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Résume 
 

La segmentation des miroirs semble être l’unique solution envisageable pour les très 
grands télescopes. Pour obtenir la qualité d’image nécessaire aux programmes scientifiques 
astronomiques, les erreurs d’alignement des segments doivent être réduites à la dizaine de 
nanomètres. 

Cette thèse présente une nouvelle technique pour le co-phasage des miroirs segmentés 
basée sur un interféromètre de Mach-Zehnder comportant un filtre spatial dans un des bras. 
Les perturbations atmosphériques sont éliminées si la taille de filtre est de l’ordre de la tache 
de seeing. L’étude a été divisée en trois niveaux: étude analytique, simulation numérique et 
approche expérimentale. La performance de cette technique a été étudiée pour des cas 
réalistes en considérant les effets de bords, le bruit de photon et les caractéristiques du 
détecteur. 

Une comparaison de trois nouvelles techniques de co-phasage est aussi présentée. 
Cette technique semble être un des candidats les plus prometteurs pour des grands télescopes 
segmentes. 
 
 
 

Abstract 
 

Segmentation seems to be the unique solution for Extremely Large Telescopes (ELTs). 
In order to achieve the high performance required for the astronomical science programs, the 
errors due to segment misalignment must be reduced to tens of nm. Therefore the 
development of new co-phasing techniques in highly segmented mirror is of critical 
importance.  

In this thesis we developed a new technique for co-phasing segmented mirrors based 
on a Mach-Zehnder interferometer with spatial filter in one arm. Atmospheric turbulence is 
tolerated in this setup if the spatial filter has similar size to that of the seeing disk. The study 
has been split in three levels, analytical, simulation and experimental. The performance of this 
technique has been analysed for realistic cases including the edge defects, gaps, photon noise 
and detection parameters. 

A comparison of three co-phasing techniques is also presented. This technique seems 
to be one of the strongest candidates for co-phasing of ELTs. 



 



Contents 

 -1- 

 

Contents 

 
Chapter 1 ELTs: Motivation and Description ................................................................. 7 

1.1. The role of ELTs in Astronomy ................................................................................. 8 

1.2. ELT Projects............................................................................................................. 11 

1.3. Image quality of a highly segmented mirror ............................................................ 16 

1.3.1. Effect of segmentation on the image quality.................................................... 16 

1.3.2. Influence of atmospheric turbulence on the image quality .............................. 20 

Chapter 2 Review of co-phasing Techniques ................................................................. 27 

2.1. Diffraction co-phasing techniques ........................................................................... 28 

2.2. Co-phasing techniques based on Curvature sensors ................................................ 30 

2.3. Other alternatives for co-phasing ............................................................................. 33 

2.4. Pyramid sensor for measuring dephased errors........................................................ 34 

2.5. Interferometric techniques for co-phasing segmented mirrors ................................ 35 

Chapter 3 Mach-Zehnder co-phasing technique ........................................................... 41 

3.1. General Description.................................................................................................. 42 

3.2. Analytical study of a Mach-Zehnder Interferometer................................................ 44 

3.2.1. Analytical expression of 1-D interferograms: the piston error case................. 45 

3.2.2. Behaviour of the MZ signal when introducing an OPD................................... 50 

3.2.3. Behaviour of the MZ signal with pinhole size ................................................. 52 

3.3. Coronograph: a simplified approach to the Mach-Zehnder interferometer ............. 54 

3.4. Numerical Simulations............................................................................................. 57 

3.4.1. Simulation of 1-D MZ signal ........................................................................... 60 

3.4.2. Aliasing effect .................................................................................................. 60 

3.4.3. Influence of Turbulence on the MZ signal....................................................... 62 

3.4.4. Influence of Gaps on the MZ signal................................................................. 66 

3.4.5. Influence of the edge defects on the MZ signal ............................................... 67 

3.4.6. Pixelisation and Sampling................................................................................ 69 



Contents 

 -2- 

3.4.7. Multi-wavelength measurement ....................................................................... 76 

3.4.8. Tip-Tilt considerations ..................................................................................... 78 

3.5. Performance of a Mach-Zehnder co-phasing sensor................................................ 81 

3.5.1. MZ co-phasing sensor performance as a function of atmospheric turbulence. 83 

3.5.2. MZ co-phasing sensor performance as a function of gaps............................... 86 

3.5.3. MZ co-phasing sensor performance as a function of edge defects .................. 88 

3.5.4. MZ co-phasing sensor performance as a function of photon noise.................. 91 

3.6. Summary .................................................................................................................. 96 

Chapter 4 Laboratory test of the Mach-Zehnder co-phasing technique..................... 99 

4.1. Optical design for testing the MZ co-phasing technique ....................................... 100 

4.1.1. Segment Simulator ......................................................................................... 103 

4.1.2. Turbulence Simulator..................................................................................... 105 

4.1.3. Mach-Zehnder interferometer layout ............................................................. 107 

4.2. Analysis of the experimental results ...................................................................... 109 

4.2.1. Performance without atmosphere................................................................... 112 

4.2.2. Performance with atmosphere........................................................................ 115 

4.3. Summary ................................................................................................................ 118 

Chapter 5 Comparison of co-phasing techniques ........................................................ 121 

5.1. Signal Characterisation .......................................................................................... 122 

5.1.1. Sensibility to atmosphere, gaps and edge defects .......................................... 123 

5.2. Piston Retrieval ...................................................................................................... 125 

5.2.1. Precision, Capture Range and limiting magnitude......................................... 125 

5.2.2. APE the Active Phase Experiment................................................................. 127 

5.3. Practical and Manufacturing considerations .......................................................... 128 

5.4. Summary ................................................................................................................ 131 

Chapter 6 Conclusions and Perspectives ...................................................................... 137 

ANNEX ........................................................................................................................ 139 

Bibliography ........................................................................................................................ 143 

List of Figures and Tables...................................................................................................... 151 

List of Publications................................................................................................................. 155 



List of Acronyms 

 -3- 

 

List of Acronyms  

 
AO   Adaptive Optics 

APE   Active Phase Experiment 

CIR   Central Intensity Ratio  

CMBR   Cosmic Microwave Background Radiation 

CMOS   Complementary Metal Oxide Semiconductor 

DFS    Dispersed Fringe Sensor  

ELT   Extremely Large Telescope 

ESO   European Southern Observatory 

FFT   Fast Fourier Transform 

FOV   Field of View 

FWHM  Full Width Half Maximum 

GF   Grid Function 

INAF   Instituto Nazionale di Astrofisica 

LAM   Laboratoire d’Astrophysique de Marseille 

MCAO  Multi Conjugated Adaptive Optics 

MZ   Mach-Zehnder 

OPD   Optical Path Difference 

OPTICON  Optical Infrared Coordination Network 

OTF   Optical Transfer Function 

PSF   Point Spread Function 

PtV   Peak to Valley 

RMS   Root Mean Square 

SNR   Signal to Noise Ratio 

SVD   Single Value Decomposition 



List of Telescope Abbreviations 

 -4- 

 

List of Telescope Abbreviations  

 
CELT   California Extremely Large Telescope 

CFGT   Chinese Future Giant Telescope 

GTC   Gran Telescopio de Canarias  

GMT   Giant Magellan Telescope  

GSMT   Giant Segmented Mirror Telescope 

HDRT   High Dynamic Range Telescope 

HET   Hobby-Eberly Telescope  

JWST    James Webb Space Telescope 

LAMOST  Large Aperture Multi-Object Spectroscopic Telescope 

LBT   Large Binocular Telescope 

LPT   Large Petal Telescope 

SALT    Southern African Large Telescope  

TIM   Mexican Infrared-Optical Telescope 

TMT   Thirty Meter Telescope  

VLT   Very Large Telescope 

VLOT   Very Large Optical Telescope 

OWL   Overwhelmingly Large Telescope 



 

 -5- 

 

Chapitre 1-Resumé 

 Les télescopes de prochaine génération repousseront les frontières des connaissances 

astrophysiques et seront la clef pour répondre à de nombreuses questions astrophysiques non 

résolues. Par exemple, la combinaison de la sensibilité et du champ fournis par les futurs 

ELTs permettra d’étudier l’évolution des grandes structures de l’univers, tandis que la 

combinaison de la haute résolution angulaire et de la très grande qualité optique devrait 

permettre de trouver des exoplanètes du type tellurique. 

Bien que de grands miroirs monolithiques puissent être construits, la complexité de 

fabrication et le coût augmentent avec la taille. L’approche la plus réaliste pour les ELTs 

semble donc être l’utilisation de la segmentation.  

 Au cours des vingt dernières années, de gros efforts ont été faits dans le but d’améliorer la 

qualité des images des télescopes. Ces efforts se sont focalisés sur la correction des erreurs de 

front d’onde par l’amélioration de la qualité optique des télescopes ainsi que par 

l’introduction de l’optique adaptative corrigeant les perturbations atmosphériques. La qualité 

de l’image sera également affectée par la segmentation. L’espace entre les segments, les 

aberrations intrinsèques des segments, les erreurs de bords rabattus et les erreurs de piston et 

basculement (tip-tilt) provoquent de nouveaux effets de diffraction qui sont qualitativement et 

quantitativement différents selon la taille et le nombre de segments.  

Nous décrivons brièvement les effets des erreurs de front d’onde sur la qualité des images, en 

portant une attention particulière à ceux causés par le mauvais alignement des segments. 
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Chapter 1                                             

ELTs: Motivation and Description 

 In the next decades, astronomy will profit from a diverse set of observing capabilities, 

covering a broad range of wavelengths, on the ground and in the space. Two main reasons 

make the development of large ground based telescopes critical to expand astrophysical 

knowledge. First, the possibility of observing in a range covering from the optical to the 

infrared. Second, ground based facilities can deploy much more complex instrumentation than 

spaced-based missions.  

 Three broad topics are proposed by the Astrophysical Community: Cosmology, Galaxies, 

and Planetary Systems and Stars. Scientific cases will benefit from the wide capabilities of 

large telescopes, including sensitivity, wavelength coverage, field of view (FOV), spectral 

resolution, photometric and astrometric accuracy, high image quality and stability. We briefly 

describe some scientific cases including the required capabilities and instrumentation to carry 

out those programs.  

 A number of Extremely Large Telescopes (ELT) projects are currently in phase of design 

study. They differ mainly in the primary mirror selection, although segmentation is the 

common solution adopted in every case. We describe the different approaches proposed by 

the most important ELT projects.  

 The image quality is affected by segmentation. This chapter includes a brief description of 

the effects induced by wavefront errors on the image quality, with special attention to the 

effect of segmentation misalignment. 
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1.1. The role of ELTs in Astronomy 
 The enormous capabilities of the next generation of telescopes will expand the frontiers of 

astrophysical knowledge and will be the key to answer many unresolved questions. As a 

consequence, a large number of scientific cases have been proposed for ELTs, covering 

different astrophysical contexts ranging from our own Solar System to the very early epochs 

of the Universe. The European Astrophysical community, under the auspices of the 

OPTICON (Optical Infrared Coordination Network), has classified these different scientific 

cases into three main categories: Cosmology, Stars and Galaxies, and Planetary Systems and 

Stars. We briefly present some of these science highlights that motivate and encourage the 

development of ELTs. 

 In the coming decades, one of the most important challenges of observational cosmology 

will be to measure the evolution of the spatial distribution and properties of the baryonic 

content of the Universe in its different phases: galaxies and intergalactic gas. Establishing the 

statistical evolution of galaxies from their epoch of formation (more than 13 Giga-light-years 

away) to the present day, requires taking hundreds of high-resolution spectra (R>5000) of 

very faint objects (typically >25 AB mag) over a wide area (FOV ~ 5').  

 At the same time, mapping the 3-dimensional distribution of the cosmic gas in the 

Universe requires the acquisition of high quality spectra of faint objects in the distant 

universe, numerous enough to finely sample the large observed areas (FOV ~ 5'). These 

observations are necessary to discriminate among the competing theories at stake today. Their 

requirements call for ELTs, which have high enough sensitivity and FOVs. The Figure 1.1.1 

shows an example of simulated distribution of cosmic gas at z=2. 

 Stars are one of the main components of galaxies, therefore it is of critical importance to 

understand how they form and evolve. With ELTs, stars of mass comparable to the Sun may 

be resolved in the outskirts of galaxies as far as the Virgo cluster (the closest cluster to the 

Milky Way). Reaching the Virgo cluster is important since it hosts a significant population of 

elliptical galaxies at the same distance and spanning a large range of magnitudes. With a very 

high spatial resolution (~10mas), required to diminish the effect of crowding, and a collecting 

power capable to reach typical magnitudes of ~35 in the optical band, we will be able to 

define the turn-off point of the color-magnitude diagrams of the studied stellar populations. 
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Figure 1.1.2 shows three color-magnitude diagrams for M32. As can be seen, the increases of 

the telescope aperture will result in better quality results for this kind of studies. 

 

Figure 1.1.1 Projected neutral hydrogen in a simulation for z=2, from Katz et al (1996). The simulation box is 

22.22 co-moving Mpc across, which corresponds to 7.4 physical Mpc at this redshift. For the CDM cosmology 

used, this translates into 15.1 arcmin. 

 

 

Figure 1.1.2 Stellar populations at the center of M32. Left: Color-magnitude diagram of the central 30" of M32, 

as observed with Gemini+Hokupa'a (Davidge et al. 2000). Middle: JWST color-magnitude diagram from a 

simulation assuming physical conditions similar to those of the center of M32. Right: GMST simulated color-

magnitude diagram of the center of M32. 

 

 The discovery of extra-solar planets has placed our solar system in a new context and has 

revived the theoretical investigations of the formation and evolution of planetary system. 

These theories can be tested directly by measuring the gas phase dynamics and the chemical 

structure of protoplanetary disks. For this program high spatial (<80mas) and spectral (R~105) 

resolutions at thermal infrared wavelengths are required.  



The role of ELTs in Astronomy 

 -10- 

 According to the scientific programs, the required capabilities can be gathered in four 

different operation modes: 

 i) Wide Field Mode: In this mode the angular resolution is limited by atmospheric 

conditions. It provides high sensitivity over a large FOV (~5’-10’).  

 ii) Classical Adaptive Optics Mode: This mode will provide diffraction-limited FOV 

around 10” in the infrared.  

 iii) Multi Conjugate Adaptive Optics (MCAO) Mode: MCAO (Beckers 1988) permits the 

extension of the diffraction-limited FOV beyond the limits of the isoplanatic patch. Moderate 

image quality can be reached over FOV of 30” in the visible and 2’ in the infrared.  

 iv) Extreme Adaptive Optic Mode: This mode provides diffraction limited images with very 

high quality but in small FOV (~1”-10”). The high spatial resolution and IR sensitivity of an 

ELT enables one of the most attractive and high priority targets of ELTs: to find the Earth like 

extra-solar planets around nearby bright stars.  
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1.2. ELT Projects 
 The technology developed for 10-m class telescopes serves as starting point for the design 

study of ELTs. In the current generation of large telescopes, two concepts primary mirrors 

have been pursued: monolithic mirrors and segmented mirrors. 

 Two technologies have been developed for current monolithic mirrors. The first one is the 

construction of a single large mirror made from borosilicate glass, but having large hollowed 

out regions to keep the weight down. This borosilicate honeycomb design has been pioneered 

by Angel & Hill (1982) and it has been successfully cast in the two 8.4-m primary mirrors of 

the Large Binocular Telescope (Hill & Salinari 2003). The second design is the thin mirror 

approach, primarily built by two companies, Corning (USA) and Schott (Germany). They 

used materials with good thermal properties, ULE (Corning) and Zerodur (Schott). Thin 

mirrors are being used for the four 8-m Very Large Telescope (VLT White Book, 1998). 

Although somewhat larger monolithic mirrors could be made, manufacturing complexity and 

relative cost increase with size. Therefore, the most realistic approach that can be extended to 

the ELTs involves the use of segmentation. 

 The feasibility of making segmented mirrors was first demonstrated by the Multiple Mirror 

Telescope (MMT) (Beckers et al, 1981) and TEMOS (Lemaître&Wang, 1993). The MMT 

was composed of six identical 1.8-meter telescopes in a single altitude-azimut mount. By 

contrast the TEMOS concept uses a primary mirror composed of large circular segments and 

a monolithic active secondary (Baranne&Lemaitre, 1987). 

 Three large segmented-mirror telescopes already exist: Keck I, Keck II (Nelson et al 

1985)— which are two 10-m class telescopes composed by 36 hexagonal segments of 0.9m 

side— and the Hobby-Eberly Telescope (HET, Krabbendam et al 1998)- which is a 9-m 

telescope composed of 91 segments, each of 0.6 m side. Several others are being developed or 

have been proposed, including: Gran Telescopio de Canarias (GTC, Castro et al 2000) which 

has a similar configuration to Keck and the Southern African Large Telescope (SALT, 

Meiring et al 2003), whose design is based on HET. The Mexican Infrared-Optical Telescope 

(TIM, Cruz-Gonzalez, 2003), is a 8-m segmented telescope with 19 hexagonal segments with 

a maximum diameter of 1.8m. A very interesting project is the Large Aperture Multi-Object 

Spectroscopic Telescope (LAMOST, Wang et al 1996), which is a Schmidt telescope with a 5 

degree FOV and active optics. The 6-m spherical primary mirror consists of 37 hexagonal 
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spherical mirrors, each of them having a diagonal of 1.1m and a thickness of 75mm. The 

reflecting corrector of 4.5-m is located at the center of curvature of the primary mirror, it 

consists of 24 hexagonal plane submirrors, each of them having a diagonal of 1.1m and a 

thickness of 25mm. The available large focal plane of 1.75 meters in diameter may 

accommodate up to 4000 fibers, by which the collected light of distant and faint celestial 

objects down to 20.5 magnitude is fed into the spectrographs, which promises a very high 

spectrum acquiring rate of several ten-thousands of spectra per night. 

 ELT projects are currently in the concept study stage. The main discussions concerning the 

optical design turn on the choice of the primary mirror, which concerns the shape of the pupil, 

the size and shape of the segments and the density of the pupil, taken as the percentage of 

pupil filled with reflective surface. 

 The great advantage of spherical mirrors is their segment fabrication as all segments are 

identical. This option has been adopted for the 100-m project Overwhelmingly Large 

Telescope (OWL) due to the large number of segments to be fabricated, ~3000, with the 

consequent disadvantage of considerably increasing the complexity of the optical design in 

order to correct spherical aberrations. 

 Although the development of segmented mirrors dates from the last decade, there is still no 

agreement on the choice of the segment parameters. The Thirty Meter Telescope (TMT) 

proposed by an American-Canadian consortium opts for hexagonal segments of 0.5 to 1m 

side following the example of Keck. The uses of small segments reduce cost factors related to 

the fabrication equipment, transportation and coating chambers. It simplifies the support 

mechanism and it allows higher optical quality of the individual segment. On the other hand, 

the choice of large segments reduces the number of actuators and edge sensors required to 

control the shape of the mirror. At the same time it simplifies the telescope structure and 

reduces the edge sensor noise propagation. This alternative has been adopted for the 25-m 

Giant Magellan Telescope (GMT) and the 20-m Large Petal Telescope (LPT). The GMT used 

6 circular segments while LPT employs 8 irregular hexagonal segments to fill a circular shape 

with a minimum of edges. The shape and size of the segments plays an important role on the 

diffraction effects observed in the focal plane. This aspect is of relevant importance since the 

diffraction effects can lead to confusion in the study of faint pointlike sources. 
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Table 1.2.1 Optical design for ELT projects. 

Projects Optical Design 
M1 

Diameter 

Number/size 

of segments 

F  

primary 

M2 

Diameter 

LPT 
(Burgarella et al 

2002) 

Ritchey-Chrètien 

/TMA1 
20m 

8 Petals 

8m long 
F/1 5m 

HDRT 
(Kuhn et al 2001) 

Gregorian-TMA 22m 
6 Circles 

6.5m Diameter 
F/1 6m 

GMT 
(Angel et al 2004) 

Gregorian 25.3m 
6 Circles 

8.4m Diameter 
F/0.7 3.5m 

CFGT 
(Su et al 2004) 

Ritchey-Chrètien 30m 
1122 Partial annular 

0.8 m side 
F/1.2 2.1m 

VLOT 
(Roberts 

et al 

2003) 

Ritchey-Chrètien 20m 
150 Hexagons 

0.9m side 
F/1 2.4m 

CELT 
(Nelson 

2000) 
Ritchey-Chrétien 30m 

1080 Hexagons 

0.5m side 
F/1.5 3.96m 

TMT 

GSMT 
(Strom et 

al 2003) 

Cassegrian 30m 
618 Hexagons 

0.67m side 
F/1 2m 

Euro50 
(Ardeberg et al 

2000) 
Gregorian 50m 

618 Hexagons 

1.15m side 
F/0.85 4m 

OWL 
(Dierickx & 

Gilmozzi 2000) 

M1 Spherical 

M2 Flat 
100m 

3048 Hexagons 

0.9m side 
F/1.25 34m 

 

 

 

                                                 
1 TMA : Three-Mirror Anastigmat 
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 Another parameter to be considered is the pupil density. The High Dynamic Range 

Telescope (HDRT) is a 22-m telescope formed by 6 off-axis, 6.5 m diameter, with a pupil 

density of 60%. By contrast, the Euro 50 —the 50-m telescope proposed by a consortium of 

European institutes— is a highly density pupil as the pupil is filled except for the obscuration 

due to the secondary. 

 In Table 1.2.1 we resume the main characteristics of the proposed ELTs. In most cases the 

secondary is monolithic except for OWL, where the huge size of the secondary implies its 

segmentation. 

 We remark the fast focal ratio of the primary to allow a compact telescope structure. This 

will make mirror manufacture harder. 

 The primary mirror choice will play a fundamental role in the performance of diffraction 

images of point sources. Several simulation studies have been carried out in order to analyse 

the effect of segment size and shape on the image quality (Kuhn et al 2001, Marchis & 

Cuevas 1999). Zamkotsian et al (2003-2004) performed the comparison of the point-spread-

function (PSF) for three different mirror approaches, as seen in Figure 1.2.1. They found 

particularly interesting the case of polygonal petals, because the number of diffraction spikes 

in the PSF is minimised leading to large areas of low levels of scattered light close to the core. 

This is important for high dynamic range imaging. 

 

 

 

Figure 1.2.1 Three different segmentation concepts with hexagonal, circular and polygonal segments (upper 

row) and their corresponding PSFs (lower row), from Zamkotsian et al (2003-2004). 
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 For certain scientific cases diffraction effects due to segment misalignment are not 

negligible. Diffraction effects from highly segmented mirrors have been studied in detail 

elsewhere (Zeider & Montgomery 1998, Troy & Chanan 2003, Yaitskova et al 2003, Bello et 

al, 2000), and we will briefly present them here. 
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1.3. Image quality of a highly segmented mirror 
 In the last twenty years hard efforts have been concentrated in order to improve the image 

quality of telescopes. Those efforts are focused in the correction of wavefront errors 

introduced by the atmosphere, by the use of Adaptive Optic (AO) Systems, as well as the 

reduction of wavefront errors related to the telescope optic quality, by the use of Active Optic 

Systems. Image quality will also be affected by segmentation. Gaps, individual segment 

aberrations, edge miss-figure errors and piston and tip-tilt misalignments result in new 

diffraction effects which are qualitative and quantitatively different according to the size and 

segment number. 

 In this section we briefly describe the effect of segmentation on the image quality paying 

special attention to the effect of segmentation misalignments. We also describe the most 

important properties of atmosphere turbulence and its influence on the image quality. 

1.3.1. Effect of segmentation on the image quality 

 Generally segments have six degrees of freedom: translation along two axes in the plane of 

the segment, rotation about a vertical axis, rotation about two horizontal axes (tip and tilt), 

and translation along the vertical axis (piston). Misalignments of the three first degrees of 

freedom are not critical for the image quality (Mast 1982). However, movement of pistons or 

tip-tilts produce wavefront discontinuities which damage the image quality. 

 In order to quantify the quality of the image, several criteria are used. Yaitskova et al 

(2003), employ peak intensity and mean halo intensity of the PSF. Diericks (1992) proposed 

the Central Intensity Ratio (CIR), defined as the ratio between the central intensity given by 

the telescope divided by the central intensity given by an equivalent perfect telescope without 

aberrations but under the same seeing conditions. We limit this discussion to the Strehl ratio, 

a criteria frequently employed in astronomy. It is equal to the ratio between the central 

intensity of the aberrated PSF and the central intensity of the diffraction-limited PSF.  

 The PSF of a segmented telescope can be represented by (Yaitskova et al 2003), 
2

sPSF( ) GF( )PSF ( )AN
zλ

 =  
 

w w w  (1.1)

where A is the segment area, N is the number of segments, λ is the wavelength and z is the 

focal distance. GF(w) and PSFs(w) are two functions which depend on the geometry of the 
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telescope segments. The function GF(w) is the Fourier Transform of the segmentation grid, 

usually a periodic array of peaks of width inversely proportional to the diameter of the full 

aperture. The PSFs(w) is the PSF of an individual segment, whose width is inversely 

proportional to the segment size. In Figure 1.3.1  we have plotted the PSF of a 50m telescope 

with 714 segments, supposing that the telescope is completely phased with perfect segments 

and no gaps between them. In this case, zeros of the segment PSF coincide with the peaks of 

the GF term, so that only the central peak is observed. The six diffraction arms are the result 

of the hexagonal shape of the telescope pupil. 

 

  

Figure 1.3.1 Pupil of a 50m class segmented telescope with 714 segments without any error (left) and its 

corresponding PSF(right). 

 

 The presence of piston will not influence the segment PSF. However, it will modify the 

grid term introducing a noisy speckle background. In Figure 1.3.2, we represent a segmented 

pupil with piston RMS error equal to 120nm and its corresponding PSF over a field of 0.5”. 

The size of the speckle field is equal to the size of the segment PSF, and does not depend on 

the value of the piston error. 

 Assuming piston errors with Gaussian distribution and zero mean, the Strehl ratio of the 

PSF is given by; 

21 1 ( 1)S N e
N

σ− = + −   (1.2)
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where N is the number of segments and σ is the standard deviation of the phase error. For 

highly segmented mirrors and small errors, this result is consistent with the Marechal 

approximation; S~1-σ². For a 100m class telescope with around 3000 segments, the global 

piston RMS error at the wavefront should be less than λ/20 (25nm@500nm) in order to get a 

Strehl ratio of 90%. This implies that the co-phasing technique should be able to measure 

discontinuities of the order of λ/40 (12nm@500nm) in the mirror surface. 

 For high contrast imaging, it is very important to quantify the intensity lost from the central 

peak. This is mainly transmitted into a diffuse halo of speckles of width λ/d and can be 

expressed as, 
2 22dI

D
πσ
λ

   =    
   

 (1.3)

For a 100-m telescope, using a wavelength of 500nm, the RMS error should be less than 1nm 

in order to reduce the halo intensity to 10-10. This implies an extreme co-phasing precision for 

high contrast imaging applications. 

 

 

Figure 1.3.2 Segmented pupil with RMS piston error of 120nm (left) and its corresponding PSF (right). 

 

 The effect of tip-tilt errors will modify the PSFs term of (1.1). For a small number of 

segments and large tip-tilt errors the PSF is the composition of the shifted individual PSFs of 

segments. If tip-tilt error decreases; the peaks overlap each other forming an interference 
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pattern, which, in the limit of zero tip-tilt error, is the PSF of the whole mirror. By increasing 

the number of segments, the PSF is composed by a regular grid of spots of the same size of 

the telescope Airy disk, in addition to the appearance of a speckle background (see Figure 

1.3.3). This regular structure coincides with the interference pattern from a random blazed 

two-dimensional (2-D) grating (Yaitskova & Dohlen 2002). The period of the regular grid of 

spots is inversely proportional to the separation between segments. The Strehl ratio for small 

tip-tilt error can be expressed as, 







 ++−≈

N
S 234.2

4
1

4
2 σσ  (1.4)

 Unlike the piston case, this expression is not strongly dependent on the number of 

segments. Once more, for a large number of segment and small errors the Marechal 

approximation is valid. To achieve a Strehl ratio of 90%, the global tip-tilt error in the 

wavefront should be less than λ/20 (25nm@500nm). 

 

 

Figure 1.3.3 Segmented pupil with RMS tip-tilt error of 100nm (left) and its corresponding PSF (right). 

 

 

 Other error sources related to the quality of the individual segment will have similar effects 

on the PSF as tip-tilt errors. For example, edge defects lead to the appearance of secondary 

peaks and a background speckle field. Image quality performance in terms of Strehl ratio is 
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not significantly reduced, 0.95 Strehl ratio is achieved for typical values of edge miss-figure 

of the order of 5 to 10 mm width and 200nm amplitude. 

1.3.2. Influence of atmospheric turbulence on the image quality 

 Atmospheric turbulence is caused by spatially and temporally random fluctuation of the 

refraction index. Fluctuations in the refraction index, mainly on account of temperature 

variations, result in random spatial and temporal variations of the optical path length.  

 Kolmogorov (1961) developed a model in which the kinetic energy was transmitted 

successively from the largest scale motions to the smallest ones. He assumed that the motion 

of the small turbulent scale is homogeneous and isotropic, i.e. the statistical characteristic of 

the turbulent flow depends only on the distance between any two points on the structure. The 

statistical distribution and number of turbulent eddies with uniform diffraction index is 

characterized by the power spectrum of the refractive index fluctuation, Φn(k), being k the 

spatial wavenumber related to the isotropic scale size l, as k=2π/l. Three different regimes are 

considered. The outer scale regime, when k< 2π/L0, being L0 the largest scale for the turbulent 

motions of the order of tens of meters, in which Φn(k) depends on geographical and 

meteorological conditions. The inner scale regime when k>2π/l0, being l0 the smallest size of 

turbulent eddies of the order of millimetres.  

 The Kolmogorov spectrum in the regime between the outer and inner scale, can be 

expressed mathematically as (Noll 1976), 
11/35/3

0( ) 0.023k k r k −−Φ =  (1.5)

where r0 is the Fried (Fried 1966) parameter given by, 
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∫

 (1.6)

where γ is the angle of observation and 2 ( )nC z  is the structure constant of the index of 

refraction fluctuation which is a function of altitude, z. Experimental measurements have 

demonstrated that the structure function varies from site to site and also with time. The Fried 

parameter r0, it is the aperture over which there is approximately one radian RMS phase 
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aberration, and hence it is the maximum aperture bellow which diffraction limited resolution 

is possible. For example, a 10m telescope observing under turbulence conditions with 

r0=10cm in the visible, will not obtain a better resolution than a 10cm telescope.  

 The Full Width Half Maximum (FWHM) of the atmospheric PSF is called Seeing (β). It is 

the parameter most commonly used in astronomy to characterise atmospheric conditions and 

it is given by, 

0

0.98
r
λβ =  (1.7)

 To avoid the singularity of the Kolmogorov model for wavenumber close to zero an 

alternative model is proposed. It is known as von Karman model (Roggeman 1996), and the 

spectrum of the index fluctuation is given by, 
5/3 2

0
2 2 11/ 6 2

0

0.0229( ) exp
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k k k

−  
Φ =  +  

 (1.8)

where k0=2π/L0 and km=5.92/l0. Both models are coincident in the regime between outer and 

inner scale.  

 Locally fluctuations of the refraction index cause phase variations on the wavefront, and 

propagation of a plane wave trough the turbulence introduces phase and amplitude variations. 

 The temporal behaviour of the atmosphere is characterized by a correlation time, τ0, 

0
0 0.31 r

V
τ =  (1.9) 

where V is the mean wind speed.  

 Short exposure imaging refers to the situation in which exposure time is less than 

correlation time, τ0. This exposure time is short enough to freeze the speckle effects of 

atmosphere, see Figure 1.3.4. 

When the exposure time is much longer than the correlation time of atmosphere, the image is 

called long exposure image. In this case, atmosphere is averaged over a large number of 

independent realizations, given a broader and smoother PSF. 

 The optical transfer function (OTF) for long exposure images can be expressed as 

(Roggeman & Welsh 1996), 
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λ    = −     

f
f f  (1.10)

where T(f) is the OTF of the telescope. The simulated PSF for long exposures can be obtained 

from the Fourier transform of (1.10). 

 

 

Figure 1.3.4 Simulated phase screen for 50m telescope, with r0=15cm (left), and its corresponding short 

exposure PSF. 

 

 AO is able to compensate in real time wavefront errors introduced by atmosphere, thus 

restoring image quality.  

 As described in section 1.1, ELTs will operate in different modes depending on the 

scientific target. Therefore, image quality and the degree of correction will vary according to 

the scientific case. 

 Image quality will be improved in different stages. The first stage involves correcting 

misalignment errors between segments to obtain the desired shape of the primary mirror. The 

co-phasing procedure should be able to detect piston errors of the order of tens of nm. This is 

the aim of developing new co-phasing techniques described in the next section. This 

procedure must be carried out before scientific observations are made and, in principle, one 

iteration per night should be sufficient. Other scientific programs require higher image 

quality. AO systems enable wavefront corrections in real time with Strehl ratios of the order 
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of 50%. Up to now AO systems have been applied to correct high order aberrations. In the 

case of ELTs, discussions focus on the development of combined systems that will correct the 

whole range of frequency at the same time. One of the main difficulties of AO systems for 

ELTs is in its manufacturing. For example, the internal pupil diameter cannot be reduced 

below 1m for a 100m primary considering a 10 arcmin FOV (total FOV of OWL) and a 

maximal beam angle of 10° on the Deformable Mirror.  

