nous avons choisi de travailler avec les deux approches courantes détaillées ci-dessous.

IV.5.2.2.1. Approche de Owens Wendt [Owens et Wendt, 1969]

Fowkes [Fowkes, 1964] a établi (Eq. IV.3) que la composante dispersive du travail d'adhésion peut être exprimée par la moyenne géométrique des composantes dispersives des énergies de surface du solide et du liquide :

\[W_{SL}^d = 2\sqrt{\gamma_L^d \gamma_S^d} \]
(Eq. IV.3)

Owens et Wendt ont généralisé cette approche aux interactions non dispersives ou polaires [Owens et Wendt, 1969] :

\[W_{SL} = 2\sqrt{\gamma_L^d \gamma_S^d} + 2\sqrt{\gamma_L^p \gamma_S^p} \]
(Eq. IV.4)

L'application de l'équation de Young-Dupré (Eq. IV.5) :

\[W_{SL} = \gamma_L(1+\cos \theta) \]
(Eq. IV.5)

à un système solide/liquide permet d'obtenir l'équation suivante :

\[\gamma_L(1+\cos \theta) = 2\sqrt{\gamma_L^d \gamma_S^d} + 2\sqrt{\gamma_L^p \gamma_S^p} \]
(Eq. IV.6)

Avec, \(\gamma_L \) : tension superficielle du liquide,
\(\gamma_S \) : énergie de surface du solide,
\(\gamma_L^d \), \(\gamma_L^p \) : composante dispersive et composante polaire de la tension superficielle du liquide,
\(\gamma_S^d \), \(\gamma_S^p \) : composante dispersive et composante polaire de l'énergie de surface du solide.
En divisant par $2\sqrt{\gamma_L^d}$, on obtient l'équation :

$$\gamma_L(1+\cos\theta)/2\sqrt{\gamma_L^d} = \sqrt{\gamma_S^d} + \sqrt{\gamma_L^p / \gamma_L^d}$$

(Eq. IV.7)

γ_L, γ_L^p, γ_L^d étant connues, en traçant la droite $\gamma_L(1+\cos\theta)/2\sqrt{\gamma_L^d}$ en fonction de $\sqrt{\gamma_L^p / \gamma_L^d}$ pour les liquides de référence, on peut déduire $\sqrt{\gamma_S^d}$ et $\sqrt{\gamma_L^p}$ comme étant respectivement l'ordonnée à l'origine et la pente de la droite obtenue. Les caractéristiques des liquides utilisés pour cette approche sont données dans le tableau IV.1 :

Tableau IV.1 : Composantes de la tension de surface des liquides de référence (mN/m).

IV.5.2.2.2. Approche acide-base, approche de Van Oss [Van Oss, 1993]

Cette approche définit l'énergie de surface d'un matériau de la façon suivante :

$$\gamma = \gamma_{L,W} + 2\sqrt{\gamma^+ \gamma^-}$$

(Eq. IV.8)

Avec, $\gamma_{L,W}$: terme représentatif des interactions de Lifshitz et Van der Waals,

γ^+ : terme représentatif de l'aptitude à accepter des électrons (composante acide),

γ^- : terme représentatif de l'aptitude à donner des électrons (composante basique).

Dans le cas général d'interactions entre un liquide bipolaire et un solide bipolaire, le travail d'adhésion s'écrit alors :

$$\gamma_L(1+\cos\theta) = 2\sqrt{\gamma_S^d \gamma_L^d} + 2\sqrt{\gamma_L^p / \gamma_L^d} + 2\sqrt{\gamma_L^p / \gamma_S^d}$$

(Eq. IV.9)

Cette méthode de calcul est la plus complexe et se résout matriciellement.

Les caractéristiques des liquides utilisés pour cette approche sont données dans le tableau IV.2 :

Tableau IV.2 : Composantes de la tension de surface des liquides de référence (mN/m).

IV.6. Analyse des particules en dispersion
IV.6.1. "Taille moyenne" des particules par diffusion de lumière

Les mesures de taille de particules ont été réalisées par spectroscopie de corrélation de photons sur un appareil Malvern Autosizer 2c. Cette technique est fondée sur la mesure du mouvement aléatoire des particules provoqué par les impacts des molécules du solvant sur la surface de la particule (mouvements browniens). La fréquence et l'amplitude de ces mouvements dépendent de la taille des particules et de la viscosité du solvant (et donc de la température du milieu).

Les mesures ont été réalisées dans l’eau, et à une température de 20°C.

Il est important de noter que la valeur que l’appareil appelle « taille moyenne » est en fait le diamètre correspondant à la taille des particules qui diffusent avec la plus forte intensité (donc les plus nombreuses). Il ne s’agit donc pas réellement du diamètre moyen, ni en taille, ni en nombre.

De plus, dans la gamme de taille de particules dans laquelle nous avons travaillé (de quelques nanomètres à la centaine de nanomètres), nous sommes dans les limites de fonctionnement de l’appareil, et celui-ci ne nous permet pas d’obtenir une distribution correcte des tailles de particules.
IV.6.2. Morphologie et distribution en taille des particules par cryomicroscopie

IV.6.2.1. Microscopie électronique

Afin de déterminer précisément la morphologie et la distribution en taille des particules en suspension, nous avons utilisé l'imagerie par microscopie électronique en transmission (MET). Un premier essai a été effectué en déposant une goutte de suspension très diluée sur un film mince de carbone amorphe. Avant séchage, un colorant contenant des atomes lourds (acétate d'uranyle 2%) est ajouté. Celui-ci s'accumule autour des particules en créant ainsi un contraste négatif [Harris, 1997]. Ainsi, les particules polymères, moins denses que le colorant, apparaissent en clair sur un fond sombre (Figure IV.3a).

Cette technique pose cependant plusieurs problèmes. Tout d'abord, si la Tg du polymère est inférieure à la température ambiante, les particules sont molles, voire liquides, et se déforment sous l'effet du séchage sur la membrane de carbone. Le diamètre apparent n'a donc pas de sens. De plus, si leur concentration est élevée, il y a coalescence et on ne peut plus distinguer les particules individuelles. On observe des effets de ce type sur la Figure IV.3a. Si la Tg est supérieure à la température ambiante, on peut espérer que les particules se comporteront comme des sphères dures et l'on pourra alors mesurer leur diamètre. Cependant, il est classique que des particules s'agrègent à la surface du carbone durant le séchage. Dans ce cas, il est difficile de juger si l'agrélation existe en suspension ou si c'est un artefact de séchage. De plus, il est difficile d'utiliser un logiciel d'analyse d'image pour mesurer la taille des particules agrégées.

C'est pour cette raison que nous avons décidé d'utiliser la cryomicroscopie (cryo-MET). Cette technique consiste à congeler très rapidement un mince film liquide de suspension formé sur une membrane de carbone à trous (Figure IV.4a). Le spécimen est alors transféré sur un porte-objet refroidi GATAN 626, puis observé dans le microscope à la température de l'azote liquide. On observe alors les particules figées dans la glace vitreuse (Figure IV.4b). D'une densité supérieure à celle de la glace, elles apparaissent en sombre sur un fond clair [Dubochet et al., 1982; Harris, 1997; Putaux et al., 1999]. Ainsi que nous le montrons sur la figure IV.3b, les particules en suspension choisies pour cet exemple sont individualisées. On peut alors visualiser leur forme et mesurer leur taille.
Figure IV.3 : dispersion de particules de polyuréthane observée par MET:
a) coloration négative à température ambiante ; b) cryo-MET dans la glace vitreuse.

Les observations ont été faites par Jean-Luc Putaux, au Centre de Recherches sur les
Macromolécules Végétales (CNRS, Grenoble). Les échantillons ont été observés en condition
de faible illumination sur un microscope Phillips CM200 'Cryo' fonctionnant à une tension de
80 kV. Les images ont été enregistrées sur films photographiques, à un grossissement de
11 500×. Les négatifs ont été ensuite digitalisés au moyen d'une caméra CCD digitale Kodak
Megaplus (8 bits, noir et blanc, pixels carrés) avec un taux d’échantillonnage de 2nm/pixel.
L’optimisation du contraste des images et les mesures de taille des particules ont été réalisées
au moyen du logiciel Optimas.
Pour mesurer le diamètre d'un grand nombre de particules de manière semi-automatique, nous avons conçu une routine de calcul sous le logiciel Optimas 6.51.

Les images obtenues par cryo-MET ont un certain nombre de caractéristiques qui peuvent poser problème en analyse d’image, comme notamment :
- un faible contraste entre les particules et la glace vitreuse ;
- la présence de la membrane de carbone ;
- une forte hétérogénéité du fond en terme de luminance.

En effet, en observant un histogramme sur l’ensemble d’une image (Figure IV.5), nous voyons aisément qu’il est difficile de définir des classes de luminances pour les particules, la glace vitreuse et la membrane de carbone.
Pour palier à ces problèmes, le traitement a été fait sur des régions d’intérêt (‘région of interest’ ou ROI) de petite dimension par rapport à l’image d’origine (Figure IV.6). Le choix de l’emplacement des ROI traitées est déterminé par l’utilisateur, afin d’éviter au maximum les zones où la membrane de carbone est présente.

Les principales étapes du traitement d’une ROI sont :
- sélection manuelle de la ROI (Figure IV.6.1);
- correction adaptative du fond afin d’obtenir une meilleure homogénéisation en terme de luminance ;
- seuillage manuel, puis binarisation de l’image (Figure IV.6.2) ;
- élimination des hétérogénéités de la glace vitreuse par érosions successives ;
- détection des particules (Figure IV.6.3) (connexté 8), séparation et remplissage des trous ;
- assimilation à une ellipse, mesure du grand axe et du petit axe ;
- exportation des données.

Les grandeurs exportées sont le nombre de particules détectées et pour chacune d’elles, le grand axe et le petit axe de l’ellipse correspondante. Les mesures sont réalisées sur environ 1000 particules et les histogrammes des distributions des diamètres moyens (moyenne du petit axe et du grand axe) sont réalisés (Figure IV.9).

Cette caractérisation semi-automatique est beaucoup plus rapide qu’un comptage manuel des particules (30 min au lieu d’au moins 2 h).
Figure IV.6: étapes du protocole de mesure semi-automatique de la taille des particules à partir de clichés de cryo-MET. 1 : sélection manuelle de la ROI ; 2 : seuillage manuel ; 3 : détection des particules.

IV.6.2.3. Artefacts possibles de la cryo-MET

Généralement, l'épaisseur du film de glace vitreuse est variable à l'intérieur d'un trou de la membrane de carbone. On peut considérer que pour nos expériences, l'épaisseur des zones observées variait entre 40 et 100 nm. Ce gradient d'épaisseur est directement visible sur les images en considérant la variation de niveau de gris du fond continu. Les particules en suspension dans le film liquide avant congélation sont sensibles à ces variations d'épaisseur. Les particules les plus grosses tendent à s'accumuler dans les zones les plus épaisses, près du carbone, tandis que les objets plus petits se rassemblent dans les zones minces. On observe donc une réorganisation des particules selon leur diamètre (Figure IV.7).
Lorsque la Tg du polymère est inférieure à la température ambiante, les particules en suspension dans le film liquide sont très sensibles aux effets de tension de surface et peuvent donc être déformées si leur diamètre dans la dispersion est supérieur à l'épaisseur du film liquide (Figure IV.8). Ainsi, si les plus petites particules ne sont pas déformées, le diamètre apparent des plus grosses (> 100 nm) ne correspond pas au diamètre dans la dispersion. C'est donc un artéfact important à prendre en compte car il peut entraîner une "déformation" de l'histogramme de distribution de taille vers les grands diamètres.

Figure IV.8: Déformation des particules dans le film de glace selon leur rigidité.

IV.6.2.4. Erreurs sur la mesure de taille

L’erreur principale due à l’imagerie provient de la Frange de Fresnel. Les interférences des ondes électroniques qui se créent à l’interface de deux phases de densités différentes engendrent la formation d’une frange claire (dans le cas d’une sous-focalisation) qui entoure les particules [Misell, 1978]. L’interface réelle entre la particule et la phase aqueuse est comprise dans cette frange. Sa largeur varie en fonction de la mise au point de l’image. Elle
n’est donc pas systématiquement la même sur toutes les images et sur toutes les particules. Cela implique donc une incertitude sur la position réelle de l’interface polymère/glace. Sur les images que nous avons étudiées, l’épaisseur de la frange de Fresnel est inférieure (ou égale) à 10% du diamètre des particules. L’algorithme de calcul travaille sur les pixels sombres et néglige cette frange. Le diamètre mesuré est donc sensiblement inférieur au diamètre réel, mais l’erreur réalisée sera inférieure à 10%.

Les erreurs dues à l’algorithme de calcul sont également à prendre en compte. Cet algorithme utilise une suite d’érosions-dilatations qui permet de décrire le contour des particules avec une erreur de l’ordre du pixel. Cette erreur dépend essentiellement de la forme des particules. Par contre, les érosions successives (3) réalisées lors du nettoyage de l’image, éliminent de l’acquisition les objets de ‘diamètre’ inférieur à 5-6 pixels (suivant leur forme) et donc y compris les particules de très petites tailles. Le taux d’échantillonnage étant de 2 nm/pixel, on peut donc considérer que les particules de diamètre inférieur à 10 nm ne seront pas prises en compte. Cette erreur est visible sur certains histogrammes de distribution de taille où l’on observe une ‘coupure’ en dessous de 10 nm, comme on peut le voir sur la figure IV.9. Mais pour les dispersions étudiées, cet effet est minime dans la majeure partie des cas.

Figure IV.9 : histogramme de distribution de taille des particules.
IV.6.3. Potentiel zêta

Les mesures de potentiel zêta ont été réalisées sur un Zetasizer de la société Malvern. Cette mesure est basée sur la détermination de la mobilité électrophorétique. Les particules en dispersion, chargées, vont se déplacées sous l’effet d’un champ électrique. La mesure de la vitesse de ces particules par vélocimétrie laser permet d’accéder à leur mobilité électrophorétique et d’obtenir ainsi leur potentiel zêta.

IV.7. Comportement en écoulement

Le comportement en écoulement des dispersions a été déterminé à l'aide d'un rhéomètre cône/plan Carri-Med à contrainte imposée CSL² 500, utilisé en mode "écoulement". L’échantillon est placé sur un plan thermostaté par effet Peltier (précision ±0.1°C).

![Figure IV.4 : Système de mesure du rhéomètre cône/plan.](image)

Afin de pouvoir comparer les valeurs, nous avons adopté la même géométrie pour tous les essais. Les mesures ont été effectuées avec un cône de 4 cm de diamètre, d'angle 1° et d'entrefer égal à 26 µm. Cette géométrie permet d'avoir un gradient de vitesse maximal de 2578 s⁻¹. La viscosité citée dans les chapitres suivants correspond à la viscosité des dispersions à un gradient de vitesse de 500 s⁻¹.
PARTIE III

CARACTERISATION DES MATIERES PREMIERES ET DE DISPERSIONS COMMERCIALES
V. Caractérisation des matières premières

V.1. Diisocyanates

Les diisocyanates aromatiques ne sont pas particulièrement adaptés aux dispersions aqueuses de polyuréthane, principalement à cause de leur réactivité élevée vis à vis de l’eau, qui entrerait en compétition avec l’étape d’extension de chaîne lors de la dispersion. Cependant, n’ayant voulu négliger aucune possibilité, nous avons choisi de tester un diisocyanate aromatique, très couramment utilisé pour les polyuréthanes à base solvant, mais aussi parfois pour les dispersions aqueuses de polyuréthanes [Klein et al., 1997], le MDI (diphénylméthane diisocyanate).

Nous avons ensuite étudié les trois diisocyanates aliphatiques les plus courants :
- le TMXDI (1,3-tétraméthylxylyléne diisocyanate) particulièrement adapté aux dispersions aqueuses [Klein et al., 1997], grâce à ses propriétés (rigidité de la fonction uréthane, stabilité au vieillissement due à son caractère aliphatique), mais surtout pour sa faible réactivité avec l’eau et sa bonne réactivité avec les amines qui facilitent les étapes de dispersion et d’extension de chaîne ;
- l’IPDI (isophorone diisocyanate) [Raut et al., 1999], [Coutinho et al., 2000] ;
- le H12MDI (dicyclohexaméthylméthane diisocyanate) [Delpech et Coutinho, 2000], [Yen et Kuo, 1998].

V.1.1. Diisocyanate aromatique

Le diisocyanate aromatique que nous avons étudié est le MDI.

Le produit avec lequel nous avons travaillé est un MDI industriel, fourni par la société Bayer. Ce produit étant liquide, il ne pouvait pas être le diphénylméthane 4,4 diisocyanate pur, qui lui est un solide cristallin à température ambiante.
Afin de déterminer plus précisément la composition de ce produit, nous avons souhaité le comparer au MDI pur (98%) fourni par la société Aldrich. Pour cela, nous avons caractérisé ces deux produits par des spectres FTIR et RMN du proton.

Sur le spectre FTIR du MDI pur (Figure V.1), apparaissent clairement tous les pics caractéristiques des groupements propres à ce produit. On peut aussi noter la présence de liaisons N-H (3693 et 3391 cm\(^{-1}\)) et de groupements carbonyles C=O (1770 cm\(^{-1}\)), en petite proportion, dues à la formation de produits de cyclisation.

Le spectre RMN (Figure V.2) confirme bien le fait que ce produit est le diphénylméthane 4,4 diisocyanate, par la position des pics, et notamment par la parfaite symétrie du double pic représentatif du noyau aromatique, et la valeur des intégrales.
Le détail de ces caractéristiques spectrales est donné dans le tableau V.1.
Figure V.2 : spectre RMN1H dans CD$_2$Cl$_2$ du MDI pur.

Tableau V.1 : caractéristiques du MDI pur.

Le spectre FTIR du MDI industriel (figure V.3) est semblable à celui du MDI pur, excepté la présence d’un deuxième pic caractéristique du noyau aromatique en position méta (756 cm$^{-1}$). Quant au spectre RMN (figure V.4), il confirme bien la présence des deux isomères para et méta par la dissymétrie des résonances caractéristiques des protons aromatiques, et par les deux pics pour les protons méthyliques.

Les données spectrales de ce produit sont rassemblées dans le tableau V.2.
D'après ces résultats, le produit industriel est un mélange de deux isomères (méta et para), ce qui explique le fait que ce produit ne soit pas cristallin, mais les valeurs des intégrales du spectre RMN, ainsi que les résultats de l’analyse élémentaire, ne laissent pas de doute quant à la fonctionnalité de ce produit, qui est bien de 2 (ce qui prouve l'absence de trimère).

La haute toxicité des diisocyanates ne permet pas de les caractériser par analyse élémentaire à l'état pur. Nous avons donc choisi de faire réagir ces diisocyanates avec un excès de
butylamine, le tout en solution dans du dichlorométhane. Le solvant et l’excès de butylamine sont ensuite éliminés (rotavap et rampe à vide).
Les molécules obtenues, et analysées par analyse élémentaire sont alors de la forme :
V.1.2. Diisocyanates aliphatiques

V.1.2.1. TMXDI

![Chemical Structure of TMXDI]

Le TMXDI utilisé lors des synthèses est fourni par la société Cytec. Nous l'avons caractérisé par des spectres FTIR et RMN du proton (Figures V.5 et V.6).

