L. Bocquet, E. Charlaix, and E. F. Restagno, Physics of humid granular media, Compte Rendu de Physique de l'Académie des Sciences, pp.207-215, 2002.
DOI : 10.1016/S1631-0705(02)01312-9

B. Cambou and M. Jean, Micromécanique des milieux granulaires, Hermes Sciences, 2001.

J. Chappuis, A new model for a better understanding of the cohesion of hardened hydraulic materials, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.156, issue.1-3, pp.223-241, 1999.
DOI : 10.1016/S0927-7757(99)00075-8

P. Claudin, La physique des tas de sable, Annales de Physique. EDP Sciences, vol.24, 1999.

P. A. Cundall and O. D. Strack, A discrete numerical model for granular assemblies, G??otechnique, vol.29, issue.1, pp.47-65, 1979.
DOI : 10.1680/geot.1979.29.1.47

Z. Dai and S. Lu, Liquid bridge rupture distance criterion between spheres, International Journal of Mineral Processing, vol.53, issue.3, pp.171-181, 1998.
DOI : 10.1016/S0301-7516(97)00078-1

P. De-gennes, F. Brochard-wyart, and E. D. Quéré, Gouttes, bulles, perles et ondes. Collection Echelles, 2002.

P. Delage and Y. J. Cui, L'eau dans les sols non saturés, 2000.

J. Delenne, Milieux granulairesàgranulaires`granulairesà comportement solide. Modélisation, analyse expérimentale de la cohésion, validation et applications, Thèse de doctorat, 2002.
URL : https://hal.archives-ouvertes.fr/tel-00007302

J. Delenne, M. S. Youssoufi, F. Cherblanc, and J. Bénet, Mechanical behaviour and failure of cohesive granular materials, International Journal for Numerical and Analytical Methods in Geomechanics, vol.109, issue.1-2, pp.1577-1594, 2004.
DOI : 10.1002/nag.401

J. Duran, Sables, poudres et grains, introductionàintroduction`introductionà la physique des milieux granulaires, Eyrolles Sciences, 1999.

M. A. Erle, D. C. Dyson, and N. R. Morrow, Liquid bridges between cylinders, in a torus, and between spheres, AIChE Journal, vol.17, issue.1, pp.115-121, 1971.
DOI : 10.1002/aic.690170125

R. J. Fairbrother and S. J. Simons, Modelling of Binder-Induced Agglomeration, Particle & Particle Systems Characterization, vol.15, issue.1, pp.16-20, 1998.
DOI : 10.1002/(SICI)1521-4117(199802)15:1<16::AID-PPSC16>3.0.CO;2-1

R. A. Fisher, On the capillary forces in an ideal soil; correction of formulae given by W. B. Haines, The Journal of Agricultural Science, vol.15, issue.03, pp.492-505, 1926.
DOI : 10.1017/S0021859600007838

T. Gröger, U. Tüzün, and D. M. Heyes, Modelling and measuring of cohesion in wet granular materials, Powder Technology, vol.133, issue.1-3, pp.203-215, 2003.
DOI : 10.1016/S0032-5910(03)00093-7

W. B. Haines, Studies in the physical properties of soils: II. A note on the cohesion developed by capillary forces in an ideal soil, The Journal of Agricultural Science, vol.6, issue.04, pp.529-535, 1925.
DOI : 10.1017/S0021859600082460

T. C. Halsey and A. J. Levine, How Sandcastles Fall, Physical Review Letters, vol.80, issue.14, pp.3141-3144, 1998.
DOI : 10.1103/PhysRevLett.80.3141

A. Hamaker, The London???van der Waals attraction between spherical particles, Physica, vol.4, issue.10, pp.1058-1072, 1937.
DOI : 10.1016/S0031-8914(37)80203-7

M. E. Harr, Mécanique des milieux formés de particules, Presses Polytechniques Romandes, 1981.

R. D. Holtz and W. D. Kovacs, IntroductionàIntroduction`Introductionà la géotechnique. Editions de l'Ecole Polytechnique de Montréal, 1991.