 If the image quality has to be improved up to Strehl ratios higher than 90% with very high 

contrast —which will be the case of detection of extra-solar planets— Extreme AO 

corrections are required. Simulation results (Riccardi et al 2003) show that the co-phasing 

procedure precision should be above 1 nm in order to reduce the halo due to piston. This 

implies real time correction of segment misalignments. To this regard, Brusa et al (1999) 

proposed an adaptive primary mirror able to correct the ground layer and segment 

misalignments simultaneously. However, this question remains unresolved in obtaining the 

perfect telescope performance. 
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Chapitre 2-Resumé 

 Les grands télescopes sont équipés d’optique active dans le but de maintenir 

automatiquement la forme et la position requise du miroir. En effet, les effets gravitationnels 

et thermiques génèrent des variations de grandes amplitudes dans les systèmes optiques. 

D’autre part, ces variations étant quasi statiques (moins d’un Herz), une opération en boucle 

fermée est moins contraignante que dans le cas de l’optique adaptative. 

 La boucle de contrôle du co-phasage est schématiquement formée de trois éléments. Les 

capteurs de position situés derrière ou sur le côté de chaque segment fournissent en 

permanence les positions relatives entre 2 segments adjacents avec une précision de quelques 

nanomètres. Les actionneurs situés en dessous de chaque segment compensent les 

déplacements entre segments. Et finalement le capteur de co-phasage fournit les informations 

pour la calibration périodique du capteur de position, afin de permettre la mesure absolue du 

piston de chaque segment.  

 Nous présentons ici un état de l’art des différentes techniques de co-phasage. Nous 

incluons la plus connue des techniques, celle proposée par Chanan et al (1998) et déjà 

implémentée au télescope Keck. Nous décrivons également d’autres analyseurs de co-phasage 

basés sur la méthode de courbure, le principe à pyramide et l’interféromètre de Mach-Zehnder 

(MZ), qui sera le sujet de ce travail. 
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Chapter 2                                                

Review of co-phasing Techniques 

 Large telescopes are equipped with active optics in order to automatically maintain the 

required shape and position of the mirror. Most errors in the optical setup are associated to 

gravity and temperature variations. Given that those variations are quasi static —less than 1 

Hertz— the conditions for the close loop operation are relatively relaxed compared with those 

required for Adaptive Optic. 

 The co-phasing control loop is formed basically by three elements. The position sensors 

located at the back or at the edge of each segment permanently provide relative positions of 

two adjacent segments with a few nanometres accuracy. The actuators situated underneath 

each segment compensate displacements between segments. Finally, the phasing sensor 

provides information for periodical calibration of the position sensor to enable measuring 

absolute piston differences between segments. 

 Various co-phasing sensors are based on existing wavefront sensors usually employed in 

AO applications, for example Curvature, Shack-Hartman or Pyramid. Although the wavefront 

sensor setup does not suffer major changes, the wavefront sensor in the AO application 

detects continuous variations in the wavefront, either curvatures in the case of Curvature 

sensor or slopes in the case of Pyramid and Shack-Hartman sensors. However, for co-phasing 

applications the interest lies on measuring discontinuities on the wavefront. In this case, the 

recorder signal is the result of the diffraction effect propagation due to segmentation. 

 In order to achieve the best performance, the co-phasing technique must deal with 

additional wavefront errors, i.e. segment and edge miss-figure, atmospheric turbulence, gaps, 

cross-talk between contiguous edge, photon noise, propagation errors, etc. Some of the 

methods presented here are not suitable for ground based telescopes since they do not include 

atmospheric errors. This is the case, for example, of the co-phasing technique described for 

James Webb Space Telescope, JWST (Seery 2003). 
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2.1. Diffraction co-phasing techniques 
 Diffractive techniques are based on the analysis of images produced by a lenslet array 

situated in the conjugate plane of the telescope pupil. 

 The Phasing Camera System described by Chanan et al (1998), currently operating at the 

Keck telescope, is a diffractive wavefront sensor in which the lenslet array is preceded by a 

mask at the position of the exit pupil. The mask defines a small circular subaperture of 12cm 

in diameter (referred to the primary) at the center of each intersegment edge. The size of the 

subapertures is small in comparison with the Fried parameter —of the order of 20cm— so as 

to ensure low dependence on atmospheric turbulence. Piston information is contained in the 

diffraction pattern of each subaperture. Piston is obtained from the correlation of the 

measured image with a simulated set of templates. In the Narrow–Band regime (Chanan et al 

2000) images are cross-correlated with a set of 11 templates in the range of half a wave. The 

capture range of this technique can be increased by using multiple wavelengths.  

 In the Broadband regime (Chanan et al 1998), a set of 11 templates are simulated in the 

range of the coherence length of light. The step is obtained from the “coherence parameter”, 

defined as the difference between maximum and minimum correlation coefficient. 

 Korhonen & Haarala (1998) proposed a procedure which is similar to Chanan with three 

subapertures at the corner of the segment mask as shown in Figure 2.1.1. 

 

 

Figure 2.1.1 Masks for the Shack Hartman sensor proposed by; a: Chanan et al (1998); b: Korhonen & Haraala 

(1998), and c: Bello-Figueroa (2001). 

 

 Bello-Figueroa (2001) proposed a modification of the Chanan technique for the GTC 

telescope. The geometry of the mask, proposed for the GTC acquisition camera, allows one to 

a b c
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measure segment discontinuities as well as segment figure errors. They replaced the circular 

aperture used for Keck with a double slit. This way the effect of edge miss-figure can be 

avoided, as seen in Figure 2.1.1. The algorithm used to retrieve step errors is based on the 

properties of the diffracted image. Figure 2.1.2 shows a set of diffraction images and the 

vertical profile for different piston errors. A calibration curve is obtained from the difference 

between the two main peaks of the diffraction pattern. For a given diffracted image, the peak 

ratio is calculated and processed by the calibration data in order to obtain the required piston 

step. 

 Schumacher et al (2002) improved and completed the GTC study for the case of ELTs. 

Firstly, they fitted the diffraction images using a double Gaussian model which allows them 

to get a more accurate measurement of the peak difference, even under turbulence conditions. 

Secondly, they used weightings on individual measurement errors when the piston values of 

all segments were calculated by Single Value Decomposition (SVD), a standard method to 

find the least-squares solution to an over determined set of linear equations (Press et al 1992). 

 

 

Figure 2.1.2 Simulated 2-D diffraction pattern (left) and the x-projection (right) of a double slit for 0, upper left 

to 5π/6 lower right piston error. 
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2.2. Co-phasing techniques based on Curvature sensors 
 The Curvature sensor introduced by Roddier & Roddier (1993) for AO is presented in 

Figure 2.2.1. Two detectors placed at equal distance, l, in front and behind the focal plane 

measure the intensity distribution in both planes. There is a local excess of illumination in one 

plane and a lack of illumination in the other as a result of the local curvature in the wavefront. 

 

 

Figure 2.2.1 Principle of Curvature wavefront sensor (from Schumacher & Devaney,2004). 

 

 Roddier & Roddier define a quantity denominated Curvature Signal, which in the near–

field approximation, is equal to,  

2e i
c

e i

I I WCS z P W
I I

δ− ∂ = = ∆ − ∇ + ∂ n
 (2.1)

where Ie and Ii are the extra and intra focal intensity distribution at the image plane,  ∆z is the 

defocused term which depends on the focal length f and on the defocused distance l with 

respect to the focal plane as ±f(f-l)/l; W is the wavefront; P is a function equal to 1 inside the 

pupil and 0 outside; n is an unitary vector pointing outside the pupil and δc is a linear Dirac 

distribution around the pupil edge. 

 The first term in parentheses is proportional to the variation of the wavefront at the pupil 

edge and the second term is the wavefront Laplacian across the beam, which is proportional to 

the curvature of the wavefront.  

 Roddier assumed continuity of wavefront phase function in his mathematical description of 

this method. This can not be assumed in a segmented telescope, thus the term “Curvature 
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sensor” is not strictly appropriated to appoint a group of co-phasing techniques. Nevertheless, 

it is useful as a reference to a well known instrumental technique.  

 In the presence of phase discontinuities, the signal can be simulated using Fresnel 

diffraction theory. The complex amplitude in the output pupil is given by, 

2( ) ( ) exp ( ) d
2

jk z

zF
e ku U j
jk z z

∞∆

−∞

 = − ∆ ∆ ∫ ∫x x' x x' x'  (2.2)

where, U(x’) is the complex input amplitude, k is the wave number 2π/λ and ∆z is the defocus 

term. The Fresnel approximation is valid when the defocus term ∆z is much larger than the 

segment size. 

 The Fresnel integral can be considered as the convolution of the complex input amplitude 

with a function containing the defocused term. Since the convolution is a multiplication in the 

frequency domain, the complex output amplitude is simulated with FFT algorithms as; 
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 Figure 2.2.2 shows an intra focal image and the Curvature signal for a 50 m segmented 

telescope with random piston error of 100nm. Piston errors appear as a modulation of 

intensity at the edge of the segments. 

 

     

Figure 2.2.2 Intra focal image (left) and curvature signal (right) of a 30m telescope, with a defocused distance of 

6m. 
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 The signal changes in the direction perpendicular to the border while it remains constant 

along the edge direction. The signal width depends on the pupil defocused distance; ∆z, small 

pupil defocused distance —thus large l— leads to narrower signal. 

 Rodriguez-Ramos & Fuensalida (1997) first proposed to use the Curvature sensor to 

measure piston errors. They proposed an iterative technique which compared the measured 

curvature with the simulated curvature signal of an array of segments with known piston 

errors. This technique fails when seeing is included. They also proposed a hybrid sensor, 

which includes a Shack-Hartman sensor to correct turbulence errors. 

 Chanan et al (1999) proposed a method which is similar to the previous one. In this method 

defocused pairs of images of each segment were simulated, and experimental images were 

correlated with the simulated templates. Measurements were done for λ=3.3µm for two main 

reasons, i) it decreases influence of atmosphere, and ii) it keeps defocus distance in the 

Fresnel approximation. For perfect segment shape they achieved a precision of 5nm and a 

repeatability of 40nm. 

 Cuevas et al (2000) proposed a generalisation of the Roddier equation including 

discontinuity errors, based on the distribution theory. They argued that piston step is 

proportional to the amplitude of the first derivative of the linear Dirac delta distribution, and 

tip-tilt is proportional to the amplitude of the Dirac delta distribution. This generalisation is 

only valid if the signal width is close to zero, which is the case of weak defocused pupils.  

 Rodríguez-González & Fuensalida (2003) developed an analytical model based on the 

diffraction phenomenon of propagation. This model describes curvature signal including 

wavefront discontinuities. From Fresnel propagation theory they deduced the expressions of 

the curvature signal for a square aperture with segmentation discontinuities. The signal was 

characterised as a function of sensor parameters, i.e. focal length, defocus distance, 

wavelength, etc. They developed a model in order to retrieve piston errors by defining an 

integrated curvature signal for each segment. This way, it was possible to reduce the number 

of measurements to the number of segments, and therefore they managed to decrease time 

consuming and computer memory requirements. From simulations, they obtained a precision 

of 69nm for λ=600nm, 48nm for λ=1.2µm and 13nm for λ=2.4µm. However, the algorithm 

needs to be completed with the inclusion of atmospheric errors. 
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2.3.  Other alternatives for co-phasing 
 Another set of techniques is based in the phase diversity principle proposed by Gonsalves 

& Chidlaw (1979). The pupil aberrations are calculated from the simultaneous measurements 

of a focused and a slightly defocused image. Lofdahl et al (1998) performed an experiment at 

Keck II telescope which involved measuring a large number of pairs of images. The average 

of the individual result gave the misalignment measurement. However, the results obtained in 

this experiment were not satisfactory, probably due to the poor seeing conditions in which this 

experiment was carried out. 

 Phase diversity has been also proposed by Baron et al (2003) for co-phasing of multi-

aperture arrays using extended sources. The performance of the phase diversity algorithm is 

severally affected by the redundancy and dilution of the sub-apertures. Sorrente et al (2004) 

experimentally tested the validity of this technique obtaining consistent results with numerical 

simulations. 

 Labeyrie et al (2002) proposed an alternative method for co-phasing multi-aperture arrays 

—particularly applicable to hypertelescopes with a densified pupil (Labeyrie 1996) — based 

on the dispersed-speckle methods. This technique exploits the chromatic dependence of 

speckled images. It was demonstrated that the wavelength-dependent three-dimensional (3-D) 

complex input amplitude is the 3-D Fourier Transform of the cube data formed of speckled 

images at different wavelengths. The piston step map was reconstructed by a 3-D Fineup 

algorithm.  

 The JWST would require a co-phasing procedure with the advantage of avoiding 

atmospheric effects, unlike ground based telescopes. The phasing protocol combines two co-

sensing techniques: i) The Dispersed Fringe Sensor (DFS) provides a robust phasing signal 

over about 1 µm of piston error. It uses a transmissive grism which spreads the light 

according to its wavelength, forming a spectrum on the camera. Piston differences are 

measured from the intensity modulations on the spectrum (Shi et al 2003); ii) White Light 

Interferometry (WLI) provides more than tens of nanometres of precision. Each segment is 

pistoned over a range which depends on the filter width. The broadband PSF corresponding to 

each piston position is recorded. The relation of the intensity of the central pixel of the PSF 

versus the piston position is the WLI signal for that segment (Shi et al 2003). 
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2.4.  Pyramid sensor for measuring dephased errors 
 The concept of the Pyramid wavefront sensor is based on the principle of the knife edge 

test (Foucault 1859) introduced by Ragazzoni (1996) for AO, see Figure 2.4.1. A glass 

pyramid is placed in the focal plane of the telescope, so that each side of the pyramid acts as a 

spatial filter, producing four different images of the pupil in the observation plane. The 

combination of the intensity distribution over the four quadrants is proportional to the local 

slopes of the wavefront, assuming geometrical approximation. By introducing a modulation 

on the wavefront tilt, the sensitivity and dynamic range of the sensor can be tuned. Small 

modulation amplitude provides better sensitivity in order to measure small wavefront 

aberration, while large modulation leads to larger dynamic range with less precision when 

measuring large aberrations. 

 

Figure 2.4.1 Scheme of a Pyramid wavefront sensor. Figure taken from Esposito (2000). 

 

 Modulation can be introduced either i) dynamically, by moving the pyramid or placing an 

oscillating tip-tilt mirror in the exit pupil conjugate plate, or ii) statically, by placing a 

diffusing element in an intermediate image of the pupil (Ragazzoni et al 2002). 

 Esposito & Devaney (2002) proposed a method for co-phasing segmented mirrors using a 

Pyramid wavefront sensor. Although in the geometric optics regime the Pyramid Sensor 

detects local wavefront tilts, diffraction of wavefront discontinuities give rise to a signal in the 

Pyramid sensor which can be used to measure piston. The optical configuration is the same 

but the tip-tilt modulation is no longer required. The amplitude of the signal is a sinusoidal 

function of the piston step. The sensor has the ability to measure misalignment of the 

segments and wavefront aberrations simultaneously. 
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2.5. Interferometric techniques for co-phasing segmented 

mirrors 
 Interferometric techniques measure piston errors by analysing the interference pattern 

produced either in a plane conjugated to the primary mirror or locally, at the intersegment 

zone. There are many ways of implementing interferometic techniques for co-phasing 

applications. The interferometric techniques presented here can be classified according to the 

type of source employed, either artificial or natural. They differ firstly in the interferometric 

technique they adopt, which can be mainly Michelson, Shearing or Mach-Zehnder (MZ) 

interferometers, and secondly in the optical configuration in relation to the interferometer 

location, sometimes in the centre of curvature others in the focal plane. We next expose some 

examples. 

 

 

Figure 2.5.1 3-D layout interferometer proposed by Pizarro. Figure taken from Pizarro et al. (2002). 

 

 Pizarro et al (2002) proposed to measure piston errors using a Michelson interferometer 

mounted on a robotic arm which position the interferometer in front of the segment edges, as 

shown in Figure 2.5.1. There is an internal light source which illuminates the segments, the 

reference beam reflected from one segment interferes with the beam reflected from 

intersegment region. Piston errors cause mismatching of the fringes from each side of the 

edge segment. Relative segment tilt causes the fringe period to change and relative segment 

tip causes the fringes to deviate from the vertical. The position of zero piston error can be 

determined by aligning the white light fringe, while increased accuracy is obtained using 
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narrowband light to give several fringes. The main advantage of this method is that the co-

phasing is done during day time. Experimental measurements (Pinto et al 2004) show that a 

precision of 5nm with a range of 30µm is achieved.  

 Kishner (1991) proposed measuring absolute distances with an interferometer placed in the 

centre of curvature of the primary mirror, as seen in Figure 2.5.2. Reflectors components were 

positioned on the segment surface. Interferences formed between the reference beam and the 

beam coming from the reflecting points. This method allows them to measure both, 

misalignment errors and aberrations of the segment surface depending on the number of 

reflectors placed onto the segment. This method is very sensitive to the fluctuation on the 

refractive index thus to the atmospheric turbulence. 

 

Figure 2.5.2 Sample point interferometer proposed by Kishner. Figure taken from Kishner (1991). 

 

 Voitsekovich et al (2002) proposed an approach based in a shearing interferometer with a 

simple setup composed of two lenses and a filter between them, which provides not only 

relative piston information but also information on relative tilt and defocus. Intensity 

distribution on the image plane is formed by a central interference pattern produced by to 

adjacent segments, enclosed by the direct field and shifted field of the surroundings segments. 

They provide a description of the filter design and manufacturing. The reconstruction of the 

piston map error requires to measure two interferograms using two different filter 

orientations. This method has a maximum precision of λ/45 at the wavefront, when a 

significant noise level is considered. When atmospheric errors are considered, the distance 
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between the interference points (~1m) is much bigger than r0 (~0.25m), therefore the phase 

fluctuations are de-correlated and the interferogram is blurred by atmosphere. 

 Horton et al (1990) used a radial shearing interferometer as shown in Figure 2.5.3. Two 

images of the segment pupil with different magnification will interfere producing a fringe 

pattern in the exit pupil. A rotating tilted transparent plate situated in the focal plane 

modulates the tilt fringes used for sampling the segment misalignment. 

 

Figure 2.5.3 Shearing interferometer proposed by Horton et al. Figure taken from Horton et al (1990). 

 

 Dohlen & Fresneau (2000) proposed a dual wavelength random phase shift interferometer 

for phasing segmented mirrors using an artificial source located at the centre of curvature of 

the primary. They suggested the implementation of this technique for stellar sensors using a 

MZ interferometer, as proposed by Angel (1994) for high precision AO. 

 This principle was later elaborated by Montoya et al (2002) and its description is the 

subject of this work. 
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Chapitre 3-Resumé 

 Une nouvelle technique de co-phasage des miroirs segmentés, basée sur l’interféromètre de 

MZ, est présentée dans ce chapitre. Dans un interféromètre de MZ, une lame séparatrice 

divise le faisceau provenant du télescope en deux bras. Un trou placé au plan focal d’un des 

bras agit comme filtre spatial, fournissant une onde de référence cohérente avec l’onde 

entrante. Si la taille du trou est plus grande que la tache d’Airy, l’onde de référence contient 

les composantes basse fréquence de l’onde objet.Après réflexion sur les miroirs plans, les 

faisceaux filtrés et non filtrés sont recombinés par une lame séparatrice, formant deux 

interférogrammes complémentaires. Ces interférogrammes contiennent seulement les hautes 

fréquences du front d’onde entrant, éliminant ainsi les perturbations atmosphériques et ne 

laissant que les erreurs de segmentation.  

 Nous avons réalisé une étude analytique des interférogrammes de MZ pour le cas mono-

dimensionnel avec des erreurs de piston. Des analyses complémentaires de ces 

interférogrammes utilisant des simulations numériques montrent un bon accord avec les 

résultats analytiques.  

 Nous avons décrit plusieurs algorithmes pour retrouver les erreurs de front d’onde causées 

par la segmentation, et nous avons étudié leurs précisions lorsqu’on inclut non seulement les 

erreurs de discontinuité mais également la turbulence atmosphérique et les erreurs causées par 

les bords rabattus. En changeant la taille du trou, les performances en tenant compte des 

erreurs atmosphériques peuvent être optimisées. Plus critiques sont les effets de bords rabattus 

produits durant la procédure de polissage. Cependant, une précision de 10nm peut être atteinte 

dans tous les cas.  

 La technique du MZ employant la lumière d’une étoile naturelle, il est important de 

déterminer l’influence du bruit de photon sur les performances de cette méthode. Les 

conditions requises concernant la magnitude limite de l’étoile ne sont pas très drastiques 

puisqu’une étoile plus brillante que la magnitude 14 en bande V suffira pour assurer une 

précision de 10nm.  
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Chapter 3                                             

Mach-Zehnder co-phasing technique 

 In this chapter we introduce a novel technique for co-phasing of segmented mirrors based 

on a MZ interferometer. We present a general description of this method, in which we justify 

the use of a MZ interferometer for measuring wavefront discontinuities.  

 We have performed an analytical study of the MZ interferograms for the one-dimensional 

(1-D) case for pure piston error. Further analysis of the MZ interferograms using numerical 

simulations shows a good agreement between the results of both, analytical and numerical 

approaches. We also present a coronograph approach as an alternative instrument based in the 

same principle as the MZ technique. 

 Finally, different algorithms to retrieve wavefront errors are described. We report on the 

precision obtained when including not only discontinuity errors but also atmospheric 

turbulence and edge defects. The detection parameters and photon noise have been also 

implemented in the simulation. Our analysis resulted in an optimal configuration achieving 

the highest performance of the instrument. 
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3.1. General Description  
 The purpose of a MZ wavefront sensor is to measure phase properties of the incoming 

wavefront by applying the appropriate spatial filtering in one of the interferometer arms. The 

idea of using this kind of interferometer to measure atmospheric wavefront errors was first 

introduced by Angel (1994). A scheme of the MZ interferometer is shown in Figure 3.1.1. 

 

 Telescope 
focus

Pinhole

Interferogram

Interferogram

Reference channel

Beamsplitter

Beamsplitter UA 

UB 

A1, ϕ1 

A2, ϕ2 

 

Figure 3.1.1 Scheme of a MZ interferometer. 

 

 In MZ interferometer, a beam splitter divides the incoming beam from the telescope focus. 

A pinhole placed in the focal plane of one arm acts as a spatial filter, providing the reference 

wave coherent to the incoming wave. After reflection at plane mirrors, the two beams are 

recombined by a second beam splitter, forming two complementary interference patterns. If 

the pinhole size is smaller than the Airy disk, the reference beam is a spherical wave. In this 

case the difference of intensity between two interferograms directly provides the local phase. 

On the contrary, if the pinhole size is larger than the Airy disk, the reference wave contains 

the low frequency components of the object wave. At recombination, as result of the 

subtraction of the two wavefront arms, the interferograms contain only the high frequencies of 

the incoming wave. 
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 This principle is the basis of this interferometric assembly for measuring wavefront 

discontinuities caused, for example, by segmentation of the telescope surface. Piston and tip-

tilt errors on segments produce jumps on the wavefront. As it is known from the Fourier 

analysis, a step function is mostly manifested in the high-frequency region of the spectrum. 

Therefore, it is possible to separate the segmentation component from other components with 

fainter high-frequencies, by choosing a sufficiently large pinhole size. 

 

 

Figure 3.1.2 Intensity distribution of a PSF for an input wavefront with piston error of 45nm in the mirror 

surface (black) and no piston error (blue) in presence of atmosphere with r0=25cm. 

 

 This property is well illustrated in Figure 3.1.2, where we have plotted the cross section of 

the PSF of a step function compared with the cross section of the PSF of an atmospheric 

phase function. We observe that for low spatial frequencies the atmospheric PSF dominates, 

while for frequencies higher than ~0.5″ the wings of the step PSF lie above. Choosing the 

proper pinhole size allows us to cancel out phase errors due to the atmosphere. 

 The advantage of this technique is that the same instrument is suitable for AO or co-

phasing applications. The AO applications have been deeply studied by Langlois (2001) and 

the aim of this work is the study of this technique for co-phasing applications. 
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3.2. Analytical study of a Mach-Zehnder Interferometer 
 One of the advantages of the MZ interferometer is the fact that wavefront errors are 

measured directly from the interference pattern registered on the detectors. The intensity 

levels of the interferograms are proportional to the phase difference between the two arms. By 

conservation of energy, these two patterns are complementary when the beam-splitter is non-

absorbent: maxima in one pattern correspond to minima in the other.  

 The two complex amplitudes at the two output pupil planes of a MZ interferometer are the 

following: 

( )1 2( , ) ( , )
, 1 2

1( , ) ( , ) ( , )
2

i x y i x y
A BU x y A x y e A x y eϕ ϕ−

= ±
 

(3.1)

where, and A1, ϕ1 are the amplitude and phase of the reference wavefront, and A2, ϕ2 are the 

amplitude and phase of the filtered wavefront. 

 Intensities of the two output interferograms are calculated as I=UU* where U* denotes U 

complex conjugated, 
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where I1 is the intensity of the filtered arm, I2 is the intensity of the reference arm before 

recombination, and V is the visibility of the fringes in the output pupil plane, and is expressed 

by, 
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 As expected, the intensity values of the interferograms are proportional to the phase 

difference. 

 From these interferograms we can not retrieve the sign of the phase due to the symmetry of 

the cosine function, cos(φ1-φ2)=cos(φ2-φ1). This problem can be solved by introducing a 

constant optical path difference (OPD) in one of the arms. Later on, we will study the effects 

caused by the OPD on the MZ interferograms. 

 Let us now derive the analytical equation which gives the intensity of the interferograms.  
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3.2.1. Analytical expression of 1-D interferograms: the piston error case 

 The aim of developing this theoretical analysis, is the better understanding of the resulting 

signal of the MZ interferometer.  

 

   

   

Figure 3.2.1 Interferograms at the two output of MZ interferometer (upper row). Transversal cut along the main 

y-axis of the interferograms (lower row). 

 

 In Figure 3.2.1, we show the two output interferograms for a 10-m GTC type. It can be 

noticed that peak signals appear at the edge between segments. Our analysis will describe 

these signals and their behaviour for several interesting cases. 

 In order to derive the expression of the intensity distribution of the interferograms we will 

use the Fraunhoffer approximation of the Diffraction theory. For this purpose we will assume 

the case of monochromatic light. 
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 Let U1(p,q) be the pupil telescope function. The complex amplitude in the focal plane is 

given by the Fourier integral, 
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where λ is the wavelength. 

 To easily follow the mathematical description, we will represent the coordinates related to 

the focal plane with Greek characters and coordinates related to pupil plane with Latin 

characters.  

 The complex amplitude in the focal plane behind the mask will be the product 

u1(ξ,η) m(ξ,η), where m(ξ,η) is the mask function. In order to obtain the output complex 

amplitude, we compute the Fourier transform of this product as follows, 
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which can be interpreted as the convolution between the pupil telescope function, U1(x,y) and 

the Fourier transform of the mask, 
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thus equation (3.5)) can be expressed as, 
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where ⊗ denotes convolution. 

 As we show below, the insertion of an OPD in one arm will provide some advantages. In 

this case, the complex amplitudes of the two output wavefronts will be, 
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1( , ) ( , ) ( , )
2

i
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where the ± sign corresponds to each output of the interferometer and θ, is the OPD between 

the two arms. The intensity is related to the complex amplitude as I=UU*, so the intensities 

measured at the outputs of the interferometer will be, 
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 To simplify the mathematical treatment and due to the fact that the interesting part of our 

analysis is the signal located between segments, we will consider instead of the whole pupil 

the case of two adjacent segments as shown in Figure 3.2.2. We will see that this 

approximation is valid if the localisation condition is fulfilled. This condition ensures that the 

signals produced at different edges of the same segment do not interfere. 

 

 
Figure 3.2.2 Coordinate system for two adjacent segments case.  

 

 We will study the simplest case, assuming that there is no gap between segments. For 

convenience we set the amplitude of each segment to one, so that the complex amplitude can 

be expressed as follows, 
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where ϕi(x,y) is the phase of segment i. 

 The contribution of each error source can be studied separately. As a first approach we 

have included only piston error, ignoring the contribution of edge and segment miss-figure, 

tip-tilt between segments and atmospheric turbulence. In this case, U1(x,y) is constant along 

the y-direction and will depend only on x-coordinate. The equation  can be expressed as, 
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 Two different mask shapes have been considered. We define the circular pinhole as a 

mask, as shown in Figure  3.2.3, with constant transmittance inside a circle of diameter a and 

  

Y
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null outside, and the Gaussian pinhole, whose transmission function is a Gaussian with 

FWHM equal to 1.18a. 

 

   

Figure  3.2.3 Mask Transmission Functions for circular pinhole (left) and Gaussian Pinhole (right). 

 

 The Fourier transform of the circular mask (in polar coordinates) will be the well known 

Airy pattern (Goodman 1996), 
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and the Fourier transform of the Gaussian mask will be, 
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where t is the position vector in Cartesians coordinates. 

 The next step is to solve integral (3.7) introducing (3.11) and the Fourier transform of the 

mask. We obtain a general expression for the two outputs of the interferometer, 
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where ∆ϕ=ϕ2−ϕ1 is the phase step between segments, θ is the OPD between two arms of the 

interferometer and F(c|x|) is a function characteristic of the mask, which for the circular 

pinhole is expressed as, 
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and for the Gaussian pinhole is expressed as, 

FWHM=1.18a D=a 
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where a is the diameter of a circular pinhole or 0.85FWHM of a Gaussian pinhole.  

 In Figure 3.2.4 we illustrate the profile of the F function for both masks. It can be observed 

that Si function and Error function (Erfc) have the same shape except for the presence of 

some oscillations close to zero in the case of the Si function, which are not apparent in the 

case of the Ercf function. These oscillations are the result of the diffraction effect of the edge 

of the pinhole. 

 

 

Figure 3.2.4 Representation of Si function (left) and Erfc function (right). 

 

 In Figure 3.2.5 we have plotted the resulting intensity profiles for both outputs and both 

masks. We have considered a wavefront piston error of 125nm, for λ=500nm, a pinhole size 

of 1.5” and null OPD. Profiles are similar in the area between segments. However, while the 

profile of the Gaussian mask is constant far from the edge, the circular mask profile presents 

oscillations whose amplitude decreases as the distance to the intersegment point increases. 

 One way of reducing the signal background and increasing the signal amplitude consist of 

considering the difference between two outputs. This value will be referred to as the Mach-

Zehnder signal and it can be expressed as follows, 

( ) ( ) ( ){ }1( ) cos( ) 1 cos sign( ) 1
2

S x F c x x F c xθ θ ϕ   = + + − ∆ −     
(3.17)

 



Analytical study of a Mach-Zehnder Interferometer 

 -50- 

   

Figure 3.2.5 Profiles of the output signals of the MZ for circular pinhole (solid) and Gaussian pinhole (dotted). 

 

 Once we have obtained the analytical expression for the interferogram profiles it is time to 

study the effect which causes the variation of the parameters involved in this expression, i.e, 

the introduction of an OPD (θ ), the size of the pinhole (c) and the shape of the pinhole (F). 

Our goal is to optimise the performance of the MZ interferometer by taking into account these 

parameters. 

3.2.2. Behaviour of the MZ signal when introducing an OPD 

 The introduction of an OPD in one of the arms allows retrieving the sign of the piston step, 

and for certain cases it provides a linear response. In Figure 3.2.6 the MZ signals for null 

OPD and different piston step are plotted. 

 

Figure 3.2.6 MZ signals profile for different piston step, for OPD=0 and λ=500nm, pinhole size of 1.5”. 
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 The piston information is contained within a distinct peak which appears at the segment 

boundary, as expected from (3.16), if the OPD is equal to zero, the signal is proportional to 

the cosine of the phase difference, and therefore the sign of the phase is lost. Introducing an 

OPD, the argument of the cosine function will change the signal shape. In Figure 3.2.7 we 

represent the profiles of the two outputs of the interferometer (blue and green lines) and the 

MZ signal (black line) for a wavefront piston error of λ/4 (at λ=500nm) for different values of 

OPD. We observe that the two outputs become complementary when the OPD approach to 

λ/4. This means that both signals are identical but with opposite sign. In the case of OPD 

equal to λ/4 this complementary property has two advantages, firstly the two outputs have the 

same background level, so that when we subtract them the background is eliminated, and 

second the amplitude of the signal, i.e the difference between the maxima and minima, is 

doubled when two outputs are subtracted. 

 

 

Figure 3.2.7 MZ signal (black), output 1 (blue), output 2 (green) for different OPDs, for piston step of λ/4 in the 

wavefront, and pinhole size of 1.5”. 



Analytical study of a Mach-Zehnder Interferometer 

 -52- 

 We also notice, that for OPD=λ/4, the signal given by (3.17) is a sinusoidal function of the 

piston step, and thus the signal will have a linear behaviour in the range of piston [-λ/4,λ/4], 

allowing the sign distinction. 

 According to the previously mentioned arguments we will set the OPD to λ/4 in the 

subsequent analysis. 

3.2.3. Behaviour of the MZ signal with pinhole size 

 The pinhole size will play an essential role in the MZ setup, since, as already said, the 

pinhole is the spatial frequency filter which remove the perturbation introduced by the 

atmospheric turbulence.  