Sur le spectre FTIR, on retrouve les pics des groupements caractéristiques de ce produit, groupements méthyles, isocyanates, noyau aromatique en position méta. On remarque aussi la présence de liaisons N-H et C=O (urée) qui proviennent d'une légère hydrolyse du produit.

Le spectre RMN1H, et notamment la valeur des intégrales, confirme bien le fait que le noyau aromatique est en position méta (rapport 1/3 entre H$_1$ et H$_2$), et on retrouve exactement le nombre de protons sur les groupements méthyles.

L'ensemble des caractéristiques est détalé dans le tableau V.3.

![Infrared Spectrum of TMXDI]

Figure V.5 : spectre FTIR du TMXDI.
Figure V.6 : spectre RMN1H du TMXDI dans CDCl$_3$.

Tableau V.3 : caractéristiques du TMXDI.

Les résultats de l’analyse élémentaire confirment bien la structure, la fonctionnalité et la pureté du produit.

V.1.2.2. IPDI

Nous avons ici aussi étudié deux produits, le produit pur, fourni par Aldrich et un produit industriel, fourni par la société Bayer, afin de vérifier la qualité de ce dernier. Les spectres FTIR et RMN1H, ainsi que les tableaux résumant les principales caractéristiques de ces deux produits sont présentés ci-dessous.
Figure V.7 : spectre FTIR de l'IPDI pur.

Figure V.8 : spectre RMN1H de l'IPDI pur dans CD$_2$Cl$_2$.
Tableau V.4 : caractéristiques de l'IPDI pur.

Tous les groupements caractéristiques de l'IPDI apparaissent clairement sur le spectre FTIR. Par contre le spectre RMN est plutôt confus. Cela est dû à la présence des isomères correspondant aux deux configurations chaise et bateau. Il n'est donc pas possible de détailler parfaitement les intégrales. Mais, en se limitant à des intégrales globales, on obtient des valeurs cohérentes. Les mêmes caractérisations ont été effectuées sur l'IPDI industriel et sont présentées ci-dessous (Figures V.9 et V.10, Tableau V.5). Les spectres étant sensiblement identiques on peut affirmer que l'IPDI industriel est relativement pur, sans impuretés ou anomalies particulières.
Pour ce produit aussi, les résultats de l’analyse élémentaire confirment la structure de cet isocyanate.

V.1.2.3. H12MDI

Le H12MDI, dicyclohexaméthylméthane diisocyanate, est l’isocyanate aliphatique homologue du MDI. On le trouve généralement sous la forme d’un mélange 80/20 de stéréoisomères bateau/chaise [Frisch, 1998].

Le produit que nous avons étudié est un produit industriel fourni par la société Bayer. Nous avons là aussi fait la comparaison avec le produit pur, fourni par Aldrich.

Comme pour l’IPDI, les spectres FTIR et RMN étaient similaires. Les spectres du produit industriel, utilisé dans les synthèses, sont présentés sur les figures V.11 et V.12 et leurs caractéristiques sont détaillées dans le tableau V.6.
Figure V.11 : spectre FTIR du H12MDI industriel.

Figure V.12 : spectre RMN 1H du H12MDI industriel dans CD$_2$Cl$_2$.

Tableau V.6 : caractéristiques du H12MDI industriel.

Il existe quatre isomères de ce produit, suivant les possibilités de configuration bateau/chaise. Cela entraîne une délocalisation des pics sur le spectre RMN, et empêche de faire des intégrales séparées. On distingue cependant les pics relatifs aux protons portés par le carbone relié au groupement NCO, H$_1$, et les valeurs globales des intégrales donnent le bon rapport.
De plus, le spectre FTIR et les résultats de l’analyse élémentaire nous permettent de confirmer la structure présentée.

V.2. Diols

V.2.1. Polyethers diols

Nous avons choisi d'étudier trois types de polyéthers diols, que l'on retrouve couramment dans articles et brevets traitant des PUD : le polyoxyde de propylène (PPG) [Raut et al., 1999], [Seneker, 1996], le polyoxyde d'éthylène (PEG) et le polytétrahydrofurane diol (PTHF) [Lo et al., 1999], [Seneker, 1996]. Nous avons aussi testé des codiols blocs PEG-PPG-PEG, de différents poids moléculaires et avec différents pourcentages de PEG.
V.2.1.1. Polyoxydes de propylène

La formule du PPG est la suivante :

Le polyol analysé est le PPG 2000, mais nous avons travaillé à partir de produits de différents poids moléculaires (400, 1000, 2000 et 4000). Ce sont tous des produits industriels, fournis par Shell.

Les spectres FTIR et RMN1H sont présentés Figures V.13 et V.14, et les caractéristiques de ces produits sont détaillées dans le tableau V.7.

Figure V.13: spectre FTIR du PPG 2000.

Figure V.14 : spectre RMN1H du PPG 2000 dans CDC13.

Tableau V.7 : caractéristiques du polyoxyde de propylène.

Sur le spectre RMN1H, les deux pics vers 3.5 ppm représentent les protons des groupements CH et CH$_2$ de la chaîne, alors que le pic à 1.1 ppm est caractéristique de ceux du groupement CH$_3$. La valeur des intégrales le confirme, puisqu'elles sont identiques. Les protons des groupements OH, étant trop peu nombreux par rapport aux autres, il est normal qu'ils n'apparaissent pas de façon significative sur ce spectre, mais ils sont clairement visibles sur le spectre FTIR par leur pic caractéristique vers 3480 cm$^{-1}$.
V.2.1.2. Polyoxydes d’éthylène

La formule du PEG est la suivante :

\[\text{HO}-(\text{CH}_2\text{CH}_2\text{O})_n\text{H} \]

 Là aussi des produits de différents poids moléculaires (fournis par la société Aldrich) ont été testés (300, 600, 1000, 1500 et 2000). Les spectres FTIR et RMN^1H du PPG 600 sont présentés sur les figures V.15 et V.16 et caractérisés dans le tableau V.8.

Figure V.15 : spectre FTIR du PEG 600.

Figure V.16 : spectre RMN^1H du PEG 600 dans CD$_2$Cl$_2$.

Tableau V.8 : caractéristiques du polyéthylène glycol.

Le spectre FTIR fait clairement ressortir les groupements CH$_2$ (à 2869 cm$^{-1}$), la liaison OH (3163 cm$^{-1}$) et la liaison éther à 1104 cm$^{-1}$.

Quant au spectre RMN, il ne fait ressortir qu'un seul pic, ce qui est tout à fait logique puisque la molécule est parfaitement symétrique et que les hydrogènes terminaux sont trop peu nombreux par rapport à ceux de la chaîne polymère.

Il faut noter le caractère particulièrement hydrophile de ce polyol, qui aura son importance lors de la réalisation des synthèses.

V.2.1.3. Copolymères blocs

Après l'étude de ces deux polyols très classiques, nous avons voulu essayer des copolymères blocs PEG-PPG-PEG, afin de combiner le caractère hydrophile de l'un et le caractère hydrophobe de l'autre. La structure des copolymères étudiés (fournis par Aldrich) est de la forme :

Nous avons étudié deux copolymères de cette famille, de composition et de poids moléculaires différents :
- le premier de poids moléculaire 1100, avec 10% d'éthylène glycol et 90% de polypropylène glycol (% en masse) ;
- le deuxième de poids moléculaire 1900, avec 50% en masse de chacun des deux composants.

Les spectres et les tableaux récapitulatifs de ces deux produits sont rassemblés dans les pages suivantes (Figures V.17, V.18, V.19 et V.20 et Tableaux V.9 et V.10). Ces spectres (attribution des pics, et valeur des intégrales pour la RMN) confirment les structures proposées par le fournisseur (Aldrich).

![Figure V.17 : spectre FTIR du copolymère bloc 1100.](image)
Tableau V.9 : caractéristiques du copolymère bloc 1100.

Tableau V.10 : caractéristiques du copolymère bloc 1900.

V.2.1.4. Polytétrahydrofurane diols
Le troisième polyéther diol que nous avons utilisé est le PTHF, de formule :

\[
 \text{HO-(CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-O)}\text{n-H}
\]

Là aussi nous avons testé des polyols de différents poids moléculaires (690, 1400, 2000 et 2900) fournis par BASF. Les spectres FTIR et RMN\(^1\)H du PTHF 2000 sont présentés sur les figures V.21 et V.22, et leurs caractéristiques dans le tableau V.11.

Ces résultats sont cohérents avec la formule du diol.

Figure V.21 : spectre FTIR du PTHF 2000.

Figure V.2.2 : spectre RMN\(^1\)H du PTHF 2000 dans CD\(_2\)Cl\(_2\).

Tableau V.11 : caractéristiques du polytétrahydrofurane.

V.2.2. Polyesters

V.2.2.1. Polycaprolactone diols

La polycaprolactone est un polyester de formule :

C'est un polyester relativement courant dans la fabrication des polyuréthanes, et nous l'avons retrouvé à plusieurs reprises dans des brevets et publications [Yen et Kuo, 1998], [Snow et Dame, 2000] traitant plus particulièrement des dispersions aqueuses de polyuréthane.

Le polycaprolactone diol avec lequel nous avons travaillé est en fait un copolymère bloc de la forme suivante :

Nous avons testé deux polyesters diols (fournis par la société Daicel Chemical Industries) de poids moléculaires distincts. Les spectres FTIR et RMN ainsi que le tableau récapitulatif du diol polycaprolactone de poids moléculaire 530 sont présentés dans les figures V.23 et V.24 et le tableau V.12.

Figure V23 : spectre FTIR de la polycaprolactone 530.
V.2.2.2. Polyadipates diols

Les polyesters adipates sont très souvent utilisés dans la synthèse de dispersions aqueuses de polyuréthane, notamment le polyéthylène adipate glycol [Lee et al., 1997], [Son et al., 1998], et le polyhexaméthylène adipate glycol [Lee et al., 1994], [Jhon et al., 2001].

Les adipates étudiés sont des produits industriels fournis par la société Crompton. Nous avons réalisé des spectres infra-rouge et RMN du proton de ces produits.

V.2.2.2.1. Adipate 1

A partir de ces spectres (Figures V.25 et V.26), et du tableau récapitulatif V.13, nous sommes arrivés à la conclusion que cet adipate 1 est le polyéthylène adipate glycol, de formule :
La masse moléculaire de ce produit est de 600, on peut donc en déduire que n est égal à 4. A partir de ces données, on peut vérifier, par la valeur des intégrales du spectre RMN, que la structure proposée est correcte.

V.2.2.2.2. Adipate 2

D'après les figures V.27 et V.28, nous sommes arrivés à la conclusion que ce produit, de poids moléculaire 1000 est réalisé à partir de :
 - adipate
Les valeurs des intégrales du spectre RMN (Tableau V.14) nous ont permis de déterminer les proportions des deux fonctions esters. Ainsi, pour chaque molécule d'isophtalate, nous avons deux molécules d'adipate (H₃+H₄+H₅=0.5 représente 4 protons alors que H₁+H₂=2 représente 8 protons).

V.2.2.2.3. Adipate 3

Figure V.29 : spectre FTIR de l’adipate 3.

Figure V.30 : spectre RMNH de l’adipate 3 dans CD₂Cl₂.
De la même façon nous pensons pouvoir faire l'hypothèse que cet adipate (de poids moléculaire 2000) est réalisé à partir d'adipate, l'isophtalate et l’oxyde de propylène en tant que diol :

Tableau V.15 : caractéristiques de l’adipate 3.

Les valeurs des intégrales donnent les mêmes proportions entre adipate et isophtalate qu’avec l’adipate 2 (deux fois plus d'adipate).
Pour l’oxyde de propylène, les intégrales des pics représentant les protons H₆ et H₇ ont des valeurs correctes, par contre pour le pic représentant les protons H₈, la valeur de l'intégrale est supérieure à celle attendue (2.35 au lieu de 1.5). Cela peut s'expliquer par la présence de solvant ou d'impuretés dans le produit, ce qui se traduirait aussi par la présence des deux petits pics à 3.42 et 3.28 ppm.

V.2.3. Diols "exotiques"

Les polyéthers et polyesters diols sont les diols les plus utilisés dans la synthèse de dispersions aqueuses de polyuréthanes. Cependant, pour des applications plus spécifiques, pour des matériaux ayant des propriétés améliorées (brillant, résistance chimique, résistance thermique…), d’autres diols peuvent être envisagés, comme des diols acryliques [Lee et Kim, 1996], des diols polycarbonates [Kuran et al., 2000], ou encore des diols fluorés [Lim et al., 2001].

V.2.3.1. Diol acrylique

Le diol acrylique que nous avons étudié est un polyméthacrylate-α,ω-diol de poids moléculaire 1000, fourni par la société Tego, comprenant un mercapthoéthanol, une chaîne polymétacrylate et un diol de chaîne courte. Sa formule est de la forme :

Les spectres infra-rouge (Figure V.31) et RMN du proton (Figure V.32), ainsi qu’une caractérisation par analyse élémentaire nous ont permis de déterminer la formule exacte de ce diol acrylique. Toutes les caractéristiques de ce produit sont rassemblées dans le tableau V.16.
Figure V.31 : spectre FTIR du diol acrylique.

Figure V.32 : spectre RMN1H du diol acrylique dans CDCl$_3$.
V.2.3.2. Polycarbonate diol

Nous avons étudié un polycarbonate diol à base d’hexane diol (fourni par la société UBE), de formule chimique :

Ses spectres FTIR et RMN1H (Figures V.33 et V.34) ont permis de confirmer cette structure, et de déterminer la valeur de n suivant le poids moléculaire du diol étudié. Les caractérisations et la formule exacte du diol de poids moléculaire 1000 sont présentés dans le tableau V.17.
Figure V.33 : spectre FTIR du polycarbonate diol de poids moléculaire 1000.

Figure V.34 : spectre RMN1H du polycarbonate diol de poids moléculaire 1000 dans CD$_2$Cl$_2$.
Tableau V.17 : caractéristiques du polycarbonate diol.

Tous les pics caractéristiques se retrouvent sur les spectres, et la valeur relative des intégrales H$_2$ et H$_3$ nous permettent d’affirmer que n est égal à 5.

V.2.3.3. Diol fluoré

Le composé que nous avons étudié est un produit dihydroxy dérivé du perfluoropolyoalkane, de poids moléculaire 1200, fourni par la société Fomblin et de formule :

Les résultats d’analyse élémentaire (Tableau V.18) confirment cette structure et nous permettent de déterminer n et p : n=p=5.
L’analyse thermique de ces diols nous a permis de déterminer leurs températures de transition vitreuse et de fusion, et de mettre en évidence l’influence de certains paramètres, comme le poids moléculaire et la nature chimique des diols, ou encore la cristallinité.

V.2.4.1. Influence du poids moléculaire du diol

L’influence du poids moléculaire du polymère sur la température de transition vitreuse a été étudiée dès les années 1930 avec les travaux de Ueberreiter [Jenckel et Ueberreiter, 1938]. L’analyse théorique appliquée à des polymères linéaires [Fox et Loshaek, 1955] se traduit par une équation (Eq. V.1) exprimant la température de transition vitreuse T_g en fonction du degré de polymérisation DP_n et de la température de transition vitreuse à poids moléculaire infini $T_{g,\infty}$:

$$T_g = T_{g,\infty} - \frac{K}{DP_n}$$

(Eq. V.1)

Où K est une constante dépendant de la nature du polymère (K varie entre 100 et 200).
Les mouvements segmentaux le long de la chaîne polymère sont tous équivalents, leur contribution à la température de transition vitreuse est donc la même, sauf pour les segments terminaux. En effet, le mouvement de ces segments n’implique qu’une seule liaison, et nécessite donc moins d’énergie. Or la concentration des segments terminaux est égale à l’inverse du degré de polymérisation. Donc, plus le degré de polymérisation est faible, plus la contribution des segments terminaux est importante. Les mouvements des chaînes polymères nécessiteront donc moins d’énergie, ce qui se traduit par une température de transition vitreuse plus faible.

L’allure des thermogrammes que nous avons obtenus (Figure V.37) ainsi que les valeurs de températures de transition vitreuse pour différents diols (Figure V.36) confirment bien cette tendance.

Figure V.36 : températures de transition vitreuse en fonction du poids moléculaire des diols.
V.2.4.2. Influence de la structure chimique du diol

Différents facteurs liés à la structure chimique des polymères ont une incidence sur la température de transition vitreuse. Les principaux sont rassemblés dans le tableau V.19. [Boyer, 1963].

Tableau V.19 : facteurs affectant la température de transition vitreuse.

Les valeurs de températures de transition vitreuse que nous avons obtenues sont cohérentes avec ce tableau.

Ainsi, les diols purement polyéthers ont des températures de transition vitreuses faibles (de –77°C à –60°C), exception faite du polytétrahydrofurane, qui cristallise à cause de la trop grande regularité de sa structure.

Les diols polyesters, et notamment les adipates, ont des températures de transition vitreuse plus élevées, car la fonction ester amène de la rigidité et une polarité accrue (de -56°C à -24°C). Il en est de même pour le diol acrylique (Tg = -40°C).

Par contre, les diols polycaprolactone ont des températures de transition vitreuse relativement basses pour des diols polyester (-75°C et -62°C). Ceci s’explique par la présence de groupement éther dans la chaîne polymère, qui favorisent la flexibilité de la chaîne.

V.2.4.3. Influence de la cristallisation du diol

Les polymères semi-cristallins ont une température de transition vitreuse, mais seulement dans les portions amorphes. Cette température de transition vitreuse est fonction du degré de cristallisation, i.e de la proportion relative des phases cristallines et amorphes.

Les micro-phases cristallines, ordonnées, ont une densité plus élevée que celle des micro-phases amorphes et réduisent la possibilité de mouvements segmentaux amorphes. Cela se traduit par une augmentation de la température de transition vitreuse [Mark, 1996].

La température de transition vitreuse peut même être entièrement masquée dans le cas de polymère à haute proportion cristalline [Sperling, 1992].

Cette capacité à cristalliser peut être mise en évidence par la calorimétrie différentielle. Si le polymère a une partie amorphe suffisamment importante, la transition vitreuse, la
cristallisation et la fusion du polymère apparaissent sur le thermogramme. Dans le cas où le polymère est fortement cristallin, une trempe dans l’azote liquide du polymère à l’état fondu permet de figer le polymère à l’état amorphe, et peut permettre de visualiser la transition vitreuse.

Cela explique les températures de transition vitreuse relativement élevées des diols polytetrahydrofurane (-13°C à 12°C). En effet, leur structure très régulière entraîne une proportion élevée de la phase cristalline. C’est le cas du polytetrahydrofurane de poids moléculaire 2900, où il nous a été impossible de déterminer la température de transition vitreuse, même en effectuant une trempe du polymère fondu dans l’azote liquide.