K. Hotta, K. Takeda, and E. K. Iionya, The capillary binding force of a liquid bridge, Powder Technology, vol.10, issue.4-5, pp.231-242, 1974.
DOI : 10.1016/0032-5910(74)85047-3

J. Israelachvili, Intermolecular and surface forces, 1992.

S. M. Iveson, J. D. Litster, K. Hapgood, and B. J. Ennis, Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review, Powder Technology, vol.117, issue.1-2, pp.3-39, 2001.
DOI : 10.1016/S0032-5910(01)00313-8

S. M. Iveson, J. A. Beathe, and N. W. Page, The dynamic strength of partially saturated powder compacts: the effect of liquid properties, Powder Technology, vol.127, issue.2, pp.149-161, 2002.
DOI : 10.1016/S0032-5910(02)00118-3

M. Jean, The non-smooth contact dynamics method, Computer Methods in Applied Mechanics and Engineering, vol.177, issue.3-4, pp.235-257, 1999.
DOI : 10.1016/S0045-7825(98)00383-1

URL : https://hal.archives-ouvertes.fr/hal-01390459

T. H. Kim and C. Hwang, Modeling of tensile strength on moist granular earth material at low water content, Engineering Geology, vol.69, issue.3-4, pp.233-244, 2003.
DOI : 10.1016/S0013-7952(02)00284-3

J. W. Landry, G. S. Grest, and S. J. Plimpton, Discrete element simulations of stress distributions in silos: crossover from two to three dimensions, Powder Technology, vol.139, issue.3, pp.233-239, 2004.
DOI : 10.1016/j.powtec.2003.10.016

G. Lian, C. Thornton, and M. J. Adams, A Theoretical Study of the Liquid Bridge Forces between Two Rigid Spherical Bodies, Journal of Colloid and Interface Science, vol.161, issue.1, pp.138-147, 1993.
DOI : 10.1006/jcis.1993.1452

G. Lian, C. Thornton, and M. J. Adams, Discrete particle simulation of agglomerate impact coalescence, Chemical Engineering Science, vol.53, issue.19, pp.3381-3391, 1998.
DOI : 10.1016/S0009-2509(98)00152-3

S. H. Liu, D. A. Sun, and Y. Wang, Numerical study of soil collapse behavior by discrete element modelling, Computers and Geotechnics, vol.30, issue.5, pp.399-408, 2003.
DOI : 10.1016/S0266-352X(03)00016-8

S. Luding, Collisions & Contacts between Two Particles, Physics of dry granular media, pp.285-304, 1998.
DOI : 10.1007/978-94-017-2653-5_20

S. A. Magnier and F. V. Donzé, Numerical simulations of impacts using a discrete element method, Mechanics of Cohesive-frictional Materials, vol.115, issue.3, pp.257-276, 1998.
DOI : 10.1002/(SICI)1099-1484(199807)3:3<257::AID-CFM50>3.0.CO;2-Z

S. Masson and J. Martinez, Micromechanical Analysis of the Shear Behavior of a Granular Material, Journal of Engineering Mechanics, vol.127, issue.10, pp.1007-1016, 2001.
DOI : 10.1061/(ASCE)0733-9399(2001)127:10(1007)

S. Masson and J. Martinez, Effect of micromechanical parameters on stresses and displacements in an ensiled granular material using the discrete element method, pp.87-90, 1997.

D. Maugis, Contact, adhesion and rupture of elastic solids, 2000.
DOI : 10.1007/978-3-662-04125-3

D. Maugis, Adherence of elastomers: Fracture mechanics aspects, Journal of Adhesion Science and Technology, vol.20, issue.1, pp.105-134, 1987.
DOI : 10.1163/156856187X00120

T. Mikami, H. Kamiya, and E. M. Horio, Numerical simulation of cohesive powder behavior in a fluidized bed, Chemical Engineering Science, vol.53, issue.10, pp.1927-1940, 1998.
DOI : 10.1016/S0009-2509(97)00325-4

J. K. Mitchell, Fundamentals of soil behavior, Wiley Inter Science, 1993.

R. H. Mohtar and E. Braudeau, New paradigm for modeling soil water in non-rigid aggregated soil medium. Resource Magazine, ASAE, vol.10, pp.11-12, 2003.