 In Figure 3.2.8 the MZ signals for different pinhole sizes are plotted for a piston step of 

125nm on the wavefront. The amplitude of the signal does not change but the width of the 

signal decreases as the pinhole size increases. 

 

 

Figure 3.2.8 MZ signal for different size of circular pinhole for a piston step of λ/4. 

 

 There exists a linear relationship between the size of the pinhole and the width of the 

profile. For convenience, we will consider the width of the signal as the distance between the 

first points where the MZ signal is equal to zero at each side of the segment. After imposing 

this condition in (3.15) and (3.16) the width for the circular pinhole is given by, 
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and for a Gaussian pinhole is, 
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 We notice that if the width of the signal is very large, there is a risk of overlapping 

between signals from different edges of the same segment. The condition of signal 

localisation is given by the characteristic spatial size 1/c obtained in (3.15), which should be 

much shorter than the size of the segment d. Taking λ=500nm and d=1.5m the localisation 

condition gives a >>0.03”. If localisation is fulfilled, the signals from different borders do not 

overlap and we can consider each intersegment border separately.  

 The choice of the pinhole will not only depend on the atmospheric error, instead the gaps 

and edge defects will have influence on the signal width. Therefore they have to be 

considered when choosing the optimal pinhole size. 
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3.3. Coronograph: a simplified approach to the Mach-

Zehnder interferometer 
 The Mach- Zehnder interferometer proposed in this work uses a pinhole in the focal plane 

to filter the input wavefront. A coronograph with a phase mask in the focal plane also acts as 

a frequency filter. By choosing the appropriated phase mask, the two outputs of the MZ 

interferometer can be obtained from two independent coronograph configurations. The main 

advantage of the coronograph is the simplicity in the opto-mechanical design compared to a 

MZ interferometer, however the access to a single output is less convenient than a double 

output system.  

 In order to compare the phase mask coronograph with the MZ interferometer we have 

found the analytical expression for the intensity of the output wavefronts with the same 

reasoning used for the MZ case. In the present analysis we also supposed a two adjacent 

segment configuration with a step between them as showed in Figure 3.2.2.  

 

  

Figure 3.3.1 Example of the transmission function of a phase mask for the coronograph. 

 

A phase mask is represented in Figure 3.3.1 and it is defined by, 
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where A and φ0 are the amplitude and phase of the mask respectively. To simplify the 

calculations the phase mask can be seen as the combination of two masks, one mask 
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transmitting in the whole space and a pinhole with amplitude equal to 01
i

Ae
ϕ

− . In this case, 

the phase mask is expressed as, 

( ) ( )0( , ) 1 1 ,im a Ae circ aφρ ρ= − −  (3.21)

where circ(ρ,a) is a function with value 1 inside a circle of radius a and 0 outside. 

The expression of the Fourier Transform of the phase mask is given by; 

( ) ( )
0

2
12

( , ) ( , ) 1 i a J ka
M x y x y Ae

ka
φ π ρ

δ
ρ

= − −  (3.22)

where δ(x,y) is the Dirac delta, k is the wave number and J1 is the Bessel function of first 

order. Substituting (3.22) in (3.7) after some calculations we arrive to the expression of the 

intensity given by 

( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) }

2
0

22 2

2
2 2

2 2
0 0

( ) Si( ) Si ( ) cos( )

1 1 Si ( ) Si( ) 1 cos( )
2
1 Si( ) 1 Si ( ) 1
2 2
1 1Si( ) 1 cos sign( ) Si ( ) 1 cos sign( )
2 2

I x ka x ka x A

A ka x ka x

Aka x ka x

ka x A x ka x A x

φ

ϕ

φ ϕ φ ϕ

= −


 + − − − ∆  

+ − + +

+ − − ∆ + − + ∆

 

where Si is a function given by (3.15), and ∆ϕ is the step between the adjacent segments. 

Comparing this expression with those obtained for the MZ case (3.14), we find that two 

outputs of the MZ interferogram can be reproduced with a coronographic version using a 

phase mask with amplitude A and phase φ0, given by, 

0
sin( )2 2cos( ) arctan

1 cos( )
A θθ φ

θ
 ±

= ± =  ± 
 (3.23)

where θ is the OPD between the MZ arms, and the symbol ± represents each output of the MZ 

interferometer. The transmission A and phase φ0 for this case are simply related by; 

( )02cosA φ=  (3.24)

 In the MZ configuration proposed here, the OPD between the two arms of the 

interferometers is set to π/2. Substituting this value in (3.23), the equivalent phase masks for 

each output in the coronographic version have an amplitude, A of 1.41 and a phase, φ0 of ± 

π/4. In theory a transmission greater than 1 is not possible, but in practice this ambiguity can 

be solved by setting the transmission inside the mask to 1 and to 1/A outside it.  
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 The coronographic version offers a large number of possibilities apart from the MZ 

equivalence. We have studied the signal obtained for different phase and amplitude 

distributions. In Figure 3.3.2 we represent one of the most interesting cases. The phase mask 

with amplitude equal to 1 and phase equal to π/4 gives almost an optimal symmetric signal 

except for piston errors in the ranges [-π,-3π/4] and [3π/4,π], where the signal is slightly 

asymmetrical. The signal becomes symmetrical for piston equal to ±π, unlike the MZ case, 

where the signal is zero. The periodicity of the signal in λ is very convenient because it allows 

us to double the capture range. In the MZ case, the periodicity of the signal is λ/2, and thus a 

complementary analysis is required to increase the capture range. 

 

 

Figure 3.3.2 Signal profiles for the coronographic version with a phase mask of amplitude 1 and phase equal to 

π/4 in absence of atmospheric and for different piston values from –π to π. 

 

 The coronographic version has revealed as a promising alternative to the MZ technique 

with the main advantage of its simplification on the optical setup. However deeper analysis 

including atmospheric turbulence, segment miss-figure errors as well as piston retrieval 

algorithms should be performed in order to ensure the validity of this approach. 
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3.4. Numerical Simulations 
 In this section we describe the simulation package that we have developed to implement 

the MZ co-phasing technique. This package is mainly divided into three parts: 

 The first part relates to the simulation of the MZ signal, including telescope segmentation 

parameters, wavefront errors and MZ parameters.  

 The second part includes detection parameters of the system, i.e. resolution of the detector, 

pixelisation and detection noise.  

 The third part comprises the analysis, in which we include the calibration criteria and the 

retrieval method explored to obtain phase errors. 
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Figure 3.4.1 Flux diagram of MZ signal simulation. 

 

 Concerning to the first block of the simulation, the algorithm employed to simulate the MZ 

Signal is described in Figure 3.4.1. As input variables we introduce: 
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• Telescope parameters: we have assumed an hexagonal geometry, defined by the number of 

segments, segment size and number of points across the entrance pupil. Using these 

parameters, a segment index pupil can be generated as shown in Figure 3.4.2 for a 10-m 

class segmented telescope. Each segment is indexed with a different number and it is 

associated to one of the segment rings coloured in the figure. The obscured segments are 

not indexed. Edges are labelled with a number and its corresponding segment index as 

shown in Figure 3.4.2. 

 

20

14 

19 
13

8 

3 

7 

2 

1 

0 

6 

5 

4 

12 

11 

10 

18

17 

23 

24 

25 

26 

31 

30 

29 

28 

22 

16

35

34

33

32

27 

21 9 

15 
 

0
1

2 
3

4

5

3
4

5

0

1 

2 

 

Figure 3.4.2 Segment index (left), border index (right). 

 

• MZ specifications: it comprises the OPD between the arms of the interferometer and the 

size and shape of the pinhole. An optional input is the introduction of a second pinhole in 

the second arm. This option is required for the comparison with the experimental data and 

it will be described later. 

• Phase errors: piston, tip-tilt or higher order wavefront errors are introduced as input RMS 

and they are randomly distributed for each segment. The size of gaps between segments 

and edge miss-figure errors produced in the polishing procedure are not implemented for 

the whole telescope due to the high resolution required. However they are included in the 

1-D simulation to analyse its effect. The atmospheric turbulence was directly introduced 

as a phase term. A phase screen characterised by r0 was generated for each single image. 

Long exposure images were simulated by averaging the signal for many phase screens. 

 Once the simulation parameters are described, the complex input amplitude is simply 

obtained from the product of the amplitude and the phase term. The mask function and the 
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complex filtered amplitude are calculated by means of Fast Fourier Transform (FFT) 

algorithms. As seen in section 3.2.1, the complex amplitudes at each output of the 

interferometer are obtained from the sum or the difference between U1 and U2. The intensities 

are calculated from the squared modulus of the amplitudes. 

 The main constraints of simulation are computation time and local memory requirements. 

As we will have a large number of segments within a large pupil, the FFT will need huge 

arrays that will often be out of the computer capacity. We are able to simulate pupil arrays up 

to 2048 pixels although for ELTs this resolution is obviously insufficient.  

 Nevertheless, the first step of the phasing procedure is phasing retrieval at each edge. 

Therefore, we will first analyse the signal profile of two adjacent segments, as it was done in 

the analytical study. Moreover, the 2-D signal can be seen as a recombination of 1-D profiles 

or even as the mean of 1-D profiles along the edge. In Figure 3.4.3 we represent the 

recombined 1-D profile from a 2-D image (symbols) and the 1-D simulated profile with the 

same parameters (solid line). The difference between them is less than 1%, so we consider the 

1-D case as an appropriate approximation to study the physical behaviour of the signal.  

 
Figure 3.4.3 1-D reconstructed profile (symbols) from 2-D simulation and the 1-D simulated profile (solid line) 
for piston step of λ/4 and pinhole size of 1.5”. 
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3.4.1. Simulation of 1-D MZ signal 

 In order to compare the results of the simulations with the analytical results, we present in 

this section the simulation corresponding to two adjacent segments as it is shown in Figure 

3.2.2 for pure piston error.  

 In Figure 3.4.4 we have plotted the signal for a pinhole of 1.5” with a piston step of 125nm 

for λ=500nm. The analytical profile seems to greatly agree with the simulated one. 

 

 

Figure 3.4.4 Analytical signal (solid line) and numerical simulated (dots) for circular pinhole (left) and Gaussian 

pinhole (right). 

 

 In principle, we can use both methods to reconstruct the 1-D MZ signal. But the analytical 

expression becomes complicated when edge defects are included. In addition, in order to have 

a more realistic estimation of the signal behaviour with atmospheric turbulence, we prefer to 

simulate long exposure images by averaging short exposure images rather than by directly 

introducing the atmospheric OTF in the analytical expression. For this reason we decided to 

use numerical simulations in the following analysis. 

3.4.2. Aliasing effect 

 An ideal MZ signal has an infinity length. As we have seen before, its intensity is maximal 

at the edge and progressively decreases to zero far from the border. 
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Figure 3.4.5 Standard deviation (solid) and PtV (dotted) between the analytical signal and simulated signal for 

circular and Gaussian pinhole. 

 

 In Figure 3.4.5 we have plotted the standard deviation (σ) and the Peak to Valley (PtV) 

between the analytical signal, which is supposed to be the ideal case without aliasing, and the 

simulated signal, for a pinhole of 1.5”. We see that  σ decreases when enlarging the diameter 

of the pupil. Hence the aliasing effect is negligible for the case of a Gaussian pinhole while 

for the circular pinhole and small aperture it becomes important. 

 The aliasing effect may be produced when the pupil array is not large enough to cover the 

MZ signal. The part of the signal which should be out of the array is seen by the computer as 

a reverberation which will be added to the MZ signal. The aliasing effect can be reduced from 

1% to 0.3% using pupil diameters larger than 10m. 
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Figure 3.4.6 Profiles for circular (stars) and Gaussian (diamonds) pinhole shapes. 

  

 Another error source introduced in the simulation process comes from the sampling of the 

pinhole. For the Gaussian pinhole this effect is less important since the Gaussian is a 

continuous function as seen in Figure 3.4.6. On the contrary, the circular pinhole is 

represented by a discontinuous function which is 1 inside the pinhole and zero outside. The 

pinhole diameter does not always correspond to an integer number of pixels, so an 

interpolation has to be done by taking into account the discontinuities at the borders. We have 

interpolated in a way that the FWHM of the simulated pinhole corresponds to the given 

pinhole size, as shown in Figure 3.4.6. Although it is an improvement, a systematic error 

remains between the simulated and analytical signals due to the discontinuity in the pinhole. 

 

3.4.3. Influence of Turbulence on the MZ signal 

 Any co-phasing method is sensitive to the phase aberrations caused by a turbulent 

atmosphere. One possible but generally inconvenient option is to perform the calibration on 

an adaptively compensated image. Another one is to try to reduce the effect by tuning the 

setup parameters of the co-phasing technique. A MZ wavefront sensor would be quite 

efficient in that respect, since the effect of atmospheric turbulence can be blurred out by 

adjusting the pinhole size which is confirmed in Figure 3.4.7. In this figure we plot the 

instantaneous phase of the input wavefront with r0=25cm and a step error of 125nm. The 
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wavefront is filtered with a pinhole of 1.5”, large enough to dump the high frequencies 

originated by the turbulence. In the left plot of the figure we observe that all high frequencies 

of the filtered phase (dotted line) are smoothed over. There is an offset of π/2 between the two 

phases coming from the OPD between the two arms of the interferometer. When performing 

the phase difference (right plot) and removing the OPD, the high frequencies show up and the 

step difference can be easily distinguished. 

 

 
Figure 3.4.7 Left: Phase of the input wavefront (solid), phase of the wavefront after filtering (dotted). Right: 

Phase Difference. 

 

 We introduce atmospheric turbulence with phase screens injected directly on the phase 

term of the input complex amplitude. They are generated by FFT methods assuming a Von 

Karman spectrum given by (1.8) (Roddier 1981). 

 The generated phase screen is calculated from the inverse FFT of ),( ηξϕ  whose modulus 

is obtained from expression (1.8) and whose phase is random uniformly distributed. 

 The correlation of the turbulence with time is given by the atmospheric time constant τ0, as 

described in section 1.3.2. Two turbulent regimes are defined depending on the atmospheric 

time constant. i) The short exposure regime, when the exposure time is shorter than τ0, 

corresponds to the frozen atmospheric aberrations. ii) The long exposure regime, when the 

aberrations are averaged and thus the exposure time is much longer than  τ0. 
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 In our simulation we have considered three different turbulence conditions with r0 equal to 

25cm, 15cm and 10cm which for λ=500nm corresponds to seeing conditions of 0.41”, 0.64” 

and 1.04” respectively. From (1.9), considering a wind speed of 10m/s we obtain that the 

atmospheric coherence times are 8ms, 5ms and 3ms, respectively.  

 We have first simulated the case of short exposure images with an exposure time of 3ms. 

In Figure 3.4.8 we have plotted a short exposure profile for piston step of 125nm (λ=500nm) 

on the wavefront using a pinhole of 1.5”. Although the atmosphere components are strong the 

main peaks can be distinguished, but the error measurement depends on the atmospheric 

temporal variations. For this reason long exposure images are required in order to ensure low 

measurement error. 

 

 

Figure 3.4.8 Signal profiles for different atmospheric conditions for a pinhole of 1.5” and piton step of λ/4 for 

Gasussian and circular pinholes. 

 

 Since the atmospheric coherence time is of the order of 1ms, we have chosen an exposure 

time 1000 longer than  τ0, which is 1second. We have generated 1000 phase screens for each 

seeing condition. A profile for each phase screen has been simulated and the average of the 

1000 profiles is the long exposure profile plotted in Figure 3.4.9. 
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Figure 3.4.9 Signal profiles for long exposures for different atmospheric conditions, for a pinhole of 1.5” and 

piston step of λ/4 for circular and Gaussian pinholes. 

 

 For long exposure images the effect of atmosphere is blurred out. In the circular pinhole 

case the secondary peaks observed in the ideal signal are attenuated by the atmosphere. 

However this fact is not critical since we will measure the intensity of the signal at the main 

peaks. 

 
Figure 3.4.10 Amplitude of the signal as a function of pinhole size for long exposures for different atmospheres 

and piston step of λ/4 for circular and Gaussian pinhole. 

 

 In Figure 3.4.10 we have plotted the PtV of the profile for different pinhole sizes and 

different atmospheric conditions. If the pinhole size is small compared to λ/r0, the atmosphere 
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is not well filtered and the PtV fall down with respect to the ideal case. In all of the three 

cases exposed here the pinhole should be greater than 1.5” to achieve 80% of the ideal PtV of 

the signal. 

 For the long exposure regime the accuracy of the piston measurement will be determined 

by the size of the pinhole. We can conclude that the atmospheric errors do not hamper the 

retrieval of piston information if the pinhole size is conveniently chosen. 

3.4.4. Influence of Gaps on the MZ signal 

 In this section we intend to analyse the effect of the gap between segments on the signal. 

As described in chapter 2, a segmented pupil is forced to have a space between segments. In 

Figure 3.4.11 we have plotted the MZ signal profiles for 10mm gap (g), using a pinhole of 

1.5” and a piston step of λ/4. The gap not only decreases the width of the signal but also its 

amplitude due to the lost of energy in the gap region. 

 

 
Figure 3.4.11 MZ signal profile with gap of 10mm using a pinhole of 1.5” and piston error of λ/4 for different 

seeing conditions and circular and Gaussian pinholes. 

 

An expression similar to (3.17) can be obtained if gaps are included, 

( )( ) ( ) ( )( ){ }1( ) cos( ) 1 / 2 cos sign( ) 1 / 2
2

S x F c x g x F c x gθ θ ϕ   = + + + − ∆ − +     
(3.25)
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where, F is the function given by (3.15) and (3.16), g is the gap width, θ is the OPD and ∆ϕ is 

the step difference. 

 From this expression the width of the signal, defined as the distance between the first zeros 

at each side of the edge is expressed as, 

4
gw w g g

a
λ

π
= − = −                          for Circular 

4 2
gw w g g

a
λ

π
= − = −                        for Gaussian  

(3.26)

where w is the width for the case without gaps, and a is the pinhole size. 

3.4.5. Influence of the edge defects on the MZ signal 

 Edge defects may be the most important effects to keep in mind, since they could be an 

obstacle when measuring step errors. 

 The edge miss-figure may have different profiles which can be described with exponential, 

quadratic or more complicated functions. We have focused our study on the case of turned 

down edge. They are defined with a quadratic function of widths,w1, w2 and amplitudes a1, a2. 

A schematic view is shown in Figure 3.4.12. 

 

 

Figure 3.4.12 Parameters of turned down edge. 

 

 The declination of the signal from the one with perfect segments is mostly essential around 

the edge within the area w1+w2. The width, depth and symmetry of edge have different effects 

on the MZ signal. In Figure 3.4.13, several profiles for different edge width and same depth 

are represented. The effect of edge defects is revealed by the presence of peaks in the central 

Segment 1 Segment 2

w2

a2a1 

w1

g
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part of the interferogram that will shadow the step components. We appreciate a loss of 

symmetry coming from the non-symmetrical turned down edges. The width of the edge 

increases the width of the peaks and decreases the signal amplitude.  

 

 
Figure 3.4.13 MZ signal profiles for different edge defects, with constant amplitudes a1=2π and a2=π and 

variable widths, gap=5mm, 1.5” pinhole size for piston error equal 0 (left) and λ/4 (right). Dashed line is the MZ 

signal profile for gap=5mm. 

 
 In Figure 3.4.14 the profiles for fixed edge width but different edge depth are plotted. A 

new secondary peak appears every time the depth is a multiple of π. 

 
Figure 3.4.14 MZ signal profiles for edge defects with w1=5mm and w2=10mm and variable amplitudes, 

gap=5mm, 1.5” pinhole size for piston error equal 0 (upper row) and λ/4 (lower row).Dashed line is the MZ 

signal profile for gap=5mm. 
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 The most important effect to retain from Figure 3.4.13 and Figure 3.4.14 is that edge miss-

figure gives non zero signal for zero piston error, and this offset depends on the difference 

between edge parameters of two adjacent segments. 

 In order to quantify the offset introduced by the edge defect we have measured the piston 

given by the non-zero signal as a function of depth and width asymmetry between segment 

edges (Figure  3.4.15). For identical edges the offset is zero. For edges with identical 

amplitudes and different widths the offset follows a linear law with the width difference. On 

the other hand for constant width difference, the offset has a sinusoidal behaviour with the 

amplitude difference. Maximal offsets occur for larger width combinations. In same cases the 

edge defects in both size of the border are compensated. 

 All this analysis would help to investigate new trails in order to discern piston error from 

edge defects. 

 
Figure  3.4.15 Residual error due to edge defect as a function of asymmetry of the edge width (right) and edge 

amplitude (left) for a circular pinhole equal to 1”. 

 

3.4.6. Pixelisation and Sampling 

 Until now we have simulated MZ signals with very high resolution, in order to understand 

their physical behaviour. Our aim is to obtain a reliable piston value from the MZ signal 

including as many parameters as possible, therefore the analysis is completed by including the 

detection parameters. It is found convenient to consider detection items of two different 
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processes refereed to as pixelisation and sampling. The pixelisation, considers that the signal 

is filtered because of the extended surface of the pixel and the sampling of the signal, is the 

process of converting continuous signals into discreet ones. 

 The pixelisation process is expressed by, 

pixel( ) ( ) Rect(x,X )pf x f x= ⊗  (3.27)

where f(x) is the continuous MZ signal, and 

1, / 2 / 2
Rect( , )

0, otherwise
X x X

x X
− < <

= 


 (3.28)

is the top-hat function, representing the pixel. 

 In what follows we denote functions in the spatial domain with small letters and those in 

the frequency domain with capital letters. The band limited spectrum of the signal is given by, 

( )
pixel

( ) FT ( ) Sinc
XpF f x νν

 
= ×   

 
 (3.29)

where FT represents the Fourier transform. The pixelisation process determines the resolution 

of the signal in the spatial domain and the band limiting spectrum in the frequency domain. 

The smaller the pixels, the larger the spectrum bandwidth and thus the more signal details are 

appreciated. 

 The sampling of the signal is obtained by multiplying the signal by a sampling grid, which 

is expressed as a periodical space delta function, 

( ) ( ) ( )pc p
n

f x f x x n Xδ
+∞

=−∞

= × − ∆∑  (3.30)

where ∆X is the sampling period. The signal sampled with period ∆X yields the original 

spectrum replicated in the frequency domain with period 1/∆X,  

( ) ( ) ( / )pc p
n

F F n Xν ν δ ν
+∞

=−∞

= ⊗ − ∆∑  (3.31)

 The sampling frequency 1/∆X must be larger than twice the maximum frequency (νmax) 

present in the signal, to avoid aliasing artefacts. This minimum frequency is known as 

Nyquist frequency. Figure 3.4.16 shows this aliasing effect. 
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Figure 3.4.16 Left: Spectrum of the signal with a sampling frequency larger than the Nyquist frequency. Right: 

Aliasing effect due to the fact that the sampling frequency is smaller than the Nyquist frequency. 

 

 We have obtained a band limited spectrum and a sampled signal. Since the signal must be 

also limited in the space domain, we multiply it by a top-hat function (Rect) of width X0,  

0( ) ( ) Rect( , )pcb pcf x f x x X= ×  (3.32)

 This way the spectrum will be smoothed and signal features with frequencies less than 1/X0 

will not be resolved: 

0

( ) ( ) Sincpcb pcF F
X
νν ν

 
= ⊗  

 
 (3.33)

Indeed X0 represents the size of the detector array. The bigger the detector size the better the 

spectrum is reconstructed. 

 Finally, the spectrum must also be sampled with a grid sampled function of period 1/X0. 

The sampling in the frequency domain corresponds to the signal replicated in the spatial 

domain with period X0.  The final signal is expressed as: 

0 0( ) ( ) Rect( , ) ( ) Rect( , ) ( )pixel
n n

f x f x x X x n X x X x nXδ δ
+∞ +∞

=−∞ =−∞

  = ⊗ × − ∆ × ⊗ −   
∑ ∑  (3.34)

and the spectrum of the signal is given by, 

0
0

( ) ( ) Sinc ( / ) Sinc ( / )
n npixel

F F n X n X
X X

ν νν ν δ ν δ ν
+∞ +∞

=−∞ =−∞

      = × ⊗ − ∆ ⊗ × −            
∑ ∑  (3.35)

 The numerical implementation of the detector parameters can be done in two different 

ways. The first method consists on simulating a high resolution 2-D MZ signal and rebinning 

it to the desired detector size. The rebinning comprises pixilation and sampling processes. The 

second option reconstructs a 2-D image from the 1-D profile. A 1-D profile with very high 

resolution is simulated, next it is convolved with a rectangular function whose width equals 
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the pixel size. The 2-D image results from the combination of the sampled convolved 1-D 

profiles. The advantage of the second method is the reduction of allocated computer memory. 

 In a real detector the edge of the segment is not always placed between two consecutive 

pixels, therefore the signal is not well sampled between two segments. The spatial resolution 

can be artificially increased if the pupil is slightly rotated with respect to the detector. This 

way the edge crosses the pixels at different positions. Each pixel of the detector belongs to the 

i-column and j-row. By scanning the signal along the edge, the position of the center of each 

pixel in meters with respect to the edge is given by, 

( ) ( ), 0.5 tan( ) 0.5
2 2i j
d dP i s j sα = − + + + − 

 
 (3.36)

where, d is the segment size, s is the pixel scale in m/pixel, α is the angle of rotation. This 

way a 1-D MZ signal can be reconstructed with a higher resolution than that of the detector 

one as shown in Figure 3.4.17.  

  

 

Figure 3.4.17 Reconstructed 1-D profile from a rotated 2-D interferogram. This way the resolution is increased. 

 

 This result confirms that using 1-D profiles instead of 2-D images in our simulations with 

the purpose of reducing the computer time and allocated memory, is valid. 
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 In Figure 3.4.18 we compare the MZ signal with very high resolution with the signal 

convolved with a rectangular function of size equal to 25mm for pure piston equal to λ/6 and 

a pinhole size of 1.5”, assuming no atmospheric errors. We have plotted six different cases for 

different values of the gap and edge sizes. As a consequence of the pixelisation process 

described above, the amplitude of the signal decreases and when edge errors are present 

(panels b, c, e and f), the high frequencies around the border between segments disappear. The 

gap and edge defects are not resolved because the pixel size is bigger than the characteristic 

size of the edge defects. 

 

m m m  

m m m  

Figure 3.4.18 Signal profile with very high resolution (solid) and pixelised signal profile using a 25mm pixel 

width (dotted), for a 1.5’’ circular pinhole and atmosphere r0=15cm and piston step of λ/6, a: with no edge errors 

and no gap; b: no gap and edge of a1=a2=π/2, w1=w2=5mm; c: gap=10mm and edge of w1=w2=5mm, 

a1=a2=π/2; d: gap=20mm, no edge errors; e: No gap and edge w1=w2=10mm,a1=a2=2π; f: gap=10mm and 

edge w1=w2=10mm, a1=a2=2π. 

 

 The effect of the detection parameters will depend on the profile of the signal with a very 

high resolution.  

f e d 

c b a 
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 In Figure 3.4.19 we show a set of plots with the same edge parameters used in panel f of 

Figure 3.4.18 —amplitudes equal to 2π and edge widths equal to 10mm and 5mm — but 

different gap sizes. In none of these four cases, the gap and edge widths are not resolved 

because of the pixel size used. Gaps result in a reduction of the signal amplitude, as already 

discussed in section 3.4.4. In addition to this effect, the lower resolution decreases also the 

signal amplitude. For gap widths larger than 15mm the two main peaks of the signal profile 

disappear, and therefore the piston step information is more difficult to retrieve. 

 

 

 

Figure 3.4.19 Signals with piston error of λ/6 (solid-line) and 0(dashed-line) and the difference between them 

(dotted-line) for r0=15cm, pinhole size of 1.5’’, edges with amplitudes equal to π and widths equal to 10mm and 

5mm and gap sizes of : a, 5mm; b, 10mm; c ,15mm, d; 20mm. 

 

a b

c d
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 The effect of the detection parameters when edge defects are present is more complicated 

to describe because of the irregular shape of the signal profile. In Figure 3.4.20 we plot a set 

of signals with gap size equal to 10mm and four different symmetrical edge defects. We 

observe that the signal becomes more irregular when the width of the edge increases because 

the total width is closer to the pixel size. For small edge widths the depth of the edge has less 

influence than for large edge widths. As the total size of the edge increases, the signal with 

(solid line) and without (dashed line) piston error becomes closer, therefore the piston 

information is masked by the edge effects.  

 

m m

m m  

Figure 3.4.20 Signals with piston error of λ/6 (solid line) and 0 (dashed line) and the difference between them 

(dotted line) for r0=15cm, pinhole size of 1.5’’ and different edge defects. 
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 In Figure 3.4.21 we plot the difference between the signals with piston λ/6 and piston 0 for 

different atmospheric conditions and pinhole sizes. For a small pinhole the variation of the 

signal amplitude is large from one atmosphere to the other, while for large pinhole size we 

have no signal anymore. For a pinhole size around 1.5” we get a signal with same amplitude 

for all values of r0. This is in agreement with our previous results, because the pixel size is 

large enough to resolve r0. 

 

m m m

mmm  

Figure 3.4.21 Difference of the signals for piston 0 and λ/6 for r0=10cm (dot),15cm (dash) and 25cm (dot-dash) 

and different pinhole sizes, gap=10mm, w1=10mm,w2=15mm,a1=a2=π. 

 

 The main conclusion of this analysis is that piston error is not easily distinguishable from 

other error sources. There is an unknown offset due to the non-zero signal introduced by edge 

defects that will reduce the performance. However as we will discuss later, for standard edge 

values the precision on the piston measurements still fit within the co-phasing specifications. 

New trails should be followed to be able to know this offset and therefore improve the 

performance on the piston measurement. 

3.4.7. Multi-wavelength measurement 

 All the interferometric methods are valid within a useful range which depends on the 

wavelength used. The maximum unambiguous measured piston step is ±λ/2 at the wavefront, 
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i.e ±λ/4 at the mirror surface. It means that for the case of λ=650nm, the interferometric tool 

is not able to retrieve a piston step larger than 162nm.  

 One powerful solution for extending the range and therefore solve 2π ambiguity is the use 

measurements at different wavelengths. Several methods intended to solve this problem can 

be found in the literature. 

 Löfdahl et al (2001) perform the measurement at different wavelengths and compare them 

in order to determine the true piston step. All the possible solutions for the piston step at a 

given wavelength are, 

[ ]PS k kϕ ϕ λ= ± ∆ +  (3.37)

where ϕ  is the measurement result within the range of one wavelength, ∆ϕ is the 

measurement error and k is an integer number. The true solution is found resolving, 

1 1 1 2 2 2PS k jϕ ϕ λ ϕ ϕ λ= ± ∆ + = ± ∆ +  (3.38)

 The constraints for j and k that ensure an unambiguous result are 

1 1 1 max

2 2 2 max

k

j

ϕ λ ϕ λ

ϕ λ ϕ λ

+ + ∆ <

+ + ∆ <
 (3.39)

where 2λmax=|k|λ1=|j|λ2. Löfdahl et al (2001) fixed a maximum error on the piston 

measurement to resolve (3.38). Shumacher et al (2000) explored all the possible solutions that 

fulfil the conditions (3.39) considering the error of each piston measurement. In their 

simulations they obtained an optimal range of 4500nm using two wavelengths when the error 

of the piston measurement does not exceed 50nm. 

 Cheng & Wyant (1984) present a method based on the measurement of an equivalent phase 

from the phase obtained with two individual wavelengths.  

 The phase φι, of each wavelength is calculated as, 

1 2
1 2

2 2,πϕ πϕφ φ
λ λ

= =  (3.40)

where ϕ  is the piston step. The difference between the phases obtained for each wavelength 

yields the equivalent phase expressed as, 

2
eq

eq

πϕφ
λ

=  (3.41)
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where 1 2

1 2
eq

λ λλ
λ λ

=
−

is the equivalent wavelength which defines the capture range. To ensure 

a good performance of this method,  the precision of the measurement of the phase should be 

better than λ/10 and the two wavelengths should be carefully chosen; good results are found 

for λeq~4λ1. 

 The implementation of multi-wavelength in the MZ co-phasing technique presents one 

difficulty due to the fact that the OPD changes with the wavelength. This problem can be 

avoided by using an achromatic plate. Other solution consists on correcting the calibration 

data to the shifting on the OPD. We are currently investigating this possibility. 

3.4.8. Tip-Tilt considerations 

 Segment misalignment includes not only piston errors but also tip-tilt aberrations. The 

present work is based on pure piston errors, however an overview of the effect of tip-tilt error 

on the MZ signal is presented in this section.  

 

 

         

 

 

Figure 3.4.22 Tip tilt components in two adjacent configuration. 

 

 The tip-tilt errors have two components represented in Figure 3.4.22. The rotation of the 

segment respect to the axis along the segment edge (panel A), that can be described as 

2( , ) (2 )x xx y x dπϕ α
λ

= ±  (3.42)

where αx is the bend angle with respect to the segment plane, and the rotation of the segment 

with respect to the horizontal axis perpendicular to the segment edge (panel B) 

( ) 2 2y yy yπϕ α
λ

 =    (3.43)

where αy is the rotation angle and d is the distance between the segment centers. 