Dans le cas des adipates que nous avons étudiés, nous avons pu mettre en évidence cette aptitude à cristalliser suivant la structure de polymère.

En effet, l’adipate 1, qui est en fait le polyéthylène adipate glycol, est un polymère dont la structure est suffisamment régulière pour entraîner la cristallisation de certains segments, mais la partie amorphe est assez importante pour que la transition vitreuse soit visible sur le thermogramme (Figure V.38). Par contre les adipates 2 et 3 étant des copolymères statistiques d’adipate et d’isophthalate, de diéthylène glycol ou propylène glycol, leur irrégularité structurelle empêche toute cristallisation comme le montrent les thermogrammes (Figure V.38).

Figure V.38 : thermogrammes DSC des adipates 1, 2 et 3.
V.3. Emulsifiant interne

Nous avons travaillé uniquement dans le cas d’émulsification anionique, et nous n’avons étudié qu’un seul agent émulsifiant interne, l’acide diméthylol propionique (DMPA), fourni par la société Perstorp, qui est le plus courant dans le cadre des dispersions aqueuses de polyuréthanes [Markusch, 1983]. Les groupements carboxyliques jouent le rôle de centres ionisables. Son caractère diol lui permet d’être intégré dans la chaîne du prépolymère, d’où son appellation d’émulsifiant interne. Sa formule est la suivante :

Les spectres FTIR et RMN1H sont présentés dans les figures V.39 et V.40 et les caractéristiques principales sont rassemblées dans le tableau V.19.

Figure V.39 : spectre FTIR du DMPA.
Figure V.40 : spectre RMN 1H du DMPA dans D_2O.

Tableau V.19 : caractéristiques du DMPA.

L’étape de neutralisation des groupements carboxyliques se fait grâce à une amine tertiaire, ici la triéthylamine.

V.4. Agent d’extension de chaîne

Comme il a été présenté dans le chapitre II, les di- ou polyamines sont généralement préférées aux polyols, en tant qu’agents d’extension de chaîne, car elles confèrent aux produits finaux de meilleures propriétés mécaniques [Hepburn, 1982]. Nous avons essentiellement travaillé avec l’éthylène diamine, très couramment utilisée dans la synthèse des dispersions aqueuses de polyuréthane [Delpech et Coutinho, 2000], [Yen et Kuo, 1998].

La formule de l’éthylène diamine est :
Les spectres FTIR et RMN1H de cette diamine (fournie par la société Aldrich) sont présentés Figures V.42 et V.43, et les principales caractéristiques de ces spectres sont rassemblées dans le tableau V.20.

Figure V.42 : spectre FTIR de l'éthylène diamine.

Figure V.43 : spectre RMN1H de l'éthylène diamine dans le CDCl$_3$.

Tableau V.20 : caractéristiques de l'éthylène diamine.
VI. Caractérisation de dispersions commerciales

Il nous a aussi semblé intéressant d’étudier quelques dispersions aqueuses de polyuréthane commercialisées, afin d’avoir une référence lors de la caractérisation de nos futures dispersions en termes de matières premières utilisées, mais aussi de propriétés physico-chimiques (pH, taille de particules, températures de transition vitreuse…).

Nous avons caractérisé quatre dispersions commerciales : les dispersions A et B que nous allons détailler dans le paragraphe suivant, ainsi que la dispersion C, à base d’un polyol polyester et d’un diisocyanate aliphatique (d’après les données du fournisseur), et la dispersion D, dispersion hybride polyuréthane-acrylique aliphatique (toujours d’après le fournisseur).

VI.1. Détermination des matières premières utilisées

VI.1.1. Dispersion A

Les renseignements donnés par le fournisseur indiquent qu’il s’agit d’une dispersion aqueuse de polyuréthane aliphatique. Par spectroscopie FTIR et RMN du proton, nous avons donc tenté de déterminer quels étaient les réactifs utilisés lors de la synthèse de ce produit. Les spectres sont présentés dans les figures VI.1 et VI.2.

Figure VI.1 : spectre FTIR du polymère de la dispersion A.
D'après ces spectres, et grâce à ceux réalisés lors de la caractérisation des matières premières (Chapitre V), nous sommes arrivés à la conclusion que le diisocyanate utilisé pour la synthèse de cette dispersion est très probablement l’isophorone diisocyanate (il faut noter l’absence de protons venant d’un noyau aromatique sur le spectre RMN (Figure VI.2)), et que le diol est un polytétrahydrofurane diol. Les formules de ces deux produits et le détail des spectres sont rassemblés dans le tableau VI.1.

Tableau VI.1 : caractéristiques de la dispersion A.

VI.1.2. Dispersion B

De la même façon, nous avons réalisé les spectres FTIR (Figure VI.3) et RMN1H (Figure VI.4) du polymère de la dispersion B.
Figure VI.3 : spectre infra-rouge du polymère de la dispersion B.

Figure VI.4 : spectre RMN 1H dans CD$_2$Cl$_2$ du polymère de la dispersion B.

Ici aussi, en comparant ces spectres avec ceux des matières premières étudiées, nous avons pu établir quels étaient le dioxyanate et le diol employés pour la synthèse de cette dispersion. Il s’agirait du tétraméthylxylyléne diisocyanate et de la polycaprolactone, comme les formules chimiques de ces composés et le détail des spectres le confirment (Tableau VI.2).

Tableau VI.2 : caractéristiques du polymère de la dispersion B.
L’étude de ces spectres nous a permis de déterminer le diisocyanate et le diol de deux dispersions commerciales. Cependant, ces techniques d’analyse ne nous ont permis de déterminer ni l’agent émulsifiant, ni l’agent d’extension de chaîne, ces deux produits intervenant en trop petite proportion pour apparaître significativement sur les spectres.
VI.2. Caractérisations physico-chimiques de dispersions commerciales

VI.2.1. Analyse thermique

Les valeurs des températures de transition vitreuse et des températures de début de décomposition sont présentées dans le tableau VI.3.

Tableau VI.3 : propriétés thermiques des dispersions commerciales.

Les polymères issus des dispersions purement polyuréthane ont des températures de transition vitreuse très faibles, ce qui est cohérent avec leur apparence, car ils sont souples, élastiques. On remarque aussi que le polymère ayant la température de transition vitreuse la plus basse est celui provenant de la dispersion A réalisée à partir d’un diol polyéther, alors que les deux autres (dispersions B et C) ont été réalisées à partir de diols polyesters (la fonction ester apportant plus de rigidité que la fonction éther).

Le polymère issu de la dispersion hybride acrylique-uréthane (dispersion D) est solide et friable à température ambiante. Il est donc logique que sa température de transition vitreuse soit supérieure à la température ambiante.

Les températures de dégradation sont toutes du même ordre, autour de 300°C. On peut toutefois noter que le polymère issu de la dispersion A se dégrade à une température plus élevée (320°C) que celle des autres polymères. Cela peut s’expliquer par le fait que la liaison éther est thermiquement plus résistante (en atmosphère inerte) que la liaison ester (Tableau VI.4).

Tableau VI.4 : stabilité thermique des groupements [Mark, 1996].
(température pour 25% de perte de masse en deux heures, en atmosphère inerte)

VI.2.2. Analyse des énergies superficielles

VI.2.2.1. Tension superficielle des dispersions
Les valeurs de tension superficielle des dispersions sont rassemblées dans le tableau VI.5.

Tableau VI.5 : tension superficielle des dispersions à 20°C.

On remarque que ces valeurs sont relativement faibles pour des dispersions aqueuses. Cela est probablement dû à la présence de petites quantités d’additif (émulsifiant externe, triéthylamine…) qui abaîsseraient la tension superficielle des dispersions. Par contre, elles sont toutes du même ordre de grandeur. Cela nous laisse donc supposer que les valeurs de tension de surface des dispersions aqueuses de polyuréthane ne sont pas significativement affectée par la composition des dispersions.

VI.2.2.1. Energie de surface des polymères

Les énergies de surface des polymères ont été calculées suivant les méthodes de Owens-Wendt et de Van-Oss. Les résultats sont présentés dans le tableau VI.6.

Tableau VI.6 : énergies de surface des polymères issus des dispersions commerciales (mN/m).

Dans l’ensemble, ces valeurs sont semblables aux valeurs classiques des polyuréthanes [Brandrup et Immergut, 1989]. La seule différence notable est la faible composante polaire de la dispersion B. Dans la chaîne polymère, les groupements uréthanes apportent l’essentiel de la polarité. Une composante polaire faible suggère donc une faible proportion de groupes uréthanes dans la chaîne polymère.

Les diols des dispersions A et B sont différents : celui de la dispersion A est un polyéther, alors que celui de la dispersion B est un polyester. Ainsi, à poids moléculaire (du diol) équivalent, la composante polaire de la dispersion B devrait être plus élevée que celle de la dispersion A (car les fonctions esters apportent plus de polarité que les fonctions éthers). Or, le contraire est observé. Cela peut donc s’expliquer par un poids moléculaire du polyester diol plus élevé (que celui du polyether diol de la dispersion A), qui impliquerait alors une proportion de groupes uréthanes moindre et justifierait cette faible composante polaire.
VI.2.3. Analyse des particules en dispersion

VI.2.3.1. Taille de particules

Les quatre dispersions ont été analysées en diffusion de lumière, et les dispersions A et B ont été en plus caractérisées par cryomicroscopie. Les résultats sont rassemblés dans le tableau VI.7.

Tableau VI.7 : taille moyenne des particules des dispersions.

Les tailles moyennes de particules de ces dispersions sont relativement faibles (aux alentours de 100 nm ou inférieures). En effet, en général, la taille de particules des dispersions aqueuses de polyuréthane est considérablement plus faible que celle des latex acryliques [Bender, 1998].

Les valeurs obtenues par cryomicroscopie sont du même ordre que celles obtenues par diffusion de lumière, bien que légèrement inférieures. La cryomicroscopie permet en outre d’obtenir une distribution en taille, ainsi que de visualiser l’allure de la dispersion (forme des particules, tendance à la coalescence…). Des clichés des dispersions A et B, ainsi que les histogrammes de distribution de taille sont présentés Figures V.5. et V.6.
Figure VI.5 : image de la dispersion A par cryomicroscopie (échelle de 100 nm).

Figure VI.6 : distribution granulométrique de la dispersion A par cryomicroscopie.

Figure VI.7 : image de la dispersion B par cryomicroscopie (échelle de 100 nm).

On visualise sur cette image la membrane de carbone sur laquelle se forme le film liquide de la dispersion.
VI.2.3.2. Potentiel zêta

Les mesures de potentiel zêta de ces dispersions sont présentées dans le tableau VI.8.

Tableau VI.8 : potentiel zêta des dispersions.

Ces valeurs sont toutes largement négatives. Elles font état de groupements carboxylates ou sulfonates. Un potentiel zêta élevé (en valeur absolue) induit une forte densité de charges à la surface. Ainsi, on peut penser que la valeur élevée du potentiel de la dispersion A est due à une densité de charges importante associée, bien sûr, à la structure des sites ionisés.
PARTIE IV

RELATIONS STRUCTURE-PROPRIÉTÉS DES DISPERSIONS AQUEUSES DE POLYURÉTHANE
VII. Rôle du diisocyanate

VII.1. Synthèse bibliographique

Le diisocyanate est un élément clé de la synthèse des polyuréthanes, et donc en particulier pour la synthèse des dispersions aqueuses de polyuréthane. Il est le composant caractéristique des segments rigides du polymère.
Sa structure est déterminante pour les propriétés finales de la dispersion et du polymère, mais aussi pour le procédé de synthèse des dispersions.
Un autre facteur, lié au diisocyanate, a une influence sur le procédé et les propriétés du produit final. Il s’agit du rapport NCO/OH, nommé r, qui correspond à la proportion de groupements isocyanates par rapport aux groupements alcools lors de la formation du prépolymère.
Ces deux paramètres ont été plus ou moins étudiés dans la littérature, et un bilan des différents résultats est présenté dans cette partie.

VII.1.1. Influence de la structure du diisocyanate

La structure chimique de l’isocyanate a une influence certaine sur les propriétés du polyuréthane.
Ainsi, la symétrie de l’isocyanate aura notamment tendance à favoriser :
- l’aptitude à cristalliser du polyuréthane ;
- la séparation des microphases ;
- l’augmentation du module élastique, de la résistance à la traction ;
- la rigidité ;
- la résistance à l’abrasion [Wirpsza, 1993].
La présence de noyaux aromatiques apportera elle aussi une certaine rigidité au polymère final. Enfin, la fonctionnalité de l’isocyanate, pouvant être la cause de la réticulation du polymère, sera elle aussi un paramètre essentiel influant sur les propriétés du polyuréthane [Bender, 1998].

Dans le cas des dispersions aqueuses, la réactivité relative des isocyanates a une importance capitale. En effet, il faut autant que possible éviter que les fonctions NCO du prépolymère réagissent avec l’eau avant (et pendant) l’extension de chaîne. Pour ce faire, les isocyanates
aliphatiques sont de loin préférés aux isocyanates aromatiques, qui ont une réactivité trop élevée.

Les trois diisocyanates aliphatiques généralement utilisés dans la synthèse de dispersions aqueuses de polyuréthane sont l’IPDI, le H12MDI et le TMXDI.

L’IPDI est le plus commun dans la fabrication des PUD, et il est connu pour donner des films polymères ayant de bonnes propriétés mécaniques [Lee et al., 1997; Hourston et al., 1998].

Deux études traitent particulièrement de l’influence de la structure de ces diisocyanates sur les propriétés des dispersions [Hourston et al., 1997; Lahtinen et Price, 2002].

La structure symétrique du H12MDI favorise la séparation des domaines de microphases et ainsi la cohésion de la microphase rigide. Elle améliore donc les propriétés mécaniques des polyuréthanes. Mais cette symétrie favorise aussi la formation d’une microphase cristalline, qui gêne la stabilité des particules en dispersion. Cette cristallisation peut être cependant réduite par la présence d’isomères du H12MDI, et par l’utilisation, lors de la synthèse, de diol de faible poids moléculaire [Hourston et al., 1997].

De plus, le fait que les deux fonctions NCO soient directement attachées aux anneaux cyclohexanes donne une structure très cohésive aux segments rigides [Kim et Lee, 1995].

La structure asymétrique de l’IPDI et du TMXDI empêche toute cristallisation.

Le noyau aromatique, présent dans la structure du TMXDI, devrait donner aux produits finaux une rigidité supérieure à celle de polymères à base d’IPDI. Or, le contraire est observé. Cela s’explique par l’encombrement stérique auquel sont soumises les fonctions NCO dans le TMXDI, qui empêche la formation d’allophanate et de biuret (qui peut avoir lieu avec l’IPDI et qui amène de la rigidité) ainsi que la formation d’un grand nombre de liaisons hydrogènes. Ainsi, les polyuréthanes à base de TMXDI ont un module et une résistance à la traction plus faible, et un allongement à la rupture supérieure à leurs homologues à base d’IPDI [Lahtinen et Price, 2002].

Des mesures de viscosité du prépolymère (à rapport NCO/OH constant) ont mis en évidence la faible viscosité du prépolymère à base TMXDI. Cette faible viscosité est un avantage certain, puisqu’elle permet la synthèse du prépolymère sans co-solvant, une dispersion plus facile du prépolymère, ou encore la réalisation de dispersions ayant un taux de matière solide plus élevé que dans le cas de synthèses à partir d’IPDI ou de H12MDI [Hourston et al., 1997].
Par contre, les mesures de taille moyenne des particules et de viscosité des dispersions n’ont pas fait apparaître de différence significative entre les dispersion à base de TMXDI et celles d’IPDI [Lahtinen et Price, 2002].

En ce qui concerne la résistance aux solvants, les matériaux à base de TMXDI sont nettement moins résistants que ceux à base d’IPDI ou de H₁₂MDI (qui sont équivalents entre eux [Hourston et al., 1997]). Cela peut être attribué à l’affinité envers les solvants conférée au TMXDI par la combinaison de ses groupements aromatiques et aliphatiques, ainsi qu’au fait que les interactions intermoléculaires sont plus faibles qu’avec l’IPDI [Lahtinen et Price, 2002].

Pour ce qui est de la stabilité thermique, elle est fortement liée à la structure de l’isocyanate, comme on peut le voir dans le tableau VII.1.

Tableau VII.1 : températures de décomposition des groupements uréthanes suivant leur structure chimique (R=aliphatique) [Wirpsza, 1993].

La stabilité thermique est donc un avantage supplémentaire qu’apportent les isocyanates aliphatiques.

En ce qui concerne la transition vitreuse, il est évident que la rigidité apportée par le noyau aromatique du TMXDI, confère aux polymères à base de ce dernier une température de transition vitreuse supérieure à celles des polymères à base de diisocyanates entièrement aliphatiques. La capacité à cristalliser induite par le H₁₂MDI explique le fait que les polyuréthanes correspondants aient une température de transition vitreuse supérieure à ceux à base d’IPDI [Hourston et al., 1997].

En conclusion :
- le H₁₂MDI, donne des polymères satisfaisants (bonnes propriétés mécaniques et bonne résistance aux solvants), mais sa symétrie peut provoquer une cristallisation partielle du polymère. Ce risque de cristallisation, et la rigidité élevée apportée par la symétrie font que la synthèse du prépolymère se fait préférentiellement en présence d’un cosolvant (NMP) ;
- l’IPDI permet d’obtenir des polymères ayant de bonnes propriétés mécaniques, une bonne résistance aux solvants, sans risque de cristallisation. L’utilisation d’un cosolvent lors de la synthèse du prépolymère est toutefois recommandée à cause de la viscosité du prépolymère ;
- l’utilisation du TMXDI permet de réaliser des dispersions sans l’ajout de solvant organique grâce à la faible viscosité du prépolymère (qui facilite aussi sa dispersion dans la phase aqueuse), et permet de travailler à un taux de matière solide plus élevé. Cependant, ces polyuréthanes auront des propriétés mécaniques moins bonnes, mais par contre, de meilleures propriétés élastomères.

VII.1.2. Influence du rapport NCO/OH

Le rapport NCO/OH (nommé r) représente la proportion de fonctions NCO par rapport aux fonctions OH lors de la synthèse du prépolymère. Il est donc révélateur du poids moléculaire de ce prépolymère. En effet, dans le cas d’une polycondensation linéaire dans laquelle les fonctions en défaut sont consommées totalement, le degré de polymérisation est directement lié à ce rapport (Eq. VII.1.).

\[
DP_n = \frac{(1+1/r)}{(1-1/r)} \quad \text{(Eq. VII.1.)}
\]

Donc, plus ce rapport sera élevé (proche de 2) plus le poids moléculaire du prépolymère sera faible. Un rapport supérieur à 2 impliquera la présence de diisocyanate en excès dans le mélange réactionnel. Cet excès pourra jouer le rôle de diluant pour réduire la viscosité du prépolymère, mais sera un inconvénient lors de l’extension de chaîne (formation de polyurées par la réaction avec les amines d’extension de chaîne) [Snow et Dame, 2000].