J. Moreau, Contact et frottement en dynamique des syst??mes de corps rigides, Revue Europ??enne des ??l??ments Finis, vol.22, issue.1-3, pp.9-28, 2000.
DOI : 10.1080/08905459108905146

J. Moreau, Numerical Dynamics of Granular Materials, Proceedings of the 3rd Contact Mechanics International Symposium, 2001.
DOI : 10.1007/978-94-017-1154-8_1

J. Moreau, Some numerical methods in multibody dynamics : Application to granular materials, European Journal of Mechanics A/Solids, vol.3, pp.93-114, 1994.

D. Müller, Techniques informatiques efficaces pour la simulation de milieux granulaires par des méthodes d'´ eléments distincts, Thèse de doctorat, 1996.

F. Nicot and F. Darve, A multi-scale approach to granular materials, Mechanics of Materials, vol.37, pp.980-1006, 2005.
DOI : 10.1016/j.mechmat.2004.11.002

A. Nokhodchi, An overview of the effect of moisture on compaction and compression, pp.46-66, 2005.

X. Pepin, D. Rossetti, S. M. Iveson, and S. J. Simons, Modeling the Evolution and Rupture of Pendular Liquid Bridges in the Presence of Large Wetting Hysteresis, Journal of Colloid and Interface Science, vol.232, issue.2, pp.289-297, 2000.
DOI : 10.1006/jcis.2000.7182

P. Pierrat and H. S. Caram, Tensile strength of wet granula materials, Powder Technology, vol.91, issue.2, pp.83-93, 1997.
DOI : 10.1016/S0032-5910(96)03179-8

D. Pisarenko and N. Gland, Modeling of scale effects of damage in cemented granular rocks, Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, vol.26, issue.1-2, pp.83-88, 2001.
DOI : 10.1016/S1464-1895(01)00027-8

O. Pitois, Assemblées de grains lubrifiés : ´ elaboration d'un système modèle expérimental etétudeetétude de la loi de contact, Thèse de doctorat, Ecole Nationale des Ponts et Chaussées, 1999.

O. Pitois, P. Moucheront, and E. X. Chateau, Liquid Bridge between Two Moving Spheres: An Experimental Study of Viscosity Effects, Journal of Colloid and Interface Science, vol.231, issue.1, pp.26-31, 2000.
DOI : 10.1006/jcis.2000.7096

A. V. Potapov and C. Campbell, The two mechanisms of particle impact breakage and the velocity effect, Powder Technology, vol.93, issue.1, pp.3381-3391, 1998.
DOI : 10.1016/S0032-5910(97)03242-7

I. Preechawuttipong, R. Peyroux, and E. F. Radja¨?radja¨?, Microscopic features of cohesive granular media, pp.43-46, 2001.

R. R. Proctor, Fundamental principles of soil compaction, Engineering News-Record, vol.111, issue.10, pp.12-13, 1933.

F. Radja¨?radja¨?, Multicontact dynamics of granular systems, Computer Physics Communication, pp.121-122294, 1999.

F. Radja¨?radja¨?, D. Wolf, M. Jean, S. Roux, and J. Moreau, Force networks in dense granular media, pp.211-214, 1997.

V. Richefeu, mgpost guide d'utilisation, http ://www.lmgc.univ-montp2.fr/richefeu, Laboratoire de Mécanique et Génie Civil, 2004.