A B
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 Yaistskova et al (2004) found an analytical expression for MZ signal following a similar 

reasoning as for pure piston error. In Figure 3.4.23 we have plotted the simulated surfaces of 

the MZ signal for different tilt errors using a circular pinhole of 1”. Unlike the case of a pure 

piston error, the signal including tilt errors is not anymore constant along axis y. As already 

seen, piston errors, x-tilt and y-tilt have different influence on symmetric and anti-symmetric 

properties of the signal. Yaitskova et al (2004) proposed a method based on these symmetry 

properties to retrieve the discontinuity errors. However a global analysis of the effect of tilts 

on the MZ signal remains to be studied. 
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A                              B                             

C                          D                          

Figure 3.4.23  MZ signal surfaces for: A, equal x-tilts of λ/4, B, opposite x-tilts of λ/4, C, opposite y-tilts of λ/4 

and D pure piston of λ/4. 
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3.5. Performance of a Mach-Zehnder co-phasing sensor 
 In the previous sections we performed a deep analysis on the physical behaviour of the MZ 

signal as a function of different parameters. This analysis has revealed that discontinuity 

errors are present in the MZ signal even in presence of atmospheric turbulence. However, the 

MZ signal contains gap and edge defect information which is difficult to discern from 

segment discontinuities. In this section we will test the performance of an algorithm intended 

to retrieve the piston error from the MZ signal. We will state the range of validity of the 

proposed algorithm as a function of different error sources. 

 Chanan et al (2000) proposed an algorithm based on correlation coefficients. The image of 

the unknown piston step is compared to a set of simulated images for different piston errors. 

The piston error is given by the degree of similarity with respect to the set of images. A 

resolution a better resolution than the piston-step difference between two templates is 

achieved by quadratic interpolation of the correlation coefficients. Another algorithm 

proposed by Bello-Figueroa (2001), consists on calibrating an intrinsic attribute of the signal 

related to the piston error. We will employ this approach since it turned out to be the best after 

the comparison, carried out by Schumacher et al (2002), of both algorithms. 

 We have tested two criteria in the implementation of the calibration algorithm. Given that, 

as mentioned in the previous section, the amplitude of the MZ signal is proportional to the 

piston step, we will adopt the PtV of the signal as our first criterion. The difficulty lies in the 

determination of maximum and minimum of the signal because they are localized in few 

pixels close to the edge. The second alternative, referred as integral criterion, computes the 

difference between the integrals of the signal from the edge to a certain distance in both 

senses of the segment edge. The integration area is a free parameter to be optimised. We must 

prevent crosslink between edges of the same segments and we must keep a good signal to 

noise ratio (SNR). In the ideal case, i.e. excluding edge defects and gaps, the optimal 

integration area corresponds to the width between the first zeros of the signal at both side of 

the edge, and they are given by equations (3.18) for circular pinhole and (3.19) for Gaussian 

pinhole. 

 The calibration curve will be performed from a set of MZ simulated signals for different 

piston errors. In the ideal case, we obtain that this calibration curve is perfectly fitted by the 

function: 
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( ) sin( )M Aϕ ϕ∆ = ∆  (3.44)
where M(∆ϕ) is the integral or peak difference of the signal, ∆ϕ is the unknown piston step 

and A is the calibration coefficient, whose value is equal to the PtV or integral of the signal 

for piston step of π/2. 

 In Figure 3.5.1 we have plotted a set of calibration curves for different pinhole sizes, using 

both criteria. The calibration coefficient A for the integral criterion decreases with increasing 

pinhole, because the collecting area is bigger for smaller pinholes.  

 

 
Figure 3.5.1 Calibration curves using integral criterion (left) and peak difference criterion (right) for different 

size of circular pinhole (0.25” to 3”). 

 

 Since the calibration curves are periodical functions of piston step, the capture range is 

limited to –λ/4 to λ/4. Further measurements at different wavelengths should be taken to 

resolve the π ambiguity.  

 We will study the sensitivity of these algorithms to retrieve piston errors within this 

capture range. Our goal is to optimise the algorithm in order to minimise the effect of other 

error sources as edge defects, gaps and atmospheric wavefront errors. For this purpose we 

define the piston measurement error as the difference between the real piston step value and 

the value calculated from the calibration curve. 
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 In the simulation presented here the segment size is set to 1m and the wavelength to 

500nm. We have also included the detection parameters considering a projected pixel scale of 

25mm. 

3.5.1. MZ co-phasing sensor performance as a function of atmospheric 

turbulence 

 We have simulated long exposure images for different piston errors and different pinhole 

size. We have computed the integral and the PtV of the signal. We already studied in section 

3.4.3 the dependence of the PtV with pinhole size. In Figure 3.5.2 we have plotted the 

dependence of the integral of the signal with pinhole size under different seeing conditions 

and both pinholes. We appreciate the same tendency as for the PtV. The integral value holds 

over the ideal case for small pinhole sizes and it approaches to the ideal value for pinholes 

larger than a certain value depending on the atmospheric conditions.  

 

Figure 3.5.2 Integral of signal as a function of pinhole size for different seeing conditions for circular pinhole 

(left) and Gaussian pinhole (right). 

 

 In order to quantify the errors introduced by the atmosphere we have calculated the piston 

measurement error (in the wavefront) in the linear range from -λ/4 to λ/4. In Figure 3.5.3 we 

compare the measurements obtained for a circular and Gaussian pinhole of 1.5” under 

different seeing conditions using both criteria. For the circular pinhole the performance of the 
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integral criterion is better for good seeing conditions, while for bad seeing the secondary 

peaks of the MZ signal profile are attenuated and the PtV criterion gives better results. This is 

always the case for the Gaussian pinhole. In principle a better performance with the integral 

criterion should be expected in any case, because of the higher SNR. This is not the case, 

because the noise of the atmosphere is stronger far from the border than in the main peaks.  

 

 

Figure 3.5.3 Piston measurement error, under various seeing conditions, for circular pinhole (left) and Gaussian 

pinhole (right) of 1.5” size as a function of initial piston step. The black-solid lines correspond to PtV criterion 

and red-dashed line to integral criterion.  

 

 We also appreciate that the curves are not symmetric with respect to zero piston. This 

asymmetry comes from a global tilt of the simulated phase screens. In a first iteration under 

good seeing conditions a precision of λ/25 (20nm@ 500nm ) can be reached. 

 It is also interesting to study the precision of the technique as a function of pinhole. This 

analysis allows us to adjust more accurately the optimal pinhole size under atmospheric 

conditions. In Figure 3.5.4 we have plotted the measurement error as a function of pinhole 

size for different seeing conditions for a piston step of λ/8 (62nm@500nm) on the wavefront. 

As expected the precision decreases with decreasing the pinhole size. We also appreciate that 

the integral criterion for circular pinhole size gives better results for a seeing of 15cm than for 

a seeing of 25cm, this is due to the aliasing effect described in section 3.4.2, which is more 

relevant when the secondary peaks are not attenuated. However, even for the worse seeing 
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conditions a precision of λ/25 (20nm @500nm) can be achieved for pinhole size larger than 

1.5”. 

 

 

Figure 3.5.4  Piston measurement error under different seeing conditions as a function of circular (right) and 

Gaussian (left) pinhole size for a piston error of λ/8(62nm@500nm). Black-solid lines correspond to PtV 

criterion and red-dashed lines to integral criterion. 

 

 The performance of this algorithm can be considerably improved by an iterative process. In 

Figure 3.5.5 we represent the precision on the measure of the piston error for a pinhole of 1.5” 

and three different atmospheres. As can be seen, the convergence of the measured piston error 

is fast because the measured piston approaches the linear range of the calibration curve. A 

precision better than λ/100 (5nm@500nm) on the wavefront can be achieved after 3 iterations 

even for the worse atmospheric conditions. 

 Since the performance for both pinholes stay in the same range of error, hereafter we will 

refer all the results to the circular pinhole.  
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Figure 3.5.5 Piston measurement error as a function of number of iterations (initial piston error of 62nm), for 

three different atmospheric conditions and circular pinhole of 1.5”, red-dashed corresponds to integral criterion 

and black-solid corresponds to PtV criterion. 

3.5.2. MZ co-phasing sensor performance as a function of gaps 

 In this section we quantify the error on the piston measurement introduced by the 

combination of the atmosphere and gaps. The same procedure as in the previous section is 

followed. In Figure 3.5.6-A, we have potted the piston measurement error for a pinhole of 

1.5”, a gap size equal to 5mm, under different seeing conditions as a function of piston step. 

We observe that the performance is considerably reduced. This is due to the reduction of the 

width of the MZ signal in presence of gaps, as mentioned in section 3.4.4. This performance 

degradation can be avoided if gaps are included in the calibration data, as shown in Figure 

3.5.6-B. This assumption is consistent in a real case provided that the size of gaps is 

accurately known. 
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Figure 3.5.6 Piston measurement error under different seeing conditions, with gap of 5mm as a function of 

initial piston step with pinhole size of 1.5” (left) and pinhole size for a piston step of λ/8(62nm@500nm) (right). 

Black-solid lines correspond to PtV criterion and red-dashed lines to integral criterion. A: calibration without 

gaps. B: calibration including gaps. 

 

 Although the performance obtained with both criteria is similar, hereafter we will employ 

only the integral criterion, because of the difficulty to define the maximum and minima of the 

MZ signal, as we have seen in section 3.5.3, when edge defect are included.  

 In Figure 3.5.7 we have plotted the piston measurement error for different gap widths and 

seeing conditions as a function of pinhole size. It can be observed that the performance for 

A A 

B B 
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pinholes smaller than 1.5” is limited by the seeing conditions while for larger pinholes is 

limited by the gap size. So that, if we set the optimal pinhole to 1.5”, after some iterations the 

performance is similar to the case without gap, i.e λ/100 (5nm @500nm), as can be seen in 

Figure 3.5.7. 

 

 

Figure 3.5.7 Piston measurement error: As a function of pinhole size for different gaps and atmospheric 

conditions for a initial piston step of λ/5 (100nm@500nm) (left), as a function of number of iterations for 

different gaps and atmospheric conditions (25cm solid lines, 15cm dashed lines and 10cm dotted lines) and 

pinhole size of 1.5” (right). 

3.5.3. MZ co-phasing sensor performance as a function of edge defects 

 As described in section 1.3.1, while segment edge defects do not have a big influence in 

the quality of the PSF of the telescope, they are clearly present in the MZ signal and they 

represent an obstacle when retrieving the piston information revealed in the MZ 

interferogram. As seen in section 3.4.5, there is a residual signal for piston step equal zero 

which depends on the characteristics of the edge. A priori this zero offset can be estimated if 

the edge parameters of each segment are included in the calibration data. These parameters 

can be directly measured at the segment edge or extracted from the MZ signal. Our detailed 

study of this last possibility lead to the conclusion that the width of the edge can be estimated 

from a careful analysis of the two outputs. Nevertheless the amplitude is not discerned from 

piston step nor from the shape of the edge. Since the requirements for an extremely accurate 
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co-phasing, demand the elimination of all the contaminating effects, the knowledge of edge 

defects is mandatory, therefore we continue working on this problem. 

 If edge defects are not known, the goal is to minimise the offset due to the presence of 

edge. We have studied several approaches based on different choices of the calibration data. 

The best performance is obtained when including the knowledge of the gaps in the calibration 

data. 

 

 

Figure 3.5.8 Piston measurement error (A) as a function of pinhole size, (B) as a function of number of 

iterations for pinhole of 1.5”, for different edge defects and seeing of 10cm (dotted), 15cm (dashed) and 25cm 

(solid), for initial piston step of λ/5(100nm@500nm).  

Table 3.5.1 Edge dimensions corresponding to Figure 3.5.8. 

Edge e1 e2 e3 e4 e5 e6 e7 e8 e9 
w1(mm) 5 10 5 5 5 5 5 5 5 
w2(mm) 5 5 10 10 10 10 10 10 10 
a1(rad) π π π π/2 2π 3π π π π 
a2(rad) 2π 2π 2π 2π 2π 2π π 3π π/2 

 
 In Figure 3.5.8-A, we represent the piston measurement error for an initial piston step of 

λ/5 (100nm@500nm) for different atmospheric conditions and different edge defects as a 

function of pinhole size. The performance improves when the pinhole size decreases. The 

piston measurement error presents a minimum when the pinhole size is twice the size of the 

seeing disk and contrary to the case without edge defect, the performance becomes worse for 

A B
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larger pinholes. We appreciate that for small pinhole sizes the performance is dominated by 

the effect of the atmosphere while for large pinhole sizes the accuracy of the measurements 

are determined by the edge defects. Nevertheless the performance can be gratefully improved 

after some iterations, as seen in Figure 3.5.8-B. We appreciate that the worse performance is 

given by the best atmosphere of 25cm. Therefore the pinhole size should be readjusted. In 

Figure 3.5.9 we represent the piston measurement error after 10 iterations as a function of 

pinhole size. Reducing the pinhole size to 1”, the best performance is obtained with the best 

seeing conditions, and in any case an error below λ/50 (10nm@500nm) can be achieved 

depending on the edge miss-figure. This result is satisfactory to ensure the required quality of 

the segmented surface. 

 

 

Figure 3.5.9 Piston measurement error as a function of pinhole size after 10 iterations for an initial piston step of 

λ/5 (100nm@50nm) and three seeing conditions, 25cm (solid),15cm (dashed), 10cm (dotted). 

 

 If the edge defects are known a priori and we include this information in the calibration 

data, the precision can be improved up to λ/100 (5nm@500nm) as for the case including only 

atmosphere. 
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 As a conclusion we notice that in order to maintain the best performance, the optimal 

pinhole size which was set to 1.5” by the atmospheric conditions, should be reduced to 1” in 

order to minimise the edge miss-figure effects. 

3.5.4. MZ co-phasing sensor performance as a function of photon noise 

 In this section we calculate the limiting stellar magnitude required to phase the mirror by 

using a MZ wavefront sensor. The limiting stellar magnitude will depend on the SNR.  

 For the ideal case of a detector with gain equal 1 and avoiding detector noise, the SNR is 

given by, 

SSNR S
N

= =  (3.45)

where S is the number of detected photons  and N S=  is the photon noise. 

 As described in section 3.5, by using the integral criterion the signal is equal to: 

( )1 3 2 4S S S S S= − − −  (3.46)

where S1, S2, are the numbers of photons arriving to regions 1 and 2 of one detector and S3, S4 

are the number of photons arriving to the regions 3 and 4 in the second detector as represented 

in Figure 3.5.10. 

 

   Detector 1    Detector2 

   

Figure 3.5.10 Detector areas included in the calculation of the integral criteria of the MZ signal. 

 

 To simplify the calculations we assume that the total number of photons arrived to each 

detector are the same, that is, 

1 2 3 4TS S S S S= + ≈ +  

S2 

S3 

S4 

S1 
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 We also make use of the symmetrical properties of the interferograms,  

3241 and SSSS ≈≈  

therefore the signal can be expressed as, 

( )1 22S S S= −  (3.47)

 Since we consider only photonic noise which is assumed to follow Poissonian statistics, the 

standard deviation is given by, 

( )1 22 2S TS S Sσ = + =  (3.48)

 The piston step is retrieved from the sinusoidal relation, 

1sin S S
A A

ϕ −  ∆ = ≈ 
 

 (3.49)

where, A is the calibration coefficient obtained from simulation and ∆ϕ  is the measured 

piston error. Since we are interested in the final precision, i.e small piston values, the signal 

has a value close to zero and we can apply the approximation sin(x)~x 

 The error in the measured piston is given by, 

2 TS
S

S
S A Aϕ

σϕσ σ∆
∂∆

= ≈ =
∂

 (3.50)

In consequence the SNR of the piston measurement is equal to; 

2 p pixel
T

ASNR A S n
S

ϕ ϕ∆
≈ ≈ ∆  (3.51)

where Sp is the average number of photons on one pixel of one detector, npixel is the number of 

pixels in the integration area and A  is the normalised calibration coefficient equal to 
T

A
S

. 

 As seen in the previous section the error budget including atmosphere, gaps and edge 

defects is of the order of 10nm, in the worse case. In Figure 3.5.11 we plot the number of 

photons per pixel for different pinhole sizes to achieve a precision on the piston measurement 

of 5nm, 10nm and 15nm. Since the signal gets tighter when the pinhole size increases, i.e the 

integration area is smaller, the number of photons per pixel required to achieve a certain 

precision increases. 
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Figure 3.5.11 Number of photons per pixel required to achieve precision of 5nm, 10nm or 15nm as a function of 

pinhole size. 

 

 The magnitude of a star is related to the number of photons arriving to the detector as 

follows, 

7 2.5
01.51 10 10

M

pS F t λε
λ

−∆
= ⋅ Σ  (3.52)

where Sp is the average number of photons per pixel arriving to one detector,  F0  is the 

spectral flux density from a zero magnitude star at the top of the atmosphere, t is the exposure 

time, Σ is the pixel surface projected onto the pupil, ε is the system efficiency which is the 

product of the transmission from the top of the atmosphere to the detector and the detector 

quantum efficiency, ∆λ is the bandwidth, λ is the central wavelength and M is the magnitude 

of the star. In Figure 3.5.12 we have represented the limiting stellar magnitude for two 

exposure times, and the spectral band to achieve the required precision. We have assumed a 

system efficiency of 0.5, a linear pixel size of 25mm, a pinhole with diameter equal to 1”, the 

spectral flux of zero magnitude equal to 3640Jy2 for V band, 3080Jy for R band and 2550Jy 

for I band. The central wavelength and bandwidth are: 550nm and 88nm for V band, 640nm 

                                                 
2 1 Jy(Jansky)=10−23erg s-1cm -2 Hz-1 
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and 147nm for R band, and 790nm and 150nm for I band. In the worse case a star brighter 

than 8 magnitude in V is necessary to phased segmented telescopes.  

 

 

Figure 3.5.12 Limiting star magnitude as a function of the precision for three bands, exposure time of 10seconds 

(solid line) and 60seconds (dashed line) using a pinhole of 1”. 

 

 The required FOV can be obtained from the probability of finding at least one star within a 

region of radius r on the sky. Since the distribution of stars within a given region of the sky 

follows Poisson statistics, the probability P is given by, 
2

1 rP e νπ−= −  (3.53)

where ν is the density of stars brighter than magnitude M per deg² in the considered region.  

 The star density can be obtained from models of galaxies or from measurements by use of 

catalogues. We have calculated the star density on the North and South of the Galactic Poles 

(NGP, SGP) and in the Galactic Center (GC) from the Guide Star Catalogue3.  

 From Table 3.5.2  it can be seen that a minimum FOV of 32 arcmin is necessary to ensure 

accurate piston measurements at all times in order to run the co-phasing measurement in close 

                                                 
3 The Guide Star Catalogue was produced at the Space Telescope Science Institute under U.S. Government 
grant. These data are based on photographic data obtained using the Oshin Schmidt Telescope on Palomar 
Mountain and the UK Schmidt Telescope. The Oschin Schmidt Telescope is operated by the California Institute 
of Technology and Palomar Observatory. The UK Schmidt Telescope was operated by the Royal Observatory 
Edinburgh, with funding from the UK Science and Engineering Research Council (later the UK Particle and 
Astronomy Research Council), until 1988 June, and thereafter by the Anglo-Australian Observatory. The blue 
plates of the southern Sky Atlas and its Equatorial Extension (together known as the SERC-J), as well as the 
Equatorial Red (ER) were all taken with the UK Schmidt. 
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loop. The technical FOV proposed for OWL would be of the order of 6 arcmin which implies 

stars brighter than 15.3 for the close loop co-phasing procedure. This means that the 

integration time should be increased up to 26 minutes for a precision of 5nm and 6 minutes 

for a precision of 10nm.  

 

Table 3.5.2 Limiting Stellar Magnitude and the corresponding required accessible FOV to find such a star with a 

probability of 90% at the NGP, SGP and GC. 

Precision(nm) Magnitude (R) FOVNGP,SGP(arcmin) FOVGC(arcmin) 
5 11.4 ~32 ~14 
10 13.4 ~11 ~5 

 

 From the results of the simulations presented in this work, the MZ co-phasing technique 

emerges as a strong candidate for co-phasing ELTs. However experimental results should be 

carried out in order to confirm the validity of this technique. 
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3.6. Summary 
 We have proposed a new technique based on a MZ interferometer with a pinhole acting as 

spatial filter for measuring discontinuity errors. The principle of this technique has been 

deeply discussed. We have developed an analytical approach which describes the 1-D signal 

profile for pure piston error and two different pinhole shapes. The OPD of π/2 introduced in 

one arm, allow us to retrieve the sign of the piston error. 

 We have developed a code which can simulate the MZ interferometers for a segmented 

mirror. The effects of atmosphere, gap, and miss-figure errors have been studied. The most 

important observed effect is the presence of non zero signal for zero piston error that 

decreases the precision of the method.  

 The performance of the MZ co-phasing technique has been studied. We have calculated the 

piston measurement error under different conditions. The size of the pinhole should be 

enlarged to minimise the atmospheric effects while it should be reduced to minimise the miss-

figure edge effects. Taking into account these considerations, the optimal pinhole size is 1". A 

precision of 10nm can be achieved even in the worse case. 

 The influence of photon noise has also been studied. Stellar magnitudes brighter than 13 in 

the visible band suffice to ensure a precision better than 10nm. 
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Chapitre 4-Resumé 

  Nous avons réalisé une expérience en laboratoire pour valider la technique de co-phasage 

de Mach Zehnder. Cette expérience est composée de trois éléments : le simulateur de 

turbulence, le simulateur de segment et l’interféromètre de MZ, comme montré sur la Figure 

4.1.1. 

 Deux approches ont été testées pour le simulateur de segment. La première consiste en 

cinq segments individuels hexagonaux déposés sur une plaque circulaire en zerodur. La 

seconde approche est une copie du télescope GTC, avec 37 segments et 4 hauteurs différentes 

de pistons.  

 Le simulateur de turbulence est le masque réflectif à phase tournante développé au GEPI 

(Observatoire de Paris-Meudon) pour les tests de performance de l'instrument VLT-NAOS 

(Nasmyth Adaptative Optics System). Le paramètre de Fried a été estimé à partir de la largeur 

à mi-hauteur des gaussiennes ajustées sur les PSF, mesurées à partir de 22 images de courte 

pose. Nous avons obtenu une valeur moyenne du paramètre de Fried r0 égale à 64cm, avec des 

pics atteignant 2m.  

 L'implémentation expérimentale du MZ est légèrement différente de celle proposée dans la 

partie simulation. Une caméra est située à chaque sortie de l'interféromètre, mais des raisons 

techniques ne nous ont pas permis de prendre des images simultanées aux deux sorties, 

comme initialement prévu. Nous avons cependant été forcés d'étudier l'utilisation d'une seule 

sortie, en utilisant des images supplémentaires obtenues en bloquant chacun des deux bras 

pour normaliser les interférogrammes.  

 Les résultats expérimentaux sans atmosphère sont en accord avec ceux des simulations, 

bien que le décalage entre les fronts d’onde, la mise au point des pupilles et les effets 

résiduels de vignettage induisent de grosses dispersions dans les mesures des pistons les plus 

élevés. Les résultats avec atmosphère sont moins satisfaisants à cause des erreurs 

atmosphériques de « tip-tilt » et à cause d'un désalignement variable au cours du temps entre 

le trou et le disque du seeing. Cependant ces problèmes sont en cours d'étude pour améliorer 

l'installation du MZ pour sa future implémentation dans le démonstrateur APE (Active Phase 

Experiment). 
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Chapter 4                                       

Laboratory test of the Mach-Zehnder 

co-phasing technique 

 We have performed a laboratory experiment to validate the MZ co-phasing technique. This 

experiment consists of three main elements: the turbulence simulator, the segment simulator 

and the MZ interferometer. A detailed description of each component is presented in this 

chapter.  

 The experimental setup is slightly different to the one proposed in chapter 3. However, the 

simulation code permits to implement those modifications. We show a comparison between 

simulated and experimental results for the cases with and without atmosphere and using the 

PtV criterion. 

 This experiment will serve as starting point for one of the module of the Active Phase 

Experiment (APE). This experiment is a verification bench of four new co-phasing techniques 

that will be directly tested on the sky (Gonte et al 2004). 
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4.1. Optical design for testing the MZ co-phasing technique 
 The experimental setup designed to verify the validity of the MZ co-phasing technique is 

shown in Figure 4.1.1. It is composed by three main elements: the source simulator consisting 

of a fiber-fed super-luminescent diode (S), a turbulence simulator (A) and a segment 

simulator (B), the MZ interferometer (MZ) and two detectors (D1, D2). 

 

S 

A 
B 

MZ

D1 

D2

 

Figure 4.1.1 Photograph of the MZ co-phasing experiment. 

 

 A super luminescent diode with central wavelength of 675nm and spectral width of 10nm 

is used as point source. In Figure 4.1.2 we show a detailed scheme of the source device. A 

3mm Lyot-stop situated in the collimated beam sets the position of the output pupil plane. 



Chapter 4: Laboratory test of the Mach-Zehnder co-phasing technique 

 -101- 

 

Figure 4.1.2 Scheme of the source. 

 

 The output beam coming from the source is collimated by L1 as seen in Figure 4.1.3. A 

pupil image of 50mm is formed on the segment simulator plane. The L1 lens has been shifted 

laterally so that the reflected beam coming from the segment simulator goes to the beam 

splitter B1. The lens L2 collimates the beam and a pupil image of 5mm is formed in the 

turbulence simulator. The out-coming beam is then collimated by L3 into the MZ 

interferometer. Lens L4 forms an image of the source in the focal plane where the pinhole is 

placed. The recombination of the filtered beam A, and the non-filtered beam B forms the 

interference pattern that would be measured with the camera. 

 Now, a brief description of each element is given next. 
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Figure 4.1.3 Scheme of MZ experiment. 
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4.1.1. Segment Simulator 

 Our aim is to reproduce a real segmented pupil with phase step errors between segments. 

For this purpose the segment plates must fulfil the requirements resumed in Table 4.1.1. 

Table 4.1.1 Specifications for piston plate. 

Accuracy of piston step ±1.3nm 

Optical quality of piston step PtV ≤13nm 

Pattern tolerance ±1µm respect to nominal position 

Transition width 95% within 1µm 

Surface Roughness ≤2nm 

Reflectance ≤80% 

Accuracy of pattern position/substrate Centred with tolerance of 100µm 

Substrate flatness P-V ~λ/4, λ=600nm 

Substrate surface roughness ≤2nm 

 

The greatest difficulty lies on the quality specifications of the substrate due to the dimensions 

of the plates. We have studied two different approaches which we describe below. 

 
GTC plate 
 
 A reproduction of the10m class GTC telescope has been built by the Institute of Electronic 

Materials Technology in Poland. This simulator contains 37 segments with four different 

fixed heights as shown in Figure 4.1.4. The plate was manufactured using ion beam 

machining of Silicon wafer. 
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Figure 4.1.4 GTC plate dimensions. 
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 In Figure 4.1.5 we show the interferogram of the GTC plate measured by two wavelength 

phase-shifting interferometry on a Michelson interferometer designed by Liotard & 

Zamkotsian (2004). The GTC plate fulfilled the requirements specified in Table 4.1.1. 

 

 

Figure 4.1.5  Interferogram of the GTC plate measured with two wavelengths. 

 

Isolated piston plates 
 
 The second alternative explored was a mechanism of six isolated plates with fixed piston 

steps. For this purpose we employed zerodur substrate of 25mm diameter and 10mm 

thickness with a surface quality better than15 nm RMS error and 70nm PtV manufactured by 

Cybernetix.  

 The treatment of the piston steps was performed in the Department of “Galaxies, Etoiles, 

Physique et Instrumentation (GEPI)” at Observatoire de Paris. An hexagonal patch of certain 

height is deposed over each plate using microlitography methods. The flat-to-flat segment 

dimension is 10mm. The patch thickness of each plate are: 30nm, 75nm, 150nm, 230nm, -

30nm. All plates are mounted in a wheel as shown in Figure 4.1.6 (a) that easily permits to 

change from one to another. 

 The interferometric analysis of one of the plates is shown in Figure 4.1.6 (b). The 

measured step corresponds to the specified piston step with a precision lower than 5nm. The 

observed low-order phase variations are mainly due to setup misalignment. 
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-25

 
(a) (b) 

Figure 4.1.6 Segment simulator assembly (a) and the result of interferometric analysis of the 75nm segment 

plates (b). 

4.1.2. Turbulence Simulator 

 The turbulence simulator shown in Figure 4.1.7 is a duplicate of the reflective rotating 

phase mask developed by the GEPI department for performance tests of the VLT-NAOS 

(Nasmyth Adaptive Optics System) instrument (Rousset et al 2003). They were produced by 

depositing and optically matching a resin layer on a 50 mm diameter circular BK7 substrate. 

The resin surface was then coated with an aluminium reflective coating. An image of the 

phase difference was computer simulated and imprinted on the resin (Arsenault et al 1998). 

 

 

Figure 4.1.7 Turbulence Simulator. 
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 The phase screen was designed for the VLT telescope with 8m aperture projected on 5.5 

mm on the screen. In our case the isolated piston plates have 2.5 mm diameter which 

corresponds to an aperture of 4m instead of 8m. The characteristics of the phase screen given 

by the provider are quoted in Table 4.1.2. 

 

Table 4.1.2 Phase screen specifications. 

Seeing λ  r0 r0 (Phase screen) Thickness (Phase screen) 

0.45” 675 nm 25.8 cm 177 µm ~700nm 

  

 The phase screen is mounted on a wheel whose speed is regulated by the voltage. The 

scaling of the screen is such that a typical rotational rate of 20 RPM simulates a wind speed of 

64m/s. The rotating turbulence simulator allows realistic performance testing of the method. 

However, it was soon noticed that the simulated turbulence varied strongly as a function of 

angular position. This variation was quantified by calculating the Fried parameter (r0), 

estimated from the FWHM of Gaussian fits to the measured PSFs, from 22 short-exposure 

images. Figure 4.1.8 (a) shows a histogram of the obtained values of r0, which indicates that, 

instead of a typical value of 25cm the mean seeing is equal to 64cm with peaks reaching 2m.  

 

  
(a) (b) 

Figure 4.1.8 Seeing statistics of our atmospheric turbulence generator in the case of short exposures (a) and long 

exposures (b). 
 

 The mean seeing level is not a serious problem, since it is just a matter of scaling between 

segment size and turbulence screen. However, as we will see, the strong variability of the 

instantaneous seeing appears to increase difficulty to the comparison between observations 
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and simulations. For long (1s) exposure images, representing approximately 1/3 of a screen 

rotation, the mean seeing was estimated to 61 cm with a standard deviation of 11cm, see 

Figure 4.1.8 (b). 

4.1.3. Mach-Zehnder interferometer layout 

 The MZ interferometer layout is represented in Figure 4.1.9. It is composed by two flat 

mirrors M1 and M2, two beam splitters, BS1 and BS2 and two pinholes placed in the focal 

plane of lens L3 lens in both arms of the MZ interferometer. A camera is placed at each 

output of the interferometer.  

 The alignment procedure of the MZ interferometer is particularly tedious in this case 

because of romboidal dispositions of its components. Each beam splitter has two degrees of 

freedom, corresponding to the tip-tilt. Each mirror has three degrees of freedom: the tip-tilt 

and the translation along the optical axis. This total of degrees of freedom makes difficult an 

accurate alignment.  
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Figure 4.1.9 MZ interferometer layout. 
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 Several pinhole sizes have been tested in order to compare experiment and theory. The size 

of one of the pinholes has been chosen so that the high frequencies of atmosphere turbulence 

are filtered. The aperture beam was chosen with a high F number to ensure a feasible pinhole 

size. The main inconvenient of such low beams is the vignetting of the optical elements. 

Figure 4.1.10 shows an image of a highly saturated at the output of the interferometer. The 

diffraction arms due to the hexagonal patch are clearly seen, stretching out in six directions as 

expected. The two arms stretching out to the right are vignetted. Although this effect has been 

reduced to some extent, some residual vignetting is still present. In order to limit this 

asymmetry of the pupil image, a second, much larger pinhole is introduced in the second arm. 

This way we obtain circularly symmetrical vignetting (indicated in yellow in the Figure 

4.1.10). While this has the additional effect of avoiding the sharp features of the MZ signal at 

the segment edge, it also reduces the peak signal values, and the effect must be included in the 

simulations in order to produce comparable results. 

 

 

 

Figure 4.1.10 PSF at the focal plane formed by a segment plate. 

 

 Two 1kx1k CMOSs (PixeLINK PL-741 model) are placed at both outputs of the 

interferometer. The particular design of this interferometer allows us to measure in the 

detectors either the interferograms or the PSF.  
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4.2. Analysis of the experimental results  
 The implementation of this MZ is slightly different to the one proposed in chapter 3. A 

camera is located at each output of the interferometer. Technical restrictions do not allowed to 

take simultaneous images at the two outputs, as it was planned. We were therefore forced to 

investigate the use of a single output (I), using supplementary images (I1 and I2) obtained by 

blocking in turn each of the two arms in order to normalise the interferograms. The 

normalised signal, S , is directly deduced from (3.2), and it is given by 

( )1 2

1 2

AI I I
S

I I
− +

=  (4.1)

where IA is the intensity of the output interferogram, I1 and I2 are the intensities of the each 

blocked arm. This procedure, as illustrated in Figure 4.2.1, works very well, and although it is 

less efficient in terms of throughput, in practice, its implementation may turn out to be easier 

than that of the dual-output version.  

 

  
(a) (b) (c) (d) 

Figure 4.2.1 Measured Intensity distribution of a: arm 1 I1; b: arm 2 I2, c: output interferogram IA, d: normalised 

interfrogram S . 