Lors de la formation du prépolymère, se forment uniquement des fonctions uréthanes, alors que lors de l’extension de chaîne, les groupements formés sont des fonctions urées. Le rapport NCO/OH est donc aussi un indicateur de la proportion de groupes uréthanes par rapport aux fonctions urées dans la chaîne polymère. Ce rapport aura donc une influence certaine sur les propriétés du polymère, mais aussi sur les propriétés de la dispersion.
La température de transition vitreuse est aussi affectée par ce rapport. Une augmentation de ce rapport implique une augmentation de la proportion de fonctions urées dans la chaîne polymère. Or l’énergie cohésive du groupement urée est nettement supérieure à celle du groupe uréthane (Tableau VII.2), à cause de l’augmentation des interactions intermoléculaires créées par les liaisons hydrogènes.

Tableau VII.2 : comparaison de l’énergie cohésive des groupements uréthanes et urées [Wirpsza, 1993].

L’augmentation de la proportion de groupements urées se traduit donc par l’augmentation de la température de transition vitreuse des segments rigides de la chaîne polymère.

La température de transition vitreuse d’un polyuréthane-urée s’exprime par la loi de Fox relative aux copolymères (Eq. VII.2) en fonction des températures de transition vitreuse des segments rigides (Tgr) et des segments souples (Tgs) :

\[
1/T_g = W_r/T_gr + W_s/T_gs
\]
(Eq. VII.2.)

où W est le pourcentage (en masse) des segments rigides (Wr) et des segments souples (Ws).

Une augmentation de Tgr, implique donc une augmentation de la température de transition vitreuse du polymère [Yen et Kuo, 1998].

Pour les mêmes raisons, un rapport NCO/OH élevé, i-e une forte proportion de groupements urées, se traduit par des propriétés mécaniques améliorées, mais par un caractère élastomère moindre à cause de la rigidité apportée par ces groupements [Yen et Kuo, 1998; Delpech et Coutinho, 2000].

Ce rapport a enfin une importance significative sur la taille de particules de la dispersion. Un rapport élevé se traduit par un poids moléculaire du prépolymère faible, et donc par une forte densité de groupements uréthanes dans les chaînes du prépolymère. Ce prépolymère, plus rigide, avec une énergie de cohésion élevée, peut donc être plus difficile à disperser, et on peut donc penser que la taille de particules moyenne de la dispersion sera élevée [Lee et al., 1997] [Yen et Kuo, 1998].
Cependant, un argument contraire peut être avancé. Lors de la dispersion du prépolymère, la couche externe des particules est formée des portions hydrophiles des chaînes du prépolymère, i.e des groupements carboxylates (dans le cas de l’utilisation du DMPA en tant qu’agent émulsifiant) et des groupements uréthanes. Il est logique que plus la densité de sites hydrophiles est élevée, plus les particules seront de petite taille. A taux d’agent émulsifiant constant, un rapport NCO/OH important se traduit par une proportion élevée de groupements uréthanes (hydrophiles) et donc par une taille moyenne des particules plus faible.

Bien que l’augmentation de ce rapport augmente la rigidité du prépolymère et puisse gêner sa dispersion, l’hydrophilie apportée par une forte densité de groupements uréthanes peut être un facteur prédominant et expliquer une diminution de la taille moyenne de particules [Coutinho et al., 2001].

Le fait qu’un des deux paramètres prime sur l’autre peut être justifié par le choix des produits utilisés lors de la synthèse des dispersions (nature du diisocyanate, nature du polyol, utilisation ou non d’un co-solvant…).
VII.2. Résultats et discussions

VII.2.1. Les différentes dispersions réalisées

Toutes les synthèses présentées ci-dessous ont été réalisées suivant le procédé décrit dans la partie II. Pour ces dispersions, l’indice d’acide et le taux de neutralisation de l’agent émulsifiant ont été gardés constants (Ia=19 et neutralisation avec la TEA à 120%). Nous avons conservé le même diol, le polyoxyde de propylène de poids moléculaire 1000, car il s’agit d’un polyéther diol totalement adapté à la synthèse de dispersions aqueuses. En effet, sa faible viscosité permet d’obtenir des prépolymères relativement faciles à disperser, et sa faible hydrophilie est un avantage lors de l’étape de dispersion. Cependant, afin de vérifier les tendances obtenues, nous avons aussi réalisé deux synthèses à partir du polycaprolactone diol de poids moléculaire 530 et de chacun des deux diisocyanates TMXDI et IPDI.

Les compositions des différentes synthèses réalisées sont présentées dans le tableau VII.3.

Tableau VII. 3 : compositions des dispersions de polyuréthane (en g sur 150g de prépolymère).

VII.2.2. Influence de la structure du diisocyanate

VII.2.2.1. MDI

Lors de la synthèse de la dispersion 701, le prépolymère obtenu avait une viscosité très élevée, et l’agent émulsifiant ne s’était pas correctement dissous dans le mélange réactionnel. Lors de sa dispersion dans la phase aqueuse et de l’extension de chaîne, il s’est formé un gel, qui ne ressemblait en rien à une dispersion aqueuse. Cela est principalement dû à la forte réactivité du MDI. Certaines fonctions isocyanates ont pu réagir avec des groupements uréthanes déjà formés, et donner des groupements allophanates. Cela expliquerait la viscosité élevée du prépolymère, ainsi que le fait qu’une partie de l’agent émulsifiant n’ait pas réagi et soit resté sous forme insoluble dans le prépolymère. La formation de ces groupements allophanates engendre des ramifications dans le prépolymère qui peuvent alors provoquer la réticulation du polymère lors de l’extension de chaîne. On peut donc penser qu’un réseau tridimensionnel s’est formé, ce qui expliquerait la formation d’un gel.
De plus, lors de la dispersion dans la phase aqueuse, il est possible que les groupements isocyanates aient réagi avec les OH de l’eau, pour former des groupements urées, et gêner ainsi l’extension de chaîne.

Il semble donc évident que ce diisocyanate n'est pas adapté aux dispersions aqueuses de polyuréthanes, du moins avec ce procédé de fabrication.

En effet, dans les quelques références où le MDI est cité pour la fabrication des dispersions aqueuses de polyuréthanes [Klein et al., 1997], le procédé utilisé est le procédé « à l'acétone ». Or, dans ce procédé, la formation du prépolymère et l'extension de chaîne se font dans un solvant organique, généralement l'acétone, et le mélange polymère-solvant est ensuite dispersé dans l'eau. Le problème de la réactivité des fonctions isocyanates avec l'eau ne se pose donc pas.

VII.2.2.2. \(H_{12}MDI \)

La synthèse du prépolymère, ainsi que sa dispersion et l’extension de chaîne n’ont posé aucun problème particulier. Par contre, la dispersion obtenue n’était pas homogène (aspect granuleux) et n'est pas restée stable dans le temps.

Une caractérisation de cette dispersion en cryomicroscopie a montré qu'une sorte de micro-encapsulation avait eu lieu (Figure VII.1).

On pourrait expliquer ce phénomène de la façon suivante : la symétrie du diisocyanate, ainsi que la régularité du diol, pourrait être à l’origine de micro-phases cristallisables de poids moléculaires non négligeables au sein du prépolymère. Ces micro-phases cristallines ne réagiraient plus, mais par contre, lors de la dispersion, la partie amorphe pourrait polymériser grâce à l'allongeur de chaîne et les entourer, ce qui expliquerait la micro-encapsulation.
Dans ce cas, la microencapsulation a probablement empêché la correcte répartition des centres ioniques de l’agent émulsifiant, ce qui expliquerait que la dispersion ne soit pas restée stable dans le temps.

VII.2.2.3. IPDI et TMXDI

Toutes les dispersions réalisées à partir de ces deux isocyanates sont restées stables dans le temps. Il nous a donc semblé important de les comparer, notamment d’un point de vue cinétique.

VII.2.2.3.1. Cinétique de polycondensation

La polycondensation linéaire suit une loi cinétique du second ordre, et en particulier pour la formation de polyuréthanes :

\[-d[NCO]/dt = k[NCO][OH]\]

(Eq. VII.2.)
Si on travaille aux conditions stœchiométriques, alors $[\text{NCO}]=[ext{OH}]$ et donc :

$$-d[\text{NCO}]/dt = k[\text{NCO}]^2$$

(Eq. VII.3.)

et donc :

$$[\text{NCO}]_0/[\text{NCO}] -1 = k[\text{NCO}]_0t$$

(Eq. VII.4.)

Si on applique la loi de Lambert-Beer à la diminution d’intensité du pic infra-rouge caractéristique des groupes NCO (vers 2250 cm$^{-1}$) en fonction du temps de réaction, on peut écrire la relation suivante :

$$\frac{(A_0-A)}{A} = k[\text{NCO}]_0t$$

(Eq. VII.5.)

où A est la densité optique.

Nous avons voulu vérifier expérimentalement la validité de ces équations et ainsi déterminer les constantes de vitesse propres à ces deux isocyanates.

Pour cela, nous avons fait réagir chaque diisocyanate avec l’éthanol, dans une solution d’acétone. Nous avons travaillé à température ambiante (22°C), et avec les concentrations suivantes : $[\text{NCO}]_0=[\text{OH}]_0= 4.10^{-2}$ mol/kg.

La solution obtenue est rapidement introduite dans une cellule liquide pour FTIR, et des spectres FTIR sont réalisés à intervalles réguliers.

La diminution progressive du pic caractéristique des fonctions NCO avec le temps de réaction a été suivie pour chaque réaction, comme le montre la figure VII.2 dans le cas du TMXDI.

![Figure VII.2](image-url)

Figure VII.2 : Diminution progressive du pic d’absorption caractéristique du groupement NCO en fonction du temps de réaction, dans le cas de la réaction éthanol/TMXDI.
La cinétique du deuxième ordre est effectivement vérifiée dans le cas du TMXDI, jusqu’à 85% de conversion (Figure VII.3). De plus, cette mesure confirme le fait que les deux fonctions NCO du diisocyanate, de part sa symétrie, ont la même réactivité.

Figure VII.3 : cinétique du second ordre pour la reaction ethanol/TMXDI.

Dans le cas de l’IPDI (Figure VII.4) la cinétique de second ordre est aussi vérifiée (jusqu’à 70% de conversion), mais on observe deux régimes, car l’IPDI est un diisocyanate dissymétrique, et ses deux fonctions NCO n’ont donc pas la même réactivité. Dans un premier temps (jusqu’à 40% de conversion), la fonction NCO la plus réactive (primaire) est consommée majoritairement. Entre 40% et 50% de conversion, on observe un régime transitoire dans lequel des fonctions NCO des deux types sont consommées. Enfin, après 50% de conversion, la deuxième fonction NCO réagit préférentiellement, car toutes les fonctions NCO primaires ont déjà été consommées.

Figure VII.4 : cinétique du second ordre pour la reaction ethanol/IPDI.

La différence des constantes de vitesse de ces deux diisocyanates n’est pas très importante (Tableau VII.4), mais nous pouvons voir que dans la première phase, l’IPDI est plus réactif que le TMXDI, alors qu’à partir d’un taux de conversion relativement élevé, la tendance s’inverse et le TMXDI devient plus réactif que l’IPDI.

Tableau VII.4 : constantes de vitesse et domaine de validité.

D’après ces résultats on peut penser que durant la synthèse du prépolymère, l’IPDI réagit plus rapidement que le TMXDI, alors que durant l’étape d’extension de chaîne, le TMXDI serait plus réactif.
VII.2.2.3.2. Influence de la structure de ces diisocyanates

La comparaison des spectres FTIR des deux polymères à base de polycaprolactone diol sont présentés sur la figure VII.5, et leurs caractéristiques spectrales dans le tableau VII.5.

![Figure VII.5 : spectres FTIR des polymères à base de polycaprolactone diol.](image)

Tableau VII.5 : caractéristiques des spectres FTIR des polymères à base de polycaprolactone diol.

Les seules différences que l'on peut noter entre ces deux spectres sont liées aux diisocyanates, et notamment la présence (ou l’absence) des pics relatifs aux noyaux aromatiques (3053 et 796 cm\(^{-1}\)).

Les principales caractéristiques des polymères issus des dispersions sont présentées dans le tableau VII.6.

Tableau VII.6 : influence de la nature du diisocyanate sur les propriétés des polymères.

Quel que soit le diol utilisé, on observe que la température de transition vitreuse des polymères à base de TMXDI est supérieure à celle des polymères à base d’IPDI. Cela est du à
la rigidité apportée par le noyau aromatique du TMXDI. Par contre, l’IPDI améliore la résistance à la température, très probablement grâce à sa structure entièrement aliphatique (cf. VII.1.1).

Quant à l’énergie de surface, les valeurs obtenues pour les polymères ne sont pas très différentes, mais on observe cependant une composante polaire supérieure dans le cas des polymères à base de TMXDI, due aux liaisons π du noyau aromatique. On peut de plus noter le très bon accord entre les deux méthodes de détermination.

Les caractéristiques des dispersions sont rassemblées dans le tableau VII.7.

Tableau VII.7 : influence de la nature du diisocyanate sur les propriétés des dispersions.

La nature du diiscocyanate n’a aucune raison d’avoir une influence sur le pH, la tension de surface, ni le potentiel zêta, et ces mesures nous le confirment.

En ce qui concerne la taille moyenne de particules, on observe, particulièrement dans le cas où le diol est le polycaprolactone diol, une valeur plus faible pour la dispersion réalisée à partir d’IPDI.

On peut penser que la rigidité liée à l’anneau aromatique du TMXDI est un frein à la dispersion du prépolymère, ce qui pourrait expliquer une taille moyenne de particules supérieure. Mais cette différence n’est toutefois significative que dans le cas où le diol est un polyester.

Ces mesures respectives montrent que la nature du diisocyanate a beaucoup plus d’influence sur le procédé de synthèse et la faisabilité des produits, ainsi que sur les propriétés des polymères issus des dispersions que sur les propriétés des dispersions à proprement parler.

Cependant la caractérisation par cryomicroscopie a montré que les particules n’avaient pas exactement la même forme suivant le diisocyanate utilisé (Figures VII.6 et VII.7).
Figure VII.6: dispersion 703.

Figure VII.7: dispersion 707.
On observe sur ces images que les particules de polymère à base de TMXDI sont parfaitement sphériques, ce qui n’est pas le cas pour les particules de polymère à base d’IPDI. Cela peut s’expliquer par la plus faible rigidité de ce polymère (à base d’IPDI) qui rendrait les particules plus facilement déformables, notamment lors de la dispersion. Cette non-sphéricité des particules est très probablement due à des contraintes internes qui proviendraient d’une hétérogénéité de phase à l’intérieur des particules. La température de transition vitreuse du polymère à base d’IPDI étant plus faible, la déformation des particules est facilitée.

VII.2.3. Influence du rapport NCO/OH

Le rapport NCO/OH joue avant tout sur la structure du prépolymère de polyuréthane. Il détermine en effet le poids moléculaire de ce prépolymère, et est donc indicateur de la proportion de groupes uréthanes dans la chaîne. Afin de vérifier cette incidence, nous avons réalisé des prépolymères (à base de PPG 1000 et de TMXDI) aux rapports 2, 1,6 et 1,2. Ces prépolymères sont ensuite mis en présence d’un excès de tert-butylamine afin de neutraliser les fonctions isocyanates.

Les spectres FTIR de ces prépolymères sont présentés dans la figure VII.8, et leurs caractéristiques spectrales dans le tableau VII.8.

![Figure VII.8 : spectres FTIR des prépolymères.](image-url)
Les pics caractéristiques des parties non réactives du diol (PPG) et du diisocyanate (TMXDI) sont présents sur chacun de ces spectres. On observe en plus :
- la présence des pics caractéristiques des liaisons N-H (3340 cm$^{-1}$), C-N (1530 cm$^{-1}$) et C=O (uréthane à 1710 cm$^{-1}$ et urée à 1650 cm$^{-1}$) ;
- plus r est grand, plus l’intensité de ces pics, N-H, C-N et C=O (urée), augmente.

En effet, si le rapport NCO/OH est égal à 2, alors D_P vaut 3 (cf. Eq. VII.1) et chaque molécule devrait donc posséder en moyenne deux groupes uréthanes et deux groupes urées. Par contre, pour un rapport égal à 1,2, D_P est égal à 11 et on aura donc 2 groupes terminaux urées pour 10 groupes uréthanes par molécule.

La proportion de fonctions urées dans les chaînes du prépolymère augmentant avec le rapport NCO/OH, il est tout à fait logique que l’intensité relative des pics caractéristiques de ces fonctions N-H et C-N augmentent aussi.

Nous avons également fait des mesures de température de transition vitreuse et de viscosité de ces prépolymères (Tableau VII.9). Les mesures de viscosité ont été réalisées à 80°C, car les produits étaient trop visqueux.

L’augmentation du rapport NCO/OH se traduit par une forte diminution du poids moléculaire du prépolymère, ce qui conduit à la diminution de la température de transition vitreuse.

Par contre, la diminution du poids moléculaire du prépolymère devrait impliquer une diminution de sa viscosité. Or les mesures réalisées montrent le contraire, i-e une augmentation de la viscosité avec le rapport NCO/OH.

Le prépolymère à rapport NCO/OH égal à 2 contient des cristaux que nous avons analysé. Ces cristaux pourraient être ceux de la biurée correspondant à la réaction entre le diisocyanate (en excès important) et la tert-butyl amine. Dans ce cas, cette biurée pourrait introduire des nœuds physico-chimiques dans l’oligomère qui seraient responsables de l’augmentation de viscosité.
Nous avons séparé ces cristaux par la rampe à vide, et nous les avons analysés par spectroscopie FTIR (Figure VII.9) et RMN1H (Figure VII.10). Leurs principales caractéristiques sont rassemblées dans le tableau VII.10.

Figure VII.9 : spectre FTIR des cristaux extraits du prépolymer de rapport NCO/OH égal à 2.

Figure VII.10 : spectre RMN1H des cristaux dans la pyridine deutériée.

Tableau VII.10 : caractéristiques spectrales des cristaux.
Les spectres FTIR et RMN^1H, et notamment la valeur des intégrales, confirment bien le fait que les cristaux extraits du prépolymère ayant un rapport NCO/OH égal à 2 sont la biurée envisagée.

La présence de cette biurée dans le prépolymère de rapport 1,6 n’a pas été mise en évidence, mais on peut penser qu’il s’en est toutefois formé, mais en plus petite quantité. Cela expliquerait l’augmentation de la viscosité du prépolymère avec le rapport NCO/OH.

Nous avons ensuite réalisé différentes dispersions en faisant varier ce rapport NCO/OH. Il s’agit des dispersions 703 à 711. Les polymères issus des dispersions ont été caractérisés par spectroscopie FTIR (Figure VII.11).

![Figure VII.11 : spectres FTIR des polymères à différents rapports.](image_url)

Tableau VII.11 : caractéristiques des spectres FTIR des polymères.