Y. Rollot and S. Régnier, Micromanipulation par adhésion, Nano et micro technologies, vol.1, issue.2, pp.213-241, 2000.

D. Rossetti and S. J. Simons, A microscale investigation of liquid bridges in the spherical agglomeration process, Powder Technology, vol.130, issue.1-3, pp.49-55, 2003.
DOI : 10.1016/S0032-5910(02)00225-5

J. P. Seville, C. D. Willett, and P. C. Knight, Interparticle forces in fluidisation: a review, Powder Technology, vol.113, issue.3, pp.261-268, 2000.
DOI : 10.1016/S0032-5910(00)00309-0

L. F. Shampine and M. W. Reichelt, The MATLAB ODE Suite, SIAM Journal on Scientific Computing, vol.18, issue.1, pp.1-12, 1997.
DOI : 10.1137/S1064827594276424

URL : https://hal.archives-ouvertes.fr/hal-01333731

D. W. Taylor, Fundamentals of Soil Mechanics, Soil Science, vol.66, issue.2, 1948.
DOI : 10.1097/00010694-194808000-00008

C. Thornton and S. J. Antony, Quasi-static shear deformation of a soft particle system, Powder Technology, vol.109, issue.1-3, pp.179-191, 2000.
DOI : 10.1016/S0032-5910(99)00235-1

C. Thornton, M. T. Ciomocos, and M. J. Adams, Numerical simulations of diametrical compression tests on agglomerates, Powder Technology, vol.140, issue.3, pp.258-267, 2004.
DOI : 10.1016/j.powtec.2004.01.022

M. E. Urso, C. J. Lawrence, and M. J. Adams, A two-dimensional study of the rupture of funicular liquid bridges, Chemical Engineering Science, vol.57, issue.4, pp.677-692, 2002.
DOI : 10.1016/S0009-2509(01)00418-3

C. Voivret, Solution aqueuse dans un matériau granulaire. Evaporation, cristallisation et résis- tancè a la rupture, 2005.

C. D. Willett, M. J. Adams, S. A. Johnson, and J. P. Seville, Capillary Bridges between Two Spherical Bodies, Langmuir, vol.16, issue.24, pp.9396-9405, 2000.
DOI : 10.1021/la000657y

C. D. Willett, M. J. Adams, S. A. Johnson, and J. P. Seville, Effects of wetting hysteresis on pendular liquid bridges between rigid spheres, Powder Technology, vol.130, issue.1-3, pp.63-69, 2003.
DOI : 10.1016/S0032-5910(02)00235-8

. Allure-typique-d-'une-courbe-de-compactage, L'optimum Proctor correspondàcorrespond`correspondà la teneur en eau qui permet d'obtenir la masse volumique s` eche maximale, pour un sol donné, un mode de compactage et uné energie de compactage donnés

. Seville, en traits pleins, pour des grains de même taille, en pointillés, pour une aspérité de taille caractéristique 0, 1 µm en contact avec un plan. La force de Van der Waals est déterminée pour une constante de Hamaker A = 6, 5.10 ?20 J (cas du quartz) et des distances entre particules variant entre 1, 65Å65?65Å et 4, 0 ? A. La force de capillarité est estiméè a sa valeur maximale, lorsque les grains sont en contact : F capillaire = 2 ? R ?, avec ? = 73.10 ?3 N.m ?1 (cas de l'eau) La forcé electrostatique est considéréè a son intensité maximale (charge de signe opposé), pour une charge surfacique de 10 µCm ?2, Comparaison des intensités de différentes forces interparticulaires pour des contacts ponctuels, p.17, 2000.

.. Effets-de-la-cohésion-par-capillaritéeau, (a) billes de verre liées par un pont liquide constitué d'eau, (b) ´ echantillon composé de billes de verre de 1, 5 mm de diamètre maintenues par des ponts liquides constitués d'

. Comparaison-du-modèle-théorique-avec-les-résultats-de-willett, obtenus pour des ponts liquides de volume V réalisés avec une huile silicone de tension superficielle ? = 20, 6.10 ?3 N/m pour les rayons de billes suivant : (a) R 1 = 2, 381 mm et R 2 = 2, 381 mm (soit r = 1), (b) R 1 = 1, 588 mm et R 2 = 2, pp.381-381, 2000.