 

 The mono-dimensional profile is obtained from the mean of normalised signal profiles 

perpendicular to horizontal edges.  

 Apart from the proper difficulties of aligning the MZ interferometer (tilts and shear) and 

the location of the zero optical path difference (OPD), the most delicate operation is the fine 

OPD adjustment. In order to recover the sign of piston steps, the phase difference between the 

two interfering wavefronts must be equal to π/2, corresponding to a mirror displacement of 

80nm at 630nm. To achieve such extremely fine adjustments, one of the mirrors of the 

interferometer is mounted on a stage equipped with a differential micrometer screw whose 
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axis is nearly parallel to the mirror surface. This provides a 150-times reduction in the axial 

mirror movement, corresponding to a displacement of 6.5nm per 1µm micrometer graduation. 

Thermal stability and air movements also become important in this context, and although ad-

hoc measures were taken to limit air fluctuations within the interferometer, this demonstration 

experiment does not provide the nanometric stability required for an operational instrument. 
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(a) (b) 

Figure 4.2.2 Simulated (a) and Experimental (b) normalised profiles for different OPD adjustments using a 

piston step of 75nm. 

 

 In Figure 4.2.2 we have plotted the simulated normalised profiles obtained for different 

OPD values (a), compared with the experimental ones (b), for the a piston step plate of 75nm 

with a pinhole of 1mm (0.85” projected into the sky). Plotting the PtV of the signal against 

OPD (see Figure 4.2.3, solid line) shows that its variation is slow close to π/2; the error is less 

than 10% for OPD values within ±π/8. Besides, deviations from the optimal OPD are nearly 

proportional to the mean signal level (Figure 4.2.3, dashed line), allowing corrections of the 

signal amplitude within a wide range of OPDs. A procedure for OPD adjustment based on 

real-time display of the average image intensity has been devised and proven to give good 

results. 
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Figure 4.2.3  Plot of PtV signal (solid line) and mean signal level (dashed line) against OPD. 

 

 We have studied the behaviour of the normalised signal with different pinhole sizes. As 

expected, the signal becomes narrower when the pinhole size increases, but opposite to the 

case of one pinhole configuration, the PtV of the signal decreases with the pinhole size. This 

is due to the effect of the large pinhole placed in the other arm of the interferometer.  

 

   

Figure 4.2.4  Normalised signal for different pinhole size for piston 75nm without atmospheric turbulence. 

 

 The results presented in Figure 4.2.4. have been obtained with a large pinhole of 6mm 

which is equivalent to 5.2” projected into the sky. If the size of the small pinhole approaches 

to the size of the large one, both arms are equally filtered and thus the amplitude decreases 

reaching the zero value when both pinholes are identical. 
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 When atmospheric errors are included, we observe the same tendency as in the case of one 

pinhole configuration. The PtV of the signal for small pinholes is much smaller when 

atmosphere is considered than in the ideal case. This is due to the fact that the pinhole is not 

large enough to filter atmosphere. However, for larger pinholes the PtV is quasi identical to 

the ideal case. 

 We obtained from simulations that the optimal pinhole is twice the size of the seeing disk. 

This conclusion is in agreement with the results obtained in the experiment, since the best 

pinhole is the 1mm one, which is twice the seeing disk (0.529mm). 

4.2.1. Performance without atmosphere 

 We have measured the five segments without atmosphere and we have compared the 

results with the simulated data. The measurements have been taken for the upper and lower 

borders of the segment for two OPDs of ±λ/4.  
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Figure 4.2.5 Simulated (left) and experimental (right) signal profiles for one border of each segment without 

atmosphere. 

 

 In Figure 4.2.5 simulated (left) and measured (right) signal profiles near a segment border 

are compared in the absence of atmospheric turbulence for each of the five piston plates. 

Experimentally, this configuration is obtained by replacing the turbulence simulator by a flat 

mirror. We confirm a good agreement between simulated and experimental results. We 

appreciate a singularity for the simulated case when the wavefront piston step is close to λ/2  

(that is, 150nm in the surface). This is obtained from dividing the difference between the two 
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outputs by the sum of them. In the experimental data this sharp profile is smoothed because 

the signal is sampled and the pixels have a certain size as explained before. The modulation of 

the signal wings is due to an aliasing effect. 

 While the correspondence is good for small piston values, the signals of the two larger 

steps are somewhat different. Figure 4.2.6 gives a more quantitative analysis of these results, 

representing the average PtV values for each piston step (symbols) and comparing them with 

the theoretical expectation (solid line).  

 Two series of 10 images are taken, and a vertical profile containing two steps (Edge 1 and 

Edge 2) is extracted from each image. From the vertical profile, PtV values are measured and 

then averaged. Vertical error bars indicate standard deviations. The first serie is taken with an 

OPD adjusted to +π/2, for the second serie the OPD is adjusted to -π/2. Good correspondence 

for the three smallest piston values is confirmed, as well as the curious behaviour for larger 

piston steps. Changing the OPD hardly influences on the results. This indicates that the 

reproducibility of the OPD adjustment procedure is sufficient, although the difference 

between the two segment edges is large. 

 

 

Figure 4.2.6 Comparison of the amplitude of the signal between experimental data (points) and simulated data 

(solid line). 

 This effect has not yet been understood, but the contributing factors are thought to include, 

shearing, pupil focus, and residual vignetting effects. A shearing between the two arms of the 
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interferometers is represented in Figure 4.2.7. The contour of the image of the filter arm with 

the smaller pinhole is superposed to the image of the filtered arm with the larger hole. It can 

be noticed that the contour is not well aligned to the image. This results in an asymmetry on 

the normalised signal profile with respect to the edge of the segment as can be appreciated in 

the plot of the profile.  
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Figure 4.2.7 Shearing between the two arms of the interferometer and the resulting profile of the normalized 

signal. 

 

 Misalignments in the optical bench, either because the PSF is not well centered on the 

pinholes, or because of vignetting, produce asymmetries in the intensity distribution of the 

whole interferogram. In Figure 4.2.8 we show the interferogram and the normalised profile 

along the vertical axis. The borders are not equally illuminated, this asymmetry leads to a 

difference of amplitude on the normalised profile between both edges.  
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Figure 4.2.8 MZ interferogram if residual vignetting are presents and the resulting normalised profile. 
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 We have also performed the measurement for the standard MZ signal as defined in section 

3.2.1, which are: 

A B

A B

I IS
I I

−
=

+
 (4.2)

where IA and IB are the interferograms at both outputs of the interometer. It should be noticed 

that the signal is normalized with the sum of both interfergrams. The signal S has been 

obtained from one output using two complementary OPDs.  

 In Figure 4.2.9 we compare the PtV of the experimental and simulated signal profiles. The 

precision on the OPD setting is not accurate, thus both outputs are not exactly recorded with 

complementary OPDs. This fact leads to a new measurement error apart from the error 

sources already mentioned. 

 

 

Figure 4.2.9 Comparison of the amplitude of the standard MZ signal between experimental data (points) and 

simulated data (line). 

4.2.2. Performance with atmosphere 

 Figure 4.2.10 compares simulations obtained using r0=61cm with 1-second exposure 

images. A qualitative comparison indicates a very good correspondence between both. A 

more quantitative analysis, representing the same experimental cases as in Figure 4.2.10 and 

simulated performance for four different seeing conditions, gives a more complex picture 

(Figure 4.2.11). Compared with the measurements without seeing, results for small piston 



Analysis of the experimental results 

 -116- 

values have much larger variability and are generally below the expected values. A better fit 

is obtained for the two largest piston steps, but only at the cost of even larger variability.  
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(a) (b) 

Figure 4.2.10 Simulated (a) and experimental (b) signal profiles for one border of each segment with 

atmosphere. 

 

Figure 4.2.11 Comparison of the averaged experimental PtV signal amplitude (symbols) with simulated data 

(lines) for different atmospheric conditions (c). 
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 In addition to the problems mentioned above for the case without turbulence, it seems that 

the problems encountered here may be due to the large variability of instantaneous seeing 

conditions. While simulations are made using a sequence of 1000 independent phase screens, 

each of them created using identical turbulence statistics, 1-second exposures with our 

turbulence simulator corresponds to some 120 independent phase screens with largely 

different statistics (Figure 4.1.8-(a)). As observed from the simulated curves in Figure 4.2.11, 

the turbulence statistics has great influence on the signal PtV, especially for large piston steps.  

 Another error source is related to the atmospheric tip-tilt error, causing time-variable 

misalignment between the pinhole and the seeing disk. Problematic in itself, this effect is 

aggravated by the fact that the three images used to construct the MZ signal are not taken 

simultaneously. Although the effect should be reduced by increasing the exposure time, it 

may be interesting to consider the use of a real-time tip tilt corrector in a practical 

implementation of this concept. 
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4.3. Summary 
 In this chapter we have presented the description of the MZ setup developed in our 

Laboratory. Two segment simulators have been proposed. The first approach is a set of five 

single hexagonal segments, and the second approach is a copy of the GTC telescope with 5 

piston steps distributed in the 37 segments.  

 The first results have been obtained using a single output instead of the difference between 

the two outputs of the interferometer. Good agreement is obtained between simulated and 

experimental data for the case without atmosphere. However, vignettting, pupil defocus, 

shearing and misalignment of the systems leads to asymmetries and diminish the signal 

amplitude, thus provoking measurement errors. In the case with atmosphere, there is a great 

standard deviation This is due to misalignments between the pinhole and the seeing disk 

caused by the variability of atmosphere. 

 The work presented here is just a preliminary approach. The GTC plate should be tested. 

The resulting performance by using both outputs simultaneously, as well as the verification of 

the integral criterion compared to the PtV one, have to be studied in order to retrieve the step 

errors. 
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Chapitre 5-Resumé 

  Dans le cadre du réseau de recherche et de formation « Optique Adaptative pour les très 

grands télescopes », l’évaluation des performances de quatre techniques de co-phasage a été 

réalisée. Quatre instituts ont contribué au développement de ce travail. Cette étude a non 

seulement compris l’évaluation des performances des techniques pour un télescope de la 

classe des 100m mais également la description et la mise au point expérimentale de chacune 

des techniques. 

Les techniques comprises dans ce projet sont : 

1. La technique de Chanan, travail réalisé en collaboration entre le GTC (Espagne) et le 

LAM(France). 

2. La technique de courbure, travail entrepris également par le GTC et LAM. 

3. La technique de Mach-Zehnder, travail réalisé par l’ESO (Allemagne) et le LAM. 

4. La technique en pyramide, travail réalisé par le GTC et l’INAF (Italie). 

 Dans la comparaison des quatre techniques, nous avons considéré les performances en 

termes de précision et de domaine de validité, la sensibilité aux différentes sources d’erreurs 

ainsi que la complexité de fabrication. Le traitement du signal pour récupérer les erreurs de 

piston est essentiellement le même pour les quatre techniques. Cependant, la réponse en 

fonction du niveau du piston est différente ; la méthode de Chanan a une réponse linéaire 

alors que les autres techniques ont une réponse sinusoïdale réduisant le domaine de validité en 

lumière monochromatique. Dans tous les cas, les effets de l’atmosphère et des erreurs de 

bords rabattus peuvent être réduits en optimisant les paramètres expérimentaux. La précision 

finale atteinte dans tous les cas est de l’ordre de 10 nm. Nous montrons également que ces 

techniques ne sont pas limitées par le bruit de photons. 

 Il n’y a pas de contrainte majeure pour la réalisation à l’exception de la méthode de 

Chanan pour laquelle la fabrication et l’alignement du réseau de lentilles pour un ELT 

pourrait présenter certaines difficultés. Une autre limitation de cette technique est 

l’impossibilité de découpler les signaux quand plus d’un miroir de télescope est segmenté, 

comme ce sera le cas pour OWL.  
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Chapter 5                                      

Comparison of co-phasing techniques 

 Within the frame of the Research and Training Network “Adaptive Optics for Extremely 

Large Telescopes”, four co-phasing techniques have been compared. Four institutes have 

contributed to the development of this work. The studies have involved the performance of 

each technique for a 100-m class telescope as well as the description and experimental 

demonstration of each technique. 

These four techniques are; 

1. Chanan technique, work carried out in collaboration between Gran Telescopio 

Canarias (Spain GTC), and Laboratoire d’Astrophysique de Marseille (France LAM). 

2. Curvature technique, work carried out by GTC and LAM. 

3. MZ technique, work performed by the European South Observatory, (Germany ESO) 

and LAM. 

4. Pyramid technique, work carried out by GTC and Instituto Nazionale di Astrofisica, 

(Italy INAF). 

 This chapter intends to present the main results of simulations for the Chanan, Curvature 

and MZ techniques. We describe their advantages and drawbacks with respect to several 

aspects of the co-phasing process: signal characterisation, piston retrieval, practical and 

manufacturing issue and the technique applied to the case of multiple segmented mirror 

telescopes, such OWL, which is designed with the primary and secondary segmented mirrors. 
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5.1.  Signal Characterisation 
 In chapter 2, we have reviewed the basic principles of the co-phasing techniques. The 

simulation of the signal for the Chanan technique is essentially different than for the others. In 

the Chanan technique, the subaperture and lenslet combination (one or more per segment 

boundary) are physically independent. It is thus possible to individually simulate the Chanan 

signal for each subaperture, allowing the simulation of segmented mirrors with a virtually 

unlimited number of segments. In the case of the other techniques under consideration, the 

complete pupil has to be processed at once.  

 Two main reasons led us to use 1-D simulations across the single segment border. First, 

because the 1-D simulations can be performed with a higher resolution, thus a better 

understanding of the signal behaviour is possible. Second, because the available memory of 

the computer system will limit the size of the 2-D mirror that can be simulated. 

 The profile of the signal perpendicular to the edge of the segment for each method is 

represented in Figure 5.1.1. We appreciate a similitude between the signals obtained from 

Curvature and MZ. They all have an anti-symmetrical profile with respect to the segment 

edge.  

 

  
Chanan Signal Curvature Signal MZ Signal 

Figure 5.1.1 Signals obtained with different techniques, when only piston error of λ/4 on the wavefront 

(λ=500nm) is included. 

 

 The width and amplitude of the signal vary as a function of a setup parameter characteristic 

of each technique. For the Chanan technique, this parameter is the size of the subaperture, for 

the Curvature sensor it is the defocus distance and for the MZ it is the pinhole size. 
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 As a basic requirement, the signal width for the case of Curvature and MZ should fulfil the 

localisation condition in order to avoid overlapping of signals from opposite segment borders. 

The localisation condition is fulfilled if the signal width is much less than the segment size. 

For the Curvature technique the signal width is defined as the FWHM of one main peak of the 

signal. It can be expressed (Rodriguez-Gonzalez & Fuensalida 2003) as, 

2
zλρ ∆

=  (5.1)

where ∆z is the defocus pupil distance. For the MZ case, the width of the signal is given by 

expressions (3.18) and (3.19). In both cases the width of the signal is a function of the 

wavelength and setup parameter.  

 The optimum of this parameter depends on the atmospheric conditions, segment errors and 

segment size.  

5.1.1. Sensibility to atmosphere, gaps and edge defects 

 One of the most important characteristics of any co-phasing technique is the ability to 

minimise errors introduced by turbulence or segment edge miss-figures. 

 To this respect the Chanan technique is the most efficient. An aperture with size smaller 

than the Fried parameter avoids atmospheric effects and —masking the segment edges—

eliminates the effects of miss-figure errors. 

 In the case of the Curvature method the effect of atmosphere could be controlled by the 

defocused distance. The sensitivity to seeing is larger for small wavelengths and large widths, 

ρ. Therefore the signal width should be smaller than r0 to guarantee a good performance. 

Schumacher & Devaney (2004) found that to minimise the edge miss-figure effect the width 

ρ should be larger than 18 times the edge width. This means that under seeing conditions of 

r0=10cm, total edge width larger than 10 mm will start to degrade the performance of this 

method. 

 For the MZ case, the pinhole size should be at least of the size of the seeing disk. After the 

analysis presented in chapter 3, the atmospheric errors are minimised by increasing the 

pinhole size, while effects of gaps and edge defects are minimised by decreasing the pinhole 

size. It has been found that an optimal pinhole diameter of twice the size of the seeing disk 

ensures good performance for edge widths smaller than 10mm. 
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 It is interesting to notice the similitude between Curvature and MZ techniques. In both 

cases the effect of the atmosphere is minimised by decreasing the signal width and the effect 

of edge are minimised by increasing the signal width. 
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5.2. Piston Retrieval 
 The algorithms employed to retrieve the piston error between adjacent segments is based 

on the relation between a characteristic value of the signal and the piston error. This 

characteristic value can be either the peak difference or the difference of the integrals of the 

signal between the edge and the first zero at both sides of the edge. 

 For Curvature and MZ techniques the piston error is a periodical function of the 

characteristic value with a periodicity of λ. In the case of the Chanan technique the 

characteristic value is a polynomial of third degree. 

 Sinusoidal calibration curves have two disadvantages. Firstly, the sinusoidal calibration 

curves are steep close to 0 and λ/2, but flat close to ±λ/4. Therefore measurement errors will 

have a small effect on the steep region, but significantly higher effects on the flat region. For 

this reason an iterative process ensures the required end-precision. The second disadvantage is 

that the range is limited to [-λ/4, +λ/4] which is half the range for linear calibration curves. 

For the case of Curvature this ambiguity is solved by analysing the intra and extra focus 

image independently. In the MZ case, this information can be obtained by analysing the two 

outputs separately or by shifting the pinhole (Yaitskova 2003). The range can also be 

increased by redefining the MZ signal as it has been pointed in chapter 4.  

5.2.1. Precision, Capture Range and limiting magnitude 

 A co-phasing technique should be able to reach an end-precision of the order of few tens of 

nm. On the other hand the required capture range is of the order of tens of microns. As 

already discussed in section 3.4.7, the capture range is limited by the wavelength. It can be 

increased by making use of multi-wavelength algorithms, in which measurements taken at 

different wavelengths are used to solve the λ ambiguity. We have discussed in 3.4.7 that to 

guarantee an unambiguous solution, the sum of the measurement error at both wavelengths 

should be less than the difference of the measured piston steps at each wavelength. Multi-

wavelength algorithms work better for linear calibration curves because measurement errors 

do not depend on the piston step, while for sinusoidal calibration functions the piston error is 

not fixed, with a maximum close to λ/4 and minima in the linear region. In this case, the π-

ambiguity inherent to sinusoidal calibration curves should be resolved before applying the 

multi-wavelength algorithm. Even if the π-ambiguity is resolved, the multi-wavelength 
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algorithm gives a higher range in the case of linear calibration curves compared with 

sinusoidal ones, since the disturbances close to λ/4 result in high measurement errors. It 

should be noticed that these errors cannot be reduced iteratively, because the multi-

wavelength algorithm is part of each iteration step. To obtain the same capture range as in a 

linear case, measurements at more than two wavelengths should be performed. 

 In Table 5.2.1 we resume the precision of these measurements within the range limited by 

the wavelength, the end precision after the iteration process and the capture range obtained 

from simulations for each technique. The simulations were performed including atmospheric 

errors, but rejecting effects due to edge and gaps. The effect of edge has been deeply studied 

in this work for the case of MZ, and elsewhere for the case of Curvature (Schumacher & 

Devaney 2004) and Chanan (Bello-Figueroa 2001). The simulations were run using the 

optimal setup parameters discussed in the previous section.  

 

Table 5.2.1 Precision and capture range simulated for different techniques, with atmospheric errors, without 

gaps and edge defects. 

 Chanan Curvature MZ 

First iteration single wavelength precision 5nm 150nm 60nm 

Close loop single wavelength precision 4nm ~8nm ~5nm 

Capture Range 
±2µm(2-λ) 

±200µm(3-λ)
±10µm(3-λ) ±10µm(3-λ) 

 

 From the results presented in Table 5.2.1 we conclude that the required precision to co-

phase two adjacent segments, is achieved with all techniques. The Chanan technique has two 

advantages wit regard to the other methods: larger capture range — although ten micron 

should be enough to co-phase segmented mirrors— and achievement of the required precision 

in absence of an iteration process. 

 The precision of these co-phasing techniques will also be limited by photon noise. These 

co-phasing techniques will use natural sources. The limiting stellar magnitude required to 

ensure a certain precision is calculated following the reasoning presented in 3.5.4. The same 

result is found for all the techniques, because the collecting area is similar for every case. To 

ensure a precision of 10 nm with 1minute exposure time, stars brighter than 13 magnitude in 

the visible are required. In section 3.5.4 we have calculated the FOV required for ensuring 
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90% sky coverage for this limiting star magnitude. This FOV of 10 arcmin is comparable with 

the technical FOV of ELTs, thus none of these co-phasing techniques is limited by the photon 

noise. 

5.2.2. APE the Active Phase Experiment 

 The essential purpose of the APE (Gonte et al 2004) experiment is to explore, integrate and 

validate non-adaptive wavefront control schemes and technologies for an ELT. This includes: 

i) Evaluating and comparing the performance of phasing wavefront sensors, in the laboratory 

and on-sky; ii) Integrating segmented aperture control into an active system, and driving both 

the active system and the segments control system from the output of the system. 

 To this end, APE is conceived as a technical instrument to be eventually installed and 

tested on-sky at a Nasmyth focus of a VLT unit telescope, the telescope providing all active 

functions and the APE instrument emulating the optical effect of segmentation. 

 In practice, (Figure 5.2.1), this will be realized by re-imaging the telescope pupil onto a 

small segmented mirror, and by directing the output beam(s) of the instrument towards a 

metrology module. This metrology module will include the three phasing wavefront sensors, 

i.e., Curvatrure, Pyramid and MZ and optionally, a conventional Shack-Hartmann sensor. 

 

Figure 5.2.1 Schematical layout of the APE test bench (Diericks et al 2003) 

 

 



Practical and Manufacturing considerations 

 -128- 

5.3. Practical and Manufacturing considerations 
 In principle with the current technology there is no manufacture limitation for any of the 

co-phasing sensors considered here. However the Chanan technique has a drawback with 

respect to the complex manufacture of the lenslet, which increases with the number of 

segments. For example, in the case of OWL, there are 64 segments along the longest axis 

which corresponds to 126 subapertures.  

 Another important aspect is the alignment complexity. In the Chanan technique the 

alignment of the lenslet to the image of the primary mirror should be at least better than the 

gap between segments. An alignment accuracy of 1mm in the primary corresponds to 0.6µm 

in the alignment of the lenslet array.  

 The alignment between the defocused images in the case of Curvature —or between the 

interferograms in the case of MZ— requires sub-pixel precision since the signal width is very 

narrow. However, this alignment can be achieved by interpolation algorithms. 

 The MZ interferometer must be implemented as a monoblock configuration in order to 

avoid pinhole misalignment and to maintain the components stability. The OPD should be 

implemented in such a way that the MZ signal profile variation at different wavelengths 

remains minimal. 

 Another fact to be considered is the detector size. For the Chanan technique the FOV of 

each diffracted image must be at least five times larger than the RMS (σ) motion due to 

seeing to avoid overlapping. The variance of image motion in units of arcsec² (Roddier 1999) 

is, 

( ) ( )1/ 3 5/32
00.348 / /d rσ λ λ=  (5.2)

where λ/r0 is the seeing in arcsec and d is the subaperture size. Assuming a wavelength of 

650nm, a rectangular size of the subaperture equal to 12cm, 65 diffracted images in one 

direction, and a pixel scale of 0.2arcsec, then a 1K detector is enough if the seeing conditions 

are not worse than 0.9arcsec. This does not imply a manufacturing problem for the current 

technology. 

 The detector size for the Curvature method must be able to record the pupil image with 

enough resolution. The resolution should be better than two pixels per r0 and at least four 

pixels per signal width. This means that the detector size should fulfil the following condition: 
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4 DN
ρ

>  (5.3)

where N is the number of pixels across the pupil, D is the pupil diameter, ρ is the Curvature 

signal width. For OWL, with a primary of 100m, assuming λ=500nm, f=300m and a defocus 

distance of 1m, at least a 4K detector is required. 

 For MZ technique the same reasoning as in the precedent case can be followed. The 

detector size should be larger than Daπ/λ, where a is the pinhole size, D is the pupil diameter 

and λ is the wavelength. For a pinhole of 1” and considering the same parameters as before, a 

4k detector is required to ensure enough resolution.  

 The ELT generation will introduce new technical challenges and will give rise to novel 

questions. In particular this is the case for telescope design projects with more than one 

segmented mirror. Until now co-phasing techniques have been applied to a single segmented 

mirror. If there is more than one segmented mirror, the signals of both mirrors will be present 

in the sensor images, as shown in Figure 5.3.1 for OWL. One possible solution, if the 

segmentation patterns have different sizes when projected onto the exit pupil, is to separate 

the signals by filtering in Fourier space. However this solution is not suitable for the Chanan 

technique. The efficiency of the Fourier solution has not been deeply investigated yet.  

 Another problem of ELTs is the shadow of the secondary mirror support. The pupil of 

ELTs may be divided into several parts, separated by gaps with the size of the support 

structure. Applying any co-phasing technique will result in mirror parts being individually co-

phased, but with random phase differences between the parts. An advantage of the MZ and 

Curvature co-phasing techniques is their simplicity to adjust their properties by small 

modifications of the setup. In this context, the signal width could be enlarged to a size 

significantly larger than the gaps between these parts if atmospheric errors are corrected with 

an AO system. In the Curvature sensor this is achieved by simply reducing the defocus 

distance and in the MZ case by reducing the pinhole size. However, since the gap due to the 

support structure will not exceed the segment size, the parts can be correctly phased from the 

measurements of the edge which are not masked by the gap. 
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Figure 5.3.1 MZ interferogram of two mirrors for OWL (courtesy N.Yaitskova, ESO) 
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5.4. Summary 
 In this chapter we have compared four novel techniques for co-phasing segmented mirrors. 

The performance of these techniques can be optimised by adjusting the setup parameters: the 

mask for Chanan, the defocus distance for Curvature, the modulation for Pyramid and the 

pinhole size for MZ. A precision better than 10nm can be achieved in any case. The capture 

range is doubled for the case of Chanan compared to the rest of techniques. However the 

capture range can be increased by using two or more wavelengths.  

 All these techniques can employ natural sources since there is enough sky coverage for the 

limit stellar magnitude required. 

 There are no major hardness in the practical implementation of these techniques, except for 

the manufacturing of the lenslet array and mask for highly segmented pupil when using the 

Chanan technique. 

 A great advantage of the Curvature and MZ technique is the possibility of retrieving 

separately by Fourier filtering the piston step if more than one telescope mirror is segmented.
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Conclusion et Perspectives 
 La segmentation des miroirs semble être l’unique solution envisageable pour les ELTs. 

Pour obtenir la qualité d’image nécessaire aux programmes scientifiques astronomiques, les 

erreurs dues au mauvais alignement des segments doivent être réduites à la dizaine de 

nanomètres. En conséquence, le développement de nouvelles techniques de co-phasage 

capable de mesurer des erreurs de piston avec une précision de l’ordre du nanomètre sur un 

télescope très segmenté est essentiel. 

 Une nouvelle technique pour le co-phasage des miroirs segmentés basée sur un 

interféromètre de MZ a été présentée dans cette thèse. L’étude a été divisée en trois niveaux : 

étude analytique, simulation numérique et approche expérimentale. 

 L’étude analytique nous a fourni une meilleure compréhension du comportement du signal 

obtenu avec MZ en fonction des paramètres expérimentaux. Des pics secondaires apparaissent 

sur le signal du MZ avec un trou circulaire alors qu’ils sont lissés avec un trou gaussien et la 

largeur du signal diminue avec la taille du trou. De plus, il apparaît que l’introduction d’une 

différence de marche non nulle entre les deux bras est nécessaire pour retrouver le signe du 

piston. 

 La simulation a permis d’analyser les performances de la technique de MZ en fonction de 

nouveaux paramètres tels que les perturbations atmosphériques, les effets de bords rabattus, le 

bruit de photon et les caractéristiques du détecteur. Pour cette étude, nous avons d’abord 

prouvé que l’approximation mono-dimensionnelle est valide. Les erreurs atmosphériques et 

l’interstice entre les segments réduisent l’amplitude et la largeur du signal. L’effet principal 

des bords rabattus est un signal non nul pour une erreur de piston nulle gênant ainsi la mesure 

du piston. Il serait intéressant d’analyser comment cette constante peut être retrouvée. 

 L’erreur de piston est retrouvée à partir de la calibration obtenue à partir du signal du MZ 

Deux critères ont été caractérisés ; il est démontré qu’un critère basé sur l’intégrale du signal 

donne de meilleures performances qu’un critère sur l’amplitude. Nous avons aussi vu que les 

erreurs atmosphériques ne dégradent pas la performance alors que les bords rabattus 

représentent une limitation pour les performances de la méthode. Une précision de 10 nm peut 

être obtenue après un processus itératif et les performances peuvent être améliorées en 

introduisant la taille des interstices et des bords rabattus dans les données de calibration. 
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 Le bruit de photon ne limite pas les performances de la technique de co-phasage MZ. En 

effet, des étoiles de magnitudes inférieures à 13 en bande V assurent une précision meilleure 

que 10 nm. 

Toutes les mesures optiques monochromatiques présentent un domaine de gamme de mesure 

limitée. Dans le cas du MZ, l’amplitude maximale est de λ/2. Des mesures polychromatiques 

seront donc nécessaires pour augmenter ce domaine de mesure. Cet aspect n’a pas été analysé 

en détail et reste un des premiers points à étudier dans un futur proche. 

 Le troisième niveau d’étude a été la conception d’un banc expérimental pour vérifier la 

validité de cette technique. L’expérience comporte un simulateur de turbulence 

atmosphérique, un simulateur de segment et un interféromètre de MZ. Les résultats obtenus 

sont en accord avec les simulations bien que des problèmes liés à la focalisation de la pupille, 

à la séparation des faisceaux du MZ et au vignettage restent à résoudre. Nous avons aussi 

trouvé une grande incertitude sur la mesure de grandes différence de marche en présence de 

perturbations atmosphériques. Cela doit être dû au tip-tilt introduit par l’atmosphère 

provoquant un désalignement du trou vis à vis de la PSF variable dans le temps. 

Malheureusement, les retards et les difficultés de fabrication ont rendu impossible les mesures 

avec le simulateur de GTC. Il est très important de terminer cette expérience pour comparer 

nos résultats avec ceux issus de la technique de courbure. 

 Une comparaison de trois techniques de co-phasage est aussi présentée : la méthode 

proposée par Chanan et al, celle basée sur l’analyseur de courbure et enfin celle basée sur 

interféromètre de MZ. Nous montrons que les performances peuvent être optimisées en 

ajustant les paramètres expérimentaux. La précision et le domaine de validité pour toutes ces 

techniques remplissent le cahier des charges d’une méthode de co-phasage. Nous avons vu 

qu’aucune de ces techniques ne présente de difficultés majeures de mise en œuvre. Un 

démonstrateur de co-phasage nommé APE sera testé sur le ciel pour vérifier les performances 

de chaque technique. 

 Au vu des résultats présentés ici, la technique de MZ semble être parmi les candidats les 

plus prometteurs pour le co-phasage des ELTs. Toutefois des points restent à résoudre comme 

les effets des erreurs de tip-tilt. D’autres études incluant les défauts des bords et d’autres 

sources d’erreurs doivent être menées pour trouver une solution satisfaisante au problème. 

 Mais le principal problème non encore résolu est comment obtenir la précision de l’ordre 

du nanomètre pour l’optique adaptative extrême, c’est à dire à très grand rapport de Strehl. 
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Aucune des techniques de co-phasage proposées jusqu’à présent n’atteint un tel niveau de 

précision. En conséquence, de nouvelles analyses doivent être effectuées pour éliminer 

complètement tous les effets indésirables. 
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Chapter 6                                  

Conclusions and Perspectives 

 Segmentation seems to be the unique solution for ELTs. In order to achieve the high 

performance required for the astronomical science programs, the errors due to segment 

misalignment must be reduced to tens of nm. Therefore the development of new co-phasing 

techniques capable of measure piston error with a precision of the order of nm operating in 

highly segmented mirror is of critical importance. 

 A new technique for co-phasing segmented mirrors based on a MZ interferometer has been 

presented in this thesis. The study has been split in three levels, analytical, simulation and 

experimental.  

 The analytical study has yielded a better understanding of the MZ signal behaviour with 

the setup parameters. Secondary peaks appear on the MZ signal for circular pinhole, while 

they are smoothed for Gaussian pinhole. The width of the signal decreases with the pinhole 

size. The introduction of an OPD is necessary to enable piston sign retrieval. 

 The simulation study has allowed the understanding and performance of the MZ technique 

including atmospheric errors, miss-figure and gap at segment edge, photon noise and detector 

parameters. For this study we have proved that the 1-D approximation is valid. Atmospheric 

errors and gaps reduce the signal amplitude and width. The main effect of edge miss-figure 

errors is the non zero signal for zero piston error. This fact is a drawback for piston retrieval. 

It will be interesting to investigate how this offset could be easily derived. 

 The piston error is retrieved from the calibration value obtained from the MZ signal. Two 

criteria have been characterised here. It has been demonstrated that the integral criterion 

produces a better performance than the amplitude criterion. We have seen that atmospheric 

errors do not damage the performance while edge miss-figure represents a limitation for the 

performance of the method. A precision of 10nm can be achieved after an iteration process. 