Comme dans le cas des prépolymères, on observe que l’augmentation du rapport NCO/OH conduit à l’augmentation de l’intensité des pics caractéristiques des groupements urées.

Les autres caractérisations de ces polymères sont présentées dans le tableau VII.12.

Tableau VII.12 : influence du rapport NCO/OH sur les propriétés des polymères.
Quel que soit le diisocyanate utilisé, la température de transition vitreuse augmente avec le rapport (Figure VII.12). Pour les mêmes raisons que dans le cas des prépolymères, un rapport élevé implique une plus forte proportion de fonctions urées dans les chaînes polymères. Mais ici, les masses molaires de tous les polymères sont élevées, et n’affectent donc pas leur température de transition vitreuse.

Or les fonctions urées ont une énergie cohésive supérieure aux groupes uréthanes (Tableau VII.2), d’où une rigidité accrue du polymère.

Pour ce qui est des températures de dégradation, elles augmentent également avec le rapport NCO/OH. Dans ce cas aussi, cela s’explique par la proportion croissante des fonctions urées qui sont plus stables thermiquement que les liaisons uréthanes [Wirpsza, 1993].

Figure VII.12 : températures de transition vitreuse des polymères en fonction du rapport NCO/OH.

Les valeurs d’énergie de surface augmentent elles aussi avec le rapport NCO/OH (Figure VII.13), et plus particulièrement leur contribution polaire. Les deux méthodes de détermination montrent bien la même tendance, quel que soit le diisocyanate, et les valeurs obtenues sont très similaires pour chaque polymère.

Il est évident que cette augmentation vient une fois de plus de l’augmentation de la proportion de fonctions urées qui sont nettement plus polaires que les fonctions uréthanes.

Figure VII.13 : énergies de surface des polymères en fonction du rapport NCO/OH.
Deux de ces polymères ont été caractérisés par GPC. Les courbes de distribution des poids moléculaires sont présentées dans la figure VII.14 et les valeurs de poids moléculaires moyens dans le tableau VII.14.

![Figure VII.14 : distribution du poids moléculaire des polymères 707 et 709.](image)

<table>
<thead>
<tr>
<th>référence</th>
<th>707</th>
<th>709</th>
</tr>
</thead>
<tbody>
<tr>
<td>rapport NCO/OH</td>
<td>2</td>
<td>1.6</td>
</tr>
<tr>
<td>Mw moyen</td>
<td>9484950</td>
<td>1485994</td>
</tr>
<tr>
<td>Mw₁</td>
<td>X</td>
<td>2841376</td>
</tr>
<tr>
<td>Mw₂</td>
<td>X</td>
<td>24091</td>
</tr>
</tbody>
</table>

Tableau VII.14 : poids moléculaires moyens des polymères 707 et 709.

On observe que le poids moléculaire moyen augmente, et que la distribution s’amincit avec l’augmentation du rapport NCO/OH. Cela est dû à l’augmentation du nombre de fonctions NCO résiduelles dans le prépolymère, qui favorise la réaction d’extension de chaîne, et donc un poids moléculaire plus élevé [Yen et Kuo, 1998].

Lorsque le rapport NCO/OH est égal à 2, le prépolymère possède un DPₙ égal à 3. Ainsi, il y aura une distribution étroite d’oligomères lors de la dispersion, alors que la distribution en poids moléculaire, dans le prépolymère, est beaucoup plus large dans le cas où le rapport NCO/OH est égal à 1,6. Un ratio élevé favorise donc, comme prévu, une distribution plus étroite du poids moléculaire du polymère dans la dispersion.
Les caractéristiques des dispersions sont rassemblées dans le tableau VII.14.

Tableau VII.14 : influence du rapport NCO/OH sur les propriétés des dispersions.

Le pH, la tension de surface et le potentiel zêta ne semblent pas particulièrement affectés par une variation du rapport NCO/OH. En effet, tant que la nature, la quantité et la neutralisation de l’agent émulsifiant sont les mêmes, il n’y a aucune raison pour qu’on observe une variation des valeurs de tension superficielle de la dispersion ou de potentiel zêta de l’interface polymère/eau.
Quant au pH, il n’y a aucune raison pour que la proportion de fonctions urées par rapport aux groupements uréthanes ait une quelconque influence sur sa valeur.

Par contre, le rapport NCO/OH a une influence non négligeable sur la taille moyenne de particules (Figure VII.15).

On observe en effet une diminution significative de la taille moyenne de particules avec l’augmentation du rapport NCO/OH.
Un rapport NCO/OH élevé se traduit par un prépolymère de poids moléculaire faible ayant une proportion de fonctions urées élevées. Or, ces fonctions sont plus hydrophiles que les fonctions uréthanes. Elles joueraient donc le rôle de sites émulsifiants supplémentaires favorisant ainsi la dispersion du prépolymère dans l’eau, ce qui se traduit par une réduction de la taille moyenne des particules.
Cette diminution se traduit généralement par l’augmentation de la viscosité de l’émulsion correspondante, car on augmente les interactions liquide-solide par une surface spécifique accrue des particules de polymère.
Dans notre cas, la tendance générale de la viscosité avec le rapport NCO/OH est bien une augmentation, mais il y a des fluctuations (Figure VII.16).

Ces fluctuations sont très probablement dues à la compétition entre les deux phénomènes que peut impliquer une augmentation de rapport NCO/OH (cf. VII.1.2.) qui sont d’une part
l’augmentation de l’hydrophilie du polymère (qui favoriseraient une taille de particule moyenne moindre et donc une viscosité plus élevée), et d’autre part, l’augmentation de la rigidité du prépolymère (qui provoquerait la formation de grosses particules).

Il semble que le premier effet domine pour des excès modeste de NCO, tandis que le deuxième prend la relève pour des valeurs plus fortes du rapport NCO/OH.

VII.2.4. Conclusions

Cette étude a tout d’abord permis de mettre en évidence le fait que la nature du diisocyanate a une grande influence sur les conditions de préparation et la stabilité des dispersions.

Il est apparu que les diisocyanates aromatiques, de par leur grande réactivité, notamment avec l’eau, ne sont pas du tout adapté aux dispersions aqueuses de polyuréthanes.

Dans le cas de diisocyanates aliphatiques, la réalisation des dispersions ne pose pas de problèmes (faible viscosité du prépolymère, faible réactivité avec l’eau), mais la stabilité et les propriétés des dispersions, ainsi que celles des polymères, peuvent être très différentes suivant la nature du diisocyanate utilisé.

Ainsi, un diisocyanate ayant une structure trop régulière, comme le H_{12}MDI, favorisera la formation de microphases cristallines, qui peuvent empêcher l’organisation des sites ionisables à la surface des particules et entraîner leur agrégation.

Le TMXDI et l’IPDI, ayant une structure moins régulière, semblent plus adaptés pour la stabilité des dispersions.

La nature du diisocyanate semble avoir plus d’influence sur les propriétés du polymère issu de la dispersion (température de transition vitreuse, température de dégradation) que sur celles de la dispersion elle-même.

Le rapport NCO/OH est, lui aussi, un paramètre essentiel, en particulier sur les propriétés des polymères. Son augmentation se traduit par l’augmentation de la proportion de fonctions uréées (au détriment des fonctions uréthanes) dans la chaîne polymère. La fonction urée ayant une énergie cohésive, une stabilité thermique et une polarité supérieures à celles du groupement uréthane, l’augmentation du rapport NCO/OH entraîne donc une augmentation de la température de transition vitreuse, de la température de début de dégradation et de l’énergie de surface.
L’augmentation de l’hydrophilie du polymère avec le rapport NCO/OH (les fonctions urées étant plus polaires que les fonctions uréthanes) explique aussi la diminution de la taille moyenne des particules.

On observe également une augmentation du poids moléculaire du polymère et une rétrécissement de sa distribution avec l’augmentation de ce rapport.
VIII. Rôle du polyol

VIII.1. Synthèse bibliographique

Les polyols constituent la source des segments flexibles de la chaîne de polyuréthane. Or ces segments flexibles influencent majoritairement la nature élastomère du matériau final et ses propriétés à basse température, ainsi que les propriétés des dispersions. Les polyols le plus communément utilisés dans la synthèse de polyuréthanes sont les polyéthers polyols et les polyesters polyols. Des polyols spécifiques, tels que des polycarbonates ou des acrylates sont aussi parfois utilisés, ces monomères seront détaillés dans le chapitre suivant (Chapitre IX). La structure chimique du polyol a évidemment une grande influence sur les propriétés finales du polymère et de la dispersion, mais son poids moléculaire est aussi un paramètre à prendre en compte, car il est fortement lié à la flexibilité du polymère [Hepburn, 1982].

VIII.1.1. Influence de la nature du polyol

Les interactions interchaînes sont beaucoup plus faibles dans le cas des polyéthers polyols que pour les polyesters polyols, et cela se traduit généralement par des matériaux finaux ayant de moins bonnes propriétés physiques (notamment résistance à la traction). De plus, l’énergie cohésive du groupement ester étant supérieure à celle du groupement éther (Tableau VIII.1), on peut s’attendre à ce que les diols polyesters donnent des matériaux plus rigides (à même poids moléculaire du diol).

Tableau VIII.1 : énergie cohésive molaire de groupements organiques [Wright et Cumming, 1969].

La rigidité des matériaux à base de diols polyéthers peut cependant être augmentée en utilisant des diols de plus faible poids moléculaire, augmentant ainsi la concentration de fonctions uréthanes dans la chaîne [Wright et Cumming, 1969].

Cependant, les polyuréthanes à base de polyéthers polyols seront plus résistants à l’hydrolyse que leurs homologues à base de polyesters polyols [Hepburn, 1982].

VIII.1.1.1. Polyéthers polyols
Les trois polyéthers diols généralement utilisés dans la synthèse de polyuréthanes, et plus particulièrement dans les dispersions aqueuses, sont à base de polyoxyde d’éthylène (PEG), de polyoxyde de propylène (PPG), et de polytétrahydrofurane (PTHF).

Le PEG n’est pas souvent utilisé seul, mais sous la forme de copolymère (par exemple avec le PPG). En effet, sa solubilité dans l’eau gêne la stabilité des particules dans la phase aqueuse, et de plus, les matériaux engendrés ont une trop grande sensibilité à l’eau [Hepburn, 1982].

La structure symétrique de l’unité monomère du PTHF et l’absence de substituant favorisent la séparation de phases domaine souple / domaine rigide, et peuvent engendrer la cristallisation des segments souples du polyuréthane par la formation de liaisons hydrogènes lors de l’alignement des chaînes polymères. Cette séparation de phases se traduit par la visualisation de deux températures de transition vitreuse, relatives aux segments souples et aux segments rigides. Cette structure régulière et la possibilité de cristallisation confèrent aux polyuréthanes à base de PTHF de bonnes propriétés mécaniques (résistance à la traction) tout en gardant un bon caractère élastomère, ainsi qu’une bonne résistance aux solvants.

Le groupement méthyle en position latérale du PPG constitue un obstacle à la cristallisation des segments souples. On a ainsi un meilleur mélange de phases souple/rigide, ce qui se traduit par une plus faible résistance à la traction, et une plus faible résistance aux solvants [Hourston et al., 1997].

VIII.1.1.2. Polyesters polyols

Les fortes interactions entre les chaînes polyesters, particulièrement dans le cas de structures symétriques (comme le polycaprolactone diol ou le polyéthylène adipate diol) favorise la cristallisation des domaines souples. Cette cristallisation augmente la résistance à la traction et diminue fortement la flexibilité du polymère. Elle peut toutefois être évitée en perturbant la régularité structurelle des segments souples, en incorporant par exemple un deuxième glycol (propylène ou butylène glycol) [Wirpsza, 1993]. Les interactions intermoléculaires dues aux groupements esters améliorent les propriétés mécaniques et la résistance thermique des polyuréthanes.
VIII.1.2. Influence du poids moléculaire du polyol

Le poids moléculaire du polyol correspond à la longueur des segments souples dans la chaîne polyuréthane, et influe sur de nombreuses propriétés du polymère et de la dispersion. Ainsi, son augmentation amplifie la flexibilité des chaînes polymères et permet une meilleure séparation de phase domaines souples / domaines rigides.

En ce qui concerne les propriétés mécaniques des matériaux finaux, l’augmentation du poids moléculaire se traduit généralement par une diminution de la résistance à la traction et de la rigidité, et d’une augmentation de l’allongement à la rupture, de par l’augmentation de la flexibilité et la diminution de la fréquence des fonctions uréthanes.

Cependant, cette tendance peut être inversée dans le cas où le diol utilisé est un polyester ou un polyéther de structure régulière. En effet, si le diol présente une tendance à la cristallisation (polyéthylène adipate diol, polytétrahydrofurane diol), l’augmentation du poids moléculaire entraîne une augmentation de la capacité à cristalliser, et cette cristallisation aura plutôt tendance à améliorer les propriétés mécaniques, notamment la résistance à la traction, comme le montrent les travaux de Lee (1994).

Dans cette étude, les dispersions ont été réalisées à partir de polytetramethylene adipate glycol (PTAd), d’isophorone diisocyanate (IPDI) et d’acide diméthylol propionique (DMPA) et les auteurs ont étudiés les effets du poids moléculaire du PTAd (Mₙ allant de 600 à 2000) sur les caractéristiques des émulsions et les propriétés des films ainsi obtenus.

Les résultats, présentés dans le tableau VIII.2, mettent bien en évidence l’incidence de la cristallisation des segments souples à partir d’un certain poids moléculaire du PTAd (1500), confirmée par les thermogrammes DSC des films issus des dispersions (Figure VIII.1).

Tableau VIII.2 : effet du Mₙ du PTAd sur les caractéristiques des émulsions
et les propriétés des films [Lee et al., 1994].

Figure VIII.1 : thermogrammes DSC des polyurethanes obtenus par Lee (1994).

L’apparition et l’augmentation des températures de fusion avec l’augmentation du poids moléculaire du diol s’expliquent par l’apparition de microphasess cristallines et par
l’augmentation de leur taille grâce à une meilleure séparation de phases des segments souples et rigides [Lee et al., 1994].

Cette augmentation du poids moléculaire du diol se traduit aussi par une diminution de la résistance aux solvants, car on augmente la proportion de phases amorphes et on améliore la séparation de phase (la diffusion d’un solvant étant gênée par les domaines rigides) [Hourston et al., 1997].

En ce qui concerne la taille moyenne de particules, on peut penser que la flexibilité accrue par l’augmentation du poids moléculaire du diol contribue à une plus fine dispersion du polymère [Lee et al., 1994; Hourston et al., 1997]. Cependant, la taille moyenne des particules est avant tout liée à l’hydrophilie des chaînes polymères. Or l’augmentation du poids moléculaire du diol entraîne une diminution de la fréquence des sites émulsiﬁants (ioniques) dans la chaîne polymère, et donc de son hydrophilie, ce qui peut expliquer l’augmentation correspondante de la taille moyenne des particules [Son et al., 1998; Coutinho et al., 2001].

VIII.2. Résultats et discussions

VIII.2.1. Réalisation des dispersions

Dans cette étude, les synthèses ont été réalisées avec soit le TMXDI, soit l’IPDI, avec le même rapport NCO/OH ($r = 1,8$), la même proportion d’agent émulsiﬁant (DMPA, $I_a = 19$), la même amine de neutralisation (TEA), le même pourcentage de neutralisation (120%) et enﬁn la même amine d’extension de chaîne (EDA). Seuls ont varié la nature et le poids moléculaire du diol utilisé.

VIII.2.1.1. Polyoxides de propylène

Nous avons travaillé avec des diols de poids moléculaire allant de 400 à 4000 (400, 1000, 2000 et 4000). Les dispersions à base PPG 1000 et 2000 n'ont posé aucun problème lors de leur fabrication, mais il n'en a pas été de même pour celles à base de PPG 400 et 4000. En effet, les prépolymères à base de PPG 400 étaient très visqueux. Cette viscosité élevée s'explique par le fait que les chaînes du diol étant courtes, la fréquence des groupements
uréthanes (polaires) dans les polymères correspondants était plus élevée, et on avait donc une plus forte énergie cohésive.
Il a alors fallu maintenir les prépolymères à haute température (au moins 80 °C) jusqu'à la dispersion complète. Cela a été réalisé grâce à un chauffe-ballon dans lequel était maintenu le réacteur pendant l'installation de l'étape de dispersion. Mais ainsi, la dispersion du prépolymère à base d'IPDI n'a pu être réalisée car il y a eu séparation de phase. Cela peut s'expliquer par le fait que la réactivité de l'IPDI est plus grande que celle du TMXDI, du moins lors de la synthèse du prépolymère (cf. VII.2.1.3), car les fonctions NCO ne sont pas "protégées" par le même encombrement stérique. L'addition de ces deux phénomènes (énergie cohésive du prépolymère et réactivité des fonctions NCO élevées) a fait que le polymère n'a pas pu être dispersé.

Pour les dispersions à base de PPG 4000, les prépolymères n'ont pas posé de problème, mais les dispersions n'étaient pas stables. On obtenait une mousse épaisse et granuleuse, non homogène. Cela pourrait s'expliquer par le fait que les longues chaînes souples de PPG 4000 auraient facilité l’établissement d’interactions physico-chimiques entre les groupements uréthanes (organisation intermoléculaire et formation de liaisons hydrogènes) et/ou urées qui auraient empêché la stabilisation de la dispersion (Figure VIII.2).

Figure VIII.2 : interactions physico-chimiques entre les groupements uréthanes.

Il n'a donc pas été possible de réaliser des dispersions stables à base de PPG 4000.

VIII.2.1.2. Polyoxides d'éthylène

De la même façon que pour le polyoxide de propylène, nous avons fait des essais de synthèse avec des polyoxides d’éthylène de différents poids moléculaires (300, 600, 1000 et 1500), principalement à partir du TMXDI.
Avec le PEG de poids moléculaire 300, la dispersion n'a pas pu être réalisée à cause de la trop grande rigidité du prépolymère (taux d'uréthanisation trop élevé), même à une température élevée (100°C). En effet, le prépolymère ne s’est pas dispersé en petites particules malgré la forte agitation et a pris en masse directement dans le fond du récipient.
Avec les autres PEG, l'hydrophilie très marquée de ce diol a fait que les prépolymères correspondants étaient trop hydrophiles pour permettre une dispersion stable. Leur formation n’a posé pas de problème particulier, mais lors de la dispersion, les polymères obtenus étaient en quelque sorte "gonflés" par l'eau. Une mousse s’est alors formée avec le polymère dissous dans le film de ses alvéoles, ce qui a conféré à cette mousse une certaine stabilité.

La cryomicroscopie nous aide à vérifier ce phénomène (figure VIII.3). Une grande proportion du polymère s'est solubilisée dans l'eau, et très peu de particules étaient réellement en dispersion.

Les dispersions obtenues étaient épaisses, mousseuses, y compris celles réalisées en présence d'un antimousse.

