Skip to Main content Skip to Navigation
Theses

Théories de jauge en géométrie non commutative et généralisation du modèle de Born-Infeld

Abstract : Endomorphisms algebras can replace the concept of principal fiber bundle. Gauge theories are reformulated within this algebraic framework and further generalized to unify ordinary connections and Higgs fields. A "noncommutative Maxwell" model is built starting from non trivial fiber bundles thus requiring the development of the notion of Riemannian structure. The tools involved in the study of associative algebras are presented and an algebraic method to characterize the usual Chern-Weil morphism is proposed. Then, current results on symmetric fiber bundles are generalized to noncommutative connections and an extension of the Witten ansatz is given. Finally, a generalization of the Born-Infeld action for noncommutative connections is proposed. The corresponding Lagrangians are non-polynomial and the existence of solitonic solutions is shown on several examples.
Complete list of metadatas

Cited literature [5 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00010487
Contributor : Emmanuel Sérié <>
Submitted on : Wednesday, December 21, 2005 - 5:41:00 PM
Last modification on : Wednesday, December 9, 2020 - 3:12:00 PM
Long-term archiving on: : Thursday, September 23, 2010 - 3:08:22 PM

Identifiers

Citation

Emmanuel Sérié. Théories de jauge en géométrie non commutative et généralisation du modèle de Born-Infeld. Physique mathématique [math-ph]. Université Pierre et Marie Curie - Paris VI, 2005. Français. ⟨tel-00010487v3⟩

Share

Metrics

Record views

498

Files downloads

4683