Better performance can be achieved including the knowledge of gaps and edge defect in the 

calibration data. 
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 The photon noise presents no limitation for the performance of the MZ co-phasing 

technique. Magnitudes brighter than 13 in V, ensure a precision better than 10nm. 

 There is a useful capture range for the measurements taken with optical methods in one 

wavelength. In the MZ case, the capture range is limited to λ/2, therefore further 

measurements in different wavelengths are required in order to increase the capture range. 

This aspect has not been investigated in detail and it remains as one of the first points to be 

explored in the next future. 

 The third level of study has been the experiment design to verify the validation of this 

technique. The experiment consists of a turbulence simulator, a segment simulator and a MZ 

interferometer. The results of simulations agree with experimental ones, although some 

problems related to pupil focus, shearing and vignetting remain to be resolved. We have also 

found a large variability on the measurement with atmosphere for big step height. This may 

be due to the atmospheric tip-tilt error, causing time-variable misalignment between the 

pinhole and the seeing disk. Unfortunately, the delays and manufacture difficulties did not 

make possible the test of the GTC piston plate. It is very important to finish this experiment in 

order to contrast our results with those carried out with the Curvature technique. 

 A comparison of three co-phasing techniques is also presented, Chanan, Curvature and 

MZ. We show that the performance can be optimised adjusting the setup parameters. The 

precision and capture range for all these techniques fulfil the requirements of a co-phasing 

technique. We saw that most of the techniques do not present major manufacturing 

drawbacks. A global experiment called APE will be tested on the sky to verify the 

performance of each technique. 

 The MZ technique seems to be one of the strongest candidates for co-phasing of ELTs, 

because of the promising results presented here. However some points still remain open like 

the effect of tip-tilt errors. Further studies including edge defects and other error sources have 

to be carried out for a proper solution to the problem.  

 But the main unresolved problem is how to achieve the precision of ~1nm for Extreme 

AO. None of the co-phasing methods proposed up to now provides this precision. Therefore 

new trails must be investigated to completely eliminate all the undesirable effects.
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ANNEX 

 In order to find the analytical expression of the intensity of the outputs of a Mach-Zehnder 

interferometer when a pinhole with a top-hat transmission function is placed in the focal 

plane, we will solve the expression given by (3.8). The complex input amplitude is given by 

expression (3.11) and the filtered complex amplitude can be expressed as, 
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where M(u,v) is the Fourier Transform of the mask, and ϕ1, ϕ2 is the piton of each segment.  

 The first step is to express this equation in polar coordinates, for this porpoise we use the 

variable change, 

x - u = x− ρ cosω    y - v = y− ρ sinω 

so that U2(x) can be expressed as, 



+−−

+



 +−

=

∫∫

∫∫
∞

∞

π
ϕ

π
ϕ

ωρωρρρ

ωρωρρρ
λ

2

00

2

00
22

d)(
2

1)cossign(d

d)(
2

1)cossign(d1)(

1

2

Mex

MexxU

i

i

 (A.2)

 This integral can be split in two, depending on the absolute value of x, 
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 Each of this four integrals depends on the value of the angle, ω. We 

define  α0=arcos(|x|/ρ), as the angle of the first quadrant where |x| and ρ have the same value.  
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 Now we will evaluate the four integrals separately. 
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 Simplifying, 
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 Next step is to introduce the value of M(ρ) given by (3.12). To resolve those integrals we 

have to calculate analytically the values of: 
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where a is the pinhole diameter. 
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 We integrate the later integral by parts with the following variable changes: 
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 Using the integrals of Prudnikov et al 1986 (“Integrals and Series”, Volume 2, page 178, 

eq.19), we obtain: 
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The function Si(ka|x|) is the integral of the Sinc function defined as, 
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 And the integrals given by (A.5) can be expressed: 
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 Finally the complex amplitude (A.3) has the form: 
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 Introducing this value in (3.8), we obtain the complex amplitude at two outputs of the 

interferometer: 
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where θ is the OPD between both arms of the interferometer. 
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 From (3.9) the intensities of each arm are: 
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 And the MZ signal has the form: 
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ABSTRACT 
 
Phasing segmented telescopes requires accurate phase measurements at the segment borders using an optical sensor. We 
develop such a sensor based on the Mach-Zehnder interferometer. The operation of the concept was previously 
demonstrated in computer simulation and also through the detailed theoretical analysis. In this paper we show the result 
of the laboratory experiment, which confirm the main predictions have made. The back loop control for phasing of 
segmented mirrors optical, similar to the one with the use of capacitive sensors, is presented and illustrated.        
 
 
 
 
 
 
Key words: telescopes, segmentation, phasing, wavefront control, diffraction. 
 

1. INTRODUCTION 
 
Projects for future extremely large telescopes (ELTs) rely on the giant segmented mirrors. The current design of 100m 
OWL project [1] assume 100m primary mirror consisting of 3048 hexagonal segments with 1.6m flat-to-flat width. The 
secondary mirror of OWL is flat 26m in diameter, consisting of 234 segments identical to those of the primary mirror. 
 
One of the critical tasks associated with the giant telescope is phasing of their segmented surfaces. To achieve the 
resolution commensurable with the monolith telescope of the same diameter the segments must be phased with the 
precision better than 10nm surface rms [2,3]. Three principal hardware systems are requited for the segment active 
control [4]: positioning sensors provide real time information about segment relative displacements; segment actuators 
compensate for these displacements; a phasing camera provides the periodical calibration of sensors’ readings. Three 
new alignment concepts as an alternative to the Keck phasing camera are being currently investigated, based on the 
principle of pupil plane sensing: the curvature sensor [5,6], the pyramid sensor [7], and Mach-Zehnder interferometer 
[8]. In all optical methods the signal is well located near the intersegment border and proportional to the local phase 
step.  
 
The thorough theoretical study and direct numerical simulation were presented in our previous publications [8,9]. In this 
paper we present some new results. This is, first, the laboratory demonstration of the Mach – Zehnder interferometry for 
the phase step measurement in the condition of turbulence. In the section 4 we describe the new method for piston, tip 
and tilt reconstruction with the following demonstration of the simulated result for the close loop for phasing of a 
segmented telescope.    
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2. LABORATORY TEST OF THE MACH-ZEHNDER CO-PHASING TECHNIQUE 
 
2.1 Exposition 

 
The principal scheme of Mach-Zehnder interferometer is shown in 
Figure 1. The incoming from the telescope focus beam is split in two 
arms of the interferometer. A pinhole placed in the focal plane of the 
one arm acts as a spatial filter providing the reference wave coherent to 
the incoming wave. The two beams are recombined and form two 
complementary interference patterns recorded by two imaging 
detectors. The difference between the interferograms, to which we refer 
as to signal, contains the information about a local piston error. The 
constant optical path difference (OPD) between the arms equal to the 
quota of the wavelength is requite to distinguish the sigh of the piston. 
The sufficiently large pinhole diameter, ~1arcsec for the wavelength 
0.5µm, helps to filter out all low order wavefront aberration, including 
the atmospheric, and leave only the very high frequencies produced by a 
piston step. Te more detailed description of the principal and study of 
the different errors may be found elsewhere [8]. 

 Figure 2 shows the experimental setup. A source simulator 
consists of a fiber-fed super-luminescent diode (S), turbulence simulator (A) and segment simulator (B). The setup 
includes the MZ interferometer (MZ) and two detectors (D1, D2). The turbulence simulator is a duplicate of the 
reflective rotating phase mask developed at GEPI (Observatoire de Paris) for performance tests of the VLT-NAOS 
instrument [10]. The scaling of the screen is such that a typical rotational rate of 20 RPM simulates a wind speed of 
64m/s. The segment simulator, also developed by GEPI, consists of 25-mm diameter mirrors onto which are deposed a 
hexagonal patch of a certain thickness, representing a dephased segment. Six different such mirrors are mounted in a 
wheel, with patch thickness -30nm, 0nm, 30nm, 75nm, 150nm, and 230nm. Flat-to-flat segment dimension is 10mm. 
The interferometric analysis of one of the plates is shown in Figure 3. The low-order phase variations observed are 
mainly due to the measurement setup. 

           

 

 

 

 

 

 

 

Figure 2. Photograph of the experimental setup (right) and detail of a segment simulator assembly (left). 

Figure 1. Schematic representation of the 
Mach-Zehnder interferometer 
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Figure 4 shows a highly saturated star image formed by a mirror with a phase patch. The six diffraction lines due to the 
hexagonal patch are clearly seen. However, the two arms stretching out to the right are vignetted, and although this 
vignetting has been reduced to some extent, some will always occur. To avoid the image skewness caursed by this 
vignetting, a much larger pinhole is introduced in the second arm (indicated in a big circle in the Figure 4). While this 
has an additional effect of avoiding the sharp features of the Mach-Zehnder signal at the segment edge, it also reduces 
the peak signal values, and the effect must be included in simulations in order to produce the comparable results. 
 A camera is located at each output of the interferometer, but technical restrictions have not allowed us to take 
simultaneous images at the two outputs as was planned. We have therefore been forced to investigate the use of a single-
output (I), using supplementary images (I1 and I2) obtained by blocking in turn each of the two arms to normalize the 
interferograms: 
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This signal, obtained in this procedure, is identical to the one obtained as a difference between two outputs. Although it 
is less efficient in terms of throughput, it may turn out to be easier to implement practically than the dual-output version. 
Three images (I, I1 and I2) and the processed image are shown in Figure 5. 
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     Figure 5. Measured intensity distribution of arm 1 (a), arm 2 (b), the interferogram (c), and of the normalized signal. 

 
 
 
 
 

Figure 3. Result of interferometric 
analysis of the 75nm segment plate 

Figure 4. Point spread function formed by a 
segment plate. 



2.2 Experimental results  

Apart from the difficulties involved with the aligning of the Mach-Zehnder interferometer (tilts and shear) and location 
of the zero optical path difference (OPD), the most delicate operation is the fine OPD adjustment. In order to recover the 
sign of the piston steps, the phase difference between the two interfering wave fronts must be equal to π/2, 
corresponding to a mirror displacement of 80nm at 630nm. To achieve such extremely fine adjustments, one of the 
mirrors within the interferometer is mounted on a stage equipped with a differential micrometer screw whose axis is 
nearly parallel with the mirror surface. This provides a 150-times reduction in the axial mirror movement, 
corresponding to a displacement of 6.5nm per 1µm micrometer graduation. Thermal stability and air movements also 
become important in this context, and although ad-hoc measures were taken to limit air fluctuations within the 
interferometer, this demonstration experiment does not provide the nanometric stability that would be required of an 
operational instrument. 
 In Figure 6 (a, b) we plot the normalized profiles (intensity of the signal S across the border) obtained by 
simulation for the different OPD values (a), compared with the experimentally obtained profiles (b). Note that for the 
OPD equal to π/2 the amplitude of the signal and the antisymmetry of the signal with respect to the segment boundary 
achieve the maximum. Plotting the peak-to-valley (PTV) of the signal amplitude against the OPD (Figure 6 c, solid line) 
shows that its variation is slow close to π/2; the error is less than 10% for OPD within ±π/8. Also, deviations from the 
optimal OPD are nearly proportional to the mean signal level (Fig. 6 c, dash line), allowing the potentially correcting the 
signal amplitude within a wide range of OPDs. A procedure for OPD adjustment based on real-time display of the 
average image intensity has been devised and proven to give good results. 
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Figure 6. 

Upper: Simulated (a) and experimental (b) signal profiles for 
different OPD adjustments using a piston step of 75nm. 
Curve 1: OPD=0; curve 2: OPD=π/4; curve 3: OPD= π/2; 
curve 4: OPD= 3π/4; curve 5: OPD= π. 

Left: Plot of PTV signal (solid line) and mean signal level 
(dash line) against OPD  

 



2.3 Performance without atmosphere 

Figure 7 (a and b) compares the simulated and the measured signal profiles in the absence of the atmospheric turbulence 
for each of the five piston plates. Experimentally, this configuration is obtained by replacing the turbulence simulator 
with a flat mirror. While the correspondence is good for the small piston values, the signal for the two larger steps are 
somewhat different. Figure 7c gives a more quantitative analysis of these results, representing the average PTV values 
for each piston step (symbols) compared with theoretical expectation (full line). Two series of 10 images is taken, and a 
vertical profile containing two steps (edge 1 and 2) is extracted from each image from which PTV values are measured 
and then averaged; vertical error bars indicate standard deviations. The first series is taken with an OPD adjusted to 
+π/2, for the second series the OPD is adjusted to -π/2. The good correspondence for the three smallest piston values is 
confirmed, as is the curious behavior for larger piston steps. While changing the OPD is of little influence on the results, 
indicating that the reproducibility of the OPD adjustment procedure is sufficient, the difference between the two 
segment edges is large. This effect is not yet understood, but the contributing factors are thought to include shearing, 
pupil focus, and residual vignetting effects. 
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Figure 7. 

 Upper: Simulated (a) and experimental (b) signal profiles for 
one border of each segment without atmosphere.  

Left: Comparison of the averaged experimantal PTV signal 
amplitude (symbols) with simulated data (line) . 

 

 



2.4 Performance with atmosphere 

Installing in the rotating turbulence simulator allows the realistic performance testing of the method. However, it was 
soon noticed that the simulated turbulence varied strongly as a function of angular position. The variation was 
quantified by calculating the Fried parameter (r0), estimated from the FWHM of Gaussian fits to the measured PSFs, 
from 22 short-exposure images. Figure 8 shows a histogram of the r0 values obtained, indicating that instead of a typical 
value of 20cm, the mean seeing is equal to 64cm, with peaks reaching 2m. The mean seeing level is not a serious 
problem, since it is just a matter of scaling between segment size and a turbulence screen. However, as we will see, the 
strong variability of the instant seeing appears to contribute to the difficulty of comparing observations and simulations. 
For the long exposure images (1 second), representing approximately a one third of a screen rotation, the mean seeing 
was estimated to 61 cm with a standard deviation of 11cm (Figure 8, dashed line). A qualitative comparison indicates 
very good correspondence between the two, but a more quantitative analysis (Figure 9) gives a more complex picture. 
Compared with the measurements without seeing, results for the small piston values have much larger variability and 
are generally below the expected values. A better fit is obtained for the two larger piston steps, but only at the cost of 
even larger variability.  
 In addition to the problems mentioned above for the case without turbulence, it seems that the problems 
encountered here may be due to the large variability of the instantaneous seeing condition. While the simulations are 
made using a sequence of 1000 independent phase screens each created using identical turbulence statistics, 1-second 
exposures with our turbulence simulator corresponds to some 120 independent phase screens with largely different 
statistics. As one can see from the simulated curves in Figure 10, the turbulence statistics has a great influence on the 
signal PTV, especially for large piston steps.  
 Another error source is related to the atmospheric tip-tilt error, causing time-variable misalignment between the 
pinhole and the seeing disk. Problematic in itself, this effect is aggravated by the fact that the three images used to 
construct the Mach-Zehnder signal are not taken simultaneously. Although the effect should be reduced by increasing 
the exposure time, it may be interesting to consider the use of a real-time tip tilt corrector in a practical implementation 
of this concept. 
 

  
Figure 8. Seeing statistics for our atmospheric turbulence 
generator in the case of short exposures (solid line) and long 
exposures (dash line). 
 

Figure 9. Comparison of the averaged experimental PTV signal 
amplitude (symbols) with simulated data (lines) for different 
atmospheric conditions. 
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Figure 10. Simulated (a) and experimental (b) signal profiles for one border of each segment with atmosphere.  

 
 

3. CLOSE LOOP SIMULATION 

 
So far we considered the particular properties of the Mach – Zehnder interferometer. However, the signal retrieval 
algorithm for phasing close loop for the multi-segmented mirrors is general for all phasing techniques. It is based on the 
symmetric and anti –symmetric properties of the signal. In the following we describe this method together with the close 
loop results for the case of the Mach – Zehnder interferometer. In the cases of a curvature sensor and a pyramid sensor 
the functions J1 and J2, introduced below, will have different analytical expression keeping the same general properties.  

 

3.1 Signal symmetric and anti-symmetric properties 

One of the most important features uniting all phasing techniques is the localization of the   signal near the intersegment 
boundary. That means that on can retrieve the relative phase step between two adjacent segment edges by measuring the 
signal only near the given boundary. Of course to phase the whole segmented mirror one has to measure the relative 
phase step over all boundaries and then use the matrix algebra to calculate piston, tip and tilt for each segment. The 
close loop algorithm based on Singular Value Decomposition (SVD) is described later. 
Let consider a given boundary and bound with it local Cartesian coordinate system: axis y coincides with the boundary 
and axis x goes through the segments’ centres. Six independent values describe an arbitrary segment configuration in 
this coordinates. Phase piston on the left segment (in the half plane x<0)  is ϕ1, its physical bent about axis x is δ1y, and 
about the axis orthogonal to x going through center of the  left segment – δ1x. The analogous three values for the right 
segment (in the half plane x>0) are marked with the index 2:  ϕ2, δ2y and δ2x. Although at this point we speak about the 
relative displacements of two segments and could set ϕ1 equal zero, nevertheless it is more convenient to keep a zero 
phase offset with respect to the whole mirror as a shift of the central segment for example. For the following calculation 
it is convenient to express all values through the wavefront aberration component. The phase error in the segment center 
due to the corresponding segment bent is:  ...s,2s x2x1x1 =λπδ= d  

The expression for Mach - Zehnder signal as function of piston, tip and tilt aberrations on each segment is [the paper in 
print]: 
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d is a segment flat to flat width, λ is a wavelength. For the Gaussian type of the pinhole function J12 is error function of 
a complex argument: 
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Parameter b is related to the pinhole full width half maximum a of the Gaussian pinhole as λ6.0 ab π= . Real and 

imagery parts of J12 are shown in Figure 11. For the case of the round pinhole, as well as for two other types of the 
segment error sensors they are not anymore expressed through the error function, but have the similar general behavior. 
 

  
Figure 11. Real and imaginary parts of the function J. Curve 1: no tilts, curve 2: 0s,b4.0s xx == d . For the zero tilts the 

imaginary part is zero.  
 
In a case of the small errors the linear approximation for the signal is 
 ( ) ( ) ( ) ( )[ ]xb1xsigny,xy,xS Φ−ϕ∆≈ . (5) 

From Eqs.3 and 5 it follows that the information about the difference
12 ϕ−ϕ  and the sum 

x1x2 ss + is contained in signal 

antisymmetric component with respect to the y axis, the difference 
x1x2 ss −  is in the signal symmetric component with 

respect to the same axis, and the difference 
y1y2 ss −  is in a signal antisymmetric component with respect to the x axis. 

The area of signal localization we split into four identical zones as it shown in Figure 12 and integrate the signal S(x, y) 
within each of this zone, calculating the integral values 

 ( )dxdy
nε

y,xSIn ∫=
,   n=1...4.  (6) 

Using this values we define the integral criteria: K0 – symmetry coefficient with respect to y axis;  K1 – antisymmetry 
with respect to y axis and K2 – antisymmetry with respect to y axis: 
 ( ) ( ) ( ) ( ) ( )423123241143210 IIIIK;IIIIK;IIIIK +−+=+−+=+++=  (7) 

It can be seen that from Eq. 5 that each criterion is responsible for different aberrations: 
 ( ) ( ) y1y22x1x2121x1x20 ss~K,ss~K,ss~K −+−ϕ−ϕ− . (8) 

With the increase of the segmentation errors the criteria Kn are not anymore the linear functions and their dependence on 
the different aberrations cannot be easily disentangled. Criteria Kn for the large rang of aberration values is shown in 
Figure 13. Criterion K1 is a periodical sine function of the phase step, and the range of the measurable phase difference 
therefore is limited to [-π/2, π/2]. This problem, also called “π – ambiguity” appears in all co-phasing methods operating 
in a monochromatic regime. Within this capture range the phase can be reconstructed unambiguously. If the initial 
piston difference is beyond this limit, the segments may be phased not to the zero step, but to the integer number of 
wavelengths. 

Real Imaginary 



            
 

3.2 Segmented mirror eigenmodes  

In a sense of the reconstruction of the segmented mirror surface the criteria K0, K1, and K2 are analogous to the 
measurements provided by the edge sensors. In the existing [Ref Keck] and the planned [Ref GTC] phasing systems two 
capacitive sensors, placed on each border of the segment, provide the information about the relative intersegment shifts. 
The sum of these two sensors reading is relevant to the piston between two segments and difference of two x-tilts. The 
difference between the readings contains the information about a relative y-tilt. That is completely analogous to the K1 
and K2 criteria. Some edge sensors measure also the solid angle between segments or the sum of x –tilts, although with 
less sensitivity. This parameter is analogous to the criteria K0, which is also much less sensitive to s2x + s1x than K1 to 
ϕ1−ϕ2  or K2 to s2y − s1y (Fig. 4).  
A vector { }m2m1m0i2i1i0211101 K,K,K,...K,K,K,...K,K,K=u , where m is the number of borders, forms a signal vector. An 

actuator vector consists of n triplets: three actuators 
i2i1i0 v,v,v  for each segment, where n is a total number of segments:  

{ }n2n1n0i2i1i0211101 v,v,v,...v,v,v,...v,v,v=v . The actuator vector v is related to the sensor vector u by the linear 

mapping represented as a two dimensional matrix A [ref. Chanan, Lothar]:  
 uAv = . (9) 
An optimum modal correction requires the expansion of the signal u in an orthonormal set generated by SVD:   

 TVUΣA = . (10) 
The 3n column vectors of U and V form orthonormal sets {uj} and {vj} correspondingly. Symbol T denotes transpose. 
The matrix V defines an orthonormal basis for the system, i.e. segmented mirror modes. Any configuration of the 
segments can be expressed as a linear combination of those modes. The matrix ΣΣΣΣ is diagonal and contains 3n singular 
values σj. Its value defines the sensitivity of the system to the mode with index j. So the modes which present the global 
mirror piston, global tip and tilt will have the singular value σj equal zero, because in these three aberrations there is no 
any relative segment shifts. Also the mode which corresponds to the global defocus will have σj very low, because it is 
formed only by the solid angle between segments and hence only criterion K0 contributes in the measurement.  
In modal control matrix A is found in calibration. The control matrix B, which finds the actuator vector by a signal 
vector and is inverse to A, is obtained as 
 T1B UΣV −= . (11) 
The diagonal matrix ΣΣΣΣ-1 consists of the values σj

-1. To exclude the non-corrected modes with zero or very small singular 
values, the corresponding σj

-1 in SVD are replaced by zero. The threshold depends on the value on noise in the system, 
because σj

-1 defines the noise propagation from signals to actuator. 

Figure 13. Behaviour of the criteria Kn. Curve 1: Criterion K1 
for the pistons only. Ordinate K1; abscissa ϕ1−ϕ2.  Curve 2: 
Criterion K2 for the difference of the y-tilts only. Ordinate K2;  
abscissa s2y − s1y. Curve 3: Criterion K0 for the sum of x-tilts 
only. Ordinate K0; abscissa s2x + s1x. 
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Figure 12. Signal analysis. 



The difference between control provided by the edge sensors and the optical method is the signal vector u formed by 
criteria Kn. The mirror modes {uj} are the same as for the edge sensor as well as for the optical sensor if the mirror 
configuration is the same. So the performance of each of the methods can be analysed by a studying the singular values 
σj., which define the sensitivity to the modes and the noise propagation.    
 We simulated the segmented mirror consisted of 91 segments organized in 5 hexagonal rings. Pushing each 
segment by a given value for piston tip and tilt and calculating the criteria Kn, we constructed the calibration matrix. The 
area for signal analysis (Figure 11) was chosen to be square with the side d/6, where d is a segment flat to flat width. 
Applying a standard SVD algorithm on the calibration matrix, we obtained the eigenmodes and the singular values. The 
nine of the modes are shown in Figure 13, the singular values– in Figure 14. The low order modes are close to the 
classical optical aberrations – piston, tip-tilt, defocus, astigmatism, coma and etc. Piston, tip and tilt are not sensed by 
the system. The corresponding singular values are zeros. The defocus mode has a very low singular value 3·10-3, 
compare to the mode with the highest singular value. Defocus is measured only by K0, which is relatively weak        
 

   
 

   
 

   
 

Figure 13. Nine out of 273 eigenmodes of the segmented mirror. The upper line is three highest modes with indexes 273, 272 and 
271; in the middle – modes with the indexes 43, 42 and 41; and on the bottom: tip-tilt and defocus with the indexes 2, 3 and 4. 
.      
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(b) 

Figure 14. Singular values for the segmented mirror with 91 segments for all 273 eigenmodes (a) and for the last 26 modes with the 
lowest eigenvalues. Calculations include piston and tip-tilt for each segment. 
 
 
 
Some telescopes use a separate method to correct tip-tilt if the segments, for example Schack – Hartmann sensor. Then 
the phasing camera is responsible only for the segment piston measurement. In this case only criterion K1 is required. 
Among the mirror modes formed only by segment pistons one may recognize pseudo-defocus and pseudo-tip-tilt 
(Figure 7). Unlike the normal defocus and tip-tilt these ones are sensed by the system, because they are formed not by 
the solid angles between segment, but by the intersegment steps. The ratio between singular value corresponding to the 
pseudo defocus to the highest singular value is 0.2. For the pseudo tip and tilt it equals 0.15.   
 

   

 

 
 
Figure 15.  
 
Upper: Tip-Tilt and defocus formed by segment 
pistons 
 
Left: Singular values for the segmented mirror 
with 91 segments. Calculations include only 
piston for each segment. 
 
 



3.3 Close loop results 

 To close the loop we used the control matrix B given by Eq. 11. We did not introduce any additional noise into 
the system. The simulation was performed in the monochromatic regime using only one wavelength of 500nm. The 
result of phasing strictly depends on the initial rms. In Figure 16 we present a mirror rms evolving with phasing iteration 
for piston phasing only, as well as initial phase and the final phase for the large initial rms. For the small initial rms the 
residual wavefront is flat. If the initial rms is low all segment piston are within the capture range and in the result the 
zero error is achieved. With an increase of rms some segments are outside the capture range. They are “phased” to the 
nearest wavelength. As the result the initially randomly de-phased mirror contains some segments shifted by the integer 
number of the wavelength. To overcome this problem the multi -wavelength technique may be used.       
 In a case of piston and tip-tilt errors the situation is similar (Figure 17). Although in this case the capture range 
exists also for the tip – tilt value (curve 2 in Figure 12). We did not simulate the work of the active optics which would 
correct for the global tip- tilt and defocus. For the initially small rms the mirror is phased to the mode which is a linear 
combination of tip, tilt and defocus. For the large initial rms some other low order modes remain.        
 

 
 
Figure 16. Close loop on phasing for the piston error only for the different initial rms values. Initial and final segment errors 
distributions are shown for the case of a large initial rms. 
 
 

 
 
  
Figure 17. Close loop on phasing for the piston tip and tilt error for the different initial rms values. Initial and final segment errors 
distributions are shown for the case of a small and large initial rms. 

 

 



4. CONCLUSION 
 

Several optical methods for phasing of segmented mirrors were demonstrated experimentally and in the 
simulations. We presented the one based on the Mach – Zehnder interferometry. The signal predicted by the theory and 
in the computer simulations was observed experimentally in both conditions – with and without optical turbulence. The 
behavior of the signal on the intersegment step and the parameters of the system is in a good agreement with the theory 
and simulations.  

The calculation of the symmetric and antisymmetric components of the signal makes an algorithm for the segment 
error retrieval analogous to the measurement with the use of the edge sensors. Both methods provide the same set of the 
mirror eigenmodes and show the same general behavior of the singular values. This fact makes the mirror control 
technique in both cases to be equivalent. The system is more sensitive to the high order segmented modes. They are 
corrected first. The low order modes are sensed less. These modes, which correspond to the classical optical aberrations, 
may remain uncorrected.  

The main concern which is general for all optical approaches for segments phasing is the limited capture range. 
Even with the initial wavefront rms of λ/5 some segments of the mirror happen to be outside the capture range of ± λ/4. 
In the used back loop control algorithm these segments are driven in a way to be at the wavelength difference with 
respect to their neighbors. In this respect it is required the more through study of the segmented mirror properties and of 
the behavior of the mirror eigenmodes together with the developing of the more accurate back loop control algorithm.     
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ABSTRACT

The point spread function of a segmented aperture is seriously affected by the misalignment of the segments.
Stringent requirements apply to position sensors and their calibration. The Active Phasing Experiment (APE)
will be a technical instrument aimed at testing possible phasing techniques for a European Giant Optical Tele-
scope (EGOT) in a representative environment. It will also integrate simultaneous control of segmented and
monolithic, active surfaces. A mirror composed of 61 hexagonal segments is conjugated to the primary mirror
of the VLT. Each segment can be moved in piston, tip and tilt and can be controlled in open or closed loop.
Three new types of Phasing Wave Front Sensors dedicated to the measurement of segmentation errors will be
tested, evaluated and compared: a modified Mach-Zehnder sensor developed by the LAM and ESO, a Pyramid
Sensor developed by Arcetri, and a Curvature Sensor developed by IAC. A reference metrology developed by
FOGALE will be added to measure directly the deformation of the segmented mirror and check the efficiency
of the tested wavefront sensors. This metrology will be based on a synthetic wavelength instantaneous phase
stepping method. This experiment will first run in the laboratory with point-like polychromatic sources and a
turbulence generator. In a second step, it will be mounted at a Nasmyth focus of a VLT unit telescope. These
activities are included in a proposal to the European Commission for funding within Framework Program 6.

Keywords: giant telescope, segmented mirror, phasing wavefront sensor, active optics

1. INTRODUCTION

The essential purpose of the APE experiment is to explore, integrate, and validate active, that is low temporal
frequency, wavefront control schemes and technologies for an EGOT. This includes the evaluation and comparison
of the performance of different types of wavefront sensors in the laboratory and on the sky on the one hand and
the integration of the control of a segmented aperture control into an already existing active system (including
field stabilization and active optics) and driving both the active system and the control of the segments from
the output of the full system on the other hand.
To accomplish these taks APE will be designed as a technical prototype which will be installed and tested at a
Nasmyth focus of a VLT unit telescope. The telescope provides all active functions (field stabilization, focusing,
centering, active deformable mirrors) and the APE instrument emulates the optical effects of segmentation. The
latter is done within APE by reimaging the telescope pupil onto a small Active Segmented Mirror (ASM) whose
shape is measured by an internal metrology (IM). The ASM is composed of 61 hexagonal segments and has a
diameter of approximately 15 cm. Each segments is controlled in piston, tip and tilt.
The final wavefront is measured by three new types of Phasing WaveFront Sensors (PWFSs), combined in the
Phasing Metrology Module. The new types of PWFSs are a modified Mach-Zehnder interferometer, a curvature
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Figure 1. APE Schematic

sensor and a Pyramid sensor. For reference and comparison APE will also be equipped with a Shack-Hartmann
sensor capable of measuring phase errors at segment edges.
APE is a four years project which starts in July 2004.

2. APE PRINCIPLE

Fig. 1 shows the principal components of APE. The light of the star collected by a VLT unit telescope or
generated by a reference source and a turbulence generator is captured by the relay optics which re-images the
primary mirror onto the ASM described in Ch. 3.4. The reflected light is then distributed to the different phasing
sensors (see Ch. 4) and an imaging camera (see Ch. 3.3). An Internal Metrology (IM) described in Ch. 3.5 will
measure the exact positions of the each of the 61 segments. It provides an independent check of the corrections
applied to the segmented mirror. The ASM is controlled by the Telescope Control System (TCS). APE can
work either be used to compare the measurements of the various phasing sensors with the measurements done
by the internal metrology or work as a closed-loop control system correcting the telescope aberrations and the
misalignments of the segmented mirror based on the measurements from one or more of the phasing sensors.
Thereby it also serves as a testbed for the development of a control system for active optics of a telescope with
segmented and flexible mirrors.

3. APE SUB-ELEMENTS

This chapter describes all components of APE except the Phasing sensors which are introduced in chapter 4).
Fig. 2 shows the main components and elements of APE. In the hardware there is a clear distinction between
the new PWFSs and the Shack-Hartman sensor (called Active Optics WFS), which is considered part of the
Guiding & active optics group. It will be a reference against which the other sensors are tested. It will also
supply information on the deformations of the meniscus mirrors in case this can not be delivered by the PWFS.
In the Segmented mirrors group there is one in-pupil mirror, the ASM, and one out of the pupil mirror which
will simulate a secondary segmented mirror on a giant telescope. The latter will either be a static segmented
mirror or a transmissive phase plate.



Figure 2. APE hardware Tree

3.1. Optical set up

Fig. 3 shows the optical design. The optical beam at the Nasmyth focus with a focal ratio of F/15, is collimated
by a collimator, reflected by the segmented mirror, and then refocused by another collimator with the same focal
ratio as the first collimator. The beam is then split into 5 different beams for the Phasing WFSs and the imaging
camera. A system of two tip-tilt mirrors directs the light of a star or of the reference source to the WFSs. Each
PWFS receive the same intensity. The static out of pupil mirror or piston plate is not represented in this design.

3.2. Mechanical set up

APE shall be mounted on an optical table with a size of 1.5 by 2.5 m. Since APE will be installed on the
Nasmyth platform of a VLT unit telescope all the all components have to be compliant with the VLT standard.
The derotator will directly be mounted on the interface of the VLT Nasmyth platform. The stability of the star
on the phasing wavefront sensor shall be better than 0.1 arcsec. The calibration system is a copy of the MAD
calibration system (see Marchetti & al.1).