L'utilisation de l'IPDI à la place du TMXDI n'avait aucune raison d'empêcher cette "solubilisation" du polymère car les prépolymères correspondants seraient au moins aussi hydrophile. C'est que nous avons confirmé par la réalisation d'une synthèse à base d'IPDI et de PEG 1000 qui s'est soldée par la formation d'une mousse identique aux précédentes.

VIII.2.1.3. Copolymères blocs PEG-PPG-PEG
Quel que soit le diisocyanate employé (IPDI ou TMXDI), la réalisation de la synthèse avec le copolymère bloc contenant seulement 10% de PEG (poids moléculaire 1100) n'a posé aucun problème et on a obtenu une dispersion stable, mais plutôt épaisse. Par contre, la dispersion à base du copolymère avec 50% de PEG a donné une mousse semblable à celle obtenue avec 100% de PEG. L'hydrophilie du PEG est telle, que même avec seulement 50% en masse, elle confère au prépolymère un caractère hydrophile trop important pour permettre la formation d'une véritable dispersion.

VIII.2.1.4. Polytétrahydrofurane diols

Nous avons étudié des polytétrahydrofurane diols de poids moléculaire 650, 1400, 2000 et 2900.

Avec le TMXDI, la synthèse des dispersions n'a pas posé de problème particulier, mais les dispersions ne sont pas restées stables dans le temps (séparation phase polymère / phase aqueuse dans les 24 heures). La structure régulière et symétrique du diol, favorisant la cristallisation des segments souples, couplée à la rigidité apportée par le noyau aromatique du diisocyanate, est certainement la cause d'une réorganisation physique des molécules produisant des agrégats.

Par contre les dispersions à base d'IPDI étaient tout fait homogènes et stables dans le temps quel que soit le poids moléculaire du PTHF utilisé. La souplesse apportée par l'absence de noyau aromatique dans l'IPDI, a permis probablement à la chaîne de prépolymère de "s'enrouler" autour du groupement uréthane, polaire, et d'empêcher ainsi la formation de liaisons hydrogènes.

La cryomicroscopie a permis de mettre en évidence un phénomène "d'encapsulation" (Figure VIII.4).
Cette "encapsulation" était très probablement due au phénomène de cristallisation des domaines souples lors de la synthèse du prépolymère. Lors de la dispersion du prépolymère dans la phase aqueuse, les cristallites formées par les segments de PTHF dans le prépolymère sont restés au cœur des particules pour laisser les centres ioniques à la surface, et l’extension de chaîne s’est donc, elle aussi, faite à la surface de ces particules provoquant ainsi leur encapsulation.

VIII.2.1.5. Polycaprolactone diols

Nous avons essayé deux polycaprolactone diols, de poids moléculaires 530 et 830. Quel que soit le diisocyanate, les dispersions à base de polycaprolactone diol 530 ont été réalisées facilement et sont restées stables dans le temps. Par contre, les prépolymères à base de polycaprolactone diol 830 étaient trop rigides pour être dispersés. Les essais de dispersion (prépolymère dans l’eau, ou eau introduite dans le prépolymère) n’ont donné que des mousses de polyuréthanes rigides. Le poids moléculaire plus élevé, couplé aux fortes interactions associées aux groupements esters ont provoqué la formation de micro-phases cristallines par réorganisation intermoléculaire, et empêché la dispersion. La rigidité des mousses obtenues (contrairement à celles obtenues avec des diols polyéthers) est due à la forte énergie cohésive des fonctions esters de la polycaprolactone.
VIII.2.1.6. Adipates

Le polyéthylène adipate diol (Adipate 1) n'a posé aucun problème lors de la réalisation des dispersions quel que soit l'isocyanate utilisé. Son poids moléculaire moyen (ni trop faible par rapport à un taux d'uréthanisation trop élevé, ni trop grand par rapport à une trop grande proportion de fonction ester), ainsi que son caractère aliphatique ont été des facteurs déterminants pour la réalisation et la stabilité des dispersions. Mais la dispersion à base de TMXDI n'est pas restée stable dans le temps.

Les deux autres adipates contenaient des groupements isophtalates (aromatiques) et avaient un poids moléculaire plus élevé (1000 et 2000). Ces deux facteurs cumulés ont empêché la dispersion et donné lieu à des mousses rigides au lieu des dispersions espérées.

Les adipates à base d’isophtalates ne semblent donc pas adaptés à la synthèse de dispersions aqueuses de polyuréthane, du moins dans un procédé sans solvant.

VIII.2.2. Caractérisations

VIII.2.2.1. Les dispersions réalisées

Ne sont détaillées ci-dessous (Tableaux VIII.3 et VIII.4) que les synthèses ayant donné lieu à la caractérisation des émulsions et des polymères correspondants.

Tableau VIII.3 : compositions relatives aux dispersions avec PPG et copolymère bloc
(en g sur 150g de prépolymère).

Tableau VIII.4 : compositions relatives aux dispersions avec les autres diols (en g sur 150g de prépolymère).
VIII.2.2. Influence de la nature du diol

Les caractéristiques des films polymères issus des dispersions sont rassemblées dans le tableau VIII.5.

Tableau VIII.5 : influence de la nature du diol sur les propriétés des polymères.

Pour les polymères à base de diols polyéthers, nous avons réussi à déterminer deux températures de transition vitreuse, une caractérisant les segments souples (T_{gs}) et l’autre les segments rigides (T_{gr}). On constate que les valeurs de T_{gr} sont du même ordre, ce qui est logique puisque les segments rigides ne sont pas censés varier (même diisocyanate et même rapport NCO/OH), alors que T_{gs} varie évidemment suivant la nature du diol. Cette T_{gs} est bien sûr plus faible que la T_{gr}, mais reste toutefois supérieure à la température de transition vitreuse du diol correspondant, exception faite du polytétrahydrofurane, mais cela s’explique par le fait que ce diol a une forte tendance à cristalliser (cf. V.2.4.).

La T_{gs} du polymère à base de PPG 1000 est de -30°C et celle du polymère à base de copolymère bloc PEG-PPG-PEG 1100 est plus faible (-37°C). Ainsi, le PEG, même en faible proportion (10%) augmente la flexibilité des chaînes polymères. Enfin, pour le polymère à base de PTHF 1400, la T_{gs} est comparativement très basse (-73°C). On peut donc penser que, malgré l’aptitude du PTHF à cristalliser, la proportion importante de segments rigides (rapport NCO/OH = 1,8) et le poids moléculaire encore relativement faible du diol empêchent une cristallisation significative des segments souples, et la flexibilité apportée par le groupement $(\text{CH}_2)_4$ prédomine.

Dans le cas des polymères à base de diols polyesters, il a été impossible de différencier deux températures de transition vitreuse, les groupements esters étant plus rigides. De plus, le poids moléculaire des diols utilisés étant assez faibles, la séparation de phase segments souples / segments rigides était beaucoup moins appréciable.

Les températures de début de dégradation, quant à elles, relativement élevées (toutes supérieures à 300°C), mais ne semblent pas particulièrement affectées par la nature du diol ce qui concorde avec les résultats de [Lu et al., 2002].

On note toutefois que la valeur la plus forte a été obtenue pour le polymère à base de PTHF (340°C), qui est aussi le diol ayant le poids moléculaire le plus élevé de la série.
Les valeurs des énergies de surface, quelque soit l’approche envisagée, sont très proches, avec toutefois des valeurs supérieures pour les polymères à base de diols polyesters, notamment pour les composantes polaires (puisque le groupe ester est plus polaire que la fonction éther).

Les caractéristiques des dispersions sont présentées dans le tableau VIII.6.

Tableau VIII.6 : influence de la nature du diol sur les propriétés des dispersions.

La nature du diol ne semble pas avoir une incidence significative sur les valeurs des tensions de surface. En effet, une très faible concentration de tensioactifs (10⁻⁴mol/l) pouvant provoquer une variation de 10mN/m, les différences de valeur des tensions de surface sont très probablement liées à des contaminants jouant le rôle de tensioactifs, présents en très faible quantité dans les diols utilisés.

Les particules des dispersions à base de certains diols polyéthers sont sensiblement plus petites que celles des dispersions à base de diols polyesters. La plus forte hydrophilie de segments de polyéthers par rapport à ceux de polyesters explique cette tendance, qui est d’ailleurs confirmée par les variations de tailles de particules relatives aux différents polyéthers. En effet, le PPG étant plutôt hydrophile, la taille moyenne des particules de la dispersion correspondante est relativement faible. Toutefois, l’ajout du PEG dans le copolymère bloc augmente encore cette hydrophilie et justifie une taille moyenne des particules plus faible. Quant au PTHF, la séquence de quatre groupements CH₂ consécutifs augmente l’hydrophobie des chaînes du polymère correspondant, ce qui se traduit par une taille moyenne des particules plus élevée.

Quant au pH et au potentiel zêta, la nature du diol ne semble pas particulièrement influencer leur valeur, ce qui est logique pour cette série homologue de synthèses.

VIII.2.2.3. Influence du poids moléculaire du diol

Les polymères issus de ces dispersions (801 à 805 et 807 à 810) ont tout d’abord été caractérisés par spectrométrie FTIR.
Les spectres des polymères issus des dispersions à base de PPG et de TMXDI sont présentés dans la figure VIII.5 et résumés dans le tableau VIII.7.
On retrouve sur ces spectres les pics caractéristiques du TMXDI et du PPG (cf. chapitre V) ainsi que ceux des fonctions uréthanes et urées. Cela confirme que le processus chimique impliquait tout d'abord la formation d'un prépolymère polyuréthane à terminaisons isocyanates (par la réaction entre le diisocyanate en excès et le diol), allongé ensuite grâce à la formation de fonctions urées (réaction entre le diisocyanate et l'éthylène diamine).

La comparaison entre ces trois spectres fait apparaître l’influence l’augmentation du poids moléculaire du polyol. On observe en effet une diminution progressive des pics caractéristiques des fonctions uréthanes et urées par rapport à ceux liés au polyol (notamment la liaison C-O-C), alors que la proportion de fonctions NCO par rapport aux fonctions OH était la même pour toutes ces synthèses ($r = 1,8$).

Les spectres FTIR des polymères issus des dispersions à base de PTHF et d’IPDI sont présentés dans la figure VIII.6 et le tableau VIII.8.
Figure VIII.6 : spectres FTIR des polymères issus des dispersions à base d'IPDI et PTHF.

Tableau VIII.8 : interprétation des spectres FTIR de la figure VIII.6.

On retrouve bien sur ces spectres tous les pics caractéristiques du diisocyanate (cycle aliphatique, liaisons C-CH₃) et ceux du polyol (notamment le pic caractéristique du motif (CH₂₄), ainsi que ceux des fonctions uréthanes et urées. La superposition des quatre spectres montre ici aussi la diminution relative des pics liés aux fonctions uréthanes et urées par rapport à ceux liés au polyol suivant l'augmentation du poids moléculaire de ce dernier.

Les autres caractérisations réalisées sur les polymères issus des dispersions sont rassemblées dans le tableau VIII.9.
Les diols étudiés étant ici uniquement des diols polyéthers, il nous a été possible de distinguer deux températures de transition vitreuse T_{gs} et T_{gr}, sauf dans le cas des diols de faibles poids moléculaires, où les segments souples étaient de si petite taille que la séparation de phase domaines souples / domaines rigides, n’était pas suffisante pour différencier ces deux T_g. Dans ces cas là (PPG 400 et PTHF 650) on n’a observé qu’une seule température de transition vitreuse.

On remarque de nouveau peu d’influence du poids moléculaire du diol sur la température de transition vitreuse liée aux segments rigides, alors que T_{gs} diminue avec l’augmentation du poids moléculaire du diol (Figure VIII.8). En effet, l’augmentation du poids moléculaire se traduit par deux phénomènes : l’augmentation de la flexibilité des chaînes polymères d’une part, et d’autre part, une meilleure séparation de phase induite par l’augmentation de la taille des segments souples.

Figure VIII.8 : influence du poids moléculaire du diol sur T_{gs}.

On observe aussi une nette augmentation de la température de début de dégradation des polymères avec l’augmentation du poids moléculaire du diol (Figure VIII.9).

Figure VIII.9 : influence du poids moléculaire du diol sur la température de dégradation.

Les segments polyéthers ayant une meilleure stabilité thermique que les groupements uréthanes [Wirpsza, 1993], l’augmentation du poids moléculaire du polyol, et ainsi de la proportion de diol, se traduit donc par une résistance thermique améliorée.

Enfin, en ce qui concerne les énergies de surface, les tendances sont différentes suivant le diol utilisé.
Dans le cas du polytétrahydrofurane diol, on observe une diminution des valeurs avec l’augmentation du poids moléculaire du diol, quelque soit l’approche utilisée, et en particulier une diminution de la composante polaire (Figure VIII.10). L’augmentation du poids moléculaire du diol se traduit par une diminution de la densité de fonctions uréthanes et urées.
dans la chaîne polymère. Or ces groupements sont particulièrement polaires (notamment la fonction urée). Il est donc logique que la diminution de leur proportion se traduise par la diminution de la composante polaire des valeurs d’énergie de surface des polymères.

Par contre, dans le cas des synthèse à base de PPG, l’apport du caractère polaire lié au diol n’est pas très différent de celui des groupements uréthanes, ce qui explique le fait que les valeurs des énergies de surface ne varient quasiment pas avec le poids moléculaire du diol.

Figure VIII.10 : influence du poids moléculaire du diol sur les énergies de surface.

Les caractérisations réalisées sur les dispersions sont ensuite présentées dans le tableau VIII.9.

Tableau VIII.9 : influence du poids moléculaire sur les propriétés des dispersions.

Logiquement, la variation du poids moléculaire du diol n’a pas montré d’influence significative sur le pH, la tension de surface et le potentiel zêta.

Par contre, on observe une nette augmentation de la taille moyenne des particules avec l’augmentation du poids moléculaire du diol (Figure VIII.10).

Figure VIII.10 : influence du poids moléculaire du diol sur la taille de particules.

L’augmentation du poids moléculaire du diol a pour conséquence deux phénomènes : l’augmentation de la flexibilité des chaînes, qui permettrait de disperser plus facilement le prépolymère et pourrait ainsi expliquer une diminution de la taille de particules, et la diminution de la densité de sites émulsifiants (liés à la DMPA, mais aussi des groupements urées et uréthanes) dans les chaînes polymères, ce qui aurait pour effet l’augmentation de la taille de particules. Il semble que ce soit ce deuxième phénomène qui prédomine dans les cas que nous avons étudiés.

De plus, le phénomène d’encapsulation, mis en évidence par la cryomicroscopie, qui a lieu lors des dispersions à base de PTHF et d’IPDI, semble être plus important quand le poids moléculaire du diol augmente (Figures VIII.11, VIII.12 et VIII.13).
Figure VIII.11 : histogramme de distribution des tailles des particules suivant le poids moléculaire du diol.

Figure VIII.12 : image de la dispersion 807 par cryomicroscopie (échelle de 100 nm).
Les valeurs de taille moyenne (en nombre et en masse) déterminées par l’analyse d’image sont présentées dans le tableau VIII.10 et comparées aux valeurs obtenues par diffusion de lumière.

Tableau VIII.10 : comparaison des valeurs obtenues par granulométrie et cryomicroscopie, en fonction du poids moléculaire du diol.

On observe une augmentation de la taille moyenne avec le poids moléculaire du diol, ainsi qu’une augmentation de la polydispersité (Pd). On remarque que plus la distribution est polydisperse et asymétrique, plus la différence entre Dn et DW est importante.

On peut aussi noter que les valeurs obtenues par diffusion de lumière s’apparentent plus à une taille moyenne en masse, même si elles restent supérieures aux valeurs obtenues par l’analyse des images issues de la cryomicroscopie.

Les viscosités des dispersions à base de PPG présentent une tendance en accord avec le comportement de la taille des particules. On observe une diminution de la viscosité avec l’augmentation du poids moléculaire.
Par contre, les dispersions à base de PTHF ont un comportement plus ambigu. La viscosité commence par décroître avec l’augmentation du poids moléculaire du diol, mais augmente ensuite pour des poids moléculaires plus élevés (Figure VIII.14).

Figure VIII.14 : influence du poids moléculaire du PTHF sur la viscosité des dispersions.

Les courbes de contrainte en fonction du gradient de vitesse, pour les dispersions 807 à 810 sont présentées sur la figure VIII.15.

On observe l’apparition d’un seuil d’écoulement pour les dispersions à base de diol de poids moléculaire relativement élevé (supérieur à 2000), qui traduit des interactions entre particules plus fortes, et qui pourrait expliquer l’augmentation de la viscosité pour de hauts poids moléculaires.

Il faut noter que les courbes obtenues pour les autres dispersions (à base de PPG) n’ont jamais fait apparaître un seuil d’écoulement.

Figure VIII.15 : évolution de la contrainte en fonction du gradient de vitesse suivant le poids moléculaire du diol.

VIII.2.3. Conclusions

Les dispersions et les caractérisations réalisées dans ce chapitre nous permettent de tirer différentes conclusions quant à l’impact de la nature et du poids moléculaire du diol sur la stabilité et les propriétés des dispersions.

Les deux paramètres clés liés de la structure du diol sont l’hydrophilie et la régularité de la structure.

En effet, le diol doit apporter une certaine hydrophilie au polymère afin de favoriser la stabilité de la dispersion. Cependant, une hydrophilie trop marquée du polymère peut aboutir à une solubilisation (du moins partielle) du polymère et empêcher la dispersion.

De plus l’hydrophilie influe également sur la taille des particules : plus le polymère est hydrophile, plus la taille moyenne des particules en dispersion est faible.
Un diol ayant une structure trop régulière (PTHF) et/ou trop rigide (isophtalate) favorise la formation de microphases cristallines, pouvant provoquer une micro-encapsulation des particules (PTHF), voire la formation d’une mousse rigide (polycaprolactone de PM 830).
La nature chimique du diol (étier ou ester) aura aussi une influence sur la température de transition vitreuse ainsi que sur l’énergie de surface (la fonction ester étant plus rigide et plus polaire que la liaison étier).

Le poids moléculaire du diol affecte la proportion de segments souples dans la chaîne polymère et surtout leur longueur. Son augmentation se traduira donc par une diminution de Tg, une meilleure séparation de phase, une augmentation de la température de décomposition thermique et une diminution de l’énergie de surface.
Cette augmentation implique également la diminution de la proportions de sites émulsifiants, et donc une augmentation de la taille moyenne de particules.
Le comportement de la viscosité dépend fortement de la nature du diol et notamment des interactions entre particules, mais il est difficile d’arriver à des relations univoques.
IX. Influence de polymères « exotiques »

IX.1. Synthèse bibliographique

IX.1.1. Acryliques

Différentes méthodes peuvent être envisagées pour l’incorporation de polymères acryliques dans l’élaboration de dispersions aqueuses de polyuréthane. Le but de ces émulsions hybrides est de combiner les avantages des polymères acryliques (dureté, brillant, résistance chimique) avec ceux des polyuréthanes (adhésion, propriétés mécaniques), et d’obtenir des polymères qui peuvent éventuellement réticuler à des températures relativement basses (proches de la température ambiante) [Döbert et al., 1999; Irle et al., 2000].

