R. Spectroscope-raman-brucker, Laser proche Infra-Rouge opérant à 1064 nm avec une puissance de 100 mW et un spot de 0.1 mm de diamètre Chaque spectre Raman a été accumulé avec 100 scans. Le détecteur en Germanium est refroidi par azote liquide. Tous les spectres ont été normalisés en utilisant l'élongation C-H de la ?-butyrolactone à 3000 cm -1 car cette bande présente une haute intensité et n'interfère pas

J. R. Owen, Rechargeable lithium batteries, Chemical Society Reviews, vol.26, issue.4, pp.259-267, 1997.
DOI : 10.1039/cs9972600259

M. Broussely, J. P. Planchat, G. Rigobert, D. Virey, and G. Sarre, Lithium-ion batteries for electric vehicles: performances of 100 Ah cells, Journal of Power Sources, vol.68, issue.1, pp.8-12, 1997.
DOI : 10.1016/S0378-7753(96)02544-X

B. Kenedy, D. Patterson, and S. Canilleri, Use of lithium-ion batteries in electric vehicles, Journal of Power Sources, vol.90, issue.2, pp.156-162, 2000.
DOI : 10.1016/S0378-7753(00)00402-X

M. Lanz and P. Novak, DEMS study of gas evolution at thick graphite electrodes for lithium-ion batteries: the effect of ??-butyrolactone, Journal of Power Sources, vol.102, issue.1-2, pp.277-282, 2001.
DOI : 10.1016/S0378-7753(01)00826-6

C. Gaston and P. , Evolution des batteries Plomb-acide, X, Muneret, 2001.

C. Gaston and P. , Utilisation des batteries Plomb-acide pour les applications de traction de type véhicule électrique ou véhicule hybride, JP. Smaha, 2001.

R. M. Dell, Batteries fifty years of materials development, Solid State Ionics, vol.134, issue.1-2, pp.139-158, 2000.
DOI : 10.1016/S0167-2738(00)00722-0

C. A. Vincent, Lithium batteries: a 50-year perspective, 1959???2009, Solid State Ionics, vol.134, issue.1-2, pp.159-167, 2000.
DOI : 10.1016/S0167-2738(00)00723-2

M. Endo, Recent development of carbon materials for Li ion batteries, Carbon, vol.38, issue.2, pp.183-197, 2000.
DOI : 10.1016/S0008-6223(99)00141-4

2. S. Gautier, Influence de la structure et de la microtexture sur l'insertion électrochimique du lithium dans les carbones désordonnés, Th. Physico-chimie des matériaux, p.126, 1979.

M. S. Whinttingham and R. Huggins, Fast ion transport in solids, 1973.

M. B. Armand, Fast ion transport in solids, North Holland, p.665, 1973.

K. Hayashi, Mixed solvent electrolyte for high voltage lithium metal secondary cells, Electrochimica Acta, vol.44, issue.14, pp.2337-2344, 1999.
DOI : 10.1016/S0013-4686(98)00374-0

V. Gutman, The donor acceptor approach to molecular interaction, The Electrochem, Soc., N.Y, vol.13, 1980.

M. Wakihara and . Yahamoto, Lithium Ion Batteries-Fundamentals and Performance. 45, Lithium batteries elsevier, pp.45-1513, 1994.

A. Gershel and L. Intermoleculaires, Savoirs Actuels Interedition et CNRS- Editions (1995) 73. 48, Techniques d'ingénieurs, P2, 2, 4, Analyse et caractérisation, 1465.

J. Couarraze and . Grossiord, Initiation, à la rhéologie, p.ème édition, 1991.

G. Jones and M. Doles, THE VISCOSITY OF AQUEOUS SOLUTIONS OF STRONG ELECTROLYTES WITH SPECIAL REFERENCE TO BARIUM CHLORIDE, Journal of the American Chemical Society, vol.51, issue.10, pp.2950-2964, 1928.
DOI : 10.1021/ja01385a012

M. Kaminski and D. F. Soc, 24 (1957) 171. 54. D, J.P.Out et J.M. Los, J.Sol.Chem J.Coll. Interface Sci. Electrolyte Solutions, vol.1, issue.645, 1921.

M. Kaminsky, Ionic Processes in Solution, 1953.

. Nightindale, Chemical Physic of ionic solutions, 1966.

R. A. Robinson and B. B. Owen, The physical properties of electrolytic solutions, 3 rd Ed, 1958.

J. O. Bockris and A. K. Reddy, Modern electrochemistry, N. Bjerrum, Kgl. Danske Videnskab. Selskab, vol.1, issue.7 9, 1906.

J. C. Gosh, XXXVIII.???The abnormality of strong electrolytes. Part I. Electrical conductivity of aqueous salt solutions, J. Chem. Soc., Trans., vol.113, issue.0, pp.449-707, 1918.
DOI : 10.1039/CT9181300449

J. E. Enderby, G. W. Neilson-franck, and P. T. Thompson, The Structure of Electrolytic Solutions, Adv.Phys, vol.29, issue.113, 1959.

D. M. Ritson and J. B. , Hasted -Aqueous ionic solutions, Liaisons intermoléculaires Savoirs actuels, CNRS Editions, 1995.

F. Booth, Errata: The Dielectric Constant of Water and the Saturation Effect, The Journal of Chemical Physics, vol.19, issue.10, pp.1327-1615, 1951.
DOI : 10.1063/1.1748049

D. W. James, in acetone, Australian Journal of Chemistry, vol.35, issue.9, p.1775, 1982.
DOI : 10.1071/CH9821775

S. Glasstone, K. J. Laider, and H. Eyring, The Theory of Rate Processes, 1941.

D. Giron, Thermal analysis and calorimetric methods in the characterisation of polymorphs and solvates, Thermochimica Acta, vol.248, pp.1-59, 1995.
DOI : 10.1016/0040-6031(94)01953-E

A. Grunenberg, Polymorphie und Thermische Analyse pharmazeutischer Wirkstoffe, Pharmazie in Unserer Zeit, vol.129, issue.5, pp.224-231, 1997.
DOI : 10.1002/pauz.19970260506

M. S. Ding, Liquid-Solid Phase Diagrams of Binary Carbonates for Lithium Batteries, Journal of The Electrochemical Society, vol.147, issue.5, p.1688, 2000.
DOI : 10.1149/1.1393419

M. S. Ding and J. , Liquid/Solid Phase Diagrams of Binary Carbonates for Lithium Batteries???Part II, Journal of The Electrochemical Society, vol.148, issue.4, pp.299-304, 2001.
DOI : 10.1149/1.1353568

J. L. Gineste and G. Pourcelly, Polypropylene separator grafted with hydrophilic monomers for lithium batteries, Journal of Membrane Science, vol.107, issue.1-2, pp.155-164, 1995.
DOI : 10.1016/0376-7388(95)00112-P

A. Tudelas-ribes, P. Beaunier, P. Willmann, and D. Lemordant, Correlation between cycling efficiency and surface morphology of electrodeposited lithium. Effect of fluorinated surface active additives, Journal of Power Sources, vol.58, issue.2, pp.189-195, 1996.
DOI : 10.1016/S0378-7753(96)02397-X

D. Aurbach and Y. Eli, The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries, Journal of The Electrochemical Society, vol.142, issue.9, pp.2882-2889, 1995.
DOI : 10.1149/1.2048659