3.3. Imaging camera

The imaging camera is composed of an ESO technical CCD having 1024*1024 pixels with a size of 13*13 microns.
The CCD is Peltier cooled to less than -35 degrees Celsius and has a typical readout noise of less than below
50 e/pixel/sec. Its quantum efficiency is better than to 85%. The camera shall have a resolution better than
0.1 arcsec/pixel and a field of view of 1 arcmin. Because of the focal ratio of F/15 at the VLT Nasmyth focus,
which is equivalent to 582 microns/arcsec, we need additional optics to obtain a magnification of 1/2.7.

3.4. Active segmented mirror

The segmented mirror is composed of 61 hexagonal segments as shown in Fig. 4. The size of the segments flat to
flat is between 15 and 23mm. The gap between the segments is 0.15mm. The segments are aluminum coated to
obtain a reflection of more than 85% from 450nm to 1400nm. The misfigure of the segments shall be less than 30
nm wavefront RMS. The segments are controlled in piston, tip and tilt, and the range of the position actuators
shall be between ±5 and ±10 microns. The segmented mirror shall have has a closed loop bandwidth of 5 Hz.



Figure 3. APE Optical Design

Figure 4. ASM design.



Figure 5. Internal Metrology design.

3.5. Internal metrology

The internal metrology is delivered by FOGALE nanotech. It is a synthetic wavelength interferometer. This
is a polarization Twyman-Green interferometer illuminated by a synthesized wavelength low-coherence coded
optical source. The synthetic wavelength is obtained from 2 wavelengths and can be adjusted by choosing the
right separation between λ1 and λ2 and is given by

Λ =
λ1λ2

λ1 − λ2

The two wavelengths are 850 nm and 800 nm which gives a synthetic wavelength of 13.6 microns. The
resolution of the piston measurement on the segments will be 1 nm RMS. Fig. 5 shows the proposed optical
layout based on a Twyman-Green interferometer which measures the optical path difference between the reference
mirror and the test surface (ASM).

3.6. Turbulence Generator

A combined star simulator and turbulence generator named MAPS has been developed, mounted and tested
at ESO (See Kolb & al.2). It can simulate the effects of three turbulent layers in the atmospheres at different
altitudes with a total seeing of up to 0.65 arc second using three transmissive phase screens which are conjugated
to the three altitudes. It also simulates a field of 2 arcminutes containing up to 34 stars. This turbulence
generator will first be used in the experiment MAD (see Marchetti & al.1) and then in APE.

4. PHASING WAVEFRONT SENSORS

One of the goals of APE is to compare simultaneously the performance of several PWFSs. They will therefore
receive the same amount of light for simultaneous exposures and will use the same VLT technical CCDs with
identical control systems. The four PWFSs to be compared are MAZES proposed by LAM, PYPS proposed by
ARCETRI, DIPSS proposed by IAC/GTC, and a SHAPS which will be supplied by ESO.



Figure 6. MAZES Principle.

Figure 7. Measured intensity distribution of arm 1(a), arm 2(b), the interferogram(c) and of the normalized signal(d).

4.1. MAZES: Modified Mach-Zehnder Phasing Sensor

MAZES will be designed by LAM and ESO. A schematic view is given in Fig. 6. Its principle has been developed
by Natalia Yaitskova, Kjetil Dohlen and Luzma Montoya (see Yaitskova & al.3). The telescope beam is focused
inside the Mach-Zehnder interferometer. In one of the two arms at the point spread function at the location
of the focus will be filtered spatially by a pin hole with a size of the same order as the size of the image, that
is the diffraction pattern in the case without and the seeing pattern in the case with atmosheric disturbances.
The segmented mirror is then reimaged after the interference via a lens onto the detectors. The optical phase
difference between the two arms must be equal to π/2. This can be achieved by alignment or with a phase
plate. The signal is obtained by taking the difference of intensities between the two arms. A prototype has
been mounted at the Observatoire de Marseille and tested with a piston mirror. During the test a turbulence
generator simulated seeing up to 0.45 arcsecond and r0 = 25.8 cm at 680 nm. The recorded signals are shown in
Fig. 7.

4.2. PYPS: Pyramid Phasing Sensor

The pyramid sensor has first been proposed by R. Ragazoni (see R. Ragazzoni4) for use in adaptive optics. PYPS
will be developed by ARCETRI. A preliminary theoritical and experimental study has been made by S. Esposito
(see Esposito & al.5) to adapt it to the phasing of mirror segments. According to this study with a star of visual
magnitude 15 the resolution should be better than 40 nm RMS. The principle of PYPS is shown in Fig. 8.



Figure 8. Principle of PYPS.

Figure 9. DIPSS Schematic.

Figure 10. (a)DIPSS signal no turbulences (b) DIPSS signal with seeing = 0.65 arcsec.

4.3. DIPSS:Diffraction Image Phase Step Sensing

The principle of a curvature sensor has been first described by Roddier. The Institute of Astrophysics of the
Canaries Island (IAC) proposes a modified curvature sensor called DIPPS. The principle has been developed by
Achim Schumacher. (see Schumacher & al.6). A schematic view is shown in Fig. 9.

A preliminary experiment has been done in Garching using a turbulence generator and a piston plate, The
piston plate was composed of 37 segments with 4 levels of piston steps and was placed on the pupil position of
the primary mirror. The experiment has been done with and without turbulence equivalent to a seeing up to 0.6
arcsec. The first analysis of the result shows an error of less than 15 nm RMS without turbulences and better
than 25 nm RMS with seeing of 0.6 arcsec. Further analysis will be done. Fig: 10 shows the signal without and
with atmospheric turbulence.

4.4. SHAPS: Shack-Hartmann Phasing Sensor

The Shack-Hartmann sensor called SHAPS will be developed by ESO. It will be the reference for the other
PWFSs and it will be used also as the guiding and active optics WFS. An ESO technical CCD will be used with



Figure 11. SHAPS.

a size of 1024*1024 pixels. The microlenses will be designed to specifically measure piston, tip and tilt of each
segment. Its principle is shown in Fig. 11.

5. APE CONTROL SYSTEM

The Active Phasing Experiment Control Software (APECS) is required to carry out the APE project. The
control software has to provide the means to interface, control and monitor the various devices needed for this
project. The software will provide all the necessary functionality to evaluate the control system under laboratory
conditions and under the conditions in the VLT environment.
The system must accomplish the coordination between the wavefront analyses done by several PWFSs, control
of the segment mirror ASM and the VLT active optics and the coordination between the imaging camera used
to select the star and the field selector composed of 2 scanning mirrors. It shall control all TCCDs (Technical
CCD) (from the PWFSs and of the imaging camera), the field selector and its scanning mirrors, the ASM, the
3-axis table of the calibration unit, the derotator since APE will be on the Nasmyth platform, the Z-tables for
the imaging camera and the PWFSs (focusing).
APECS shall deliver the control loops of the ASM in open and closed loop with the IM or with any of the PWFS
at up to 5Hz.
The system shall provide extended test facilities, both for individual APE devices and for higher level operation.
The system shall interface the IM with ASM control LCU (Local Control Unit), it also shall interface and control
the VLT TCS-active optics of M1 and M2 with the data from the PWFS and active optics WFS.
The baseline of the control software will be the VLT Common Software (VLTSW).

6. APE MEASUREMENTS CAMPAIGNS

APE Technical runs shall last a year with a first period in laboratory and then a second period on the VLT. The
first period shall last 6 months. the second is on the Paranal mountain and shall consist of 3 campaigns of the
maximum duration of 2 weeks each. Between each campaign we shall reserve 2 to 3 months for the processing
and analysis of the measurements and planning of the next campaign.
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ABSTRACT 
 
Segmented mirror technology has been successfully applied to 10m class telescopes (Keck, HET, GTC) and is widely 
recognized as mandatory for Extremely Large Telescopes. For optimal performance the wavefront error associated with 
segmentation should remain within conservative limits, typically 1/20th of a wave. Several phasing techniques and 
associated metrologies are under development, with a view to extrapolate such methods to the 100-m OWL telescope. 
We investigate a novel technique based on Mach-Zehnder interferometry, whereby the wavefront in one of the 
interferometer arms is spatially filtered so as to provide a reference wave, prior to having the two arms recombined to 
produce suitable interferograms. We introduce a theoretical description of the interferometer, as well as results of 
simulations, showing that with proper settings of the interferometer’s parameters, the technique can be made insensitive 
to atmospheric turbulence and, more generally, to almost any error source not associated with the segmentation. It also 
appears that, in a telescope that would include more than one segmented mirror, simple processing allows to disentangle 
the signal associated to each of them. Finally, we outline the development still required to complete a full qualification 
of this approach. 

Keywords: phasing, segmented mirrors, OWL, Mach-Zehnder interferometry. 

1. INTRODUCTION 
 
Optical segmentation is widely recognized as prerequisite to extrapolating telescope sizes much beyond current figures. 
While the technology has been successfully demonstrated with the Keck 10-m telescopes, Extremely Large Telescopes 
(ELTs) will require a  one to two orders of magnitude increase in the number of segments, hence in  the number of 
degrees of freedom to be controlled reliably and accurately. The techniques generally promoted for ELTs are, in their 
principle, identical to that routinely implemented in the Keck. Position sensors conveniently located at the back or the 
edges of the segments provide, in real time, measurements of the inter-segments steps, down to a few nanometers 
accuracy. Whichever technology such sensors rely on, periodic calibration of their readings appears necessary. This 
calibration is ideally performed on-sky; Chanan et al1 have successfully developed a wavefront sensing technique which 
allows re-calibration of the Keck sensors, within adequate accuracy and at an affordable cost in terms of operational 
overheads –typically a few hours on a monthly basis. The technique seems scalable to a very large number of segments, 
within existing technology 1. In the case of OWL, which has segmented primary and secondary mirrors, the technique 
would most likely require two wavefront sensors, each fitted with proper pupil masks centered on the images of 
segment boundaries. Those would provide independent calibrations of  each segmented mirror.  

Even though the progress of sensor technologies should logically lead to better temporal stability than in the Keck, 
ELTs are required to routinely achieve diffraction-limited resolution, thus implying tighter phasing requirements and 
lower allowances for sensor drift. In addition, the Keck technique implies a tight centering of the pupil mask in the 
wavefront sensor and requires relatively bright stars. Even though improvements seem possible, as proposed by the 
Gran Telescopio de Canarias (GTC) team2, there are strong incentives to develop alternative calibration techniques. 

Within the framework of a European Community-funded Research and Training Network (RTN) on adaptive optics for 
Extremely Large Telescopes, the Laboratoire d’Astrophysique de Marseille and the European Southern Observatory are 
jointly evaluating a technique based on Mach-Zehnder interferometry. This is one of several alternatives explored by 
the Network, which is in the process of establishing a comprehensive review of possible phasing techniques. Different 
techniques  are evaluated with respect to accuracy, capture range, reference source brightness, sensitivity to wavefront 
errors not directly related to segmentation, sensor complexity and tolerances, and operational overheads. In the 
following, and after detailing its theoretical properties, we will use simulations to show that a properly tuned Mach-
Zehnder interferometer is relatively insensitive to atmospheric turbulence and any error source of lower spatial 



frequency, thus allowing it to measure phasing errors on seeing-limited star images and, by implication, on strongly 
aberrated images. We will also provide  results indicating that the signal could easily be processed to deliver the 
phasing information associated to multiple segmentation, as required in the 100-m OWL telescope. Although a 
complete characterization of the sensor still requires proper evaluation of tolerances and of practical implementation 
aspects, current results suggest that a sensor tailored to OWL properties could be built using  readily available 
technology. 

2. MACH-ZEHNDER COPHASING SENSOR CONCEPT 
 
2.1 Concept overview 
The purpose of the Mach-Zehnder wavefront sensor is to measure phase properties of the incoming wavefront by 
applying appropriate spatial filtering in one of the interferometer arms. In practice, this can be done by making sure the 
beam goes through a focus within the interferometer, as shown in Fig.1. The idea to use this kind of interferometer to 
measure atmospheric wavefront errors was first introduce by Angel 3. A pinhole of size (as projected onto the sky) of 
the order of λ/D, where D is the telescope diameter, is placed in the focal plane of one of the arms, producing a 
spherical wavefront. When  recombined with the wavefront coming from the other arm an interferogram is produced, 
from which atmospheric errors can be deduced. However, when atmospheric aberrations are large, this technique 
becomes very inefficient since the pinhole is much smaller than the seeing disk. Also, the number of fringes is large, 
making interferogram analysis very difficult.  

We propose to use a modified version 
of this technique for measurement of 
segment phasing errors. Phase steps 
create wavefront errors of all spatial 
frequencies, and, as we will show, 
the step-induced errors becomes 
dominant over atmospheric errors for 
spatial frequencies higher than about 
λ/r0. Increasing the pinhole size to 
about the size of the seeing disk 
allows to cancel out phase errors due 
to the atmosphere while retaining 
enough information about phase steps 
to generate a useful signal. Fig. 2 
illustrates the selective blurring effect 
of increasing the pinhole size. In this 
simulation, we generated an arbitrary 
wavefront, and calculated the 
interferograms with increasing 
pinhole sizes.  

 

 
Fig.2: Simulated Mach-Zehnder interferograms in the presence of atmospheric seeing for different size of pinhole.  
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Fig1:.Layout of a Mach-Zehnder interferometer. 



2.2 Theoretical analysis 
One advantage of the Mach-Zehnder sensor is that the wavefront errors are measured directly from the interference 
pattern registered on the detectors. The intensity in the two interferograms is proportional to the cosine of the phase 
difference between the two arms. By conservation of energy, these two patterns are complementary when the beam-
splitter is non-absorbing: maxima in one correspond to minima in the other. If both interferograms can be detected, 
calculating their difference doubles the sensitivity as compared with a single interferogram and eliminates the common 
background. 

The two complex amplitudes at the output pupil plane are: 
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where A’ and ϕ’  are the amplitude and phase of the wavefront after the pinhole and A” and ϕ are the  amplitude and 
phase of the reference wavefront. 

The intensities of the interferograms are calculated as I=|AA*|² 
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where  I’=A’² is the intensity after the pinhole in one of the arms, I”= A”² is the intensity in the other arm before 
recombination, and V is the visibility of the fringes in the output pupil plane.  As expected, the intensities of the 
interferograms are, apart from a constant, proportional to the cosine of the phase difference. 

From these interferograms we can not retrieve the sign of the phase because of the symmetry of the cosine function,  
cos(φ-φ’)=cos(φ’-φ). This problem can be solved if a constant optical path difference (OPD) is introduced in one of the 
arm. If the OPD=λ/4, corresponding to a phase difference of π/2, the intensities are proportional to cos(φ-
φ’+π/2)=sin(φ-φ’), and the anti symmetry  of the sine function permits the sign distinction, sin(φ-φ’)=-sin(φ’-φ). 

As discussed in section 2.1 the pinhole acts as a low pass spatial filter in one of the arms. When the two wavefront 
coming from two arms recombine the whole  Mach-Zehnder acts as a high pass filter.  In this sense this type of Mach-
Zehnder sensor is equivalent to a Smartt interferometer or a stellar coronograph.   

 
Fig3:  Mach Zehnder simulation for segmented mirror with random rms  piston error of λ/8 and pin hole size=2.3”, (a)input 
wavefront,(b) Interferogram output 1,(c)Interferogram output 2,(d) difference between interferograms. The lower row represents a 
transversal cut along the segment edge. 
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3. PERFORMANCE OF A MACH-ZEHNDER PHASING INTERFEROMETER 
 
In this section we explore the effect of some of the parameters of the Mach-Zehnder wavefront sensor. Those 
parameters are the shape and size of the pinhole, which are directly related to the pupil sampling, and the optical path 
difference (OPD) between two arms of the interferometer. The goal is to find an optimal configuration to extract the 
phase errors with the maximal accuracy. 

For this purpose we have simulated a segmented pupil with seven 0.9m side hexagonal mirrors with random piston 
errors. In Fig.3 we show an example of this configuration, in the left we show the input wavefront for a segmented pupil 
with random piston error of λ/8 with λ=0.656 µm. In the middle we plot the two outputs interferograms, using a pinhole 
size 100 times the size of the airy disk (100λ/D≈2.3’’). On the right the difference between the two interferograms is
plotted. We are interested in the profile of the interferogram along the segment edge, as plotted at the bottom of Fig.3.  

3.1 Pinhole profile 
To avoid diffraction artefacts associated to the pinhole sharp edge, the circular top hat mask may be replaced with an 
apodized mask with a Gaussian profile. The comparison of illumination profiles for the two mask types is shown in 
Fig.4. Segment piston in both cases is λ/6,wavefront. The FWHM of the Gaussian mask is equal to the diameter of the 
top hat mask in the first case. Diffraction artefacts are clearly eliminated with a pinhole having a gaussian profile.  

 
Fig.4: Comparison between  the Mach Zenhder interferogram using a pinhole with circular shape (a) and pinhole with gaussian 
shape(b). A transversal cut along the main y-axis of the interferogram  shows the elimination of bound effect. 
 
3.2 Mask size, pupil sampling 
The optimal pinhole size is defined by the number of pixels required to resolve the signal profile and by the range of 
frequencies to be spatially filtered. Pupil sampling and pinhole size are evidently correlated, as the pinhole acts as 
aperture for the pupil imaging system. The smaller the pinhole size, the larger the Point Spread Function (PSF)of this 
system is, hence the larger the width of the signal profile. This relation is illustrated by plotting the width of the signal 
fluctuation as a function of the inverse of the pinhole size, Fig.5. 

We find a linear relation between the size of the pinhole and the width of the profile, shown in Fig.6. To resolve the 
profile signal at least 4 pixels are required. This means the diameter of the hole should be less than 0.8304 Nλ/D,  where 
N is the number of pixels accross the interferogram, λ is the wavelength and D is the pupil diameter. For OWL, with a 
primary of D = 100m, and assuming λ = 500nm, the pinhole should be smaller than 1.65” for a 2Kx2K detector. For a 
4Kx4K detector the maximal size is 3.3”. If we want to blur  the effect of atmospheric turbulence, the hole size will also 
depend on the size of λ/r0 (we will come back later to this point). 
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Fig.5: Intersegment illumination for different size of 
pinhole from FWHM=2” to FWHM=0.5”. 

Fig.6: Linearity of  width of interference profile with 
pinhole size. 

 
3.3 Phase retrieval algorithm 
In this section we introduce an OPD between the two arms of the interferometer and we describe a simple algorithm to 
retrieve the phase from the profile of the difference between the two outputs at the segment boundary.  

In Fig.7 we show three sets of interferograms for different OPDs, conveniently introduced as a constant phase shift in 
the reference arm of the interferometer. From left to right, the figure shows the interferogram profiles for the two 
outputs and their difference (referred to as differential interferogram). At zero OPD (upper row) the phase information 
is contained within a distinct peak appearing at the segment boundary. The height of the peak is proportional to the 
square of the phase step; the sign of the phase value is therefore lost. At non-zero OPD, a signal oscillation appears at 
the segment edge. We refer to the amplitude of this oscillation as the peak-to-valley (PtV) value. In Fig.8 we show the 
PtV value as a function of OPD for λ=0.656µm. The phase shift λ/4 (or 3λ/4, due to the symmetry) allows achieving 

the maximum PtV i.e., maximum contrast. As seen in the 
lower panel of Fig. 7, with this OPD the two 
interferograms have the same background level so that 
when we subtract them the background is eliminated.  

For small intersegment steps, the PtV is proportional to 
the phase step between segments, representing a good 
estimate of residual phasing errors. In Fig.9, we plot the 
PtV for two wave lengths, λ1=0.656µm  and λ2=0.5µm. 
As expected these functions are of the form:  

)2sin()2sin(),(
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where v is the PtV value of the differential interferogram, 
p is the local intersegment piston and A is a coefficient 
which deepens on external parameters, such as pinhole 
size, sampling, intensity of input wave, and absorption 
coefficients.  

 

 

Fig.7: Profile of the  two outputs interferograms (column 1 and 2) 
and difference of interferograms (column 3) at the segment edge 
for  different OPDs. 
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Fig.8: Peak to valley at segment boundary (signal) as  
a function of the phase shift (OPD), λ=0.656µm,  
piston error is λ/4 wavefront , FWHM of the pinhole is 1”. 

Fig.9: PtV of the oscillation across the intersegment 
boundary, as a function of piston for two wavelengths 
λ1=0.656µm (curve 1) and λ2=0.5µm (curve 2). 

 
Due to the π ambiguity the monochromatic regime does not allow to unequivocally determine piston errors outside the 
range ± λ/4. That problem can be solved by the use of two or more wavelengths. Two outputs of the interferometer give 
an opportunity to measure signals in two different wavelengths simultaneously. The capture range is limited by the 
number of wavelengths used, the measurement error2 and filter bandwidth. For cophasing a capture range of the order 
of 5 to 10µm is desirable. If we use two wavelengths (e.g., 650nm and 840nm), the measurement error should be less 
than 10nm to achieve such range without ambiguities. Assuming that the Mach Zehnder sensor has a precision of about 
30 nm, this means that the maximal capture range we could get with two wavelengths is  3µm and it may not be 
enough. If we use three wavelenghts  (e.g., 650nm, 795nm, 835nm), a precision of 30 nm will provide the desired 
range. 

3.4 Pupil registration 
Signal retrieval requires the precise knowledge about the location of intersegment boundary. The presence of 
intersegment gaps provides a convenient way to register the pupil. That can be achieved by removing the pinhole, filters 
and recording white light images of the pupil. These images will show the exact location of the segment boundaries and 
hence will indicate where the signal is to be measured. The signal being proportional to the segment gap size, its 
intensity is low and there are compelling reasons for enlarging the wave band as much as possible. In the case of OWL, 
assuming 4Kx4K detectors and ~6-mm gap size, pixels conjugated to intersegment gaps would reveal a ~25% drop in 
an otherwise uniform signal.  

In the case of OWL, there are two segmented mirrors (primary and secondary) which need to be phased independently. 
In the whole interferogram the two segmentation structures appear together and need to be separated. Being projected 
onto the pupil plane these two structures have different spatial frequencies, corresponding to different projected distance 
between segments. Simple Fourier filtering allows to disentangle the patterns associated to each segmented surface. 

Fig.10 shows the registration image, which contains the information about the two segmented mirrors.  The results of a 
two spatial Fourier filtering are also shown, the filters being tailored to the geometry of each segemented surface. In 
each case the “undesired” structure has almost disappeared.  



 
Fig.10: Interferogram of two mirrors before (a) and after Fourier filtering (b and c), 
segment size 1.5m, gap=20mm,. Waveband=[328nm,875nm] 

 
4. ATMOSPHERIC TURBULENCE 

 
One of the main difficulty in any cophasing method is the influence of the turbulent atmosphere. One possible but 
generally inconvenient option is to perform the calibration on an adaptively compensated image. Another one is to try to 
“beat” the atmosphere, either by using very short exposures or by retrieving the relevant information from subapertures 
smaller than the atmospheric coherence length. A mach-Zehnder wavefront sensor would be quite efficient in that 
respect, since the effect of atmospheric turbulence can already be blurred out on short exposure.  

In Fig.11 we show simulated interferograms obtained with increasing pinhole width. The input wavefront is shown in 
Fig.11.a. It contains the atmospheric turbulence component (0.65’’ seeing, von Karman spectrum) and 109nm piston 
error (completely blurred out by the atmosphere). 

 

 
 
Fig.11: Wavefront containing piston error and atmospheric aberration (a). Short exposure interferogram for pinhole size 0.65” (b), 
1.3”(c), 2.6”  (d).  Seeing 0.65”, piston error 109nm, λ=0.656µm. 
 
4.1 Optimal pinhole size for short exposure image  
In terms of frequencies we have to optimise the size of the hole in such way to blur out all spatial frequencies up to that 
of the atmospheric turbulence. In Fig.12 we show the PSF corresponding to a wavefront in presence of turbulence with 
a seeing equal to 0.41”(solid) and the PSF corresponding to a wavefront with a step difference between segment of λ/4 
(dotted).  We observe that the effect of the atmosphere (solid line) dominates up to a radius of 0.4”, while it is the effect 
of piston (dotted line) which dominates beyond that radius.  

(a) (b) (c) 

( a ) ( b ) ( c ) ( d ) 



 

Fig.12: Intensity distribution of the PSF for an input wavefront with piston error (dotted) and atmospheric errors (solid) 
 

In principle the size of the pinhole should be adjusted to the turbulence conditions. In  Fig.13 we show the PtV value of 
the differential interferogram as a function of pinhole size for different  atmospheric conditions. As expected the peak 
difference is bigger with better seeing. We also note that   the optimum size of the hole increases as the turbulence 
becomes worse. 

 

 
Fig.13: PtV value  of the differential 
interferogram  for different size of r0. 

              Fig.14: Total energy as a function of pinhole size. 
 

 

We have calculated the total energy in the focal plane that comes through the hole for different turbulence conditions, 
changing the size of the hole. If  the size of the pinhole is smaller than the size of the atmosphere(λ/ro) the total energy 
due to the atmosphere is bigger than the total energy due to piston errors. For each atmospheric condition there is a hole 
size where this relation is reversed and the energy due to piston becomes higher than that associated to atmosphere. This 
is shown in Fig.14. 



   

Fig.15: Linear relation between the size of the seeing disk  and 
the optimal pinhole size.  

Fig.16: Long exposure signal with 0.65” seeing and 
80nm piston 

 
In Fig.15 we plot the optimal pinhole diameter for different values of seeing. We choose two different criteria, one is 
the   maximal value of the PtV in the differential interferogram  obtained  from  Fig 13, and the other is the point where 
the total energy coming through the hole is dominated by piston (Fig.14). A linear fitting gives the following relation 
between the optimal pinhole size and seeing disk, 

Dpinhole = 1.42 Datm+0.2 

where Datm =λ/r0 in arcsec and Dpinhole is the diameter of pinhole. 

 
4.2 Long exposure image 
Long exposure imaging can provide better contrast for the signal and allows to use fainter reference sources. Fig.16 
shows the illumination profile obtained after 5min exposure. The phase screen which presents the turbulence in this 
case was moving with the wind speed 5m/sec across the pupil. The background feature caused by an atmosphere, which 
we observed in the previous example, is in this case completely smoothed, leaving the constant background. 

5. FUTURE WORK 
 
Current results will have to be completed by a full characterization of a Mach-Zehnder wavefront sensor for the phasing 
of Extremely Large telescopes. 

 Most of this work will rely on simulations and will concentrate on expected accuracy  limiting magnitude, 
implementation and alignment requirements, but also on the effect of segments edges misfigure. The latter is deemed as 
a serious weakness of this type of wavefront sensor –the reason being that such misfigure has a higher spatial frequency 
content than atmospheric turbulence, and may not be efficiently filtered out. Would this difficulty be eventually 
overcome, operational schemes will have to be explored as well.  

A laboratory experiment is being assembled by the Laboratoire d'Astrophysique de Marseille. This experiment will 
eventually include a phase screen aimed at simulating the disturbing effect of the atmosphere. Would this experiment be 
concluded successfully, and under the provision that the effect of segments edge misfigure can be reasonably dealt with 
–i.e. by other means than unrealistically tight segments figuring tolerances, a prototype may eventually be integrate in 
the ESO Active Phasing Experiment (APE) and tested on the sky. 

 

 



6. CONCLUSION 
 
We have described the principle of a Mach-Zehnder wavefront sensor and shown by simulation that it may provide an 
efficient mean to measure inter- segments steps. The piston error is directly measured from interferograms at planes 
conjugated with the segmented aperture(s). By implication and taking into account the fact that the entire segmentation 
patterns is recorded by the cameras of the wavefront sensor, segments relative tilt may be measured as well by 
analysing the profile of the signal oscillation along the segments boundaries.  

Introducing an OPD in one arm of the interferometer allows the contrast of the two output interferogram to be optimised 
and removes the sign ambiguity. Use of an amplitude mask instead of a pinhole allows to clean the interferograms from 
undesirable diffraction artefacts. A strong advantage of this type of wavefront sensor is its relative insensitivity to any 
error sources of spatial frequency lower than that to be detected, and in particular to atmospheric turbulence. Taking the 
latter into account, we find a minimum pinhole size or FWHM of the Gaussian filter ~1.42 λ/r0 + 0.2. Using OWL 
aperture characteristics, we also find a practical upper size of ~1.65 to 3.3 arc seconds, depending on sampling, and 
compatible with the lower limit. The phase information can be retrieved from both short- and long-exposures, the latter 
delivering a better signal-to-noise ratio. Another advantage is its likely ease of implementation, no complex pupil mask 
being required as in the Keck1. 
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Phasing segmented mirrors: a modification of
the Keck narrow-band technique and its
application to extremely large telescopes

Achim Schumacher, Nicholas Devaney, and Luzma Montoya

Future telescopes with diameters greater than 10 m, usually referred to as extremely large telescopes
�ELTs�, will employ segmented mirrors made up of hundreds or even thousands of segments, with tight
constraints on the piston errors between individual segments. The 10-m Keck telescopes are routinely
phased with the narrow-band phasing technique. This is a variation of the Shack–Hartmann wave-
front sensor in which the signal is the correlation between individual subimages and simulated images.
We have investigated the applicability of this technique to ELTs, and in the process we have developed
what to our knowledge is a new algorithm in which each subimage provides on its own a piston-dependent
value. We also discuss an alternative algorithm to resolve the � ambiguity that allows detection of
problematic cases, and a modification of the singular-value-decomposition procedure used to phase the
whole mirror, using weightings on individual measurement errors. By means of simulations we show
that the modified technique shows improved performance and that it can work with sufficient precision
on telescopes as large as 100 m. © 2002 Optical Society of America

OCIS codes: 120.5050, 010.7350, 110.6770, 040.1240, 220.1140.
1. Introduction

In addition to the usual optical errors associated with
monolithic telescopes, segmented mirror telescopes
present other errors resulting from segment mis-
alignment. In general, the segments have six de-
grees of freedom: translation along two axes in the
plane of the segment, rotation about a vertical axis,
rotation about two horizontal axes �tip and tilt�, and
translation along the vertical axis �piston�. Unde-
sired motion in any of these degrees of freedom will
give rise to departure from the ideal mirror shape and
hence affect the wave-front quality. Movement in
piston or tip–tilt generally produces wave-front dis-
continuities. Movement in the first three degrees of
freedom is restricted by attachment to the primary
mirror cell and will not be considered further here.
The segments usually have three actuators each, al-
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lowing the segment to be positioned in tip, tilt, and
piston. The effect of these errors on long-exposure
image quality has been examined elsewhere,1 and the
effect on diffraction-limited images has also been pre-
sented.2 Because it is anticipated that practically
all extremely large telescope �ELT� observations will
employ adaptive optics �AO�, we are particularly con-
cerned with the effect of these errors on diffraction-
limited images.

We will consider piston and tip–tilt separately.
The effect of random segment piston errors on Strehl
ratio depends on the statistics of the piston errors.
However, in the limit of small piston errors, the av-
erage Strehl ratio is given by3

�S� � 1 � �2�1 �
1
N� , (1)

where N is the number of segments and �2 is the
variance of the segment piston errors. The effect is
larger as the number of segments increases, and for
ELTs the Strehl ratio can be approximated by 1 � �2.
In the near infrared this expression may be taken to
imply quite relaxed values of piston. However, since
piston will be only one term in a long list of wave-
front error sources, it will in fact be necessary to
control it precisely. For example, a Strehl require-
ment of 0.95 at a wavelength of 1.25 �m implies an
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accuracy of 44 nm in the segment piston control �note
that in this paper piston values are referred to the
wave front, and values at the mirror are a factor of 2
smaller�. Of course, if it is hoped to carry out adap-
tive optics at visible wavelengths, then the piston
errors will have to be small. For example, a Strehl
ratio larger than 0.9 at a wavelength of 0.55 �m
implies piston errors of less than 25 nm �12.6 nm at
the mirror�.

In the case of small tip–tilt errors, the Strehl ratio
is given by4

�S� � 1 � �	
2
 , (2)

where �	
2 is the variance of the tip–tilt angle and 
 �

5�36 in the case of hexagonal segments. For exam-
ple, for a segment dimension of 2 m, a Strehl ratio
greater than 0.95 at a wavelength of 1.25 �m corre-
sponds to rms tip–tilt errors of less than 54 nrad
�0.011 arcsec�. We can measure tip–tilt errors with
high precision using, for example, a Shack–
Hartmann wave-front sensor.

This discussion assumes that the AO system will
not correct any of the wave-front error introduced by
segment misalignment. In fact, AO will always pro-
vide partial correction, even if the AO system is not
specifically designed to do so.5 This is especially
true in the case of high-order AO. For low-order AO
where there are not many subapertures per segment
it would be advantageous to choose the geometry of
the AO wave-front sensor so that there are subaper-
tures that cross segment edges in a regular way,6
although this may be complicated by pupil rotation.
In general, it is necessary to carry out numerical
simulations for accurately determining the perfor-
mance of a given AO system in the presence of seg-
ment misalignments. However, in the absence of
simulations, expressions �1� and �2� may be taken as
pessimistic estimators of the effect of piston and tip–
tilt on the Strehl ratio.