La méthode la plus simple consiste à mélanger une dispersion de polyuréthane et une émulsion acrylique. Des interactions plus ou moins fortes s’établissent alors entre les deux polymères lors de l’évaporation de l’eau et de la formation du film. Cette méthode est déjà couramment utilisée [Hirose et al., 2000; Tennebroek et al., 2000; Arora et al., 2001], mais, dans de nombreux cas, l’incompatibilité entre les deux systèmes compromet la combinaison et l’optimisation des propriétés de la dispersion [Wu et al., 2001].

Un autre moyen, plus recherché, est de synthétiser des particules composites uréthane-acrylique. Pour cela, différentes approches sont possibles :

- copolymérisation de monomères acryliques en émulsion, en présence d’une dispersion de polyuréthane [Chen et Chen, 1999; Tennebroek et al., 2000]. Ces copolymères comportent des fonctions réactives vis-à-vis des fonctions amines terminales ou des groupes carboxyliques de la chaîne polyuréthane, comme les groupements époxides, qui entraîneront la réticulation lors du séchage du film polymère ;
- greffage de monomères acryliques sur la chaîne polyuréthane en milieu aqueux [Trovati, 1985] ;
Suivant les méthodes utilisées, les particules n’ont évidemment pas la même morphologie (Figure IX.1). Les particules hybrides issues de la polymérisation en émulsion des monomères acryliques en présence de dispersion aqueuse de polyuréthane sont généralement constituées d’un cœur en polyacrylate et d’une enveloppe de polyuréthane (Figure IX.1.b), mais il est aussi possible d’obtenir des particules hybrides avec un cœur polyuréthane et une enveloppe polyacrylique (Figure IX.1.C) [Hirose et al., 2000].

![Figure IX.1 : morphologie des particules suivant la méthode utilisée.](image)

Quelle que soit la méthode envisagée, les propriétés physico-chimiques et mécaniques des polymères semblent fortement influencées par l’apport de polymères acryliques. On observe généralement des propriétés mécaniques améliorées (augmentation de la rigidité, du module élastique, diminution de l’allongement à la rupture), une meilleure stabilité thermique et une meilleure résistance à l’hydrolyse [Kim et Lee, 1995; Chen et Chen, 1999]. L’augmentation de la proportion de structures acryliques entraîne également une augmentation de la taille moyenne de particules et une diminution de la viscosité, qui s’explique par une diminution de l’hydrophilie du polymère [Hirose et al., 2000].
IX.1.2. Diols polycarbonates

L’intérêt croissant à l’égard des diols polycarbonates est principalement du à la stabilité à l’hydrolyse qu’ils apportent aux polyuréthanes, notamment par rapport aux diols polyesters [Schafheutle et Klein, 1994; Kuran et al., 2000]. Lors de la synthèse des dispersion aqueuses, ces diols sont utilisés exactement de la même façon que les diols polyéthers ou polyesters, et généralement ils ne constituent qu’une partie des diols du polyuréthane (l’autre partie étant constituée de diols polyéthers et/ou polyesters). Ces groupements carbonates favorisent les interactions interchaînes (liaisons hydrogènes avec les groupements urées et uréthanes), et améliorent ainsi les propriétés mécaniques du polymère (augmentation du module, diminution de l’allongement à la rupture) ainsi que la stabilité à l’hydrolyse et la résistance aux solvants [Harris et al., 1992; Storey et Hoffman, 1992; Kuran et al., 2000].

IX.1.3. Diols fluorés

Les dispersions aqueuses de polyuréthane sont particulièrement utilisées dans le domaine des enductions (revêtements, vernis) grâce à leurs bonnes propriétés de surface (adhésion, souplesse, résistance à l’abrasion…). Ces polymères sont composés d’une grande proportion de segments hydrophiles afin de faciliter la stabilité de la dispersion. Or ces segments hydrophiles affectent la résistance à l’hydrolyse et aux huiles, à cause de leur énergie de surface élevée. Une des méthodes envisagées pour palier à ce défaut est l’inclusion de segments hydrophobes dans la structure du polyuréthane, et en particulier des segments de polyéther perfluoroalkyle [Lin et al., 1995; Lim et al., 2001]. L’inclusion de diols perfluoroalkyles affecte très fortement l’énergie de surface du polymère, et plus précisément sa composante polaire, même en des proportions relativement modestes. La valeur de celle-ci diminue avec l’augmentation de la longueur et/ou de la proportion de diole perfluoré. Par ailleurs, l’inclusion de diole fluoré n’affecte pas les propriétés thermiques du polymères de façon significative. Par contre, l’augmentation de la proportion de segments hydrophobes entraîne une augmentation de la taille moyenne des particules [Lim et al., 2001].
IX.2. Résultats et discussions

IX.2.1. Différentes dispersions réalisées

Les dispersions réalisées pour ce chapitre sont toutes à base de PPG 1000, TMXDI, DMPA, TEA et EDA. Nous avons gardé le rapport NCO/OH et l’indice d’acide constants (1,8 et 19 respectivement). Seuls ont variés la nature du diol supplémentaire et sa proportion relative avec le PPG 1000. Les diols sont préalablement mélangés avec le PPG et conservés à l’étuve pendant au moins une heure avant la synthèse.

Les compositions de ces dispersions sont présentées dans le tableau IX.1.

Tableau IX.1 : compositions des dispersions de polyuréthane (en g sur 150g de prépolymère).

IX.2.2. Caractérisation des dispersions hybrides poly(uréthane-acrylique)

Pour préparer les dispersions hybrides poly(uréthane-acrylique), nous n’avons utilisé aucune des méthodes citées dans le paragraphe IX.1.1., mais nous avons plutôt souhaité envisager le même mode de fabrication que pour les dispersions à base de diols polycarbonates et fluorés. Pour cela, nous avons donc utilisé un diol acrylique, de poids moléculaire 1000 (présenté dans la partie III) :

Nous avons réalisé des dispersions avec différents pourcentages de ce diol : 5%, 20% et 40% (en masse sur la masse totale de diols).

Les spectres FTIR des polymères issus de ces dispersions sont présentées dans la figure IX.2.
Figure IX.2 : spectres FTIR des polymères à différents pourcentages de diol acrylique.

Ces spectres ne présentent pas de différence significative. On peut toutefois noter l’augmentation relative du pic à 1736 cm\(^{-1}\), caractéristique de la double liaison C=O de la fonction uréthane et de la fonction acrylique (cf. figure V.31), avec l’augmentation de la proportion de diol acrylique.

Les caractérisations de ces polymères sont présentées dans le tableau IX.1.

Tableau IX.1 : influence de la proportion de diol acrylique sur les propriétés des polymères.

L’augmentation de la proportion de diol acrylique se traduit par une augmentation de la température de transition vitreuse, en raison de la rigidité apportée par la structure du diol (la \(T_g\) du diol acrylique est de –40°C alors que celle du PPG 1000 est de –69°C).

On ne note pas de variation significative de la température de début de dégradation suivant la proportion de diol acrylique dans le polymère.

Compte tenu de sa structure, le PPG apporte plus de polarité au polyuréthane que le diol acrylique. Il est par conséquent logique d’observer une diminution de l’énergie de surface et principalement de sa composant polaire avec l’augmentation de la proportion de diol acrylique (Figure IX.3).

Figure IX.3 : énergies de surface en fonction de la proportion de diol acrylique.

Les propriétés des dispersions sont rassemblées dans le tableau IX.2.

Tableau IX.2 : influence de la proportion de diol acrylique sur les propriétés des dispersions.

La diminution de la polarité du polymère entraîne une diminution de son hydrophilie et explique ainsi l’augmentation de la taille des particules, avec l’augmentation de la proportion de diol acrylique. Par contre, la viscosité ne suit pas la tendance attendue. Après une diminution pour une proportion de 5% de diol acrylique, on observe ensuite une augmentation de la viscosité au fur et à mesure que cette proportion augmente (Figure IX.4).

Figure IX.4 : taille des particules et viscosité en fonction de la proportion de diol acrylique.
Les valeurs de tension de surface semblent augmenter avec la proportion de diol acrylique. Cela n’a aucune raison d’être, mais peut s’expliquer par la présence éventuelle d’additifs dans le diol acrylique commercial.

On observe enfin une nette diminution du potentiel zêta avec l’augmentation de la proportion de diol acrylique. En plus de la diminution de l’hydrophilie du polymère, la rigidité apportée par ce diol empêche peut-être une bonne organisation des macromolécules et le placement des sites ionisables à la surface des particules, ce qui expliquerait cette diminution du potentiel zêta mais aussi l’augmentation de la taille des particules.
IX.2.3. Caractérisation des dispersions à base de diol polycarbonate

Nous avons utilisé le diol polycarbonate présenté dans le chapitre 5 pour réaliser des dispersions avec différents pourcentages de diol polycarbonate : 5%, 20% et 40% (en masse sur la masse totale de diols).

Les spectres FTIR de ces dispersions sont présentées dans la figure IX.5.

Figure IX.5 : spectres FTIR des polymères à différents pourcentages de diol polycarbonate.

L’augmentation de la proportion de diol polycarbonate dans la chaîne polyuréthane est visible sur ces spectres par l’augmentation de l’intensité des pics caractéristiques du groupement carbonate, i.e le pic à 1740 cm\(^{-1}\) (C=O) et le pic à 1250 cm\(^{-1}\) (C-O).

Les caractérisations réalisées sur ces polymères sont rassemblées dans le tableau IX.3.
On observe une diminution régulière de la température de transition vitreuse avec l’augmentation de la proportion de diol polycarbonate, due à la souplesse apportée par les séquences (CH\(_2\))\(_6\) (T\(_g\) du diol polycarbonate = -63°C).

Tableau IX.3 : influence de la proportion de diol polycarbonate sur les propriétés des polymères.
Les polycarbonates étant parmi les polymères les plus thermorésistants, il est tout à fait logique d’observer une augmentation de la température de début de dégradation avec la proportion de diol polycarbonate.

On observe également une diminution des valeurs des énergies de surface, notamment leur composante polaire, avec l’augmentation de la proportion de diol polycarbonate dans le polyuréthane. Ceci s’explique par le fait qu’ici aussi, le PPG est plus polaire que le diol polycarbonate.

Les propriétés des dispersions sont rassemblées dans le tableau IX.4.

Tableau IX.4 : influence de la proportion de diol polycarbonate sur les propriétés des dispersions.

Le pH ainsi que la tension de surface, ne sont pas particulièrement affectés par la proportion de diol polycarbonate.

Par contre, l’incorporation de diol polycarbonate, à la place du polyoxide de propylène (plus hydrophile) diminue l’hydrophilie du polymère. Cela se traduit par une augmentation de la taille moyenne des particules et une diminution de la viscosité, du moins jusqu’à un pourcentage de 20%. En effet, avec 40% de diol acrylique, la viscosité de la dispersion est plus élevée (Figure IX.6).

Figure IX.6 : taille des particules et viscosité en fonction de la proportion de diol polycarbonate.

On observe ici aussi une diminution de la valeur du potentiel zêta avec l’augmentation de la proportion de diol polycarbonate. La plus faible hydrophilie de ce diol empêcherait les fonctions ioniques, de même que dans le cas du diol acrylique, de bien se répartir à la surface des particules, et expliquerait ainsi un potentiel zêta plus faible.

IX.2.4. Caractérisation des dispersions à base de diol fluoré

Les dispersions ont été réalisées de la même façon que pour les autres diols, avec différents pourcentage de diol fluoré (10%, 20% et 40%). Les spectres FTIR des polymères issus de ces dispersions (cf. tableau IX.1) sont présentés dans le figure IX.7. La seule différence significative est l’augmentation de l’intensité et l’élargissement du pic caractéristique de la liaison C-F vers 1250 cm⁻¹.
Les autres caractérisations réalisées sur ces polymères sont rassemblées dans le tableau IX.5.

Tableau IX.5 : influence de la proportion de diol fluoré sur les propriétés des polymères.

On observe une diminution de la température de transition vitreuse avec l’augmentation de la proportion de diol, en raison de la souplesse apportée par ce diol (T_g du diol fluoré = -99°C). Ce diol étant, comme le PPG, un polyéther, sa proportion dans la chaîne polymère n’a pas (ou peu) d’influence sur la température de début de dégradation.

Il est connu que les composés perfluorés ont une énergie de surface extrêmement faible. Il est donc tout à fait logique que l’augmentation de la proportion de diol fluoré fasse diminuer les énergies de surface, et en particulier la composante polaire, en raison de l’hydrophobie apportée par ces segments fluorés (Figure IX.8).

Figure IX.8 : énergies de surface en fonction de la proportion de diol fluoré.

Les caractérisations des dispersions sont rassemblées dans le tableau IX.6.
Tableau IX.6 : influence de la proportion de diol fluoré sur les propriétés des dispersions.

Comme précédemment, le pH et la tension de surface ne sont pas sensiblement affectés par la variation de la proportion de diol fluoré dans la chaîne polymère.

Par contre, on observe une légère augmentation de la taille moyenne des particules avec l’augmentation de la proportion de diol fluoré, en raison de l’hydrophobie apportée par les segments fluorés, tandis que la viscosité suit à nouveau une allure plus complexe.

On observe également une diminution du potentiel zêta avec l’augmentation de la proportion de diol fluoré. Une fois de plus, l’hydrophobie apportée par les segments fluorés empêche très probablement les sites ionisables de se placer à la surface des particules, ce qui expliquerait cette diminution.

IX.2.5. Conclusions

Cette étude a montré qu’il était tout à fait possible de combiner les propriétés de diols de nature différente dans le but d’obtenir des dispersions stables, et ayant des propriétés optimisées. Elle a de plus confirmé l’influence significative de la nature des segments souples dans la chaîne polymère, déjà mise en évidence dans le chapitre précédent.

Ces trois diols, acryliques, polycarbonates et fluorés, sont plus hydrophobes que le PPG (en particulier le diol fluoré). Leur incorporation dans le polymère diminue donc son hydrophilie, ce qui se traduit par une diminution de l’énergie de surface (forte diminution de la composante polaire), en particulier dans le cas du diol fluoré (diminution de 10mN/m de 0 à 40% de diol). Cette diminution est un avantage non négligeable dans le cadre d’application où l’on voudrait minimiser le mouillage.

L’encombrement stérique (pour le diol acrylique), la régularité de structure (pour les diols polycarbonate et fluoré) ou encore la mauvaise solubilité dans le milieu (pour le diol fluoré) peuvent empêcher une bonne organisation des molécules et tout particulièrement le fait que
les sites ionisables se placent à la surface des particules. Cela se traduit par une diminution du potentiel zêta avec l’augmentation de la proportion de ces diols dans le polymère. On observe aussi une tendance similaire pour ces trois diols dans le comportement de la viscosité. Celle-ci commence par diminuer avec l’ajout de faibles proportions de diols ‘exotiques’, mais elle augmente pour de plus fortes proportions. La diminution des charges à la surface, envisagée avec l’augmentation de la proportion de ces diols, favorise la coagulation des particules. En effet, les répulsions électrostatiques étant plus faibles, les particules sont plus proches les unes des autres. Cela pourrait expliquer cette augmentation de la viscosité. Enfin, la nature de ces diols a évidemment une incidence sur la température de transition vitreuse du polymère.
X. Rôle de l’agent émulsifiant

Le principe de l’émulsification interne et les différents types d’émulsifiants ont été vus dans le chapitre 2. Dans cette étude, nous avons fait le choix de travailler avec un agent émulsifiant interne anionique, l’acide diméthylol propionique, neutralisé, lors de la dispersion, par la triéthylamine. Nous avons souhaité étudier plus particulièrement l’influence de deux paramètres liés à l’émulsification sur les propriétés des dispersions et des polymères, à savoir la proportion de cet agent émulsifiant dans la chaîne polymère ainsi que son degré de neutralisation.

X.1. Synthèse bibliographique

X.1.1. Influence de la proportion d’agent émulsifiant

La proportion d’agent émulsifiant dans la chaîne polymère correspond à la proportion potentielle de centres ioniques dans le polymère, et est donc révélatrice de l’hydrophilie du polymère. Elle joue aussi un rôle essentiel sur la stabilité des particules en dispersion. En effet, les particules sont stabilisées par la présence de la double couche électrique générée par les groupes carboxylliques à la surface et leurs contre-ions. Une proportion trop faible d’agent émulsifiant peut provoquer la coalescence des particules du polymère [Lahtinen et Price, 2002].

L’augmentation de ces interactions fait diminuer la mobilité des segments souples et donc la diffusion d’éventuels solvants. L’augmentation de la proportion de DMPA augmente ainsi la résistance aux solvants [Kim et Lee, 1996].

Cependant, l’augmentation de la proportion d’agent émulsifiant n’a pas que des avantages. En effet, le DMPA comporte un atome de carbone tertiaire. Or les carbones tertiaires sont plus facilement attaqués par un radical organique pour former de nouvelles espèces actives. Une trop forte proportion de DMPA risquera alors de défavoriser la stabilité thermique du polymère [Lu et al., 2002].
De plus, une hydrophilie trop importante du polymère peut empêcher la stabilité de la dispersion et entraîner la formation d’une mousse ‘soluble’ et stable. Il semble donc qu’il existe une concentration critique d’agent émulsifiant [Kim et Kim, 1991; Chen et Chen, 1992].

X.1.2. Influence du degré de neutralisation des centres ioniques

Les groupes carboxyliques sont neutralisés lors de la dispersion, généralement par des amines tertiaires, et notamment par la triéthylamine. On définit le degré de neutralisation (DN) comme étant le rapport du nombre de molécules d’agent neutralisant (TEA) sur le nombre de molécules d’agent émulsifiant (DMPA).

Ce degré de neutralisation a une forte influence sur la taille moyenne des particules. En effet, l’augmentation du DN implique un taux plus élevé de centres ioniques et donc une plus forte hydrophilie du polymère.
On observe ainsi une diminution asymptotique de la taille moyenne des particules avec l’augmentation du degré de neutralisation [Kim et Lee, 1996; Son et al., 1998]. La relation entre DN et la taille moyenne des particules peut être schématisée comme sur la figure X.1.

![Figure X.1 : relation entre le degré de neutralisation et la taille moyenne des particules.](image)

Le degré de neutralisation augmente la densité de charges à la surface des particules. Son augmentation entraîne donc une augmentation du potentiel zêta [Son et al., 1998]. Naturellement, un degré de neutralisation supérieur à 1 n’affectera plus ni la taille moyenne des particules, ni le potentiel zêta.

La diminution de la taille moyenne des particules due à l’augmentation de l’hydrophilie du polymère entraîne, comme dans le cas de la proportion d’agent émulsifiant, une augmentation de la viscosité.

Le degré de neutralisation a aussi une influence sur les propriétés mécaniques du polymère. A une proportion d’agent émulsifiant donnée, l’augmentation du DN favorise les interactions ioniques qui se traduisent par une meilleure séparation de phase [Chen et Chan, 1988].