There are several possible approaches to segment
alignment. The strategy employed at the Keck tele-
scope is to carry out relative piston and relative tip–
tilt measurements with two capacitive edge sensors
on the segment edges. These measurements are not
sensitive to modes that do not give rise to edge dis-
continuities, e.g., global tilt, global piston, or global
focus mode, in which the segments move in piston
and tilt to give rise to a primary mirror defocus.
These modes—apart from global piston, which does
not need to be measured—can be determined by low-
order wave-front sensing. The edge sensors need to
be calibrated optically from time to time, with, e.g.,
the narrow-band technique described in this paper.
Applying the Keck approach on ELTs implies some
extra requirements because of the large number of
segments. It may be the case that propagation of
errors will lead to degraded performance on large
telescopes. Furthermore, the periodicity of edge
sensor calibrations may have to be increased. At the
Keck, monthly calibrations result in a moderate loss
of operation time. At ELTs, the time needed for cal-

ibration runs will become a concern. In this paper
we deal with these requirements and investigate the
precision that can be expected from this technique
under various conditions.

2. Keck Narrow-Band Algorithm

This technique is based on a Shack–Hartmann-type
wave-front sensor, in which the lenslet array is pre-
ceded by a mask that defines small subapertures at
the center of each of the intersegment edges. In the
case of the Keck telescopes, these subapertures are
circular; in this paper we refer to square subaper-
tures as will be used at the 10-m Gran Telescopio
Canarias �GTC�.7 The size of the subapertures is
chosen to be smaller than the average Fried param-
eter, r0, of approximately 20 cm at a wavelength of
500 nm. At the Keck and at the GTC this size is 12
cm with respect to the primary mirror.

A. Description of the Algorithm to Extract the Phase

We first concentrate on the algorithm applied to ex-
tract phase information from a single intersegment
edge step �or piston step�. The original Keck
narrow-band technique8 is described and compared
with a modified algorithm. Both techniques exploit
the diffraction pattern produced by a small interseg-
ment subaperture and monochromatic light from a
bright stellar source. The resulting simulated dif-
fraction patterns for various piston steps are shown
in Fig. 1, and their projection on the x axis is shown
in Fig. 2. The two algorithms under comparison dif-
fer in how they use these images.

Fig. 1. Simulated diffraction patterns for a split squared subap-
erture with wave-front step � between the two halves given by k� �
0, 2
�6, 4
�6, . . . , 10
�6.

Fig. 2. x projection of images of Fig. 1.
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In the Keck approach,8,9 an image taken from a
subaperture with unknown piston step is compared
with a set of 11 simulated images like those of Fig. 1.
The real piston step is somewhere between the piston
steps of the two most similar images. The degree of
similarity is determined by calculation of a correla-
tion coefficient; a finer resolution than the piston-step
difference between two templates ���11 at the wave
front� is achieved by quadratic interpolation of the
correlation coefficients.

We propose a new approach that is based on ex-
tracting a single characteristic value from each sim-
ulated image related to the piston step and then
calculating a calibration curve. One possible char-
acteristic value, which will be applied here, is the
ratio between the two main peaks in the diffraction
pattern �see Fig. 2�. We refer to this technique as
the peak ratio technique.6 Defining the peak ratio
as PR � Max�right peak��Max�left peak�, we obtain
the calibration curve shown in Fig. 3. In this figure
the calibration points obtained from the simulation
are plotted together with a fitted polynomial of third
degree to �the logarithm of � these points; this repre-
sents the data with sufficient accuracy. The coeffi-
cients of this polynomial are used as calibration data.
For a given subaperture image, the peak ratio is cal-
culated and processed with the calibration data in
order to obtain the required piston step.

Our comparison of both techniques is based on sim-
ulated subaperture images. This has the advantage
that the effect of distinct error sources on the preci-
sion of the techniques can be investigated without
interfering effects. We will present the results of
separate simulation runs with a range of possible
systematic as well as statistic errors. Furthermore,
in simulations one can exactly define the precision,
because the exact piston step to be measured is
known, whereas in experiments the precision can be
described only in terms of reproducibility and cross
checks with other techniques. Systematic errors
common to all applied techniques will hardly be rec-
ognized in an experiment, and those errors detected
may not be easily interpreted. However, some sys-
tematic errors may arise in practice that have not
been taken into consideration in simulations. The
point is that for an overall determination of the pre-
cision of a particular technique, a combination of ex-
periment and simulation is desirable. To make a
first comparison of techniques, we believe that sim-

ulations are advantageous. We will be able to per-
form additional experimental tests once the GTC
telescope is completed. We would also like to stress
that for an implementation of the peak ratio tech-
nique at the Keck no change in hardware would be
necessary; it is merely an alternative analysis
method on the same data.

We will first compare the intrinsic error of both
techniques, resulting from the analysis principle it-
self. The results of simulations without taking into
account any kind of error one has to deal with in
practical measurements—referred to as perfect
conditions—are plotted in Fig. 4. The precision of
the peak ratio technique is limited only by the valid-
ity of the polynomial fit to the calibration data and by
calculation round-off errors, whereas the original
Keck technique shows an intrinsic error of up to 18
nm. Note that if in an experiment a measurement
were made repeatedly at a piston step yielding 18-nm
error in Fig. 4 �e.g., at 130 nm� without stepping the
segments substantially, the reproducibility of this
measurements would be given by other effects and
thus in principle could be in the subnanometer range.
Here we deal with a systematic error that could be
detected in practice only if �i� in subsequent measure-
ments the piston step were changed by a known
amount and thereby change the amount of the sys-
tematic error, or �ii� if measurements at two different
wavelengths were performed, which should result in
different systematic errors. Possible sources for the
intrinsic error of the original Keck technique are the
following: �i� To calculate the correlation coeffi-
cients, all images first have to be reregistered, so that
the centroids coincide exactly with the array center
and not just to within the nearest pixel. �ii� The cor-
relation coefficients do not exactly show a quadratic
dependence. Chanan et al.8 report a deviation of up
to 0.7% between the coefficient and its quadratic ap-
proximation. �iii� The process of calculating the cor-
relation coefficient itself could be an error source.
Note that we used our own analysis code, based on
the principles used at Keck, so it is possible that the
original code used at Keck is further optimized and
shows less-intrinsic errors. However, published re-
sults9 indicate a rms error of 17 nm in practice, which
is approximately what we would expect from our sim-
ulations under imperfect conditions. �The authors

Fig. 3. Peak ratio calibration curve �� � 650 nm�. WF, wave
front.

Fig. 4. Measurement precision of the Keck �diamonds� and the
peak ratio �triangles� technique under perfect conditions.
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state 12-nm mirror surface rms differences between
measurements performed at different wavelengths,
presuming that measurements at both wavelengths
result in the same rms error and the errors adding
quadratically, one gets 12 � 2��2nm � 17-nm rms
wave-front error for a single measurement.�

The peak ratio technique would be potentially
problematic in practice, if one defined Max�peak� sim-
ply as the highest value of all pixels involved in the
peak. This is shown in Fig. 5, where the resulting
point-spread function for various seeing conditions
and a fixed piston step of ��4 are plotted �straight
line�. As the seeing gets worse, the binary structure
gets less distinct. But even when there is barely any
binary structure it is still possible to extract the max-
imum heights of the two peaks involved. Fitting the
sum of two Gaussians to the point-spread function
will yield the results shown in Fig. 5 �dotted curves�.
It was claimed that the original Keck technique is
more robust and numerically efficient than surface
fitting.9 In fact, getting stable fit results is not a
straightforward task. One has to use fit procedures
in which the fit parameters can be limited to certain
ranges. Applying the restrictions that �i� both peaks
have approximately the same width, �ii� the peak
width is always within a certain limit, and �iii� the
distance between the two peaks is constant for all
piston steps, one can achieve a robust fit procedure
that outperforms the numerical efficiency of the orig-
inal Keck technique. With this method it is possible
to obtain a result for Fried parameters as small as r0
� 6 cm at 650 nm. As is shown in Fig. 6, the cali-
bration curves obtained for different seeing condi-
tions differ slightly, leading to measurement errors
as discussed in Subsection 2.D. This Gaussian fit
method is also suitable for the case of having photon
noise as shown in Fig. 7 and discussed in Subsection
2.E. An important advantage of the Gaussian fit
method is that it provides not only the values of the

two peak heights but also an estimation of their un-
certainties. Knowing the precision of each piston-
step measurement allows us to perform a weighting
when calculating the segment piston values from all
measured subaperture piston-step values, as de-
scribed in Subsection 2.F.

B. Measurement Range

Both the Keck and the peak ratio technique have a
useful range that depends on the wavelength used.
The maximum unambiguous piston step is ����2� at
the wave front. The maximum deviation from the
mean value of the segment pistons is then ����8� at
the mirror. In the case of � � 650 nm this means
that the segments have to be already aligned to better
than 162 nm. It is therefore convenient to take an-
other measurement at a different wavelength in or-
der to avoid the ambiguities. If �1 � 650 nm and �2
� 850 nm, then the range is more than 10 times
greater. The procedure we use to achieve this is
basically identical to that described in detail by
Löfdahl and Eriksson.10 In the following we give a
short description of the procedure and show that the
peak ratio technique offers substantial enhance-
ments.

When we take two measurements at different
wavelengths �1 and �2, the peak ratio method gives
two different results x1 � �0, �1� and x2 � �0, �2�. If no
measurement errors are considered, then the follow-
ing equation is valid for the piston step PS:

PS � x1 � k�1 � x2 � j�2, k, j � I . (3)

To ensure an unambiguous result we have to set the
following restrictions on k and j:

�x1 � k�1� � �Max ,

�x2 � j�2� � �Max , (4)

where the maximum unambiguous piston step �Max
is the smallest value which satisfies the relation
2�Max � �k��1 � �j��2. The factor of 2 reflects the fact
that end results can be negative. In the case of �1 �
650 nm, �2 � 850 nm, we get �Max � 5525 nm, thus
gaining a factor of 17 in measurement range with
respect to a single-wavelength measurement at �1.

Of course, the measurements x1 and x2 are prone to
errors, and usually no solution will be found to fulfill

Fig. 5. One-dimensional diffraction patterns at various seeing
conditions r0 �500 nm� � �, 16 cm, 6 cm.

Fig. 6. Peak ratio calibration curves at various seeing conditions
down to r0 �500 nm� � 8 cm �� � 650 nm�.

Fig. 7. One-dimensional diffraction patterns at various photon
noise levels N
 � 2000, 500, 200.
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Eq. �3�. Taking measurement errors into account,
relations �3� and �4� will become

PS � x1 � �� x1� � k�1

� x2 � �� x2� � j�2 ,

�x1 � k�1� � �� x1� � �Max ,

�x2 � j�2� � �� x2� � �Max . (5)

The analysis code will now search for all possible PS
that fulfill the conditions of Eq. �5�. This differs from
the algorithm described by Löfdahl and Eriksson,10 in
which a fixed maximum error is used in order to
calculate the capture range. This is useful when one
tries to find the pair of wavelengths that results in
the best capture range. In practice, no such maxi-
mum error can be given that is guaranteed to be met
by actual measurements. Because of statistics, sin-
gle measurements might exceed the defined maxi-
mum error and yield a wrong result. We take a fixed
pair of wavelengths and employ the fact that the peak
ratio technique provides reliable error estimates for
every piston-step measured. For the pair of wave-
lengths that we have chosen, all possible combina-
tions of k and j result in a difference between the left-
and the right-hand sides of Eq. �3� of at least 50 nm
�0 nm for the right solution�. As a result, for a sum
of the estimated measurement errors ��x1� and ��x2�
exceeding 50 nm, there may be two or more solutions
found for Eq. �5�. However, if the errors are under-
estimated, it is possible that no solution will be found.
If one has to use Eq. �5� with fixed ��x1� � ��x2� for the
whole mirror, then one has to choose � as a compro-
mise between having too many measurements with
no solution and too many measurements with ambig-
uous solutions. This restriction is valid if on some
piston-step measurements the sum of the errors ex-
ceeds 50 nm. In our simulations of ELTs with hun-
dreds of piston steps measured, this was frequently
the case, when seeing and photon noise were in-
cluded. This is confirmed by Keck results, in which
a run of 624 piston-step measurements with two
wavelengths resulted in three measurements with
the combined error exceeding 101 nm.9 Knowledge
of the individual measurement errors thus allows
minimization of the number of cases that have no
solution or ambiguous solutions. In simulations we
found �Max � 4500 nm as a practical limit to ensure
stable results at all times.

There will still be some cases with no or with am-
biguous solutions. If the percentage of these cases
on the whole mirror is low, then this will not neces-
sarily affect the overall performance, because �up to�
six piston-step measurements are performed on each
segment. It is still possible to extract the piston
values of all mirror segments, even if only one unam-
biguous piston step could be measured on some seg-
ments. The key is to detect the problematic cases
and to exclude them from the piston calculation, as
explained in Subsection 2.F. If these measurements
were included in the singular-value-decomposition
�SVD� procedure, the resulting rms piston error could

be worsened to tens or hundreds of nanometers, as
shown in our simulations as well as in experimental
results.8

Note that �Max is a limiting value to be used in the
analysis code. Single piston steps are still allowed
to exceed this value without affecting the piston mea-
surement, if for all segments at least one piston step
is smaller than �Max. This is because these mea-
surements will be detected as ambiguous and auto-
matically excluded from SVD.

The approach used at the Keck Telescope9 is to use
Eq. �3� in conjunction with a �2-minimization tech-
nique that in all cases will find exactly one result.
This result is guaranteed to be correct if �for the Keck
wavelengths �1 � 651 nm and �2 � 852 nm� the
piston step lies within a range of 1278 nm and the
combined error is below 101 nm. �The higher allowed
combined error is achieved by the reduction of cap-
ture range.� If this condition is violated, Chanan et
al. find that “failures are common enough that the
algorithm is essentially useless” �Ref. 9, p. 4711�.
Since Chanan et al.9 lack information on individual
measurement errors, they are forced to apply an ad-
ditional procedure that allows one to find sufficient
piston-step measurements that still are guaranteed
to be correct. These cases will be found when the
segments are already prephased to within the cap-
ture range of a single-wavelength measurement. In
fact, the above-stated results were obtained when the
mirror was already prephased to within �325 nm by
means of an additional phasing technique, the broad-
band technique. In this way, the two-wavelength
algorithm is not used to enhance the measurement
range �broadband is used for this� but to enhance the
accuracy of the broadband technique. Applying Eq.
�5� in conjunction with the peak ratio technique al-
lows us to detect the problematic cases without addi-
tional measurements �see Fig. 18, below�, thus
preserving the advantages of the narrow-band over
the broadband technique.9 Making use of the
knowledge of the piston-step measurement errors
thus extends the range of the two-wavelength
method from �Max � 325 nm to �Max � 4500 nm, the
first value resulting from considerations of the prin-
ciple, the latter resulting from simulations assuming
realistic conditions.

C. Figure Errors and the Use of a Phase Plate

The investigations described in this paper are based
on perfectly shaped segments without figure errors.
Low-spatial-frequency aberrations can yield edge
steps between adjacent segments even when the
mean piston step between the segments is zero.
However, these aberrations can be measured by a
slow wave-front sensor and the data used to correct
the piston measurements. We are currently work-
ing on a simulation of this.

High-spatial-frequency aberrations, such as polish-
ing errors, cannot be measured easily. They may
alter the shape of the point-spread function and
thereby change the peak ratio at a given piston step.
As can be seen in Fig. 8 where the measurement
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errors of the peak ratio technique in the presence of
polishing errors are plotted against the piston step,
these errors are high at piston steps near zero and
tend toward zero at piston steps near ��2. This is a
characteristic behavior for the peak ratio technique
for all kinds of errors investigated except photon
noise �see also Fig. 12, below� and applies also to the
original Keck technique. It is possible to change this
behavior to have the highest precision at piston steps
near zero by addition of a phase plate to one half of
the subaperture, covering only one of the two seg-
ments. The phase plate has to apply a phase shift of
��2 and should be optimized for the shortest wave-
length used in piston measurements, since this plate
will be an integral part of the lenslet and cannot be
altered between measurements.

The performance gain of the phase plate is highest
when the mirror segments are already aligned with
good precision. Figure 9 shows as an example the
results of phasing a segmented mirror with normally
distributed piston values with rms � 20 nm. Imper-
fect conditions were assumed, yielding relatively high

piston-step measurement errors. Without applica-
tion of a phase plate �left plot�, the resulting rms
piston error shows the original rms error of 20 nm.
Applying the phase plate �right plot� results in a rms
piston error of 4.5 nm.

In the case of polishing errors, using the phase
plate and repeating the piston measurements in an
iterative way should minimize measurement errors
rapidly, when the peak ratio technique is used.
With the Keck technique the same polishing errors as
in Fig. 8 affect the measurements in a different way,
as can be seen in Fig. 10. The largest measurement
error is smaller than that of the peak ratio technique,
but there is no point of near-zero error over the whole
range of piston steps. Iterative measurements will
not minimize measurement errors caused by high-
spatial-frequency segment figure errors when the
Keck technique is applied. It is however possible
that high-spatial-frequency errors could be retrieved
from the segment polisher’s data. Taking into ac-
count that such errors are stable in time, it would, in
principle, be possible to calibrate their effect, and so
iterative measurements will not be needed. Even if
this turns out not to be possible, making an iterative
measurement with the peak ratio technique would be
needed only once in a segment’s lifetime, stepping
through the measurement range to obtain a calibra-
tion curve including the high-spatial-frequency ef-
fects of each particular subaperture.

D. Performance as a Function of Seeing

As described in Subsection 2.A and shown in Fig. 5,
the shape of the diffraction pattern changes with the
seeing conditions. The way this affects the mea-
surement precision depends on the method chosen to
extract phase information. At the Keck telescopes,
11 images at perfect seeing conditions are simulated
and compared with the real image under investiga-
tion. Surprisingly, the original Keck technique
works better when seeing gets worse, as is shown in
Fig. 11. In the peak ratio technique worse seeing
conditions will produce a greater peak ratio error
because of a systematic error in the Gaussian fit.
The resulting measurement errors for various seeing
conditions are shown in Fig. 12. The precision is

Fig. 8. Measurement precision of the peak ratio technique with
high spatial-frequency wave-front aberrations resulting from seg-
ment polishing with an amplitude of 10, 20, and 30 nm �wave
front�. Note that one example aberration structure is used; each
segment will have its own characteristic aberration. Triangles
indicate data without segment figure errors, higher polishing er-
rors produce higher measurement errors.

Fig. 9. Performance of the peak ratio method on a whole mirror.
The original piston values are normally distributed with a rms of
20 nm �not shown�. In this simulation a seeing of 20 cm and 5000
photons per subaperture were assumed. The peak ratio method
without phase plate �left� resulted in a rms piston error of 19.5 nm
and a rms piston-step measurement error of 15.4 nm. Using a
phase plate �right� resulted in a rms piston error of 4.5 nm and a
rms piston-step measurement error of 4.9 nm.

Fig. 10. Measurement precision of the Keck technique under the
same polishing conditions as in Fig. 8. Triangles represent data
without segment figure errors; higher polishing errors produce
higher measurement errors.
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greatly affected by the seeing condition. However,
since the error of the Gaussian fit is systematic, one
can correct for it. Calculated calibration curves for
various seeing conditions are shown in Fig. 6. The
real seeing condition can be estimated from the width
of the fitted peaks, and one can apply the correspond-
ing calibration curve. The resulting piston-step
measurement error is then almost reduced to its
value at perfect conditions, as can be seen in Fig. 13.

E. Performance as a Function of Magnitude

In this section we calculate the stellar magnitude
needed to phase the mirror using the narrow-band

technique with the peak-ratio algorithm. The lim-
iting stellar magnitude will depend on the number of
photons required for measuring the piston errors
with the specified accuracy. The magnitude of a star
is related to the number of photons arriving at the
detector as follows:

n � �tA�10�0.4M�� , (6)

where � is the system efficiency, t is the exposure
time, A is the collecting area, � is the number of
photons per centimeter squared per nanometer from
a zero-magnitude star, �� is the bandwidth, and M is
the magnitude of the star.

Figure 14 shows the error in the piston measure-
ment for different photon levels. The given error is
the standard deviation of 360 random simulations at
different piston steps—it turned out that in the case
of photon noise the Gaussian fit error does not depend
on the piston-step value. To keep the standard de-
viation that is due to photon noise in the piston-step
measurement below 5 nm, approximately 10,000 pho-
tons per subaperture are required. Although 5 nm
seems to be small when compared with the 50-nm
limit for the sum of the errors of two measurements
at different wavelengths �see Subsection 2.B�, one
should bear in mind that this is a standard deviation
and that single measurements may be affected by
higher errors. From simulations of whole mirrors
we found that 10,000 photons per subaperture will
give stable results at all times.

Table 1 shows the limiting stellar magnitude and
the corresponding required accessible field to find
such a star with a probability of 90% for different
photon levels at the North and the South Galactic

Fig. 11. Measurement precision of the Keck technique under var-
ious seeing conditions. Diamonds, data with perfect seeing con-
ditions.

Fig. 12. Measurement precision of the peak ratio technique under
various seeing conditions, with calibration data obtained for best
seeing conditions. Triangles, data with perfect seeing conditions.

Fig. 13. Measurement precision of the peak ratio technique under
various seeing conditions, with the calibration data corresponding
to the actual seeing condition. Data with perfect seeing condi-
tions are marked.

Fig. 14. Rms measurement precision of the peak ratio technique
under various photon noise conditions �� � 650 nm�.

Table 1. Limiting Stellar Magnitude and the Corresponding Required
Accessible Field �FOV� to Find such a Star with a Probability of 90% for
the Peak Ratio Method at Different Photon Levels at the North and the

South Galactic Polesa

N


Precision
�nm� Magnitude

FOVNGP

�arcmin�
FOVSGP

�arcmin�

10000 5 11.8 10.1 8.0
2000 10 13.7 5.4 4.7

aThe given precision is the standard deviation of a piston step
measurement at otherwise perfect conditions.
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Poles. Here we assumed the following values: � �
0.8, which is the product of the transmission from the
top of the atmosphere to the detector, and the detec-
tor quantum efficiency, t � 60 s, which is typical of
active optics time scales, A � 144 cm2, corresponding
to square subapertures with a side length of 12 cm,
�� � 10 nm, and ��650 nm� � 8730 cm�2 nm�1. The
required field of view �FOV� can be obtained from the
probability P of finding at least one star within a
given radius, r, on the sky. Since the distribution of
stars on the sky follows Poisson statistics, P is given
by

P � 1 � exp��r2�
�36002�, (7)

where � is the density of stars brighter than magni-
tude M per degree squared in the considered region.
This star density can be obtained from models of the
galaxy or from measurements by use, for example, of
the Guide Star Catalog,11 which has been employed
here. From the results shown in Table 1, it can be
seen that a minimum accessible FOV of 10-arcmin
diameter is necessary to ensure accurate piston mea-
surements at all times. This is comparable with the
FOV of OWL �OverWhelmingly Large Telescope�, a
100-m telescope project.

F. Performance as a Function of Telescope Size or
Number of Segments

So far we have restricted our discussion to the deter-
mination of a single intersegment piston step. For
the whole mirror made up of Nsegments hexagonal
segments with one subaperture on each side there
will be Nsubapertures � 3Nsegments. The exact value
of Nsubapertures depends on mirror design aspects such
as the outer shape and the central obscuration, since
segments on the outer or the inner borders have less
than six neighbors. Each segment piston is deter-
mined by �up to� six piston-step measurements and
affects the segment piston measurements of all of its
neighbors and hence of the whole mirror. This can
be expressed mathematically as a system of linear
equations of the form

Piston1i � Piston2i � PSi ,

i � 1, . . . , Nsubapertures , (8)

where Piston1i and Piston2i are the piston values of
the two segments corresponding to subaperture i and
PSi is the measured piston step. Since the absolute
average phase of the mirror is not of interest, it
makes sense to keep it constant, with addition of a
further constraint

�
j�1

Nsegments

Piston�0 . (9)

Equations �8� and �9� constitute a simple linear sys-
tem of Nsubapertures � 1 equations with Nsegments un-
knowns �PSi�. At the Keck telescopes the technique
of SVD is used to solve this system.8 We used this
method on simulations of mirrors with up to 1000
segments and found it powerful and robust even on

the scale of ELTs. Figures 15–18. show the results
of some example simulations of mirrors of different
sizes.

In the SVD method one essentially provides a ma-
trix, A, defined by the left-hand sides of Eqs. �8� and
�9�, and a vector defined by the right-hand side. The
SVD procedure returns a vector of piston values. In
the process, a pseudoinverse of A �of Nsubapertures col-
umns and Nsegments rows� is constructed that defines
the linear system. Since we deal with an overdeter-
mined system, that has more equations than un-
knowns, and furthermore the measured �here,
simulated� values are not perfect, SVD provides a
best fit �in the sense of least squares� to the set of
data.

Fig. 15. Segmented mirror of the Keck�GTC type �36 segments�
before �left� and after �right� one phasing iteration. In this sim-
ulation perfect conditions were assumed. The original piston val-
ues are uniformly distributed with a range of 6530 nm and a rms
of 1990 nm. Two measurements at different wavelengths were
performed �� � 650, 850 nm�. The resulting rms piston error is
0.27 nm, and the rms piston-step measurement error is 0.31 nm.

Fig. 16. Segmented ELT mirror �1002 segments� before �top� and
after �bottom� one phasing iteration. In this simulation perfect
conditions were assumed. The original piston values are uni-
formly distributed with a range of 3900 nm and a rms of 1180 nm.
Two measurements at different wavelengths were performed �� �
650, 850 nm�. The resulting rms piston error is 0.46 nm, and the
rms piston-step measurement error is 0.33 nm.
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It makes sense then to perform a weighting on the
measured data to ensure that the piston-step mea-
surements with higher precision will have more in-
fluence than those with less precision. We found
that to achieve this no modification of the well-known
SVD code12 is necessary. All that needs to be done is
to modify the matrix A by simply dividing Eqs. �8� by
the absolute error of the piston-step measurement
��PSi�:

Piston1i � Piston2i

��PSi�
�

PSi

��PSi�
,

i � i, . . . , Nsubapertures . (10)

Mathematically, Eqs. �8� and �10� are identical, but in
the actual SVD algorithm only the left-hand side �the

matrix A� is used, and in a later stage the right-hand
side is used to obtain the resulting piston values.
Thus using Eq. �10� provides additional information
to the SVD algorithm that is used to perform the
required weighting. To understand this, consider
the extreme case of ��PSi�3 �. Row �i� of matrix A
will be made up of zeros, and PSi will not be consid-
ered in the SVD calculation.

In practice, one should furthermore exclude the
piston-step measurements for which the Gaussian fit
procedure apparently did not find a valid solution and
those in two-wavelength measurements that yield
ambiguous solutions. Alternatively, the more prob-
able solution can be chosen and the corresponding
error set to a high value to reflect the ambiguity.
Applying these corrections to the straightforward im-
plementation of SVD will give better results and fur-
thermore will substantially enhance the robustness
of the method. If weighting is not applied, then a
single erroneous or high-error piston-step measure-
ment cannot only lead to a wrong piston estimation
for the two corresponding segments but can also af-
fect a large number of their neighbors. In the worst
case it will not be possible to phase any of the seg-
ments. In our simulations we found that for ELTs in
the presence of seeing and photon noise, SVD without
weightings often failed to find a solution or resulted
in parts of the mirror not being properly phased.
Applying the weightings on the same data sets solved
these problems in almost all cases.

There are further possibilities to enhance the per-
formance of the SVD procedure that should be used
when applied to ELTs. First, a large number of sub-
apertures leads to accumulating round-off errors.
The overall precision of the phasing procedure could
be enhanced by iterative improvements of the solu-
tion to the linear equations. Second, a large number
of subapertures means a large matrix A in the SVD
calculations. One can save computation time and
memory space by using the fact that we deal with a
sparse linear system—A is mainly made up of zeros
that should not be processed and occupy memory.
These enhancements are not yet implemented in our
analysis. The computation time of the SVD method
as a function of the number of segments for our actual
unoptimized analysis code on a Sun Ultra-4 with 4
CPUs, each of 400 MHz, and a total of 4096-MByte

Fig. 17. Segmented ELT mirror �846 segments� before �left� and
after �right� one phasing iteration. In this simulation perfect con-
ditions were assumed. The original piston values are uniformly
distributed with a range of 4000 nm and a rms of 1125 nm. Two
measurements at different wavelengths were performed �� � 650,
850 nm�. The resulting rms piston error is 2.0 nm, and the rms
piston-step measurement error is 0.4 nm. The smooth residual is
an example of the propagation of errors for which the sensitivity of
the technique is low.

Fig. 18. Segmented mirror �120 segments� before �left� and after
�right� one phasing iteration. In this simulation a seeing of r0 �
24 cm and an exposure time yielding 20,000 photons per subaper-
ture were assumed. The original piston values are uniformly
distributed with a range of 3800 nm and a rms of 1153 nm. Two
measurements at different wavelengths were performed �� � 650,
850 nm�. The resulting rms piston error is 4.5 nm, even though
the rms piston-step measurement error is 231 nm. This is be-
cause in two measurements the �-ambiguity algorithm yielded a
wrong result. This did not affect the overall measurement, be-
cause the ambiguity was detected and a higher error was auto-
matically assigned. The rms piston-step measurement error
excluding these two cases is 3.7 nm.

Fig. 19. Computation time needed for the SVD algorithm as a
function of matrix size for our current, unoptimized code. Crosses
represent data for mirrors with 180, 396, 612, 810, and 1002 seg-
ments.
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memory is plotted in Fig. 19. To get the complete
computation time for a phase measurement, one has
to add the time needed for the Gaussian fits. At
least Nsubapertures fits have to be calculated, each tak-
ing �70 ms. With high photon noise the fit some-
times has to be repeated with different parameters
until a valid result is achieved, leading to a higher
computation time when the exposure time is reduced.
Using optimized analysis code will reduce the com-
putation time by a large factor. At optimum, the
SVD matrix would not count Nsegments � Nsubapertures,
but only 2 � Nsubapertures elements. For a 1000-
segment mirror this is a factor of 500 for matrix size
and approximate computation time, making the time
needed for the SVD algorithm negligible when com-
pared with the Gaussian fits. This indicates a com-
putation time of the order of seconds when
implemented on ELTs, if faster CPUs and parallel
processing are employed. For further discussion of
SVD as well as the code, see Press et al.12

G. Practical Aspects

It is clear that for this technique, the number of sub-
apertures increases with the number of segments.
If we consider a regular grid of hexagonal lenslets
mapped onto an image of the segmented mirror, then
in order to measure the piston step at each segment
edge we need to map at least 2N � 1 lenslets onto N
segments. There is an extra lenslet centered on
each segment, which can be used to measure tip–tilt.
In the case of the OWL telescope, there are 64 seg-
ments on its longest axis, and the corresponding
number of subapertures is 129. If the hexagonal edge
length of the lenslets is 0.3 mm, then the length of the
lenslet array would be 67 mm, and the corresponding
pupil demagnification would be approximately 1700.
The lenslets used for phasing would be masked, leav-
ing a 70-�m subaperture at the center. The lenslet
array has to be precisely aligned to the image of the
primary mirror for the Keck narrow-band technique
to work. The alignment should at least be better
than the size of the gaps between the segments. An
alignment accuracy of 1 mm referenced to the pri-
mary mirror would imply aligning the lenslet array to
better than 0.6 �m. These specifications can be met
with currently available technology. The alignment
accuracy can be relaxed by including cross hairs in
the lenslet masking, with the cross hairs aligned to
the segment edges. These cross hairs can also relax
the requirements on distortion in the pupil imaging;
pupil distortion may be difficult to reduce when a
large pupil demagnification is required. The draw-
back is a reduction in the light-gathering area of the
subaperture. This can be compensated to some ex-
tent by means of elongating the subaperture in the
direction perpendicular to the segment edges. This
idea is implemented in the GTC where rectangular
apertures are used for the phasing.7

Another point to consider is the detector size. To
avoid overlap, the FOV of the images given by the

rectangular subapertures must be at least 5�, where
� is the rms motion due to seeing, given by

�2 � 0.348���d�1�3���r0�
5�3 , (11)

where � is the wavelength, r0 is the Fried parameter,
and d is the subaperture size. We will have N � 1
images across the detector. Assuming a wavelength
of 650 nm, the size of the rectangular subapertures as
12 cm, the number of images on the detector in one
dimension as 65, and assuming a scale of 0.2 arcsec�
pixel, then a detector of 1024 � 1024 pixels will be
enough if the seeing is not worse than 0.9 arcsec �r0 �
14.5 cm�. In this case every image is within a square
window of side 3.2 arcsec �16 pixels�. If the seeing is
worse, then a 2048 � 2048 pixel detector will be
necessary. Again, this technology is currently avail-
able. See also Ref. 13 for a discussion of the appli-
cation of Shack–Hartmann phasing to ELTs.

3. Conclusions

In our process of evaluating several possible methods
to phase the segments of ELTs, so far we have inves-
tigated in detail the Keck narrow-band technique.
We showed that a modified version of it can work with
sufficient precision and is feasible on telescopes as
large as 100 m. The modification consists first of a
new analysis method, the peak ratio technique, that
in our simulations yielded more precisely determined
segment-to-segment steps than the original Keck
technique. The second modification is to use weight-
ings on individual measurement errors when the pis-
ton values of all segments are calculated by SVD.
Applying these weightings and excluding erroneous
measurements is made possible with the peak ratio
technique. This enhances the robustness of the al-
gorithm as well as the resulting precision and allows
a substantially higher measurement range.

This research benefited from the support of the
European Commission Research Training Network
�RTN� program “Adaptive Optics for Extremely
Large Telescopes,” contract #HPRN-CT-2000–
00147.
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