Le DN a ainsi une influence sur les températures de transition vitreuse : T_{gs}, relative aux segments souples diminue avec l’augmentation du DN, et T_{gr}, relative aux segments rigides, augmente [Kim et Lee, 1996], ce qui est révélateur d’une meilleure séparation de phase [Lee et al., 1994].
Les interactions ioniques (entre les centres ioniques et leurs contre-ions), favorisées par un DN plus élevé, explique aussi l’augmentation de la rigidité et du module élastique, ainsi que la diminution de l’allongement à la rupture [Lee et al., 1997].

Compte tenu de son incidence sur les propriétés physico-chimiques et mécaniques, la neutralisation des groupes ioniques est généralement d’au moins 100%, voire en excès (120%) pour s’assurer que tous les groupes carboxyliques sont neutralisés [Chen et Chen, 1992].

X.2. Résultats et discussions

X.2.1. Différentes dispersions réalisées

Les dispersions présentées dans ce chapitre ont toutes été préparées à partir du TMXDI et du PPG 1000. Dans un premier temps, nous avons fait varier l’indice d’acide (proportion de DMPA), et les groupes carboxyliques étaient neutralisés à 120% avec de la TEA. Dans la deuxième série, nous avons fait varier ce degré de neutralisation, en gardant la proportion de DMPA constante ($I_a = 19$).

Les compositions des différentes synthèses sont présentées dans le tableau X.1.

Tableau X.1 : compositions des dispersions aqueuses de polyuréthane (en g sur 150g de prépolymère).
X.2.2. Influence de la proportion d’agent émulsifiant

Les polymères issus des dispersions 1001 à 1006 ont été caractérisés par spectroscopie FTIR (Figure X.2).

Figure X.2 : spectres FTIR des polymères à différents indices d’acide.

Ces spectres ne montrent pas de différences significatives, si ce n’est une diminution de l’intensité du pic de la liaison éther du PPG par rapport au pic de la double liaison C=O des fonctions uréthanes, représentant la diminution relative de la proportion de PPG avec l’augmentation de la proportion de DMPA.

Les différentes caractérisations des polymères sont présentées dans le tableau X.2.

Tableau X.2 : influence de la proportion de DMPA sur les propriétés des polymères.

L’augmentation de la proportion de DMPA se fait au détriment de la proportion du PPG, puisque le rapport NCO/OH est maintenu constant. Cela se traduit donc par une diminution du nombre de segments souples (constitués par le PPG) et une augmentation correspondante des segments rigides dans la chaîne polymère. Une conséquence évidente est donc l’augmentation de la rigidité du polymère, et ainsi de sa température de transition vitreuse (Figure X.3). En effet, pour une augmentation de la proportion de DMPA de 3,35% à 5,08%, moins de deux points, la température de transition vitreuse augmente de 10°C.

Figure X.3 : températures de transition vitreuse en fonction du % de DMPA.

L’augmentation de la proportion de DMPA entraîne par contre la diminution de la température de dégradation, très probablement en raison de l’augmentation de la proportion de carbones tertiaires dans les macromolécules.
Il est tout à fait logique que l’augmentation de la proportion de DMPA fasse augmenter la polarité du polymère, ici en terme de groupement COO⁻ (neutralisation totale par la TEA).
Cela est confirmé par l’augmentation de l’énergie de surface des polymères, et plus particulièrement par l’augmentation de sa composante polaire (Figure X.4).

Figure X.4 : énergies de surface des polymères en fonction du % de DPMA.

Deux polymères ont été caractérisés par chromatographie à exclusion stérique, afin d’étudier l’éventuelle influence de la proportion d’agent émulsifiant sur le poids moléculaire du polymère. On observe une distribution bimodale du poids moléculaire (Figure X.5).

Figure X.5 : distribution du poids moléculaire des polymères 1001 et 1003.

Les valeurs des poids moléculaires de ces polymères sont présentés dans le tableau X.3.

<table>
<thead>
<tr>
<th>référence</th>
<th>1001</th>
<th>1003</th>
</tr>
</thead>
<tbody>
<tr>
<td>% DMPA</td>
<td>5.08</td>
<td>4.39</td>
</tr>
<tr>
<td>Mw moyen</td>
<td>1540181</td>
<td>1485994</td>
</tr>
<tr>
<td></td>
<td>3636271</td>
<td>2841376</td>
</tr>
<tr>
<td></td>
<td>53659</td>
<td>24091</td>
</tr>
</tbody>
</table>

Tableau X.3 : poids moléculaire des polymères 1001 et 1003.

La proportion de DMPA ne semble pas avoir d’influence significative sur le poids moléculaire du polymère ni sur sa distribution. C’est d’ailleurs un résultat que l’on retrouve dans une étude récente [Yen et Kuo, 1998].

Les caractérisations des dispersions sont rassemblées dans le tableau X.4.
La proportion d’agent émulsifiant ne semble pas affecter de manière significative ni le pH, ni la tension de surface. On pourrait penser que la proportion de DMPA, et donc de sites ionisés à la surface des particules, influent sur le potentiel zêta. Or d’après les résultats obtenus, cela ne semble pas être le cas.

Tableau X.4 : influence de la proportion de DMPA sur les propriétés des dispersions.

Par contre, on observe une nette diminution de la taille de particules avec l’augmentation de la proportion d’agent émulsifiant (Figure X.6). Cette diminution est plus importante pour de faibles pourcentages de DMPA, et atteint ensuite une allure asymptotique.

Figure X.6 : influence de la proportion de DMPA sur la taille moyenne des particules.

La viscosité est elle aussi affectée par la variation de la proportion de DMPA (Figure X.7). Pour de faibles pourcentages de DMPA (inférieurs à 4,5%) on observe une augmentation de la viscosité avec la proportion de DMPA, comme on pourrait s’y attendre avec la diminution de la taille moyenne des particules et donc de leur volume hydrodynamique. Par contre, pour des pourcentages de DMPA plus élevés, cette tendance est inversée et la viscosité diminue.

Une raison possible de cette diminution est la faible taille des particules. En effet, les particules solides en dispersion peuvent être considérées comme déformables quand leur taille moyenne est très faible (inférieure à 100 nm). Dans ce cas, la double couche électrique responsable de leur stabilité, qui est déformable, forme une proportion considérable de la phase volumique réelle, et cela aurait pour conséquence la diminution de la viscosité [Barnes et al., 1989].

Figure X.7 : viscosité des dispersions en fonction de la proportion de DMPA.

Certaines de ces dispersions ont été analysées par cryomicroscopie (dispersions 1001, 1003, et 1005). Dans tous les cas, les particules semblent parfaitement sphériques et homogènes (Figures X.9 et X.10). En plus de la diminution de la taille moyenne des particules, on observe un rétrécissement de la distribution en taille de ces particules (Figure X.8).

Les valeurs des diamètres moyens (en nombre et en masse) obtenus par l’analyse d’images, ainsi que la polydispersité (rapport Dw/dn) sont comparées aux résultats obtenus par
granulométrie dans le tableau X.5. Les valeurs obtenues par l’analyse d’image confirment la tendance attendue (diminution de la taille moyenne et rétrécissement de la distribution) mais les valeurs sont nettement inférieures à celles obtenues par diffusion de lumière.

Figure X.8 : distribution en taille des particules (cryomicroscopie) des dispersions 1001, 1003 et 1005.

Tableau X.5 : comparaison des valeurs obtenues par granulométrie et cryomicroscopie.

Figure X.9 : dispersion 1001 par cryomicroscopie.
X.2.3. Influence du degré de neutralisation

Sur cette deuxième série de dispersions, nous avons fait varier le degré de neutralisation de 120% à 50% (120, 100, 80 et 50%). La dispersion avec un DN de seulement 50% n’est pas restée stable. Le polymère s’est très rapidement (en moins d’une heure) agrégé au fond du récipient. Le degré de neutralisation est donc un paramètre essentiel de la stabilité des dispersions.

Les polymères issus des dispersions ont tout d’abord été analysés par spectroscopie FTIR (Figure X.11). Ces spectres ne révèlent pas de différence significative selon le degré de neutralisation.
Les caractérisations réalisées sur les polymères sont rassemblées dans le tableau X.6.

Tableau X.6 : influence du degré de neutralisation sur les propriétés des polymères.

La variation du DN n’a aucune incidence sur la proportion des segments rigides, ni sur la ‘rigidité’ des segments souples et rigides. Les températures de transition vitreuse T_{gs}, T_{gr}, et celles du polymère, n’ont donc aucune raison de subir son influence.

Par contre, la température de début de dégradation semble sensible au degré de neutralisation. On observe en effet une diminution de cette température quand le DN augmente. L’ionisation progressive des sites carboxyliques qui se situent au voisinage immédiat des fonctions uréthanes semble affecter la stabilité thermique de ces groupements et donc diminuer la température de décomposition [Chan et Chen, 1988; Chen et Chen, 1992].

En ce qui concerne les énergies de surface, l’augmentation du nombre de sites ionisés augmente la polarité du polymère. Cela se traduit par une diminution de la valeur de l’angle de contact eau/polymère et donc une augmentation de la composante polaire et de l’énergie de surface, avec l’augmentation du DN (Figure X.12).

Le tableau X.7 rassemble les caractérisations des dispersions.
Dans ce cas aussi, le pH et la tension de surface ne sont pas sensibles à une variation du degré de neutralisation. Par contre, l’augmentation de la proportion de sites ionisés influe sur la valeur du potentiel zêta. Plus la densité de sites ionisés à la surface est importante, plus la valeur absolue du potentiel augmente.

Tableau X.7 : influence du degré de neutralisation sur les propriétés des dispersions.

Enfin, l’augmentation de la densité des sites ionisés à la surface des particules, en augmentant l’hydrophilie du polymère, entraîne une diminution de la taille moyenne des particules, et par conséquent une augmentation de la viscosité (Figure X.13).

Figure X.13 : influence du degré de neutralisation sur la taille moyenne des particules (par diffusion de lumière) et la viscosité des dispersions.

X.2.4. Conclusions

La proportion de DMPA a donc une influence certaine sur les propriétés du polymère et de la dispersion. Il semble qu’il y ait une valeur optimale à définir suivant les propriétés souhaitées, particulièrement en terme de stabilité de la dispersion, stabilité thermique du polymère, taille de particules ou encore viscosité.

En effet, une forte proportion de DMPA entraîne une rigidité élevée du polymère (augmentation de T_g), mais diminue la résistance thermique. Elle augmente également la polarité du polymère, et donc son hydrophilie. Cela se traduit par une augmentation de l’énergie de surface et une diminution de la taille moyenne de particules. Par contre, la proportion d’agent émulsifiant ne semble pas affecter le poids moléculaire du polymère.

Il apparaît également qu’une neutralisation efficace des groupements carboxyliques est essentielle. En effet, un degré de neutralisation inférieur à 100% implique une moins bonne hydrophilie du polymère, et donc une taille moyenne des particules élevées et un potentiel zêta plus faible, pouvant fragiliser la stabilité de la dispersion.
CONCLUSION

GÉNÉRALE
Conclusion Générale et Perspectives

Le travail de cette thèse a porté sur la synthèse et la caractérisation de dispersions aqueuses de polyuréthane dans le but d’établir des critères d’optimisation relatifs à leur application dans des formulations d’encres et de vernis pour l’imprimerie, grâce à une bonne compréhension des relations structure-propriétés.

Afin de mieux pouvoir interpréter les comportements des dispersions et des polymères, il était d’abord essentiel de bien caractériser les matières premières que nous allions utiliser. Nous avons aussi étudié quelques dispersions commerciales, afin d’avoir une référence en termes de propriétés physico-chimiques (taille de particules, viscosité, température de transition vitreuse…) Nous avons ensuite choisi et mis en place un procédé d’élaboration en accord avec nos exigences (i-e qui permettait de travailler sans l’utilisation d’aucun solvant organique), le procédé appelé ‘mélange du prépolymère’.

Le fait de n’utiliser absolument aucun solvant organique, même en petite quantité, nous a particulièrement limité dans le choix des matières premières (nature des diisocyanates, nature et poids moléculaire des diols), mais notre travail a pu montrer qu’il était tout à fait possible de réaliser des dispersions aqueuses de polyuréthane stables et avec de bonnes propriétés avec un procédé 100% sans solvant.

Les nombreuses caractérisations réalisées sur les dispersions et sur les polymères ont mis en évidence les relations structure-propriétés propres à ces dispersions de polyuréthane.

Ainsi, nous avons confirmé le fait que les diisocyanates aromatiques, et en particulier le MDI, de par leur réactivité très élevée, notamment vis-à-vis de l’eau, ne sont pas du tout adaptés aux dispersions aqueuses de polyuréthane, du moins dans le cadre du procédé utilisé (‘mélange du prépolymère’), où l’extension de chaîne a lieu en phase aqueuse.

En ce qui concerne les diisocyanates aliphatiques, une structure trop régulière, symétrique, favorise la formation de micro-phases cristallines qui peuvent empêcher la formation de dispersions tables et homogènes, comme nous l’avons montré dans le cas du H₁₂MDI. Le TMXDI et l’IPDI nous sont apparus comme les diisocyanates les plus appropriés dans ce contexte.
Nous avons aussi mis en évidence l’influence de la nature du diisocyanate sur les propriétés du polymère (températures de transition vitreuse et de début de dégradation), et des dispersions.

Le rapport NCO/OH est aussi un paramètre essentiel. Un rapport NCO/OH élevé est synonyme d’une forte proportion de fonctions uréées (par rapport aux fonctions uréthanes) dans la chaîne polymère. Cela se traduit par :
- une rigidité élevée (forte T_g), une meilleure résistance à la température et une énergie de surface élevée (forte polarité) ;
- un poids moléculaire élevé et une distribution monomodale ;
- une hydrophilie élevée, et donc une taille moyenne des particules réduite.

Les dispersions préparées à partir de diols de différentes natures ont permis d’évaluer l’influence de la structure du diol sur les propriétés des polymères et des dispersions :
- sur la température de transition vitreuse (suivant que le diol était un diol polyéther ou un diol polyester) ;
- sur la taille moyenne des particules (suivant l’hydrophilie du diol) ;
- sur la stabilité des dispersions.

L’influence du poids moléculaire du diol a aussi été étudiée. Cela nous a permis d’aboutir aux conclusions suivantes. L’utilisation d’un diol de poids moléculaire élevé se traduit par une longueur élevée des segments souples et donc :
- une meilleure séparation de phase, et une meilleure résistance thermique ;
- une faible température de transition vitreuse relative aux segments souples ;
- suivant l’hydrophilie du diol, une augmentation de la taille moyenne des particules.

Le polyoxide de propylène (PPG) est apparu comme le diol ‘modèle’ pour les dispersions aqueuses de polyuréthane. Son caractère polyéther permet d’obtenir un prépolymère de faible viscosité, et donc facile à disperser, et son caractère hydrophile, ni trop faible, ni trop élevé, est un atout pour la stabilité de la dispersion, quelque soit le diisocyanate utilisé (TMXDI ou IPDI). Enfin, les dispersions obtenues ont de bonnes propriétés physico-chimiques :
- une faible taille des particules (notamment en comparaison avec les diols polyesters) ;
- une faible température de transition vitreuse (relative aux segments souples) ;
- une faible énergie de surface ;

Le seul inconvénient est la résistance thermique, un peu faible, des polymères à base de PPG (de 240 à 310°C suivant le poids moléculaire du diol).

Nous avons également préparé des dispersions aqueuses de polyuréthane à partir d’un mélange de diol. Nous avons logiquement choisi le PPG comme référence. Cette étude nous a permis de montrer qu’il était tout à fait possible d’obtenir des dispersions stables et de combiner les caractéristiques de plusieurs diols afin d’optimiser les propriétés des dispersions et des polymères, tout en conservant un procédé de fabrication simple à mettre en œuvre et toujours sans solvant.

Ainsi, l’incorporation d’un diol acrylique a conféré aux polymères une température de transition plus élevée et une énergie de surface plus faible, qui sont des atouts en vue de leur utilisation dans la formulation d’enductions.

L’ajout de diol polycarbonate a permis d’augmenter significativement la résistance thermique des polymères (température de début de dégradation du polymère avec 20% de diol polycarbonate égale à 340°C contre 305°C pour celle du polymère à base de PPG).

Quant à l’incorporation de diol fluoré, elle agit tout particulièrement sur l’énergie de surface du polymère (dimension de 10 mN/m de 0 à 40% de diol fluoré), ce qui est également très intéressant dans le cadre d’applications où l’on voudrait minimiser le mouillage par des liquides ruisselants, et notamment dans les enductions.

Nous avons aussi étudié l’influence de la proportion d’agent émulsifiant, uniquement dans le cas d’une émulsification anionique. L’augmentation de la proportion de DMPA :
- fait augmenter l’hydrophilie du polymère, et confère donc une meilleure stabilité aux dispersions, ainsi qu’une taille moyenne des particules réduite ;
- fait augmenter la polarité du polymère et donc son énergie de surface ;
- fait augmenter la proportion de segments rigides d’où une T_g élevée et une résistance moindre à la dégradation thermique.

Enfin, nous avons également mis en évidence l’importance du degré de neutralisation de l’agent émulsifiant, et nous sommes arrivés à la conclusion qu’un degré de neutralisation au moins égal à 100% est essentiel pour assurer la stabilité des dispersions ainsi qu’une faible taille des particules. Le seul inconvénient est une plus faible résistance thermique du polymère.
Nous n’avons évidemment pas ‘fait le tour’ de tous les paramètres influan sur les propriétés des polymères et des dispersions. La grande variété de matières premières, notamment pour les polyols, nous laisse envisager encore de nombreuses expérimentations.

Nous nous sommes de plus limités à des polymères purement linéaires, et il aurait été intéressant d’étudier l’influence de leur réticulation, que ce soit au cours de la formation du prépolymère, avec un isocyanate tri ou poly-fonctionnel, et/ou un diol tri ou poly-fonctionnel ou lors de l’extension de chaîne, avec une amine polyfonctionnelle.

L’étude d’une émulsification cationique, et/ou non ionique peut également être envisagée.

Enfin, une caractérisation des propriétés mécaniques (module d’Young, allongement à la rupture, résistance à l’abrasion) des polymères, serait un complément logique de ce travail.

Malgré cela, des essais en formulation d’encres et vernis des dispersions réalisées lors de cette thèse ont déjà été réalisés et ont montré des résultats prometteurs.
Références bibliographiques
Références bibliographiques

Coutinho F.M.B., Delpech M.C. et Alves L.S. Polimeros: Ciência e Tecnologia, 2000, 10, 49.

Cytec documentation technique.1998.

Kim B.K. et Lee J.C. Polymer, 1996, 37, 469.

Lomax R. European Ink Maker, 1994, 184, 6.

Markusch P. Brevet EU 4,408,008, 1983.

Seneker S.D. Brevet CE 0 741 152 A1, 1996.

